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Abstract. This paper introduces a new algorithm for clustering sequen-
tial data. The SKM algorithm is a K-Means-type algorithm suited for
identifying groups of objects with similar trajectories and dynamics. We
provide a simulation study to show the good properties of the SKM al-
gorithm. Moreover, a real application to website users’ search patterns
shows its usefulness in identifying groups with heterogeneous behavior.
We identify two distinct clusters with different styles of website search.

Keywords: clustering, sequential data, K-Means algorithm, KL
distance.

1 Introduction

Clustering is the partition of a data set into subsets (clusters), so that the data in
each subset share similar characteristics. The application of clustering algorithms
has been extensive. For example, in Marketing, market segmentation means the
identification of groups of customers with similar behavior given a large database
of customer data containing their properties and past buying records; in Biology,
the taxonomical classification of plants and animals given their features; or, in
earthquake studies in which clustering observed earthquake epicenters allows the
identification of dangerous zones. In this research we focus on the clustering of
sequential data.

Let us have a data set of n objects to be clustered. An object will be denoted
by i (i = 1, . . . , n). Each object is characterized by a sequence of states xi.
Let x = (x1, ...,xn) denote a sample of size n. Let xit denote the state of the
object i at position t. We will assume discrete time from 0 to Ti (t = 0, 1, . . ., Ti).
Note that the length of the sequence may differ among objects. Thus, the vector
xi denotes the consecutive states xit, with t = 0, . . . , Ti. The sequence xi =
(xi0, xi1, ..., xiTi−1, xiTi) can be extremely difficult to characterize, due to its
possibly huge dimension (Ti +1). A common procedure to simplify the sequence
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is by assuming the Markov property. It states that the occurrence of event xt

depends only upon the previous state xt−1; that is, conditional on xt−1, xt is
independent of the states at the other time points. From the Markov property,
it follows that the probability of a sequence xi is

p(xi) = p(xi0)
∏Ti

t=1
p(xit|xi,t−1) (1)

where p(xi0) is the initial distribution and p(xit|xi,t−1) is the probability that
object i is in state xit at t, given that it is in state xi,t−1 at time t − 1 (For
an introduction to Markov chains, see [9]). A first-order Markov chain is spec-
ified by its transition probabilities and initial distribution. Hereafter, we de-
note the initial and the transition probabilities as λj = P (xi0 = j) and ajk =
P (xt = k|xt−1 = j), respectively. The parameters of the Markov chain can be
estimated by

λ̂j =
n∑

i=1

I(xi0 = j) (2)

âjk =
∑n

i=1 nijk∑K
r=1

∑n
i=1 nijr

, (3)

where K denotes the number of states, I(xi0 = j) is the indicator function at
time point 0, and nijk is the number of transitions from state j to state k for
object i.

This paper introduces a K-Means-type algorithm that allows the clustering of
this type of data. Section 2 describes a K-means algorithm for sequential data.
Section 3 analyzes the performance of the algorithm. Section 4 illustrates the
application of the algorithm in clustering web users based on their longitudi-
nal pattern of search. The paper concludes with a summary of main findings,
implications, and suggestions for further research.

2 The SKM Algorithm

2.1 The K-Means Algorithm

The K-means algorithm [7] is one of the simplest unsupervised learning algo-
rithms that solves the clustering problem. That is, this procedure defines a simple
and fast way to determine a partition of a data set into a certain number of clus-
ters (assume S clusters) fixed a priori so that the within group sum of squares
is minimized. The K-means algorithm consists of the following steps:

1. Set the number of clusters, S;
2. Generate randomly initial cluster centroids;
3. Assign each object i to the cluster s that has the closest centroid;
4. Recalculate the positions of the centroids;
5. If the positions of the centroids did not change the algorithm ends, otherwise

go to Step 2.
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However, it has been shown that the conventional K-means algorithm is in-
appropriate for the discovery of similar patterns in sequential data (e.g., for
web usage patterns, see [13]). For web mining purposes, [8] proposed clustering
web users using a K-means algorithm based on the KL-divergence which mea-
sures the “distance” between individual data distributions. A similar approach is
adopted by [16], who looked at the number of times a given user visited a given
webpage. [12] suggested using self-organizing maps (SOMs) of user navigation
patterns. On the other hand, [14] suggests the clustering of objects at differ-
ent time points and then, the analyzes of the evolution of the clusters found.
However, none of these approaches accounts for the sequential structure of data
at the individual level. This means that consecutive states in a sequence are, in
fact, treated as independent observations conditional on cluster membership, an
assumption that is rather unrealistic. The proposed SKM algorithm circumvents
this problem.

2.2 The SKM Algorithm

The SKM (Sequential K-Means) algorithm is a K-Means-based algorithm that
uses the Kullback-Leibler distance [4] to cluster sequential data. Let us define
some notation first. Let zis = 1 if object i belongs to cluster s, and 0 other-
wise. Then, transition probabilities within each cluster are the centroids and are
defined by:

âsjk =
∑n

i=1 zisnijk∑K
r=1

∑n
i=1 zisnijr

. (4)

Let dis be a measure of distance of object i to the prototype of cluster s.
Because we want to measure the distance or divergence of each object i to each
centroid s, and provided that the centroid of each cluster is defined by the
set of transition probabilities âsjk, the Kullback-Leibler (KL) distance is the
appropriate distance for this type of centroids (probabilities or proportions) and
yields1

dis =
K∑

j=1

K∑

k=1

âsjk ln
(

âsjk

pijk

)
, (5)

1 In our clustering procedure we do not compute the distance between objects i and
j. In that case, it would be desirable to have a symmetric distance, i.e., the distance
between objects i and j should be the same as the one between objects j and i (dij

= dji). Because the KL distance between i and j is different from the KL distance
between j and i, we could have obtained a symmetric KL distance by computing the
mean of these two KL distances as in [8]. In our clustering procedure symmetry is
not needed or even desirable. By computing the distance between each object i and
the centroid of each cluster s, the KL distance uses as weight function âsjk that is
a more stable distribution than pijk as the former is based on all objects in cluster
s (equation 4) and the latter is just based on observed transitions for object i.
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where pijk, the transition probability from state j to state k for object i, is
defined by

pijk =
nijk

K∑
k=1

nijk

. (6)

The SKM is an iterative algorithm that starts from a randomly generated so-
lution. Given the number of clusters, a randomly generated allocation of objects
is generated, and at each iteration step objects are reallocated according to the
Kullback-Leibler distance; that is, each object is assigned into the closest clus-
ter’s centroid. This process is repeated until some termination criterion is met.
Moreover, two termination criteria are defined: the maximum number of itera-
tions - MaxIter - and the absence of change in the allocation of objects between
two consecutive iterations. Because these K-Means type algorithms suffer from
local optima, it is desirable to repeat the iterative process with different random
starting values. Out of a set of R runs, we select the solution that maximizes
the classification log-likelihood:

� =
n∑

i=1

S∑

s=1

zis

⎡

⎣log πs +
K∑

j=1

I(xi0 = j) log λsj +
K∑

j=1

K∑

k=1

nijk log asjk

⎤

⎦ , (7)

where λ̂sj – the initial probabilities within each cluster – and π̂s – the proportion
of objects in cluster s – are defined by:

λ̂sj =
∑n

i=1 zisI(xi0 = j)∑n
i=1 zis

, (8)

π̂s =
1
n

n∑

i=1

zis. (9)

The pseudo code for the SKM algorithm is:

SKM(S, xi0, nijk, MaxIter)
1. Iter ← 1
2. Randomly generate a matrix Z such that:
3. zis ∈ {0, 1},

∑S
s=1 zis = 1, and

∑n
i=1 zis > 0

4. REPEAT
5. Update the previous allocation of objects:Z Old ← Z
6. Update the centroids (âsjk)
7. Compute dis for each object i and cluster s
8. Determine si = argmins∈{1,...,S}dis, for each object i
9. Update Z : zi,si ← 1 and zis ← 0, for all s �= si

10. Iter ← Iter + 1
11. UNTIL (Iter = MaxIter or Z Old = Z)
12. Compute π̂s, λ̂sj , and the classification log-likelihood (�)
13. RETURN (�, âsjk, π̂s, λ̂sj)
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where Z and Z Old represent matrices with allocations zis, and Iter counts the
number of iterations.

The SKM algorithm was implemented in MATLAB 7.0 [6].

3 Simulation Study

This section analyzes the performance of the proposed algorithm using synthetic
data sets. We set:

1. Sample size: n = 1200;
2. Sequence length: T = 50;
3. Number of clusters: S = 3;
4. Number of states: K = 3;
5. Number of runs: R = 50.

The clusters’ sizes (πs) and initial probabilities (λjs) are the same across
clusters and states, respectively. They are defined as πs = S−1 and λjs = K−1.
Thus, all cluster size proportions are 0.333 (πs) and the probability of starting in
a given state within each cluster is 0.333 (λjs). In order to obtain different levels
of separation of these three clusters, the transition probabilities are defined as

asjk =
{

αs , j = k
(1 − αs)/(K − 1) , j �= k, (10)

where

αs =

⎧
⎨

⎩

0.5 − δ , s = 1
0.5 , s = 2
0.5 + δ , s = 3.

(11)

The δ parameter is set to 0.4, 0.3, 0.2 and 0.1, which yields four data sets –
Study1 40, Study1 30, Study1 20 and Study1 10 – with increasing cluster over-
lapping. For example, for Study1 40 the diagonal probabilities are 0.1, 0.5, and
0.9 for cluster 1, 2, and 3, respectively.

For each data set, the SKM algorithm was run with R = 50 different randomly
generated initial solutions. The effect of the starting solutions on the results was
analyzed by a percentage deviation based on the classification log-likelihood
(�). Let Best� be the maximum classification log-likelihood out of 50 and �r

the classification log-likelihood obtained at run r.2 The percentage deviation is
defined by:

Devr = 100 × �r − Best�
Best�

(12)

Table 1 depicts the maximum (max), the mean, the minimum (min), and the
standard deviation (stdev) values of the percentage deviation for each data set.

2 To avoid the comparison of the best classification log-likelihood with itself only 49
runs are applied.
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Table 1. Minimum, mean, maximum, and standard deviation values of percentage
deviations for Study1 data sets

Data Set min mean max stdev
Study1 10 0.005 0.027 0.051 0.010
Study1 20 0.000 0.006 0.009 0.003
Study1 30 0.000 0.002 0.003 0.001
Study1 40 0.001 0.002 0.002 0.000

Exception made for minimum values, the percentage deviation increases as the
level of separation decreases. However, the average and standard deviation values
lead us to conclude that SKM algorithm is not significantly dependent of the
initial solution.

Table 2 depicts the best result out of 50 runs of the SKM algorithm for each
data set. Globally one concludes that the results are very close to the true values
and the differences are due to sampling error in the simulation study. Indeed, in
all four data sets the SKM algorithm is able to retrieve their cluster structure.
As expected the Study1 10 is the most difficult one because the clusters are
not very well separated as for example in Study1 40, where groups show very
different dynamic behavior. For example, cluster 1 tends to move in a very fast
way between states, whereas cluster 3 tends to stay in the same state. Because in
Study1 10 clusters have more similar patterns of change the results are slightly
more difficult to retrieve comparing to the remaining three data sets.

To compare the relative performance of the SKM algorithm for these four data
sets we compute the Kullback-Leibler divergence between the true values and
the SKM results (Table 3). We conclude that Study1 10 has the most difficult
structure to be retrieved (0.050). Interestingly the cluster structure of Study1 40
is more difficult than Study1 30 structure. This has to do with the existence of
rare transitions between states in cluster 3 of Study1 40 data set (the true value
of the probability of transition between different states is 0.05) that introduces
some instability in the computation of the centroids of the SKM algorithm.
Setting Study 10 as the standard the KL proportion (Table 3) gives each distance
as a proportion of the maximum distance (Study1 10). For instance, we infer that
Study1 10 is more difficult comparing with Study1 20 than Study1 20 comparing
with Study1 30.

4 Application

The analysis of the sequence of web pages requested by each web user visiting
a web site allows a better understanding and prediction of users’ behavior and
further improvements of the design of the web site. For example, web mining
of online stores may yield information on the effectiveness of marketing and
web merchandizing efforts, such as how the consumers start the search, which
products they see, and which products they buy [10,5]. Substantial effort has
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Table 2. Best SKM results for Study1 data sets

Data set Cluster
s = 1 s = 2 s = 3

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3
Study1 40

πs 0.338 0.316 0.347
λs1 0.363 0.309 0.361
λs2 0.338 0.330 0.341
λs3 0.299 0.362 0.298
as1k 0.103 0.456 0.442 0.519 0.242 0.239 0.874 0.063 0.063
as2k 0.458 0.105 0.437 0.258 0.493 0.249 0.058 0.884 0.058
as3k 0.439 0.451 0.111 0.246 0.256 0.499 0.056 0.059 0.885

Study1 30
πs 0.353 0.308 0.339
λs1 0.331 0.314 0.344
λs2 0.333 0.368 0.319
λs3 0.336 0.319 0.337
as1k 0.213 0.397 0.390 0.505 0.249 0.246 0.787 0.105 0.108
as2k 0.395 0.216 0.389 0.250 0.503 0.247 0.100 0.796 0.104
as3k 0.389 0.398 0.213 0.246 0.243 0.511 0.109 0.112 0.779

Study1 20
πs 0.359 0.293 0.348
λs1 0.362 0.339 0.345
λs2 0.350 0.345 0.325
λs3 0.288 0.316 0.330
as1k 0.301 0.342 0.357 0.502 0.249 0.249 0.693 0.158 0.150
as2k 0.338 0.311 0.351 0.246 0.496 0.258 0.156 0.694 0.151
as3k 0.347 0.350 0.303 0.246 0.250 0.505 0.151 0.149 0.693

Study1 10
πs 0.353 0.269 0.378
λs1 0.312 0.344 0.330
λs2 0.305 0.347 0.317
λs3 0.383 0.310 0.352
as1k 0.395 0.320 0.284 0.486 0.239 0.275 0.606 0.195 0.199
as2k 0.292 0.417 0.291 0.241 0.450 0.309 0.206 0.613 0.181
as3k 0.315 0.322 0.364 0.230 0.200 0.569 0.202 0.237 0.561

Table 3. KL divergence between true values and best SKM results and KL proportion
using Study 10 as the standard one

Data Set KL divergence KL proportion
Study1 40 0.0170 0.23
Study1 30 0.0088 0.18
Study1 20 0.0195 0.39
Study1 10 0.0500 1.00
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Table 4. Cluster sizes and initial proportions

Parameters Cluster 1 Cluster 2
πs 0.5890 0.4110
λs1 0.2350 0.5319
λs2 0.0981 0.0122
λs3 0.0625 0.0117
λs4 0.0278 0.0783
λs5 0.0105 0.0004
λs6 0.1674 0.0365
λs7 0.0071 0.0034
λs8 0.0251 0.1800
λs9 0.0547 0.1041
λs10 0.0177 0.0015
λs11 0.0170 0.0049
λs12 0.0750 0.0127
λs13 0.1178 0.0039
λs14 0.0747 0.0073
λs15 0.0068 0.0112
λs16 0.0017 0.0000
λs17 0.0001 0.0000

been put on mining web access logs in an attempt to discovering groups of users
exhibiting similar browsing patterns [15].

We apply the SKM algorithm to the well-known msnbc.com anonymous web
data in kdd.ics.uci.edu/databases/msnbc/msnbc.data.html. This dataset
describes the page visits on msnbc.com on September 28, 1999. Each sequence
in the data set corresponds to page views of a user during a twenty-four hour pe-
riod. The original number of users is 989818 and each event in the sequence is
classified into the following categories (states): 1) frontpage, 2) news, 3) tech,
4) local, 5) opinion, 6) on-air, 7) misc, 8) weather, 9) health, 10) living, 11)
business, 12) sports, 13) summary, 14) bbs (bulletin board service), 15) travel,
16) msn-news, and 17) msn-sports. This dataset has been used by others [1,3].
In our study, we used a sample of 5000 sequences with at least one transition.

The SKM algorithm allows the clustering of the web users into S clusters,
each of which contains individuals with similar browsing pattern. For K-Means-
like algorithms the number of clusters is set a priori. In this application, we set
the number of clusters based on the Bayesian Information Criterion (BIC) of
Schwarz [11]. We set S = 2 (see, e.g., [1,3])3.

Table 4 and Figure 1 provide a summary of the SKM algorithm’s best results.
The size of each cluster (π̂s) is provided in Table 4. Cluster 1, the largest (58.9%),

3 One difficulty in applying K-means like algorithms is that the number of clusters
has to be set in advance. Whenever the number of groups is not known a priori we
suggest a BIC-like decision rule [11], i.e., we select the number of clusters S that
minimizes CS = −2� + d × log(n), where � and d are the classification log-likelihood
and the number of free parameters, respectively.
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Fig. 1. Transitions matrix within each cluster. For the minimum and maximum values
of the transitions probabilities (0 and 1), we use white and black, respectively. Values
in between with a gray color which is obtained by a linear grading of colors between
white and black. Note that the origin states are in the rows and the destination states
in the column, which means that the row totals are equal to 1.

is still very heterogeneous with web users starting their browsing mainly from
frontpage (23.5% of the web users in this cluster start their sequence in this
state), on-air (16.7% ), and summary (11.8%). Moreover, this cluster has a very
stable pattern of browsing (Figure 1) almost absorbing for most of the states.
Cluster 2 (41.1% of the sample) is rather stable. Indeed, most of them start their
search from frontpage (53.2%) or weather (18.0%) states and tend to stay in
these states. On the other hand, even users starting from other states tend to
move to frontpage (Figure 1).

5 Conclusion

In this paper we provided a new K-Means algorithm for clustering sequen-
tial data. It is based on the Kullback-Leibler distance as an alternative to the
standard Euclidean distance. We illustrate its performance based on synthetic
data sets. The application of the algorithm in a web mining problem allows
the identification of the clustering structure of web users using a well-known
data set. Future research could extend our findings using synthetic data sets
in such a way that can provide evidence of the performance of the SKM al-
gorithm. In particular, the comparison between the SKM algorithm with the
model-based clustering approach as in [1,2] would allow a better understanding
of the statistical properties of the SKM algorithm. Another topic for further in-
vestigation is the definition of rules in the selection of the number of clusters to
set a priori.
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