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Abstract. We obtain several lower bounds on the language recogni-
tion power of Nayak’s generalized quantum finite automata (GQFA) [12].
Techniques for proving lower bounds on Kondacs and Watrous’ one-way
quantum finite automata (KWQFA) were introduced by Ambainis and
Freivalds [2], and were expanded in a series of papers. We show that many
of these techniques can be adapted to prove lower bounds for GQFAs.
Our results imply that the class of languages recognized by GQFAs is
not closed under union. Furthermore, we show that there are languages
which can be recognized by GQFAs with probability p > 1/2, but not
with p > 2/3.

Quantum finite automata (QFA) are online, space-bounded models of quantum
computation. Similar to randomized finite automata [16] where the state is a ran-
dom variable over a finite set, the state of a QFA is a quantum superposition of
finite dimension. The machine processes strings w ∈ Σ∗ by applying a sequence
of state transformations specified by the sequence of letters in w, and the output
of the machine is determined by a measurement of the machine state. A central
problem is to characterize the language recognition power of QFAs.

Most quantized versions of classical computation devices (such as quantum
circuits [17]) are at least as powerful as their classical counterparts. It is not
clear that this should be the case for quantum finite automata. Typically, the
execution of classical computation on a quantum device is performed by convert-
ing classical computation into reversible computation using standard techniques
such as in [5]. The most general definitions of QFAs [8] are equal in language
recognition power to deterministic finite automata. However, such definitions re-
quire a nonconstant sized (but not directly accessible) memory for bookkeeping.
This in some sense violates the spirit of the definition of a finite machine.

For this reason, most QFA research has been focused on the case where the
transformations are limited to various combinations of unitary transformations
and projective measurements on a finite dimensional state. In this case, the class
of languages recognized by these QFAs is a strict subset of the regular languages.
It is important to note that, despite this limit on language recognition power,
there is a sense in which QFAs can be more powerful than their deterministic
counterparts. In particular, there are languages which can be recognized by QFAs
using exponentially fewer states than the smallest deterministic or randomized
finite automaton [2,6].
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The simplest type of QFA is the measure-once QFA (MOQFA) model of Moore
and Crutchfield [11]. These QFAs are limited to recognizing those languages
whose minimal automaton is such that each letter induces a permutation on
the states. Two types of generalizations of the MOQFA model have been con-
sidered. In the first type, the machine is allowed to halt before reading the
entire input word. This corresponds to Kondacs and Watrous’ one-way QFAs
(KWQFAs) [10]. The second type allows state transformations to include the ap-
plication of quantum measurements, which generates some classical randomness
in the system. This corresponds to Ambainis et. al’s Latvian QFAs (LQFAs) [1].

Nayak [12] investigated a model called generalized QFAs (GQFAs), which
generalize both KWQFAs and LQFAs. This paper introduced new entropy-based
techniques which were used to show that GQFAs cannot recognize the language
Σ∗a. These techniques have since been used to obtain lower bounds on quantum
random access codes [12] and quantum communication complexity [13]. However,
no further lower bounds have been shown for GQFAs.

In a series of papers [2,7,4,3], a number lower bounds on the power of KWQFA
were shown. These results identify limits on the computational advantage of
KWQFAs over MOQFAs. The main tool used in these results was a technical
lemma which is used to decompose the state space of a KWQFA into two sub-
spaces (called the ergodic and transient subspaces) in which the state transitions
have specific behaviors. In this paper, we show that this lemma, and many of
the same results, can be adapted to the case of GQFA. The framework of our
proof follows the basic outline of [2], however we must overcome a number of
technical hurdles which arise from allowing classical randomness in the state.

Following [4], we can use the lemma to show that a certain property of the
minimal automaton for L implies that L is not recognizable by a GQFA. We use
this result to show that the class of languages recognized by this model is not
closed under union. Furthermore, we show the existence of languages which can
be recognized by GQFA with probability p = 2/3 but not p > 2/3. These results
highlight the key similarities and differences between KWQFA and GQFA.

The paper is organized as follows. In Section 1 we give definitions and basic
properties of GQFA and we review the necessary background. In Section 2 we
prove the main technical lemma and in Section 3 we apply this lemma to prove
the remaining results. We conclude with a brief discussion of open problems and
future work.

1 Introduction

Let us review some concepts from quantum mechanics. See e.g. [14] for more
details on the mathematics of quantum computation. We use the notation |ψ〉
to denote vectors in C

n, and we denote by 〈ψ| the dual of |ψ〉.
Let Q be a finite set with |Q| = n, and let {|q〉}q∈Q be an orthonormal basis

for Cn. Then a superposition over Q is a vector |ψ〉 =
∑
q αq|q〉 which satisfies

〈ψ|ψ〉 =
∑
q |αq|2 = 1. We say αq is the amplitude with which |ψ〉 is in state q.

The state space of a QFA will be a superposition over a finite set Q.



Lower Bounds for Generalized Quantum Finite Automata 375

We consider two types of operations on superpositions. First, a unitary trans-
formation U is a linear operator on Cn such that the conjugate transpose U † of
U satisfies U †U = UU † = I. Unitary operators are exactly those which preserve
the inner product, thus unitary matrices map superpositions to superpositions.
The second type of operation is projective measurements. Such measurements
are specified by a set M = {Pi} of orthonormal projectors on C

n satisfying∑
i Pi = I. The outcome of is the measurement M on state |ψ〉 is the random

variable which takes the value i with probability ‖Pi|ψ〉‖2. If the outcome of the
measurement is i, the state is transformed to |ψ′〉 = Pi|ψ〉/‖Pi|ψ〉‖. Note that
measurement induces a probabilistic transformation on the state. Measurements
describe the interface by which we obtain observations from a quantum sys-
tem, but they also model decoherence, the process by which a quantum system
becomes a probabilistic system through interaction with the environment (c.f.
Chapter 8 of [14]).

A generalized QFA (GQFA) [12] is given by a tuple of the form:

M = (Σ,Q, q0, {Ua}a∈Γ , {Ma}a∈Γ , Qacc, Qrej).
The set Σ is the input alphabet. The working alphabet will be Γ = Σ∪{¢, $}.

The set Q is finite set of state indices with q0 ∈ Q, Qacc, Qrej ⊆ Q. On input
w ∈ Σ∗, M will process the letters of the string ¢w$ from left to right. The ¢
and $ characters are present to allow for pre- and post- processing of the state.
The sets {Ua}a∈Γ and {Ma}a∈Γ are collections of unitary transformations and
projective measurements.

The state of the machine is expressed as a superposition overQ, and the initial
state is |q0〉. When a letter a ∈ Γ is read, a state transformation is made in the
manner we describe below. After each letter is read, the machine may decide to
halt and accept the input, to halt and reject the input, or to continue processing
the string. The set Q is partitioned into three parts: an accepting set (Qacc), a
rejecting set (Qrej) and a nonhalting set (Qnon = Q −Qacc ∪Qrej). We define
Pacc =

∑
q∈Qacc

|q〉〈q| and we likewise define Prej and Pnon. Finally, we define
MH = {Pacc, Prej , Pnon}.

Suppose that after reading some input prefix the machine is in state |ψ〉. To
process a ∈ Γ , we first apply the unitary Ua, then the measurement Ma (recall
that this is a probabilistic transformation), then the measurement MH . If the
outcome of the measurement MH is acc or rej, then the machine halts and
accepts or rejects accordingly. Otherwise, the outcome of the MH was non and
the machine reads the next symbol in the string1.

The GQFA defined above will behave stochastically. We will be interested
in what languages can be recognized by this machine with bounded error. For
p > 1

2 we say that language L ⊆ Σ∗ is recognized by M with probability p if all

1 The original definition allowed � alternations of unitary operators and measurements
per letter. However, such alternations can be simulated by a single transformation
and measurement (Claim 1 of [1]) and so this change does not limit the class of
transformations allowed by GQFAs.
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words are correctly distinguished with probability at least p. We say that L is
recognized with bounded error if there is a p > 1

2 such that L is recognized with
probability p.

Here are some basic facts about GQFAs. For all p, the class of languages
recognized by GQFA with probability p is closed under complement, inverse
morphisms, and word quotient. We also make note of the relationship between
GQFAs and other QFA definitions. Firstly, in the case that each Ma is equal to
the trivial measurement {I} (i.e. so that MH is the only measurement applied
to the state), we obtain KWQFAs as a special case. Second, in the case that we
are promised that the machine does not halt until the entire input is read, then
we have the special case of Ambainis et al’s LQFAs. If both of these conditions
hold, we obtain MOQFAs.

In this paper we will see that many of the lower bounds for KWQFAs apply
also to GQFAs. It should be noted, however, that GQFA are strictly more pow-
erful than KWQFA. In [1] it was shown that any language L whose transition
monoid is a block group [15] can be recognized by an LQFA with probability
1 − ε for any ε > 0. This language class corresponds exactly to the boolean
closure of languages of the form L0a1L1 . . . akLk, where the ai’s are letters and
the Li’s are languages recognized by permutation automata. On the other hand,
KWQFA cannot recognize Σ∗aΣ∗bΣ∗ with probability more than 7/9 [2]. It was
moreover shown in [1] that LQFA cannot recognize the languages aΣ∗ or Σ∗a.
We will need these properties in order to prove our results.

Furthermore it is known that KWQFA, and hence GQFA, can recognize lan-
guages which cannot be recognized by LQFA. For example KWQFA can simulate
a certain type of reversible automaton where δ(q1, x) = δ(q2, x) = q2 is permit-
ted only when q2 is a sink. These machines, and the class of languages which
they recognize, were considered in [9]. Machines of this type can recognize aΣ∗,
so KWQFA can recognize languages which cannot be recognized by LQFA.

Finally, a few notes about density matrices. Recall that the state of a GQFA
after reading some input prefix is a random variable. In other words, the state is
taken from a probability distribution E = {(pj , |ψj〉)} of superpositions, where
|ψj〉 occurs with probability pj . Such systems are called mixed states. The mea-
surement statistics which can be obtained from transforming and measuring a
mixed state can be described succinctly in terms of density matrices. In our case
it will be sufficient to identify a mixed state with its density matrix.

The density matrix corresponding to E is ρ =
∑
j pj |ψj〉〈ψj |. Density matrices

are positive operators so their eigenvalues are nonnegative real. For a operator
M we denote by Tr(M) the trace, or the sum of the eigenvalues, of M . In the
case of density matrices we have Tr(ρ) = 1. Unitary operators U transform
density matrices according to the rule ρ �→ U †ρU . A measurement M = {Pi}
will transform the states by the rule ρ �→ ∑

i PiρPi in the case that the outcome
is unknown, or by ρ �→ PiρPi/T r(Piρ) if the outcome is known to be i.

Density matrices are examples of normal matrices. The spectral decompo-
sition theorem states that every normal matrix can be decomposed as ρ =∑

i λi|φi〉〈φi|, where {|φi〉} is a set of orthonormal eigenvectors of ρ and λi
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is the eigenvalue corresponding to |φi〉. We say that the support of ρ, or supp(ρ),
is the space spanned by the nonzero eigenvectors of ρ.

2 Technical Results

Fix a GQFA M . We will be using density matrices weighted by a factor p ∈ [0, 1]
to describe the state of M on reading some prefix ¢w. Let Aa be the mapping
ρ �→ ∑

i Pa,i UaρU
†
a Pa,i, and let A′

a = Pnon(Aaρ)Pnon. Furthermore for w =
w1 . . . wn ∈ Σ∗, we define A′

w = A′
wn

· · ·A′
w1

. Then A′
wρ is a scaled density

matrix such that Tr(A′
wρ) = pT r(ρ), where p is the probability of not halting

in the process of reading w while in state ρ. Let ρw = A′
¢w|q0〉〈q0|. Then Tr(ρw)

is the probability of not halting while processing ¢w, and the density matrix
describing the machine state in the case that it has not halted is ρw/T r(ρw).

We first state a technical lemma which gives an important characterization
of the behaviour of a GQFA machine. It is the counterpart to Lemma 1 of [2].
This, along with its extension (Lemma 2), will be instrumental in proving the
later results.

Lemma 1. For every w ∈ Σ∗ there exists a pair E1, E2 of orthonormal sub-
spaces of Cn such that Cn = E1 ⊕ E2 and for all weighted density matrices ρ
over Cn we have:

1. If supp(ρ) ⊆ E1, then supp(A′
wρ) ⊆ E1 and Tr(A′

wρ) = Tr(ρ).
2. If supp(ρ) ⊆ E2, then supp(A′

wρ) ⊆ E2 and limk→∞Tr((A′
w)kρ) = 0.

The E1 and E2 parts of the state are called the ergodic and transient parts.
Suppose M is in state ρ, and suppose that ρ satisfies supp(ρ) ⊆ E1. Then
Tr(A′

wρ) = Tr(ρ) would imply that M did not halt in the process of reading
w. Thus, M is behaving exactly as an LQFA. Suppose now that M is in state
ρ, then the fact limk→∞Tr((A′

w)kρ) = 0 implies that the probability that M
does not halt after reading wk tends to 0 as k → ∞. In general supp(ρ) will be
partially in E1 and partially in E2.

Proof: The proof proceeds as in [2]. We first show how to do this for the case
that |w| = 1, and then we sketch how to extend it to arbitrary length words.
Let w = a. We first construct the subspace E1 of Cn. E2 will be the orthogonal
complement of E1. Let

E1
1 = span({|ψ〉 : Tr(A′

a|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|)}).
Equivalently, E1

1 = span{|ψ〉 : supp(Aa(|ψ〉〈ψ|)) ⊆ Snon} where Snon is the
nonhalting subspace. We claim that supp(ρ) ∈ E1

1 implies that supp(Aa(ρ)) ∈
Snon. By linearity it is sufficient to show this for ρ = |ψ〉〈ψ|. Essentially, we need
to show that the condition of |ψ〉 satisfying Tr(A′|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|) is closed
under linear combinations. Suppose that |ψ〉 =

∑
j αj |ψj〉, with |ψj〉 satisfying

supp(Aa(|ψj〉〈ψj |)) ∈ Snon and
∑
j |αj |2 = 1. Then:

‖
∑

i

PhaltPa,iUa(
∑

j

αj |ψj〉)‖2 ≤
∑

i,j

‖αjPhaltPa,iUa|ψj〉‖2 = 0,
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and thus supp(Aa|ψ〉〈ψ|) ∈ Snon. Thus, for mixed states ρ we have supp(Aaρ) ∈
Snon if and only if supp(ρ) ∈ E1

1 . For general i > 2, let:

Ei1 = span({|ψ〉 : supp(Aa|ψ〉〈ψ|) ∈ Ei−1
1 ∧ Tr(A′

a|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|)}).
As before, for weighted density matrices ρ, we can interchange the condition

Tr(A′
aρ) = Tr(ρ) for supp(Aaρ) ⊆ Snon.

Observe that Ei1 ⊆ Ei+1
1 for all i. Since the dimension of each of these spaces

is finite, there must be an i0 such that Ei01 = Ei0+j
1 for all j > 0. We define

E1 = Ei01 , and set E2 to be the orthogonal complement of E1.
It is clear that the first condition of the lemma is true for mixed states with

support in E1. For the second part, it will be sufficient to show the following
proposition, which implies that the probability with which the machine will halt
while reading aj is bounded by a constant.

Proposition 1. Let j ∈ {1, . . . , i0}. There is a constant δj > 0 such that for any
|ψ〉 ∈ Ej2 there is an l ∈ {0, . . . , j− 1} such that Tr(PhaltAa(A′

a)
l(|ψ〉〈ψ|)) ≥ δj.

Proof: We proceed by induction on j. Let H =
⊕ma

k=1 Cn. Let Pk : E1
2 → H

be the projector into the kth component of H, and let T1 : E1
2 → H be the

function T1|ψ〉 =
∑
k PkPhaltPa,kAa|ψ〉. Observe that ‖T1|ψ〉‖2 is the probability

of halting when a is read while the machine is in state |ψ〉〈ψ|. By the previous
discussion, Tr(A′

a|ψ〉〈ψ|) = 1 − ‖T1|ψ〉‖2. Define ‖T1‖ = min‖ |ψ〉‖=1‖T1|ψ〉‖.
Note that the minimum exists since the set of unit vectors in Cn is a compact
space. Also, let δ1 = ‖T1‖2. Then δ1 > 0, otherwise there would be a vector
|ψ〉 ∈ E1

2 such that supp(Aa|ψ〉〈ψ|) ∈ Snon, a contradiction.
Now assume that δj−1 has been found. We need to show that, for |ψ〉 ∈ Ej2 ,

either a constant sized portion of |ψ〉 is sent into the halting subspace, or it
is mapped to a vector on which we can apply the inductive assumption. We
construct two functions Tj,halt, Tj,non : Ej2 → H defined by:

Tj,halt|ψ〉 =
ma∑

k=1

PkPhaltPa,kAa|ψ〉,

Tj,non|ψ〉 =
ma∑

k=1

PkPEj−1
2

PnonPa,kAa|ψ〉.

Then the quantity ‖Tj,halt|ψ〉‖2 is the probability of halting while reading a,
and ‖Tj,non|ψ〉‖2 = Tr(PEj−1

2
A′
a|ψ〉〈ψ|). Note that for all vectors |ψ〉 ∈ Ej2

we must have either ‖Tj,halt|ψ〉‖ �= 0 or ‖Tj,non|ψ〉‖ �= 0, otherwise |ψ〉 is in
Ej1 , a contradiction. This implies that ‖Tj,non ⊕ Tj,halt‖ > 0. Note also that
‖Tj,non ⊕ Tj,halt‖ ≤ 1.

Define δj=δj−1
‖Tj,non⊕Tj,halt‖2

2ma
. Take any unit vector |〉ψ∈ Ej2 . Then ‖(Tj,non⊕

Tj,halt)|ψ〉‖ ≥ ‖Tj,non ⊕ Tj,halt‖. Recall that the range of Tj,non ⊕ Tj,halt is⊕ma

k=1 Cn⊕⊕ma

k=1 Cn. In one of these subspaces, (Tj,non⊕Tj,halt)|ψ〉 has size at
least 1√

2·ma
. If it is in one of the last ma subspaces, corresponding to Tj,halt part,
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then there is nothing further to prove. Otherwise, assume that this component
is in one of the subspaces corresponding to the Tj,non part. In particular, there
is a k such that |φ〉 = PnonPa,kAa|ψ〉 satisfies:

‖PEj−1
2

|φ〉‖2 ≥ 1
2 ·ma

.

We can split |φ〉 into |φ1〉+ |φ2〉, with |φi〉 ∈ Ej−1
i . By the inductive hypothesis,

there is an l < j − 1 such that Tr(PhaltAa(A′
a)l(|φ2〉〈φ2|)) ≥ δj−1Tr(|φ2〉〈φ2|).

Furthermore, the first condition of the lemma implies that for every choice of
(k1, . . . , kl) ∈ [ma]l,

PhaltPa,kl
UaPa,kl−1Ua · · ·Pa,k1Ua|φ1〉 = 0.

This implies Tr(PhaltAa(A′
a)
l(|φ1〉〈φ1|)) = 0 and Tr(PhaltAa(A′

a)
l(|φ1〉〈φ2|)) =

Tr(PhaltAa(A′
a)
l(|φ2〉〈φ1|)) = 0. Together, we obtain:

Tr(PhaltAa(A′
a)
l|φ〉〈φ|)

= Tr(Phalt(A′
a)
l(|φ1〉〈φ1| + |φ1〉〈φ2| + |φ2〉〈φ1| + |φ2〉〈φ2|))

= Tr(PhaltAa(A′
a)
l(|φ1〉〈φ1|)) + Tr(PhaltAa(A′

a)
l(|φ1〉〈φ2|))

+Tr(PhaltAa(A′
a)
l(|φ2〉〈φ1|)) + Tr(PhaltAa(A′

a)
l(|φ2〉〈φ2|))

= Tr(PhaltAa(A′
a)
l(|φ2〉〈φ2|)) ≥ δj−1

‖Tj,non ⊕ Tj,halt‖2

2ma
.

This concludes the proof of the proposition. �

Proposition 2. Let Ua be the unitary transformation that is applied when a is
read. Then Ua = U1

a ⊕ U2
a , where U ia acts unitarily on subspace Ei.

Proof: By the unitarity of Ua, it is sufficient to show that |ψ〉 ∈ E1 implies
Ua|ψ〉 ∈ E1. By definition of E1, |ψ〉 ∈ E1 implies that all of the vectors
Pa,iUa|ψ〉 are in E1. But Ua|ψ〉 =

∑
i Pa,iUa|ψ〉, and thus Ua|ψ〉 ∈ E1 since

E1 is a subspace. �

We are now ready to prove the second part of the lemma. We first show that
|ψ〉 ∈ E2 implies supp(Aa|ψ〉〈ψ|) ⊆ E2. Let |ψ′〉 = Ua|ψ〉. Then Aa|ψ〉〈ψ| =∑

i |ψi〉〈ψi|, where |ψi〉 = Pa,iUa|ψ〉. Split |ψi〉 into vectors |ψi,1〉 + |ψi,2〉, with
|ψi,1〉 ∈ E1 and |ψi,2〉 ∈ E2. We claim that either |ψi,1〉 or |ψi,2〉 are trivial
vectors. Suppose ‖|ψi,1〉‖ �= 0, and consider the intersection of the image of Pa,i
in the space spanned by |ψi,1〉 and |ψi,2〉. Now |ψi,1〉 implies that U−1

a |ψi,1〉 ∈ E1

and thus Pa,i|ψi,1〉 ∈ E1, which implies |ψi〉 ∈ E1.
Now since each |ψi〉 satisfies |ψi〉 ∈ E1 or |ψi〉 ∈ E2, then we are done since

the fact that the |ψi〉’s are orthonormal and sum to Ua|ψ〉 ∈ E2 implies that
|ψi〉 ∈ E2 for all i. Thus, |ψ〉 ∈ E2 implies span(Aa|ψ〉〈ψ|) ⊆ E2.

Now supposing supp(ρ) ∈ E2, we can repeatedly apply Proposition 1 to show
that Tr((A′

a)
k(ρ)) → 0 as k → ∞. To apply the claim to a general mixed state,

we first use the spectral decomposition to show that the mixed state is equivalent
to an ensemble of at most n pure states.
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To construct E1 and E2 for w = w1 . . . wn, we define E0
1 = Snon and Ek1

to be the set of all vectors |ψ〉 such that Tr(A′
wk mod n+1

|ψ〉〈ψ|) = 1 and supp

(A′
wk mod n+1

|ψ〉〈ψ|) ∈ Ek−1
1 , and we follow the proof as above. The proof of the

first part of the theorem and of the claim will generalize since the proof does
not make use of the fact that the transformation and measurement defining Ej1
is the same as that of Ej+1

1 . Proposition 2 will apply to wi for all i. �

Lemma 2. Let M be an n-state GQFA over alphabet Σ, and let x, y ∈ Σ∗. Then
there exists a pair E1, E2 of orthonormal subspaces of Cn such that Cn = E1⊕E2

and for all weighted density matrices ρ over Cn we have:

1. If supp(ρ) ⊆ E1, then for all w ∈ (x∪y)∗, supp(A′
wρ) ⊆ E1, and Tr(A′

wρ) =
Tr(ρ).

2. If supp(ρ) ⊆ E2, then supp(A′
wρ) ⊆ E2 and for all ε > 0 there exists a word

w ∈ (x ∪ y)∗ such that Tr(A′
wρ) ≤ ε.

Proof: This is the counterpart of Lemma 2.3 of [4]. Let Ew1 be the subspace con-
structed as in Lemma 1. Define E1 = ∩w∈(x∪y)∗Ew1 , and let E2 be the orthogonal
complement of E1.

Suppose supp(ρ) ⊆ E2. If there is a w ∈ (x ∪ y)∗ such that supp(ρ) ⊆ Ew2 ,
we can directly apply the argument from the previous lemma to show that
Tr((A′

w)jρ) → 0 as j → ∞. However such a w may not exist so a stronger
argument is necessary. As the application of an A′

w transformation can only
decrease the trace of ρ, for any ε there exists a t ∈ (x ∪ y)∗ such that for
all w ∈ (x ∪ y)∗, Tr(A′

tρ) − Tr(A′
tw) ≤ ε. For all i let ti be a such a string

for ε = 1
2i . Consider the sequence ρ1, ρ2, . . . defined by ρi = A′

tiρ. The set of
weighted density matrices form a compact, closed space with respect to the trace
metric, and so this sequence of must have a limit point ρ.

We claim that Tr(ρ) = 0. Suppose not. The support of ρ is in E2, so there
must be some word w ∈ (x ∪ y)∗ such that Tr(A′

wρ) < Tr(ρ). This contradicts
the assumption that ρ is a limit point. �

Finally we note a very simple fact that will allow us to extend impossibility
results for LQFA to GQFA:

Fact 1. Let M be a GQFA. Let E1 be the subspace defined as in Lemma 2,
and suppose that the state of the machine ρ on reading the ¢ character satisfies
supp(ρ) ∈ E1. Then there is an LQFA M ′ such that, for all w ∈ (x ∪ y)∗ the
state of M on reading w is isomorphic to the state of M ′ on reading w.

3 Applications

We now apply the results of the previous section to prove several fundamental
properties of GQFAs. The first result is a formal condition for recognizability by
GQFAs:
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Theorem 1. Let ML be the minimal automaton for L ⊆ Σ∗ and let F be the
accepting set. If there exists words x, y, z1, z2 ⊆ Σ∗ and states q0, q1, q2 such that
δ(q0, x) = q1, δ(q0, y) = q2, δ(q1, x) = δ(q1, y) = q1, δ(q2, x) = δ(q2, y) = q2,
δ(q1, z1) ∈ F , δ(q2, z1) /∈ F , δ(q1, z2) /∈ F , δ(q2, z2) ∈ F , then L cannot be
recognized by GQFA with probability p > 1

2 .

Fig. 1. The forbidden construction of Theorem 1

Proof: Suppose that L satisfies the conditions of the theorem, and suppose that
M recognizes L with probability p > 1

2 . By closure under left quotient, we can
assume that the state q0 in the forbidden construction is also the initial state of
the minimal automaton for L.

Let ρw = A′
¢w|q0〉〈q0|. The basic outline of the proof is that we will use

Lemma 2 to find two words w1 ∈ x(x ∪ y)∗, w2 ∈ y(x ∪ y)∗ such that ρw1 and
ρw2 have similar output behavior. We then analyze the acceptance probabilities
of the words w1z1, w1z2, w2z1, and w2z2 to arrive at a contradiction.

Let E1 and E2 be subspaces which meet the conditions of Lemma 2 with
respect to x and y. Note that if the support of ρ is in E1, M will not halt while
reading w ∈ (x ∪ y)∗, and in this case M can be simulated by an LQFA. Let
PEi be the projection onto subspace Ei. We claim that for all ε > 0 there exists
u, v ∈ (x ∪ y)∗ such that ‖Tr(PE1ρxu − PE1ρyv)‖t ≤ ε. Suppose to the contrary
that there exists ε > 0 such that ‖Tr(PE1ρxu − PE1ρyv)‖t > ε for all u, v. Then
there exists an LQFA which can recognize the language x(x∪ y)∗ with bounded
error, contradicting the fact that LQFA is closed under inverse morphisms and
cannot recognize aΣ∗ [1]. Let δ = p− 1

2 and let ε = δ
4 .

By Lemma 2, for all ε′ we can find u′ ∈ (x ∪ y)∗ such that Tr(PE2ρxuu′) <
ε′. Furthermore we can find v′ ∈ (x ∪ y)∗ such that Tr(PE2ρxuu′v′) < ε′ and
Tr(PE2ρyvu′v′) < ε′. Let w1 = xuu′v′ and w2 = yvu′v′, and let ε′ = δ

4 .
Let pi,acc (pi,rej) be the probability with which M accepts (rejects) while

reading wi. Furthermore let qij,acc (resp qij,rej) be the probability thatM accepts
if the state of the machine is ρw1 and the string zj$ is read. Since ‖ρw1 −ρw2‖t ≤
‖ρxu−ρyv‖t = δ

2 ≤ ε, q1j,acc (and likewise q1j,rej) can be different from q2j,acc by
a factor of at most δ

2 . As a consequence, one of the words w1z1, w1z2, w2z1, or
w2z2 must not be classified correctly. Suppose e.g. that w1z1, w1z2, and w2z1 are
classified correctly. Since q11,rej differs from q21,rej by a factor of at most δ

2 , the
fact that w1z1 is accepted and w2z1 is rejected implies that p2,rej > p1,rej + δ.
since q12,rej differs from q22,rej by at most a factor of δ

2 , will be rejected with
probability greater than 1 − p, a contradiction. The other cases are similar. �
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We now apply Theorem 1 to prove nonclosure under union.

Theorem 2. The class of languages recognized by GQFA with bounded error is
not closed under union.

Proof: Let A, B0, B1 be languages over Σ = {a, b} defined as follows. Let
A = {w : |w|a mod 2 = 0}, B0 = (aa)∗bΣ∗, and B1 = a(aa)∗bΣ∗. Finally, let
L1 = (A ∩ a∗) ∪ (A ∩B1), and let L2 = (A ∩ a∗) ∪ (A ∩B0). The union L1 ∪ L2

consists of the strings containing either no b’s or an odd number of a’s after the
first b.

In Theorem 3.2 of [4], the languages L1 and L2 were shown to be recognizable
by KWQFAs with probability of correctness 2/3, thus they can also be recognized
by GQFA with this probability of correctness. On the other hand, the minimal
automaton of L1 ∪ L2 contains the forbidden construction of Theorem 1. �

In [2] it was shown that there exists languages L and constants p > 1
2 such

that L can be recognized by KWQFA with bounded probability, but not with
probability p. Furthermore, it was demonstrated that certain properties of the
minimal automaton for L would imply that L is not recognized with probability
p. We will show that a similar situation holds for GQFAs.

Theorem 3. If the minimal DFA ML for L contains states q0, q1, q2, such that
for some words x, y, z1, z2 we have δ(q0, x) = δ(q1, x) = δ(q1, y) = q1, δ(q0, y) =
δ(q2, y) = δ(q2, x) = q2, δ(q2, z2) ∈ F , δ(q2, z1) /∈ F , then L cannot be recognized
by GQFA with probability p > 2

3 .

Fig. 2. The forbidden construction of Theorem 3

Proof: Suppose that the GQFA M recognizes L with probability p > 2/3. Since
q2 �= q3 and by closure under complement, there exists a word z3 such that
xz3 ∈ L and yz3 /∈ L. We can also assume by closure under left quotient that
q1 is the initial state. As in Lemma 2, split Cn into subspaces E1 and E2 with
respect to x and y.

For all ε, we can find w1 ∈ x(x∪y)∗ and w2 ∈ y(x∪y)∗ such that ‖ρw1−ρw2‖t ≤
ε, Tr(PE2ρw) < ε, Tr(PE2ρw) < ε. let pi be the probability that M rejects
while reading wi, and let pi3 be the probability of rejecting when M is in state
qi and reads z3. By setting ε, the difference between p13 and p23 can be made
arbitrarily small, so that p1 + p13 ≤ (1− p) < 1/3 and p2 + p23 ≥ p > 2/3 imply
that p2 − p1 > 1/3. Thus M rejects while reading w2 with probability greater
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than 1/3, contradicting the assumption that w2z2 is accepted with probability
greater than 2/3. �

Corollary 1. There is a language L which can be recognized by GQFAs with
probability p = 2/3, but not with p > 2/3.

To see this, note that the constructions for L1 and L2 in [4] achieve the optimal
probability of correctness.

4 Discussion

We have shown that several of the known lower proofs for KWQFA can be
adapted to the case of GQFA. In particular, we have shown that the class of
languages recognized by GQFA is not closed under union, and there exists lan-
guages which can be recognized by GQFA with probability p = 2/3 but not
p > 2/3. Both KWQFA and GQFA are permitted to halt before the end, and
the lack of robustness in these models seems to arise from this feature. By com-
parison, the classes of languages recognized by MOQFA and LQFA respectively
are closed under union, and any language recognized with probability p > 1/2
by these machines can be recognized with probability 1 − ε for any ε > 0.

We note here that not all of the KWQFA lower bound results hold for GQFA.
For example, it was shown that a∗b∗ can be recognized by KWQFA with proba-
bility p ≈ 0.68 but not p > 7/9, while this language can be recognized by GQFA
with probability 1 − ε for any ε > 0. Several other KWQFA lower bounds were
shown in [4,3], and we can clarify the relationship between the two models by
identifying which of these results extend to GQFAs. It is still not known whether
the class of languages recognized with bounded error by GQFA is strictly larger
than the class recognized by KWQFA. We conjecture that the language class is
indeed larger and that a proof would involve the fact that the probability with
which KWQFAs can recognize Σ∗a1Σ

∗ . . . akΣ∗ tends to 1/2 as k → ∞.
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