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Abstract. In this paper we describe a heuristic method, based on graph-
partitioning algorithms, with the purpose of improving the demarcation of areas 
for police patrolling. This demarcation seeks to homogenize the number of 
crimes among the patrol regions. If the map of a particular region is taken as a 
graph, we can say that the problem faced by police forces (typically preventive 
police) is similar to the problem of finding balanced connected q partitions of 
graphs (BCPq). Since this is a problem belonging to the NP-Hard class, ap-
proximate algorithms are the most suitable for solving such a problem. The 
method described in this article obtains results nearest those considered optimal 
for the more general case of BCPq, for q ≥ 2.  

Keywords: approximate algorithm, graphs, heuristic method, balanced con-
nected partition. 

1   Introduction 

In order to contain criminal activity, it is necessary to provide the organizations that 
act repressively or preventively with tools for the efficient performance of their ac-
tions. Preventive Police Force has the task of carrying out ostensible law enforcement. 
It is assumed, therefore, that this group’s presence acts as a dissuasive force, thus 
preventing the occurrence of crimes. 

The division of patrol areas is one of the basic activities of planning for the police 
patrol. One example of a project in which the issue of division of patrol areas causes a 
major impact is being developed in Brazil: the “Block Patrol” project. 

This project intends to divide the city of Fortaleza (more than 2 million inhabi-
tants) into patrol areas that would be covered by teams of police officers. This territo-
rial division, in principle, is being done by means of an ad hoc criterion: fixed areas 
measuring 3 km² each. The search for efficient methods to carry out this division, 
based on criteria such as the crime rate of the areas, is the object of this work. It is 
easy to understand why the technicians of the Block Patrol chose such a simple 
method. The division of the city into variable areas considering different optimization 
criteria is not a trivial task. The difficulty of such an activity is evident in this scien-
tific paper. For this work, we decided to model the problem of the optimized division 
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of patrol areas as a problem of balanced connected partition of graphs in q partitions 
(BCPq). It can be perceived, by doing so, that the problem in question is presented as 
NP-Hard [4]. 

The optimization in demarcating the regions intends to achieve the maximum ho-
mogenization possible in the distribution of crimes among the areas. Doing so, the 
distribution of police patrol teams can be associated to a demarcated area (i.e. each 
area is associated to one team).  

The first contribution of this article is, therefore, to supply a formal setting for the 
treatment of the problem and, for this reason, is inspired by works already developed 
by the scientific community for seeking an approximated and viable solution to the 
problem. In addition to the formal modeling of the problem, this paper proposes a 
heuristic method for efficient resolution (in comparative terms with the state of the 
art) for the problem of balanced graph partition. Finally, the application of such a 
method to partition the city of Fortaleza into patrol areas is the practical contribution 
provided herein.  

The remainder of the article is structured in the following way: Initially, we present 
a short analysis of the problem of balanced connected partition of graphs and of the 
main algorithms related to this problem. Then, we show how modeling the problem of 
dividing the patrol areas was done to a graph partition problem, and we describe this 
article’s objective heuristic method. In the fourth section, we evaluate the heuristic 
method and compare it with the algorithm proposed by Chlebíková [3], which is con-
sidered the algorithm that produces the best results for the specific case of BCPq, for 
q = 2. Finally, the last section brings final considerations and perspectives for future 
works. 

2   Balanced Connected Partitions of Graphs 

BCPq (Balanced Connected Partition of graphs for q partitions, where q ≥ 2) can be 
defined in the following way:  

Given an integer number q and a connected graph G = (V, E), where its vertices 
possess weights, find a q-partition of G such that each subgraph associated to each 
partition is connected and the weight of the lightest one is the highest possible, i.e., 
the distribution of the weights among the subgraphs should be the most homogeneous 
possible.  

This problem belongs to the class of the problems of graph partitioning and is clas-
sified as an NP-Hard problem, even for q-connected graphs [4]. Therefore, the most 
appropriate algorithms for solving this problem are approximation algorithms, which 
tend to find solutions nearest those considered optimal. 

Several algorithms exist for the more general problem of graph partitioning. 
Among those, we can cite the following: the Cartesian Nested Dissection method [6], 
the Kernighan-Lin (KL) algorithm [1], the Fiduccia-Mattheyses (FM) algorithm [2], 
the multilevel methods [8] and [10], recursive coordinate bisection [11]. It is worthy 
of mention that the KL algorithm is one of the most widely referenced for solving this 
problem, since it produces a good local partitioning regarding the number of cut 
edges. For further information, we recommend reading [7]. 
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There are few algorithms geared specifically toward the BCPq problem. For the 
particular case where q = 2, the algorithm proposed by Chlebíková [3] is the one that 
produces a partition nearest to what is considered optimal, i.e., the partitions are con-
nected and possess weights whose values are approximations of the ideal result ( each 
partition possesses half the weight of the graph). For the case where q ≥ 3, BCPq has 
not been widely investigated, in as much as—up to until 2007—no algorithms existed 
that resolved any problem for q ≥ 3 within the set of integer numbers [5]. Very re-
cently, Pinheiro in [5] constructed several heuristics, based on spanning trees, which 
present good results for the general case of the problem. For further information re-
garding the BCPq problem and algorithms of approximation geared toward this prob-
lem, we recommend reading [9]. 

3   Description of the Solution 

For solving the problem of optimization of patrol area demarcation, we use the graph 
data structure for the computer representation of geographical maps [12]. In this pa-
per, we used the map that represents the district of Aldeota, located in the city of For-
taleza, Brazil. In order to explain this modeling, let’s take this map as shown in Fig. 1. 

 

Fig. 1. Map of the Aldeota district 

The map was divided into 72 parts called “blocks”. One block is a sub-region of a 
district whose area includes about four city squares [area of buildings/lots surrounded 
by four streets], i.e., 0.04 km². Each block was numbered with a value from 1 to 72. 
The points in black indicate the occurrence of a crime at a particular location in the 
district. 
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The choice of small areas to delimit the blocks was arbitrary. However, this de-
marcation could be of another granularity; but—since specialists on the subject be-
lieve that this granularity is reasonable, because they would not constitute per se just 
one useful area of policing—we adopted this demarcation. Moreover, if we chose 
larger areas, the heuristic method would have to divide these blocks into sub-blocks in 
order to guarantee a greater homogeneity of crimes among the patrol areas, thus di-
minishing the performance of such a method. 

Each block of this map was represented by a vertex on the graph. Additionally, 
each vertex possessed a weight, denoting the number of crimes within the region of 
the block represented by the vertex. The edges of the graph represent the idea of 
neighborhood between the blocks, i.e., two neighboring blocks on the map will be 
represented by an edge (u, v), where u and v are graph vertices associated to the 
blocks. For example, blocks 1 and 2 are neighbors on the map; therefore they will 
form an edge (v1, v2) on the graph. Observe that diagonal blocks are not considered 
neighbors. For example, blocks 1 and 15 are not neighbors. Fig. 2 illustrates the graph 
that results from the map in Fig. 1. The numbers in bold represent the weights of the 
vertices, i.e., the number of crimes that occurred within the limits of a particular block 
associated to the vertex. 

Now that we already have the graph representing the geographical map of the Al-
deota district, all we have to do is apply the method of balanced connected partition-
ing in order to produce the regions that will be patrolled by the police teams. 

 

Fig. 2. Graph representing the map in Fig. 1 

3.1   Description of the Heuristic Method 

The method is comprised of two phases: initial partitioning and partition refinement. 
In the initial partitioning phase, we can use any method that partition a graph in two 
connected sub-graphs. Particularly, for the application in the demarcation of patrol 
areas we have chosen to use the Cartesian Parallel Nested Dissection algorithm [6]. 
The rationale behind this choice is two-fold. Such an algorithm assumes that the ver-
tices possess geographical coordinates which it is the case in the patrol area domain 
where coordinate values are associated to each vertex according to the position of the 
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block that this vertex represents on the map. Furthermore, the Cartesian Nested Dis-
section algorithm is simple to implement, efficient having low complexity.  

In the partition refinement phase, we use a heuristic algorithm that we constructed 
based on the strategies of the KL algorithm [1]. This heuristic algorithm swaps the 
vertices between the partitions with the intent of maximizing the homogeneity of the 
weights between them. Such a refinement algorithm is this article’s main contribution 
toward the BCPq problem. 

3.2   Algorithm for Partition Refinement 

The partition refinement algorithm is based on concepts adopted by the Kernighan-
Lin method [1]. The KL algorithm executes swaps among partitions with the aim of 
minimizing the number of edges that will be cut. Similarly, our algorithm executes 
such swaps with the intent of better distributing the weights among the partitions. 
Both receive a graph and the partitions thereof as input and return the refined parti-
tions according to their refinement criteria. Before detailing the algorithm, it is impor-
tant to define some of the concepts: 

• Cut vertex or articulation point is a vertex of a graph such that its removal 
causes an increase in the number of connected components. If the graph was 
connected before the removal of the vertex, it will be disconnected after-
wards; 

• A vertex of a partition is said to be admissible if  there is an edge linking it to 
a vertex in another partition. Moreover, this vertex can’t be a cut vertex;  

• Weight of a partition, represented by the notation w(P), denotes the total 
value of the weights of the vertices belonging to partition P; 

• Two partitions are considered adjacent if there is an edge that goes from a 
vertex in one these partitions to a vertex in the other one. 

The algorithm possesses the following characteristics: it carries out the swap, 
where only one vertex is swapped at a time, between two adjacent partitions at a time. 
The vertices are swapped or moved from one partition whose weight is greater to 
another partition whose weight is less. Vertices that are swept must be admissible, 
which guarantees the connectivity of the partitions after the swap, and they possess 
the lowest values of preference among the possible vertices to be swapped. These 
preference values must be lower than a local homogeneity index for the vertices to be 
transferred. 

The local homogeneity index α indicates how far away the weights of both parti-
tions are from a weight that is considered ideal. This ideal weight is the average 
among the weights of the partitions. The index is calculated according to the equation 
defined in (1), where: 

      
 

• ( )1Pw  denotes the weight of partition 1P ; 

• ( )2Pw  denotes the weight of partition 2P ; 

The preference criterion for a vertex γ(v) represents the value of α after swapping 
this vertex. Such value is calculated according to the equation defined in (2), where: 

( ) ( ) )1(21 PwPw −=α
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( ) ( ) ( )( ) ( ) ( )( )2min1max vwPwvwPwv vertexvertex ++−=γ
                   (2) 

• ( )1max Pw  denotes the weight of the partition with highest weight, i.e., that to 

which vertex v  belongs; 

• ( )vwvertex  denotes the weight of vertex v ; 

• ( )2min Pw  denotes the weight of the partition adjacent to 1P  with the lowest 

weight; 

To optimize the swapping process, the algorithm prefers swaps between the partition 
with the highest weight and the partition adjacent thereto with the lowest weight in a 
given iteration of the algorithm. Following this preference criterion, the weights of the 
most valued partitions are first diminished and, consequently, the weights of their 
respective smaller valued adjacent partitions are increased, improving the homogene-
ity among the partitions. The process finishes when there is no vertex that can be 
swapped among adjacent partitions, i.e., the solution cannot be more refined accord-
ing to the algorithm’s criteria. 

The algorithm of the GLOBALREFINEMENT procedure, which carries out the 
process described previously. See it below.  

 
GLOBALREFINEMENT (Partitions[]) 
 
1 For each partition do 
2    Attribute an optimal weight value to the partition; 
3 INITIALIZEADJACENCYPARTITIONS (Partitions); 
4 Place partitions in decreasing order according to their weights; 
5 indexCurrentPartition ← 0; 
6 numberIterations ← 0; 
7 currentPartition ← null; 
8 While (indexCurrentPartition = Partitions.length) do 
9    currentPartition ← Partitions[indexCurrentPartition]; 
10    Place partitions adjacent to currentPartition in increasing order according to 
11    their weights; 
12    For each partition adjacent to currentPartition do 
13       numberIterations ← LOCALREFINEMENT (adjacentPartition, currentPartition); 
14       If (numberIterations = 0) then 
15          stop; 
16    If (numberIterations = 0) then 
17       indexCurrentPartition ← indexCurrentPartition + 1; 
18    Else 
19       indexCurrentPartition ← 0; 
20       numberIterations ← 0; 
21       UPDATEADJACENCYPARTITIONS (Partitions); 
22       Place partitions in decreasing order according to their weights;  

       
The procedure begins by attributing an optimal weight value to each partition (lines 1 

and 2). This optimal value is the result of the division between the weight of the graph 
and the number of partitions. Then, the procedure initializes the relations of adjacency 
among the partitions invoking the INITIALIZEADJACENCYPARTITIONS procedure 
(line 3). Immediately thereafter, the partitions are placed in decreasing order according 
to their weights (line 4), and the variables: indexCurrentPartition, numberIterations and 
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currentPartition are initialized (lines 5, 6 and 7). The outermost loop repeats until all of 
the partitions have been tested for the swapping process (line 8). Within that loop, first 
the partition with the greatest weight is attributed to the currentPartition variable (line 
9), and the partitions adjacent thereto are placed in increasing order according to their 
weights (line 10). Then, for each adjacent partition, the swapping process is executed by 
calling the LOCALREFINEMENT function (lines 12 and 13). If this method executes 
any swap, the innermost loop ends (lines 14 and 15). Otherwise, it continues until  
reaching the end of the list of adjacent partitions or until some swap is carried out. Right 
after this innermost loop, if no swap was made between the current partition with the 
highest weight and one of its adjacent partitions, the indexCurrentPartition variable  
is increased (line 17), and the outermost loop goes on to its next iteration. Otherwise,  
the indexCurrentPartition and numberIterations variables are again initialized  
(lines 19 and 20), the relations of adjacency among the partitions are updated 
(UPDATEADJACENCYPARTITIONS procedure) (line 21), the partitions are again 
placed in decreasing order according to their weights (line 22), and the outermost loop 
goes on to its next iteration. 

4   Evaluation and Comparison with the Chlebíková Algorithm 

In order to utilize an approximative method, we will use the approximation ratio or 
performance ratio (represented by the letter p) as a metric for evaluating the method 
described in the previous section. This measure informs how close the solution ob-
tained by an algorithm is to the optimal solution. 

Using equation (3), we can calculate the approximation ratio of an algorithm, 
where A(I) represents the value of a solution obtained by executing algorithm A for 
an instance I of the problem, and opt(I) represents the value of an optimal solution for 
instance I of the problem. 

( ) ( )* IoptpIA ≤                                                 (3) 

Since—in our case—the partitioning method may produce partitions with weights 
above those considered optimal, the value of A(I) is calculated in the following man-
ner: optimal weight for a partition (weight of the graph divided by the number of 
partitions) – the greatest difference in module between the weight of a partition and 
the optimal weight for a partition. 

For example: suppose that the partitioning algorithm for a graph G with weight 30 
produced three partitions with the following weights: 11, 11 and 8. The opt(I) value will 
be 10 (1/3 of the weight of the graph), and the A(I) value will be 8, i.e., (10 - |8 – 10|). 
Therefore, the approximation ratio (p) will be 0,8 (80%), i.e., the weights of the three 
partitions approximated the optimal weight by at least 80% for a partition of this graph. 

4.1   Application and Evaluation of the Algorithm in the Graph of the Aldeota 
District 

In order to verify the efficacy of the heuristic method that is the subject of this article, 
we applied it to the graph that represents the Aldeota district (Fig. 2) for a number q 
of partitions varying from 2 to 15. The results are presented in Table 1. 
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Observe that, for the most part, the results were good, with an approximation per-
centage greater than or equal to 80%, except for the case where the number of parti-
tions is equal to 4, whose approximation percentage was 69.56%. This occurred due 
to the fact that the Initial Partitioning phase did not produce—for that case—partitions 
that better aided the Partition Refinement phase regarding adjacency among the parti-
tions, in order to produce a solution with a higher approximation percentage. How-
ever, the greatest contribution of this article, i.e., the refinement algorithm that we 
constructed, applied in the Partition Refinement phase, showed that given an initial 
connected partitioning, one can produce good solutions for a number of partitions 
greater than or equal to two. Furthermore, for these tests, the partitioning method 
takes no more than 0.5s to produce the solutions. 

It should be pointed out that we applied the method on a planar graph with coordi-
nate values associated with its vertices. We were not able to affirm that the method 
described in this article produces solutions with the same percentage of approximation 
for all types of graphs. However, we believe that, given an initial connected partition-
ing, the heuristic algorithm (Partition Refinement phase) manages to produce con-
nected partitions with good percentages of approximation. 

Table 1. Results of the tests on the Aldeota graph 

Number of Partitions Percentage of Approximation 

2 99.45% 

3 99.18% 

4 69.56% 

5 97.26% 

6 93.44% 

7 86.53% 

8 93.47% 

9 87.50% 

10 88.88% 

11 90.90% 

12 90% 

13 82.14% 

14 80.76% 

15 87.50% 

4.2   Comparison with the Chlebíková Algorithm 

As already mentioned previously, the Chlebíková algorithm [3] is the one that pro-
duces a balanced connected partitioning closest to what is considered optimal for the 
BCP2 problem, where the input graph is 2-connected. 

However, the algorithm proposed by Chlebíková, in certain situations, fails to pro-
duce better solutions because it always chooses the admissible vertex with the lowest 
weight among all admissible vertices. 
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Unlike Chlebíková’s algorithm, the refinement algorithm that we constructed 
chooses admissible vertices that best balance the weights among the partitions in any 
given iteration. This difference makes the algorithm that we created produce solutions 
that are equal to or better than the solutions obtained by applying the algorithm pro-
posed by Chlebíková. 

We compared the two methods through several tests conducted by varying the 
number of vertices and the density (number of edges) of biconnected graphs. We have 
used the Jung electronic library [13], version  1.7.6, to randomly generate the graphs. 
The graph’s vertex weighs are also randomly set up with values varying between one 
and the half of the graph size (total number of vertices).   

We mean by initial partition the phase the returns two partitions in which one of 
them has the heaviest graph vertex and another has the rest of the vertices. This is the 
same strategy used in the initial phase of Chlebíková’s algorithm. We have adopt it 
for comparison purposes since we keep the same conditions between our approach 
and Chlebíková`s one. Otherwise the results could be biased by the results obtained 
during the initial phase what would compromise the evaluation of the refinement 
phase which is our main goal. Moreover, the use of the Cartesian Dissection would 
require the association of coordinates for the vertices what would constraint the 
choice of graphs in the evaluation process. The test results are presented in Table 2. 
The first column and second columns show the graph edges and vertices number, 
respectively. For each test, ten graphs were used and we run the algorithm for each 
one of them. The third and fourth columns represent the average approximation ratio 
of our approach and Chlebíková `s, respectively. Finally, the fifth and sixth columns 
show, also for our approach and Chlebíková `s one, the average iteration number for 
finding a solution. Note thus that the average iteration number accounts the average of 
the number of times one vertex was transferred from one partition to another during 
the algorithm execution. According to these tests, the algorithm that we describe in  
 

Table 2. Comparison between the Chlebíková algorithm and this article’s method 

Density n p Our  
Approach 

p Chlebíková Nb. Iteration Our  
Approach 

Nb. Iteration  
Chlebíková 

10 0.95 0.89 2.9 4.5 2n 
20 0.99 0.95 6.4 12 

10 0.98 0.94 3 4.7 
20 0.99 0.96 6.4 11.7 

30 0.99 0.98 9.4 18.1 

 
2.5n 

40 0.99 0.98 12.4 25.5 
10 0.95 0.92 2.9 4.8 
20 0.99 0.96 5.7 12.2 

30 0.99 0.97 9.3 18.6 

40 0.99 0.98 12.3 25.4 
50 0.99 0.98 15.1 33.1 

60 1 0.99 18.1 39.8 

 
 
 

3n  

70 1 0.99 21.7 46.3 
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section 3 produces solutions with an approximate ratio better than those proposed by 
Chlebíková. Note that these results were achieved in less iterations than Chlebíková`s. 

The Chlebíková algorithm used in our tests was implemented by us in JAVA. In 
order to perform the tests presented in this section, we used an Intel Pentium 4 Proc-
essor with 512Mb of memory. 

5   Final Considerations and Future Works 

The intent of this article is to help preventive police forces. Such help consists of 
better delimiting the patrol areas and distributing the police teams among these areas. 
For such, we showed that the problem faced by the preventive police can be modeled 
as a problem of balanced connected partitioning of graphs (BCPq). Such a problem 
has not been widely investigated for its most general case, where the number of parti-
tions is greater than 2. 

We developed a heuristic method based on strategies pertaining to the foremost 
graph-partitioning algorithms. We applied it on a graph that represents the Aldeota 
district in the city of Fortaleza, Brazil. The results obtained from the tests on this 
graph showed that, in general, the approximation percentage was equal to or greater 
than 80% for a number of partitions varying from 2 to 15. Moreover, we compared 
this method to the approximation algorithm proposed by Chlebíková. Several tests 
were conducted, varying the number of vertices and of edges of the graphs. The re-
sults obtained showed that the algorithm proposed in this article possessed a degree of 
approximation equal to or higher than that obtained with the algorithm proposed by 
Chlebíková. 

Based on this work, we show the feasibility, in the future, of delimiting patrol areas 
that obey certain limits of extension. In order for this to be possible, an area value 
would be associated with each vertex, and such value would represent the extension 
of the block associated therewith. Thus, the patrols would not be under-utilized, i.e., 
there would be no patrols in small regions. In the long term, it is also possible to envi-
sion the use of this algorithm to improve patrolling efforts in other districts of the city 
of Fortaleza, as well as in other cities. 
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