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Abstract. A multi-agent version of Moss and Parikh’s logic of knowl-
edge and effort is developed in this paper. This is done with the aid
of particular modalities identifying the agents involved in the system in
question. Throughout the paper, special emphasis is placed on founda-
tional issues.
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1 Introduction

The development of spatial calculi in AI (like, eg, RCC [1]) has directed the
interest of researchers back to one of the earliest interpretations of modal logic,
the topological one [2].1 In modern terminology, a formula �α holds at some
point x of a topological space iff there exists an open neighbourhood of x in
which α is everywhere valid; cf [4]. Thus the modal box stands for a kind of
nested quantification in this spatial context, viz an existential one concerning
(open) sets followed by a universal one concerning points.

Moss and Parikh [5] discovered that breaking up this interlocking of quan-
tifiers brings to light a certain relationship of topology and knowledge. In fact,
regarding points as system states and sets as knowledge states of some agent,
the above quantification over sets induces an S4-like modality of shrinking while
the point quantifier, being S5-like, directly describes knowledge. But shrinking a
knowledge state means gaining knowledge so that the first modality corresponds
to some knowledge acquisition procedure and was called the effort operator thus.
The semantic domains of the language underlying the Moss-Parikh system are
obtained by releasing the class of all admissible structures. Now, every subset
space can be taken for that, i.e., every triple (X, O, V ) consisting of a non-empty
set X of states, a set O of subsets of X representing the knowledge states of the
agent,2 and a valuation V determining the states where the atomic propositions
are true. The knowledge operator, K, then quantifies over some knowledge state
U ∈ O, whereas the effort operator, denoted � as well, quantifies ‘downward’
over O.
1 See [3] for bringing the precise connection with RCC about.
2 Since these sets are of topological origin they are still called the opens sometimes.
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Following that initial work, a rich theory on the connection between knowledge
and topology has emerged; see Ch. 6 of the recent handbook [6] for an overview
of the state of the art. The original class of all topological spaces could be
characterized within the broader framework, in particular; see [7]. In addition,
several extensions including temporal or dynamic aspects of knowledge have been
proposed. An essential shortcoming of the system remains up to now though:
Regarding its applicability to real-life scenarios in computer science or AI, a
corresponding multi-agent version is still missing. (This is at least true regarding
the usual semantics as the paper [8] is based on a different one.)

This deficiency is rectified in the present paper. At first glance, we have two
options in doing so. On the one hand, we could assume that there is one subset
space (X, O, V ) comprising the knowledge states of all the agents. If O is un-
structured, then the agents are semantically indistinguishable. This means that
they share all of their knowledge states. Thus the resulting theory reduces to
that of a single agent, which is rather uninteresting for our problem. On the
other hand, if a separate subset space is associated with every agent, then we
get, among other things, into trouble when trying to capture the interplay of the
knowledge of the agents. The latter leads us to a possible solution nevertheless:
Adressing a particular agent will here be arranged by an appropriate modality
distinguishing the agent. This entails that, unlike the usual logic of knowledge
(see [9]) we do no longer have a knowledge operator KA in the formal language,
for every agent A. Instead, KA is ‘decomposed’ into two modalities, K and the
new one belonging to A. Thus the agents are ‘super-imposed’ on the original
system, which, therefore, can essentially be preserved. This idea is carried out
in the technical part of this paper.

On looking more carefully, representing an agent by a modal operator seems
to be quite natural since it is thereby indicated that agents are acting entities
rather than indices to knowledge operators. But most notably, the new approach
enables us to present a multi-agent version of Moss and Parikh’s system in a
smooth and satisfactory way.

The body of the paper is organized as follows. In the next section, we precisely
define the spatio-epistemic multi-agent language indicated above. Moreover, we
reason about its expressiveness there. Section 3 contains a list of basic subset
space validities and a discussion referring to this. Section 4 deals with the ques-
tion of completeness. We also discuss effectivity issues, in Section 5. Concluding
the paper, we sum up and point to variants, extensions, and future research
assignments.

2 Multi-agent Subset Spaces

In this section, we define the extended language, L. The syntax of L is based
on a denumerable set Prop = {p, q, . . .} of symbols called proposition letters.
Let m ∈ N. Then, the set Formm of all formulas over Prop is given by the rule
α ::= p | ¬α | α ∧ α | Kα | �α | [Ai] α, where i ∈ {1, . . . , m}. The letters Ai

should represent the agents involved in the scenario under discussion. While K
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and � denote the modalities of knowledge and effort as above, the new operators
[Ai] identify the respective agent in a way to be made precise in a minute. The
duals of K, � and [Ai] (i.e., the operators ¬K¬, ¬�¬ and ¬ [Ai] ¬) are denoted
L, � and 〈Ai〉, respectively. The missing boolean connectives are treated as
abbreviations, as needed. – We now fix the relevant semantic domains. It turns
out that every agent induces a substructure of the set of all opens in a natural
way. Let P(X) designate the powerset of a given set X .

Definition 1 (Multi-agent structures)

1. Let X be a non-empty set, O ⊆ P(X) be a set of subsets of X such that
X ∈ O, and A : {1, . . . , m} → P (P(X)) be a mapping such that the union⋃

Im(A) of all the image sets A(i), where i = 1, . . . , m, is contained in O.
Then S := (X, O, A) is called a multi-agent subset frame.

2. Let S = (X, O, A) be a multi-agent subset frame. Then the elements of the set
NS := {(x, U) | x ∈ U and U ∈ O} are called the neighbourhood situations
of the frame S.

3. Let S = (X, O, A) be a multi-agent subset frame and V : Prop → P(X) be a
mapping. Then V is called an S-valuation.

4. Let S = (X, O, A) be a multi-agent subset frame and V be an S-valuation.
Then M := (X, O, A, V ) is called a multi-agent subset space, or, in short,
a MASS ( based on S).

Some points are worth mentioning here. First, the function A is added to subset
spaces in such a way that the set of all opens is not necessarily exhausted by
the knowledge states of the agents. Having in mind certain spatial settings, this
more general approach is quite reasonable. Second, neighbourhood situations are
the atomic semantic objects of our language. They will be used for evaluating
formulas. In a sense, the set component of a neighbourhood situation measures
the uncertainty about the associated state component at any one time. And
third, we are mainly interested in interpreted systems, which are here formalized
by MASSs. The assignment of sets of states to proposition letters by means of
valuations is in accordance with the usual logic of knowledge; cf [9] again.

Our next task is defining the relation of satisfaction. This is done with respect
to a MASS M. Thus satisfaction, which should hold between neighbourhood
situations of the underlying frame and formulas from Formm, is designated |=M .
In the following, neighbourhood situations are written without brackets.

Definition 2 (Satisfaction and validity). Let M = (X, O, A, V ) be a MASS
based on S = (X, O, A) , and let x, U ∈ NS be a neighbourhood situation. Then

x, U |=M p : ⇐⇒ x ∈ V (p)
x, U |=M ¬α : ⇐⇒ x, U 
|=M α

x, U |=M α ∧ β : ⇐⇒ x, U |=M α and x, U |=M β

x, U |=M Kα : ⇐⇒ for all y ∈ U : y, U |=M α

x, U |=M �α : ⇐⇒ ∀ U ′ ∈ O : if x ∈ U ′ ⊆ U, then x, U ′ |=M α

x, U |=M [Ai] α : ⇐⇒ U ∈ A(i) implies x, U |=M α,
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for all p ∈ Prop, i ∈ {1, . . . , m} and α, β ∈ Formm. In case x, U |=M α is true
we say that α is valid in M at the neighbourhood situation x, U. Furthermore,
a formula α is called valid in M iff it is valid in M at every neighbourhood
situation. (Manner of writing: M |= α.)

Note that the meaning of proposition letters is independent of the opens by
definition, hence ‘stable’ with respect to �. This fact will find expression in
the logical system considered later on. Additionally, note that the operator [Ai]
conditions the validity of formulas at the actual neighbourhood situation on
agent Ai.

The rest of this section is concerned with some aspects of the expressive-
ness of L. First of all, we show that the usual knowledge operator associated
with an agent A is definable in the new language. In fact, the formula 〈Ai〉Kα
exactly says that Ai knows α at the actual neighbourhood situation (where
i ∈ {1, . . . , m}). This means that, with regard to subset spaces, L is at least as
expressive as the usual language for knowledge of agents.

Actually, we have a little more expressive power. To see this, note first that
the modalities [Ai] remind one of the binding procedures which are known from
hybrid logic; cf [10], Sec. 6, or [11], Ch. 14. Though there is a rather weak
connection only, a kind of naming system is constituted by these modalities
for one component of the semantics (the opens) nevertheless. For instance, the
formula 〈Ai〉� means that the actual open represents a knowledge state of
agent Ai.

It can easily be inferred from Definition 2 that the knowledge operator and
the agent operators commutate in the following sense.

Proposition 1. Let M be any MASS. Then, for all i ∈ {1, . . . , m} and α ∈
Formm, we have M |= [Ai] Kα ↔ K [Ai] α.

Thus it is known that the validity of α is conditioned on agent Ai if and only if
it is conditioned on Ai that α is known. This is an example of a basic MASS-
validity which will be part of the axiomatization of MASSs we propose in the
next section. Concluding this section, we give a concrete example.

Example 1. Let be given a two-agent scenario with three states, x1, x2, x3. Let
X = {x1, x2, x3}. Assume that a knowledge acquisition procedure P1, which, for
k = 1, 2, 3, step-by-step eliminates xk from the set of all possible alternatives, is
available to agent A1. Thus A(1) = {{x1, x2, x3}, {x2, x3}, {x3}}. On the other
hand, assume that a corresponding procedure P2, which successively eliminates
x3−k, is available to A2 so that A(2) = {{x1, x2, x3}, {x1, x2}, {x1}}. Then,
each agent can obviously reach an ‘exclusive state of complete knowledge’. In
other words, for every i, j ∈ {1, 2} such that i 
= j, there is a knowledge state
∈ A(i) \ A(j) in which every valid formula α is known by Ai. A specification of
this fact reads

∧

i,j∈{1,2}, i�=j

L� (〈Ai〉 (α → Kα) ∧ [Aj ] ⊥) ,

which is valid at the neighbourhood situation xk, X , for every k ∈ {1, 2, 3}.
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3 Axiomatizing Multi-agent Subset Spaces

Our starting point to this section is the system of axioms for the usual logic
of subset spaces from [12]. We later add several schemata involving the agent
modalities. After that we define the arising multi-agent logic, MAL. – The axioms
from [12] read as follows:

1. All instances of propositional tautologies.
2. K(α → β) → (Kα → Kβ)
3. Kα → (α ∧ KKα)
4. Lα → KLα
5. � (α → β) → (�α → �β)
6. (p → �p) ∧ (�p → p)
7. �α → (α ∧ ��α)
8. K�α → �Kα,

where p ∈ Prop and α, β ∈ Formm. In this way, it is expressed that, for every
Kripke model M validating these axioms,

– the accessibility relation K−→ of M belonging to the knowledge operator is
an equivalence,

– the accessibility relation �−→ of M belonging to the effort operator is reflexive
and transitive,

– the composite relation �−→ ◦ K−→ is contained in K−→ ◦ �−→ (this is usually
called the cross property3), and

– the valuation of M is constant along every �−→ -path, for all proposition
letters (see the remark right after Definition 2).

We now present the axioms containing the operators [Ai] :

9. [Ai] (α → β) → ([Ai] α → [Ai] β)
10. α → [Ai] α
11. K [Ai] α → [Ai] Kα,

where i ∈ {1, . . . , m} and α, β ∈ Formm. – Some comments are appropriate
here. Item 9 contains the usual distribution schema being valid for every normal
modality. The next schema, 10, says that the accessibility relation Ai−→ belonging

to the operator [Ai] has height 1; that is, ∀ s, t : if s
Ai−→ t, then s = t (where

s and t are any points of the frame under discussion). This fact can be proved
in the standard way. Finally, item 11 is one half of the commutation relation
between the knowledge operator and the agent operators stated in Proposition
1. Note the formal similarity between the schemata 8 and 11. – It is somewhat
surprising at first glance that no other interaction axioms between the modalities
are needed.
3 The cross property is caused by Axiom 8, which is, therefore, called the Cross Axiom;

see [12].
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By adding two of the standard rule schemata of modal logic, viz modus ponens
and necessitation with respect to each modality (cf [13], Sec. 1.6), we obtain
a logical system denoted MAL. The following proposition about MAL is quite
obvious.

Proposition 2 (Soundness). If α ∈ Formm is MAL-derivable, then α is valid
in all MASSs.

The proof of the opposite assertion, i.e., the completeness of MAL with respect
to the class of all MASSs, is highly non-trivial. We turn to it in the next section.

4 Completeness

A completeness proof for MAL must clearly use the associated canonical model
in some way. We fix several notations concerning that model first. Let C be the
set of all maximal MAL-consistent sets of formulas. Furthermore, let K−→ , �−→
and Ai−→ be the accessibility relations induced on C by the modalities K, � and
[Ai], respectively. Let α ∈ Formm be non-MAL-derivable. We attain to a multi-
agent subset space falsifying α by an infinite ‘multi-dimensional’ step-by-step
construction. In every step, an approximation to the claimed model, which will
be the ‘limit’ of the intermediate ones, is defined. In order to ensure that the
final structure behaves as desired, several requirements on the approximations
have to be kept under control during the process.

Suppose that Γ0 ∈ C is to be realized (i.e., ¬α ∈ Γ0). We choose a denumerably
infinite set of points, Y , fix an element x0 ∈ Y , and construct inductively a
sequence of quintuples (Xn, Pn, in, an, tn) such that, for every n ∈ N,

1. Xn ⊆ Y is a finite set containing x0,
2. Pn is a finite set partially ordered by ≤ and containing ⊥ as a least element,
3. in : Pn → P (Xn) is a function such that p ≤ q ⇐⇒ in(p) ⊇ in(q), for all

p, q ∈ Pn,
4. an : {1, . . . , m} → P (P(Xn)) is a function satisfying

⋃

1≤i≤m

an(i) ⊆ Im (in),

5. tn : Xn × Pn → C is a partial function such that, for all x, y ∈ Xn and
p, q ∈ Pn,
(a) tn(x, p) is defined iff x ∈ in(p); in this case it holds that

i. if y ∈ in(p), then tn(x, p) K−→tn(y, p),

ii. if q ≥ p, then tn(x, p) �−→ tn(x, q),

iii. for all i ∈ {1, . . . , m} : if in(p) ∈ an(i), then tn(x, p) Ai−→tn(x, p),
(b) tn(x0, ⊥) = Γ0.

The next five conditions say to what extent the structures (Xn, Pn, in, an, tn)
approximate the final model. Actually, it will be guaranteed that, for all n ∈ N,

6. Xn ⊆ Xn+1,
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7. Pn+1 is an end extension of Pn (i.e., a superstructure of Pn such that no
element of Pn+1 \ Pn is strictly smaller than any element of Pn),

8. in+1(p) ∩ Xn = in(p) for all p ∈ Pn,
9. for all i ∈ {1, . . . , m} and U ∈ an+1(i) : U /∈ an(i) or U ∩ Xn ∈ an(i),

10. tn+1 |Xn×Pn= tn.

Finally, the construction complies with the following requirements on existential
formulas: For all n ∈ N,

11. if Lβ ∈ tn(x, p), then there are n < k ∈ N and y ∈ ik(p) such that β ∈
tk(y, p),

12. if �β ∈ tn(x, p), then there are n < k ∈ N and p ≤ q ∈ Pk such that
β ∈ tk(x, q),

13. for all i ∈ {1, . . . , m} : if 〈Ai〉β ∈ tn(x, p), then there is some n < k ∈ N

such that ik(p) ∈ ak(i) and β ∈ tk(x, p).

With that, the desired model can easily be defined. Furthermore, a relevant
Truth Lemma (cf [13], 4.21) can be proved for it, from which the completeness of
MAL follows immediately. Thus it remains to construct (Xn, Pn, in, an, tn), for
all n ∈ N, in a way meeting all the above requirements. This makes up the core
of the proof. The case n = 0 is still easy. In the induction step, some existential
formula contained in some maximal MAL-consistent set tn(x, p), where x ∈ Xn

and p ∈ Pn, must be realized. We confine ourselves to the case of the operator
〈Ai〉 here, where i ∈ {1, . . . , m}.4

So let 〈Ai〉 β ∈ tn(x, p). The first three components of the approximating
structure are unaltered in this case, i.e., Xn+1 := Xn, Pn+1 := Pn, and in+1 = in.
From the Existence Lemma of modal logic (cf [13], 4.20) we know that there is
some point s of C such that tn(x, p) Ai−→ s and β ∈ s. Axiom 10 now implies
that tn(x, p) = s. We therefore define an+1(i) := an(i) ∪ {in(p)}. This already
determines an+1 since the agents with index j 
= i are not affected in this case.
Finally, we define tn+1 := tn.

We must now check that the properties 1 – 10, and 13, remain valid (11 and
12 are irrelevant to the present case). Apart from 5 and 13, all items are more
or less obvious from the construction. Concerning item 13, see the remark at the
end of this proof outline.

Thus the verification of the property 5 is left. Since 5 (b) too is evident we
concentrate on 5 (a). First, the condition on the domain of tn+1 is obviously
satisfied. Second, (i) and (ii) are clear from the validity of this condition for n.
Hence only for (iii) some arguments are needed. If j 
= i, where i is from above,
then the property is valid because of the induction hypothesis, for an+1(j) equals
an(j) then. So let j = i and assume that in+1(q) ∈ an+1(i), where q ∈ Pn+1.
We distinguish two cases. First, let in+1(q) /∈ an(i). Then both q = p and
in+1(p) = in(p) must hold due to the construction. It follows from Axiom 11
(and Axiom 10 as well) that tn+1(y, p) Ai−→ tn+1(y, p), where y ∈ Xn+1. Second,

4 Note that the axioms not mentioned below are used for the other cases.
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let in+1(q)∩Xn ∈ an(i). Then the above construction step forces that in+1(q) =
in(q), and the assertion again follows from the induction hypothesis.

In order to ensure that all possible cases are eventually exhausted, processing
has to be suitably scheduled with regard to each of the modalities involved.
This can be done by means of appropriate enumerations. Regarding this and the
construction in case of a modality of the usual subset space logic, the reader is
referred to the paper [12] for further details. – Summarizing this section, we can
state the first of the main results of this paper:

Theorem 1 (Completeness). If α ∈ Formm is valid in all MASSs, then α is
MAL-derivable.

5 Decidability

In this final technical section of the paper, we prove that the set of all MAL-
derivable formulas is decidable. Since the finite model property does not apply
to the usual subset space logic with respect to the class of all subset spaces (see
[12], Sec. 1.3), the same is true for MAL with respect to the class of all MASSs.
Thus we have to make a little detour in order to obtain the desired decidability
result. We shall single a certain subclass out of the class of all Kripke models and
prove that MAL satisfies the finite model property with respect to that class of
structures. This gives us the decidability of MAL in a standard fashion. – In the
following definition, R and K, S and �, and Ti and [Ai], respectively, correspond
to each other (i ∈ {1, . . . , m}).

Definition 3 (MACA-model). Let M := (W, R, S, T1, . . . , Tm, V ) be a multi-
modal model, where R, S, T1, . . . , Tm ⊆ W × W are binary relations and V is a
valuation. Then M is called a multi-agent cross axiom model (or, in short, a
MACA-model) iff the following conditions are satisfied:5

1. R is an equivalence relation, and S is reflexive and transitive,
2. for all i ∈ {1, . . . , m}, the relations Ti have height 1,
3. S ◦ R ⊆ R ◦ S and, for all i ∈ {1, . . . , m} : Ti ◦ R ⊆ R ◦ Ti (where ◦ denotes

composition of relations),
4. for all w, v ∈ W and p ∈ Prop : if w T w′, then w ∈ V (p) ⇐⇒ v ∈ V (p).

Note that, by taking neighbourhood situations as points, every subset space
induces a semantically equivalent MACA-model.

It is easy to see that all the axioms from Section 3 are sound with respect to
the class of all MACA-models. Moreover, the canonical model of MAL belongs
to this class of structures. These facts imply the following theorem.

Theorem 2 (Kripke completeness). The logical system MAL is sound and
complete with respect to the class of all MACA-models.

5 The term ‘cross axiom model’ was introduced in [12], Sec. 2.3.
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In the following, we use the method of filtration in order to prove the finite
model property of MAL with respect to the class of all MACA-models; cf [14],
Sec. 4. For a given MAL-consistent formula α ∈ Formm, we define a filter set
Σ ⊆ Formm as follows. We first let Σ0 := sf(α) ∪ {¬β | β ∈ sf(α)}, where sf(α)
designates the set of all subformulas of α. Second, we form the closure of Σ0
under finite conjunctions of pairwise distinct elements of Σ0. Third, we close
under single applications of the operator L. And finally, we form the set of all
subformulas of elements of the set obtained last. Let Σ then denote the resulting
set of formulas.

Now, the smallest filtrations of the accessibility relations K−→ ,
�−→ and Ai−→

of the canonical model are taken, where i = 1, . . . , m; cf [14], Sec. 4. Let M :=
(W, R, S, T1, . . . , Tm, V ) be the corresponding filtration of a suitably generated
submodel of the canonical model, for which the valuation V assigns the empty
set to all proposition letters not occurring in Σ. Then we have the following
lemma.

Lemma 1. The structure M is a finite MACA-model of which the size com-
putably depends on the length of α.

Proof. Most of the assertion is clear from the definitions and the proof of [12],
Theorem 2.11. Only item 2 and the second part of item 3 from Definition 3
have to be checked. – For item 2, let Γ, Θ be two points of the canonical model
such that [Γ ] Ti [Θ], where the brackets [. . .] indicate the respective classes (i ∈
{1, . . . , m}). Since we are working with smallest filtrations, there are Γ ′ ∈ [Γ ]
and Θ′ ∈ [Θ] such that Γ ′ Ai−→Θ′. From this we conclude that Γ ′ = Θ′ since Ai−→
has height 1. It follows that [Γ ] = [Θ]. Thus Ti too has height 1. – For item 4,
we remember the formal similarity of the axiom schemata 8 and 11 (see Sec. 3).
Thus the cross property for K and Ti can be established on the filtrated model
in the same way as it was established for K and � there; see [12], Lemma 2.10.
Note that the special form of Σ is used for exactly that purpose.

Since the model M realizes α according to the Filtration Theorem (cf [13], 2.39),
the decidability result we strived for follows readily from Theorem 2 and Lemma
1.

Theorem 3 (Decidability). The set of all MAL-derivable formulas is decid-
able.

6 Concluding Remarks

We developed a multi-agent version of Moss and Parikh’s topological logic of
knowledge. To this end, we introduced appropriate modalities addressing the
knowledge states of the agents in question. The main issues of the paper are
corresponding soundness, completeness and decidability results.

The generalization put forward here is quite natural in many respects. First,
the original approach is preserved to a large extent. Second, the new system is
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open to variations and extensions depending on the applications one has in mind.
For example, it is easy to characterize axiomatically those MASSs for which the
union of all sets of knowledge states of the agents coincides with the set of all
opens. Moreover, further-reaching concepts from the usual logic of knowledge
can be incorporated.

We are particularly interested in topological spaces. A corresponding exten-
sion of the system presented above as well as the treatment of complexity prob-
lems are postponed to future research.
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