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Abstract. A rough evolutionary neuro-fuzzy system for classification
and rule generation is proposed. Interactive and differentiable t-norms
and t-conorms involving logical neurons in a three-layer perceptron are
used. This paper presents the results of application of the methodol-
ogy based on rough set theory, which initializes the number of hidden
nodes and some of the weight values. In search of the smallest network
with a good generalization capacity, the genetic algorithms operate on
population of individuals composed by integration of dependency rules
that will be mapped on networks. Justification of an inferred decision
was produced in rule form expressed as the disjunction of conjunctive
clauses. The effectiveness of the algorithm is demonstrated on a speech
recognition problem. The results are compared with those of fuzzy-MLP
and Rough-Fuzzy-MLP, with no logical neuron; the Logical-P, which uses
product and probabilistic sum; and other related models.
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1 Introduction

One of the objective of this work is to present the t-norms-based Interactive
and Differentiable Neuro-Fuzzy System (IDNFS). This system has as nucleus a
multilayer perceptron with three layers in which its neurons carry out logical
operations And and Or and are trained with the backpropagation algorithm.
Sec.2 presents the IDNFS with t-norms defined on [-1,1] following the L-fuzzy
set concept [8].

The differentiability is an important characteristic in neuro-fuzzy systems be-
cause it allows the direct application of the training algorithms based on the
descendant gradient [17]. In a data domain with different degrees of granular-
ity among the attributes the interactivity has advantages on the min and max
operators that are completely noninteractive [1].

When applied on a data set, the efficiency of the learning of a network mea-
sured in terms of its generalization capacity depends on the number of layers,
and neurons and on the weights of connections among its neurons. On a symbolic
knowledge-based neural networks these parameters can be determined by map-
ping rules. In order to solve this problem, the initialization methodology based
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on Rough Set (RS) theory and Genetic Algorithm (GA) is proposed in Sec. 3.
RS is based on the application of mathematical concepts of equivalency classes
and quotient set in an environment of uncertainty to generate dependency rules
from a data set that will be mapped on the neuro-system. GA is introduced to
determine the dependency rule combination that results in a IDNFS with the
best generalization capacity. Many of the ideas and procedures of our methodol-
ogy were previously proposed in [3][16]. However, there has been some attempts
to overcome some of the limitations found in their methodology, mainly with the
advantages offered by GA and other aspects of RS not considered previously.

The model proposed in this paper performs two main tasks. First we construct
the three-layered fuzzy logical network for classifying multiclass patterns. Next,
the trained network is used to generate rules. The connection weight in this stage
constitutes the knowledge base (in embedded form) for the classification problem
under consideration. The model is now capable of inferring the output decision
for complete and/or partial quantitative inputs and provide justification for any
conclusion. If asked by the user, the proposed model is capable of justifying its
decision in rule form (in terms of the salient features) with the antecedent and
consequent parts produced in linguistic and natural terms.

Sec. 4 shows that on a speech recognition problem the IDNFS with 17 nodes
in the hidden layer, even without the fuzzification at the output, gave the best
performance between other logical classifiers with 20 or 22 nodes. The results
were very promising not only because the process of initialization was partially
automatized but also because the generalization capacity was improved in the
data set used in our experiments. The preliminary results about the rule gener-
ation for speech data are shown in Sec. 3.

2 Neuro-fuzzy System

In [15][17] several distinct types of fuzzy neurons were proposed, which could
potentially give rise to many fuzzy neural networks. Our goal in this work is to
use the interactive and differentiable t-norms defined by Zanusso [4][14] and to
show that the classification results and the rules generated by the system are
satisfactory and sometimes better than [2][10][3].

In the literature, the more frequent t-norms are those from min and max.
However, the lattice operations are completely non interactive. The lack of in-
teraction is well represented by the min and max operations: note that min(x,a)
returns x once x is less than a and this result does not reflect the value of a.
If there is an interaction, one should favor some other t- and s-norms that are
interactive [1].

The definition of a learning algorithm for a fuzzy perceptron using min and
max is not as straightforward as for its neural counterpart because of the usu-
ally non-differentiable t-norms and t-conorms used as activation functions for
the units. So a gradient descent method cannot be used. [17] discussed some
neuro-fuzzy approaches that use special soft-min/soft-max functions to solve this
problem. Another approach to solve it is GA.
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Fig. 1. Architecture of IDNFS

The IDNFS is defined in Fig. 1. This architecture is equal to KDL and
Logical-P in [2]. Those models use the conjugate pair min-max or the product-
probabilistic sum operators to represent the And and Or nodes, respectively. To
solve the non interactivity problem, KDL uses various implication operators to
introduce different amounts of interaction during back propagation of errors; the
results of this are shown in Table 1, Section 4.

2.1 Interactive T-Norm and T-Conorm

[4][14] presents the characterization theorems of t-norm and t-conorm defined
on [−1, 1] (observing the extremes) using the axiomatic skeletons defined by
Schweizer [7] and the concept of L-fuzzy set by Klir [8][9]. The t-norm, which
performs the operation And among fuzzy sets, is denoted by C and the t- conorm,
which carries out the operation Or, by D. These are defined via:

C(x1, x2, . . . , xk) = G1(G1(x1) + G1(x2) + . . . + G1(xk)) (1)

and

D(x1, x2, . . . , xk) = G3(G2(x1) + G2(x2) + . . . + G2(xk)), (2)

where G1(x) is the decreasing generator with G−1
1 (x) = G1(x) and G2(x) is the

increasing generator with G−1
2 (x) = G3(x) being defined via:

G1(x) =
1 − x

1 + x
,

G2(x) =
1 + x

1 − x
,

G3(x) =
x − 1
x + 1

.
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In the logical neurons in Fig.1 C and D were used to calculate ∧ = And and
∨ = Or, respectively. The IDNFS has n1 = 3m neurons in the input layer, n2 in
the hidden and n3 in output.

2.2 Input/Output Vector Representation and the LMS Error

The p-esimal m-dimensional pattern (or example)
Xp = [Xp1, Xp2, . . . , Xpm] is represented as 3m-dimensional vector:

Op = [μlow(xp1), μmedium(xp1),
μhigh(xp1), . . . , μlow(xpm), μmedium(xpm), μhigh(xpm)], (3)

where μlow(xpi), μmedium(xpi) and μhigh(xpi), for i = 1, . . . , m indicate the mem-
bership degrees for the value xpi of the input feature Xpi to the low, medium
and high fuzzy sets, respectively.

The membership function μ, assuming values in [−1, 1], is defined via:

μ(x) =

⎧
⎨

⎩

2(2(1 − |x−c|
λ )2) − 1 if λ

2 ≤ |x − c| ≤ λ

2(1 − 2( |x−c|
λ )2) − 1 if 0 ≤ |x − c| ≤ λ

2
−1 otherwise

, (4)

where λ > 0, the radius and c, the central point, are calculated using the min-
imum and maximum values of the X attribute in the training set and depends
on the parameter 0 < s ≤ 1 which controls the extension of overlapping.

In the neurons of the And layer the activation functions used are

netpi =
n1∧

l=1

(Opl ∨ wil), (5)

whose outputs are Opi = netpi, for input-output case p and i = 1, . . . , n2.
To the neurons from the Or layer, the activation functions used are,

netpj =
n2∨

i=1

(Opi ∧ wji), (6)

whose outputs are Opj = netpj , for input-output case p and j = 1, . . . , n3.
The Least Mean Square (LMS) error was minimized by gradient-descent tech-

nique using η (learning-rate) and α (momentum constant) parameters. It is im-
portant to mention that after the updating of the weights, a truncation procedure
is carried out, aiming to guarantee that their values belong to the interval (-1,1).
The derivation of the error is shown in [5][6].

3 The Initialization Methodology

This section presents a summary of the initialization methodology. [11][12] has
included more explanatory figures and the pseudocode of the Genetic Algorithm
(GA).
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The fuzzified training data (Sec. 2.2) is used by the RS theory. It includes
tasks such as the binarization which creates granules of information through the
application of a cut point (pc) over the data. Values higher than pc become 1,
otherwise they become 0. In the theory of RS [13], the information in a data
set are considered in a table named Information System (IS). The application of
the RS theory allows discovering minimum subsets of attributes named reducts
whose equivalence classes are the same as those produced by the whole set of
attributes. A Decision System (DS) is a IS, which has a decision attribute d, and
from which the d-reducts are determined .

For every d-reduct of the DS a dependency rule is generated: the antecedent
is determined by conjunction of the attributes of a d-reduct; the consequent is d.
These rules indicate the conditional attributes which discriminate the DS classes.
They are denoted by RDSq, q = 1, 2, . . . , Q, where Q is the number of d-reducts.
An example for the Iris dataset [19] is high3∧low1 → specie, where the subindex
refers to the crisp attribute that was fuzzified. This rule discriminates a class
representatives from other different class representatives.

Another type of dependency rule allows distinguishing the representatives of
a given class. The DS is divided into n subsystems, one for each class, and their
reducts are found. From those, the rules are generated: the antecedents like those
of RDS, whereas the consequents are determined by the class. These rules are
denoted by Rjqj , j = 1, 2, . . . , n, n is the number of classes and qj = 1, 2, . . . , Qj ,
Qj is the number of reducts of the j-esimal class. An example for the Iris setosa
is high2 ∧ medium2 ∧ low1 → I.setosa.

In this work an integration of one RDS, randomly chosen from the set of Q
rules, with one R rule, is proposed; named class rule and denoted by R-RDS.
The antecedent is the conjunction of the antecedents of both rules and the con-
sequent is the same as that of the rule R. [3] did not take into consideration the
integration of rules which has the advantage of distinguishing the representatives
of a given class and, at the same time, distinguishing those representatives from
other of different classes.

The Genetic Algorithm (GA) is applied over a IDNFS’s population. The aim
is to find the IDNFS with the smallest number of neurons in the hidden layer
and the highest hit rate on the test set.

The individual representation for GA considers that the antecedents of several
class rule with the same consequent can be connected by disjunctions forming
a rule � whose antecedent is in the Disjunctive Normal Form. An individual is
a combination of �j , j = 1, 2, . . . n, which defines n regions in the chromosome.
Each region is formed by positions (genes) of type R−RDS. The individual has
Q1 + Q2 + . . . + Qn positions of the type R − RDS. One IDNFS is obtained by
mapping an individual.

To define the initial population creation and to diversify the population a
policy of R − RDS activation is employed. An active gene participates in the
mapping but an inactive one does not. The initial population is created in a way
that on a quarter of the individuals all the genes are inactive, consequently, the
mapping of those will build architectures with Q1 +Q2 + . . .+Qn neurons in the
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hidden layer (the highest possible number). In another quarter, just one gene in
the region of each class is randomly chosen to be activated.

The genetic operators are defined in a way different from the traditional GA,
all the individuals from the population P (t), in the t-th generation will cross
with another individual randomly chosen. The crossover operator is applied by
randomly choosing, for each class region, a crossover point from which there
will be a change of subsets of R − RDS rules. The sons and their progenitors
compose the intermediary population, IP (t) in the t-th generation. The mutation
operator is applied over an individual of IP (t), randomly choosing a region in
the individual.

The genetic operators do not change the structure of the antecedents and
consequents of the rules R − RDS represented in the individuals. Later, the
individuals of IP (t) will be mapped over an IDNFS, as reported in [11][12].
The evaluation consists of training and testing each IDNFS from IP (t). The
fitness function is defined in terms of n2, which is the number of neurons in
the hidden layer, and hr, hit rate from the test. hr is the mean from the di-
agonal of confusion matrix. The output of the GA is the IDNFS with a higher
hit rate.

The experiments were carried out making learning rate η and the momentum
constant α decreases as the number of epochs increases. The methodology of
K-fold Cross Validation (CV) for training and testing neural networks was used
to determine the best combination from the parameter values. The mutation
rate was fixed on 0.10; s, pc ∈ {0.2, 0.4, 0.6, 0.8}; ε, ρ ∈ {10, 15, 20}, that is,
the number of evolutions and the number of the best individuals selected after
evaluation of IP , respectively. By crossing these parameters, we get the largest
mean hr between all folds. These K systems are called evolved-IDNFS.

From K evolved-IDNFS, those that get the largest hr’s were chosen. The
basic-IDNFS was created fixing s, n2. The CV methodology, with the former
folds, was applied on each basic-IDNFS (aleatory initial weights) and evolved-
IDNFS (we have fixed s, n2 and the initial weights). It is possible, then, to
compare the initialization methodology effect when applied on IDNFS.

4 Implementation and Results

The proposed IDNFS with the initialization and rule generation methodology
was used on vowel data. These data consist of a set of 871 Indian Telugu vowel
sounds [18]; three features: F1, F2 and F3 corresponding to the first, second
and third formant frequencies obtained through spectrum analysis of the speech
data. There is a 3-dimensional feature space of the six vowel classes ∂(72 exam-
ples), a(89), i(172), u(151), e(207) or o(180). This data set has overlapping and
nonlinear class boundary. The goal is to compare all the results with [2][3][10][16].

Classification: At first the results from IDNFS without the application of the
initialization methodology will be presented. The network was trained with the
following parameters: η = 0.01 (fixed), α = 0.01 (fixed), maxepoch = 4500,
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Table 1. Output Performance for Vowel Data

Logical
Model Used Fuzzy-MLP KDL Logical-P IDNFS

Hidden nodes n2 20 22 20 20 22 15 17
∂ 44.6 69.8 9.3 31.2 24.6 4.6 4.6
α 65.4 72.8 97.5 76.5 93.8 95.1 93.8
i 79.2 81.8 96.7 90.2 92.2 90.3 88.4
u 88.3 85.9 85.9 80.0 93.5 91.2 91.2
e 75.0 75.0 15.8 75.1 62.3 73.3 76.5
o 85.7 87.2 3.0 86.5 77.9 91.4 91.4

Overall 76.8 80.1 48.8 77.8 77.1 80.0 80.3

n2 = 17 and s = 1.0. The last weights from the train are clamped on the neuron
connections. In all cases 10% of the samples are used as training set, and the
remaining samples are used as a test set. The test examples are fuzzified with
the same membership functions as the train examples to enter in the net.

Table 1 compares the average percent of the correct recognition score (on
the test set using the best match criterion, both classwise and overall) of the
proposed IDNFS model with that of Fuzzy-MLP, KDL and Logical-P. The best
match criterion tests whether the jth neuron output has the maximum Opj when
the jth component of the desired output vector also has the highest value.

In Table 1 the non logical model Fuzzy-MLP [10] is defined by using weighted
sum and sigmoid functions.The logical model KDL uses implication operator
of Kleene-Dienes-Lukasiewicz [2] to introduce interaction during back propaga-
tion of errors with the non interactive standard min-max operators. The model
Logical-P uses the product and probabilistic sum operators [10]. In all these
models the input vector consists of membership values for linguistic properties
as in Sec. 2.2 with μ transformed into [0,1] while the output vector is fuzzy
class membership values. The logical model IDNFS gave the best performance
between them with 17 nodes in the hidden layer while the other models had 20
and 22 nodes without implementing the fuzzification at the output.

Table 2 was gotten from application of experiments in Sec. 3 and shows the
mean hr for the basic and evolved-IDNFS together with the standard deviation
S. The results were attained with s = 0.8, pc = 0.7, ε = 15, ρ = 15 and 550
epochs for training during the evolutive process and 4500 epochs on the last

Table 2. Basic-IDNFS and Evolved-IDNFS for the vowel dataset on the test set

Basic-IDNFS Evolved-IDNFS
n2 mean hr ± S mean hr ± S

21 0.7797 ± 0.039 0.8162 ± 0.020
22 0.7934 ± 0.036 0.8139 ± 0.025
23 0.8071 ± 0.036 0.8151 ± 0.020
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Table 3. Rule Generation for Vowel Data with IDNFS

Serial Input Features Justification/Rule Generation

No. F1 F2 F3 If Clause Then Conclusion

1 900 1400 unobt F2 is very medium Mol likely class a

2 700 2300 3100 F1 is high And F3 is very
high

Very likely class e

4 700 1100 2200 F1 is very medium And F3

is very medium
Likely class a

5 700 1000 2600 F1 is very medium And F3

is very medium Or F3 is mol
high

Likely class a

6 700 1000 unobt F1 is very medium Likely class a

8b 700 Unobt unobt F1 is very medium Not unlikely class a

9a 600 1600 unobt F1 is mol high And F2 is
very medium And F2 is mol
low

Not unlikely class e
Or o

10a 600 1200 unobt F1 is very medium And F2

is very medium
Not unlikely class a

10b 600 1200 unobt F1 is mol high And F2 is
very medium

Not unlikely class o

11 50 2400 unobt F1 is low Or F1 is very
medium

Likely class e, but
not unlikely class i

13 400 unobt unobt F1 is very low Not unlikely class e

15b 250 1550 unobt F2 is very medium And F2

is mol low
Mol likely class i

train. Note that the increase on the mean hit rates from evolved-IDNFS are
larger than those found from basic-IDNFS in average about 2%.

Rule Generation from the Trained Best IDNFS: The rules on Table 3
were generated from the learned knowledge base embedded among the connec-
tion weights using the path generation by backtracking and the same certainty
measure for linguistic output as reported in [2].

The magnitudes of the connection weights of trained network were used in
every stage of the inferencing procedure. The input feature values of a test
pattern, presented in quantitative form, influence the generation of the rule
from the trained set of connection weights. This helps extract rules relevant
to that region of the feature space that is local to the area pointed to by the
feature values of the pattern. On the table, mol stands for more or less and
unobt means that the membership value of that feature value to low, medium
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and high will be equal to 0, the most ambiguous value. The consequent part
clauses were generated for all output neurons that had certainty measure larger
than 0.1.

5 Conclusion and Discussion

A three-layered rough evolutionary neuro fuzzy system has been presented. In-
teractive and differentiable conjugate pair of t-norms was used to perform the
logical operations in the neurons. It could be seen in Table 1, the performance
of IDNFS classification showed to be comparable to those obtained by models
Fuzzy-MLP, KDL and Logical-P. It is important to point out that this perfor-
mance was obtained by using a network with less neurons in the hidden layer
and not yet introducing the fuzzyfication in the net output. [2] introduced dif-
ferent amounts of fuzziness at the output on model Logical-P; the performance
increased from 77.8% to 86.1%, that is, 8.3% above. With further development
of this work, a comparison is expected between the results of the applications
of differentiable and interactive t-norms, proposed in Sec. 2, and the t-norms of
max and min and other t-norms proposed in the literature in a data set with
different levels of granularity.

The use of rough set theory, which also deals with ”information granules”,
has been used to optimize the number of neurons in the hidden layer and to
initialize the weights for some connections between the layers characterizes a
knowledge-based network. Note that we have attained satisfactory results when
comparing the performance on the test set from speech data between the evolved-
IDNFS (Table 2) and various neural net models. [3] has introduced the RS-
initialization in Fuzzy-MLP (3 hidden layer, 22 nodes) and renamed it Rough-
Fuzzy-MLP. The performance increased from 83.6% to 85.1%, that is, 1.5%
better; while the evolved-IDNFS is better than basic-IDNFS in average 2.0%
and with one hidden layer. Perhaps if we implement the fuzzification at the
output in the IDNFS model we can increase its performance.

After the design, training and test of the network is complete, it is expected
the learned hypothesis be able to infer the correct classification for future ex-
amples and, if asked by the user, the proposed model is capable of justifying its
decision in rule form with the antecedent (in terms of the salient features) and
the consequent parts produced in linguistic terms. The IDNFS model generates
a number of such rules in If-Then form corresponding to each presentation of
examples extracted from the same population of the train and test sets. The
rules generated by IDNFS (Table. 3) showed to be satisfactory in relation to the
classification given to test input feature and consistent with the rules generated
by Logical-P and FUZZY-MLP models [2] (Tables 9,10), when the same set of
test input feature was presented. It is still necessary to apply some measures in
order to evaluate the performance of the rules.

Acknowledgments. The authors acknowledge CAPES-Brazil for the scholar-
ship.



132 G.L.M. Lovón and M.B. Zanusso

References

1. Klösgen, W., Zytkow, J.M.: Handbook of Data Mining and Knowledge Discovery.
Cap. 10 by Witold Pedrycz, 1st edn. Oxford University Press, New York (2002)

2. Mitra, S., Pal, S.K.: Logical Operation Based Fuzzy MLP for Classification and
Rule Generation. Neural Networks 7(2), 683–697 (1994)

3. Banerjee, M., Mitra, S., Pal, S.K.: Rough Fuzzy MLP: Knowledge Encoding and
Classification. IEEE Transactions On Neural Networks 9(6), 1203–1216 (1998)

4. Zanusso, M.B.: Familias de T-Normas Diferenciáveis, Funções de Pertinência Rela-
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