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1 Introduction

Networks of language processors are finite collections of rewriting systems (lan-
guage processors) organized in a communicating system [6]. The language proces-
sors are located at nodes of a virtual graph and operate over sets or multisets
of words. During the functioning of the network, they rewrite the correspond-
ing collections of words and then re-distribute the resulting strings according
to a communication protocol assigned to the system. The language determined
by the system is usually defined as the set of words which appear at some dis-
tinguished node in the course of the computation. One of the main questions
related to networks of language processors is how much extent their generative
power depends on the used operations and the size of the system. Particularly
important variants are those ones where the language processors are based on
elementary string manipulating rules, since these constructs give insight into the
limits of the power of the simplicity of basic language theoretic operations and
that of distributed architectures.

Networks of evolutionary processors (NEPs), introduced in [4], and also in-
spired by cell biology, are proper examples for these types of constructs. In this
case, each processor represents a cell performing point mutations of DNA and
controlling its passage inside and outside it through a filtering mechanism. The
language processor corresponds to the cell, the generated word to a DNA strand,
and operations insertion, deletion, or substitution of a symbol to the point mu-
tations. It is known that a computationally universal behaviour emerges as a
result of interaction of such simple components (see, for example [1,2]).

In the case of so-called hybrid networks of evolutionary processors (HNEPs),
each language processor performs only one of the above operations on a certain
position of the words in that node. The filters are defined by some variants
of random-context conditions. The concept was introduced in [9], and proved
computationally complete in [5], with 27 + 3 · card(V ) nodes for alphabet V .

In this paper, we present a universal complete HNEP with 10 nodes and prove
that every recursively enumerable language can be generated by a complete NHEP
with the same number of nodes. Although these bounds are not shown sharp, we
significantly improve the previous result. The constructions demonstrate that
distributed architectures of very small size, with uniform structure and with
components based on very simple language theoretic operations are sufficient to
obtain computational completeness.

2 Preliminaries

We recall some notions we shall use throughout the paper. An alphabet is a
finite and nonempty set of symbols. The cardinality of a finite set A is written
as card(A). A sequence of symbols from an alphabet V is called a word over V .
The set of all words over V is denoted by V ∗ and the empty word is denoted
by ε; we use V + = V ∗ \ {ε}. The length of a word x is denoted by |x|, while
we denote the number of occurrences of a letter a in a word x by |x|a. For each
nonempty word x, alph(x) is the minimal alphabet W such that x ∈ W ∗.
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In our constructions, HNEPs simulate type-0 grammars in Kuroda normal
form and Circular Post Machines.

A type-0 grammar in Kuroda normal form is a construct Γ = (N, T, S, P ),
where N is the set of nonterminal symbols, T is the set of terminal symbols, N and
T are disjoint sets, S ∈ N is the start symbol, and P is the set of rules of the forms
A −→ a, A −→ BC, A −→ ε, AB −→ CD, where A, B, C, D ∈ N and a ∈ T .
These grammars are known to generate all recursively enumerable languages.

Circular Post Machines (CPMs) were introduced in [7], where it was shown
that all introduced variants of CPMs are computationally complete, and more-
over, the same statement holds for CPMs with two symbols. In [8,3] several
universal CPMs of variant 0 (CPM0) having small size were constructed, among
them in [3] a universal CPM0 with 34 states and 2 symbols. In this article we
use the deterministic variant of CPM0s.

A Circular Post Machine is a quintuple (Σ, Q,q0,qf , P ) with a finite alphabet
Σ where 0 is the blank, a finite set of states Q, an initial state q0 ∈ Q, a terminal
state qf ∈ Q, and a finite set of instructions of P with all instructions having
one of the forms px → q (erasing the symbol read), px → yq (overwriting and
moving to the right), p0 → yq0 (overwriting and creation of a blank), where
x, y ∈ Σ and p,q ∈ Q.

The storage of this machine is a circular tape, the read and write head move
only in one direction (to the right), and with the possibility to cut off a cell or
to create and insert a new cell with a blank.

In the following, we summarize the necessary notions concerning so-called evo-
lutionary operations, simple rewriting operations abstract local gene mutations.

For an alphabet V, we say that a rule a → b, with a, b ∈ V ∪{ε} is a substitution
rule if both a and b are different from ε; it is a deletion rule if a �= ε and b = ε;
and, it is an insertion rule if a = ε and b �= ε. The set of all substitution,
deletion, and insertion rules over an alphabet V are denoted by SubV , DelV ,
and InsV , respectively. Given such rules π, ρ, σ, and a word w ∈ V ∗, we define
the following actions of σ on w: If π ≡ a → b ∈ SubV , ρ ≡ a → ε ∈ DelV , and
σ ≡ ε → a ∈ InsV , then

π∗(w) =
{

{ubv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise (1)

ρ∗(w) =
{

{uv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise (2)

ρr(w) =
{

{u : w = ua},
{w}, otherwise (3)

ρl(w) =
{

{v : w = av},
{w}, otherwise (4)

σ∗(w) = {uav : ∃u, v, ∈ V ∗(w = uv)}, (5)
σr(w) = {wa}, σl(w) = {aw}. (6)

Symbol α ∈ {∗, l, r} denotes the way of applying an insertion or a deletion
rule to a word, namely, at any position (a = ∗), in the left-hand end (a = l), or
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in the right-hand end (a = r) of the word, respectively. Note that a substitution
rule can be applied at any position. For every rule σ, action α ∈ {∗, l, r}, and
L ⊆ V ∗, we define the α−action of σ on L by σα(L) =

⋃
w∈L σα(w). For a given

finite set of rules M , we define the α−action of M on a word w and on a language
L by Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively.

Before turning to the notion of an evolutionary processor, we define the fil-
tering mechanism.

For disjoint subsets P, F ⊆ V and a word w ∈ V ∗, we define the predicate ϕ
(ϕ(2) in terminology of [5]) as ϕ(w; P, F ) ≡ alph(w)∩P �= ∅ ∧ F ∩alph(w) = ∅.
The construction of this predicate is based on random-context conditions defined
by the two sets P (permitting contexts) and F (forbidding contexts). For every
language L ⊆ V ∗ we define ϕ(L, P, F ) = {w ∈ L | ϕ(w; P, F )}.

An evolutionary processor over V is a 5-tuple (M, PI, FI, PO, FO) where:

- Either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M represents the
set of evolutionary rules of the processor. Note that every processor is dedicated
to only one type of the above evolutionary operations.

- PI, FI ⊆ V are the input permitting/forbidding contexts of the proces-
sor, while PO, FO ⊆ V are the output permitting/forbidding contexts of the
processor.

We denote the set of evolutionary processors over V by EPV .

Definition 1. A hybrid network of evolutionary processors (an HNEP, shortly)
is a 7-tuple Γ = (V, G, N, C0, α, β, i0), where the following conditions hold:

- V is an alphabet.
- G = (XG, EG) is an undirected graph with set of vertices XG and set of

edges EG. G is called the underlying graph of the network.
- N : XG −→ EPV is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
- C0 : XG −→ 2V ∗

is a mapping which identifies the initial configuration of
the network. It associates a finite set of words with each node of the graph G.

- α : XG −→ {∗, l, r}; α(x) defines the action mode of the rules performed in
node x on the words occurring in that node.

- β : XG −→ {(1), (2)} defines the type of the input/output filters of a node.
More precisely, for every node, x ∈ XG, we define the following filters: the input
filter is given as ρx(·) = ϕβ(x)(·; PIx, F Ix), and the output filter is defined as
τx(·) = ϕβ(x)(·, POx, FOx). That is, ρx(w) (resp.τx) indicates whether or not the
word w can pass the input (resp. output) filter of x. More generally, ρx(L) (resp.
τx(L)) is the set of words of L that can pass the input (resp. output) filter of x.

- i0 ∈ XG is the output node of the HNEP.

We say that card(XG) is the size of Γ . An HNEP is said to be a complete HNEP,
if its underlying graph is a complete graph.

A configuration of an HNEP Γ , as above, is a mapping C : XG −→ 2V ∗

which associates a set of words with each node of the graph. A component C(x)
of a configuration C is the set of words that can be found in the node x in this
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configuration, hence a configuration can be considered as the sets of words which
are present in the nodes of the network at a given moment. A configuration
can change either by an evolutionary step or by a communication step. When
it changes by an evolutionary step, then each component C(x) of the configura-
tion C is changed in accordance with the set of evolutionary rules Mx associated
with the node x and the way of applying these rules α(x). Formally, the configu-
ration C′ is obtained in one evolutionary step from the configuration C, written
as C =⇒ C′, iff C′(x) = M

α(x)
x (C(x)) for all x ∈ XG.

When it changes by a communication step, then each language processor
N(x), where x ∈ XG, sends a copy of each of its words to every node processor
where the node is connected with x, provided that this word is able to pass the
output filter of x, and receives all the words which are sent by processors of nodes
connected with x, providing that these words are able to pass the input filter
of x. Formally, we say that configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff C′(x) = (C(x) − τx(C(x))) ∪⋃

{x,y}∈EG
(τy(C(y) ∩ ρx(C(y))) for all x ∈ XG.

For an HNEP Γ , a computation in Γ is a sequence of configurations C0,
C1,C2, . . . , where C0 is the initial configuration of Γ , C2i =⇒ C2i+1 and C2i+1 �
C2i+2, for all i > 0. If we use HNEPs as language generating devices, then
the generated language is the set of all words which appear in the output node
at some step of the computation. Formally, the language generated by Γ is
L(Γ ) =

⋃
s≥0 Cs(i0).

3 Main Results

3.1 Universality

Theorem 1. Any CPM0 P with 2 symbols can be simulated by an HNEP P ′

with 10 nodes.

Proof. Let us consider a CPM0 P with two symbols, 0 and 1, and f states,
qi ∈ Q, i ∈ I = {1, 2, . . . , f}, where q1 is the initial state and the only terminal
state is qf ∈ Q. Suppose that P stops in the terminal state qf on every symbol,
i.e., there are two instructions qf0 → Halt and qf1 → Halt. (Notice, that it is
easy to transform any CPM0 with n states into a CPM0 with n + 1 states that
stops on every symbol in terminal state.)

So, we consider CPM0 P with instructions of the forms qix −→ qj , qix −→
yqj , qi0 −→ yqj0, qf0 −→ Halt, qf1 −→ Halt, where qi, qj ∈ Q, x, y ∈ {0, 1}. A
configuration w = xWqi of CPM0 P describes that P in state qi ∈ Q considers
symbol x ∈ {0, 1} on the left-hand end of W ∈ {0, 1}∗. Let I ′ = I \ {f} and
x, y ∈ {0, 1}. In the following, we construct an HNEP P ′ simulating P. Starting
with the initial configuration W0 of CPM0 P in node 1 of HNEP P ′, we simulate
every computation step performed by P with a sequence of computation steps
in P ′. If the computation in P is finite, then the final configuration Wf of P will
be found at node 10 of P ′, moreover, any string that can be found at node 10 is
a final configuration of P. In the case of an infinite computation in P , no string
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will appear in node 10 of P ′ and the computation in P ′ will never stop. In the
Table 1 below a complete HNEP P ′ = (V, G, N, C0, α, β, 10) with 10 nodes is
described, where (for i ∈ I ′, y ∈ X)

V = Q ∪ Q′ ∪ T ∪ T ′ ∪ S ∪ S′ ∪ R ∪ R′ ∪ X ∪ X ′ ∪ X ′′ ∪ {0̂} and
Q′ = {q′i}, T = {ti,y}, T ′ = {t′i,y}, S = {si,y}, S′ = {s′i,y},

R = {ri | i ∈ I ′ ∪ {0}}, R′ = {r′i}, X = {0, 1}, X ′ = {0′, 1′}, X ′′ = {0′′, 1′′}.

G is a complete graph with 10 nodes, N, C0, α, β are presented in the Table 1
and node 10 is the output node of HNEP P ′. We explain how P ′ simulates the
instructions of CPM0 P . Due to the lack of space, we present only the necessary
details.

Instruction qix −→ qj: xWqi
P−→ Wqj.

The simulation starts with xWqi in node 1 of P ′. By performing evolution steps
on this string at node 1, we obtain xWqi

1.1−→ xWq′i
1.2−→ {x′Wq′i, xW ′q′i},

where W ∈ {0, 1}∗ and W ′ ∈ {0, 1, 0′, 1′}. In the following communication step,
only strings with q′i and x′ can leave node 1. Notice that strings xW ′q′i do not
contain symbols x′ on the left-hand end. It is easy to see that during the next
transformations it is not possible to delete x′ if it is not on the left-hand end of
the strings, so these strings will stay forever in node 8. Thus, we will not further
consider strings that contain symbols x′ not in the correct position. String x′Wq′i
can enter nodes 2 or 3. Let us consider, for example, node 2 (the case for node
3 can be treated analogously). If the string enters node 2, then there exists
an instruction qi0 −→ qj in CPM0 P and x′ = 0′, so 0′Wq′i

2.1−→ 0′Wqj . In
the following communication step, string 0′Wqj can enter only node 8, where
0′Wqj

8.1−→ Wqj , and then the obtained string, Wqj , can enter only node 1. So,
we simulated instruction qix −→ qj of P in a correct manner.

In the Table 1 below i, j ∈ I ′, x, y ∈ X, x′, y′ ∈ X ′, y′′ ∈ X ′′.

Table 1.

N, C0, M PI, FI,PO, FO
α, β

1, {1.1 : qi → q′
i} ∪ PI = ∅,

{W0}, {1.2 : x → x′} ∪ FI = Q′ ∪ X ′′ ∪ X ′ ∪ {qf },
∗, (2) {1.3 : y′′ → y} ∪ PO = X ′,

{1.4 : 0̂ → 0} FO = Q ∪ X ′′ ∪ {0̂}
2, ∅, {2.1 : q′

i → qj | qi0 → qj} ∪ PI = {q′
i | qi0 → qj}∪

∗, (2) {2.2 : q′
i → tj,y | qi0 → yqj} ∪ {q′

i | qi0 → yqj}∪
{2.3 : q′

i → sj,y | qi0 → yqj0} ∪ {q′
i | qi0 → yqj0}∪

{2.4 : q′
i → qf | qi0 → qf} {q′

i | qi0 → qf}
FI = {1′}, PO = {0′}, FO = Q′

3, ∅, {3.1 : q′
i → qj | qi1 → qj} ∪ PI = {q′

i | qi1 → qj}∪
∗, (2) {3.2 : q′

i → tj,y | qi1 → yqj} ∪ {q′
i | qi1 → yqj}∪

{3.3 : q′
i → qf | qi1 → qf} {q′

i | qi1 → qf}
FI = {0′}, PO = {1′}, FO = Q′
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Table 1. (continued)

N, C0, M PI,FI,PO, FO
α, β

4, ∅, {4.1 : ε → r0} PI = T ∪ S, FI = R ∪ R′,
r, (2) PO = {r0}, FO = ∅
5, ∅, {5.1 : ti,y → t′

i−1,y , P I = T,
∗, (2) 5.2 : si,y → s′

i−1,y | 2 ≤ i ≤ f − 1} ∪ FI = T ′ ∪ S′ ∪ R′,
{5.3 : ri → r′

i+1 | 0 ≤ i ≤ f − 2} ∪ PO = R′,
{5.4 : t1,y → y} ∪ FO = T ∪ S ∪ R
{5.5 : s1,y → y′′}

6, ∅, {6.1 : t′
i,y → ti−1,y , P I = T ′,

∗, (2) 6.2 : s′
i,y → si−1,y | 2 ≤ i ≤ f − 2} ∪ FI = T ∪ S ∪ R,

{6.3 : r′
i → ri+1 | 1 ≤ i ≤ f − 2} ∪ PO = R,

{6.4 : t′
1,y → y} ∪ FO = T ′ ∪ S′ ∪ R′

{6.5 : s′
1,y → y′′}

7, ∅, {7.1 : ri → qi, P I = R ∪ R′, F I = Q′ ∪ T ∪ T ′∪
∗, (2) 7.2 : r′

i → qi | i ∈ I ′} S ∪ S′, PO = X ′, FO = R ∪ R′

8, ∅, {8.1 : x′ → ε} PI = X ′, F I = Q′ ∪ T ∪ T ′∪
l, (2) S ∪ S′ ∪ R ∪ R′, PO = ∅, FO = X ′

9, ∅, {9.1 : ε → 0̂} PI = X ′′, F I = R ∪ R′ ∪ X ′ ∪ {0̂},

l, (2) PO = {0̂}, FO = ∅
10, ∅, ∅ PI = {qf}, F I = V \ {X ∪ {qf}},
∗, (2) PO = ∅, FO = {qf }

Instruction qix −→ yqj : xWqi
P−→ Wyqj.

HNEP P ′ starts the simulation with xWqi in node 1. Then, two evolution
steps follow, xWqi

1.1−→ xWq′i
1.2−→ {x′Wq′i, xW ′q′i}, where W ∈ {0, 1}∗ and

W ′ ∈ {0, 1, 0′, 1′}. Similarly to the previous case, we will consider only string of
the form x′Wq′i. This string can enter nodes 2 or 3. Consider, for example, node 2
(the case for node 3 can be treated analogously). If the string enters node 2, then
there is an instruction qi0 −→ yqj in CPM0 P and x′ = 0′. So, 0′Wq′i

2.2−→ 0′Wtj,y.
String 0′Wtj,y can enter nodes 4 and 5. In the latter case the string will stay in node
5 forever, as it does not contain any symbol from R′. Suppose that the string en-
ters node 4. Then, an evolution step, 0′Wtj,y

4.1−→ 0′Wtj,yr0, follows. Now, string
0′Wtj,yr0 can successfully be communicated only to node 5. Then, in nodes 5 and
6, the string is involved in the following evolution steps: For t ∈ I ′,

0′Wtj−t,yrt
5.1−→ 0′Wt′j−(t+1),yrt

5.3−→ 0′Wt′j−(t+1),yr′t+1

0′Wt′j−(t+1),yr′t+1
6.1−→ 0′Wtj−(t+2),yr′t+1

6.3−→ 0′Wtj−(t+2),yrt+2.

The string enters in node 5 and 6 in circle, until the first index of t or t′ will
be decreased to 1. At that moment in node 5 (node 6) index of r (r′) will be
exactly j −1, and it becomes j by rule 5.3 (6.3), i.e. the same, as the first index
of t in string 0′Wtj,yr0 before entering node 5. After that, 0′Wt1,yr′j

5.4−→ 0′Wyr′j
or 0′Wt′1,yrj

6.4−→ 0′Wyrj . In the following communication step, string 0′Wyr′j or
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0′Wyrj can enter only node 7, where the following evolution steps are performed:
0′Wyrj

7.1−→ 0′Wyqj , 0′Wyr′j
7.2−→ 0′Wyqj . String 0′Wyqj is communicated to

node 8, and this is the only node the string is able to enter. At node 8, evolution
step 0′Wyqj

8.1−→ Wyqj can be performed. Now, string Wyqj can enter only node
1. So, instruction qix −→ yqj of P is correctly simulated.

Instruction qi0 −→ yqj0 : 0Wqi
P−→ 0Wyqj.

The beginning of the simulation of instruction qi0 −→ yqj0 is the same as that
of instruction qi0 −→ yqj . The difference appears when rule 2.3 : q′i → sj,y is
applied in node 2 instead of rule 2.2 : q′i → tj,y and at the end of the circle
process in nodes 5 and 6, s1,y or s′1,y becomes y′′ (rules 5.5 or 6.5) instead
of y (rules 5.4 or 6.4). Strings 0′Wy′′r′j or 0′Wy′′rj can enter only node 7.

Then, either evolution step 0′Wy′′rj
7.1−→ 0′Wy′′qj or evolution step 0′Wy′′r′j

7.2−→
0′Wy′′qj follows. String 0′Wy′′qj can enter only node 8, where evolution step
0′Wy′′qj

8.1−→ Wy′′qj is performed. The new string, Wy′′qj , can enter only node
9, where evolution step Wy′′qj

9.1−→ 0̂Wy′′qj follows. Then string 0̂Wy′′qj can
enter only node 1, where evolution steps 0̂Wy′′qj

1.3−→ 0̂Wyqj
1.4−→ 0Wyqj are

performed. Thus, instruction qi0 −→ yqj0 of P is correctly simulated.

Instruction qix −→ qf : xWqi
P−→ Wqf .

In nodes 2 or 3 we have rules q′i → qf (rules 2.4 or 3.3) and string x′Wq′i
will be transformed to string x′Wqf . After that it enters node 8 and changes to
Wqf . Now it enters node 10 as a result. So, CPM0 P is correctly modeled. We
have demonstrated that the rules of P are simulated in P ′. The proof that P ′

simulates only P comes from the construction of the rules in P ′, we leave the
details to the reader.

Corollary 1. There exists a universal HNEP with 10 nodes.

3.2 Computational Completeness

Theorem 2. Any recursively enumerable language can be generated by a com-
plete HNEP of size 10.

Proof. Let Γ = (N, T, S, R) be a type-0 grammar in Kuroda normal form.
We construct a complete HNEP Γ ′ = (V, G, N, C0, α, β, 10) of size 10 that

simulates the derivations in Γ by the so-called rotate-and-simulate method. The
rotate-and-simulate method means that the words found in the nodes are in-
volved into either the rotation of the leftmost symbol (the leftmost symbol of
the word is moved to the end of the word) or the simulation of a rule of R. To
guarantee the correct simulation, a marker symbol, #, is introduced for indicat-
ing the end of the simulated word under the rotation. Assume that the symbols
N ∪ T ∪ {#} are labeled in a one-to-one manner by 1, 2, . . . , n. More precisely
let N ∪T ∪{#} = A = {A1, A2, . . . An}, I = {1, 2, . . . , n}, I ′ = {1, 2, . . . , n− 1},
I ′′ = {2, 3 . . . , n}, I0 = {0, 1, 2, . . . , n}, I ′0 = {0, 1, 2, . . . , n − 1}, B0 = {Bj,0 | j ∈
I}, # = An, T ′ = T ∪ #. The alphabet V of the network is defined as follows:
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V = A ∪ B ∪ B′ ∪ C ∪ C′ ∪ D ∪ D′ ∪ E ∪ E′ ∪ {ε′}, where
B = {Bi,j | i ∈ I, j ∈ I0}, B′ = {B′

i,j | i, j ∈ I}, C = {Ci | i ∈ I},

C′ = {C′
i | i ∈ I ′}, D = {Di | i ∈ I0}, D′ = {D′

i | i ∈ I},

E = {Ei,j | i, j ∈ I}, E′ = {E′
i,j | i, j ∈ I}.

G is a complete graph with 10 nodes, N, C0, α, β are presented in Table 2
below and node 10 is the output node of HNEP Γ ′.

A configuration of grammar Γ is a word w ∈ {N ∪ T }∗. Each configuration
w of Γ corresponds to a configuration wBn,0 and configurations w′′Anw′Bi,0 of
HNEP Γ ′, where An = #, w, w′, w′′ ∈ (N ∪ T )∗ and w = w′Aiw

′′.
The axiom S = A1 of Γ corresponds to an initial word A1#, represented as

A1Bn,0 in node 1 of HNEP Γ ′. Now we describe the how the rotation of a symbol
and the application of an arbitrary rule of grammar Γ are simulated in Γ ′. As
above, due to the lack of space, we present only the necessary details.

Rotation
Let Ai1Ai2 . . . Aik−1Bik,0 be found at node 1, and let w, w′, w′′ ∈ A∗. Then, by

evolution, Ai1Ai2 . . . Aik−1Bik,0 = Ai1wBik ,0
1.1−→ {Ci1wBik ,0, Ai1w

′Citw
′′Bik,0}

follows. Notice that during the simulation symbols Ci should be transformed to
ε′, and this symbol should be deleted from the left-hand end of the string (node
9). So, transformation of string Ai1w

′Citw
′′Bik,0 leads to a string that will stay

in node 9 forever; thus, in the sequel, we will not consider strings with Ci not
in the leftmost position. In the following communication step, string Ci1wBik ,0
can enter only node 2. Then, in nodes 2 and 3 the string is involved in evolution
steps followed by communication as follows:

Ci1−twBik,t
2.1−→ C′

i1−(t+1)wBik ,t
2.2−→ C′

i1−(t+1)wB′
ik,t+1 (in node 2),

C′
i1−twB′

ik,t
3.1−→ Ci1−(t+1)wB′

ik ,t
3.2−→ Ci1−(t+1)wBik,t+1(in node 3).

The process continues in nodes 2 and 3 until index of Ci or C′
i will be decreased

to 1. In this case rule 2.3 : C1 → ε′ in node 2 or 3.3 : C′
1 → ε′ in node

3 will be applied and string ε′wB′
ik,i1 or ε′wBik ,i1 appears in node 4. Then,

in node 4, either evolution step ε′wB′
ik ,i1

4.1−→ ε′wB′
ik,i1D0 or evolution step

ε′wBik,i1
4.1−→ ε′wBik,i1D0 is performed. Strings wB′

ik ,i1D0 or wBik,i1D0 can

enter only node 5, where either evolution step ε′wB′
ik ,i1D0

5.1−→ ε′wEik ,i1D0

or evolution step ε′wBik,i1D0
5.2−→ ε′wEik ,i1D0 follows. String ε′wEik,i1D0 can

enter only node 6. Then, in nodes 6 and 7 the string is involved in evolution
steps followed by communication as follows:

ε′wEik ,i1−tDt
6.1−→ ε′wE′

ik,i1−(t+1)Dt
6.2−→ ε′wE′

ik ,i1−(t+1)D
′
t+1 (in node 6),

ε′wE′
ik ,i1−tD

′
t

7.1−→ ε′wEik,i1−(t+1)D
′
t

7.2−→ ε′wEik ,i1−(t+1)Dt+1 (in node 7).

The process continues in nodes 6 and 7 until second index of Ei,j or that of
E′

i,j will be decreased to 1. In this case, rule 6.3 : Eik,1 → Aik
in node 6 or

7.3 : E′
ik,1 → Aik

in node 7 will be applied and string ε′wAik
D′

i1 or ε′wAik
Di1

appears in node 8.
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Notice, that rule 6.4: An → ε′ can be applied. This case is discussed below.
The next evolution step, performed in node 8, can either be ε′wAik

Di1
8.1−→

ε′wAik
Bi1,0 or ε′wAik

D′
i1

8.2−→ ε′wAik
Bi1,0. In the following communication step,

string ε′wAik
Bi1,0 can enter node 9 or node 6.

1 Consider the last case (in this case Ai1 ∈ T ).
At nodes 6, 9 and 10 the following evolution and communication steps are
performed:

• Suppose that word wAik
Bi1,0 does not contain nonterminal symbols

(except An). Let wAik
Bi1,0 = Anw′Aik

Bi1,0, where w = Anw′. So,
w′Aik

Ai1 is a result and it has appear in node 10. Notice, that if w =
w′Anw′′ and w′ �= ε, then word ε′w′Anw′′Aik

Bi1,0 leads to a word which
will stay in node 9 forever (if rule 6.4 was applied) or will leave node 9
as word w′Anw′′Aik

Ai1 and enter node 1, and will remain there forever.
So, we will consider the following evolution of the word ε′wAik

Bi1,0 =
ε′Anw′Aik

Bi1,0: ε′Anw′Aik
Bi1,0

6.5−→ ε′Anw′Aik
Ai1

6.4−→ ε′ε′w′Aik
Ai1 .

Further, string ε′ε′w′Aik
Ai1 appears in node 9, where symbols ε′ will be

eliminated by rule 9.1 and, finally, word w′Aik
Ai1 enters node 10. This

is a result.
In the case of applying only rule 6.5, the resulting word ε′Anw′Aik

Ai1

appears in node 9, where it becomes Anw′Aik
Ai1 , leaves node 9, enters

node 1 and stays there forever.
• Suppose that word wAik

Bi1,0 contains at least one nonterminal symbol
(except An). In node 6 symbol Bi1,0 is changed to Ai1 , after that the
resulting word appears in node 1, where it will stay forever, since the
output filter requires symbols from B0.

2 Now consider the evolution of the word ε′wAik
Bi1,0 in node 9. By applying

the corresponding rules, we obtain ε′wAik
Bi1,0

9.1−→ wAik
Bi1,0. Then, string

wAik
Bi1,0 enters node 1 and the rotation of a symbol is over. If Ai1 ∈ T ,

then the string can enter node 6. This case was considered above.

Table 2.

N, α, β, C0, M PI,FI,PO, FO

1, ∗, (2), {1.1 : Ai → Ci | i ∈ I, rotation} ∪ PI = {An, Bn,0},
{A1Bn,0} {1.2 : Ai → ε′ | i ∈ I ′, Ai → ε} ∪ FI = C ∪ C′ ∪ {ε′},

{1.3 : Bj,0 → Bs,0 | Aj → As, j, s ∈ I ′} PO = B0, FO = ∅
2, ∗, (2), ∅ {2.1 : Ci → C′

i−1, P I = C,
2.2 : Bj,k → B′

j,k+1 | FI = C′ ∪ B′ ∪ {ε′},
i ∈ I ′′, j ∈ I, k ∈ I ′

0} ∪ PO = C′ ∪ {ε′},
{2.3 : C1 → ε′} FO = C ∪ B

3, ∗, (2), ∅ {3.1 : C′
i → Ci−1, P I = C′,

3.2 : B′
j,k → Bj,k+1 | FI = C ∪ B ∪ {ε′},

i ∈ I ′′, j ∈ I, k ∈ I ′
0} ∪ PO = C ∪ {ε′},

{3.3 : C′
1 → ε′} FO = C′ ∪ B′

4, r, (2), ∅ {4.1 : ε → D0} PI = B \ B0 ∪ B′,
F I = C ∪ C′ ∪ B0 ∪ {D0},
PO = {D0}, FO = ∅
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Table 2. (continued)

N, α, β, C0, M PI,FI,PO, FO

5, ∗, (2), ∅ {5.1 : Bj,k → Ej,k, P I = {D0},
5.2 : B′

j,k → Ej,k | j, k ∈ I, rotation} ∪ FI = ∅,
{5.3 : Bj,k → Es,t, PO = E,
5.4 : B′

j,k → Es,t | FO = B ∪ B′

j, k, s, t ∈ I ′, AjAk → AsAt}
6, ∗, (2), ∅ {6.1 : Ej,k → E′

j,k−1, P I = E ∪ {Bj,0 | Aj ∈ T},
6.2 : Di → D′

i+1, F I = E′ ∪ D′ ∪ C,
6.3 : Ej,1 → Aj | i ∈ I ′

0, j ∈ I, k ∈ I ′′} ∪ PO = D′ ∪ {ε′},
{6.4 : An → ε′} ∪ FO = E ∪ D∪
{6.5 : Bj,0 → Aj | Aj ∈ T} {Bj,0 | Aj ∈ T}

7, ∗, (2), ∅ {7.1 : E′
j,k → Ej,k−1, P I = E′, F I = E ∪ D,

7.2 : D′
i → Di+1, PO = D, FO = E′ ∪ D′

7.3 : E′
j,1 → Aj | i ∈ I ′, j ∈ I, k ∈ I ′′}

8, ∗, (2), ∅ {8.1 : Dj → Bj,0, P I = D \ {D0} ∪ D′,
8.2 : D′

j → Bj,0 | j ∈ I} ∪ FI = E ∪ E′ ∪ {D0},
{8.3 : Dj → Bs,t, PO = ∅,
8.4 : D′

j → Bs,t | Aj → AsAt, j, s, t ∈ I ′} FO = D ∪ D′

9, l, (2), ∅ {9.1 : ε′ → ε} PI = {ε′},
F I = B \ B0∪
B′ ∪ D ∪ D′,
PO = ∅, FO = {ε′}

10, ∗, (2), ∅ ∅ PI = T, FI = V \ T,
PO = ∅, FO = T

Rule Ai −→ ε. Suppose that AiwBj,0 can be found at node 1 and let w, w′, w′′ ∈
A∗. Then, by evolution, either AiwBj,0

1.2−→ ε′wBj,0 or Atw
′Aiw

′′Bj,0
1.2−→

Aiw
′ε′w′′Bj,0. String ε′wBj,0 or Aiw

′ε′w′′Bj,0 can enter node 9 or node 6 (con-
sidered above). String Aiw

′ε′w′′Bj,0 will stay in node 9 forever. So, we will
consider the transformation of only string ε′wBj,0. At node 9, evolution step
ε′wBj,0

9.1−→ wBj,0 follows. Now, string wBj,0 enters node 1. Thus, we correctly
simulated rule Ai −→ ε of grammar Γ .

Rule Ai −→ Aj. The evolution step performed at node 1 is wBi,0
1.3−→ wBj,0.

Since string wBj,0 now is in node 1, we simulated the rule Ai −→ Aj of grammar
Γ in a correct manner.

Rule Aj −→ AsAt. At the end of the simulation of the rotation of a symbol
in node 8 instead of applying rule Dj → Bj,0 (D′

j → Bj,0) rule Dj → Bs,t

(D′
j → Bs,t) will be applied. Then, at node 8 either evolution step ε′wDj

8.3−→
ε′wBs,t or evolution step ε′wD′

j
8.4−→ ε′wBs,t is performed. Then, string ε′wBs,t

can enter only node 4, where, by evolution, ε′wBs,t
4.1−→ ε′wBs,tD0. The process

continues as above, in the case of simulating rotation, so, in several computa-
tion steps string wAsBt,0 will be obtained in node 9 which then successfully
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is communicated to node 1. So, we correctly simulated rule Aj −→ AsAt of
grammar Γ.
Rule AiAj −→ AsAt. In node 5 there are rules 5.3 : Bi,j → Es,t or 5.4 :
B′

i,j → Es,t. As in the case of simulating rotation, above, we will obtain string
wAsBt,0 in node 9.

We have demonstrated how the rotation of a symbol and the application of
rules of Γ are simulated by Γ ′. By the constructions, the reader can easily verify
that Γ and Γ ′ generate the same language.

Corollary 2. The class of complete HNEPs with 10 nodes is computationally
complete.

4 Conclusions

We have presented a universal complete HNEP with 10 nodes and proved that
complete HNEPs with 10 nodes generate all recursively enumerable languages.
Thus, we positively answered question 1 from [5] and significantly improved the
results of that paper.
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