
H. Geffner et al. (Eds.): IBERAMIA 2008, LNAI 5290, pp. 62–72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Heuristic Method for Balanced Graph Partitioning: An
Application for the Demarcation of Preventive Police

Patrol Areas

Thiago Assunção and Vasco Furtado

University of Fortaleza (UNIFOR) – Graduate Program in Applied Informatics (MIA)
Av. Washington Soares, 1321 - Bloco M Sala 11 - 60.811-905 - Fortaleza – Brazil

thiagoaa_unifor@yahoo.com.br, vasco@unifor.br

Abstract. In this paper we describe a heuristic method, based on graph-
partitioning algorithms, with the purpose of improving the demarcation of areas
for police patrolling. This demarcation seeks to homogenize the number of
crimes among the patrol regions. If the map of a particular region is taken as a
graph, we can say that the problem faced by police forces (typically preventive
police) is similar to the problem of finding balanced connected q partitions of
graphs (BCPq). Since this is a problem belonging to the NP-Hard class, ap-
proximate algorithms are the most suitable for solving such a problem. The
method described in this article obtains results nearest those considered optimal
for the more general case of BCPq, for q ≥ 2.

Keywords: approximate algorithm, graphs, heuristic method, balanced con-
nected partition.

1 Introduction

In order to contain criminal activity, it is necessary to provide the organizations that
act repressively or preventively with tools for the efficient performance of their ac-
tions. Preventive Police Force has the task of carrying out ostensible law enforcement.
It is assumed, therefore, that this group’s presence acts as a dissuasive force, thus
preventing the occurrence of crimes.

The division of patrol areas is one of the basic activities of planning for the police
patrol. One example of a project in which the issue of division of patrol areas causes a
major impact is being developed in Brazil: the “Block Patrol” project.

This project intends to divide the city of Fortaleza (more than 2 million inhabi-
tants) into patrol areas that would be covered by teams of police officers. This territo-
rial division, in principle, is being done by means of an ad hoc criterion: fixed areas
measuring 3 km² each. The search for efficient methods to carry out this division,
based on criteria such as the crime rate of the areas, is the object of this work. It is
easy to understand why the technicians of the Block Patrol chose such a simple
method. The division of the city into variable areas considering different optimization
criteria is not a trivial task. The difficulty of such an activity is evident in this scien-
tific paper. For this work, we decided to model the problem of the optimized division

 A Heuristic Method for Balanced Graph Partitioning 63

of patrol areas as a problem of balanced connected partition of graphs in q partitions
(BCPq). It can be perceived, by doing so, that the problem in question is presented as
NP-Hard [4].

The optimization in demarcating the regions intends to achieve the maximum ho-
mogenization possible in the distribution of crimes among the areas. Doing so, the
distribution of police patrol teams can be associated to a demarcated area (i.e. each
area is associated to one team).

The first contribution of this article is, therefore, to supply a formal setting for the
treatment of the problem and, for this reason, is inspired by works already developed
by the scientific community for seeking an approximated and viable solution to the
problem. In addition to the formal modeling of the problem, this paper proposes a
heuristic method for efficient resolution (in comparative terms with the state of the
art) for the problem of balanced graph partition. Finally, the application of such a
method to partition the city of Fortaleza into patrol areas is the practical contribution
provided herein.

The remainder of the article is structured in the following way: Initially, we present
a short analysis of the problem of balanced connected partition of graphs and of the
main algorithms related to this problem. Then, we show how modeling the problem of
dividing the patrol areas was done to a graph partition problem, and we describe this
article’s objective heuristic method. In the fourth section, we evaluate the heuristic
method and compare it with the algorithm proposed by Chlebíková [3], which is con-
sidered the algorithm that produces the best results for the specific case of BCPq, for
q = 2. Finally, the last section brings final considerations and perspectives for future
works.

2 Balanced Connected Partitions of Graphs

BCPq (Balanced Connected Partition of graphs for q partitions, where q ≥ 2) can be
defined in the following way:

Given an integer number q and a connected graph G = (V, E), where its vertices
possess weights, find a q-partition of G such that each subgraph associated to each
partition is connected and the weight of the lightest one is the highest possible, i.e.,
the distribution of the weights among the subgraphs should be the most homogeneous
possible.

This problem belongs to the class of the problems of graph partitioning and is clas-
sified as an NP-Hard problem, even for q-connected graphs [4]. Therefore, the most
appropriate algorithms for solving this problem are approximation algorithms, which
tend to find solutions nearest those considered optimal.

Several algorithms exist for the more general problem of graph partitioning.
Among those, we can cite the following: the Cartesian Nested Dissection method [6],
the Kernighan-Lin (KL) algorithm [1], the Fiduccia-Mattheyses (FM) algorithm [2],
the multilevel methods [8] and [10], recursive coordinate bisection [11]. It is worthy
of mention that the KL algorithm is one of the most widely referenced for solving this
problem, since it produces a good local partitioning regarding the number of cut
edges. For further information, we recommend reading [7].

64 T. Assunção and V. Furtado

There are few algorithms geared specifically toward the BCPq problem. For the
particular case where q = 2, the algorithm proposed by Chlebíková [3] is the one that
produces a partition nearest to what is considered optimal, i.e., the partitions are con-
nected and possess weights whose values are approximations of the ideal result (each
partition possesses half the weight of the graph). For the case where q ≥ 3, BCPq has
not been widely investigated, in as much as—up to until 2007—no algorithms existed
that resolved any problem for q ≥ 3 within the set of integer numbers [5]. Very re-
cently, Pinheiro in [5] constructed several heuristics, based on spanning trees, which
present good results for the general case of the problem. For further information re-
garding the BCPq problem and algorithms of approximation geared toward this prob-
lem, we recommend reading [9].

3 Description of the Solution

For solving the problem of optimization of patrol area demarcation, we use the graph
data structure for the computer representation of geographical maps [12]. In this pa-
per, we used the map that represents the district of Aldeota, located in the city of For-
taleza, Brazil. In order to explain this modeling, let’s take this map as shown in Fig. 1.

Fig. 1. Map of the Aldeota district

The map was divided into 72 parts called “blocks”. One block is a sub-region of a
district whose area includes about four city squares [area of buildings/lots surrounded
by four streets], i.e., 0.04 km². Each block was numbered with a value from 1 to 72.
The points in black indicate the occurrence of a crime at a particular location in the
district.

 A Heuristic Method for Balanced Graph Partitioning 65

The choice of small areas to delimit the blocks was arbitrary. However, this de-
marcation could be of another granularity; but—since specialists on the subject be-
lieve that this granularity is reasonable, because they would not constitute per se just
one useful area of policing—we adopted this demarcation. Moreover, if we chose
larger areas, the heuristic method would have to divide these blocks into sub-blocks in
order to guarantee a greater homogeneity of crimes among the patrol areas, thus di-
minishing the performance of such a method.

Each block of this map was represented by a vertex on the graph. Additionally,
each vertex possessed a weight, denoting the number of crimes within the region of
the block represented by the vertex. The edges of the graph represent the idea of
neighborhood between the blocks, i.e., two neighboring blocks on the map will be
represented by an edge (u, v), where u and v are graph vertices associated to the
blocks. For example, blocks 1 and 2 are neighbors on the map; therefore they will
form an edge (v1, v2) on the graph. Observe that diagonal blocks are not considered
neighbors. For example, blocks 1 and 15 are not neighbors. Fig. 2 illustrates the graph
that results from the map in Fig. 1. The numbers in bold represent the weights of the
vertices, i.e., the number of crimes that occurred within the limits of a particular block
associated to the vertex.

Now that we already have the graph representing the geographical map of the Al-
deota district, all we have to do is apply the method of balanced connected partition-
ing in order to produce the regions that will be patrolled by the police teams.

Fig. 2. Graph representing the map in Fig. 1

3.1 Description of the Heuristic Method

The method is comprised of two phases: initial partitioning and partition refinement.
In the initial partitioning phase, we can use any method that partition a graph in two
connected sub-graphs. Particularly, for the application in the demarcation of patrol
areas we have chosen to use the Cartesian Parallel Nested Dissection algorithm [6].
The rationale behind this choice is two-fold. Such an algorithm assumes that the ver-
tices possess geographical coordinates which it is the case in the patrol area domain
where coordinate values are associated to each vertex according to the position of the

66 T. Assunção and V. Furtado

block that this vertex represents on the map. Furthermore, the Cartesian Nested Dis-
section algorithm is simple to implement, efficient having low complexity.

In the partition refinement phase, we use a heuristic algorithm that we constructed
based on the strategies of the KL algorithm [1]. This heuristic algorithm swaps the
vertices between the partitions with the intent of maximizing the homogeneity of the
weights between them. Such a refinement algorithm is this article’s main contribution
toward the BCPq problem.

3.2 Algorithm for Partition Refinement

The partition refinement algorithm is based on concepts adopted by the Kernighan-
Lin method [1]. The KL algorithm executes swaps among partitions with the aim of
minimizing the number of edges that will be cut. Similarly, our algorithm executes
such swaps with the intent of better distributing the weights among the partitions.
Both receive a graph and the partitions thereof as input and return the refined parti-
tions according to their refinement criteria. Before detailing the algorithm, it is impor-
tant to define some of the concepts:

• Cut vertex or articulation point is a vertex of a graph such that its removal
causes an increase in the number of connected components. If the graph was
connected before the removal of the vertex, it will be disconnected after-
wards;

• A vertex of a partition is said to be admissible if there is an edge linking it to
a vertex in another partition. Moreover, this vertex can’t be a cut vertex;

• Weight of a partition, represented by the notation w(P), denotes the total
value of the weights of the vertices belonging to partition P;

• Two partitions are considered adjacent if there is an edge that goes from a
vertex in one these partitions to a vertex in the other one.

The algorithm possesses the following characteristics: it carries out the swap,
where only one vertex is swapped at a time, between two adjacent partitions at a time.
The vertices are swapped or moved from one partition whose weight is greater to
another partition whose weight is less. Vertices that are swept must be admissible,
which guarantees the connectivity of the partitions after the swap, and they possess
the lowest values of preference among the possible vertices to be swapped. These
preference values must be lower than a local homogeneity index for the vertices to be
transferred.

The local homogeneity index α indicates how far away the weights of both parti-
tions are from a weight that is considered ideal. This ideal weight is the average
among the weights of the partitions. The index is calculated according to the equation
defined in (1), where:

• ()1Pw denotes the weight of partition 1P ;

• ()2Pw denotes the weight of partition 2P ;

The preference criterion for a vertex γ(v) represents the value of α after swapping
this vertex. Such value is calculated according to the equation defined in (2), where:

() ())1(21 PwPw −=α

 A Heuristic Method for Balanced Graph Partitioning 67

() () ()() () ()()2min1max vwPwvwPwv vertexvertex ++−=γ
 (2)

• ()1max Pw denotes the weight of the partition with highest weight, i.e., that to

which vertex v belongs;

• ()vwvertex denotes the weight of vertex v ;

• ()2min Pw denotes the weight of the partition adjacent to 1P with the lowest

weight;

To optimize the swapping process, the algorithm prefers swaps between the partition
with the highest weight and the partition adjacent thereto with the lowest weight in a
given iteration of the algorithm. Following this preference criterion, the weights of the
most valued partitions are first diminished and, consequently, the weights of their
respective smaller valued adjacent partitions are increased, improving the homogene-
ity among the partitions. The process finishes when there is no vertex that can be
swapped among adjacent partitions, i.e., the solution cannot be more refined accord-
ing to the algorithm’s criteria.

The algorithm of the GLOBALREFINEMENT procedure, which carries out the
process described previously. See it below.

GLOBALREFINEMENT (Partitions[])

1 For each partition do
2 Attribute an optimal weight value to the partition;
3 INITIALIZEADJACENCYPARTITIONS (Partitions);
4 Place partitions in decreasing order according to their weights;
5 indexCurrentPartition ← 0;
6 numberIterations ← 0;
7 currentPartition ← null;
8 While (indexCurrentPartition = Partitions.length) do
9 currentPartition ← Partitions[indexCurrentPartition];
10 Place partitions adjacent to currentPartition in increasing order according to
11 their weights;
12 For each partition adjacent to currentPartition do
13 numberIterations ← LOCALREFINEMENT (adjacentPartition, currentPartition);
14 If (numberIterations = 0) then
15 stop;
16 If (numberIterations = 0) then
17 indexCurrentPartition ← indexCurrentPartition + 1;
18 Else
19 indexCurrentPartition ← 0;
20 numberIterations ← 0;
21 UPDATEADJACENCYPARTITIONS (Partitions);
22 Place partitions in decreasing order according to their weights;

The procedure begins by attributing an optimal weight value to each partition (lines 1

and 2). This optimal value is the result of the division between the weight of the graph
and the number of partitions. Then, the procedure initializes the relations of adjacency
among the partitions invoking the INITIALIZEADJACENCYPARTITIONS procedure
(line 3). Immediately thereafter, the partitions are placed in decreasing order according
to their weights (line 4), and the variables: indexCurrentPartition, numberIterations and

68 T. Assunção and V. Furtado

currentPartition are initialized (lines 5, 6 and 7). The outermost loop repeats until all of
the partitions have been tested for the swapping process (line 8). Within that loop, first
the partition with the greatest weight is attributed to the currentPartition variable (line
9), and the partitions adjacent thereto are placed in increasing order according to their
weights (line 10). Then, for each adjacent partition, the swapping process is executed by
calling the LOCALREFINEMENT function (lines 12 and 13). If this method executes
any swap, the innermost loop ends (lines 14 and 15). Otherwise, it continues until
reaching the end of the list of adjacent partitions or until some swap is carried out. Right
after this innermost loop, if no swap was made between the current partition with the
highest weight and one of its adjacent partitions, the indexCurrentPartition variable
is increased (line 17), and the outermost loop goes on to its next iteration. Otherwise,
the indexCurrentPartition and numberIterations variables are again initialized
(lines 19 and 20), the relations of adjacency among the partitions are updated
(UPDATEADJACENCYPARTITIONS procedure) (line 21), the partitions are again
placed in decreasing order according to their weights (line 22), and the outermost loop
goes on to its next iteration.

4 Evaluation and Comparison with the Chlebíková Algorithm

In order to utilize an approximative method, we will use the approximation ratio or
performance ratio (represented by the letter p) as a metric for evaluating the method
described in the previous section. This measure informs how close the solution ob-
tained by an algorithm is to the optimal solution.

Using equation (3), we can calculate the approximation ratio of an algorithm,
where A(I) represents the value of a solution obtained by executing algorithm A for
an instance I of the problem, and opt(I) represents the value of an optimal solution for
instance I of the problem.

() ()* IoptpIA ≤ (3)

Since—in our case—the partitioning method may produce partitions with weights
above those considered optimal, the value of A(I) is calculated in the following man-
ner: optimal weight for a partition (weight of the graph divided by the number of
partitions) – the greatest difference in module between the weight of a partition and
the optimal weight for a partition.

For example: suppose that the partitioning algorithm for a graph G with weight 30
produced three partitions with the following weights: 11, 11 and 8. The opt(I) value will
be 10 (1/3 of the weight of the graph), and the A(I) value will be 8, i.e., (10 - |8 – 10|).
Therefore, the approximation ratio (p) will be 0,8 (80%), i.e., the weights of the three
partitions approximated the optimal weight by at least 80% for a partition of this graph.

4.1 Application and Evaluation of the Algorithm in the Graph of the Aldeota
District

In order to verify the efficacy of the heuristic method that is the subject of this article,
we applied it to the graph that represents the Aldeota district (Fig. 2) for a number q
of partitions varying from 2 to 15. The results are presented in Table 1.

 A Heuristic Method for Balanced Graph Partitioning 69

Observe that, for the most part, the results were good, with an approximation per-
centage greater than or equal to 80%, except for the case where the number of parti-
tions is equal to 4, whose approximation percentage was 69.56%. This occurred due
to the fact that the Initial Partitioning phase did not produce—for that case—partitions
that better aided the Partition Refinement phase regarding adjacency among the parti-
tions, in order to produce a solution with a higher approximation percentage. How-
ever, the greatest contribution of this article, i.e., the refinement algorithm that we
constructed, applied in the Partition Refinement phase, showed that given an initial
connected partitioning, one can produce good solutions for a number of partitions
greater than or equal to two. Furthermore, for these tests, the partitioning method
takes no more than 0.5s to produce the solutions.

It should be pointed out that we applied the method on a planar graph with coordi-
nate values associated with its vertices. We were not able to affirm that the method
described in this article produces solutions with the same percentage of approximation
for all types of graphs. However, we believe that, given an initial connected partition-
ing, the heuristic algorithm (Partition Refinement phase) manages to produce con-
nected partitions with good percentages of approximation.

Table 1. Results of the tests on the Aldeota graph

Number of Partitions Percentage of Approximation

2 99.45%

3 99.18%

4 69.56%

5 97.26%

6 93.44%

7 86.53%

8 93.47%

9 87.50%

10 88.88%

11 90.90%

12 90%

13 82.14%

14 80.76%

15 87.50%

4.2 Comparison with the Chlebíková Algorithm

As already mentioned previously, the Chlebíková algorithm [3] is the one that pro-
duces a balanced connected partitioning closest to what is considered optimal for the
BCP2 problem, where the input graph is 2-connected.

However, the algorithm proposed by Chlebíková, in certain situations, fails to pro-
duce better solutions because it always chooses the admissible vertex with the lowest
weight among all admissible vertices.

70 T. Assunção and V. Furtado

Unlike Chlebíková’s algorithm, the refinement algorithm that we constructed
chooses admissible vertices that best balance the weights among the partitions in any
given iteration. This difference makes the algorithm that we created produce solutions
that are equal to or better than the solutions obtained by applying the algorithm pro-
posed by Chlebíková.

We compared the two methods through several tests conducted by varying the
number of vertices and the density (number of edges) of biconnected graphs. We have
used the Jung electronic library [13], version 1.7.6, to randomly generate the graphs.
The graph’s vertex weighs are also randomly set up with values varying between one
and the half of the graph size (total number of vertices).

We mean by initial partition the phase the returns two partitions in which one of
them has the heaviest graph vertex and another has the rest of the vertices. This is the
same strategy used in the initial phase of Chlebíková’s algorithm. We have adopt it
for comparison purposes since we keep the same conditions between our approach
and Chlebíková`s one. Otherwise the results could be biased by the results obtained
during the initial phase what would compromise the evaluation of the refinement
phase which is our main goal. Moreover, the use of the Cartesian Dissection would
require the association of coordinates for the vertices what would constraint the
choice of graphs in the evaluation process. The test results are presented in Table 2.
The first column and second columns show the graph edges and vertices number,
respectively. For each test, ten graphs were used and we run the algorithm for each
one of them. The third and fourth columns represent the average approximation ratio
of our approach and Chlebíková `s, respectively. Finally, the fifth and sixth columns
show, also for our approach and Chlebíková `s one, the average iteration number for
finding a solution. Note thus that the average iteration number accounts the average of
the number of times one vertex was transferred from one partition to another during
the algorithm execution. According to these tests, the algorithm that we describe in

Table 2. Comparison between the Chlebíková algorithm and this article’s method

Density n p Our
Approach

p Chlebíková Nb. Iteration Our
Approach

Nb. Iteration
Chlebíková

10 0.95 0.89 2.9 4.5 2n
20 0.99 0.95 6.4 12

10 0.98 0.94 3 4.7
20 0.99 0.96 6.4 11.7

30 0.99 0.98 9.4 18.1

2.5n

40 0.99 0.98 12.4 25.5
10 0.95 0.92 2.9 4.8
20 0.99 0.96 5.7 12.2

30 0.99 0.97 9.3 18.6

40 0.99 0.98 12.3 25.4
50 0.99 0.98 15.1 33.1

60 1 0.99 18.1 39.8

3n

70 1 0.99 21.7 46.3

 A Heuristic Method for Balanced Graph Partitioning 71

section 3 produces solutions with an approximate ratio better than those proposed by
Chlebíková. Note that these results were achieved in less iterations than Chlebíková`s.

The Chlebíková algorithm used in our tests was implemented by us in JAVA. In
order to perform the tests presented in this section, we used an Intel Pentium 4 Proc-
essor with 512Mb of memory.

5 Final Considerations and Future Works

The intent of this article is to help preventive police forces. Such help consists of
better delimiting the patrol areas and distributing the police teams among these areas.
For such, we showed that the problem faced by the preventive police can be modeled
as a problem of balanced connected partitioning of graphs (BCPq). Such a problem
has not been widely investigated for its most general case, where the number of parti-
tions is greater than 2.

We developed a heuristic method based on strategies pertaining to the foremost
graph-partitioning algorithms. We applied it on a graph that represents the Aldeota
district in the city of Fortaleza, Brazil. The results obtained from the tests on this
graph showed that, in general, the approximation percentage was equal to or greater
than 80% for a number of partitions varying from 2 to 15. Moreover, we compared
this method to the approximation algorithm proposed by Chlebíková. Several tests
were conducted, varying the number of vertices and of edges of the graphs. The re-
sults obtained showed that the algorithm proposed in this article possessed a degree of
approximation equal to or higher than that obtained with the algorithm proposed by
Chlebíková.

Based on this work, we show the feasibility, in the future, of delimiting patrol areas
that obey certain limits of extension. In order for this to be possible, an area value
would be associated with each vertex, and such value would represent the extension
of the block associated therewith. Thus, the patrols would not be under-utilized, i.e.,
there would be no patrols in small regions. In the long term, it is also possible to envi-
sion the use of this algorithm to improve patrolling efforts in other districts of the city
of Fortaleza, as well as in other cities.

References

1. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell
Sys. Tech. J., 291–307 (1970)

2. Fiduccia, C.M., Matteyses, R.M.: A linear time heuristic for improving network partitions.
In: 19th Design Automaton Conference, pp. 175–181 (1982)

3. Chlebíková, J.: Approximating the maximally balanced connected partition problem in
graphs. Information Processing Letters 60, 225–230 (1996)

4. Chataigner, F., Salgado, L.R.B., Wakabayashi, Y.: Approximability and inaproximability
results on balanced connected partitions of graphs. Discrete Mathematics and Theoretical
Computer Science (DMTCS) 9, 177–192 (2007)

5. Lucindo, R.P.F.L.: Partição de Grafos em Subgrafos Conexos Balanceados. Dissertação de
mestrado, Universidade de São Paulo (2007)

72 T. Assunção and V. Furtado

6. Heath, M.T., Raghavan, P.: A Cartesian Parallel Nested Dissection Algorithm. SIAM
Journal on Matrix Analysis and Applications (1994)

7. Pereira, M.R.: Particionamento Automático de Restrições. Tese de Doutorado, Universi-
dade Federal do Rio de Janeiro (COPPE) (2006)

8. Karypis, G., Kumar, V.: A Fast and High Quality Multilevel Scheme for Partitioning Ir-
regular Graphs. Technical Report TR 95-035. Departament of Computer Science. Univer-
sity of Minnesota (1995)

9. Salgado, L.R.B.: Algoritmos de Aproximação para Partições Conexas em Grafos. Tese de
doutorado, Universidade de São Paulo (2004)

10. Moretti, C.O., Bittencourt, T.N., André, J.C., Martha, L.F.: Algoritmos Automáticos de
Partição de Domínio. Escola Politécnica da Universidade de São Paulo, Boletim Técnico,
BT/PEF-9803 (1998) ISSN 0103-9822

11. Simon, H.D., Teng, S.H.: Partitioning of Unstructured Problems for Parallel Processing.
Computing Systems in Engineering 2, 135–148 (1991)

12. Gersting, J.L.: Mathematical Structures for Computer Science, 6th edn. W.H. Freeman,
New York (2006)

13. Jung. Java Universal Network/Graph Framework (2003) (Last access: February 14 , 2008),
http://jung.sourceforge.net/index.html

	A Heuristic Method for Balanced Graph Partitioning: An Application for the Demarcation of Preventive Police Patrol Areas
	Introduction
	Balanced Connected Partitions of Graphs
	Description of the Solution
	Description of the Heuristic Method
	Algorithm for Partition Refinement

	Evaluation and Comparison with the Chlebíková Algorithm
	Application and Evaluation of the Algorithm in the Graph of the Aldeota District
	Comparison with the Chlebíková Algorithm

	Final Considerations and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

