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Abstract. Nonlinear dimensionality reduction (NLDR) methods aim to
provide a faithful low-dimensional representation of multivariate data.
The manifold learning family of NLDR methods, in particular, do this
by defining low-dimensional manifolds embedded in the observed data
space. Generative Topographic Mapping (GTM) is one such manifold
learning method for multivariate data clustering and visualization. The
non-linearity of the mapping it generates makes it prone to trustworthi-
ness and continuity errors that would reduce the faithfulness of the data
representation, especially for datasets of convoluted geometry. In this
study, the GTM is modified to prioritize neighbourhood relationships
along the generated manifold. This is accomplished through penalizing
divergences between the Euclidean distances from the data points to the
model prototypes and the corresponding geodesic distances along the
manifold. The resulting Geodesic GTM model is shown to improve not
only the continuity and trustworthiness of the representation generated
by the model, but also its resilience in the presence of noise.

1 Introduction

The NLDR methods belonging to the manifold learning family model high-
dimensional multivariate data under the assumption that these can be faith-
fully represented by a low-dimensional manifold embedded in the observed data
space. This simplifying assumption may, at worst, limit the faithfulness of the
generated data mapping due to either data point neighbourhood relationships
that do not hold in their low-dimensional representation, hampering its conti-
nuity, or spurious neighbouring relationships in the representation that do not
have a correspondence in the observed space, which limit the trustworthiness of
the low-dimensional representation.

Generative Topographic Mapping (GTM) [1] is a flexible manifold learning
NLDR model for simultaneous data clustering and visualization whose proba-
bilistic nature makes possible to extend it to perform tasks such as missing data
imputation [2], robust handling of outliers and unsupervised feature selection
[3], or time series analysis [4], amongst others.

In the original formulation, GTM is optimized by minimization of an error
that is a function of Euclidean distances, making it vulnerable to the afore-
mentioned continuity and trustworthiness problems, especially for datasets of
convoluted geometry. Such data may require plenty of folding from the GTM
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model, resulting in an unduly entangled embedded manifold that would ham-
per both the visualization of the data and the definition of clusters the model
is meant to provide. Following an idea proposed in [5], the learning procedure
of GTM is here modified by penalizing the divergences between the Euclidean
distances from the data points to the model prototypes and the corresponding
approximated geodesic distances along the manifold. By doing so, we prioritize
neighbourhood relationships between points along the generated manifold, which
makes the model more robust to the presence of off-manifold noise. In this pa-
per, we first assess to what extent the resulting Geodesic GTM (or Geo-GTM)
model (which incorporates the data visualization capabilities that the model
proposed in [5] lacks) is capable of preserving the trustworthiness and continuity
of the mapping. Then we assess whether Geo-GTM shows better behaviour in
the presence of noise than its standard GTM counterpart.

2 Manifolds and Geodesic Distances

Manifold methods such as ISOMAP [6] and Curvilinear Distance Analysis [7] use
the geodesic distance as a basis for generating the data manifold. This metric
favours similarity along the manifold, which may help to avoid some of the
distortions that the use of a standard metric such as the Euclidean distance may
introduce when learning the manifold. In doing so, it can avoid the breaches of
topology preservation that may occur due to excessive folding.

The otherwise computationally intractable geodesic metric can be approxi-
mated by graph distances [8], so that instead of finding the minimum arc-length
between two data points lying on a manifold, we would set to find the shortest
path between them, where such path is built by connecting the closest suc-
cessive data points. In this paper, this is done using the K-rule, which allows
connecting the K-nearest neighbours. A weighted graph is then constructed by
using the data and the set of allowed connections. The data are the vertices,
the allowed connections are the edges, and the edge labels are the Euclidean
distances between the corresponding vertices. If the resulting graph is discon-
nected, some edges are added using a minimum spanning tree procedure in order
to fully connect it. Finally, the distance matrix of the weighted undirected graph
is obtained by repeatedly applying Dijkstra’s algorithm [9], which computes the
shortest path between all data samples.

3 GTM and Geo-GTM

The standard GTM is a non-linear latent variable model defined as a mapping
from a low dimensional latent space onto the multivariate data space. The map-
ping is carried through by a set of basis functions generating a constrained mix-
ture density distribution. It is defined as a generalized linear regression model:

y = φ(u)W, (1)



Geodesic Generative Topographic Mapping 115

where φ are R basis functions, Gaussians in the standard formulation; W is a
matrix of adaptive weights wrd; and u is a point in latent space. To avoid com-
putational intractability, a regular grid of M points um can be sampled from
the latent space, which acts as visualization space. Each of them, which can be
considered as the representative of a data cluster, has a fixed prior probability
p(um) = 1/M and is mapped, using (1), into a low-dimensional manifold non-
linearly embedded in the data space. A probability distribution for the multivari-
ate data X = {xn}N

n=1 can then be defined, leading to the following expression
for the log-likelihood:

L(W, β|X) =
N∑

n=1

ln

{
1
M

M∑

m=1

(
β

2π

)D/2

exp
{
−β/2‖ym − xn‖2}

}
(2)

where ym, usually known as reference or prototype vectors, are obtained for each
um using (1); and β is the inverse of the noise variance, which accounts for the
fact that data points might not strictly lie on the low dimensional embedded
manifold generated by the GTM. The EM algorithm is an straightforward al-
ternative to obtain the Maximum Likelihood (ML) estimates of the adaptive
parameters of the model, namely W and β. In the E-step, the responsibilities
zmn (the posterior probability of cluster m membership for each data point xn)
are computed as

zmn = p(um|xn,W, β) =
p(xn|um,W, β)p(um)∑

m′ p(xn|um′ ,W, β)p(um′ )
, (3)

where p(xn|um,W, β) = N (y(um,W), β).

3.1 Geo-GTM

The Geo-GTM model is an extension of GTM that favours the similarity of
points along the learned manifold, while penalizing the similarity of points that
are not contiguous in the manifold, even if close in terms of the Euclidean dis-
tance. This is achieved by modifying the standard calculation of the responsibili-
ties in (3) proportionally to the discrepancy between the geodesic (approximated
by the graph) and the Euclidean distances. Such discrepancy is made operational
through the definition of the exponential distribution

E(dg|de, α) =
1
α

exp
{

−dg(xn,ym) − de(xn,ym)
α

}
, (4)

where de(xn,ym) and dg(xn,ym) are, in turn, the Euclidean and graph dis-
tances between data point xn and the GTM prototype ym. Responsibilities are
redefined as:

zgeo
mn = p(um|xn,W, β) =

p′(xn|um,W, β)p(um)∑
m′ p′(xn|um′ ,W, β)p(um′)

, (5)
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where p′(xn|um,W, β) = N (y(um,W), β)E(dg(xn,ym)2|de(xn,ym)2, 1). When
there is no agreement between the graph approximation of the geodesic distance
and the Euclidean distance, the value of the numerator of the fraction within
the exponential in (4) increases, pushing the exponential and, as a result, the
modified responsibility, towards smaller values, i.e., punishing the discrepancy
between metrics. Once the responsibility is calculated in the modified E-step,
the rest of the model’s parameters are estimated following the standard EM
procedure.

3.2 Data Visualization Using Geo-GTM

The GTM was originally defined as a probabilistic alternative to Self-Organi-
zing Maps (SOM). As a result, the data visualization capabilities of the latter
are fully preserved and even augmented by the former. The main advantage
of GTM and any of its extensions over general finite mixture models consists
precisely on the fact that both data and results can be intuitively visualized on
a low dimensional representation space.

Each of the cluster representatives um in the latent visualization space is
mapped, following Eq. (1), into a point ym (the center of a mixture compo-
nent) belonging to a manifold embedded in data space. It is this mapping (and
the possibility to invert it) what provides Geo-GTM with the data visualization
capabilities that the alternative Manifold Finite Gaussian Mixtures model pro-
posed in [5] lacks. Given that the posterior probability of every Geo-GTM cluster
representative for being the generator of each data point, or responsibility zgeo

mn,
is calculated as part of the modified EM algorithm, both data points and cluster
prototypes can be visualized as a function of the latent point locations as the
mean of the estimated posterior distribution:

umean
n =

M∑

m=1

umzgeo
mn, (6)

4 Experiments

Geo-GTM was implemented in MATLAB R©. For the experiments reported next,
the adaptive matrix W was initialized, following a procedure described in [1],
as to minimize the difference between the prototype vectors ym and the vectors
that would be generated in data space by a partial Principal Component Analysis
(PCA). The inverse variance β was initialised to be the inverse of the 3rd PCA
eigenvalue. This initialization ensures the replicability of the results. The latent
grid was fixed to a square layout of approximately (N/2)1/2×(N/2)1/2, where N
is the number of points in the dataset. The corresponding grid of basis functions
was equally fixed to a 5 × 5 square layout for all datasets.

The goal of the experiments is threefold. Firstly, we aim to assess whether
the proposed Geo-GTM model could capture and visually represent the under-
lying structure of datasets of smooth but convoluted geometry better than the



Geodesic Generative Topographic Mapping 117

−10−5051015 −100102030

−15

−10

−5

0

5

10

15

−8−6−4−202468
0

5

10

15

−6

−4

−2

0

2

4

6

8

−1.5 −1 −0.5 0 0.5 1 1.5−2−1012

−8

−6

−4

−2

0

2

4

6

Fig. 1. The three datasets used in the experiments. (Left): Swiss-Roll, where two con-
tiguous fragments are identified with different symbols in order to check manifold
contiguity preservation in Fig. 3. (Center): Two-Spirals, again with different symbols
for each of the spiral fragments. (Right): Helix.

standard GTM. Secondly, we aim to quantify the faithfulness of the generated
mappings. Finally, we aim to evaluate the capability of Geo-GTM to uncover
the underlying structure of the data in the presence of noise, and compare its
performance with that of the standard GTM.

4.1 Results and Discussion

Three artificial 3-dimensional datasets, represented in Fig. 1, were used in the ex-
periments that follow. The first one is Swiss-Roll, consisting on 1000 randomly
sampled data points generated by the function: (x1, x2) = (t cos(t), t sin(t)),
where t follows a uniform distribution U(3π/2, 9π/2) and the third dimension
follows a uniform distribution U(0, 21). The second dataset, herein called Two-
Spirals, consists of two groups of 300 data points each that are similar to
Swiss-Roll although, this time, the first group follows the uniform distribution
U(3π/4, 9π/4), while the second group was obtained by rotating the first one by
180 degrees in the plane defined by the first two axes and translating it by 2 units
along the third axis. The third dataset, herein called Helix, consists of 500 data
points that are images of the function x = (sin(4πt), cos(4πt), 6t − 0.5), where t
follows U(−1, 1). These data are contaminated with a small level of noise. Also,
and specifically for the experiments to assess the way the models deal with the
presence of noise, Gaussian noise of zero mean and increasing standard devia-
tion, from σ = 0.1 to σ = 0.5, was added to a noise-free version of Helix to
produce the 5 datasets represented in Fig. 2.

The posterior mean distribution visualization maps for all datasets are dis-
played in Figs. 3 to 5. Geo-GTM, in Fig. 3, is shown to capture the spiral
structure of Swiss-Roll far better than standard GTM, which misses it at large
and generates a poor data visualization with large overlapping between non-
contiguous areas of the data.

A similar situation is reflected in Fig. 4: The two segments of Two-Spirals
are neatly separated by Geo-GTM, whereas the standard GTM suffers a lack of
contiguity of the segment represented by circles as well as overlapping of part of
the data of both segments.
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Fig. 2. The five noisy variations of Helix used in the experiments. From left to right
and top to bottom, with increasing noise of standard deviation from σ = 0.1 to σ = 0.5.

Fig. 3. Data visualization maps for the Swiss-Roll set. (Left): standard GTM; (right):
Geo-GTM.

The results are even more striking for Helix, as shown in Fig. 5: the helicoidal
structure is neatly revealed by Geo-GTM, whereas it is mostly missed by the
standard GTM. The former also faithfully preserves data continuity, in compar-
ison to the breaches of continuity that hinder the visualization generated by the
latter.

In order to evaluate and compare the mappings generated by GTM and Geo-
GTM, we use the trustworthiness and continuity measures developed in [10].
Trustworthiness is defined as:
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Fig. 4. Visualization maps for the Two-Spirals set. (Left): standard GTM; (right):
Geo-GTM.

Fig. 5. Data visualization maps for the Helix set. (Left): standard GTM; (right): Geo-
GTM.

T (K) = 1 − 2
NK(2N − 3K − 1)

N∑

i=1

∑

xj∈UK(xi)

(r(xi, xj) − K), (7)

where Uk(xi) is the set of data points xj for which xj ∈ ĈK(xi) ∧ xj /∈ CK(xi)
and CK(xi) and ĈK(xi) are the sets of K data points that are closest to xi

in the observed data space and in the low-dimensional representation space,
respectively. Continuity is in turn defined as:

Cont(K) = 1 − 2
NK(2N − 3K − 1)

N∑

i=1

∑

xj∈VK(xi)

(r̂(xi, xj) − K), (8)
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Fig. 6. Trustworthiness (left column) and continuity (right column) for (top row):
Swiss-Roll, (middle row): Two-Spirals, and (bottom row): Helix, as a function of the
neighbourhood size K

where VK(xi) is the set of data points xj for which xj /∈ ĈK(xi) ∧ xj ∈ CK(xi).
The terms r(xi, xj) and r̂(xi, xj) are the ranks of xj when data points are ordered
according to their distance from the data vector xi in the observed data space
and in the low-dimensional representation space, respectively, for i �= j.

The measurements of trustworthiness and continuity for all datasets are shown
in Fig. 6. As expected from the visualization maps in Figs. 3-5, the Geo-GTM
mappings are far more trustworthy than those generated by GTM for neigh-
bourhoods of any size across the analyzed range. The differences in continuity
preservation are smaller although, overall, Geo-GTM performs better than GTM
model, specially with the noisier Helix dataset.

We finally evaluate, through some preliminary and illustrative experiments,
the capability of Geo-GTM to uncover the underlying structure of the data in
the presence of noise, comparing it with that of the standard GTM. We quantify
it using the log-likelihood (2), as applied to a test dataset consisting of 500
randomly sampled data points from a noise-free version of Helix. For further
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Fig. 7. Test log-likelihood results for the Helix (left) and Two-Helix (right) datasets,
for increasing levels of added uninformative noise

testing, we repeat the experiment with noisy variations of a basic dataset, herein
called Two-Helix consisting of two sub-groups of 300 data points each, which
are, in turn, images of the functions x1 = (sin(4πt), cos(4πt), 6t − 0.5) and
x2 = (−sin(4πt), −cos(4πt), 6t − 0.5), where t follows U(−1, 1). This is, in fact,
a DNA-like shaped duplication of the Helix dataset. The corresponding results
are shown in Fig. 7.

Remarkably, Geo-GTM is much less affected by noise than the standard GTM,
as it recovers with much higher likelihood the underlying noise-free functions. This
corroborates the visualization results reported in Fig. 5, in which the standard
GTM generates a far less faithful representation of the underlying form and with
breaches of continuity. This is probably due to the fact that Geo-GTM favours
directions along the manifold, minimizing the impact of off-manifold noise.

5 Conclusion

A variation of the NLDR manifold learning GTM model, namely Geo-GTM,
has been shown in this study to be able to faithfully recover and visually rep-
resent the underlying structure of datasets of smooth but convolute geometries.
It does so by limiting the effect of manifold folding through the penalization
of the discrepancies between inter-point Euclidean distances and the approxi-
mation of geodesic distances along the model manifold. As a byproduct of this
approach, Geo-GTM avoids, at least partially, the problem of overfitting by
penalizing off-manifold neighbouring relationships between data points. The re-
ported experiments also show that Geo-GTM has recovered the true underlying
data structure far better than the standard GTM, even in the presence of a con-
siderable amount of noise. Future research should extend these experiments to
a wider selection of datasets, both synthetic and real. It should also investigate,
in wider detail, alternative approaches to graph generation as an approximation
to geodesic distances. For this, we resorted in this paper to the K -rule, but other
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approaches could be considered, such as the ε-rule, the τ -rule, or even the more
sophisticated Data- and Histogram- rules [11].
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