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Abstract. This paper presents a framework for the estimation of the
temporal cost of agent commitments. The work here presented focuses
on the development of a commitment manager as a special module in
a real-time agent. This manager has been constructed for the previous
analysis of a commitment request in a temporal bounded way. The pro-
posed commitment manager incorporates as CBR module whose aim is
to decide if the agent will be able to perform a requested service with-
out exceeding a specified deadline. The proposal has been tested over a
mobile robot example and this paper presents the results obtained.

1 Introduction

Nowadays, a way of characterising MAS is to employ the notion of commitments.
Commitments are viewed as responsibilities acquired by an agent for the fulfil-
ment of some action under certain conditions concerning other agent [I]. If we
apply the notion of commitments in real-time environments, the responsibility
acquired by an agent for the accomplishment of some action under, possibly
hard, temporal conditions increases the complexity of this kind of systems. So,
we can define a real-time commitment as a commitment characterised by the fact
that an agent delegates a task to another with a determined execution time or
deadline. Therefore, the agent who commits itself to developing this task must
not fail to fulfil this commitment on time. Otherwise, a deadline violation in
real-time environments may cause serious or catastrophic effects in the system
or produce an important decrease in the quality of the response.

This work proposes a commitment-based framework for real-time agents
(agents specially designed for real-time environments -RT-Agents—) [2] based on
the Case-Based Reasoning (CBR) methodology. To do this, our proposal includes
bounded CBR techniques providing temporal estimations based on previous ex-
periences. This temporal bounded CBR allows a feasibility analysis checking
if the agent has enough time to do the commitment, while guaranteeing the
possible real-time constraints of the agent. The rest of the paper is structured
as follows: section 2 shows the main features of the commitment-based frame-
work; section 3 presents the Temporal Constraints Manager; section 4 proposes
the bounded CBR technique; section 5 summarises the results obtained in an
application example based on mobile robots and finally, some conclusions are
explained in section 6.
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2 Real-Time Commitment Management

The Commitment Manager is a module of a real-time agent aimed at improv-
ing the agent behaviour when it offers services in a real-time environment. This
manager is integrated in the real-time agent and it is used to analyse whether
or not the agent can satisfy the service requests of other agents before certain
deadline. Once a service request is accepted, the agent is committed to its perfor-
mance within the Multi-Agent System (MAS) where the agent is located. Also,
the agent manages other different commitments that it has acquired before. As
a last resort, if the agent integrity is in danger due to any unexpected error, the
manager can cancel a commitment. The Commitment Manager is composed of
two independent modules:

— The Resource Manager: with this module the agent can check if it has
the necessary resources to execute the related tasks to achieve the goal as-
sociated to the service when its request arrives. Otherwise, the module can
determine when the agent would have the resources available. This analy-
sis calculates when the agent should start the task execution with all the
available resources.

— The Temporal Constraint Manager (TCM): before the agent is com-
mitted to performing a service, verifying if it can complete the service before
its deadline is necessary. The TCM module performs this verification. This
module uses dynamic real-time scheduler techniques to determine if execut-
ing the task ensuring its temporal constraints is feasible.

The real-time agent uses the Resources Manager and the Temporal Constraint
Manager modules to determine if it can commit to performing the service on
time. Due to space restrictions, this paper is focused on the temporal analysis
performed by the TCM.

3 Temporal Constraint Manager

As pointed out before, the TCM is in charge of deciding if an agent can commit
itself to performing some service without exceeding the maximum time that it
has been assigned for performing that service.

To determine whether a service can be executed on time, knowing the worst-
case execution time (WCET) for each service to complete its execution is nec-
essary. In some cases, the execution time of the service is known and limited. In
these bounded services to determine the necessary tasks to fulfil the service and
the maximum time needed to perform it is relatively easy.

Moreover, there are services whose number of necessary tasks to complete
them cannot be determined, and therefore, to calculate the needed time to ex-
ecute those services is not possible. In this type of services, a time estimation
is the unique time measure that can be made. Figure [I] shows the execution
phases of the TCM. The module is launched when the agent begins its execu-
tion. At the begining, the manager controls if a new service request has arrived
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(Figure ). If the new request is an unbounded service request, the manager
must estimate the time required to execute that service. As explained in section
M to determine if the service can be completed before the deadline specified in
the request is necessary. When the estimated time is obtained and the service
execution is possible, the necessary tasks to perform the service are analysed at
low-level using a real-time scheduler. The WCET of each phase of the TCM is
known and therefore the phases are temporally bounded. This feature is crucial
to allow the TCM to have a precise time control of each execution phase. As can
be seen in Figure [[I the TCM execution is cyclical. When there is no request,
the manager can employ its time to perform the revision and retention phases
(below commented). The CBR methodology employed to obtain the temporal
estimations is explained in the following section.

4 RT-CBR

As shown in the previous section, the TCM must decide if an agent can commit
itself to performing a specific service. A possible way of performing such decision-
making functionality is to use the knowledge that the manager has gained about
previous commitments that it undertook in the past. This fits the main assump-
tion of Case-Based Reasoning systems, which adapt previous problem solving
cases to cope with current similar problems [3]. Therefore, in the absence of
unpredictable circumstances, we assume that an agent can commit itself to per-
forming a service within certain time if it has already succeeded in doing so in
a similar situation.

To carry out the decision-making about contracting or not a commitment, the
TCM has been enhanced with a RT-CBR module, following a soft Real-Time
approach. This module estimates the time that the performance of a service
could entail by using the time spent in performing similar services. With this
aim, the RT-CBR module follows the typical steps of the CBR methodology:
retrieve similar experiences from a case-base, reuse the knowledge acquired in
them, revise such knowledge to fit the current situation and finally, retain the
knowledge learnt from this problem-solving process.
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The cases of the RT-CBR module have the following general structure:
C=<SAT} > (1)

where S represents the features that characterise a service (or one of its sub-
tasks) that the agent performed in the past and T is the time that the agent
spent in the execution of that previous service. In addition, since the same task
could be executed several times with different duration, this value T can also
be a series of temporal values. Therefore, the RT-CBR module estimates the
duration of new services by means of a function ¢ : T — f(T') computed over
the temporal values that last similar previous services. The expected time T
to perform a service that consists of a set of tasks is the aggregation of the
estimated time for each of its tasks:

I
To=> t (2)
1=0

Finally, the series of observed execution times could also allow the RT-CBR
module to estimate a success probability P(T) for a service to be performed
within a specified time. This is an interesting data for agents, which could use
this probability to make strategic decisions about their potential commitments.
Setting a confidence factor (CF) that represents a minimum threshold for the
success probability, agents would commit themselves to fulfilling a service if:

IT,/P(Ts) > CF AN Ts < deadline (3)

Thus, agents with more risky strategies could undertake commitments with lower
confidence values than more cautious agents.

4.1 Real-Time Case-Based Commitment Management

As commented before, the CBR cycle consists of four steps: Retrieve, Reuse,
Revise and Retain. After the first two steps, a case-based answer to the query
that started the reasoning cycle can be proposed. The last two steps are more
related with the learning ability of the system, that revises the devised answer
and learns from the experience. In our framework, the retrieve and reuse phases
must observe soft real-time constraints and thus, its execution time must be
bounded. Otherwise, the RT-CBR module could provide the TCM with useless
time estimations about services whose deadline have already expired.

To bound the response time of the module, the RT-CBR case-base must have
a structure that eases the cases retrieval (e.g. indexing the case-base as a Hash
Structure with a worst case temporal cost for the search linear with the number of
cases stored). Anyway, independently of the choice made about the indexation of
the case-base, the temporal cost of most retrieval (and reuse) algorithms depend
on its size. This entails to specify a maximum number of cases that can be
stored in the case-base and to perform a constant maintenance and updating of
the information stored. However, the revise and retain phases can be performed
off-line, since their execution does not hinder RT-CBR in providing the TCM
with an estimation about the service duration.
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5 Application Example

A prototype of a mail robot example has been developed for our proposal. The
problem to solve consists in the automated management of the internal and
external mail (physical mail, non-electronic) in a department plant. The system
created by this automation must be able to request the shipment of a letter
or package from an office on one floor to another office on the same floor, as
well as the reception of external mail at a collection point for later distribution.
Once this service has been requested, a Pioneer 2 mobile robot must gather
the shipment and direct it to the destination. Note that each mail or package
distribution must be finalised before a maximum time, specified in the shipment
request. One of the services offered by the robot agent is mail delivery, which
involves its movement from an initial to a final position. In order for an agent
to commit itself to that delivery in a bounded time, a temporal estimation, as
accurate as possible, is required. In this system, the TCM makes use of the CBR
methodology to deal with this requirement.

5.1 RT-CBR Reasoning Cycle

In the previous example, the RT-CBR module has been integrated in the TCM
of the robot agent. By means of this module, the manager can decide if an agent
could perform a specific service before a deadline and hence, to commit the robot
agent to the execution of that service. Therefore, the cases of the module store
the information about previous shipment experiences. This information will be
used to decide if the agent should undertake a new commitment. The cases are
structured as follows:

C =<1I,F N, N, {T} > (4)

where I and F' represent the coordinates of a path from the initial position I to
the final position F' that the robot travelled (one or several N; times) straight
ahead in the past, Ny stands for the number of times that the robot successfully
completed the path within the case-based estimated time. These features define
the service. In addition, T shows the series of time values that the robot spent
to cover that route. Note that only straight routes are stored as cases, since
we assume that it is the quickest way between two points. This design decision
should minimise the time for travelling an unvisited route that the RT-CBR
module would try to compose by reusing several known routes (old cases).

The RT-CBR reasoning cycle starts when the TCM must decide if an agent
could fulfil a shipment service within the time assigned to do it. In that case, the
manager is also in charge of checking if the agent has enough power resources
to travel the path. In what follows the operation of each reasoning phase of the
module is described.

Retrieval and Reuse: Due to the temporal constraints that the CBR process
has to keep, we have followed an anytime approach [4] in the design of the algo-
rithm that implements the retrieval and reuse phases of the RT-CBR module. In
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Initial = initial point
Final = final point
bestWay = false
Cases =}
MaxTime = Maximum time to travel from Initial to Final

For every case in CaseBase
Cases = Cases + case

If (Initial == Final) then
bestWay=true

Return g(F) * ftrust(F.Final)

Select Case from Cases
Where Max(F(Case.F))
Initial = Case.|

Take Case;
| =Case.l;
F =Case.F;

Fig. 3. Retrieval-Reuse Diagram

our design, both phases are coupled in the algorithm, reusing the time estima-
tions about several paths to retrieve the most suitable case(s) to travel current
routes (the composition of cases that minimises the travelling time). At the end
of each iteration, the algorithm provides the manager with a probability of being
able to perform the shipment service on time. If more time is still available, the
algorithm computes better estimations on subsequent iterations. In Figure 3 a
diagram of the RT-CBR retrieval-reuse algorithm is shown.

First, the RT-CBR module searches its case-base to retrieve a case that rep-
resents a similar path that the robot agent travelled in the past. Then, for each
retrieved case, the algorithm uses a confidence function to compute the proba-
bility of travelling from an initial to a final point in an area without diverting
the agent’s direction. Shortest paths are assumed to have less probability that
an unpredictable circumstance could deviate the agent from its route and hence,
they are preferred from longer ones. In the best case, there will be a case in
the case-base that exactly or very approximately covers the same path that the
agent must travel. Then, the necessary time to perform the shipment can be
estimated by using the time spent in that previous case. Otherwise, the route
could be covered by aggregating a set of cases and estimating the global time
by adding the time estimation for each case. If the route can be composed with
the cases of the case-base, the following confidence function will be used:
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diStij " Ns

= arDist N, where dist;; < maxDist (5)

ftrust(ivj) = ]-
being dist;; the distance travelled, N; times between the points <i,j>, N, the
number of times that the robot has travelled the path within the case-based
estimated time and mazDist the maximum distance above which the agent is
unlikely to reach its objective without finding obstacles. In the worst case, the
agent will not ever travelled a similar path and hence, it cannot be composed
with the cases stored. Then, a confidence function that takes into account the
distance that separates both points will be used:
1- Dot if 0 < dist < dist
Frust(i,§) = }i—t consty x disty; if disty < dist < disty (6)
istij . . .
dist?, if disty < dist
where const! and const2 are normalisation parameters defined by the user, dist;;
is the Euclidean distance between the initial and final points of the path <i,j>
and dist; and disty are distance bounds that represent the thresholds that de-
limit near, medium and far distances from the initial point. This function com-
putes a smoothed probability that the robot can travel its path straight ahead.
As the distance between the initial and the final point increases, the confidence
on travelling without obstacles decreases.

Once the probability to reach the robot’s objective is computed for each case,
the complete route from the initial to the final position with the maximum
probability of success must be selected. This route is composed by using a selec-
tion function F(n) (7), which follows an A* heuristic search approach [5]. The
function consists of two sub-functions: g(n) (8) that computes the case-based
confidence of travelling from the initial point to a certain point n and h(n) (9)
that computes an estimated confidence of travelling from the point n to the final
point (always better than the real confidence). Finally, the function T'(n) (10)
checks if the robot agent has enough time to complete the shipment service by
travelling across this specific route. Else, the algorithm prunes the route. The
function consists of two sub-functions: time(n) (11) that computes the case-based
time of travelling from the initial point to a certain point n and E(n) (12) that
computes an estimated time of travelling from the point n to the final point.
In (11) disty,y represents the distance between the last point m visited by the
algorithm to the current point n, Viepor is the speed of the robot, fiust(m,n)
corresponds to (5) or (6) (depending on the possibility of composing the route
by using the cases of the case-base) and the constant constyst € [0,10] shows
the caution degree of the robot agent. Bigger values of this constant are chosen
for more cautious agents.

Finally, if the RT-CBR algorithm is able to compose the entire route with
the information stored in the case-base, it returns the case-based probability to
perform the shipment service on time. Otherwise, it returns the product of the
probability accumulated to that moment and a pessimistic probability to travel
from the last point that could be reached by using the cases of the case-base to
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the final point of the route. Finally, in case that all possible solutions computed
by the algorithm exceed the time assigned to fulfil the commitment, it returns
a null probability to perform successfully the service.

F(n) = g(n) * h(n) (7)
g(n) = g(m) * frrust(m,n) (8)
h(n)=1-— mCZ;tDn{st where dist < maxDist (9)
T(n) = time(n) + E(n) (10)
time(n) = time(m) + 77 4 (1)
= a

Revision. Once the robot agent has finished the shipment service, it reports to
the TCM the coordinates of each path that it finally travelled straight ahead
and the time that it spent in doing so. In that way, the manager can check the
performance of the RT-CBR module by comparing the time estimated by the
module and the real time that finally took the service. Note that if the agent has
not changed its navigation algorithm, it will likely try to perform the shipment
by following the same route that ended in a success in the past. However, due to
that some new obstacles could be found during the route, the design decision of
reporting the specific paths that the robot agent has travelled has been taken.

Retention. The last step of the reasoning cycle considers the addition of new
knowledge in the case-base of the RT-CBR module. As pointed out before, the
size of the case-base must be controlled and therefore, only useful cases must be
added (and correspondingly, out-of-date cases must be eliminated). Therefore,
the decision about the addition of a new case in our model is crucial. At the
moment, we have taken a simple but effective procedure by defining a threshold
a below which two points must be considered as nearby in our shipment domain.
Let us consider a new case ¢ with coordinates (z7,yf) (initial point) and (2%, y$)
(final point) to be added in the case-base. Following an Euclidean approach, the
distance (dissimilarity) between the case ¢ and each case z of the case-base can
be computed with the formula:

dist(c, 2) = maz(y (5 — 222 + (9 — )%/ (05 — 232 + (65— yp)?) (13)
Therefore, the new case will be included in the case-base iff:
Vz € caseBase /| dist(c,z) < « (14)

In that case, the new case < (xf, y¢), (xjf, y})7 1, 1, time > will be added in the
case-base (1 values stand for this first time that the path has been travelled and
that it was done within the case-based estimated time). Note that the addition
of new cases is always conditioned at the existence of ‘free space‘ to add cases
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in the case-base. Otherwise, a maintenance cycle will be triggered, deleting, for
instance, those old cases that have low use ratings. Else, if a similar case has
been identified, the number of times that the agent has travelled the path that
represents the case (IV;) will be increased by 1 and the time spent in travelling
the current path will be added to the time series of that case.

5.2 Tests and Results

To develop and execute the proposed real-time MAS, we have use the jART plat-
form [6] that is especially designed for systems of this type and RT-Java [7] as
the programming language. Once the example was implemented over the JART
platform, several simulation experiments were conducted to evaluate different
parameters in order to verify the use of the proposed commitment framework. A
simulation prototype was implemented using a Pioneer 2 mobile robot simula-
tion software (specifically, the Webots simulator []). The simulation experiments
were conducted to evaluate different aspects and to try to show the benefits of
the integration of the commitment framework in a real-time agent. A series of
tests to check the proper operation of the TCM have been performed. The first
test analyses the behaviour of the TCM as it receives new requests by increasing
the number of queries. As shown in figure @ the number of estimations that
the TCM performs decreases as new requests are queried. This demonstrates
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that as the number of requests increases, the case-base learns properly the new
information and hence, the number of routes that can be composed with the
cases increases (and an estimation is not necessary). Figure Bl which shows the
relation between the number of cases in the case-base and the percentage of es-
timated routes, also supports this conclusion. Finally, the percentage of distrust
from which an agent can commit itself to performing a service was also checked
(modifying the confidence values from 70%, 80% and 90%). As expected, bigger
confidence percentages resulted in agents committing themselves to performing
more tasks (Figure [B). However, in such cases the percentage of services ac-
cepted and completed on time decreases, since the agent committed itself to the
performance of a big amount of services (Figure [1).

6 Conclusions

A module to analyse whether an agent has enough time to perform a service
has been developed. A CBR approach for deciding if an agent can commit itself
to performing some service without exceeding the maximum time assigned for
performing that service has been used. From now, we have focused our work
on the design and implementation of the different phases of the CBR cycle for
the mobile robot problem. This work has been tested and evaluated by using a
simulated scenario. The results obtained support the expectations.
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