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Abstract. Today, the detection of anomalous records is a highly valu-
able application in the analysis of current huge datasets. In this paper
we propose a new algorithm that, with the help of a human expert, effi-
ciently explores a dataset with the goal of detecting relevant anomalous
records. Under this scheme the computer selectively asks the expert for
data labeling, looking for relevant semantic feedback in order to improve
its knowledge about what characterizes a relevant anomaly. Our ratio-
nale is that while computers can process huge amounts of low level data,
an expert has high level semantic knowledge to efficiently lead the search.
We build upon our previous work based on Bayesian networks that pro-
vides an initial set of potential anomalies. In this paper, we augment this
approach with an active learning scheme based on the clustering proper-
ties of Dirichlet distributions. We test the performance of our algorithm
using synthetic and real datasets. Our results indicate that, under noisy
data and anomalies presenting regular patterns, our approach signifi-
cantly reduces the rate of false positives, while decreasing the time to
reach the relevant anomalies.

1 Introduction

In this paper, we propose a new algorithm for the detection of anomalous records
in large datasets. Depending of the domain, these anomalies may correspond to
fraudulent transactions in a financial database, new phenomena in scientific in-
formation, or records of faulty products in a manufacturing database [6]. Our
approach is based on the active learning paradigm. Under this scheme, our algo-
rithm selectively asks a human expert for feedback searching for informative data
points which, if labeled, would improve the performance of the overall process.

We build upon our previous work [4] [15] that allows us to efficiently find a
Bayesian network (BN) [11] [10] to model the joint probability density function
(pdf) of the attributes of records in a large database. This joint pdf provides
a straight forward method to rank the records according to their oddness. In
effect, while highly common records, well explained by the BN receive a high
likelihood, strange records, poorly explained by the BN, receive a low likelihood.

Although our previous approach has shown to be effective in the detection of
strange records, in practical applications the real relevance of an unusual record
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is highly dependent of the domain under consideration. For example, in a fraud
detection application, an unusual business transaction might not correspond to
a fraud but it can be just a legal and irrelevant operation. As suggested by this
example, our experience indicates that the raw unsupervised BN, constructed
only from the low level features stored in a database, usually provides a great
number of false positives.

In this paper, we augment our previous approach with an active learning
scheme that helps us to bridge the gap between the blind unsupervised results
provided by the BN and the domain knowledge provided by an expert. Our
rationale is that while computers can process huge amounts of low level data, an
expert can provide high level semantic knowledge to efficiently lead the search.
In this way, starting from an initial set of candidate anomalies provided by a
BN, our active learning algorithm selectively asks the expert for data labeling,
looking for relevant semantic feedback to improve its knowledge about what
characterizes a truly relevant anomaly.

The basic ideas behind our active learning approach are based on two main
observations:

1) Our first observation is that, usually, the anomalies present in large
databases are not isolated points but they exhibit certain regularities or patterns
that arise in selective subspaces. In effect, in many domains, it is possible to find
“types” of anomalies that form microclusters characterized by specific subsets
of attributes of the database. The main goal of our active learning approach is
to use the feedback from the expert to rapidly discover these microclusters.

2) Our second observation is rooted in a key feature of our probabilistic model,
that is, the factorization of the joint pdf provided by the BN. From a clustering
point of view, this factorization can be understood as model fitting in selective
dimensions or subspaces. In effect, each factor in the joint pdf is given by a local
conditional pdf over a subset of variables. These subsets of variables correspond
to relevant subspaces of the feature space. As we explain in Section 2, our active
learning approach makes use of the relevant factors provided by the BN and
the clustering properties of Dirichlet distributions as the guiding tools to use the
feedback provided by the user to find the micro clusters with relevant anomalies.

This paper is organized as follows. Section 2 discusses the details of our ap-
proach. Section 3 shows the results of applying our methodology to synthetic
databases. Section 4 briefly reviews relevant previous work. Finally, Section 5
presents the main conclusions of this work.

2 Our Approach

This section describes the main steps of our active learning approach. As men-
tioned before, this algorithm actively asks for feedback from the expert to effi-
ciently explore an initial set of candidate anomalies provided by a BN. In this
exploration, the algorithm uses the factorization provided by the BN to identify
key subspaces to detect the anomalies. Within the most prominent subspaces, the
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algorithm identifies relevant microclusters that contain the anomalies. Our algo-
rithms is based on three main steps: 1) Identification of initial set of candidate
anomalies, 2) Selection of relevant subspaces using the factorization provided by
a BN, and 3) Use of active learning to identify relevant microclusters. In the rest
of this section, we refer to the details of these 3 steps.

In what follows, we use lowercase boldface letters, such as x, to denote sets
of single random variables, such as xi. We use lowercase letters, such as x, to
denote an instance of x. We assume that the input database contains unlabeled
observations and that there is no missing data.

2.1 Identification of Initial Set of Candidate Anomalies

As a first step of our algorithm, we fit a BN to the records in the database (see
[4] for details). If the training of the BN is successful, most anomalies appear
as low probability objects. Therefore, we use the likelihood values provided by
the BN as an indicator of the degree of rareness of each record in the database.
This helps us to filter the dataset by identifying as candidate anomalous records
only the first τ records with lowest likelihood. Deciding the correct value of τ
depends directly on the capacity of the BN to fit the data. In our experience, the
anomalous records usually fall between the 5 to 10% of the records with lowest
probability under the BN model.

The factorization of the joint pdf provided by the BN allows us to efficiently
estimate the likelihood of a record x in the database, as

P (x) =
n∏

i

p(xi|PaG(xi)) (1)

where G is the acyclic directed graph that defines the BN, PaG(xi) is the set of
direct parents of xi in G, and n is the total number of attributes in the database.

2.2 Selection of Relevant Subspaces

Our next step is to find the relevant subspaces, or sets of attributes, that we use
to identify microclusters containing anomalies. Our intuition is that the target
subspaces are closely related to the factors provided by the BN, as these factors
model the most relevant relations or patterns arising from the data.

In most situations, as it is in our experiments, the anomalies in the database
correspond to a very small fraction of the total number of records, so we do not
expect that the initial set of factors found by the BN highlights the target sub-
spaces. Therefore, we fit a second BN to the reduced set of candidate anomalies,
with the goal of obtaining a set of factors with a closer relation to the subspaces
that determine the patterns of the anomalies.

For a given record in the candidate set of anomalies, we define its relevant
factors as the set of factors that contribute the most to its likelihood obtained
from the new BN. In particular, let p̄i be the mean value of factor p(xi|PaG(xi))
over the candidate anomalies k, k = 1, . . . , τ . Also, let S be the set of all records
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with values of the i-th factor greater than p̄i. Then, for a given record we define
the factor p(xi|PaG(xi)) as relevant, if:

p(xk
i |PaG(xi)k) > p̄i + δ, (2)

where δ =
1

|S|
∑

xk∈S

(p(xk
i |PaG(xi)k) − pi).

After obtaining the relevant factors, we relate them to the respective
records. We visualize this as a bucket filling process. We represent each fac-
tor p(xi|PaG(xi)) of the joint pdf by a bucket i, i = 1, . . . n. A record x from the
set of candidate anomalies is included in that bucket, if the corresponding factor
is relevant for that record. In this way, each record can be assigned to several
buckets.

Given that our goal is to find microclusters with potential anomalies, we
perform a clustering process within each bucket, using the elements inside the
bucket. We use Gaussian Mixture Models (GMMs) to find the microclusters.
Each GMM is trained with an accelerated version of the Expectation Maximiza-
tion (EM) algorithm [15] that incorporates a model selection step to estimate
a suitable number of Gaussians. When training the mixture in a given bucket,
we use only the dimensions or attributes that identify that bucket. In this way,
in bucket i the mixture is trained in the subspace generated by xi and those
attributes contained in PaG(xi).

After we find the microclusters, we assign to each datapoint a weight that is
inverse to the initial joint probability value under the initial BN model. This
ensures higher likelihood values to less probable elements according to the BN
used to model all the data. As a result, the strangest records have a higher
probability of being sampled in the next step the algorithm.

2.3 Use of Active Learning to Identify Relevant Microclusters

In this step of our algorithm, we implement the active learning scheme that uses
the feedback from the expert to guide the search for anomalous records. The
selection of candidate anomalous records shown to the expert is based on the
buckets and microclusters found in the previous step. The selection is performed
by a 3-step sampling process: 1) First, we select one of the buckets. 2) Then, from
this bucket, we select a microcluster and, 3) Finally, from this microcluster, we
select the candidate anomalous record that is shown to the expert. According
to the classification assigned by the expert to the selected record, we refine
our model, increasing or decreasing the likelihood of retrieving again a relevant
anomaly from the same bucket and microcluster.

We perform the 3-step sampling process and model refinement using a proba-
bilistic approach, where probabilities represent the uncertainty about whether or
not a bucket or microcluster contains anomalous records. We model the problem
using Dirichlet distributions [5], and take advantage of their clustering proper-
ties. In particular, our microcluster selection process corresponds to an instance
of a Polya Urn model [3].
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In the process of sampling buckets, we use a Multinomial distribution to
model the probability of selecting each bucket. Initially, each bucket has the
same probability pi of being selected. Later, after receiving feedback from the
expert, we update the parameters of the Multinomial distribution according to
the equations of a Polya Urn process [5]. In this way, a successful bucket increases
its own probability of been selected while an unsuccessful bucket decreases this
probability.

Once a given bucket is selected, we sample an observation from the GMM
used to model the microclusters inside that bucket. Given that we use Gaussian
functions, it is possible that the sample from the Gaussian mixture does not
correspond to the position of a real record inside the bucket. To solve this prob-
lem, we use Euclidean distance to select the record in the bucket that is closest
to the sampled observation. As we do in the bucket selection process, we also
use the feedback from the user and the equations of a Polya urn process to up-
date the probabilities of selecting a given microcluster from the relevant GMM.
Here, the Dirichlet distribution controls the parameters of a Multinomial dis-
tribution over the set of mixture weights of the GMM. In this way, a positive
feedback from the user increases the probability of selecting again a record from
the given microcluster.

3 Results

We test our algorithm under different conditions using synthetic and real
datasets. Synthetic datasets correspond to samples from GMMs, where we artifi-
cially add anomalous records as datapoints in microcluster of low density areas.
In the real case, we use a dataset from the UCI repository [2], corresponding to
a pen-based recognition of handwritten digits.

In the experiments, we use as a baseline method an scheme that we called
BN-detection. This scheme consists on showing sequentially to the experts, the
records sorted in ascending order according to the likelihood values provided
by the BN applied to the complete dataset. In this way, we can observe the
advantages of adding the active learning scheme.

3.1 Anomaly Detection in Synthetic Datasets

To analyze the performance of our algorithm, we use synthetic datasets to con-
duct 3 main experiments: 1)Evaluation of anomaly detection, 2)Evaluation of
capabilities to learn the relevant subspaces for the anomalous records, 3) Eval-
uation of sensibility under presence of noisy records.

The synthetic datasets contains 90.000 records and 10 attributes. We add to
this dataset 2000 anomalous records, simulated on five different subspaces with
400 anomalies contained in each one. To build the BN that models the candidate
set of anomalies, we use 10% of the records with lowest likelihood, i.e., τ = 9200.

Figure 1 shows the number of anomalies detected by the algorithm in each of
the 5 subspaces with anomalies versus the number of records shown to the expert.
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Fig. 1. Detection of anomalies in a database containing 90.000 records, 10 attributes,
and 2000 anomalous records

We can see that the algorithm is able to detect around 90% of the anomalies
when the expert has analyzed only 2% of the database.

In terms of the impact of our active learning scheme to speed up the detection
of the anomalies, our tests indicate that the proposed approach speed up in 25%
the anomaly detection rate with respect to the baseline method.

3.2 Detection of Relevant Subspaces for Anomalous Records

To test the effectiveness of our algorithm to detect relevant subspaces where
anomalies are generated, we conduct the following experiment. We simulate a
database containing 11.000 records and 8 attributes. We add to this dataset 249
anomalous records, simulated on five different subspaces with 83 anomalies con-
tained on each one. The anomalies were simulated on subspaces S1 = 〈x1, x3, x5〉,
S2 = 〈x2, x4, x6〉, and S3 = 〈x8, x7〉. To build the BN that models the candidate
set of anomalies we used τ = 2000.

Figure 2 shows the percentage of the anomalous records detected in the differ-
ent buckets provided by the BN factorization. In the figure, most of the anoma-
lies generated in subspace S1 = 〈x1, x3, x5〉 are detected in the bucket related
to subspace 〈x3, x5〉. A similar situation occurs with anomalies generated in the
subspace S2 = 〈x2, x4, x6〉, which are mostly detected in the bucket related to
subspace 〈x4, x6〉. This result shows that indeed, there is a close relation between
the factorization provided by the BN and the subspaces that are relevant for the
anomalies.

In the case of subspace S3 = 〈x8, x7〉, there is an indication of some indirect
relations occurring between variables in subspaces and buckets, where some vari-
ables are related with others subspaces through the BN structure. In effect, the
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Fig. 2. Anomalies detected inside each bucket. Higher levels of detection are inside
the buckets representing variables related to the subspaces where the anomalies are
generated.

bucket related to the subspace 〈x2, x4〉 detects almost 20% of the anomalies from
subspace S3 = 〈x8, x7〉, whose variables are not included in the set of variables
that represent the bucket. Following the BN structure, however, we see that x4
is a parent of x8 and x2 is a direct descendant of x7.

3.3 Sensibility under Presence of Noise

In this experiment we compared the performance of BN-detection versus our
algorithm under databases containing different levels of noisy records. Figure 3
shows number of questions required to detect 100% of total number of anomalies
for a synthetic database with 15.000 records and 10 attributes, where 400 frauds
are simulated on five different subspaces under different level of noisy records.
Noisy records were generated using samples from uniform distributions in the
range of values of each attribute.

Figure 3 shows that the performance of BN-detection schemes does not scale
well with level of noisy records. This result was expected because most of the
noisy records appear as low likelihood points, then they are shown to the expert.
In constrast, the clustering properties of our active learning scheme provides
better scaling with level of noise because the search concentrates in buckets and
microclusters with relevant anomalies.

It is relevant to note that previous experiments were conducted under different
conditions of database size, dimension, and number of anomalies. In all tests, we
observed similar results to the ones shown in this paper.

3.4 Anomaly Detection in a Real Dataset

We test our active learning approach and the BN-detection scheme with a real
database containing 9000 records with 16 attributes. Each record corresponds
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Fig. 3. How the Noise level increase the time required for anomaly detection. Active
Learning is less sensible to noise.

to a handwritten character of one of 10 different classes. Here, two of these
classes are considered as anomalous because they correspond to only 2% of the
database. Figure 4 shows the number of detections with both approaches. Our al-
gorithm detects 90% of the anomalies analyzing around 20% of the total dataset.
Particularly, in the case of the first anomalous class, the number of anoma-
lies detected is highly improved with the active learning scheme. For this case,
the active learning based approach detects 150% more anomalies than the BN-
detection scheme among the first 25% of the objects shown to the expert.

Fig. 4. Anomaly detection performance using the active learning scheme and the BN
detection for both anomalous class on a real database
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4 Previous Work

Given space constraints we just briefly review some relevant related work in the
area of anomaly detection and active learning. The AI [7] [1] and the related
Machine Learning communities [8] [6] have tackled the problem of anomaly de-
tection, motivated mainly by applications on fraud detection. In contrast to
our approach, most of these applications are based on supervised learning tech-
niques. Unsupervised learning, such as clustering techniques, have also been used
to detect anomalies. Using clustering, anomalies are detected as micro clusters
or isolated points located in low density regions of the features space [8].

In the context of active learning, mainly in problems related to classification,
there have been considerable research about the problem of deciding how to
improve the accuracy of a classifier by actively deciding what instance to label
[14] [9] [13] [16]. In a work closely related to our application domain, Pelleg and
Moore [12] propose an active learning strategy to find anomalies in a database.
The main difference with our approach is that they do not explicitly search for
relevant anomalies in selective subspaces.

5 Conclusions

This work contributed with an algorithm based on the active learning paradigm
that tackles the problem of detecting anomalous records in large datasets. Using
the factorization of the joint pdf provided by a BN and the properties of Dirichlet
distributions to model a Polya urn process, we were able to use the feedback from
the user to speed up the selection of relevant anomalies that exhibit regularities
or patterns in selective subspaces.

Our results indicated that with respect to a baseline method that do not
incorporate active learning, the approach presented in this work was able to
significantly decrease the time to reach the relevant anomalies. Furthermore, by
providing a set of specific attributes corresponding to the subspace used to detect
the anomaly, the method proposed here was also able to provide an explanation
of the main sources of the anomaly.

As future work, we believe that the incorporation of previous knowledge in the
modeling steps can improve the detection. Also a most exhaustive experimental
analysis in datasets coming from different domains is also a valuable step forward.
Given that the expert time is usually the most valuable resource in the loop, we
believe that tools as the one presented here may be of great help as a filtering step
tohelpandguide the search indatasetswhere anexhaustive analysis is notpossible.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. Artificial Intelligence Communications 7(1),
39–59 (1994)

2. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html


172 K. Pichara, A. Soto, and A. Araneda

3. Blackwell, D., MacQueen, J.: Ferguson distribution via polya urn schemes. The
Annals of Statistics 1(2), 353–355 (1973)

4. Cansado, A., Soto, A.: Unsupervised anomaly detection in large databases using
bayesian networks. Applied Artificial Intelligence 22(4), 309–330 (2008)

5. Ferguson, T.: A bayesian analysis of some nonparametric problems. The Annals of
Statistics 1(2), 209–230 (1973)

6. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intel-
ligence Review 22(2), 85–126 (2004)

7. Jackson, P.: Introduction to Expert Systems. Addison-Wesley, Reading (1998)
8. Kou, Y., Lu, C., Sirwongwattana, S., Huang, Y.: Survey of fraud detection tech-

niques. In: Proc. of the IEEE Int. Conf. on Networking, Sensing and Control, pp.
749–754 (2004)

9. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: Proc.
of 17th Int. Conf. ACM SIGIR, pp. 3–12 (1994)

10. Neapolitan, R.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs
(2004)

11. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

12. Pelleg, D., Moore, A.: Active learning for anomaly and rare-category detection. In:
Proc. of the 18th Conf. on Advances in Neural Information Processing Systems,
NIPS (2004)

13. Roy, N., McCallum, A.: Toward optimal active learning through sampling estima-
tion of error reduction. In: Proc. of 18th Int. Conf. on Machine Learning, ICML,
pp. 441–448 (2001)

14. Seung, S., Opper, M., Sompolinski, H.: Query by committee. In: Proc. of 5th An-
nual ACM Workshop on Computational Learning Theory, pp. 287–294 (1992)

15. Soto, A., Zavala, F., Araneda, A.: An accelerated algorithm for density estimation
in large databases using Gaussian mixtures. Cybernetics and Systems 38(2), 123–
139 (2007)

16. Tong, S., Koller, D.: Active learning for parameter estimation in bayesian networks.
In: Proc. of the 13th Conf. on Advances in Neural Information Processing Systems,
NIPS, pp. 647–653 (2001)


	Detection of Anomalies in Large Datasets Using an Active Learning Scheme Based on Dirichlet Distributions
	Introduction
	Our Approach
	 Identification of Initial Set of Candidate Anomalies
	 Selection of Relevant Subspaces
	 Use of Active Learning to Identify Relevant Microclusters

	Results
	 Anomaly Detection in Synthetic Datasets
	 Detection of Relevant Subspaces for Anomalous Records
	 Sensibility under Presence of Noise
	 Anomaly Detection in a Real Dataset

	Previous Work
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




