

Lecture Notes in Computer Science 5196
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Carlos Martín-Vide Friedrich Otto
Henning Fernau (Eds.)

Language and
Automata Theory
and Applications
Second International Conference, LATA 2008
Tarragona, Spain, March 13-19, 2008
Revised Papers

13

Volume Editors

Carlos Martín-Vide
Rovira i Virgili University, Research Group on Mathematical Linguistics
Plaza Imperial Tàrraco 1, 43005 Tarragona, Spain
E-mail: carlos.martin@urv.cat

Friedrich Otto
Universität Kassel, Fachbereich Elektrotechnik/Informatik
Wilhelmshöher Allee 73, 34121 Kassel, Germany
E-mail: otto@theory.informatik.uni-kassel.de

Henning Fernau
Universität Trier, Fachbereich 4, Abteilung Informatik/Wirtschaftsinformatik
Campus II, Gebäude H, 54286 Trier, Germany
E-mail: fernau@uni-trier.de

Library of Congress Control Number: 2008936681

CR Subject Classification (1998): F.4, I.1, I.5, F.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-88281-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88281-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12524310 06/3180 5 4 3 2 1 0

Preface

These proceedings contain most of the papers that were presented at the Second
International Conference on Language and Automata Theory and Applications
(LATA 2008), held in Tarragona, Spain, during March 13–19, 2008.

The scope of LATA is rather broad, including: words, languages and au-
tomata; grammars (Chomsky hierarchy, contextual, multidimensional, unifica-
tion, categorial, etc.); grammars and automata architectures; extended automata;
combinatorics on words; language varieties and semigroups; algebraic language
theory; computability; computational, descriptional, and parameterized com-
plexity; decidability questions on words and languages; patterns and codes; sym-
bolic dynamics; regulated rewriting; trees, tree languages and tree machines;
term rewriting; graphs and graph transformation; power series; fuzzy and rough
languages; cellular automata; DNA and other models of bio-inspired comput-
ing; quantum, chemical and optical computing; biomolecular nanotechnology;
automata and logic; algorithms on automata and words; automata for sys-
tem analysis and program verification; automata, concurrency and Petri nets;
parsing; weighted machines; transducers; foundations of finite state technology;
grammatical inference and algorithmic learning; text retrieval, pattern match-
ing and pattern recognition; text algorithms; string and combinatorial issues in
computational biology and bioinformatics; mathematical evolutionary genomics;
language-based cryptography; data and image compression; circuits and net-
works; language-theoretic foundations of artificial intelligence and artificial life;
digital libraries; and document engineering.

LATA 2008 received 134 submissions. Each of them was reviewed by at least
three Program Committee members plus, in most cases, by additional external
referees. After a thorough and vivid evaluation phase the committee decided to
accept 40 papers (which means an acceptance rate of 29.85%). The conference
programme also included three invited talks and two invited tutorials. Part of
the success in the management of such a large number of submissions is due to
the facilities provided by the EasyChair conference management system.

After the conference, the authors of the accepted and of the invited papers
were asked to prepare revised versions of their papers (the former still satis-
fying the originally imposed 12-page limit). However, having post-proceedings
offers the advantage of incorporating comments both of the reviewers and of the
audience (received upon giving the talks). The present volume contains the 40
contributed papers plus extended abstracts of four of the invited papers.

June 2008
Carlos Mart́ın-Vide

Friedrich Otto
Henning Fernau

Organization

LATA 2008 was hosted by the Research Group on Mathematical Linguistics
(GRLMC) at Rovira i Virgili University, Tarragona, Spain.

Program Committee

Jorge Almeida Porto, Portugal
Stefano Crespi-Reghizzi Milan, Italy
Erzsébet Csuhaj-Varjú Budapest, Hungary
Carsten Damm Göttingen, Germany
Volker Diekert Stuttgart, Germany
Frank Drewes Ume̊a, Sweden
Manfred Droste Leipzig, Germany
Zoltán Ésik Tarragona, Spain
Henning Fernau Trier, Germany
Jörg Flum Freiburg, Germany
Rusins Freivalds Riga, Latvia
Christiane Frougny Paris, France
Max Garzon Memphis, USA
Tero Harju Turku, Finland
Lane Hemaspaandra Rochester, USA
Markus Holzer München, Germany
Hendrik Jan Hoogeboom Leiden, The Netherlands
Kevin Knight Marina del Rey, USA
Hans-Jörg Kreowski Bremen, Germany
Dietrich Kuske Leipzig, Germany
Thierry Lecroq Rouen, France
Carlos Mart́ın-Vide (Chair) Tarragona, Spain
Victor Mitrana Tarragona, Spain
Mark-Jan Nederhof St. Andrews, UK
Mitsunori Ogihara Rochester, USA
Friedrich Otto Kassel, Germany
Jean-Éric Pin Paris, France
Kai Salomaa Kingston, Canada
Jacobo Torán Ulm, Germany
Alfonso Valencia Madrid, Spain
Hsu-Chun Yen Taipei, Taiwan
Sheng Yu London, Canada

VIII Organization

Organizing Committee

Madalina Barbaiani
Gemma Bel-Enguix
Carlos Cruz Reyes
Adrian Horia Dediu
Szilárd Zsolt Fazekas
Mihai Ionescu
M. Dolores Jiménez-López
Alexander Krassovitskiy
Guangwu Liu

Remco Loos
Carlos Mart́ın-Vide (Chair)
Zoltán-Pál Mecsei
Cătălin-Ionuţ Tı̂rnăucă
Cristina Tı̂rnăucă
Bianca Truthe
Sherzod Turaev
Florentina-Lilica Voicu

Additional Referees

Säıd Abdeddäım
Giovanni Agosta
Cyril Allauzen
José J. Almeida
Dmitry Ananichev
Sergei V. Avgustinovich
Marie-Pierre Béal
Stefano Berardi
Achim Blumensath
Benedikt Bollig
Pierre Boullier
Luca Breveglieri
Robert Brijder
Alexander Burnstein
Olivier Carton
Giuseppa Castiglione
Julien Cervelle
Stephan Chalup
Jean-Marc

Champarnaud
Yijia Chen
Alessandra Cherubini
Maxime Crochemore
Elena Czeizler
Eugen Czeizler
Jürgen Dassow
Michael Domaratzki
Andrew Duncan
Irène Anne Durand
Mahmoud El-Sakka
Mario Florido

Enrico Formenti
David de Frutos-Escrig
Yuan Gao
Paul Gastin
Zsolt Gazdag
Wouter Gelade
Jürgen Giesl
Daniel Gildea
Stefan Göller
Erich Grädel
Hermann Gruber
Stefan Gulan
Peter Habermehl
Vesa Halava
Yo-Sub Han
Kevin G. Hare
Ulrich Hertrampf
Mika Hirvensalo
Dieter Hofbauer
Benjamin Hoffmann
Johanna Högberg
Johanna Hörg
Hans Hüttel
Oscar Ibarra
Lucian Ilie
Aravind K. Joshi
Tomi Kärki
Oliver Keller
Bakhadyr Khoussainov
Renate

Klempien-Hinrichs

Stavros Konstantinidis
Walter Kosters
Manfred Kufleitner
Sabine Kuske
Martin Kutrib
Peep Küngas
Arnaud Lefebvre
Hing Leung
Shiguo Lian
Markus Lohrey
Sylvain Lombardy
Michael Luttenberger
Alejandro Maass
Andreas Malcher
Andreas Maletti
Florin Manea
Wolfgang May
Ingmar Meinecke
Paul-André Melliès
Mark Mercer
Brink van der Merwe
Hartmut Messerschmidt
Antoine Meyer
Nelma Moreira
Rémi Morin
Peter Mosses
Moritz Müller
Loránd Muzamel
Marius Nagy
Paliath Narendran
Andrew J. Neel

Organization IX

Frank Neven
Dirk Nowotka
Enno Ohlebusch
Satoshi Okawa
Alexander Okhotin
Martin Otto
Michio Oyamaguchi
Edita Pelantová
Mati Pentus
Holger Petersen
Vinhthuy Phan
Erhard Plödereder
Natacha Portier
Matteo Pradella
Andreas P. Priesnitz
Mathieu Raffinot
George Rahonis
Antoine Rauzy
Wolfgang Reisig
Jacques Sakarovitch

Davide Sangiorgi
Pierluigi San Pietro
Nicolae Santean
Andrea Sattler-Klein
Gilles Schaeffer
Vincent Schmitt
Ilka Schnorr
Hinrich Schütze
Stefan Schwoon
Helmut Seidl
Carla Selmi
Géraud Sénizergues
Pedro V. Silva
David Soloveichik
Jiŕı Srba
Ludwig Staiger
Heiko Stamer
Ralf Stiebe
Wolfgang Thomas
Krisztián Tichler

Caroline von Totth
Yoshihito Toyama
Ralf Treinen
Sándor Vágvölgyi
Stefano Varricchio
György Vaszil
Kumar Neeraj Verma
Rudy van Vliet
Laurent Vuillon
Fabian Wagner
Shu Wang
John Watrous
Mark Weyer
Reinhard Winkler
Karsten Wolf
Thomas Worsch
Ryo Yoshinaka
Marc Zeitoun

Sponsoring Institutions

Thanks are to be given to the sponsor of the conference, namely, Fundació Caixa
Tarragona.

Table of Contents

Invited Papers

Tree-Walking Automata . 1
Miko�laj Bojańczyk

Formal Language Tools for Template-Guided DNA Recombination 3
Michael Domaratzki

Subsequence Counting, Matrix Representations and a Theorem of
Eilenberg . 6

Benjamin Steinberg

Synchronizing Automata and the Černý Conjecture 11
Mikhail Volkov

Contributed Papers

About Universal Hybrid Networks of Evolutionary Processors of Small
Size . 28

Artiom Alhazov, Erzsébet Csuhaj-Varjú, Carlos Mart́ın-Vide, and
Yurii Rogozhin

On Bifix Systems and Generalizations . 40
Jan-Henrik Altenbernd

Finite Automata, Palindromes, Powers, and Patterns 52
Terry Anderson, Narad Rampersad, Nicolae Santean, and
Jeffrey Shallit

One-Dimensional Quantum Cellular Automata over Finite, Unbounded
Configurations . 64

Pablo Arrighi, Vincent Nesme, and Reinhard Werner

The Three-Color and Two-Color TantrixTM Rotation Puzzle Problems
Are NP-Complete Via Parsimonious Reductions . 76

Dorothea Baumeister and Jörg Rothe

Optional and Iterated Types for Pregroup Grammars 88
Denis Béchet, Alexander Dikovsky, Annie Foret, and
Emmanuelle Garel

Transformations and Preservation of Self-assembly Dynamics through
Homotheties . 101

Florent Becker

XII Table of Contents

Deterministic Input-Reversal and Input-Revolving Finite Automata 113
Suna Bensch, Henning Bordihn, Markus Holzer, and Martin Kutrib

Random Context in Regulated Rewriting Versus Cooperating
Distributed Grammar Systems . 125

Henning Bordihn and Markus Holzer

Extending the Overlap Graph for Gene Assembly in Ciliates 137
Robert Brijder and Hendrik Jan Hoogeboom

Automatic Presentations for Cancellative Semigroups 149
Alan J. Cain, Graham Oliver, Nik Ruškuc, and Richard M. Thomas

Induced Subshifts and Cellular Automata . 160
Silvio Capobianco

Hopcroft’s Algorithm and Cyclic Automata . 172
Giusi Castiglione, Antonio Restivo, and Marinella Sciortino

Efficient Inclusion Checking for Deterministic Tree Automata and
DTDs . 184

Jérôme Champavère, Rémi Gilleron, Aurélien Lemay, and
Joachim Niehren

Consensual Definition of Languages by Regular Sets 196
Stefano Crespi Reghizzi and Pierluigi San Pietro

k-Petri Net Controlled Grammars . 209
Jürgen Dassow and Sherzod Turaev

2-Synchronizing Words . 221
Pawe�l Gawrychowski and Andrzej Kisielewicz

Not So Many Runs in Strings . 232
Mathieu Giraud

A Hybrid Approach to Word Segmentation of Vietnamese Texts 240
Lê Hông Phuong, Nguyên Thi Minh Huyên, Azim Roussanaly, and
Hô Tuòng Vinh

On Linear Logic Planning and Concurrency . 250
Ozan Kahramanoğulları

On the Relation between Multicomponent Tree Adjoining Grammars
with Tree Tuples (TT-MCTAG) and Range Concatenation Grammars
(RCG) . 263

Laura Kallmeyer and Yannick Parmentier

Anti-pattern Matching Modulo . 275
Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau

Table of Contents XIII

Counting Ordered Patterns in Words Generated by Morphisms 287
Sergey Kitaev, Toufik Mansour, and Patrice Séébold

Literal Varieties of Languages Induced by Homomorphisms onto
Nilpotent Groups . 299

Ondřej Kĺıma and Libor Polák

Characterization of Star-Connected Languages Using Finite
Automata . 311

Barbara Klunder

Match-Bounds with Dependency Pairs for Proving Termination of
Rewrite Systems . 321

Martin Korp and Aart Middeldorp

Further Results on Insertion-Deletion Systems with One-Sided
Contexts . 333

Alexander Krassovitskiy, Yurii Rogozhin, and Serghey Verlan

On Regularity-Preservation by String-Rewriting Systems 345
Peter Leupold

Minimizing Deterministic Weighted Tree Automata 357
Andreas Maletti

Lower Bounds for Generalized Quantum Finite Automata 373
Mark Mercer

How Many Figure Sets Are Codes? . 385
Ma�lgorzata Moczurad and W�lodzimierz Moczurad

On Alternating Phrase-Structure Grammars . 397
Etsuro Moriya and Friedrich Otto

A Two-Dimensional Taxonomy of Proper Languages of Lexicalized
FRR-Automata . 409

Friedrich Otto and Martin Plátek

Minimalist Grammars with Unbounded Scrambling and
Nondiscriminating Barriers Are NP-Hard . 421

Alexander Perekrestenko

Sorting and Element Distinctness on One-Way Turing Machines 433
Holger Petersen

On Periodicity of Generalized Two-Dimensional Words 440
Svetlana Puzynina

On the Analysis of “Simple” 2D Stochastic Cellular Automata 452
Damien Regnault, Nicolas Schabanel, and Éric Thierry

XIV Table of Contents

Polycyclic and Bicyclic Valence Automata . 464
Elaine Render and Mark Kambites

Length Codes, Products of Languages and Primality 476
Arto Salomaa, Kai Salomaa, and Sheng Yu

An Efficient Algorithm for the Inclusion Problem of a Subclass of
DPDAs . 487

Ryo Yoshinaka

Author Index . 499

Tree-Walking Automata

Miko�laj Bojańczyk

Warsaw University

Abstract. A survey of tree-walking automata. The main focus is on how
the expressive power is changed by adding features such as pebbles or non-
determinism.

1 Introduction

A tree-walking automaton is a sequential device that can recognize properties
of trees. The control of the automaton is always located in a single node of the
tree; based on local properties of this node, the automaton chooses a new state
and moves to a neighboring node. Tree-walking automata have been introduced
already in a 1971 paper of Aho and Ullman [1]. The purpose of this talk is
to survey the different types of tree-walking automata, with a special focus on
expressive power.

A tree-walking automaton can be easily simulated by a branching bottom-
up tree automaton, therefore tree-walking automata recognize only regular tree
languages. However, the converse inclusion has been a notorious open prob-
lem for many years1; only recently did [2] establish that tree-walking automata
are strictly less expressive than branching automata. Other fundamental prop-
erties have also been shown but recently: deterministic tree-walking automata
are closed under complement [10], and recognize fewer languages than nonde-
terministic ones [3]. The proofs for the negative results—which show that tree-
walking automata cannot recognize something—require involved combinatorics,
and some algebra.

These are the main results on “bare” tree-walking automata. Things become
even more interesting with extensions of the model. The problem with tree-
walking automata, and also the reason why they are less expressive than branch-
ing automata, is that they easily get lost in a tree. One solution to this problem,
due to Engelfriet and Hoogeboom [7], is to allow the automaton to mark tree
nodes with pebbles.

There are several ways of adding pebbles to the automaton. One common
property in all the pebble models is the use of stack discipline—where only the
most recently placed pebble can be lifted—without which the model becomes
undecidable. But beyond the stack discipline, there are several design choices:
are the automata deterministic? does the head of the automaton need to be over
a pebble when it is lifted? how many pebbles are there? which pebbles does the
1 A footnote in the original paper [1] on tree-walking automata states that Michael

Rabin has shown that tree-walking automata do recognize all regular tree languages.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Bojańczyk

automaton see? For each of these choices, one gets an interesting and robust
class of languages; these classes have been investigated in [4,6,7,8,9,10,12,5]. In
all cases except one, the automata are weaker than branching automata, fur-
thermore adding pebbles increases the expressive power.

Tree-walking automata, but even more so pebble automata, have a close rela-
tionship with logic. For each variant of the automaton, there is an equivalent log-
ical description. For tree-walking automata and pebble automata with bounded
numbers of pebbles, the logics are restricted fragments of transitive closure first-
order logic (see [11] and [8], respectively). Automata with invisible pebbles, a
form of pebble automata with an unbounded number of pebbles, capture all
regular tree languages [9], and therefore correspond to monadic second-order
logic. As far as logic is concerned, probably the most interesting class are the
automata of [5], which extend pebble automata with a form of negation: these
automata have the same expressive power as transitive closure first-order logic.
In particular, since the extended pebble automata are still weaker than branch-
ing automata, it follows that transitive closure first-order logic is weaker than
monadic second-order logic on trees (the two logics have the same expressive
power over words).

References

1. Aho, A.V., Ullman, J.D.: Translations on a context-free grammar. Information and
Control 19, 439–475 (1971)

2. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. In: ACM Symposium on the Theory of Computing, pp. 234–243 (2005)

3. Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized.
Theoretical Computer Science 350(2-3), 255–272 (2006)

4. Bojańczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive power
of pebble automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 157–168. Springer, Heidelberg (2006)

5. ten Cate, B., Segoufin, L.: XPath, transitive closure logic, and nested tree walking
automata. In: Principles of Database Systems (2007)

6. Engelfriet, J., Hoogeboom, H., Van Best, J.: Trips on trees. Acta Cybernetica 14(1),
51–64 (1999)

7. Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Paum, G.,
Karhumaki, J., Maurer, H., Rozenberg, G. (eds.) Jewels Are Forever, Contributions
to Theoretical Computer Science in Honor of Arto Salomaa, pp. 72–83. Springer,
Heidelberg (1999)

8. Engelfriet, J., Hoogeboom, H.J.: Automata with nested pebbles capture first-order
logic with transitive closure. Logical Methods in Computer Science, 3(2:3) (2007)

9. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: XML transformation by tree-walking
transducers with invisible pebbles. In: Principles of Database Systems, pp. 63–72
(2007)

10. Muscholl, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-
walking automata. Information Processing Letters 99(1), 33–39 (2006)

11. Neven,F., Schwentick,T.:On thepower of tree-walking automata. In:Welzl, E.,Mon-
tanari,U.,Rolim, J. (eds.) ICALP2000.LNCS, vol. 1853. Springer,Heidelberg (2000)

12. Samuelides, M., Segoufin, L.: Complexity of pebble tree-walking automata. In:
Fundamentals of Computation Theory, pp. 458–469 (2007)

Formal Language Tools for Template-Guided

DNA Recombination

Michael Domaratzki

Department of Computer Science
University of Manitoba

Winnipeg, MB R3T 2N2 Canada
mdomarat@cs.umanitoba.ca

Certain stichotrichous ciliates, single-celled organisms with hair-like structures
called cilia, have a well-studied ability to rearrange their DNA during a form of
asexual reproduction called conjugation. Ciliates also demonstrate nuclear dual-
ism: each ciliate has both a micronucleus and a macronucleus. The unscrambling
of DNA during conjugation occurs when the scrambled version, contained in the
micronucleus, is rearranged in a precise way to produce an unscrambled equiv-
alent which forms the macronucleus.

The use of ciliates for natural computing has been one motivation for the
study of computational aspects of several different models for ciliate DNA re-
arrangement (see, e.g., Ehrenfeucht et al. [8] for description of one model of
DNA rearrangement in ciliates). If the mechanism by which ciliates rearrange
their DNA can be understood, then it is conceivable that this mechanism could
be modified to perform computation by rearrangement. For example, this line
of research has been examined for one model of ciliate DNA rearrangement by
Alhazov et al. [1], who have described a theoretical model for solving the Hamil-
tonian Path Problem using ciliate rearrangement.

Template-guided recombination (TGR) is one formal model for the rearrange-
ment which occurs in stichotrichous ciliates. The theoretical model, proposed by
Prescott et al. [11] and refined by Angeleska et al. [2] has been the subject of
much research. Recent experimental evidence [10] suggests that TGR is an ap-
propriate model of the rearrangement in stichotrichous ciliates. In the formal
model of TGR, the unscrambling action is controlled by a set of templates; the
experimental research suggests that existing genetic material forms these sets of
templates which guide the rearrangement process.

TGR is easily interpreted in formal language-theoretic terms, including both
an iterated and single-application variant. The iterated version gives a model
which is more accurate in biological terms, as it represents the effect of repeated
applications of the rearrangement process which is necessary for complete un-
scrambling. Much of the research on the computational aspects of TGR has fo-
cused on closure properties. Daley and McQuillan [4,5,6] have extensively studied
the closure properties of TGR. In some of the iterated cases, the closure proper-
ties given were not effective; McQuillan et al. [9] presented effective constructions
for these closure properties.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 3–5, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 M. Domaratzki

In all of the above results, TGR is considered as an operation on words with
two operands. In this view of TGR as an inter-molecular operation, the operands
represent separate DNA strands which are recombined using a template. An-
other aspect of the computational examinations of TGR is the consideration of
unary (intra-molecular) operations, where the template acts on different regions
of a single strand of DNA. Daley et al. [3] have examined the closure proper-
ties of the intra-molecular TGR operation. Angeleska et al. [2] also provide re-
sults on intra-molecular TGR in terms of their modified biological definition for
TGR.

However, there is another approach to computational and language-theoretic
questions related to TGR. In particular, we have recently examined the concept
of equivalence for TGR [7]: given two sets of templates, do they define the same
rearrangement process? This question can be asked for both the inter- and intra-
molecular operations.

Results on equivalence provide tools for examining TGR as a model indepen-
dently of its computational ability, and give tools for determining what changes
should be made to the set of templates in order to affect the rearrangement
process. The characterization of equivalence in formal language-theoretic terms
yields decidability results for regular and context-free sets of trajectories.

Several questions related to equivalence remain open. In particular, we do not
know if the condition which characterizes equivalence for TGR also applies to
iterated TGR.

References

1. Alhazov, A., Petre, I., Rogojin, V.: Solutions to computational problems through
gene assembly. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp.
36–45. Springer, Heidelberg (2008)

2. Angeleska, A., Jonoska, N., Saito, M., Landweber, L.: RNA-Guided DNA assembly.
Journal of Theoretical Biology 248, 706–720 (2007)

3. Daley, M., Domaratzki, M., Morris, A.: Intra-molecular template-guided recombi-
nation. International Journal of Foundations of Computer Science 18, 1177–1186
(2007)

4. Daley, M., McQuillan, I.: Template-guided DNA recombination. Theoretical Com-
puter Science 330, 237–250 (2005)

5. Daley, M., McQuillan, I.: On computational properties of template-guided DNA
recombination in ciliates. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS,
vol. 3892, pp. 27–37. Springer, Heidelberg (2006)

6. Daley, M., McQuillan, I.: Useful templates and iterated template-guided DNA re-
combination in ciliates. Theory of Computing Systems 39, 619–633 (2006)

7. Domaratzki, M.: Equivalence in template-guided recombination. Natural Comput-
ing (to appear, 2008)

8. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., Rozenberg, G.: Computation in
Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2004)

9. McQuillan, I., Salomaa, K., Daley, M.: Iterated TGR languages: Membership prob-
lem and effective closure properties. In: Chen, D.Z., Lee, D.T. (eds.) COCOON
2006. LNCS, vol. 4112, pp. 94–103. Springer, Heidelberg (2006)

Formal Language Tools for Template-Guided DNA Recombination 5

10. Nowacki, M., Vijayan, V., Zhou, Y., Schotanus, K., Doak, T., Landweber, L.:
RNA-mediated epigenetic programming of a genome-rearrangement pathway. Na-
ture 451, 153–159 (2008)

11. Prescott, D., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination for
IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of
Theoretical Biology 222, 323–330 (2003)

Subsequence Counting, Matrix Representations

and a Theorem of Eilenberg

Benjamin Steinberg�

School of Mathematics and Statistics
Carleton University

Ottawa, ON, Canada
bsteinbg@math.carleton.ca

Introduction

Recently, Almeida, Margolis, Volkov and I have applied matrix representation
theory [1] to give a simpler proof of results of Péladeau [4] and Weil [5] concern-
ing marked products with counter. Eilenberg’s theorem characterizing languages
recognized by p-groups [2] is a special case of these results. In these proceedings
I will give a simple proof of Eilenberg’s Theorem based on representation theory
that I came up with for a graduate course. The ideas are similar to those used
in [1], which I presented during the conference.

1 Free Monoids, Algebras and Subsequences

A good reference for the material in this section is [3]. Let A be a finite alphabet.
We use A∗ for the free monoid and write 1 for the empty string. Recall that a
language L ⊆ A∗ is recognized by a monoid M if there is a homomorphism
ϕ : A∗ →M such that L = ϕ−1ϕ(L). A language is regular if and only if it can
be recognized by a finite monoid. Let p be a prime; then a finite p-group is a
group of order pn, some n ≥ 0. Notice that the collection of finite p-groups is
closed under direct product, subgroups and homomorphic images. Hence the set
of languages recognized by a finite p-group is a Boolean algebra [2].

For words u, v ∈ A∗ define
(
u
v

)
to be the number of ways to choose |v| positions

in u that spell the word v, i.e. the number of occurrences of v as a subsequence
of u. More precisely, if v = a1 · · ·an, then

(
u
v

)
is the number of factorizations

u = v0a1v1 · · · anvn with each vi ∈ A∗. For example
(
abab
ab

)
= 3. Notice that(

an

am

)
=
(

n
m

)
, whence the notation. Also one has a sort of Pascal’s triangle rule:

(
ua

vb

)
=

{(
u
vb

)
+
(
u
v

)
a = b(

u
vb

)
a �= b.

The reader is referred to Lothaire [3, Sec. 6.3] for more on binomial coefficients.

� The author would like to acknowledge the support of an NSERC grant.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 6–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Subsequence Counting, Matrix Representations and a Theorem of Eilenberg 7

Let K be a field and A a finite alphabet. Then K〈A〉 denotes the ring of
polynomials over K in non-commuting variables A, that is, the free algebra over
A. Elements of K〈A〉 are of the form

f =
∑

w∈A∗

cw · w (1)

with cw ∈ K and all but finitely many cw = 0. Multiplication is given by

∑
w∈A∗

cww
∑

w∈A∗

dww =
∑

w∈A∗

(∑
uv=w

cudv

)
· w.

For instance, in K〈x, y〉 one has (x + y)(x + 2y) = x2 + 2xy + yx + 2y2. We
identify K as a subring of K〈A〉 via c �→ c · 1.

If f ∈ K〈A〉 is as per (1) and w ∈ A∗, we define 〈f, w〉 = cw; so 〈f, w〉 is the
coefficient of w in f . Define, for f ∈ K〈A〉,

v(f) = min{|w| : 〈f, w〉 �= 0}

where we take v(0) = ∞. So, for instance, v(xy2 + yx) = 2. One easily verifies
that v is a discrete valuation, that is:

v(fg) = v(f) + v(g)
v(f + g) ≥ min{v(f), v(g)}.

It is immediate that Im = {f ∈ K〈A〉 : v(f) ≥ m} is an ideal of K〈A〉 for m ≥ 1.
Define µ : A∗ → K〈A〉 by µ(a) = 1 + a for a ∈ A. That is µ(1) = 1 and

µ(a1 · · · an) = (1 + a1) · · · (1 + an). The map µ is known as the Magnus trans-
form [3]. The classical binomial theorem admits the following generalization [3,
Prop. 6.3.6].

Proposition 1. Let u ∈ A∗. Then µ(u) =
∑

v∈A∗

(
u

v

)
v.

2 Eilenberg’s Theorem

Fix a prime p. Suppose that 0 ≤ r < p and u ∈ A∗. Define

L[u; r] = {w ∈ A∗ :
(
w

u

)
≡ r mod p}.

Eilenberg proved the following theorem [2].

Theorem 2 (Eilenberg). Let p be a prime. A regular language L ⊆ A∗ is
recognized by a finite p-group if and only if it belongs to the Boolean algebra
generated by languages of the form L[u; r] with u ∈ A∗ and 0 ≤ r < p.

8 B. Steinberg

Our goal is to use matrix representations to prove this theorem. From now on
K will be Zp. Set R = Zp〈A〉 and, for m ≥ 1, put Rm = R/Im = Zp〈A〉/Im;
Rm is a truncated polynomial algebra. Notice that Rm is finite since each coset
can be uniquely represented by a polynomial of degree at most m− 1. Define a
truncated Magnus transform µm : A∗ → Rm by composing µ with the projection
R→ Rm. We immediately obtain from Proposition 1

µm(u) =
∑

|v|<m

(
u

v

)
v + Im. (2)

Let Gm = {f + Im : 〈f, 1〉 = 1}; evidently Gm is a submonoid of Rm containing
the image of µm. In fact it turns out to be a p-group.

Proposition 3. Let f ∈ R be such that v(f) ≥ 1. Then (1 + f)pk ≡ 1 mod Im
whenever pk ≥ m.

Proof. Since R has characteristic p, we have (1 + f)pk

= 1 + fpk ≡ 1 mod Im
since v(fpk

) = pkv(f) ≥ m. �

Corollary 4. The submonoid Gm of Rm is a finite p-group.

Proof. Since f has constant term 1, it follows v(f − 1) ≥ 1. Applying Proposi-
tion 3 to f = 1 + (f − 1), we have fpk

+ Im = 1 + Im for pk ≥ m. We conclude
Gm is a p-group. �

We may now deduce that L[u; r] is recognized by a p-group. Indeed, choose m >
|u|. Viewing µm as a homomorphism µm : A∗ → Gm, we have L[u; r] = µ−1

m (T)
where T = {f + Im ∈ Gm : 〈f, u〉 = r}. It follows that µ−1

m µm(L[u; r]) = L[u; r]
and so the p-group Gm recognizes L[u; r]. We have thus proved:

Proposition 5. If m > |u|, then the finite p-group Gm recognizes L[u; r].

In fact it is easy to see that any language recognized via µm is a Boolean com-
bination of languages of the form L[u; r] with |u| < m.

Proposition 6. Suppose that µ−1
m µm(L) = L. Then L is in the Boolean algebra

A generated by languages of the form L[u; r] with |u| < m.

Proof. It suffices to show that if T ⊆ µm(A∗), then µ−1
m (T) is in A . Since

µ−1
m (T) =

⋃
f∈T µ

−1
m ({f}), without loss of generality we may assume T = {f}.

But (2) immediately yields

µ−1
m ({f}) =

⋂
|v|<m

L[v; 〈f, v〉]

completing the proof. �

Subsequence Counting, Matrix Representations and a Theorem of Eilenberg 9

In light of Proposition 6, to complete the proof it suffices to show that any onto
homomorphism from A∗ to a finite p-group factors through µm for some m > 0.
Up until this point, the proof has been more or less the same as the one presented
in [2]. Eilenberg uses group algebras to complete the proof; we opt for matrix
representations.

Denote by GL(n, p) the group of n× n invertible matrices over Zp. A matrix
is called unitriangular if it is upper triangular with diagonal entries all equal to
1; the subgroup of unitriangular n×n matrices is denoted UT (n, p). Notice that
|UT (n, p)| = p(

n
2) and hence UT (n, p) is a p-group. In fact, since

|GL(n, p)| =
n−1∏
k=0

(pn − pk) = p(
n
2)

n∏
i=1

(pi − 1),

it follows that UT (n, p) is a p-Sylow subgroup of GL(n, p) (using that p � pi − 1
for i ≥ 1). It is now easy to prove that every finite p-group is isomorphic to a
group of unitriangular matrices (I learned of this proof from Margolis).

Theorem 7. Let G be a finite p-group of order n = pk. Then G is isomorphic
to a subgroup of UT (n, p).

Proof. By Cayley’s Theorem, G is isomorphic to a subgroup of the symmet-
ric group Sn. But Sn is isomorphic to the subgroup of GL(n, p) consisting of
the permutation matrices (zero-one matrices with a single one in each row and
column). Thus without loss of generality we may assume G is a subgroup of
GL(n, p). But then Sylow’s Theorem implies that some conjugate of G is con-
tained in UT (n, p), establishing the theorem. �

Denote by M(n, p) the ring of n×n matrices over Zp. Let N(n, p) be the ring of
n×n upper triangular matrices with all diagonal entries equal to 0 The following
fact is well known.

Lemma 8. The ring N(n, p) is nilpotent of index n, that is, N(n, p)n = 0.

Proof. Suppose that A(1), . . . , A(n) ∈ N(n, p). Then since these matrices are
upper triangular:

(A(1) · · ·A(n))ij =
∑

1≤i1≤i2≤···≤in+1≤n

A
(1)
i1i2
A

(2)
i2i3

· · ·A(n)
inin+1

. (3)

It follows that ik = ik+1 for some 1 ≤ k ≤ n and hence the right hand side of
(3) is 0 as the diagonal entries of the A(m) are 0. �

From the lemma we deduce the desired property of the family {µm}.
Corollary 9. Let ϕ : A∗ → G be an onto homomorphism with G a p-group of
order n = pk. Then there exists a unique homomorphism ψ : µn(A∗) → G such
that the diagram

A∗ µn� µn(A∗)

G

ψ
�ϕ �

commutes.

10 B. Steinberg

Proof. Without loss of generality we may assume that G ⊆ UT (n, p). Define
α : A∗ →M(n, p) by α(a) = ϕ(a) − I (where I is the identity matrix). We may
extend α uniquely to Zp〈A〉 by setting

α

(∑
w∈A∗

cw · w
)

=
∑

w∈A∗

cwα(w).

Notice that α(Zp〈A〉) ⊆ N(n, p) since ϕ(a) ∈ U(n, p) implies ϕ(a)−I ∈ N(n, p).
Lemma 8 then yields In ⊆ kerα. Thus there is an induced homomorphism
ψ : Zp〈A〉/In →M(n, p) given by ψ(f + In) = α(f). Observe that

ψµn(a) = ψ(1 + a+ Im) = α(1 + a) = I + α(a) = I + ϕ(a) − I = ϕ(a)

and so ψµn = ϕ. Uniqueness of ψ is clear since all monoids in question are
generated by A. �

There’s not much else left to do to finish the proof of Eilenberg’s theorem.

Proof (Eilenberg’s Theorem). Proposition 5 shows that the Boolean algebra gen-
erated by the languages L[u; r] consists of languages recognized by p-groups. For
the converse, suppose L is recognized by a p-group G via a homomorphism
ϕ : A∗ → G (so ϕ−1ϕ(L) = L). Factor ϕ = ψµn as per Corollary 9. Then

L ⊆ µ−1
n µn(L) ⊆ µ−1

n ψ−1ψµn(L) = ϕ−1ϕ(L) = L

and so L is a Boolean combination of the desired form by Proposition 6. This
completes the proof. �

References

1. Almeida, J., Margolis, S.W., Steinberg, B., Volkov, M.V.: Representation theory
of finite semigroups, semigroup radicals and formal language theory. Trans. Amer.
Math. Soc. (to appear)

2. Eilenberg, S.: Automata, languages, and machines. Vol. B. Academic Press, New
York (1976); Tilson, B.: Depth decomposition theorem, Complexity of semigroups
and morphisms. In: Pure and Applied Mathematics, Vol. 59 (1976)

3. Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge (1997)

4. Péladeau, P.: Sur le produit avec compteur modulo un nombre premier. RAIRO
Inform. Théor. Appl. 26(6), 553–564 (1992)

5. Weil, P.: Closure of varieties of languages under products with counter. J. Comput.
System Sci. 45(3), 316–339 (1992)

Synchronizing Automata

and the Černý Conjecture

Mikhail V. Volkov

Department of Mathematics and Mechanics,
Ural State University, 620083 Ekaterinburg, Russia

Mikhail.Volkov@usu.ru

Abstract. We survey several results and open problems related to syn-
chronizing automata. In particular, we discuss some recent advances to-
wards a solution of the Černý conjecture.

1 History and Motivations

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q denotes
the state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is the
transition function defining an action of the letters in Σ on Q . The action
extends in a unique way to an action Q × Σ∗ → Q of the free monoid Σ∗

over Σ ; the latter action is still denoted by δ . The automaton A is called
synchronizing if there exists a word w ∈ Σ∗ whose action resets A , that is
to leave the automaton in one particular state no matter which state in Q it
started at: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q . Any word w with this property
is said to be a reset word for the automaton.

Fig. 1. A synchronizing automaton

Fig. 1 shows an example of a synchroniz-
ing automaton with 4 states. The reader can
easily verify that the word ab3ab3a resets the
automaton leaving it in the state 1. With
somewhat more effort one can also check that
ab3ab3a is the shortest reset word for this
automaton. The example in Fig. 1 is due to
Černý, a Slovak computer scientist, in whose
pioneering paper (1964) the notion of a syn-
chronizing automaton explicitly appeared for
the first time. (Černý called such automata
directable. The word synchronising in this
context was probably introduced by Hennie
(1964).) Implicitly, however, this concept has
been around since the earliest days of automata theory. The very first synchro-
nizing automaton that we were able to trace back in the literature appeared in
Ashby’s classic book (1956, pp. 60–61). There Ashby presents a puzzle dealing
with taming two ghostly noises, Singing and Laughter, in a haunted mansion.
Each of the noises can be either on or off, and their behaviour depends on com-
binations of two possible actions, playing the organ or burning incense. Under

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 11–27, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 M.V. Volkov

a suitable encoding, this leads to the following automaton with 4 states and 4
input letters:

Fig. 2. Ashby’s “ghost taming” automaton

Here 00 encodes the state when both Singing and Laughter are silent, 01 stands
for the state when Singing is of but Laughter is on, etc. Similarly, a stands
for the transition that happens when neither the organ is played nor incense
is burned, b encodes the transition caused by organ-playing in the absence of
incense-burning, etc. The problem is to ensure silence, in other words, to bring
the automaton in Fig. 2 to the state 00. Ashby only solves the problem under the
assumption that the automaton is in the state 11 and his suggested solution is
encoded by the word acb . However, it is easy to check that acb is in fact a reset
word for the automaton so applying the corresponding sequence of actions will
get the house quiet from any initial configuration. It is not clear whether or not
Ashby realized this nice feature of his automaton, and moreover, the fact that
Ashby’s automaton is synchronizing seems to be overlooked for many years.

Let us return to the genesis of the concept of synchronizing automata. In
(Černý, 1964) this notion arose within the classic framework of Moore’s
“Gedanken-experiments” (1956). For Moore and his followers finite automata
served as a mathematical model of devices working in discrete mode, such as
computers or relay control systems. This leads to the following natural problem:
how can we restore control over such a device if we do not know its current
state but can observe outputs produced by the device under various actions?
Moore (1956) has shown that under certain conditions one can uniquely deter-
mine the state at which the automaton arrives after a suitable sequence of actions
(called an experiment). Moore’s experiments were adaptive, that is, each next
action was selected on the basis of the outputs caused by the previous actions.
Ginsburg (1958) considered more restricted experiments that he called uniform.
A uniform experiment1 is just a fixed sequence of actions, that is, a word over
1 After (Gill, 1961), the name homing sequence has become standard for the notion.

Synchronizing Automata and the Černý Conjecture 13

the input alphabet; thus, in Ginsburg’s experiments outputs were only used for
calculating the resulting state at the end of an experiment. From this, just one
further step was needed to come to the setting in which outputs were not used
at all. It should be noted that this setting is by no means artificial—there exist
many practical situations when it is technically impossible to observe output sig-
nals. (Think of a satellite which loops around the Moon and cannot be controlled
from the Earth while “behind” the Moon.)

It is not surprising that synchronizing automata were re-invented a number
of times. First of all, the notion was very natural by itself and fitted fairly well
in what was considered as the mainstream of automata theory in the 1960s.
Second, Černý’s paper (1964) published in Slovak language remained unknown
in the English-speaking world for some time. As examples, we mention here
the report (Laemmel & Rudner, 1969) and the paper (Fischler & Tannenbaum,
1970) both rediscovering results from (Černý, 1964). The books (Booth, 1967;
Hennie, 1968; Kohavi, 1970) also present some information about synchronizing
automata but do not refer to (Černý, 1964). It seems that the situation begun
to change only in 1972 when the English translation of the book (Starke, 1969)
appeared.

The original “Gedanken-experiments” motivation for studying synchronizing
automata is still of importance, and reset words are frequently applied in model-
based testing of reactive systems2. Rather unexpectedly, an additional source of
problems related to synchronizing automata has come from robotics or, more pre-
cisely, from part handling problems in industrial automation such as part feeding,
fixturing, loading, assembly and packing. Within this framework, the concept of a
synchronizing automaton was again rediscovered in the mid-1980s by Natarajan
(1986, 1989). We explain how abstract automata arise in part handling problems
by means of a simple illustrative example from (Ananichev & Volkov, 2004).

Fig. 3. A part

Suppose that a part of a certain device has the shape
shown in Fig. 3. Such parts arrive at manufacturing sites
in boxes and they need to be sorted and oriented before
assembly. For simplicity, assume that only four initial ori-
entations of the part shown in Fig. 3 are possible, namely,
the four shown in in Fig. 4.

Fig. 4. Four possible orientations

Further, suppose that prior the assembly the part should take the “bump-left”
orientation (the second one in Fig 4). Thus, one has to construct an orienter

2 See (Cho et al, 1993; Boppana et al, 1999) as typical samples of technical contribu-
tions to the area and (Sandberg, 2005) for a recent survey.

14 M.V. Volkov

which action will put the part in the prescribed position independently of its
initial orientation.

Of course, there are many ways to design such an orienter but practical consid-
erations favor methods which require little or no sensing, employ simple devices,
and are as robust as possible. For our particular case, these goals can be achieved
as follows. We put parts to be oriented on a conveyer belt which takes them to
the assembly point and let the stream of the parts encounter a series of passive
obstacles placed along the belt. We need two type of obstacles: high and low. A
high obstacle should be high enough in order that any part on the belt encoun-
ters this obstacle by its rightmost low angle (we assume that the belt is moving
from left to right). Being curried by the belt, the part then is forced to turn
90◦ clockwise. A low obstacle has the same effect whenever the part is in the
“bump-dow” orientation (the first one in Fig. 4); otherwise it does not touch the
part which therefore passes by without changing the orientation.

HIGH, low

HIGH

HIGH

HIGH

low

lowlow

Fig. 5. The action of the obstacles

The scheme in Fig. 5 summarizes how the aforementioned obstacles effect the
orientation of the part. The reader immediately recognizes the synchronizing
automaton from Fig. 1. Remembering that its shortest reset word is the word
ab3ab3a , we conclude that the series of obstacles

low–HIGH–HIGH–HIGH–low–HIGH–HIGH–HIGH–low

yields the desired sensor-free orienter.
Since the 1990s synchronizing automata usage in the area of robotic manipula-

tion has grown into a prolific research direction but it is fair to say that publica-
tions in this direction deal mostly with implementation technicalities. However,
amongst them there are papers of theoretical importance such as (Eppstein,
1990; Goldberg, 1993; Chen & Ierardi, 1994).

Speculating about further possible applications of synchronizing automata,
one can think of biocomputing. Here we refer to recent experiments
(Benenson et al, 2001, 2003) in which DNA molecules have been used as both
hardware and software for finite automata of nanoscaling size. For instance,

Synchronizing Automata and the Černý Conjecture 15

Benenson et al (2003) produced a “soup of automata”, that is, a solution con-
taining 3 × 1012 identical automata per µ l. All these molecular automata can
work in parallel on different inputs, thus ending up in different and unpredictable
states. In contrast to an electronic computer, one cannot reset such a system by
just pressing a button; instead, in order to synchronously bring each automaton
to its “ready-to-restart” state, one should spice the soup with (sufficiently many
copies of) a DNA molecule whose nucleotide sequence encodes a reset word.

Clearly, from the viewpoint of applications, real or yet imaginary, algorithmic
and complexity issues are of crucial importance. We discuss them in Section 2.

Putting applications aside, mathematicians since the 1960s have intensively
studied synchronizing automata per se, as an interesting combinatorial object.
These studies are mainly motivated by the Černý conjecture. Černý (1964) con-
structed for each n > 1 a synchronizing automaton Cn with n states which
shortest reset word has length (n − 1)2 (the automaton in Fig. 1 is C4). Soon
after that he conjectured that those automata represent the worst possible case,
that is, every synchronizing automaton with n states can be reset by a word
of length (n − 1)2 . By now this simply looking conjecture is arguably the most
longstanding open problem in the combinatorial theory of finite automata. We
will discuss the Černý conjecture and some related partial results in Section 3.

Other mathematical motivations for studying synchronizing automata come
from semigroup theory (see Ananichev & Volkov, 2004), multiple-valued logic
and symbolic dynamics (see Mateescu & Salomaa, 1999). The latter connection
is especially interesting in view of a recent breakthrough in the area—a (positive)
solution to the Road Coloring Problem found by Trahtman (2008), but it clearly
deserves a separate survey.

2 Algorithms and Complexity

It should be clear that not every DFA is synchronizing. Therefore, the very first
question that we should address is the following one: given an automaton A ,
how to determine whether or not A is synchronizing?

This question is in fact quite easy, and the most straightforward solution to
it can be achieved via the classic power automaton construction. Recall that the
power automaton P(A) of a given DFA A = 〈Q,Σ, δ〉 has the collection P ′(Q)
of the non-empty subsets of Q as the state set and the natural extension of δ to the
set P ′(Q)×Σ as the transition function (still denoted by δ). In other words, for P
being a non-empty subset of Q and a ∈ Σ , one sets δ(P, a) = {δ(p, a) | p ∈ P} .
Fig. 6 presents the power automaton for the DFA C4 shown in Fig. 1.

Now it is obvious that a word w ∈ Σ∗ is a reset word for the DFA A if and
only if w labels a path in P(A) starting at Q and ending at a singleton. (For
instance, the bold path in Fig. 6 represents the shortest reset word ab3ab3a of
the automaton C4 .) Thus, the question of whether or not a given DFA A is
synchronizing reduces to the following reachability question in the underlying
digraph of the power automaton P(A): is there a path from Q to a singleton?
The latter question can be easily answered by breadth-first search (see, e.g.,
Corman et al, 2001, Section 22.2).

16 M.V. Volkov

0 1

23

a, b

b

b

b

a

aa

03

01 12

23

02 13

a

a

a

b

b

b

b
a

012 013

123 0230123

b a

a

b

a

bb

b

a
a

a b

b

a

Fig. 6. The power automaton P(C4)

The described procedure is conceptually very simple but rather inefficient
because the power automaton P(A) is exponentially larger than A . However,
the following criterion of synchronizability (Černý, 1964, Theorem 2) gives rise
to a polynomial algorithm.

Proposition 1. A DFA A = 〈Q,Σ, δ〉 is synchronizing if and only if for every
q, q′ ∈ Q there exists a word w ∈ Σ∗ such that δ(q, w) = δ(q′, w) .

One can treat Proposition 1 as a reduction of the synchronizability problem to
a reachability problem in the subautomaton P [2](A) of P(A) whose states are

2-element and 1-element subsets of Q . Since the subautomaton has
|Q|(|Q| + 1)

2
states, breadth-first search solves this problem in O(|Q|2 · |Σ|) time. This com-
plexity bound assumes that no reset word is explicitly calculated. If one requires
that, whenever A turns out to be synchronizing, a reset word is produced, then
the best of the known algorithms (which is due to (Eppstein, 1990, Theorem 6),
see also (Sandberg, 2005, Theorem 1.15)) has an implementation that consumes
O(|Q|3 + |Q|2 · |Σ|) time and O(|Q|2 + |Q| · |Σ|) working space, not counting
the space for the output which is O(|Q|3).

For a synchronizing automaton, the power automaton can be used to construct
shortest reset words which correspond to shortest paths from the whole state set
to a singleton. Of course, this requires exponential (of |Q|) time in the worst
case. Nevertheless, there were attempts to implement this approach (see, e.g.,
Rho et al, 1993; Trahtman, 2006a). One may hope that, as above, a suitable
calculation in the “polynomial” subautomaton P [2](A) may yield a polynomial

Synchronizing Automata and the Černý Conjecture 17

algorithm. However, it is not the case, and moreover, as we will see, it is very
unlikely that any reasonable algorithm may exist for finding shortest reset words
in general synchronizing automata. In the following discussion we assume the
reader’s acquaintance with some basics of computational complexity (such as
the definitions of the complexity classes NP, coNP and PSPACE) that can be
found, e.g., in (Garey & Johnson, 1979; Papadimitriou, 1994).

Consider the following decision problems:

Short-Reset-Word: Given a synchronizing automaton A and a positive in-
teger � , is it true that A has a reset word of length �?

Shortest-Reset-Word: Given a synchronizing automaton A and a positive
integer � , is it true that the minimum length of a reset word for A is equal
to �?

Clearly, Short-Reset-Word belongs to the complexity class NP: one can
non-deterministically guess a word w ∈ Σ∗ of length � and then check if w is a
reset word for A in time �|Q| . Eppstein (1990) has proved that
Short-Reset-Word is NP-hard by a polynomial reduction from 3-SAT. Thus,
Short-Reset-Word is NP-complete. Other proofs for the same result (all
via reductions from 3-SAT) have been suggested in (Goralčik & Koubek, 1995;
Salomaa, 2003; Samotij, 2007). From the proofs it follows easily that Shortest-

Reset-Word is NP-hard; recently Samotij (2007) has shown that the negation
of 3-SAT can be polynomially reduced to Shortest-Reset-Word whence the
latter problem is also coNP-hard. As a corollary, Shortest-Reset-Word can-
not belong to NP unless NP = coNP which is commonly considered to be very
unlikely. In other words, even non-deterministic algorithms cannot find the min-
imum length of a reset word for a given synchronizing automaton in polynomial
time.

On the other hand, the exhaustive search for reset words through all words
over Σ of length ≤ � can be performed in polynomial (in fact, linear) space since
one can reuse space. Thus, the problem Shortest-Reset-Word belongs to the
complexity class PSPACE; the question of the precise location of this problem
with respect to the polynomial hierarchy still remains open. An upper bound
has been recently found by Martjugin (unpublished) who has shown that the
problem lies in the complexity class Σ2 ∩ Π2 .

By a standard argument, the hardness of the decision problem Short-Reset-

Word implies that its optimization version, in which one seeks a reset word of
minimum length for a given synchronizing automaton, is hard as well. This did
not exclude however that the optimization problem might admit a polynomial-
time approximation algorithm, and moreover, all existing proofs for NP-hardness
of Short-Reset-Word were consistent with the conjecture that such an algo-
rithm exists. However, recently Berlinkov (unpublished) has shown (assuming
P �= NP) that, for any given positive integer k , no polynomial algorithm can
find for each synchronizing automaton A a reset word whose length would be
bounded by k times the minimum length of reset words for A . Thus, approxi-
mating the minimum length of reset words is hard.

18 M.V. Volkov

We mention that Pixley et al (1992) suggested an heuristic algorithm for find-
ing short reset words in synchronizing automata that was reported to perform
rather satisfactory on a number of benchmarks from (Yang, 1991); further algo-
rithms yielding short (though not necessarily shortest) reset words were imple-
mented by Trahtman (2006a).

3 The Černý Conjecture

In this section we discuss results and open problems related to the following
natural question: given a positive integer n , how long can be reset words for
synchronizing automata with n states?

First of all, we recall Černý’s construction (1964). For n > 1, let Cn stand
for the DFA whose states are the residues modulo n and whose input letters a
and b act as follows:

δ(0, a) = 1, δ(m, a) = m for 0 < m < n , δ(m, b) = m + 1 (mod n).

n−2

n−1

0

1

2

a

a a

a
b

b a, b

b

.

Fig. 7. The automaton Cn

Černý (1964) has proved that Cn is a synchronizing automaton and that its
shortest reset word is (abn−1)n−2a of length (n− 1)2 . (This series of automata
was rediscovered many times, see, e.g., (Laemmel & Rudner, 1969; Fischler &
Tannenbaum, 1970; Eppstein, 1990).) Thus, if we define the Černý function
C(n) as the maximum length of shortest reset words for synchronizing automa-
ta with n states, the above property of the series {Cn} , n = 2, 3, . . . , yields the
inequality C(n) ≥ (n− 1)2 . The Černý conjecture is the claim that the equality
C(n) = (n − 1)2 holds true.

In the literature, one often refers to (Černý, 1964) as the source of the Černý
conjecture. In fact, the conjecture was not yet formulated in that paper. There
Černý only observed that

(n − 1)2 ≤ C(n) ≤ 2n − n − 1 (1)

and concluded the paper with the following remark:

Synchronizing Automata and the Černý Conjecture 19

“The difference between the bounds increases rapidly and it is necessary
to sharpen them. One can expect an improvement mainly for the upper
bound.”

The conjecture in its present-day form was formulated a bit later, after the
expectation in the above quotation was confirmed by Starke (1966). (Namely,
Starke improved the upper bound in (1) to 1 + n(n−1)(n−2)

2 , which was the
first polynomial upper bound for C(n).) Černý explicitly stated the conjecture
C(n) = (n − 1)2 in his talk at the Bratislava Cybernetics Conference held in
1969; in print the conjecture first appeared in (Černý et al, 1971).

The best upper bound for the Černý function C(n) achieved so far guarantees
that for every synchronizing automaton with n states there exists a reset word
of length n3−n

6 . Such a reset word arises as the output of the following greedy
algorithm.

Algorithm 1.

input A = 〈Q,Σ, δ〉 (a DFA)

initialization w ← 1 (the empty word)
P ← Q

while |P | > 1 find a word v ∈ Σ∗ of minimum length with |δ(P, v)| < |P | ; if
none exists, return Failure
w ← wv
P ← δ(P, v)

return w

If |Q| = n , then clearly the main loop of Algorithm 1 is executed at most
n− 1 times. In order to evaluate the length of the output word w , we estimate
the length of each word v produced by the main loop.

Consider a generic step at which |P | = k > 1 and let v = a1 · · · a� with
ai ∈ Σ , i = 1, . . . , � . Then it is easy to see that the sets

P1 = P, P2 = δ(P1, a1), . . . , P� = δ(P�−1, a�−1)

are k -element subsets of Q . Furthermore, since |δ(P�, a�)| < |P�| , there exist
two distinct states q�, q

′
� ∈ P� such that δ(q�, a�) = δ(q′�, a�). Now define 2-

element subsets Ri = {qi, q
′
i} ⊆ Pi , i = 1, . . . , � , such that δ(qi, ai) = qi+1 ,

δ(q′i, ai) = q′i+1 for i = 1, . . . , � − 1. Then the condition that v is a word of
minimum length with |δ(P, v)| < |P | implies that Ri � Pj for 1 ≤ j < i ≤ � .
Altogether, we arrive at the following purely combinatorial problem:

Question 1. Let Q be an n-element set, P1, . . . , P� a sequence of its k -element
subsets (k > 1) and R1, . . . , R� a sequence of its 2 -element subsets. Suppose
that Ri ⊆ Pi for each i = 1, . . . , � but Ri � Pj for 1 ≤ j < i ≤ � . How big the
number � can be?

20 M.V. Volkov

Question 1 was solved by Frankl (1982) who found the tight bound � ≤
(
n−k+2

2

)
.

Summing up these inequalities from k = n to k = 2 , one arrives at the afore-
mentioned bound

C(n) ≤ n3 − n

6
. (2)

In the literature the bound (2) is usually attributed to Pin who explained the
above connection between Algorithm 3.1 and Question 1 and conjectured the
estimation � ≤

(
n−k+2

2

)
in his talk at the Colloquium on Graph Theory and

Combinatorics held in Marseille in 1981; Frankl learned Question 1 from that
talk. Accordingly, the usual reference for (2) is the paper (Pin, 1983) based on
the talk. The full story is however more complicated. Actually, the bound (2) first
appeared in (Fischler & Tannenbaum, 1970) where it was deduced from a com-
binatorial conjecture equivalent to Pin’s one. Fischler & Tannenbaum presented
their paper at the 11th FOCS conference but that time there was no Frankl
in the audience so that the conjecture remained unproved and the paper even-
tually got lost in limbo. The bound (2) then reoccurred in Kohavi & Winograd
(1971, 1973) but the argument justifying it in these papers was insufficient. Later
both (2) and Frankl’s solution to Question 1 were independently rediscovered in
(Klyachko et al, 1987).

If one executes Algorithm 1 on the Černý automaton C4 (Fig. 6 is quite help-
ful here), one sees that the algorithm returns the word ab2abab3a of length 10
which is not the shortest reset word for C4 . This reveals one of the main intrin-
sic difficulties of the synchronization problem: the standard optimality principle
does not apply here since it is not true that the optimal solution behaves op-
timally also in all intermediate steps. In our example, the optimal solution is
the word ab3ab3a but it cannot be found by the greedy algorithm because the
algorithm chooses v = b2a rather than v = b3a on the second execution of the
main loop.

Another difficulty behind the scene is that there are only very few examples of
extreme synchronizing automata, that is n-state synchronizing automata whose
shortest reset words have lengths (n − 1)2 . In fact, the Černý series Cn , n =
2, 3, . . . , is the only known infinite series of extreme synchronizing automata.
Besides that, we know only a few isolated examples of such automata: up to
isomorphism and adding/removing non-essential letters, there are three extreme
automata with 3 states, three extreme automata with 4 states (see Fig. 8), one
extreme automaton with 5 states recently found by Roman, see Fig. 9, and one
extreme automaton with 6 states found by Kari (2001), see Fig. 10.

Moreover, even synchronizing automata whose shortest reset words have
lengths close to the Černý bound are very rare. For instance, we are not aware of
any 5-state synchronizing automaton whose shortest reset word has length 24,
nor of any 6-state synchronizing automaton whose shortest reset word has length
33 or 34 or 35, etc. As for regular constructions of “almost-extreme” automata,
we know just one series of n-state synchronizing automata with odd n ≥ 5 such
that the minimum length of reset words for the nth automaton in the series is
equal to (n− 1)(n − 2), see (Ananichev et al, 2007).

Synchronizing Automata and the Černý Conjecture 21

0 1

2

a, b

a

a
bb

0 1

2

a

a, b

a, bc

c

cb

0 1 2

a, b

b

c

c

a, b

a

c

0 1 2

3

a

a

a
b

b

b

ba

0 1 2

3

a

a, c

c
ba, b

c

c

a bb

0

1

2 3a
b

b

c

c

a

a

b, c

a, b

c

Fig. 8. Extreme synchronizing automata with 3 and 4 states

0

1

2 3

4

a

b

b

c

c

c

c

a a

b

a, b

a, b

c

Fig. 9. Roman’s automaton

22 M.V. Volkov

0 1 2

345

a a

a

a a

a

bb
b

b

b

b

Fig. 10. Kari’s automaton

In general, “slowly” synchronizing automata turn out to be rather exceptional,
and this observation is supported also by probabilistic arguments. Indeed, if Q
is an n-element set (with n large enough), then, on average, any product of
2n randomly chosen transformations of Q is known to be a constant map, see
(Higgins, 1988). Being retold in automata-theoretic terms, this fact implies that a
randomly chosen DFA with n states and a sufficiently large input alphabet tends
to be synchronizing, and moreover, the length of its shortest reset word does not
exceed 2n . This means, in particular, that there is no hope to find new examples
of “slowly” synchronizing automata, to say nothing of a counterexample to the
Černý conjecture, via a random sampling experiment.

The Černý conjecture has been confirmed for various classes of synchroniz-
ing automata satisfying some additional restrictions. We conclude with a (non-
complete) list of the most important results of this sort.

We begin with Eppstein’s result (1990) in which restrictions are imposed on
the action of the letters on the state set. Consider the set {0, 1, . . . , n − 1}
equipped with the natural cyclic order 0 ≺ 1 ≺ 2 ≺ · · · ≺ n − 1 ≺ 1 (here
k ≺ � means that � immediately follows k). If i1, i2, . . . , im are numbers in
{0, 1, 2, . . . , n − 1} , we call the sequence i1, i2, . . . , im cyclic if, after removal
of possible adjacent duplicate numbers, it is a subsequence of a cyclic shift of
the sequence 0, 1, 2, . . . , n − 1. In a slightly more formal language, we may say
that i1, i2, . . . , im is a cyclic sequence if there exists no more than one index
t ∈ {1, . . . ,m} such that it+1 < it where im+1 is understood as i1 and <
stands for the usual strict linear order on {0, 1, 2, . . . , n− 1} . A transformation
α of the set {0, 1, 2, . . . , n−1} is said to be orientation preserving if the numbers
0α, 1α, . . . , (n − 1)α form a cyclic sequence. Now let A = 〈Q,Σ, δ〉 be a DFA
with n states. We say that A is orientable if its states can be indexed by
0, 1, 2, . . . , n− 1 so that all the transformations δ(��, a) : Q → Q induced by the
letters a ∈ Σ are orientation preserving. For instance, Černý’s automata Cn ,
n = 2, 3, . . . , are orientable.

Eppstein’s interest in orientable automata (which he called monotonic) was
motivated by the robotics applications of synchronizing automata. Indeed, in the
problem of sensor-free orientation of polygonal parts one deals with solid bodies
whence only those transformations of polygons are physically meaningful that

Synchronizing Automata and the Černý Conjecture 23

preserve relative location of the faces of these polygons. It was observed already
by Natarajan (1986) that in the “flat” case (when the polygonal parts do not
leave a certain plane, say, the surface of a conveyer belt) this physical requirement
leads precisely to orientation preserving transformations. In (Eppstein, 1990,
Theorem 2) it is proved that, in accordance with the Černý conjecture, every
orientable synchronizing automaton with n states has a reset word of length
(n− 1)2 . An extension of this result to a larger class of synchronizing automata
whose letter actions mimic certain “spatial” transformations of solid polygons
was obtained by Ananichev & Volkov (2004).

Dubuc (1998) has proved the Černý conjecture for yet another natural class
of automata also containing the Černý series: automata in which a letter acts
on the state set Q as a cyclic permutation of order |Q| .

In Kari’s elegant paper (2003) the restriction has been imposed on the un-
derlying digraphs of automata in question, namely, the Černý’s conjecture has
been verified for synchronizing automata with Eulerian digraphs. Moreover, it
has been proved that if the underlying digraph of an n-state synchronizing au-
tomaton is Eulerian then there exists a reset word of length (n − 2)(n − 1) + 1
(Kari, 2003, Theorem 2). It is unknown whether or not this bound is tight.

Recall that the transition monoid of a DFA A = 〈Q,Σ, δ〉 is the monoid con-
sisting of all transformations δ(��, w) : Q → Q induced by the words w ∈ Σ∗ .
Several authors have studied synchronization issues for automata whose tran-
sition monoids satisfy certain abstract properties. An important example of a
property of automata expressed in this language is aperiodicity. A monoid is
said to be aperiodic if all its subgroups are singletons; a DFA is called aperiodic
(or counter-free) if its transition monoid is aperiodic. Aperiodic automata play
a distinguished role in many aspects of formal language theory and its connec-
tions to logic, see the classic monograph by McNaughton & Papert (1971). Thus,
studying synchronization within this important subclass of automata appears to
be well justified, especially if one takes into account that the problem of finding
short reset words is known to remain difficult when restricted to aperiodic au-
tomata. Indeed, inspecting the reductions from 3-SAT used in (Eppstein, 1990)
or (Goralčik & Koubek, 1995) or (Salomaa, 2003), one can observe that in each
case the construction results in an aperiodic automaton, and therefore, the ques-
tion of whether or not a given aperiodic automaton admits a reset word whose
length does not exceed a given positive integer is NP-complete.

Recently Trahtman (2007) has proved that every synchronizing aperiodic au-
tomaton with n states admits a reset word of length at most n(n−1)

2 . Thus,
the Černý conjecture holds true for synchronizing aperiodic automata. However,
the problem of establishing a precise bound for the minimum length of reset
words for synchronizing aperiodic automata with n states still remains open,
and moreover, we do not even have a reasonably justified conjecture for this
case. Denote by CA(n) the minimum length of reset words for synchronizing
aperiodic automata with n states, that is, the restriction of the Černý function
to the class of aperiodic automata. Then Trahtman’s result can be expressed by

the inequality CA(n) ≤ n(n − 1)
2

. However, the only non-trivial lower bound for

24 M.V. Volkov

CA(n), which has been established so far, is linear, namely, CA(n) ≥ n+
⌊n

2

⌋
−2

for n ≥ 7 . (This bound comes from Ananichev’s paper (2005).) One sees that
the gap between the two bounds is fairly large. We believe that the actual value
of CA(n) is closer to the lower bound.

In (Volkov, 2007) the results from (Trahtman, 2007) have been extended to
a larger class of automata and improved. In particular, it has been proved that
if the underlying digraph of an n-state aperiodic automaton is strongly con-
nected, then the automaton has a reset word of length �n(n+1)

6 � (Volkov, 2007,
Corollary 1).

Another large class of finite monoids which is of importance for formal lan-
guage theory is known under the name DS and can be described as follows: a
finite monoid M belongs to DS if and only if for all x, y, z, t ∈ N the following
condition holds:

MxM = MyM = MzM = MtM = MxyM implies MxyM = MztM.

(For the reader acquainted with some basics of semigroup theory, we recall an
equivalent but more standard description of DS: a finite monoid M belongs to
DS if and only if each regular D -class of M is a subsemigroup in M .) Recently
Almeida et al (2008) have proved the Černý conjecture for synchronizing autom-
ata with transition monoids in DS. Again, the problem of establishing a precise
bound for the minimum length of reset words for synchronizing automata in this
class still remains open.

References

Almeida, J., Margolis, S., Steinberg, B., Volkov, M.V.: Representation theory of finite
semigroups, semigroup radicals and formal language theory. Trans. Amer. Math.
Soc. (to appear, 2008), http://arxiv.org/abs/math/0702400v1

Ananichev, D.S.: The mortality threshold for partially monotonic automata. In: De
Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 112–121. Springer,
Heidelberg (2005)

Ananichev, D.S., Volkov, M.V.: Some results on Černý type problems for transforma-
tion semigroups. In: Araujo, I., Branco, M., Fernandes, V.H., Gomes, G.M.S. (eds.)
Semigroups and Languages, pp. 23–42. World Scientific, Singapore (2004)

Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter of
deficiency 2. Theoret. Comput. Sci. 376(1-2), 30–41 (2007)

Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956),
http://pcp.vub.ac.be/books/IntroCyb.pdf

Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Program-
mable and autonomous computing machine made of biomolecules. Nature 414(1),
430–434 (2001)

Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides
a computing machine with both data and fuel. Proc. National Acad. Sci. USA 100,
2191–2196 (2003)

http://arxiv.org/abs/math/0702400v1
http://pcp.vub.ac.be/books/IntroCyb.pdf

Synchronizing Automata and the Černý Conjecture 25

Booth, T.L.: Sequential Machines and Automata Theory. J. Wiley & Sons, New York
(1967)

Boppana, V., Rajan, S.P., Takayama, K., Fujita, M.: Model checking based on sequen-
tial ATPG. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
418–430. Springer, Heidelberg (1999)

Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikalny Časopis Slovensk. Akad. Vied 14(3), 208–216 (1964) (in Slo-
vak)

Černý, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika 7(4),
289–298 (1971)

Chen, Y.-B., Ierardi, D.J.: The complexity of oblivious plans for orienting and distin-
guishing polygonal parts. Algorithmica 14, 367–397 (1995)

Cho, H., Jeong, S.-W., Somenzi, F., Pixley, C.: Synchronizing sequences and symbolic
traversal techniques in test generation. J. Electronic Testing 4, 19–31 (1993)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

Dubuc, L.: Sur le automates circulaires et la conjecture de Černý. RAIRO Inform.
Theor. Appl. 32, 21–34 (1998) (in French)

Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510
(1990)

Fischler, M.A., Tannenbaum, M.: Synchronizing and representation problems for se-
quential machines with masked outputs. In: Proc. 11th Annual Symp. Foundations
Comput. Sci., pp. 97–103. IEEE, Los Alamitos (1970)

Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127
(1982)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco (1979)

Gill, A.: State-identification experiments in finite automata. Information and Con-
trol 4(2-3), 132–154 (1961)

Ginsburg, S.: On the length of the smallest uniform experiment which distinguishes
the terminal states of a machine. J. Assoc. Comput. Mach. 5, 266–280 (1958)

Goldberg, K.: Orienting polygonal parts without sensors. Algorithmica 10, 201–225
(1993)

Goralčik, P., Koubek, V.: Rank problems for composite transformations. Int. J. Algebra
and Computation 5, 309–316 (1995)

Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proc. 5th Annual
Symp. Switching Circuit Theory and Logical Design, pp. 95–110. IEEE, Los Alamitos
(1964)

Hennie, F.C.: Finite-state Models for Logical Machines. J.Wiley & Sons, New York
(1968)

Higgins, P.M.: The range order of a product of i transformations from a finite full
transformation semigroup. Semigroup Forum 37, 31–36 (1988)

Kari, J.: A counter example to a conjecture concerning synchronizing words in finite
automata. EATCS Bull. 73, 146 (2001)

Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.
Sci. 295, 223–232 (2003)

Klyachko, A.A., Rystsov, I.K., Spivak, M.A.: An extremal combinatorial problem as-
sociated with the bound of the length of a synchronizing word in an automaton.
Kibernetika 25(2), 16–20 (1987) (in Russian); English translation: Cybernetics and
Systems Analysis 23(2), 165–171

26 M.V. Volkov

Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1970)
Kohavi, Z., Winograd, J.: Bounds on the length of synchronizing sequences and the

order of information losslessness. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines
and Computations, pp. 197–206. Academic Press, New York (1971)

Kohavi, Z., Winograd, J.: Establishing certain bounds concerning finite automata. J.
Comput. Syst. Sci. 7(3), 288–299 (1973)

Laemmel, A.E., Rudner, B.: Study of the application of coding theory, Report PIBEP-
69-034, Polytechnic Inst. Brooklyn, Dept. Electrophysics, Farmingdale (1969)

Mateescu, A., Salomaa, A.: Many-valued truth functions, Černý’s conjecture and road
coloring. EATCS Bull. 68, 134–150 (1999)

McNaughton, R., Papert, S.A.: Counter-free Automata. MIT Press, Cambridge (1971)
Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.E., Mc-

Carthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol. 34, pp.
129–153. Princeton University Press, Princeton (1956)

Natarajan, B.K.: An algorithmic approach to the automated design of parts orienters.
In: Proc. 27th Annual Symp. Foundations Comput. Sci., pp. 132–142. IEEE, Los
Alamitos (1986)

Natarajan, B.K.: Some paradigms for the automated design of parts feeders. Internat.
J. Robotics Research 8(6), 89–109 (1989)

Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann. Discrete

Math. 17, 535–548 (1983)
Pixley, C., Jeong, S.-W., Hachtel, G.D.: Exact calculation of synchronization sequences

based on binary decision diagrams. In: Proc. 29th Design Automation Conf., pp.
620–623. IEEE, Los Alamitos (1992)

Rho, J.-K., Somenzi, F., Pixley, C.: Minimum length synchronizing sequences of finite
state machine. In: Proc. 30th Design Automation Conf., pp. 463–468. ACM, New
York (1993)

Salomaa, A.: Composition sequences for functions over a finite domain. Theoret. Com-
put. Sci. 292, 263–281 (2003)

Samotij, W.: A note on the complexity of the problem of finding shortest synchronizing
words. In: Proc. AutoMathA 2007, Automata: from Mathematics to Applications,
Univ. Palermo (CD) (2007)

Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)

Starke, P.H.: Eine Bemerkung über homogene Experimente. Elektronische Informa-
tionverarbeitung und Kybernetik 2, 257–259 (1966) (in German)

Starke, P. H.: Abstrakte Automaten, Deutscher Verlag der Wissenschaften, Berlin
(1969) (in German); English translation: Abstract Automata, North-Holland, Ams-
terdam, American. Elsevier, New York (1972)

Trahtman, A.: An efficient algorithm finds noticeable trends and examples concern-
ing the Černý conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

Trahtman, A.: The Černý conjecture for aperiodic automata. Discrete Math. Theoret.
Comp. Sci. 9(2), 3–10 (2007)

Trahtman, A.: The Road Coloring Problem. Israel J. Math. (to appear, 2008),
http://arxiv.org/abs/0709.0099

http://arxiv.org/abs/0709.0099

Synchronizing Automata and the Černý Conjecture 27

Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. In: Holub,
J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 27–37. Springer, Heidelberg
(2007)

Yang, S.: Logic Synthesis and Optimization Benchmarks User Guide Version 3.0, Mi-
croelectronics Center of North Carolina, Research Triangle Park, NC (1991)

About Universal Hybrid Networks of

Evolutionary Processors of Small Size�

Artiom Alhazov1,2, Erzsébet Csuhaj-Varjú3,4, Carlos Mart́ın-Vide5,
and Yurii Rogozhin5,2

1 Åbo Akademi University, Department of Information Technologies,
Turku Center for Computer Science, FIN-20520 Turku, Finland

aalhazov@abo.fi
2 Academy of Sciences of Moldova,

Institute of Mathematics and Computer Science,
Academiei 5, MD-2028, Chişinău, Moldova

{artiom,rogozhin}@math.md
3 Computer and Automation Research Institute,

Hungarian Academy of Sciences,
Kende u. 13-17, 1111 Budapest, Hungary

csuhaj@sztaki.hu
4 Eötvös Loránd University,

Faculty of Informatics, Department of Algorithms and Their Applications,
Pázmány Péter sétány 1/c, H-1117 Budapest, Hungary

5 Rovira i Virgili University,
Research Group on Mathematical Linguistics,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
carlos.martin@urv.cat

Abstract. A hybrid network of evolutionary processors (an HNEP) is
a graph with a language processor, input and output filters associated to
each node. A language processor performs one type of point mutations
(insertion, deletion or substitution) on the words in that node. The fil-
ters are defined by certain variants of random-context conditions. In this
paper, we present a universal complete HNEP with 10 nodes simulat-
ing circular Post machines and show that every recursively enumerable
language can be generated by a complete HNEP with 10 nodes. Thus,
we positively answer the question posed in [5] about the possibility to
generate an arbitrary recursively enumerable language over an alphabet
V with a complete HNEP of a size smaller than 27 + 3 · card(V).

Keywords: Bio-inspired computing, Hybrid networks of evolutionary
processors, Small universal systems, Descriptional complexity, Circular
Post machines.

� The first author gratefully acknowledges the support by Academy of Finland, project
203667. The fourth author gratefully acknowledges the support of European Com-
mission, project MolCIP, MIF1-CT-2006-021666. The first and the fourth authors
acknowledge the Science and Technology Center in Ukraine, project 4032.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 28–39, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

About Universal Hybrid Networks of Evolutionary Processors of Small Size 29

1 Introduction

Networks of language processors are finite collections of rewriting systems (lan-
guage processors) organized in a communicating system [6]. The language proces-
sors are located at nodes of a virtual graph and operate over sets or multisets
of words. During the functioning of the network, they rewrite the correspond-
ing collections of words and then re-distribute the resulting strings according
to a communication protocol assigned to the system. The language determined
by the system is usually defined as the set of words which appear at some dis-
tinguished node in the course of the computation. One of the main questions
related to networks of language processors is how much extent their generative
power depends on the used operations and the size of the system. Particularly
important variants are those ones where the language processors are based on
elementary string manipulating rules, since these constructs give insight into the
limits of the power of the simplicity of basic language theoretic operations and
that of distributed architectures.

Networks of evolutionary processors (NEPs), introduced in [4], and also in-
spired by cell biology, are proper examples for these types of constructs. In this
case, each processor represents a cell performing point mutations of DNA and
controlling its passage inside and outside it through a filtering mechanism. The
language processor corresponds to the cell, the generated word to a DNA strand,
and operations insertion, deletion, or substitution of a symbol to the point mu-
tations. It is known that a computationally universal behaviour emerges as a
result of interaction of such simple components (see, for example [1,2]).

In the case of so-called hybrid networks of evolutionary processors (HNEPs),
each language processor performs only one of the above operations on a certain
position of the words in that node. The filters are defined by some variants
of random-context conditions. The concept was introduced in [9], and proved
computationally complete in [5], with 27 + 3 · card(V) nodes for alphabet V .

In this paper, we present a universal complete HNEP with 10 nodes and prove
that every recursively enumerable language can be generated by a complete NHEP
with the same number of nodes. Although these bounds are not shown sharp, we
significantly improve the previous result. The constructions demonstrate that
distributed architectures of very small size, with uniform structure and with
components based on very simple language theoretic operations are sufficient to
obtain computational completeness.

2 Preliminaries

We recall some notions we shall use throughout the paper. An alphabet is a
finite and nonempty set of symbols. The cardinality of a finite set A is written
as card(A). A sequence of symbols from an alphabet V is called a word over V .
The set of all words over V is denoted by V ∗ and the empty word is denoted
by ε; we use V + = V ∗ \ {ε}. The length of a word x is denoted by |x|, while
we denote the number of occurrences of a letter a in a word x by |x|a. For each
nonempty word x, alph(x) is the minimal alphabet W such that x ∈ W ∗.

30 A. Alhazov et al.

In our constructions, HNEPs simulate type-0 grammars in Kuroda normal
form and Circular Post Machines.

A type-0 grammar in Kuroda normal form is a construct Γ = (N,T, S, P),
where N is the set of nonterminal symbols, T is the set of terminal symbols, N and
T are disjoint sets, S ∈ N is the start symbol, and P is the set of rules of the forms
A −→ a, A −→ BC, A −→ ε, AB −→ CD, where A,B,C,D ∈ N and a ∈ T .
These grammars are known to generate all recursively enumerable languages.

Circular Post Machines (CPMs) were introduced in [7], where it was shown
that all introduced variants of CPMs are computationally complete, and more-
over, the same statement holds for CPMs with two symbols. In [8,3] several
universal CPMs of variant 0 (CPM0) having small size were constructed, among
them in [3] a universal CPM0 with 34 states and 2 symbols. In this article we
use the deterministic variant of CPM0s.

A Circular Post Machine is a quintuple (Σ,Q,q0,qf , P) with a finite alphabet
Σ where 0 is the blank, a finite set of states Q, an initial state q0 ∈ Q, a terminal
state qf ∈ Q, and a finite set of instructions of P with all instructions having
one of the forms px → q (erasing the symbol read), px → yq (overwriting and
moving to the right), p0 → yq0 (overwriting and creation of a blank), where
x, y ∈ Σ and p,q ∈ Q.

The storage of this machine is a circular tape, the read and write head move
only in one direction (to the right), and with the possibility to cut off a cell or
to create and insert a new cell with a blank.

In the following, we summarize the necessary notions concerning so-called evo-
lutionary operations, simple rewriting operations abstract local gene mutations.

For an alphabet V, we say that a rule a → b, with a, b ∈ V ∪{ε} is a substitution
rule if both a and b are different from ε; it is a deletion rule if a �= ε and b = ε;
and, it is an insertion rule if a = ε and b �= ε. The set of all substitution,
deletion, and insertion rules over an alphabet V are denoted by SubV , DelV ,
and InsV , respectively. Given such rules π, ρ, σ, and a word w ∈ V ∗, we define
the following actions of σ on w: If π ≡ a → b ∈ SubV , ρ ≡ a → ε ∈ DelV , and
σ ≡ ε → a ∈ InsV , then

π∗(w) =
{
{ubv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise (1)

ρ∗(w) =
{
{uv : ∃u, v ∈ V ∗(w = uav)},
{w}, otherwise (2)

ρr(w) =
{
{u : w = ua},
{w}, otherwise (3)

ρl(w) =
{
{v : w = av},
{w}, otherwise (4)

σ∗(w) = {uav : ∃u, v,∈ V ∗(w = uv)}, (5)
σr(w) = {wa}, σl(w) = {aw}. (6)

Symbol α ∈ {∗, l, r} denotes the way of applying an insertion or a deletion
rule to a word, namely, at any position (a = ∗), in the left-hand end (a = l), or

About Universal Hybrid Networks of Evolutionary Processors of Small Size 31

in the right-hand end (a = r) of the word, respectively. Note that a substitution
rule can be applied at any position. For every rule σ, action α ∈ {∗, l, r}, and
L ⊆ V ∗, we define the α−action of σ on L by σα(L) =

⋃
w∈L σα(w). For a given

finite set of rules M , we define the α−action of M on a word w and on a language
L by Mα(w) =

⋃
σ∈M σα(w) and Mα(L) =

⋃
w∈L Mα(w), respectively.

Before turning to the notion of an evolutionary processor, we define the fil-
tering mechanism.

For disjoint subsets P, F ⊆ V and a word w ∈ V ∗, we define the predicate ϕ
(ϕ(2) in terminology of [5]) as ϕ(w;P, F) ≡ alph(w)∩P �= ∅ ∧ F ∩alph(w) = ∅.
The construction of this predicate is based on random-context conditions defined
by the two sets P (permitting contexts) and F (forbidding contexts). For every
language L ⊆ V ∗ we define ϕ(L,P, F) = {w ∈ L | ϕ(w;P, F)}.

An evolutionary processor over V is a 5-tuple (M,PI, FI, PO, FO) where:

- Either M ⊆ SubV or M ⊆ DelV or M ⊆ InsV . The set M represents the
set of evolutionary rules of the processor. Note that every processor is dedicated
to only one type of the above evolutionary operations.

- PI, FI ⊆ V are the input permitting/forbidding contexts of the proces-
sor, while PO,FO ⊆ V are the output permitting/forbidding contexts of the
processor.

We denote the set of evolutionary processors over V by EPV .

Definition 1. A hybrid network of evolutionary processors (an HNEP, shortly)
is a 7-tuple Γ = (V,G,N,C0, α, β, i0), where the following conditions hold:

- V is an alphabet.
- G = (XG, EG) is an undirected graph with set of vertices XG and set of

edges EG. G is called the underlying graph of the network.
- N : XG −→ EPV is a mapping which associates with each node x ∈ XG the

evolutionary processor N(x) = (Mx, P Ix, F Ix, POx, FOx).
- C0 : XG −→ 2V ∗

is a mapping which identifies the initial configuration of
the network. It associates a finite set of words with each node of the graph G.

- α : XG −→ {∗, l, r}; α(x) defines the action mode of the rules performed in
node x on the words occurring in that node.

- β : XG −→ {(1), (2)} defines the type of the input/output filters of a node.
More precisely, for every node, x ∈ XG, we define the following filters: the input
filter is given as ρx(·) = ϕβ(x)(·;PIx, F Ix), and the output filter is defined as
τx(·) = ϕβ(x)(·, POx, FOx). That is, ρx(w) (resp.τx) indicates whether or not the
word w can pass the input (resp. output) filter of x. More generally, ρx(L) (resp.
τx(L)) is the set of words of L that can pass the input (resp. output) filter of x.

- i0 ∈ XG is the output node of the HNEP.

We say that card(XG) is the size of Γ . An HNEP is said to be a complete HNEP,
if its underlying graph is a complete graph.

A configuration of an HNEP Γ , as above, is a mapping C : XG −→ 2V ∗

which associates a set of words with each node of the graph. A component C(x)
of a configuration C is the set of words that can be found in the node x in this

32 A. Alhazov et al.

configuration, hence a configuration can be considered as the sets of words which
are present in the nodes of the network at a given moment. A configuration
can change either by an evolutionary step or by a communication step. When
it changes by an evolutionary step, then each component C(x) of the configura-
tion C is changed in accordance with the set of evolutionary rules Mx associated
with the node x and the way of applying these rules α(x). Formally, the configu-
ration C′ is obtained in one evolutionary step from the configuration C, written
as C =⇒ C′, iff C′(x) = M

α(x)
x (C(x)) for all x ∈ XG.

When it changes by a communication step, then each language processor
N(x), where x ∈ XG, sends a copy of each of its words to every node processor
where the node is connected with x, provided that this word is able to pass the
output filter of x, and receives all the words which are sent by processors of nodes
connected with x, providing that these words are able to pass the input filter
of x. Formally, we say that configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff C′(x) = (C(x) − τx(C(x))) ∪⋃

{x,y}∈EG
(τy(C(y) ∩ ρx(C(y))) for all x ∈ XG.

For an HNEP Γ , a computation in Γ is a sequence of configurations C0,
C1,C2, . . . , where C0 is the initial configuration of Γ , C2i =⇒ C2i+1 and C2i+1 �
C2i+2, for all i > 0. If we use HNEPs as language generating devices, then
the generated language is the set of all words which appear in the output node
at some step of the computation. Formally, the language generated by Γ is
L(Γ) =

⋃
s≥0 Cs(i0).

3 Main Results

3.1 Universality

Theorem 1. Any CPM0 P with 2 symbols can be simulated by an HNEP P ′

with 10 nodes.

Proof. Let us consider a CPM0 P with two symbols, 0 and 1, and f states,
qi ∈ Q, i ∈ I = {1, 2, . . . , f}, where q1 is the initial state and the only terminal
state is qf ∈ Q. Suppose that P stops in the terminal state qf on every symbol,
i.e., there are two instructions qf0 → Halt and qf1 → Halt. (Notice, that it is
easy to transform any CPM0 with n states into a CPM0 with n + 1 states that
stops on every symbol in terminal state.)

So, we consider CPM0 P with instructions of the forms qix −→ qj , qix −→
yqj , qi0 −→ yqj0, qf0 −→ Halt, qf1 −→ Halt, where qi, qj ∈ Q, x, y ∈ {0, 1}. A
configuration w = xWqi of CPM0 P describes that P in state qi ∈ Q considers
symbol x ∈ {0, 1} on the left-hand end of W ∈ {0, 1}∗. Let I ′ = I \ {f} and
x, y ∈ {0, 1}. In the following, we construct an HNEP P ′ simulating P. Starting
with the initial configuration W0 of CPM0 P in node 1 of HNEP P ′, we simulate
every computation step performed by P with a sequence of computation steps
in P ′. If the computation in P is finite, then the final configuration Wf of P will
be found at node 10 of P ′, moreover, any string that can be found at node 10 is
a final configuration of P. In the case of an infinite computation in P , no string

About Universal Hybrid Networks of Evolutionary Processors of Small Size 33

will appear in node 10 of P ′ and the computation in P ′ will never stop. In the
Table 1 below a complete HNEP P ′ = (V,G,N,C0, α, β, 10) with 10 nodes is
described, where (for i ∈ I ′, y ∈ X)

V = Q ∪ Q′ ∪ T ∪ T ′ ∪ S ∪ S′ ∪ R ∪ R′ ∪ X ∪ X ′ ∪X ′′ ∪ {0̂} and
Q′ = {q′i}, T = {ti,y}, T ′ = {t′i,y}, S = {si,y}, S′ = {s′i,y},
R = {ri | i ∈ I ′ ∪ {0}}, R′ = {r′i}, X = {0, 1}, X ′ = {0′, 1′}, X ′′ = {0′′, 1′′}.

G is a complete graph with 10 nodes, N,C0, α, β are presented in the Table 1
and node 10 is the output node of HNEP P ′. We explain how P ′ simulates the
instructions of CPM0 P . Due to the lack of space, we present only the necessary
details.

Instruction qix −→ qj: xWqi
P−→ Wqj.

The simulation starts with xWqi in node 1 of P ′. By performing evolution steps
on this string at node 1, we obtain xWqi

1.1−→ xWq′i
1.2−→ {x′Wq′i, xW ′q′i},

where W ∈ {0, 1}∗ and W ′ ∈ {0, 1, 0′, 1′}. In the following communication step,
only strings with q′i and x′ can leave node 1. Notice that strings xW ′q′i do not
contain symbols x′ on the left-hand end. It is easy to see that during the next
transformations it is not possible to delete x′ if it is not on the left-hand end of
the strings, so these strings will stay forever in node 8. Thus, we will not further
consider strings that contain symbols x′ not in the correct position. String x′Wq′i
can enter nodes 2 or 3. Let us consider, for example, node 2 (the case for node
3 can be treated analogously). If the string enters node 2, then there exists
an instruction qi0 −→ qj in CPM0 P and x′ = 0′, so 0′Wq′i

2.1−→ 0′Wqj . In
the following communication step, string 0′Wqj can enter only node 8, where
0′Wqj

8.1−→ Wqj , and then the obtained string, Wqj , can enter only node 1. So,
we simulated instruction qix −→ qj of P in a correct manner.

In the Table 1 below i, j ∈ I ′, x, y ∈ X, x′, y′ ∈ X ′, y′′ ∈ X ′′.

Table 1.

N, C0, M PI, FI,PO, FO
α, β

1, {1.1 : qi → q′
i} ∪ PI = ∅,

{W0}, {1.2 : x → x′} ∪ FI = Q′ ∪ X ′′ ∪ X ′ ∪ {qf },
∗, (2) {1.3 : y′′ → y} ∪ PO = X ′,

{1.4 : 0̂ → 0} FO = Q ∪ X ′′ ∪ {0̂}
2, ∅, {2.1 : q′

i → qj | qi0 → qj} ∪ PI = {q′
i | qi0 → qj}∪

∗, (2) {2.2 : q′
i → tj,y | qi0 → yqj} ∪ {q′

i | qi0 → yqj}∪
{2.3 : q′

i → sj,y | qi0 → yqj0} ∪ {q′
i | qi0 → yqj0}∪

{2.4 : q′
i → qf | qi0 → qf} {q′

i | qi0 → qf}
FI = {1′}, PO = {0′}, FO = Q′

3, ∅, {3.1 : q′
i → qj | qi1 → qj} ∪ PI = {q′

i | qi1 → qj}∪
∗, (2) {3.2 : q′

i → tj,y | qi1 → yqj} ∪ {q′
i | qi1 → yqj}∪

{3.3 : q′
i → qf | qi1 → qf} {q′

i | qi1 → qf}
FI = {0′}, PO = {1′}, FO = Q′

34 A. Alhazov et al.

Table 1. (continued)

N, C0, M PI,FI,PO, FO
α, β

4, ∅, {4.1 : ε → r0} PI = T ∪ S, FI = R ∪ R′,
r, (2) PO = {r0}, FO = ∅
5, ∅, {5.1 : ti,y → t′

i−1,y , P I = T,
∗, (2) 5.2 : si,y → s′

i−1,y | 2 ≤ i ≤ f − 1} ∪ FI = T ′ ∪ S′ ∪ R′,
{5.3 : ri → r′

i+1 | 0 ≤ i ≤ f − 2} ∪ PO = R′,
{5.4 : t1,y → y} ∪ FO = T ∪ S ∪ R
{5.5 : s1,y → y′′}

6, ∅, {6.1 : t′
i,y → ti−1,y , P I = T ′,

∗, (2) 6.2 : s′
i,y → si−1,y | 2 ≤ i ≤ f − 2} ∪ FI = T ∪ S ∪ R,

{6.3 : r′
i → ri+1 | 1 ≤ i ≤ f − 2} ∪ PO = R,

{6.4 : t′
1,y → y} ∪ FO = T ′ ∪ S′ ∪ R′

{6.5 : s′
1,y → y′′}

7, ∅, {7.1 : ri → qi, P I = R ∪ R′, F I = Q′ ∪ T ∪ T ′∪
∗, (2) 7.2 : r′

i → qi | i ∈ I ′} S ∪ S′, PO = X ′, FO = R ∪ R′

8, ∅, {8.1 : x′ → ε} PI = X ′, F I = Q′ ∪ T ∪ T ′∪
l, (2) S ∪ S′ ∪ R ∪ R′, PO = ∅, FO = X ′

9, ∅, {9.1 : ε → 0̂} PI = X ′′, F I = R ∪ R′ ∪ X ′ ∪ {0̂},

l, (2) PO = {0̂}, FO = ∅
10, ∅, ∅ PI = {qf}, F I = V \ {X ∪ {qf}},
∗, (2) PO = ∅, FO = {qf }

Instruction qix −→ yqj : xWqi
P−→ Wyqj.

HNEP P ′ starts the simulation with xWqi in node 1. Then, two evolution
steps follow, xWqi

1.1−→ xWq′i
1.2−→ {x′Wq′i, xW ′q′i}, where W ∈ {0, 1}∗ and

W ′ ∈ {0, 1, 0′, 1′}. Similarly to the previous case, we will consider only string of
the form x′Wq′i. This string can enter nodes 2 or 3. Consider, for example, node 2
(the case for node 3 can be treated analogously). If the string enters node 2, then
there is an instruction qi0 −→ yqj in CPM0 P and x′ = 0′. So, 0′Wq′i

2.2−→ 0′Wtj,y.
String 0′Wtj,y can enter nodes 4 and 5. In the latter case the string will stay in node
5 forever, as it does not contain any symbol from R′. Suppose that the string en-
ters node 4. Then, an evolution step, 0′Wtj,y

4.1−→ 0′Wtj,yr0, follows. Now, string
0′Wtj,yr0 can successfully be communicated only to node 5. Then, in nodes 5 and
6, the string is involved in the following evolution steps: For t ∈ I ′,

0′Wtj−t,yrt
5.1−→ 0′Wt′j−(t+1),yrt

5.3−→ 0′Wt′j−(t+1),yr
′
t+1

0′Wt′j−(t+1),yr
′
t+1

6.1−→ 0′Wtj−(t+2),yr
′
t+1

6.3−→ 0′Wtj−(t+2),yrt+2.

The string enters in node 5 and 6 in circle, until the first index of t or t′ will
be decreased to 1. At that moment in node 5 (node 6) index of r (r′) will be
exactly j−1, and it becomes j by rule 5.3 (6.3), i.e. the same, as the first index
of t in string 0′Wtj,yr0 before entering node 5. After that, 0′Wt1,yr

′
j

5.4−→ 0′Wyr′j
or 0′Wt′1,yrj

6.4−→ 0′Wyrj . In the following communication step, string 0′Wyr′j or

About Universal Hybrid Networks of Evolutionary Processors of Small Size 35

0′Wyrj can enter only node 7, where the following evolution steps are performed:
0′Wyrj

7.1−→ 0′Wyqj , 0′Wyr′j
7.2−→ 0′Wyqj . String 0′Wyqj is communicated to

node 8, and this is the only node the string is able to enter. At node 8, evolution
step 0′Wyqj

8.1−→ Wyqj can be performed. Now, string Wyqj can enter only node
1. So, instruction qix −→ yqj of P is correctly simulated.

Instruction qi0 −→ yqj0 : 0Wqi
P−→ 0Wyqj.

The beginning of the simulation of instruction qi0 −→ yqj0 is the same as that
of instruction qi0 −→ yqj . The difference appears when rule 2.3 : q′i → sj,y is
applied in node 2 instead of rule 2.2 : q′i → tj,y and at the end of the circle
process in nodes 5 and 6, s1,y or s′1,y becomes y′′ (rules 5.5 or 6.5) instead
of y (rules 5.4 or 6.4). Strings 0′Wy′′r′j or 0′Wy′′rj can enter only node 7.

Then, either evolution step 0′Wy′′rj
7.1−→ 0′Wy′′qj or evolution step 0′Wy′′r′j

7.2−→
0′Wy′′qj follows. String 0′Wy′′qj can enter only node 8, where evolution step
0′Wy′′qj

8.1−→ Wy′′qj is performed. The new string, Wy′′qj , can enter only node
9, where evolution step Wy′′qj

9.1−→ 0̂Wy′′qj follows. Then string 0̂Wy′′qj can
enter only node 1, where evolution steps 0̂Wy′′qj

1.3−→ 0̂Wyqj
1.4−→ 0Wyqj are

performed. Thus, instruction qi0 −→ yqj0 of P is correctly simulated.

Instruction qix −→ qf : xWqi
P−→ Wqf .

In nodes 2 or 3 we have rules q′i → qf (rules 2.4 or 3.3) and string x′Wq′i
will be transformed to string x′Wqf . After that it enters node 8 and changes to
Wqf . Now it enters node 10 as a result. So, CPM0 P is correctly modeled. We
have demonstrated that the rules of P are simulated in P ′. The proof that P ′

simulates only P comes from the construction of the rules in P ′, we leave the
details to the reader.

Corollary 1. There exists a universal HNEP with 10 nodes.

3.2 Computational Completeness

Theorem 2. Any recursively enumerable language can be generated by a com-
plete HNEP of size 10.

Proof. Let Γ = (N,T, S,R) be a type-0 grammar in Kuroda normal form.
We construct a complete HNEP Γ ′ = (V,G,N,C0, α, β, 10) of size 10 that

simulates the derivations in Γ by the so-called rotate-and-simulate method. The
rotate-and-simulate method means that the words found in the nodes are in-
volved into either the rotation of the leftmost symbol (the leftmost symbol of
the word is moved to the end of the word) or the simulation of a rule of R. To
guarantee the correct simulation, a marker symbol, #, is introduced for indicat-
ing the end of the simulated word under the rotation. Assume that the symbols
N ∪ T ∪ {#} are labeled in a one-to-one manner by 1, 2, . . . , n. More precisely
let N ∪T ∪{#} = A = {A1, A2, . . . An}, I = {1, 2, . . . , n}, I ′ = {1, 2, . . . , n− 1},
I ′′ = {2, 3 . . . , n}, I0 = {0, 1, 2, . . . , n}, I ′0 = {0, 1, 2, . . . , n− 1}, B0 = {Bj,0 | j ∈
I}, # = An, T ′ = T ∪ #. The alphabet V of the network is defined as follows:

36 A. Alhazov et al.

V = A ∪B ∪ B′ ∪C ∪ C′ ∪ D ∪ D′ ∪ E ∪ E′ ∪ {ε′}, where
B = {Bi,j | i ∈ I, j ∈ I0}, B′ = {B′

i,j | i, j ∈ I}, C = {Ci | i ∈ I},
C′ = {C′

i | i ∈ I ′}, D = {Di | i ∈ I0}, D′ = {D′
i | i ∈ I},

E = {Ei,j | i, j ∈ I}, E′ = {E′
i,j | i, j ∈ I}.

G is a complete graph with 10 nodes, N,C0, α, β are presented in Table 2
below and node 10 is the output node of HNEP Γ ′.

A configuration of grammar Γ is a word w ∈ {N ∪ T }∗. Each configuration
w of Γ corresponds to a configuration wBn,0 and configurations w′′Anw

′Bi,0 of
HNEP Γ ′, where An = #, w,w′, w′′ ∈ (N ∪ T)∗ and w = w′Aiw

′′.
The axiom S = A1 of Γ corresponds to an initial word A1#, represented as

A1Bn,0 in node 1 of HNEP Γ ′. Now we describe the how the rotation of a symbol
and the application of an arbitrary rule of grammar Γ are simulated in Γ ′. As
above, due to the lack of space, we present only the necessary details.

Rotation
Let Ai1Ai2 . . . Aik−1Bik,0 be found at node 1, and let w,w′, w′′ ∈ A∗. Then, by

evolution, Ai1Ai2 . . . Aik−1Bik,0 = Ai1wBik ,0
1.1−→ {Ci1wBik ,0, Ai1w

′Citw
′′Bik,0}

follows. Notice that during the simulation symbols Ci should be transformed to
ε′, and this symbol should be deleted from the left-hand end of the string (node
9). So, transformation of string Ai1w

′Citw
′′Bik,0 leads to a string that will stay

in node 9 forever; thus, in the sequel, we will not consider strings with Ci not
in the leftmost position. In the following communication step, string Ci1wBik ,0

can enter only node 2. Then, in nodes 2 and 3 the string is involved in evolution
steps followed by communication as follows:

Ci1−twBik,t
2.1−→ C′

i1−(t+1)wBik ,t
2.2−→ C′

i1−(t+1)wB′
ik,t+1 (in node 2),

C′
i1−twB′

ik,t
3.1−→ Ci1−(t+1)wB′

ik ,t
3.2−→ Ci1−(t+1)wBik,t+1(in node 3).

The process continues in nodes 2 and 3 until index of Ci or C′
i will be decreased

to 1. In this case rule 2.3 : C1 → ε′ in node 2 or 3.3 : C′
1 → ε′ in node

3 will be applied and string ε′wB′
ik,i1 or ε′wBik ,i1 appears in node 4. Then,

in node 4, either evolution step ε′wB′
ik ,i1

4.1−→ ε′wB′
ik,i1D0 or evolution step

ε′wBik,i1
4.1−→ ε′wBik,i1D0 is performed. Strings wB′

ik ,i1D0 or wBik,i1D0 can

enter only node 5, where either evolution step ε′wB′
ik ,i1D0

5.1−→ ε′wEik ,i1D0

or evolution step ε′wBik,i1D0
5.2−→ ε′wEik ,i1D0 follows. String ε′wEik,i1D0 can

enter only node 6. Then, in nodes 6 and 7 the string is involved in evolution
steps followed by communication as follows:

ε′wEik ,i1−tDt
6.1−→ ε′wE′

ik,i1−(t+1)Dt
6.2−→ ε′wE′

ik ,i1−(t+1)D
′
t+1 (in node 6),

ε′wE′
ik ,i1−tD

′
t

7.1−→ ε′wEik,i1−(t+1)D
′
t

7.2−→ ε′wEik ,i1−(t+1)Dt+1 (in node 7).

The process continues in nodes 6 and 7 until second index of Ei,j or that of
E′

i,j will be decreased to 1. In this case, rule 6.3 : Eik,1 → Aik
in node 6 or

7.3 : E′
ik,1 → Aik

in node 7 will be applied and string ε′wAik
D′

i1 or ε′wAik
Di1

appears in node 8.

About Universal Hybrid Networks of Evolutionary Processors of Small Size 37

Notice, that rule 6.4: An → ε′ can be applied. This case is discussed below.
The next evolution step, performed in node 8, can either be ε′wAik

Di1
8.1−→

ε′wAik
Bi1,0 or ε′wAik

D′
i1

8.2−→ ε′wAik
Bi1,0. In the following communication step,

string ε′wAik
Bi1,0 can enter node 9 or node 6.

1 Consider the last case (in this case Ai1 ∈ T).
At nodes 6, 9 and 10 the following evolution and communication steps are
performed:
• Suppose that word wAik

Bi1,0 does not contain nonterminal symbols
(except An). Let wAik

Bi1,0 = Anw′Aik
Bi1,0, where w = Anw

′. So,
w′Aik

Ai1 is a result and it has appear in node 10. Notice, that if w =
w′Anw′′ and w′ �= ε, then word ε′w′Anw′′Aik

Bi1,0 leads to a word which
will stay in node 9 forever (if rule 6.4 was applied) or will leave node 9
as word w′Anw′′Aik

Ai1 and enter node 1, and will remain there forever.
So, we will consider the following evolution of the word ε′wAik

Bi1,0 =
ε′Anw′Aik

Bi1,0: ε′Anw′Aik
Bi1,0

6.5−→ ε′Anw′Aik
Ai1

6.4−→ ε′ε′w′Aik
Ai1 .

Further, string ε′ε′w′Aik
Ai1 appears in node 9, where symbols ε′ will be

eliminated by rule 9.1 and, finally, word w′Aik
Ai1 enters node 10. This

is a result.
In the case of applying only rule 6.5, the resulting word ε′Anw

′Aik
Ai1

appears in node 9, where it becomes Anw
′Aik

Ai1 , leaves node 9, enters
node 1 and stays there forever.

• Suppose that word wAik
Bi1,0 contains at least one nonterminal symbol

(except An). In node 6 symbol Bi1,0 is changed to Ai1 , after that the
resulting word appears in node 1, where it will stay forever, since the
output filter requires symbols from B0.

2 Now consider the evolution of the word ε′wAik
Bi1,0 in node 9. By applying

the corresponding rules, we obtain ε′wAik
Bi1,0

9.1−→ wAik
Bi1,0. Then, string

wAik
Bi1,0 enters node 1 and the rotation of a symbol is over. If Ai1 ∈ T ,

then the string can enter node 6. This case was considered above.

Table 2.

N, α, β, C0, M PI,FI,PO, FO

1, ∗, (2), {1.1 : Ai → Ci | i ∈ I, rotation} ∪ PI = {An, Bn,0},
{A1Bn,0} {1.2 : Ai → ε′ | i ∈ I ′, Ai → ε} ∪ FI = C ∪ C′ ∪ {ε′},

{1.3 : Bj,0 → Bs,0 | Aj → As, j, s ∈ I ′} PO = B0, FO = ∅
2, ∗, (2), ∅ {2.1 : Ci → C′

i−1, P I = C,
2.2 : Bj,k → B′

j,k+1 | FI = C′ ∪ B′ ∪ {ε′},
i ∈ I ′′, j ∈ I, k ∈ I ′

0} ∪ PO = C′ ∪ {ε′},
{2.3 : C1 → ε′} FO = C ∪ B

3, ∗, (2), ∅ {3.1 : C′
i → Ci−1, P I = C′,

3.2 : B′
j,k → Bj,k+1 | FI = C ∪ B ∪ {ε′},

i ∈ I ′′, j ∈ I, k ∈ I ′
0} ∪ PO = C ∪ {ε′},

{3.3 : C′
1 → ε′} FO = C′ ∪ B′

4, r, (2), ∅ {4.1 : ε → D0} PI = B \ B0 ∪ B′,
F I = C ∪ C′ ∪ B0 ∪ {D0},
PO = {D0}, FO = ∅

38 A. Alhazov et al.

Table 2. (continued)

N, α, β, C0, M PI,FI,PO, FO

5, ∗, (2), ∅ {5.1 : Bj,k → Ej,k, P I = {D0},
5.2 : B′

j,k → Ej,k | j, k ∈ I, rotation} ∪ FI = ∅,
{5.3 : Bj,k → Es,t, PO = E,
5.4 : B′

j,k → Es,t | FO = B ∪ B′

j, k, s, t ∈ I ′, AjAk → AsAt}
6, ∗, (2), ∅ {6.1 : Ej,k → E′

j,k−1, P I = E ∪ {Bj,0 | Aj ∈ T},
6.2 : Di → D′

i+1, F I = E′ ∪ D′ ∪ C,
6.3 : Ej,1 → Aj | i ∈ I ′

0, j ∈ I, k ∈ I ′′} ∪ PO = D′ ∪ {ε′},
{6.4 : An → ε′} ∪ FO = E ∪ D∪
{6.5 : Bj,0 → Aj | Aj ∈ T} {Bj,0 | Aj ∈ T}

7, ∗, (2), ∅ {7.1 : E′
j,k → Ej,k−1, P I = E′, F I = E ∪ D,

7.2 : D′
i → Di+1, PO = D, FO = E′ ∪ D′

7.3 : E′
j,1 → Aj | i ∈ I ′, j ∈ I, k ∈ I ′′}

8, ∗, (2), ∅ {8.1 : Dj → Bj,0, P I = D \ {D0} ∪ D′,
8.2 : D′

j → Bj,0 | j ∈ I} ∪ FI = E ∪ E′ ∪ {D0},
{8.3 : Dj → Bs,t, PO = ∅,
8.4 : D′

j → Bs,t | Aj → AsAt, j, s, t ∈ I ′} FO = D ∪ D′

9, l, (2), ∅ {9.1 : ε′ → ε} PI = {ε′},
F I = B \ B0∪
B′ ∪ D ∪ D′,
PO = ∅, FO = {ε′}

10, ∗, (2), ∅ ∅ PI = T, FI = V \ T,
PO = ∅, FO = T

Rule Ai −→ ε. Suppose that AiwBj,0 can be found at node 1 and let w,w′, w′′ ∈
A∗. Then, by evolution, either AiwBj,0

1.2−→ ε′wBj,0 or Atw
′Aiw

′′Bj,0
1.2−→

Aiw
′ε′w′′Bj,0. String ε′wBj,0 or Aiw

′ε′w′′Bj,0 can enter node 9 or node 6 (con-
sidered above). String Aiw

′ε′w′′Bj,0 will stay in node 9 forever. So, we will
consider the transformation of only string ε′wBj,0. At node 9, evolution step
ε′wBj,0

9.1−→ wBj,0 follows. Now, string wBj,0 enters node 1. Thus, we correctly
simulated rule Ai −→ ε of grammar Γ .

Rule Ai −→ Aj. The evolution step performed at node 1 is wBi,0
1.3−→ wBj,0.

Since string wBj,0 now is in node 1, we simulated the rule Ai −→ Aj of grammar
Γ in a correct manner.

Rule Aj −→ AsAt. At the end of the simulation of the rotation of a symbol
in node 8 instead of applying rule Dj → Bj,0 (D′

j → Bj,0) rule Dj → Bs,t

(D′
j → Bs,t) will be applied. Then, at node 8 either evolution step ε′wDj

8.3−→
ε′wBs,t or evolution step ε′wD′

j
8.4−→ ε′wBs,t is performed. Then, string ε′wBs,t

can enter only node 4, where, by evolution, ε′wBs,t
4.1−→ ε′wBs,tD0. The process

continues as above, in the case of simulating rotation, so, in several computa-
tion steps string wAsBt,0 will be obtained in node 9 which then successfully

About Universal Hybrid Networks of Evolutionary Processors of Small Size 39

is communicated to node 1. So, we correctly simulated rule Aj −→ AsAt of
grammar Γ.
Rule AiAj −→ AsAt. In node 5 there are rules 5.3 : Bi,j → Es,t or 5.4 :
B′

i,j → Es,t. As in the case of simulating rotation, above, we will obtain string
wAsBt,0 in node 9.

We have demonstrated how the rotation of a symbol and the application of
rules of Γ are simulated by Γ ′. By the constructions, the reader can easily verify
that Γ and Γ ′ generate the same language.

Corollary 2. The class of complete HNEPs with 10 nodes is computationally
complete.

4 Conclusions

We have presented a universal complete HNEP with 10 nodes and proved that
complete HNEPs with 10 nodes generate all recursively enumerable languages.
Thus, we positively answered question 1 from [5] and significantly improved the
results of that paper.

References

1. Alhazov, A., Mart́ın-Vide, C., Rogozhin, Y.: On the number of nodes in universal
networks of evolutionary processors. Acta Informatica 43(5), 331–339 (2006)

2. Alhazov, A., Mart́ın-Vide, C., Rogozhin, Y.: Networks of Evolutionary Processors
with Two Nodes Are Unpredictable. In: Pre-Proceedings of the 1st International
Conference on Language and Automata Theory and Applications, LATA 2007,
GRLMC report 35/07, Rovira i Virgili University, Tarragona, Spain, pp.521–528
(2007)

3. Alhazov, A., Kudlek, M., Rogozhin, Y.: Nine Universal Circular Post Machines.
Computer Science Journal of Moldova 10(3), 247–262 (2002)

4. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.)
IWANN 2001. LNCS, vol. 2084. Springer, Heidelberg (2001)

5. Csuhaj-Varjú, E., Mart́ın-Vide, C., Mitrana, V.: Hybrid networks of evolutionary
processors are computationally complete. Acta Informatica 41(4-5), 257–272 (2005)

6. Csuhaj-Varjú, E., Salomaa, A.: Networks of Parallel Language Processors. In: Păun,
G., Salomaa, A. (eds.) New Trends in Formal Languages. Control, Cooperation, and
Combinatorics. LNCS, vol. 1218, pp. 299–318. Springer, Heidelberg (1997)

7. Kudlek, M., Rogozhin, Y.: Small Universal Circular Post Machines. Computer Sci-
ence Journal of Moldova 9(1), 34–52 (2001)

8. Kudlek, M., Rogozhin, Y.: New Small Universal Circular Post Machines. In:
Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 217–227. Springer, Heidelberg
(2001)

9. Mart́ın-Vide, C., Mitrana, V., Perez-Jimenez, M., Sancho-Caparrini, F.: Hybrid net-
works of evolutionary processors. In: Cantú-Paz, E., et al. (eds.) GECCO 2003.
LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)

On Bifix Systems and Generalizations

Jan-Henrik Altenbernd

RWTH Aachen University

Abstract. Motivated by problems in infinite-state verification, we study
word rewriting systems that extend mixed prefix/suffix rewriting (short:
bifix rewriting). We introduce several types of infix rewriting where infix
replacements are subject to the condition that they have to occur next to
tag symbols within a given word. Bifix rewriting is covered by the case
where tags occur only as end markers. We show results on the reach-
ability relation (or: derivation relation) of such systems depending on
the possibility of removing or adding tags. Where possible we strengthen
decidability of the derivation relation to the condition that regularity
of sets is preserved, resp. that the derivation relation is even rational.
Finally, we compare our model to ground tree rewriting systems and
exhibit some differences.

1 Introduction

The algorithmic theory of prefix (respectively suffix) rewriting systems on finite
words has long been well established, and a number of decision problems over
such systems have been proven to be decidable. Such rewriting systems are a
general view of pushdown systems, where symbols are pushed onto and removed
from the top of a stack.

Büchi showed in [2] that the language derivable from a given word by prefix
rewriting is regular (and that a corresponding automaton can be computed).
In the theory of infinite-state system verification, the “saturation method” (for
the transformation of finite automata) has been applied for this purpose (see
e. g. [14,5,6]). Caucal [4] showed the stronger result that the derivation relation
induced by a prefix rewriting system is a rational relation.

The extension to combined prefix and suffix rewriting goes back to Büchi and
Hosken [3]. Karhumäki, Kunc, and Okhotin showed in [9] that when combining
prefix and suffix rewriting, the corresponding derivation relation is still rational,
and therefore preserves regularity of languages. They extended their work in [8]
to rewriting systems with a center marker, simulating two stacks communicating
with each other. They singled out a number of cases where universal computation
power could already be achieved with very limited communication.

In a more restricted framework, Bouajjani, Müller-Olm and Touili studied
dynamic networks of pushdown systems in [1]. Here, a collection of pushdown
processes is treated as a word in which a special marker is used to separate
the processes. Rewriting of such words is restricted to performing pushdown
operations and to creating new processes, where the latter increases the number
of markers. It was shown that reachability in this setting is decidable.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 40–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Bifix Systems and Generalizations 41

In the present paper, we develop a generalised framework of “tagged infix
rewriting” which extends some of the cases mentioned above. We clarify the sta-
tus of the word-to-word reachability relation (or derivation relation) for several
types of tagged infix rewriting. More precisely, we determine whether this rela-
tion is undecidable, or decidable, or even decidable in two stronger senses: that
the relation preserves effectively the regularity of a language, or that the deriva-
tion relation itself is rational. (By “effective” preservation of regular languages we
mean that from a presentation of L by a finite automaton and from the rewriting
system defining the relation R we obtain algorithmically a finite automaton for
the image of L under the derivation relation of R.) So the motivation (and con-
tribution) of the paper is twofold: first to push the frontier of decidability further
for reachability problems over rewriting systems, and secondly to differentiate
clearly between the three levels of decidability proofs mentioned above.

We define a generalisation of mixed prefix/suffix rewriting systems on words
by introducing special symbols (tags or markers) to mark positions in words
where rewriting can occur. Typically, a rewriting rule can transform a word
w = w0#1w1 · · ·#nwn into a word w′ = w′

0#1w
′
1 · · ·#nw′

n with wi = w′
i for

all i except for some i0 where w′
i0

is obtained from wi0 by a prefix, suffix, or
complete rewriting rule U ↪−→ V with regular sets U, V (to be applied to the
whole word u ∈ U between two successive markers, replacing it by some v ∈
V). Thus, arbitrary words in finite sequences can be rewritten independently,
extending a case studied in [9]. The variants we consider in this paper deal with
the options that markers may be removed or added in the rewriting process. We
show that the derivation relation is rational in the basic case mentioned above,
where markers are always preserved, and that this fails in general for the other
cases. However, we still obtain decidability of the reachability problem in all
cases. For applications, our systems are close to models of concurrent processes
where states are presented by words between tags, state transitions by local
rewriting rules, and e. g. spawning of new processes by the insertion of tags.

The paper is structured as follows: In the subsequent section we summarise
technical preliminaries. Section 3 introduces the basic models of bifix systems and
its extension tagged infix rewriting, and we show that one obtains different levels
of decidability of the derivation relation: We present cases where the derivation
relation is not rational but effectively preserves regularity of languages, and
where the latter condition fails but the word-to-word reachability problem is
still decidable. This refined analysis also exhibits a substantial difference between
the two cases of tag insertion and tag removal. The next section is devoted to a
comparison of bifix systems and ground tree rewriting systems (and the closely
related multi-stack systems).

2 Terminology

Automata and Languages. We use the standard terminology from automata
theory and formal language theory (see e. g. [7]). We present nondeterministic
finite automata (NFA) in the format A = (Q,Σ, q0, ∆, F), where Q is a finite set

42 J.-H. Altenbernd

of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, and ∆ ⊆ Q×(Σ∪{ε})×Q is a finite set of transitions. We write A : p w−→q
to denote that there is a w-labelled path from state p to state q in A. Reg(Σ)
denotes the class of all regular languages over Σ. We will refer to normalised
NFAs which have exactly one final state, and in which no incoming respectively
outgoing transitions are allowed for the initial respectively final state. A (finite)
transducer is an NFA A = (Q,Γ, q0, ∆, F), where Γ ⊆ Σ∗ ×Σ∗ is a finite set of
pairs of words over a finite alphabet Σ.

Relations. Let Σ be a finite alphabet. A relation R ⊆ Σ∗×Σ∗ is recognisable if it
is a finite union of products of regular languages over Σ, that is, R =

⋃n
i=1 Li×Mi

for some n ∈ IN and regular Li,Mi; when using R as a rewriting system, we write
rules in the form Li ↪−→ Mi. R is rational if it is recognisable by a transducer,
i. e. an NFA with transitions labelled by finite subsets of Σ∗×Σ∗. We then write
R ∈ Rat(Σ∗ ×Σ∗).

For relations R,S ⊆ Σ∗ × Σ∗, we call Dom(R) = {u | ∃v : (u, v) ∈ R} the
domain of R, and Im(R) = {v | ∃u : (u, v) ∈ R} the image of R. For L ⊆ Σ∗, we
call R(L) = {v | ∃u ∈ L : (u, v) ∈ R} the set derivable from L according to R. We
define the concatenation of R and S as R·S = {(ux, vy) | (u, v) ∈ R∧(x, y) ∈ S},
which we also shorten to RS, if no ambiguity arises, and their composition as
R ◦ S = {(u,w) | ∃v : (u, v) ∈ R ∧ (v, w) ∈ S}.

We call I = {(w,w) | w ∈ Σ∗} the identity relation on Σ∗. Note that I is
rational, but not recognisable. When considering iteration, we have to distinguish
two cases. Let R∗ =

⋃
n≥0 Rn, where R0 = {(ε, ε)}, and Rn+1 = Rn ·R, and let

R� =
⋃

n≥0 R(n), where R(0) = I, and R(n+1) = R(n) ◦ R.
We recall some basic results about rational relations: Rat(Σ∗ ×Σ∗) is closed

under union, concatenation and the concatenation iteration ∗. Furthermore, if
R is a rational relation, then R(L) is regular for regular L, hence Dom(R) and
Im(R) are regular. Finally, if R is a rational relation, and S is a recognisable
relation, then R ∩ S is rational.

Mixed Prefix / Suffix Rewriting Systems. A mixed prefix/suffix rewriting system
is a tuple R = (Σ,R, S), where Σ is a finite alphabet, and R,S ⊆ Reg(Σ) ×
Reg(Σ) are recognisable relations of rewriting rules. We write w −→

R
w′ if

(w,w′) ∈ (RI∪IS), i. e. R and S are used for prefix respectively suffix rewriting.
We denote the derivation relation −→

R
�= (RI ∪ IS)� by R�.

Proposition 1 ([9]). The derivation relation R� of a mixed prefix/suffix re-
writing system R is rational.

3 Bifix Rewriting Systems and Extensions

As a first and minor extension of mixed prefix/suffix rewriting systems, we in-
troduce bifix rewriting systems, which will serve as a basis for further extensions.
A bifix rewriting system is a tuple R = (Σ,R, S, T), with Σ,R, S as in the case

On Bifix Systems and Generalizations 43

of mixed prefix/suffix rewriting systems, and where T ⊆ Reg(Σ) × Reg(Σ) is
also a recognisable relation. We write w −→

R
w′ if (w,w′) ∈ (RI ∪ IS ∪ T), that

is, R and S are used as before, and T is used to rewrite complete words. The
other notions carry over.

As a first result, it is easy to see that Proposition 1 holds again:

Proposition 2. The derivation relation of a bifix rewriting system is rational.

Proof. We have to show that W = (RI∪IS∪T)� is rational. For this, introduce
�∈ Σ, and consider U = #R ∪ #T# and V = S#. Then #W# = (UI ∪
IV)�∩(#Σ∗#×#Σ∗#), that is, we use rewriting of complete words with T for
prefix rewriting, and we restrict the corresponding derivation relation to pairs of
words with # at the beginning and end only. Since U , V , and (#Σ∗#×#Σ∗#)
are recognisable, (UI ∪ IV)� is rational by Proposition 1, and it follows that
{(#u#,#v#) | (u, v) ∈ W} is rational. Removing the symbols # preserves this
rationality, so W is rational.

3.1 Tagged Infix Rewriting Systems

Let Σ be a finite alphabet. We will use a finite set M of tags (or markers) with
M ∩Σ = ∅ to mark positions in a finite word where rewriting can occur. Given
Σ and M , let PΣ,M := MΣ∗ ∪ Σ∗M ∪MΣ∗M denote the set of all words over
Σ ∪ M that contain at least one marker from M , but only at the beginning
and/or end.

A tagged infix rewriting system (TIRS) is a structure R = (Σ,M,R) with
disjoint finite alphabets Σ and M and a relation R ⊆ PΣ,M × PΣ,M which is a
finite union of

prefix rules of the form #U ↪−→ #V (denoting #U × #V),
suffix rules of the form U$ ↪−→ V $, and
bifix rules of the form #U$ ↪−→ #V $,

(1)

where U, V ∈ Reg(Σ) and #, $ ∈ M . Note that when using R to rewrite a
word w over Σ ∪ M , all tags in w are preserved, and none are added. We write
xuy −→

R
xvy if (u, v) ∈ R and x, y ∈ (Σ ∪ M)∗, and we denote −→

R
� by R�.

As a first example, consider R = ({a, b, c}, {#}, R) with the following set R
of rules: ## ↪−→ #acb# (bifix rule),

#a ↪−→ #aa #a+cb ↪−→ #b (prefix rules),
b# ↪−→ bb# acb+# ↪−→ a# (suffix rules).

Then R�({##}) = #a+cb+# ∪ #a∗# ∪ #b∗#.
As a second example, note that the infinite grid can be generated with the

simple TIRS ({a, b}, {#}, {# ↪−→ a#,# ↪−→ #b}), starting with marker #:

→ #b → #bb → · · ·
↓ ↓ ↓

a# → a#b → a#bb → · · ·
↓ ↓ ↓

aa# →aa#b→ aa#bb→ · · ·
↓ ↓ ↓

44 J.-H. Altenbernd

Since the monadic second-order logic (MSO) of the infinite grid is undecidable
(see e. g. [15]), we can immediately conclude the following.

Proposition 3. The MSO theory of graphs generated by TIRSs is undecidable.

It is well known that prefix (resp. suffix) and mixed prefix/suffix rewriting sys-
tems preserve regularity ([4,9]), that is, given such a system R and a regular
set L, the set derivable from L according to R is again regular. It has also been
shown that the derivation relation R� of such systems is rational. We show in
the following that these results carry over to tagged infix rewriting systems.

Theorem 1. The derivation relations of TIRSs are rational.

Proof. Let R = (Σ,M,R) be a TIRS. We construct an NFA AR = (Q,Γ, q0, ∆,
{qf}) whose edges are labelled with rational relations (i. e. Γ is a finite set of
rational relations), such that L(AR) = R�. Since we know that every finite
concatenation of rational relations is again rational, every path in AR from q0

to qf is labelled with a rational relation.
It is important to note that markers are preserved in the derivation process.

Thus, the derivation relation is a concatenation of derivation relations of rewrit-
ing that occurs before the first marker (see (i) below), after the last marker (ii),
or between two markers (iii), which are basically mixed prefix/suffix rewriting
derivations.

We can therefore construct A as follows: For #, $ ∈ M , let R# = {(u, v) |
(u#, v#) ∈ R}, #R = {(u, v) | (#u,#v) ∈ R}, and #R$ = {(u, v) | (#u$,#v$)
∈ R}. We choose Q = {q0, qf} ∪ {sm, tm | m ∈ M}, that is, we take one source
state sm and one target state tm for every marker m, and we set ∆ to be the
following set of edges labelled with relations:

∆ = {(sm, {m} × {m}, tm) | m ∈ M} ∪ {(q0, I, qf)}
∪ {(q0, (IRm)�, sm) | m ∈ M} (i)

∪ {(tm, (mRI)�, qf) | m ∈ M} (ii)

∪ {(tm, (mRI ∪ IRm′ ∪ mRm′)�, sm′) | m,m′ ∈ M} . (iii)

We know that {m}× {m}, (IRm)�, (mRI)�, and I are rational, and by Propo-
sition 2 the same holds for (mRI ∪ IRm′ ∪ mRm′)�. �

We can immediately deduce that TIRSs effectively preserve regularity.

3.2 Extending TIRSs by Removing Tags

We consider an extension of TIRSs where removing tags is allowed, thereby
breaking up the preservation of markers. We will see that in this case some
effective reachability analysis is still possible.

A TIRS with tag-removing rules is a structure R = (Σ,M,R) with disjoint
finite alphabets Σ and M as before and a relation R ⊆ PΣ,M × (PΣ,M ∪ Σ∗)
containing rules of the basic form (1) and also rules of the forms #U ↪−→ V ,

On Bifix Systems and Generalizations 45

U$ ↪−→ V , #U$ ↪−→ #V , #U$ ↪−→ V $, and #U$ ↪−→ V , where U, V ∈ Reg(Σ)
and #, $ ∈ M . We show that in this case the derivation relation is not rational
in general, but that regularity is still preserved (the latter result involving a
nontrivial saturation construction).

Proposition 4. Derivation relations of TIRSs with tag-removing rules are not
rational in general.

Proof. Consider R = ({a, b}, {#}, R), where R contains only the rules #a ↪−→ b
and b# ↪−→ a. Then Dom(R� ∩ (#∗a#∗ × {a})) = {#na#n | n ≥ 0} is not
regular, and so R� is not rational. �

Before showing that such systems still preserve regularity, we need to introduce
some more terminology. We call an NFA A = (Q,Σ ∪ M, q0, ∆, F) unravelled if
it satisfies the following conditions:

1. for every q ∈ Q: |{(q,m, p) ∈ ∆ | m ∈ M}| · |{(p,m, q) ∈ ∆ | m ∈ M}| = 0;
that is, every state is the source or the target state of transitions labelled
with markers (or none of the above), but not both at the same time;

2. for every m ∈ M and (q,m, q′) ∈ ∆: |{(q, a, r) ∈ ∆ | a ∈ Σ ∪ M ∪ {ε}}| = 1
and |{(r, a, q′) ∈ ∆ | a ∈ Σ ∪ M ∪ {ε}}| = 1; that is, every source state of a
marker transition has no other outgoing transitions, and every target state
of a marker transition has no other incoming transitions.

Lemma 1. For every NFA A over an alphabet Σ ∪ M one can effectively con-
struct an unravelled NFA A′ with L(A) = L(A′).

Proof. Let A = (Q,Σ ∪ M, q0, ∆, F) be an NFA. Construct A′ = (Q′, Σ ∪
M, q′0, ∆

′, F ′) with

– Q′ := {q′0} ∪ {(p, a, q), (p, a, q) | (p, a, q) ∈ ∆},
– F ′ := {(p, a, q) | (p, a, q) ∈ ∆, q ∈ F} ∪ {q′0 | q0 ∈ F}, and
– ∆′ := {(q′0, ε, (q0, a, q)) | (q0, a, q) ∈ ∆}

∪ {((p, a, q), a, (p, a, q)) | (p, a, q) ∈ ∆}
∪ {((p, a, q), ε, (q, b, r)) | (p, a, q), (q, b, r) ∈ ∆} .

Then L(A′) = L(A), and A′ is unravelled.
A state (p, a, q) in A′ symbolizes that p is the current state and (p, a, q) the

next transition to be taken in a run of A; (p, a, q) denotes that q is the current
state and (p, a, q) is the last transition used in a run of A. After every such step,
a transition of the form ((p, a, q), ε, (q, b, r)) allows us to guess the next transition
taken in a run of A (in this case (q, b, r)). We omit the details of the correctness
proof due to space restrictions. �

The notion of unravelled NFA is important for the following theorem.

Theorem 2. TIRSs with tag-removing rules effectively preserve regularity.

46 J.-H. Altenbernd

Proof. Let R = (Σ,M,R) be a TIRS with tag-removing rules, and let A =
(Q,Σ ∪ M, q0, ∆, F) be an unravelled NFA with L(A) = L. We provide an
algorithm that constructs an NFA A′ from A such that L(A′) = R�(L). For
this, we first extend an initial automaton A0 = (Q0, Σ ∪ M, q0, ∆0, F) with
Q0 := Q and ∆0 := ∆ as follows.

We have to capture derivation at and between all possible combinations of
markers, possibly involving the deletion of markers. If, for instance, there is a
rule #U ↪−→ #V in R, then it may be applied at different positions of the marker
in A, and we thus have to distinguish between these applications to avoid side
effects. Therefore, we add normalised NFAs for all (p,m, q), (p′,m′, q′) ∈ ∆ with
m,m′ ∈ M , taking disjoint copies for different applications of rules inside the
given automaton:

– for every prefix rule of the form mU ↪−→ mV or mU ↪−→ V in R, we add
A(p,q,V) = (Q(p,q,V), Σ, s(p,q,V), ∆(p,q,V), {t(p,q,V)}) with L(A(p,q,V)) = V ;
we set Q0 := Q0∪Q(p,q,V) and ∆0 := ∆0∪∆(p,q,V), and we add (q, ε, s(p,q,V))
(resp. (p, ε, s(p,q,V))) to ∆0;

– for every suffix rule of the form Um′ ↪−→ V m′ or Um′ ↪−→ V in R, we add
A[p′,q′,V] = (Q[p′,q′,V], Σ, s[p′,q′,V], ∆[p′,q′,V], {t[p′,q′,V]}) with L(A[p′,q′,V]) =
V ; we set Q0 := Q0 ∪ Q[p′,q′,V] and ∆0 := ∆0 ∪ ∆[p′,q′,V], and we add
(t[p′,q′,V], ε, p

′) (resp. (t[p′,q′,V], ε, q
′)) to ∆0;

– for every bifix rule of the form mUm′ ↪−→ mV m′, mUm′ ↪−→ mV , mUm′ ↪−→
V m′, or mUm′ ↪−→V in R, we add A(p,q,p′,q′,V) =(Q(p,q,p′,q′,V), Σ, s(p,q,p′,q′,V),
∆(p,q,p′,q′,V), {t(p,q,p′,q′,V)}) with L(A(p,q,p′,q′,V)) = V ; we set Q0 := Q0 ∪
Q(p,q,p′,q′,V) and ∆0 := ∆0 ∪ ∆(p,q,p′,q′,V), and we add (q, ε, s(p,q,p′,q′,V)) in
the first two cases resp. (p, ε, s(p,q,p′,q′,V)) in the last two cases to ∆0.

For the automaton A0 generated this way, we have L(A0) = L(A).
For the sketch of the correctness proof later on, let Qi denote the set of all

initial states of the NFAs added for suffix rules, and let Qf denote the set of all
final states of the NFAs added for prefix and bifix rules.

After these preparatory steps, we now repeat the following saturation steps
until no more transitions can be added, starting with k = 0:

1. If there are (p,m, q) ∈ ∆, r ∈ Q0, a prefix rule of the form mU ↪−→ mV or
mU ↪−→ V in R, and a path Ak : q

u−→ r for some u ∈ U , then we add the
transition (t(p,q,V), ε, r) to ∆k to obtain Ak+1, and we set k := k + 1.
The following illustrates this for rules mU1 ↪−→ mV1 and mU2 ↪−→ V2 and
a path p

m−→ q
u−→ r. The dotted lines denote the transitions added in the

preparatory steps, while the dashed lines show the ε-transitions added in
the saturation steps.

s(p,q,V1) t(p,q,V1)

q rp
m u ∈ U1

ε
ε s(p,q,V2) t(p,q,V2)

p q r
m u ∈ U2

ε ε

On Bifix Systems and Generalizations 47

2. If there are (p′,m′, q′) ∈ ∆, r ∈ Q0, a suffix rule of the form Um′ ↪−→ V m′

or Um′ ↪−→ V in R, and a path Ak : r u−→p′ for some u ∈ U , then we add the
transition (r, ε, s[p′,q′,V]) to ∆k to obtain Ak+1, and we set k := k + 1.
The following illustrates this for rules U3m

′ ↪−→ V3m
′ and U4m

′ ↪−→ V4 and a

path r
u−→p′ m′

−−→q′.

s[p′,q′,V3] t[p′,q′,V3]

r p′ q′
m′

u ∈ U3

ε ε s[p′,q′,V4] t[p′,q′,V4]

r p′ q′
m′

u ∈ U4

ε ε

3. If there are (p,m, q), (p′,m′, q′) ∈ ∆ and a path Ak : q
u−→p′ for some u ∈ U

for a bifix rule of the form
(a) mUm′ ↪−→ mV m′ or mUm′ ↪−→ V m′ in R, then we add the transition

(t(p,q,p′,q′,V), ε, p
′) to ∆k;

(b) mUm′ ↪−→ mV or mUm′ ↪−→ V in R, then we add the transition
(t(p,q,p′,q′,V), ε, q

′) to ∆k;
we obtain Ak+1, and we set k := k + 1.
The case of bifix rules of the form mU5m

′ ↪−→ mV5m
′, mU6m

′ ↪−→ mV6,
mU7m

′ ↪−→ V7m
′, and mU8m

′ ↪−→ V8 is basically a combination of cases 1.
and 2. above.

s(p,q,p′,q′,V5) t(p,q,p′,q′,V5)

p q p′ q′m m′
u ∈ U5

ε ε

s(p,q,p′,q′,V6) t(p,q,p′,q′,V6)

p q p′ q′m m′
u ∈ U6

ε
ε

s(p,q,p′,q′,V7) t(p,q,p′,q′,V7)

p q p′ q′m m′
u ∈ U7

ε
ε

s(p,q,p′,q′,V8) t(p,q,p′,q′,V8)

p q p′ q′m m′
u ∈ U8

ε ε

After saturating A0 this way, we set A′ := Ak, thereby obtaining the desired
automaton with L(A′) = R�(L). Since only finitely many transitions can be
added in the saturation steps, the algorithm terminates.

For the completeness of the algorithm, we can show by induction on n that
if z −→

R
(n) w for some z ∈ L(A), then there is a path A′ : q0

w−→ F . For the

soundness, we can show that if there is a path A′ : q0
w−→F , then w ∈ R�(L(A)).

This follows directly from the more general claim

A′ : p w−→q with p ∈ Q ∪ Qi ∧ q ∈ Q ∪ Qf ⇒ ∃w′ : w′ −→
R

� w ∧ A0 : p w′
−→q .

For p = q0 and q ∈ F this yields the original claim. Note that we are using Q
(states of the original automaton A) in the claim, not Q0. We omit the proof
details due to space restrictions. �

48 J.-H. Altenbernd

3.3 Extending TIRSs by Adding Tags

We extend our basic model such that R allows rules of the forms #U ↪−→ #V ,
U# ↪−→ V #, and #U$ ↪−→ #V $, where U ⊆ Σ∗ and V ⊆ (Σ ∪ M)∗ are regular
sets. This means that the right hand sides of rules may contain new tags, thereby
allowing tags to be added when rewriting words.

It turns out that regularity is not preserved with this extension, and thus
also the derivation relation is not rational in general. In view of Theorem 2,
this illustrates well that the two cases of removing and of adding tags behave
differently with respect to preservation of regularity.

Proposition 5. TIRSs with tag-adding rules do not preserve regularity.

Proof. Consider R = ({a}, {#}, R), where R contains only the rule #a ↪−→
##a#. Then R�({#a#}) = {#na#n | n > 0} is not regular. �

However, we still keep decidability of the word-to-word reachability problem.

Theorem 3. The word-to-word reachability problem for TIRSs with tag-adding
rules is decidable.

Proof. Let R = (Σ,M,R) be a TIRS with tag-adding rules, and let u, v ∈
(Σ ∪ M)∗. Let |w|M denote the number of markers of M in w. If |u|M > |v|M ,
then clearly v is not reachable from u. Otherwise, a maximum of n := |v|M−|u|M
rewriting steps that add tags will suffice to obtain v from u, if at all possible.
Let R0 denote the set of rules of R that do not add tags, and let R1 = R \ R0.
Similarly, let R0 = (Σ,M,R0) and R1 = (Σ,M,R1). Then we have to iterate
the following at most n times to decide whether v is reachable from u, starting
with i = 0 and U0 = {u}:

1. Set i := i + 1, and compute U ′
i :=−−→

R0

� (Ui−1) and Ui :=−−→
R1

(U ′
i);

2. If v ∈ Ui, then v is reachable from u, else if i = n, then v is not reachable
from u.

With the algorithm of Theorem 2, we can compute an NFA recognizing U ′
i in

every step, starting from an unravelled NFA recognizing Ui−1. Then, since −−→
R1

is rational, Ui is also effectively regular. �

3.4 Remarks on Further Extensions

There are several natural ways how the basic model of TIRS may be extended
further. For instance, one may allow tag-removing and tag-adding rules at the
same time, or rules might be allowed to rename the tags that are involved in
a rewriting step. It is not difficult to see that these models allow to transfer
information across tags in either direction, which makes it possible to move
markers arbitrarily and thus to apply rewriting rules at any position within a
word. Therefore, these models are Turing powerful, and all interesting properties
over such systems are undecidable.

On Bifix Systems and Generalizations 49

Another interesting extension is to allow information transfer across tags
in only one direction, e. g. by allowing rules of the form u# ↪−→ #v. In [8],
Karhumäki et al. distinguished the cases of controlled or uncontrolled transfer.
In the controlled case, a connection of the u’s and v’s is allowed, that is, the word
to be removed to the left of the marker # can determine the word to be added
to the right of #. In the uncontrolled case, no such connection is allowed, that
is, the words to be removed and added are chosen independently. Karhumäki et
al. showed that the language derivable from a regular initial set L ⊆ Σ∗#Σ∗

is context-free in the case of uncontrolled transfer. For the controlled case how-
ever, they showed that even finite relations for the transfer suffice to obtain
computational universality.

4 Comparison with Ground Tree Rewriting

Ground tree rewriting systems (GTRSs) have been studied intensively in [11].
They allow to substitute subtrees of finite ranked trees by other finite trees
according to given rules. In this section we give a comparison with bifix rewriting
systems.

Ranked trees are finite ordered trees over some ranked alphabet A which
determines the labels and numbers of successors of nodes in a tree. TA denotes
the set of all finite trees over a given ranked alphabet A. A GTRS is a structure
R = (A,Σ,R, tin), where A is a ranked alphabet, Σ is an alphabet to label
rewriting rules, R is a finite set of rewriting rules of the form s ↪

σ−→ s′, where
σ ∈ Σ and s, s′ ∈ TA, and tin ∈ TA is the initial tree.

Intuitively, a rule s ↪
σ−→ s′ may be applied to a tree t ∈ TA if s is a proper

subtree of t. Applying the rule yields a tree that is obtained from t by replacing
one occurrence of the subtree s by s′.

It is easy to realize the infinite IN × IN grid by a GTRS (using a tree of two
unary branches of lengths i, j to represent vertex (i, j)). Hence the MSO theory
of a GTRS graph is in general undecidable. As shown in [12], even the “universal
reachability problem” (“Does every path from v reach a vertex in a regular tree
set T ?”) is undecidable. On the other hand, as also shown in [12], the first-order
theory with reachability (short: FO(R) theory) of a GTRS graph is decidable. In
the FO(R) theory, the graph signature is extended by a symbol for the closure
E∗ of the edge relation E.

For bifix rewriting systems, the undecidability result on universal reachability
is easily transferred from GTRSs. The proof for GTRSs only uses trees with
two unary branches (for the representation of the left and right inscriptions of a
Turing tape); in bifix rewriting systems, one simply combines the two branches
into a single word with a separator between the left and right part.

It is remarkable that a converse simulation cannot work. This is clarified by
the following result:

Theorem 4. The FO(R) theory of a mixed prefix/suffix rewriting system is in
general undecidable.

50 J.-H. Altenbernd

For the proof, we remark that for the bifix rewriting system with rules Σ ↪−→ ε
for both prefix and suffix rewriting, the transitive closure gives the infix relation.
As proved by Kuske [10], the first-order theory of Σ∗ with the infix relation is
undecidable.

This result shows that there is an essential difference between

– the “multiple stack” model that is inherent in ground tree rewriting (when
a collection of unary branches is used as a list of stacks, with leaves as the
top symbols of stacks), and

– the bifix rewriting model, where two stacks are easily simulated, but where
an internal information flow between the two sides is possible.

5 Conclusion

We have introduced a general form of “tagged” rewriting system which extends
the mixed prefix/suffix rewriting as studied in [3,9], and where reachability (or
the derivation relation) is decidable. We studied systematically the effects of
removing and adding tags and showed that these cases are not dual. At the same
time, we exhibited examples which separate decidability proofs by preservation
of regularity, by rationality, or just by recursiveness of the derivation relation.

Many questions arise from these results in infinite-state system verification,
where the universe of words with the tagged infix rewriting relation is considered
as an infinite transition graph. For example, it should be investigated which
logics admit an algorithmic solution of the model-checking problem over tagged
infix rewriting graphs (see e. g. [13]). Another field of study is the definition of
natural extended models where the derivation relation is no more rational, but
still decidable.

Acknowledgement. I thank Didier Caucal, Christof Löding, and Wolfgang
Thomas for their support and fruitful discussions, and anonymous reviewers for
their helpful remarks.

References

1. Bouajjani, A., Mueller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005.
LNCS, vol. 3653, pp. 473–487. Springer, Heidelberg (2005)

2. Büchi, R.: Regular canonical systems. Archiv für Mathematische Logik und Grund-
lagenforschung 6, 91–111 (1964)

3. Büchi, R., Hosken, W.H.: Canonical systems which produce periodic sets. Mathe-
matical Systems Theory 4(1), 81–90 (1970)

4. Caucal, D.: On the regular structure of prefix rewriting. In: Arnold, A. (ed.) CAAP
1990. LNCS, vol. 431, pp. 87–102. Springer, Heidelberg (1990)

5. Coquidé, J.-L., Dauchet, M., Gilleron, R., Vágvölgyi, S.: Bottom-up tree push-
down automata: classification and connection with rewrite systems. Theoretical
Computer Science 127, 69–98 (1994)

On Bifix Systems and Generalizations 51

6. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. Technical Report TUM-I0002, Techn. Univer-
sität München, Institut für Informatik (2000)

7. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2000)

8. Karhumäki, J., Kunc, M., Okhotin, A.: Communication of two stacks and rewriting.
In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 468–479. Springer, Heidelberg (2006)

9. Karhumäki, J., Kunc, M., Okhotin, A.: Computing by commuting. Theoretical
Computer Science 356(1-2), 200–211 (2006)

10. Kuske, D.: Theories of orders on the set of words. Theoretical Informatics and
Applications 40, 53–74 (2006)

11. Löding, C.: Infinite Graphs Generated by Tree Rewriting. Doctoral thesis, RWTH
Aachen University (2003)

12. Löding, C.: Reachability problems on regular ground tree rewriting graphs. Theory
of Computing Systems 39(2), 347–383 (2006)

13. Mayr, R.: Process rewrite systems. Information and Computation 156(1-2), 264–
286 (2000)

14. Salomaa, K.: Deterministic tree pushdown automata and monadic tree rewriting
systems. Journal of Computer and System Sciences 37, 367–394 (1988)

15. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B: Formal Models and Semantics, pp. 133–192.
Elsevier, Amsterdam (1990)

Finite Automata, Palindromes, Powers,

and Patterns

Terry Anderson, Narad Rampersad, Nicolae Santean�, and Jeffrey Shallit

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1, Canada
tanderson@uwaterloo.ca, nrampersad@cs.uwaterloo.ca

nsantean@iusb.edu, shallit@graceland.uwaterloo.ca

Abstract. Given a language L and a nondeterministic finite automaton
M , we consider whether we can determine efficiently (in the size of M) if
M accepts at least one word in L, or infinitely many words. Given that M
accepts at least one word in L, we consider how long the shortest word can
be. The languages L that we examine include the palindromes, the non-
palindromes, the k-powers, the non-k-powers, the powers, the non-powers
(also called primitive words), and words matching a general pattern.

1 Introduction

Let L ⊆ Σ∗ be a fixed language, and let M be a deterministic finite automaton
(DFA) or nondeterministic finite automaton (NFA) with input alphabet Σ. In
this paper we are interested in three questions:

1. Whether we can efficiently decide (in terms of the size ofM) if L(M) contains
at least one element of L, that is, if L(M) ∩ L �= ∅;

2. Whether we can efficiently decide if L(M) contains infinitely many elements
of L, that is, if L(M) ∩ L is infinite;

3. Given that L(M) contains at least one element of L, what is a good upper
bound on the shortest element of L(M) ∩ L?

As an example, consider the case whereΣ = {a}, L is the set of primes written
in unary, that is, {ai : i is prime }, and M is a NFA with n states.

To answer questions (1) and (2), we first rewrite M in Chrobak normal form
[5]. Chrobak normal form consists of an NFA M ′ with a “tail” of O(n2) states,
followed by a single nondeterministic choice to a set of disjoint cycles containing
at most n states. Computing this normal form can be achieved in O(n5) steps
by a result of Martinez [17].

Now we examine each of the cycles produced by this transformation. Each
cycle accepts a finite union of sets of the form (at)∗ac, where t is the size of
� Author’s current address: Department of Computer and Information Sciences, Indi-

ana University South Bend, 1700 Mishawaka Ave., P.O. Box 7111, South Bend, IN
46634, USA.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 52–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Finite Automata, Palindromes, Powers, and Patterns 53

the cycle and c ≤ n2 + n; both t and c are given explicitly from M ′. Now,
by Dirichlet’s theorem on primes in arithmetic progressions, gcd(t, c) = 1 for
at least one pair (t, c) induced by M ′ if and only if M accepts infinitely many
elements of L. This can be checked in O(n2) steps, and so we get a solution to
question (2) in polynomial time.

Question (1) requires a little more work. From our answer to question (2),
we may assume that gcd(t, c) > 1 for all pairs (t, c), for otherwise M accepts
infinitely many elements of L and hence at least one element. Each element in
such a set is of length kt + c for some k ≥ 0. Let d = gcd(t, c) ≥ 2. Then
kt+c = (kt/d+c/d)d. If k > 1, this quantity is at least 2d and hence composite.
Thus it suffices to check the primality of c and t + c, both of which are at
most n2 + 2n. We can precompute the primes < n2 + 2n in linear time using
a modification of the sieve of Eratosthenes [18], and check if any of them are
accepted. This gives a solution to question (1) in polynomial time.

On the other hand, answering question (3) essentially amounts to estimating
the size of the least prime in an arithmetic progression, an extremely difficult
question that is still not fully resolved [9], although it is known that there is a
polynomial upper bound.

Thus we see that asking these questions, even for relatively simple languages
L, can quickly take us to the limits of what is known in formal languages and
number theory.

In this paper we examine questions (1)-(3) in the case where M is an NFA
and L is either the set of palindromes, the set of k-powers, the set of powers, the
set of words matching a general pattern, or their complements.

In some of these cases, there is previous work. For example, Ito et al. [12]
studied several circumstances in which primitive words (non-powers) may appear
in regular languages. As a typical result in [12], we mention: “A DFA over an
alphabet of 2 or more letters accepts a primitive word iff it accepts one of length
≤ 3n−3, where n is the number of states of the DFA”. Horváth, Karhumäki and
Kleijn [11] addressed the decidability problem of whether a language accepted
by an NFA is palindromic (i.e., every element is a palindrome). They showed
that the language accepted by an NFA with n states is palindromic if and only
if all its words of length shorter than 3n are palindromes.

A preliminary version of the full version of this paper is available online [2].

2 Notions and Notation

Let Σ be an alphabet, i.e., a nonempty, finite set of symbols (letters). By Σ∗ we
denote the set of all finite words over Σ, and by ε, the empty word. For w ∈ Σ∗,
we denote by wR the word obtained by reversing the order of symbols in w.
A palindrome is a word w such that w = wR. If L is a language over Σ, i.e.,
L ⊆ Σ∗, we say that L is palindromic if every word w ∈ L is a palindrome.

Let k ≥ 2 be an integer. A word y is a k-power if y can be written as y = xk

for some non-empty word x. If y cannot be so written for any k ≥ 2, then y is
primitive. A 2-power is typically referred to as a square, and a 3-power as a cube.

54 T. Anderson et al.

Patterns are a generalization of powers. A pattern is a non-empty word p over
a pattern alphabet ∆. The letters of ∆ are called variables. A pattern p matches
a word w ∈ Σ∗ if there exists a non-erasing morphism h : ∆∗ → Σ∗ such that
h(p) = w. Thus, a word w is a k-power if it matches the pattern ak.

We define an NFA (or DFA) as the usual 5-tuple M = (Q,Σ, δ, q0, F). The
size of M is the total number N of its states and transitions. When we want to
emphasize the components of M , we say M has n states and t transitions, and
define N := n+ t.

We note that if M is an NFA or NFA-ε, we can remove all states that either
cannot be reached from the start state or cannot reach a final state (the latter
are called dead states) in linear time (in the number of states and transitions)
using depth-first search. We observe that L(M) �= ∅ if and only if any states
remain after this process, which can be tested in linear time. Similarly, if M
is a NFA, then L(M) is infinite if and only if the corresponding digraph has a
directed cycle. This can also be tested in linear time.

We will also need the following well-known results [10]:

Theorem 1. Let M be an NFA with n states. Then

(a) L(M) �= ∅ if and only if M accepts a word of length < n.
(b) L(M) is infinite if and only if M accepts a word of length 	, n ≤ 	 < 2n.

A language L is called slender if there is a constant C such that, for all n ≥ 0, the
number of words of length n in L is less than C. The following characterization
of slender regular languages has been independently rediscovered several times
in the past [14,24,19].

Theorem 2. Let L ⊆ Σ∗ be a regular language. Then L is slender if and only
if it can be written as a finite union of languages of the form uv∗w, where
u, v, w ∈ Σ∗.

For further background on finite automata and regular languages we refer the
reader to Yu [26].

3 Testing If an NFA Accepts at Least One Palindrome

Over a unary alphabet, every string is a palindrome, so problems (1)-(3) become
trivial. Let us assume, then, that the alphabet Σ contains at least two letters.
Although the palindromes over such an alphabet are not regular, the language

L′ = {x ∈ Σ∗ : xxR ∈ L(M) or there exists a ∈ Σ such that xaxR ∈ L(M)}

is, in fact, regular, as often shown in a beginning course in formal languages [10,
p. 72, Exercise 3.4 (h)]. We can take advantage of this as follows:

Lemma 1. Let M be an NFA with n states and t transitions. Then there exists
an NFA M ′ with n2 + 1 states and ≤ 2t2 transitions such that L(M ′) = L′.

Finite Automata, Palindromes, Powers, and Patterns 55

Corollary 1. Given an NFA M with n states and t transitions, we can deter-
mine if M accepts a palindrome in O(n2 + t2) time.

Corollary 2. Given an NFA M , we can determine if L(M) contains infinitely
many palindromes in quadratic time.

Corollary 3. If an NFA M accepts at least one palindrome, it accepts a palin-
drome of length ≤ 2n2 − 1.

Rosaz [21] also gave a proof of this last corollary. The quadratic bound is tight,
up to a multiplicative constant, in the case of alphabets with at least two letters,
and even for DFAs:

Proposition 1. For infinitely many n there exists a DFA Mn with n states over
a 2-letter alphabet such that the shortest palindrome accepted by Mn is of length
≥ n2/2 − 3n+ 5.

4 Testing If an NFA Accepts at Least One
Non-palindrome

In this section we consider the problem of deciding if an NFA accepts at least
one non-palindrome. Equivalently, we consider the problem: Given an NFA M ,
is L(M) palindromic?

Again, the problem is trivial for a unary alphabet, so we assume |Σ| ≥ 2.
Horváth, Karhumäki, and Kleijn [11] proved that the question is recursively
solvable. In particular, they proved the following theorem:

Theorem 3. L(M) is palindromic if and only if {x ∈ L(M) : |x| < 3n} is
palindromic, where n is the number of states of M .

For an NFA over an alphabet of at least 2 symbols, the 3n bound is easily seen
to be optimal; for a DFA, however, the bound of 3n can be improved to 3n− 3,
and this is optimal.

While a naive implementation of Theorem 3 would take exponential time, in
this section we show how to test palindromicity in polynomial time.

The main idea is to construct a “small” NFA M ′
t, for some integer t > 1,

where no word in L(M ′
t) is a palindrome, and M ′

t accepts all non-palindromes
of length < t (in addition to some other non-palindromes). We omit the details
of the construction (a similar construction appears in [25]).

Given an NFA M with n states, we now construct the cross-product with
M ′

3n, and obtain an NFA A that accepts L(M) ∩ L(M ′
3n). By Theorem 3,

L(A) = ∅ if and only if L(M) is palindromic. We can determine if L(A) = ∅ in
linear time. If M has n states and t transitions, then A has O(n2) states and
O(tn) transitions. Hence we have proved the following theorem.

Theorem 4. Let M be an NFA with n states and t transitions. The algorithm
sketched above determines whether M accepts a palindromic language in O(n2 +
tn) time.

56 T. Anderson et al.

In analogy with Corollary 2 and using a different construction than that of
Theorem 4, we also have the following proposition.

Proposition 2. Given an NFA M with n states and t transitions, we can de-
termine in O(n2 + t2) time if M accepts infinitely many non-palindromes.

5 Testing If an NFA Accepts a Word Matching a Pattern

In this section we consider the computational complexity of the decision problem:

NFA PATTERN ACCEPTANCE
INSTANCE: An NFA M over the alphabet Σ and a pattern p over some
alphabet ∆.
QUESTION: Does there exist x ∈ Σ+ such that x ∈ L(M) and x
matches p?

Since the pattern p is given as part of the input, this problem is actually
somewhat more general than the sort of problem formulated as Question 1 of
the introduction, where the language L was fixed.

The following result was proved by Restivo and Salemi [20] (a more detailed
proof appears in [4]).

Theorem 5 (Restivo and Salemi). Let L be a regular language and let ∆ be
an alphabet. The set P∆ of all non-empty patterns p ∈ ∆∗ such that p matches
a word in L is effectively regular.

Observe that Theorem 5 implies the decidability of the NFA PATTERN AC-
CEPTANCE problem. It is possible to give a boolean matrix based proof of
Theorem 5 (see Zhang [27] for a study of this boolean matrix approach to au-
tomata theory) that provides an explicit description of an NFA accepting P∆,
but due to space constraints we omit this proof. However, the reader may per-
haps deduce the argument from the proof of the following algorithmic result,
which uses similar ideas.

Theorem 6. The NFA PATTERN ACCEPTANCE problem is PSPACE-
complete.

Proof (sketch). We first show that the problem is in PSPACE. By Savitch’s
theorem [23] it suffices to give an NPSPACE algorithm. LetM = (Q,Σ, δ, q0, F),
where Q = {0, 1, . . . , n − 1}. For a ∈ Σ, let Ba be the n × n boolean matrix
whose (i, j) entry is 1 if j ∈ δ(i, a) and 0 otherwise. Let B denote the semigroup
generated by the Ba’s. For w = w0w1 · · ·ws ∈ Σ∗, we write Bw to denote the
matrix product Bw0Bw1 · · ·Bws .

Let∆ be the set of letters occuring in p. We may suppose that∆={1, 2, . . . , k}.
First, non-deterministically guess k boolean matrices B1, . . . , Bk. Next, for each
i, verify that Bi is in the semigroup B by non-deterministically guessing a word
w of length at most 2n2

such that Bi = Bw. We guess w symbol-by-symbol and

Finite Automata, Palindromes, Powers, and Patterns 57

reuse space after perfoming each matrix multiplication while computing Bw.
Then, if p = p0p1 · · · pr, compute the matrix product B = Bp0Bp1 · · ·Bpr and
accept if and only if B describes an accepting computation of M .

To show hardness we reduce from the following PSPACE-complete problem
[7, Problem AL6]. We leave the details to the reader.

DFA INTERSECTION
INSTANCE: An integer k ≥ 1 and k DFAs A1, A2, . . . , Ak, each over the
alphabet Σ.
QUESTION: Does there exist x ∈ Σ∗ such that x is accepted by each
Ai, 1 ≤ i ≤ k? �

We may define various variations or special cases of the NFA PATTERN
ACCEPTANCE problem, such as: NFA ACCEPTS A k-POWER, NFA
ACCEPTS INFINITELY MANY k-POWERS, where each of these prob-
lems is defined in the obvious way. When k is part of the input (i.e., k is not
fixed), these problems can be shown to be PSPACE-complete by a variation on
the proof of Theorem 6. However, if k is fixed, both of these problems can be
solved in polynomial time, as we now demonstrate.

Proposition 3. Let M be an NFA with n states and t transitions, and set N =
n+ t, the size of M . For any fixed integer k ≥ 2, there is an algorithm running
in O(n2k−1tk) = O(N2k−1) time to determine if M accepts a k-power.

Proof (sketch). For a language L ⊆ Σ∗, we define L1/k = {x ∈ Σ∗ : xk ∈ L}. It
is well-known that if L is regular, then so is L1/k. We leave it to the reader to
verify that an NFA-ε M ′ accepting L1/k can be constructed with n2k−1+1 states
and at most tk distinct transitions. Testing whether or not L(M ′) accepts a non-
empty word can be done in linear time, so the running time of our algorithm is
O(n2k−1tk). �

Corollary 4. We can decide if an NFAM with n states and t transitions accepts
infinitely many k-powers in O(n2k−1tk) time.

We may also consider the problems NFA ACCEPTS A ≥ k-POWER and
NFA ACCEPTS INFINITELY MANY ≥ k-POWERS, again defined
in the obvious way. Here, even for fixed k, these problems are both PSPACE-
complete. Setting k = 2 corresponds to the problems NFA ACCEPTS A
POWER and NFA ACCEPTS INFINITELY MANY POWERS, so we
see that both these problems are PSPACE-complete as well.

To show PSPACE-hardness for the “infinitely many” problems, we reduce
from the DFA INTERSECTION INFINITENESS problem, which is de-
fined similarly to the DFA INTERSECTION problem, except that we now
ask if there are infinitely many words x such that x is accepted by each Ai. This
problem is easily seen to be PSPACE-complete as well.

58 T. Anderson et al.

6 Testing If an NFA Accepts a Non-k-Power

In the previous section we showed that it is computationally hard to test if an
NFA accepts a k-power (when k is not fixed). In this section we show how to
efficiently test if an NFA accepts a non-k-power. Again, we find it more congenial
to discuss the opposite problem, which is whether an NFA accepts nothing but
k-powers.

First, we need some classical results from combinatorics on words.

Theorem 7 (Lyndon and Schützenberger [15]). If x, y, and z are words
satisfying an equation xiyj = zk, where i, j, k ≥ 2, then they are all powers of a
common word.

Theorem 8 (Lyndon and Schützenberger [15]). Let u and v be non-empty
words. If uv = vu, then there exists a word x and integers i, j ≥ 1, such that
u = xi and v = xj. In other words, u and v are powers of a common word.

We include here the following combinatorial result, which, when applied to words
in a regular language, gives a sort of “pumping lemma” for powers in a regular
language.

Proposition 4. Let u, v, and w be words, v �= ε, and let f, g ≥ 1 be integers,
f �= g. If uvfw and uvgw are non-primitive, then uvnw is non-primitive for all
integers n ≥ 1. Further, if uvw and uv2w are k-powers for some integer k ≥ 2,
then v and uvnw are k-powers for all integers n ≥ 1.

The following result is an analogue of Theorem 3, from which we will derive an
efficient algorithm for testing if a finite automaton accepts only k-powers.

Theorem 9. Let L be accepted by an n-state NFA M and let k ≥ 2 be an
integer.

1. Every word in L is a k-power if and only if every word in the set {x ∈ L :
|x| ≤ 3n} is a k-power.

2. All but finitely many words in L are k-powers if and only if every word in
the set {x ∈ L : n ≤ |x| ≤ 3n} is a k-power.

Further, if M is a DFA over an alphabet of size ≥ 2, then the bound 3n may be
replaced by 3n− 3.

Ito et al. [12] proved a similar result for primitive words: namely, that if L
is accepted by an n-state DFA over an alphabet of two or more letters and
contains a primitive word, then it contains a primitive word of length ≤ 3n− 3.
In other words, every word in L is a power if and only if every word in the set
{x ∈ L : |x| ≤ 3n− 3} is a power.

The proof of Theorem 9 is similar to that of [12, Proposition 7], albeit with
some additional complications. We shall give a complete proof in the full version
of this paper.

Finite Automata, Palindromes, Powers, and Patterns 59

The characterization due to Ito et al. [12, Proposition 10] (see also Dömösi,
Horváth, and Ito [6, Theorem 3]) of the regular languages consisting only of
powers, along with Theorem 2, implies that any such language is slender. A
simple application of the Myhill–Nerode Theorem gives the following weaker
result.

Proposition 5. Let L be a regular language and let k ≥ 2 be an integer. If all
but finitely many words of L are k-powers, then L is slender. In particular, if L
is accepted by an n-state DFA and all words in L of length ≥ 	 are k-powers,
then for all r ≥ 	, the number of words in L of length r is at most n.

The following characterization is analogous to the characterization of palin-
dromic regular languages given in [11, Theorem 8], and follows from Propo-
sition 5, Theorem 2, and the (omitted) proof of Proposition 4.

Theorem 10. Let L ⊆ Σ∗ be a regular language and let k ≥ 2 be an integer.
The language L consists only of k-powers if and only if it can be written as
a finite union of languages of the form uv∗w, where u, v, w ∈ Σ∗ satisfy the
following: there exists a primitive word x ∈ Σ∗ and integers i, j ≥ 0 such that
v = xik and wu = xjk .

Next we apply Theorem 9 to deduce the following algorithmic result.

Theorem 11. Let k ≥ 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if every word in L(M) is a k-power in
O(n3 + tn2) time.

Proof (sketch). We create an NFA, M ′
r, for r = 3n, such that no word in L(M ′

r)
is a k-power, and M ′

r accepts all non-k-powers of length ≤ r (and perhaps some
other non-k-powers).

Note that we may assume that k ≤ r. If k > r, then no word of length ≤ r is
a k-power. In this case, to obtain the desired answer it suffices to test if the set
{x ∈ L(M) : |x| ≤ r} is empty. However, this set is empty if and only if L(M)
is empty, and this is easily verified in linear time.

We now form a new NFA A as the cross product of M ′
r with M . From Theo-

rem 9, it follows that L(A) = ∅ iff every word in L(M) is a k-power. Again, we
can determine if L(A) = ∅ in linear time.

We omit the details of the construction of M ′
r, noting only that M ′

r can be
constructed to have at most O(r2) states and O(r2) transitions. After construct-
ing the cross-product, this gives a O(n3 + tn2) bound on the time required to
determine if every word in L(M) is a k-power. �

Theorem 9 suggests the following question: if M is an NFA with n states that
accepts at least one non-k-power, how long can the shortest non-k-power be?
Theorem 9 proves an upper bound of 3n. A lower bound of 2n− 1 for infinitely
many n follows easily from the obvious (n+ 1)-state NFA accepting an(an+1)∗,
where n is divisible by k. However, Ito et al. [12] gave a very interesting example
that improves this lower bound: if x = ((ab)na)2 and y = baxab, then x and xyx

60 T. Anderson et al.

are squares, but xyxyx is not a power. Hence, the obvious (8n + 8)-state NFA
that accepts x(yx)∗ has the property that the shortest non-k-power accepted is
of length 20n+18. We generalize this lower bound by defining x and y as follows:
let u = (ab)na, x = uk, and y = x−1(xbau−1x)kx−1. We leave it to the reader
to deduce the following result.

Proposition 6. Let k ≥ 2 be fixed. There exist infinitely many NFAs M with
the property that if M has r states, then the shortest non-k-power accepted is of
length (2 + 1

2k−2)r −O(1).

We may also apply part (2) of Theorem 9 to obtain an algorithm to check if an
NFA accepts infinitely many non-k-powers.

Theorem 12. Let k ≥ 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if all but finitely many words in L(M) are
k-powers in O(n3 + tn2) time.

7 Automata Accepting Only Powers

We now move from the problem of testing if an automaton accepts only k-powers
to that of testing if it accepts only powers (of any kind). Just as Theorem 9 was
the starting point for our algorithmic results in Section 6, the following theorem
of Ito et al. [12] (stated here in a slightly stronger form than in the original) is
the starting point for our algorithmic results in this section.

Theorem 13. Let L be accepted by an n-state NFA M .

1. Every word in L is a power if and only if every word in the set {x ∈ L :
|x| ≤ 3n} is a power.

2. All but finitely many words in L are powers if and only if every word in the
set {x ∈ L : n ≤ |x| ≤ 3n} is a power.

Further, if M is a DFA over an alphabet of size ≥ 2, then the bound 3n may be
replaced by 3n− 3.

We next prove an analogue of Proposition 5. We need the following result, first
proved by Birget [3], and later, independently, in a weaker form, by Glaister and
Shallit [8].

Theorem 14. Let L ⊆ Σ∗ be a regular language. Suppose there exists a set of
pairs S = {(xi, yi) ∈ Σ∗×Σ∗ : 1 ≤ i ≤ n} such that: (a) xiyi ∈ L for 1 ≤ i ≤ n;
and (b) either xiyj /∈ L or xjyi /∈ L for 1 ≤ i, j ≤ n, i �= j. Then any NFA
accepting L has at least n states.

Proposition 7. Let M be an n-state NFA and let 	 be a non-negative integer
such that every word in L(M) of length ≥ 	 is a power. For all r ≥ 	, the number
of words in L(M) of length r is at most 7n.

Finite Automata, Palindromes, Powers, and Patterns 61

Proof. We give the proof in full, as it illustrates an unusual and unexpected
combination of techniques from both the theory of non-deterministic state com-
plexity as well as the theory of combinatorics on words.

Let r ≥ 	 be an arbitrary integer. The proof consists of three steps.
Step 1. We consider the set A of words w in L(M) such that |w| = r and

w is a k-power for some k ≥ 4. For each such w, write w = xi, where x is
a primitive word, and define a pair (x2, xi−2). Let SA denote the set of such
pairs. Consider two pairs in SA: (x2, xi−2) and (y2, yj−2). The word x2yj−2 is
primitive by Theorem 7 and hence is not in L(M). The set SA thus satifies the
conditions of Theorem 14. Since L(M) is accepted by an n-state NFA, we must
have |SA| ≤ n and thus |A| ≤ n.

Step 2. Next we consider the set B of cubes of length r in L(M). For each
such cube w = x3, we define a pair (x, x2). Let SB denote the set of such pairs.
Consider two pairs in SB: (x, x2) and (y, y2). Suppose that xy2 and yx2 are both
in L(M). The word xy2 is certainly not a cube; we claim that it cannot be a
square. Suppose it were. Then |x| and |y| are even, so we can write x = x1x2

and y = y1y2 where |x1| = |x2| = |y1| = |y2|. Now if xy2 = x1x2y1y2y1y2 is
a square, then x1x2y1 = y2y1y2, and so y1 = y2. Thus y is a square; write
y = z2. By Theorem 7, yx2 = z2x2 is primitive, contradicting our assumption
that yx2 ∈ L(M). It must be the case then that xy2 is a k-power for some k ≥ 4.
Thus, xy2 = uk for some primitive u uniquely determined by x and y. With each
pair of cubes x3 and y3 such that both xy2 and yx2 are in L(M) we may therefore
associate a k-power uk ∈ L(M), where k ≥ 4. We have already established in
Step 1 that the number of such k-powers is at most n. It follows that by deleting
at most n pairs from the set SB we obtain a set of pairs satisfying the conditions
of Theorem 14. We must therefore have |SB| ≤ 2n and thus |B| ≤ 2n.

Step 3. Finally we consider the set C of squares of length r in L(M). For each
such square w = x2, we define a pair (x, x). Let SC denote the set of such pairs.
Consider two pairs in SC : (x, x) and (y, y). Suppose that xy and yx are both in
L(M). The word xy is not a square and must therefore be a k-power for some
k ≥ 3. We write xy = uk for some primitive u uniquely determined by x and y.
In Steps 1 and 2 we established that the number of k-powers of length r, k ≥ 3,
is |A|+ |B| ≤ 3n. It follows that by deleting at most 3n pairs from the set SC we
obtain a set of pairs satisfying the conditions of Theorem 14. We must therefore
have |SC | ≤ 4n and thus |C| ≤ 4n.

Putting everything together, we see that there are |A|+ |B|+ |C| ≤ 7n words
of length r in L(M), as required. �

The bound of 7n in Proposition 7 is almost certainly not optimal. We now prove
the following algorithmic result.

Theorem 15. Given an NFA M with n states, it is possible to determine if
every word in L(M) is a power in O(n5) time.

Proof (sketch). Checking if a word is a power can be done in linear time using
the Knuth-Morris-Pratt algorithm [13]. By Theorem 13 and Proposition 7 it
suffices to enumerate the words in L(M) of lengths 1, 2, . . . , 3n, stopping if the

62 T. Anderson et al.

number of such words in any length exceeds 7n. If all these words are powers,
then every word is a power. Otherwise, if we find a non-power, or if the number
of words in any length exceeds 7n, then not every word is a power. By the work
of Mäkinen [16] or Ackerman & Shallit [1], we can enumerate these words in
O(n5) time. �

Using part (2) of Theorem 13 along with Proposition 7, one obtains the following
in a similar manner.

Theorem 16. Given an NFA M with n states, we can decide if all but finitely
many words in L(M) are non-powers in O(n5) time.

8 Final Remarks

In this paper we examined the complexity of checking various properties of reg-
ular languages, such as consisting only of palindromes, containing at least one
palindrome, consisting only of powers, or containing at least one power. In each
case, we were able to provide an efficient algorithm or show that the problem
is likely to be hard. Our results are summarized in the following table. We also
report some upper and lower bounds on the length of a shortest palindrome,
k-power, etc., accepted by an NFA; due to space constraints we must omit the
proofs of these bounds. Here M is an NFA with n states and t transitions.

decide if decide if upper bound on worst-case
L L(M) ∩ L = ∅ L(M) ∩ L shortest element lower bound

infinite of L(M) ∩ L known

palindromes O(n2 + t2) O(n2 + t2) 2n2 − 1 n2

2
− 3n + 5

non-palindromes O(n2 + tn) O(n2 + t2) 3n − 1 3n − 1

k-powers O(n2k−1tk) O(n2k−1tk) knk Ω(nk)
(k fixed)

k-powers PSPACE- PSPACE-
(k part of input) complete complete

non-k-powers O(n3 + tn2) O(n3 + tn2) 3n (2 + 1
2k−2

)n − O(1)

powers PSPACE- PSPACE- (n + 1)nn+1 eΩ(
√

n log n)

complete complete

non-powers O(n5) O(n5) 3n 5
2
n − 2

References

1. Ackerman, M., Shallit, J.: Efficient enumeration of regular languages. In: Holub, J.,
Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 226–242. Springer, Heidelberg
(2007)

2. Anderson, T., Rampersad, N., Santean, N., Shallit, J.: Finite automata, palin-
dromes, patterns, and borders, http://www.arxiv.org/abs/0711.3183

http://www.arxiv.org/abs/0711.3183

Finite Automata, Palindromes, Powers, and Patterns 63

3. Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

4. Castiglione, G., Restivo, A., Salemi, S.: Patterns in words and languages. Disc.
Appl. Math. 144, 237–246 (2004)

5. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986); Errata 302, 497–498 (2003)

6. Dömösi, P., Horváth, G., Ito, M.: A small hierarchy of languages consisting of
non-primitive words. Publ. Math (Debrecen) 64, 261–267 (2004)

7. Garey, M., Johnson, D.: Computers and Intractability. Freeman, New York (1979)
8. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic

finite automata. Inform. Process. Lett. 59, 75–77 (1996)
9. Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions, and the least prime

in an arithmetic progression. Proc. Lond. Math. Soc. 64, 265–338 (1992)
10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
11. Horváth, S., Karhumäki, J., Kleijn, J.: Results concerning palindromicity. J. Inf.

Process. Cybern. EIK 23, 441–451 (1987)
12. Ito, M., Katsura, M., Shyr, H.J., Yu, S.S.: Automata accepting primitive words.

Semigroup Forum 37, 45–52 (1988)
13. Knuth, D., Morris Jr., J., Pratt, V.: Fast pattern matching in strings. SIAM J.

Computing 6, 323–350 (1977)
14. Kunze, M., Shyr, H.J., Thierrin, G.: h-bounded and semi-discrete languages. In-

formation and Control 51, 147–187 (1981)
15. Lyndon, R.C., Schützenberger, M.-P.: The equation am = bncp in a free group.

Michigan Math. J. 9, 289–298 (1962)
16. Mäkinen, E.: On lexicographic enumeration of regular and context-free languages.

Acta Cybernetica 13, 55–61 (1997)
17. Martinez, A.: Efficient computation of regular expressions from unary NFAs. In:

DCFS 2002, pp. 174–187 (2002)
18. Pritchard, P.: Linear prime-number sieves: a family tree. Sci. Comput. Program-

ming 9, 17–35 (1987)
19. Pǎun, G., Salomaa, A.: Thin and slender languages. Disc. Appl. Math. 61, 257–270

(1995)
20. Restivo, A., Salemi, S.: Words and patterns. In: Kuich, W., Rozenberg, G., Sa-

lomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 215–218. Springer, Heidelberg
(2002)

21. Rosaz, L.: Puzzle corner, #50. Bull. European Assoc. Theor. Comput. Sci. 76, 234
(February 2002); Solution 77, 261 (June 2002)

22. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Berlin
(1997)

23. Savitch, W.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4, 177–192 (1970)

24. Shallit, J.: Numeration systems, linear recurrences, and regular sets. Inform. Com-
put. 113, 331–347 (1994)

25. Shallit, J., Breitbart, Y.: Automaticity I: Properties of a measure of descriptional
complexity. J. Comput. System Sci. 53, 10–25 (1996)

26. Yu, S.: Regular languages. In: Handbook of Formal Languages, Ch. 2, pp. 41–110
(1997)

27. Zhang, G.-Q.: Automata, Boolean matrices, and ultimate periodicity. Inform. Com-
put. 152, 138–154 (1999)

One-Dimensional Quantum Cellular Automata

over Finite, Unbounded Configurations

Pablo Arrighi1, Vincent Nesme2, and Reinhard Werner2

1 Université de Grenoble, LIG, 46 Avenue Félix Viallet,
38031 Grenoble Cedex, France

2 Technische Universität Braunschweig, IMAPH, Mendelssohnstr. 3, 38106
Braunschweig, Germany

Abstract. One-dimensional quantum cellular automata (QCA) consist
in a line of identical, finite dimensional quantum systems. These evolve
in discrete time steps according to a causal, shift-invariant unitary evo-
lution. By causal we mean that no instantaneous long-range communi-
cation can occur. In order to define these over a Hilbert space we must
restrict to a base of finite, yet unbounded configurations. We show that
QCA always admit a two-layered block representation, and hence the
inverse QCA is again a QCA. This is a striking result since the property
does not hold for classical one-dimensional cellular automata as defined
over such finite configurations. As an example we discuss a bijective cel-
lular automata which becomes non-causal as a QCA, in a rare case of
reversible computation which does not admit a straightforward quanti-
zation. We argue that a whole class of bijective cellular automata should
no longer be considered to be reversible in a physical sense. Note that
the same two-layered block representation result applies also over infinite
configurations, as was previously shown for one-dimensional systems in
the more elaborate formalism of operators algebras [13]. Here the proof is
simpler and self-contained, moreover we discuss a counterexample QCA
in higher dimensions.

One-dimensional cellular automata (CA) consist in a line of cells, each of which
may take one in a finite number of possible states. These evolve in discrete
time steps according to a causal, shift-invariant function. When defined over
infinite configurations, the inverse of a bijective CA is then itself a CA, and this
structural reversibility leads to a natural block decomposition of the CA. None
of this holds over finite, yet possibly unbounded, configurations.

Because CA are a physics-like model of computation it seems very natural
to study their quantum extensions. The flourishing research in quantum infor-
mation and quantum computer science provides us with appropriate context
for doing so, both in terms of the potential implementation and the theoretical
framework. Right from the very birth of the field with Feynman’s 1986 paper,
it was hoped that QCA may prove an important path to realistic implemen-
tations of quantum computers [8] – mainly because they eliminate the need
for an external, classical control and hence the principal source of decoherence.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 64–75, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

One-Dimensional Quantum Cellular Automata 65

Other possible aims include providing models of distributed quantum computa-
tion, providing bridges between computer science notions and modern theoretical
physics, or anything like understanding the dynamics of some quantum physical
system in discrete spacetime, i.e. from an idealized viewpoint. Studying QCA
rather than quantum Turing machines for instance means we bother about the
spatial structure or the spatial parallelism of things [2], for the purpose of de-
scribing a quantum protocol, or to model a quantum physical phenomena [12].

One-dimensional quantum cellular automata (QCA) consist in a line of iden-
tical, finite dimensional quantum systems. These evolve in discrete time steps
according to a causal, shift-invariant unitary evolution. By causal we mean that
information cannot be transmitted faster than a fixed number of cells per time
step. Because the standard mathematical setting for quantum mechanics is the
theory of Hilbert spaces, we must exhibit and work with a countable basis for
our vectorial space. This is the reason why we only consider finite, unbounded
configurations. An elegant alternative to this restriction is to abandon Hilbert
spaces altogether and use the more abstract mathematical setting of C∗-algebras
[4] – but here we want our proofs to be self-contained and accessible to the Com-
puter Science community. Our main result is that QCA can always be expressed
as two layers of an infinitely repeating unitary gate even over such finite con-
figurations. The existence of such a two-layered block representation implies of
course that the inverse QCA is again a QCA. Our proof method is mainly a
drastic simplification of that of the same theorem over infinite configurations,
adapted to finite unbounded configurations. Moreover in its present form the
theorem over infinite configurations is stated for n-dimensions [13], which we
prove is incorrect by presenting a two-dimensional QCA which does not admit
a two-layered block representation.

It is a rather striking fact however that QCA admit the two-layered block
representation in spite of their being defined over finite, unbounded configura-
tions. For most purposes this saves us from complicated unitary tests such as
[6,7,1]. But more importantly notice how this is clearly not akin to the classical
case, where a CA may be bijective over such finite configurations, and yet not
structurally reversible. In order to clarify this situation we consider a perfectly
valid, bijective CA but whose inverse function is not a CA. It then turns out
that its quantum version is no longer valid, as it allows superluminal signalling.
Hence whilst we are used to think that any reversible computation admits a
trivial quantization, this turns out not to be the case in the realm of cellular
automata. Curiously the nonlocality of quantum states (entanglement) induces
more structure upon the cellular automata – so that its evolution may remain
causal as an operation (no superluminal signalling). Based upon these remarks
we prove that an important, well-studied class of bijective CA may be dismissed
as not physically reversible.

Outline. We provide a simple axiomatic presentation of QCA (Section 1). We
reorganize a number of known mathematical results around the notion of sub-
systems in quantum theory (Section 2). Thanks to this small theory we prove
the reversibility/block structure theorem in an elementary manner (Section 3).

66 P. Arrighi, V. Nesme, and R. Werner

In the discussion we show why the theorem does not hold as such in further
dimensions; we exhibit superluminal signalling in the XOR quantum automata,
and end with a general theorem discarding all injective, non surjective CA over
infinite configurations as unphysical (Section 4).

Note that all proofs are omitted in this version of the paper, but all of them
are available in full the longer version of the paper [3].

1 Axiomatics of QCA

We will now introduce the basic definitions of one-dimensional QCA.

In what follows Σ will be a fixed finite set of symbols (i.e. ‘the alphabet’, de-
scribing the possible basic states each cell may take) and q is a symbol such
that q /∈ Σ, which will be known as ‘the quiescent symbol’, which represents an
empty cells. We write q + Σ = {q} ∪Σ for short.

Definition 1 (finite configurations).
A (finite) configuration c over q + Σ is a function c : Z −→ q + Σ, with i �−→
c(i) = ci, such that there exists a (possibly empty) interval I verifying i ∈ I ⇒
ci ∈ q + Σ and i /∈ I ⇒ ci = q. The set of all finite configurations over {q} ∪ Σ
will be denoted Cf .

Whilst configurations hold the basic states of an entire line of cells, and hence
denote the possible basic states of the entire QCA, the global state of a QCA
may well turn out to be a superposition of these. The following definition works
because Cf is a countably infinite set.

Definition 2 (superpositions of configurations).
Let HCf

be the Hilbert space of configurations, defined as follows. To each finite
configuration c is associated a unit vector |c〉, such that the family (|c〉)c∈Cf

is
an orthonormal basis of HCf

. A superposition of configurations is then a unit
vector in HCf

.

This space of QCA configurations is the same one as in [16,6,7,1]. It is isomorphic
to the cyclic one considered in [11], but fundamentally different from the finite,
bounded periodic space of [15] and the infinite setting of [13].

Definition 3 (Unitarity).
A linear operator G : HCf

−→ HCf
is unitary if and only if {G|c〉 | c ∈ Cf} is an

orthonormal basis of HCf
.

Definition 4 (Shift-invariance).
Consider the shift operation which takes configuration c = . . . ci−1cici+1 . . . to
c′ = . . . c′i−1c

′
ic

′
i+1 . . . where for all i c′i = ci+1. Let σ : HCf

−→ HCf
be its linear

extension to superpositions of configurations. A linear operator G : HCf
−→ HCf

is said to be shift invariant if and only if Gσ = σG.

One-Dimensional Quantum Cellular Automata 67

Definition 5 (Causality).
A linear operator G : HCf

−→ HCf
is said to be causal with radius 1

2 if and only
if for any ρ, ρ′ two states over HCf

, and for any i ∈ Z, we have

ρ|i,i+1 = ρ′|i,i+1 ⇒ GρG†|i = Gρ′G†|i. (1)

where we have written A|S for the matrix TrS̄(A), i.e. the partial trace obtained
from A once all of systems that are not in S have been traced out.

In the classical case, the definition would be that the letter to be read in some
given cell i at time t+1 depends only on the state of the cells i and i+1 at time
t. This seemingly restrictive definition of causality is known in the classical case
as a 1

2 -neighborhood cellular automaton. This is because the most natural way
to represent such an automaton is to shift the cells by 1

2 at each step, so that the
state of a cell depends on the state of the two cells under it, as shown in figure 1.
This definition of causality is actually not so restrictive, since by grouping cells
into ‘supercells’ one can construct a 1

2 -neighborhood CA simulating the first one.
The same thing can easily be done for QCA, so that this definition of causality
is essentially done without loss of generality. Transposed to a quantum setting,
we get the above definition: to know the state of cell number i, we only need to
know the state of cells i and i + 1 before the evolution.

We are now set to give the formal definition of one-dimensional quantum
cellular automata.

Definition 6 (QCA).
A one-dimensional quantum cellular automaton (QCA) is an operator G : HCf

−→
HCf

which is unitary, shift-invariant and causal.

This is clearly the natural axiomatic quantization of the notion of cellular au-
tomata. An almost equivalent definition in the litterature is phrased in terms
of homomorphism of a C∗-algebra [13]. On the other hand the definitions in
[16,6,7,11,15,1,5] are not axiomatic, in the sense that they all make particular
assumptions about the form of the local action of G, and G is then defined as a
composition of these actions. The present work justifies some of these assump-
tions [5] to some extent.

The next theorem provides us with another characterization of causality, more
helpful in the proofs. But more importantly it entails structural reversibility, i.e.
the fact that the inverse function of a QCA is also a QCA. This theorem works
for n-dimensional QCA as well as one. We are not aware of a rigorous proof of
this fact for n-dimensional QCA in the previous litterature.

Theorem 1 (Structural reversibility)
Let G be a unitary operator of HCf

and N a finite subset of Z. The four properties
are equivalent:

(i) For every states ρ and ρ′ over the finite configurations, if ρ|N = ρ′|N then(
GρG†) |0 =

(
Gρ′G†) |0.

(ii) For every operator A localized on cell 0, then G†AG is localized on the cells
in N .

68 P. Arrighi, V. Nesme, and R. Werner

(iii) For every states ρ and ρ′ over the finite configurations, if ρ|−N = ρ′|−N
then

(
G†ρG

)
|0 =

(
G†ρ′G

)
|0.

(iv) For every operator A localized on cell 0, then GAG† is localized on the cells
in −N .

When G satisfies these properties, we say that G is causal at 0 with neighbourhood
N . Here −N take the opposite of each of the elements of N .

2 A Small Theory of Subsystems

The purpose of this section is to provide a series of mathematical results about
‘When can something be considered a subsystem in quantum theory?’. Let us
work towards making this sentence more precise. The ‘something’ will be an
matrix algebra (a C∗-algebra over a finite-dimensional system):

Definition 7 (Algebras).
Consider A ⊆ Mn(C). We say that A is an algebra of Mn(C) if and only if it is
closed under weighting by a scalar (.), addition (+), matrix multiplication (∗),
adjoint (†). Moreover for any S a subset of Mn(C), we denote by curly S its
closure under the above-mentioned operations.

The key issue here is that the notion of subsystem is usually a base-dependent
one, i.e. one tends to say that A is a subsystem if A = Mp(C) ⊗ Iq, but this
depends on a particular choice of basis/tensor decomposition. Let us make the
definition base-independent, artificially at first.

Definition 8 (Subsystem algebras).
Consider A an algebra of Mn(C). We say that A is a subsystem algebra of
Mn(C) if and only if there exists p, q ∈ N / pq = n and U ∈ Mn(C) /U †U =
UU † = In such that UAU † = Mp(C) ⊗ Iq.

We now work our way towards simple characterizations of subsystem algebras.

Definition 9 (Center algebras).
For A an algebra of Mn(C), we note CA = {A ∈ A | ∀B ∈ A BA = AB}. CA is
also an algebra of Mn(C), which is called the center algebra of A.

Theorem 2 (Characterizing one subsystem)
Let A be an algebra of Mn(C) and CA = {A ∈ A | ∀B ∈ A BA = AB} its center
algebra. Then A is a subsystem algebra if and only if CA = CIn.

Next we give two simple conditions for some algebras A and B to be splitted as
a tensor product, namely commutation and generacy.

Theorem 3 (Characterizing several subsystems)
Let A and B be commuting algebras of Mn (C) such that AB = Mn (C). Then
there exists a unitary matrix U such that, UAU † is Mp (C) ⊗ Iq and UBU † is
Ip ⊗Mq (C), with pq = n.

One-Dimensional Quantum Cellular Automata 69

Often however we want to split some algebras A and B as a tensor product, not
over the union of the subsystems upon which they act, but over the intersection
of the subsystems upon which they act. The next definition and two lemmas will
place us in a position to do so.

Definition 10 (Restriction Algebras).
Consider A an algebra of Mp(C) ⊗ Mq(C) ⊗ Mr(C). For A an element of A,
we write A|1 for the matrix Tr02(A), i.e. the partial trace obtained from A once
systems 0 and 2 have been traced out. Similarly so we call A|1 the restriction of
A to the middle subsystem, i.e. the algebra generated by {Tr02(A) |A ∈ A}.

Indeed when we restrict our commuting algebras to the subsystem they have in
common, their restrictions still commute.

Lemma 1 (Restriction of commuting algebras).
Consider A an algebra of Mp(C)⊗Mq(C)⊗ Ir and B an algebra of Ip ⊗Mq(C)⊗
Mr(C). Suppose A and B commute. Then so do A|1 and B|1.

Moreover when we restrict our generating algebras to the subsystem they have
in common, theirs restrictions generate the subsystem.

Lemma 2 (Restriction of generating algebras).
Consider A an algebra of Mp(C)⊗Mq(C)⊗ Ir and B an algebra of Ip ⊗Mq(C)⊗
Mr(C). Suppose AB|1 = Mp(C). Then we have that A|1B|1 = Mp(C).

3 Block Structure

Now this is done we proceed to prove the structure theorem for QCA over finite,
unbounded configurations. This is a simplification of [13]. The basic idea of the
proof is that in a cell at time t we can separate what information will be sent
to the left at time t + 1 and which information will be sent to the right at time
t + 1. But first of all we shall need two lemmas. These are better understood by
referring to Figure 1.

Lemma 3. Let A be the image of the algebra of the cell 1 under the global
evolution G. It is localized upon cells 0 and 1, and we call A|1 the restriction of
A to cell 1.

Fig. 1. Definitions of the algebras for the proof of the structure theorem

70 P. Arrighi, V. Nesme, and R. Werner

Fig. 2. QCA with two-layered block representation (U, V). Each line represents a cell,
which is a quantum system. Each square represents a unitary U/V which gets applied
upon the quantum systems. Time flows upwards.

Let B be the image of the algebra of the cell 2 under the global evolution G. It is
localized upon cells 1 and 2, and we call B|1 the restriction of B to cell 1.

There exists a unitary U acting upon cell 1 such that UA|0U † is of the form
Mp(C) ⊗ Iq and UB|1U † is of the form Ip ⊗Mq(C), with pq = d.

Lemma 4. Let B be the image of the algebra of the cell 2 under the global
evolution G. It is localized upon cells 1 and 2, and we call B|1 the restriction of
B to cell 1 and B|2 the restriction of B to cell 2.
We have that B = B|1 ⊗ B|2.

Theorem 4 (Structure theorem)
Any QCA G is of the form described by Figures 2 and 3.

Note that this structure could be further simplified if we were to allow ancil-
lary cells [1]. Therefore we have shown that one-dimensional QCA over finite,
unbounded configurations admit a two-layered block representation. As we shall
see n-dimensional QCA do not admit such a two-layered block representation,

Fig. 3. Zooming into the two-layered block representation. The unitary interactions U
and V are alternated repeatedly as shown.

One-Dimensional Quantum Cellular Automata 71

contrary to what was stated in [13]. Whilst the proof remains similar in spirit,
it has the advantage of being remarkably simpler and self-contained, phrased in
the standard setting of quantum theory, understandable without heavy prereq-
uisites in C∗-algebras. The proof technique is rather different from that of [15],
for whom G is essentially a finite-dimensional matrix and hence can necessarily
be approximated by a quantum circuit.

4 Quantizations and Consequences

The structure theorem for QCA departs in several important ways from the
classical situation, giving rise to a number of apparent paradoxes. We begin this
section by discussing some of these concerns in turns. Each of them is introduced
via an example, which we then use to derive further consequences or draw the
limits of the structure theorem. This will lead us to three original propositions.

Bijective CA and superluminal signalling. First of all, it is a well-known fact
that not all bijective CA are structurally reversible. The modified XOR CA is a
standard example of that.

Definition 11 (mXOR CA).
Let Cf be the set of finite configurations over the alphabet q + Σ = {q, 0, 1}.
For all x, y in q + Σ Let δ(qx) = q, δ(xq) = x, and δ(xy) = x ⊕ y otherwise.
We call F : Cf −→ Cf the function mapping c = . . . ci−1cici+1 . . . to c′ =
. . . δ(ci−1ci)δ(cici+1)

The mXOR CA is clearly shift-invariant, and causal in the sense that the state
of a cell at t + 1 only depends from its state and that of its right neighbour at
t. It is also bijective. Indeed for any c′ = . . . qqc′kc

′
k+1 . . . with c′k the first non

quiescent cell, we have ck = q, ck+1 = c′k, and thereon for l ≥ k+1 we have either
cl+1 = cl ⊕ c′l if c′l �= q, or once again cl+1 = q otherwise, etc. In other words
the antecedent always exists (surjectivity) and is uniquely derived (injectivity)
from left till right. But the mXOR CA is not structurally reversible. Indeed for
some c′ = . . . 000000000 . . . we cannot know whether the antecedent of this large
zone of zeroes is another large zone of zeroes or a large zone of ones – unless
we deduce this from the left border as was previously described. . . but the left
border may lie arbitrary far.

So classically there are bijective CA whose inverse is not a CA, and thus
who do not admit any n-layered block representation at all. Yet surely, just by
defining F over HCf

by linear extension (e.g. F (α.| . . . 01 . . .〉 + β.| . . . 11 . . .〉) =
α.F | . . . 01 . . .〉+β.F | . . . 11 . . .〉) we ought to have a QCA, together with its block
representation, hence the apparent paradox.

In order to lift this concern let us look at the properties of this quantized F :
HCf

−→ HCf
. It is indeed unitary as a linear extension of a bijective function, and

it is shift-invariant for the same reason. Yet counter-intuitively it is non-causal.
Indeed consider configurations c± = 1/

√
2.| . . . qq〉(|00 . . . 00〉±|11 . . .11〉)|qq . . .〉.

We have Fc± = | . . . qq00 . . . 0〉|±〉|qq . . .〉, where we have used the usual notation

72 P. Arrighi, V. Nesme, and R. Werner

|±〉 = 1/
√

2.(|0〉±|1〉). Let i be the position of this last non quiescent cell. Clearly
(Fc±)|i = |±〉〈±| is not just a function of c|i,i+1 = (|0q〉〈0q| + |1q〉〈1q|)/2, but
instead depends upon this global ± phase. Another way to put it is that the
quantized XOR may be used to transmit information faster than light. Say the
first non quiescent cell is with Alice in Paris and the last non quiescent cell is
with Bob in New York. Just by applying a phase gate Z upon her cell Alice
can change c+ into c− at time t, leading to a perfectly measurable change from
|+〉 to |−〉 for Bob. Again another way to say it is that operators localized upon
cell 1 are not taken to operators localized upon cells 0 and 1, as was the case
for QCA. For instance take I ⊗ Z ⊗ I localized upon cell 1. This is taken to
F (I⊗Z⊗ I)F †. But this operation is not localized upon cells 0 and 1, as it takes
| . . . qq00 . . . 0〉|+〉|qq . . .〉 to | . . . qq00 . . .0〉|−〉|qq . . .〉, whatever the position i of
the varying |±〉. Note that because the effect is arbitrarily remote, this cannot
be reconciled with just a cell grouping. Notice also the curious asymmetry of the
scenario, which communicates towards the right.

Such a behaviour is clearly not acceptable. Although it seemed like a valid
QCA, F must bi discarded as non-physical. A phenomenon which seems causal
classically may turn out non-causal in its quantum extension. Clearly this is due
to the possibility of having entangled states, which allow for more ’non-local’
states, and hence strengthens the consequences of no-signalling. This is the deep
reason why QCA, even on finite configurations, do admit a block representation.
Now let us take a step back. If a CA is not structurally reversible, there is
no chance that its QCA will be. Moreover according the current state of mod-
ern physics, quantum mechanics is the theory for describing all closed systems.
Therefore we reach the following proposition, where the class B stands for the
class of bijective but not structurally reversible CA upon finite configurations is
known to coincide with the class of surjective but non injective CA upon infi-
nite configurations, well-known to be quivalent to the class of bijective CA upon
finite configurations but not upon infinite configuration.

Proposition 1 (Class B is not causally quantizable).. The quantization of
a class B automata is not causal. It cannot be implemented by a series of finite
quantum systems, isolated from the outside world.

As far as CA are concerned this result removes much of the motivation of sev-
eral papers which focus upon class B, since they become illegal physically in
the formal sense above. As regards QCA the structure theorem also removes
much of the motivation of the papers [6,7,11,1], which contain unitary decision
procedures for possibly non-structurally reversible QCA.

Faster quantum signalling. Second, it is a well-known fact that there exists
some 1/2-neighbourhood, structurally reversible CA, whose inverse is also of
1/2-neighbourhood, and yet which do not admit a two-layered block represen-
tation unless the cells are grouped into supercells. The Toffoli CA is a good
example of that.

One-Dimensional Quantum Cellular Automata 73

Fig. 4. The Toffoli CA

Definition 12 (Toffoli CA). Let Cf be the set of finite configurations over the
alphabet {00, 01, 01, 11}, with 00 now taken as the quiescent symbol. For all ab
and cd taken in the alphabet let δ(abcd) = (b ⊕ a.c)c. We call F : Cf −→ Cf the
function mapping c = . . . ci−1cici+1 . . . to c′ = . . . δ(ci−1ci)δ(cici+1) This is
best described by Figure 4.

The Toffoli CA is clearly shift-invariant, and of 1/2-neighbourhood. Let us check
that its inverse is also of 1/2-neighbourhood. For instance say we seek to retrieve
(c,d). c is easy of course. By shift-invariance retrieving d is like retrieving b. But
since we have a and c in cleartext we can easily substract a.c from b ⊕ a.c. Now
why does it not have a two-layered block representation without cell grouping?
Remember the toffoli gate is the controlled-controlled-NOT gate. Here b is NOTed
depending upon a and c, which pass through unchanged, same for d with the left
and right neighbouring subcells, etc. So actually the Toffoli CA is just two layers
of the toffoli gate, as we have shown in Figure 4. But we know that the toffoli gate
cannot be obtained from two bit gates in classical reversible electronics, hence
there cannot be a two-layered block representation without cell grouping.

So classically there exists some structurally reversible CA, of 1/2-neighbour-
hood, whose inverse is also of 1/2-neighbourhood, but do not admit a two-
layered block representation without cell grouping. Yet surely, just by defining
F over HCf

by linear extension we ought to have a QCA, together with its block
representation, and that construction does not need any cell grouping, hence
again the apparent paradox.

Again in order to lift this concern let us look at the properties of this quantized
F : HCf

−→ HCf
. It is indeed unitary and shift-invariant of course. This time it

is also causal, but counter-intuitively it turns out not to be of 1/2-neighbourhood.
Indeed from the formulation in terms of Toffoli gates as in Figure 4 one can show
that the radius is 3/2 in a quantum mechanical setting. For instance one can check
that putting |+〉 in the a-subcell, |−〉 in the b-subcell, and either |0〉 or |1〉 in the
c-subcell of Fig. 4 at time t will yield either |+〉 or |−〉 in the a-subcell at time t+1.
Basically this arises because unlike in the classical casewhere the controlbit always
emerges unchanges of a Toffoli gate, when a control bit is in a superposition (like
a in the example given) it may emerge from the Toffoli gate modified.

74 P. Arrighi, V. Nesme, and R. Werner

Once more let us take a step back. The Toffoli CA is yet another case where
exploiting quantum superpositions of configurations enables us to have informa-
tion flowing faster than in the classical setting, just like for the XOR CA. But
unlike the mXOR CA, the speed of information remains bounded in the Toffoli
CA, and so up to cell grouping it can still be considered a QCA. The Toffoli
CA is hence perfectly valid from a physical point of view, and causal, so long as
we are willing to reinterprete what the maximal speed of information should be.
Therefore we reach the following proposition.

Proposition 2 (Quantum information flows faster). Let F : Cf −→ Cf

be a CA and F : HCf
−→ HCf

the corresponding QCA, as obtained by linear
extension of F . Information may flow faster in the the quantized version of F .

This result is certainly intriguing, and one may wonder whether it might contain
the seed of a novel development quantum information theory, as opposed to its
classical counterpart.

No-go for n-dimensions. Finally, it is again well-known that in two-dimensions
there exists some structurally reversible CA which do not admit a two-layered
block representation, even after a cell-grouping. The standard example is that
of Kari [10]:

Definition 13 (Kari CA). Let Cf be the set of finite configurations over the
alphabet {0, 1}9, with 09 is now taken as the quiescent symbol. So each cell is
made of 8 bits, one for each cardinal direction (North, North-East. . .) plus one
bit in the center. At each time step, the North bit of a cell undergoes a NOT
only if the cell lying North has center bit equal to 1, the North-East bit of a cell
undergoes a NOT only if the cell lying North-East has center bit equal to 1, and
so on. Call F this CA.

The proof can easily be ported to the quantum case, as discussed in the longer ver-
sion of the paper [3]. Hence we have a counterexample to the higher-dimensional
case of the Theorem in [13]. We reach the following proposition.

Proposition 3 (No-go for n-dimensions). There exists some 2-dimensional
QCA which do not admit a two-layered block representation.

Acknowledgements

We would like to thank Jacques Mazoyer, Torsten Franz, Holger Vogts, Jarkko
Kari, Jérôme Durand-Lose, Renan Fargetton, Philippe Jorrand for a number of
helpful conversations.

References

1. Arrighi, P.: An algebraic study of one-dimensional quantum cellular automata.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 122–133.
Springer, Heidelberg (2006)

2. Arrighi, P., Fargetton, R.: Intrinsically universal one-dimensional quantum cellular
automata. In: DCM 2007 (2007)

One-Dimensional Quantum Cellular Automata 75

3. Arrighi, P., Nesme, V., Werner, R.: One-dimensional quantum cellular automata
over finite, unbounded configurations, longer version of this paper, arXiv:0711.3517
(2007)

4. Bratteli, O., Robinson, D.: Operators algebras and quantum statistical mechanics
1. Springer, Heidelberg (1987)

5. Cheung, D., Perez-Delgado, C.A.: Local Unitary Quantum Cellular Automata,
arXiv:/0709.0006

6. Dürr, C., LêThanh, H., Santha, M.: A decision procedure for well formed quantum
cellular automata. Random Structures and Algorithms 11, 381–394 (1997)

7. Dürr, C., Santha, M.: A decision procedure for unitary quantum linear cellular
automata. SIAM J. of Computing 31(4), 1076–1089 (2002)

8. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)
9. Gijswijt, D.: Matrix algebras and semidefinite programming techniques for codes,

Ph.D. thesis, University of Amsterdam (2005)
10. Kari, J.: On the circuit depth of structurally reversible cellular automata. Fuda-

menta Informaticae 34, 1–15 (1999)
11. Meyer, D.: Unitarity in one dimensional nonlinear quantum cellular automata,

arXiv:quant-ph/9605023 (1995)
12. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat.

Phys. 85, 551–574 (1996)
13. Schumacher, B., Werner, R.F.: Reversible quantum cellular automata, arXiv:quant-

ph/0405174
14. Shepherd, D.J., Franz, T., Werner, R.F.: Universally programmable quantum cel-

lular automata. Phys. Rev. Lett. 97, 020502 (2006)
15. van Dam, W.: A Universal Quantum Cellular Automaton. In: Proc. of Phys. Comp.

1996, New England Complex Systems Institute, pp. 323–331 (1996); InterJournal
manuscript 91(1996)

16. Watrous, J.: On one dimensional quantum cellular automata. In: Proc. of the 36th
IEEE Symposium on Foundations of Computer Science, pp. 528–537 (1995)

The Three-Color and Two-Color TantrixTM Rotation
Puzzle Problems Are NP-Complete Via Parsimonious

Reductions

Dorothea Baumeister and Jörg Rothe

Institut für Informatik, Universität Düsseldorf, 40225 Düsseldorf, Germany

Abstract. Holzer and Holzer [7] proved that the TantrixTM rotation puzzle prob-
lem with four colors is NP-complete, and they showed that the infinite variant of
this problem is undecidable. In this paper, we study the three-color and two-color
TantrixTM rotation puzzle problems (3-TRP and 2-TRP) and their variants. Re-
stricting the number of allowed colors to three (respectively, to two) reduces the
set of available TantrixTM tiles from 56 to 14 (respectively, to 8). We prove that
3-TRP and 2-TRP are NP-complete, which answers a question raised by Holzer
and Holzer [7] in the affirmative. Since our reductions are parsimonious, it fol-
lows that the problems Unique-3-TRP and Unique-2-TRP are DP-complete under
randomized reductions. Finally, we prove that the infinite variants of 3-TRP and
2-TRP are undecidable.

1 Introduction

The puzzle game TantrixTM, invented by Mike McManaway in 1991, is a domino-like
strategy game played with hexagonal tiles in the plane. Each tile contains three col-
ored lines in different patterns (see Figure 1). We are here interested in the variant of
the TantrixTM rotation puzzle game whose aim it is to match the line colors of the
joint edges for each pair of adjacent tiles, just by rotating the tiles around their axes
while their locations remain fixed. This paper continues the complexity-theoretic study
of such problems that was initiated by Holzer and Holzer [7]. Other results on the
complexity of domino-like strategy games can be found, e.g., in Grädel’s work [6].
TantrixTM puzzles have also been studied with regard to evolutionary computation [4].

Holzer and Holzer [7] defined two decision problems associated with four-color
TantrixTM rotation puzzles. The first problem’s instances are restricted to a finite num-
ber of tiles, and the second problem’s instances are allowed to have infinitely many
tiles. They proved that the finite variant of this problem is NP-complete and that the in-
finite problem variant is undecidable. The constructions in [7] use tiles with four colors,
just as the original TantrixTM tile set. Holzer and Holzer posed the question of whether
the TantrixTM rotation puzzle problem remains NP-complete if restricted to only three
colors, or if restricted to otherwise reduced tile sets.

 Full version: [2]; see also Baumeister’s Master Thesis “Complexity of the TantrixTM Rotation
Puzzle Problem,” Universität Düsseldorf, September 2007. Supported in part by DFG grants
RO 1202/9-3 and RO 1202/11-1 and the Humboldt Foundation’s TransCoop program.

C. Martı́n-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 76–87, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The 3-TRP and 2-TRP Problems Are NP-Complete 77

Table 1. Overview of complexity and decidability results for k-TRP and its variants

k k-TRP is Parsimonious? Unique-k-TRP is Inf-k-TRP is

1 in P (trivial) in P (trivial) decidable (trivial)
2 NP-compl., Cor. 3 yes, Thm. 2 DP-≤p

ran-compl., Cor. 4 undecidable, Thm. 3
3 NP-compl., Cor. 1 yes, Thm. 1 DP-≤p

ran-compl., Cor. 4 undecidable, Thm. 3
4 NP-compl., see [7] yes, see [1] DP-≤p

ran-compl., see [1] undecidable, see [7]

In this paper, we answer this question in the affirmative for the three-color and the
two-color version of this problem. For 1 ≤ k ≤ 4, Table 1 summarizes the results for
k-TRP, the k-color TantrixTM rotation puzzle problem, and its variants. (All problems
are formally defined in Section 2.)

Since the four-color TantrixTM tile set contains the three-color TantrixTM tile set,
our new complexity results for 3-TRP imply the previous results for 4-TRP (both its
NP-completeness [7] and that satisfiability parsimoniously reduces to 4-TRP [1]). In
contrast, the three-color TantrixTM tile set does not contain the two-color TantrixTM

tile set (see Figure 2 in Section 2). Thus, 3-TRP does not straightforwardly inherit its
hardness results from those of 2-TRP, which is why both reductions, the one to 3-TRP
and the one to 2-TRP, have to be presented. Note that they each substantially differ—
both regarding the subpuzzles constructed and regarding the arguments showing that
the constructions are correct—from the previously known reductions [7,1], and we will
explicitly illustrate the differences between our new and the original subpuzzles.

Since we provide parsimonious reductions from the satisfiability problem to 3-TRP
and to 2-TRP, our reductions preserve the uniqueness of the solution. Thus, the unique
variants of both 3-TRP and 2-TRP are DP-complete under polynomial-time random-
ized reductions, where DP is the class of differences of NP sets. We also prove that the
infinite variants of 3-TRP and 2-TRP are undecidable, via a circuit construction sim-
ilar to the one Holzer and Holzer [7] used to show that the infinite 4-TRP problem is
undecidable.

2 Definitions and Notation

Complexity-Theoretic Notions and Notation: We assume that the reader is familiar
with the standard notions of complexity theory, such as the complexity classes P (deter-
ministic polynomial time) and NP (nondeterministic polynomial time). DP denotes the
class of differences of any two NP sets [9].

Let Σ∗ denote the set of strings over the alphabet Σ = {0,1}. Given any language L⊆
Σ∗, ‖L‖ denotes the number of elements in L. We consider both decision problems and
function problems. The former are formalized as languages whose elements are those
strings in Σ∗ that encode the yes-instances of the problem at hand. Regarding the latter,
we focus on the counting problems related to sets in NP. The counting version #A of an
NP set A maps each instance x of A to the number of solutions of x. That is, counting
problems are functions from Σ∗ to N. As an example, the counting version #SAT of
SAT, the NP-complete satisfiability problem, asks how many satisfying assignments a
given boolean formula has. Solutions of NP sets can be viewed as accepting paths of

78 D. Baumeister and J. Rothe

(a) Sint (b) Brid (c) Chin (d) Rond

(e) red (f) yellow (g) blue (h) green

Fig. 1. TantrixTM tile types and the encoding of TantrixTM line colors

NP machines. Valiant [10] defined the function class #P to contain the functions that
give the number of accepting paths of some NP machine. In particular, #SAT is in #P.

The complexity of two decision problems, A and B, will here be compared via the
polynomial-time many-one reducibility: A ≤p

m B if there is a polynomial-time com-
putable function f such that for each x ∈ Σ∗, x ∈ A if and only if f (x) ∈ B. A set B
is said to be NP-complete if B is in NP and every NP set ≤p

m-reduces to B.
Many-one reductions do not always preserve the number of solutions. A reduction

that does preserve the number of solutions is said to be parsimonious. Formally, if A
and B are any two sets in NP, we say A parsimoniously reduces to B if there exists a
polynomial-time computable function f such that for each x ∈ Σ∗, #A(x) = #B(f (x)).

Valiant and Vazirani [11] introduced the following type of randomized polynomial-
time many-one reducibility: A ≤p

ran B if there exists a polynomial-time randomized al-
gorithm F and a polynomial p such that for each x ∈ Σ∗, if x ∈ A then F(x) ∈ B with
probability at least 1/p(|x|), and if x �∈ A then F(x) �∈ B with certainty. In particular,
they proved that the unique version of the satisfiability problem, Unique-SAT, is DP-
complete under randomized reductions.

Tile Sets, Color Sequences, and Orientations: The TantrixTM rotation puzzle consists
of four different kinds of hexagonal tiles, named Sint, Brid, Chin, and Rond. Each tile
has three lines colored differently, where the three colors of a tile are chosen among four
possible colors, see Figures 1(a)–(d). The original TantrixTM colors are red, yellow, blue,
and green, which we encode here as shown in Figures 1(e)–(h). The combination of four
kinds of tiles having three out of four colors each gives a total of 56 different tiles.

Let C be the set that contains the four colors red, yellow, blue, and green. For
each i ∈ {1,2,3,4}, let Ci ⊆ C be some fixed subset of size i, and let Ti denote the
set of TantrixTM tiles available when the line colors for each tile are restricted to Ci.
For example, T4 is the original TantrixTM tile set containing 56 tiles, and if C3 contains,
say, the three colors red, yellow, and blue, then tile set T3 contains the 14 tiles shown in
Figure 2(b).

2

1

4

3

6

5

8

7

(a) TantrixTM tile set T2

2

1

5

4

3

8

7

6

11

10

9

14

13

12

(b) TantrixTM tile set T3

Fig. 2. TantrixTM tile sets T2 (for red and blue) and T3 (for red, yellow, and blue)

The 3-TRP and 2-TRP Problems Are NP-Complete 79

For T3 and T4, we require the three lines on each tile to have distinct colors, as in
the original TantrixTM tile set. For T1 and T2, however, this is not possible, so we allow
the same color being used for more than one of the three lines of any tile. Note that we
care only about the sequence of colors on a tile, where we always use the clockwise
direction to represent color sequences. However, since different types of tiles can yield
the same color sequence, we will use just one such tile to represent the corresponding
color sequence. For example, if C2 contains, say, the two colors red and blue, then the
color sequence red-red-blue-blue-blue-blue (which we abbreviate as rrbbbb) can be
represented by a Sint, a Brid, or a Rond each having one short red arc and two blue
additional lines, and we add only one such tile (say, the Rond) to the tile set T2. That is,
though there is some freedom in choosing a particular set of tiles, to be specific we fix
the tile set T2 shown in Figure 2(a). Thus, we have ‖T1‖ = 1, ‖T2‖ = 8, ‖T3‖ = 14, and
‖T4‖ = 56, regardless of which colors are chosen to be in Ci, 1 ≤ i ≤ 4.

The six possible orientations for each tile in T2 and in T3, respectively, can be de-
scribed by permuting the color sequences cyclically, and we omit the repetitions of
color sequences (see the full version [2] for more details). For example, tile t7 from T2

has the same color sequence (namely, bbbbbb) in each of its six orientations. In Sec-
tion 3, we will consider the counting versions of TantrixTM rotation puzzle problems
and will construct parsimonious reductions. When counting the solutions of TantrixTM

rotation puzzles, we will focus on color sequences only. That is, whenever some tile
(such as t7 from T2) has distinct orientations with identical color sequences, we will
count this as just one solution (and disregard such repetitions). In this sense, our re-
duction in the proof of Theorem 2 (which is presented in the full version [2]) will be
parsimonious.

Definition of the Problems: We now recall some useful notation that Holzer and
Holzer [7] introduced in order to formalize problems related to the TantrixTM rota-
tion puzzle. The instances of such problems are TantrixTM tiles firmly arranged in the
plane. To represent their positions, we use a two-dimensional hexagonal coordinate sys-
tem, see [7] and also [2]. Let T ∈ {T1,T2,T3,T4} be some tile set as defined above. Let
A : Z2 → T be a function mapping points in Z2 to tiles in T , i.e., A (x) is the type of
the tile located at position x. Note that A is a partial function; throughout this paper
(except in Theorem 3 and its proof), we restrict our problem instances to finitely many
given tiles, and the regions of Z2 they cover may have holes (which is a difference to
the original TantrixTM game).

Define shape(A) to be the set of points x ∈ Z2 for which A (x) is defined. For any
two distinct points x = (a,b) and y = (c,d) in Z2, x and y are neighbors if and only
if (a = c and |b− d| = 1) or (|a− c| = 1 and b = d) or (a− c = 1 and b− d = 1) or
(a−c =−1 and b−d =−1). For any two points x and y in shape(A), A (x) and A (y)
are said to be neighbors exactly if x and y are neighbors. For k chosen from {1,2,3,4},
define the following problem:

Name: k-Color TantrixTM Rotation Puzzle (k-TRP, for short).
Instance: A finite shape function A : Z2 → Tk, encoded as a string in Σ∗.
Question: Is there a solution to the rotation puzzle defined by A , i.e., does there exist

a rotation of the given tiles in shape(A) such that the colors of the lines of any two
adjacent tiles match at their joint edge?

80 D. Baumeister and J. Rothe

Clearly, 1-TRP can be solved trivially, so 1-TRP is in P. On the other hand, Holzer
and Holzer [7] showed that 4-TRP is NP-complete and that the infinite variant of 4-TRP
is undecidable. Baumeister and Rothe [1] investigated the counting and the unique vari-
ant of 4-TRP and, in particular, provided a parsimonious reduction from SAT to 4-TRP.
In this paper, we study the three-color and two-color versions of this problem, 3-TRP
and 2-TRP, and their counting, unique, and infinite variants.

Definition 1. A solution to a k-TRP instance A specifies an orientation of each
tile in shape(A) such that the colors of the lines of any two adjacent tiles match
at their joint edge. Let SOLk-TRP(A) denote the set of solutions of A . Define
the counting version of k-TRP to be the function #k-TRP mapping from Σ∗ to N
such that #k-TRP(A) = ‖SOLk-TRP(A)‖. Define the unique version of k-TRP as
Unique-k-TRP = {A |#k-TRP(A) = 1}.

The above problems are defined for the case of finite problem instances. The infinite
TantrixTM rotation puzzle problem with k colors (Inf-k-TRP, for short) is defined ex-
actly as k-TRP, the only difference being that the shape function A is not required to be
finite and is represented by the encoding of a Turing machine computing A : Z2 → Tk.

3 Results

3.1 Parsimonious Reduction from SAT to 3-TRP

Theorem 1 below is the main result of this section. Notwithstanding that our proof
follows the general approach of Holzer and Holzer [7], our specific construction and
our proof of correctness will differ substantially from theirs. We will give a parsimo-
nious reduction from SAT to 3-TRP. Let Circuit∧,¬-SAT denote the problem of decid-
ing, given a boolean circuit c with AND and NOT gates only, whether or not there
is a satisfying truth assignment to the input variables of c. The NP-completeness of
Circuit∧,¬-SAT was shown by Cook [3], and it is easy to see that SAT parsimoniously
reduces to Circuit∧,¬-SAT (see, e.g., [1]).

Theorem 1. SAT parsimoniously reduces to 3-TRP.

It is enough to show that Circuit∧,¬-SAT parsimoniously reduces to 3-TRP. The
resulting 3-TRP instance simulates a boolean circuit with AND and NOT gates such
that the number of solutions of the rotation puzzle equals the number of satisfying truth
assignments to the variables of the circuit.

General remarks on our proof approach: The rotation puzzle to be constructed from
a given circuit consists of different subpuzzles each using only three colors. The color
green was employed by Holzer and Holzer [7] only to exclude certain rotations, so
we choose to eliminate this color in our three-color rotation puzzle. Thus, letting C3

contain the colors blue, red, and yellow, we have the tile set T3 = {t1, t2, . . . ,t14}, where
the enumeration of tiles corresponds to Figure 2(b). Furthermore, our construction will
be parsimonious, i.e., there will be a one-to-one correspondence between the solutions
of the given Circuit∧,¬-SAT instance and the solutions of the resulting rotation puzzle
instance. Note that part of our work is already done, since some subpuzzles constructed

The 3-TRP and 2-TRP Problems Are NP-Complete 81

in [1] use only three colors and they each have unique solutions. However, the remain-
ing subpuzzles have to be either modified substantially or to be constructed completely
differently, and the arguments of why our modified construction is correct differs con-
siderably from previous work [7,1].

Since it is not so easy to exclude undesired rotations without having the color green
available, it is useful to first analyze the 14 tiles in T3. In the remainder of this proof,
when showing that our construction is correct, our arguments will often be based on
which substrings do or do not occur in the color sequences of certain tiles from T3.
(Note that the full version of this paper [2] has a table that shows which substrings of
the form uv, where u,v ∈C3, occur in the color sequence of ti in T3, and this table may
be looked up for convenience.)

Holzer and Holzer [7] consider a boolean circuit c on input variables x1,x2, . . . ,xn

as a sequence (α1,α2, . . . ,αm) of computation steps (or “instructions”), and we adopt
this approach here. For the ith instruction, αi, we have αi = xi if 1 ≤ i ≤ n, and if
n + 1 ≤ i ≤ m then we have either αi = NOT(j) or αi = AND(j,k), where j ≤ k < i.
Circuits are evaluated in the standard way. We will represent the truth value true by the
color blue and the truth value false by the color red in our rotation puzzle. A technical
difficulty in the construction results from the wire crossings that circuits can have. To
construct rotation puzzles from planar circuits, Holzer and Holzer use McColl’s planar
“cross-over” circuit with AND and NOT gates to simulate such wire crossings [8],
and in particular they employ Goldschlager’s log-space transformation from general to
planar circuits [5]. For the details of this transformation, we refer to [7].

Holzer and Holzer’s original subpuzzles [7] should be compared with those in our
construction. To illustrate the differences between our new and these original subpuz-
zles, modified or inserted tiles in our new subpuzzles presented in this section will
always be highlighted by having a grey background.

Wire subpuzzles: Wires of the circuit are simulated by the subpuzzles WIRE, MOVE,
and COPY. We present only the WIRE here; see [2] for MOVE and COPY.

A vertical wire is represented by a WIRE subpuzzle, which is shown in Figure 3. The
original WIRE subpuzzle from [7] does not contain green but it does not have a unique
solution, while the WIRE subpuzzle from [1] ensures the uniqueness of the solution but
is using a tile with a green line. In the original WIRE subpuzzle, both tiles, a and b,
have two possible orientations for each input color. Inserting two new tiles at positions
x and y (see Figure 3) makes the solution unique. If the input color is blue, tile x must
contain one of the following color-sequence substrings for the edges joint with tiles b
and a: ry, rr, yy, or yr. If the input color is red, x must contain one of these substrings:
bb, yb, yy, or by. Tile t12 satisfies the conditions yy and ry for the input color blue, and
the conditions yb and yy for the input color red.

The solution must now be fixed with tile y. The possible color-sequence substrings
of y at the edges joint with a and b are rr and ry for the input color blue, and yb and bb
for the input color red. Tile t13 has exactly one of these sequences for each input color.
Thus, the solution for this subpuzzle contains only three colors and is unique.

Gate subpuzzles: The boolean gates AND and NOT are represented by the AND and
NOT subpuzzles. Both the original four-color NOT subpuzzle from [7] and the mod-
ified four-color NOT subpuzzle from [1] use tiles with green lines to exclude certain

82 D. Baumeister and J. Rothe

IN

OUT

(a) In: true

IN

OUT

(b) In: false

x

IN

a

b

OUT

y

(c) Scheme

Fig. 3. Three-color WIRE subpuzzle

rotations. Our three-color NOT subpuzzle is shown in Figure 4. Tiles a, b, c, and d
from the original NOT subpuzzle [7] remain unchanged. Tiles e, f , and g in this origi-
nal NOT subpuzzle ensure that the output color will be correct, since the joint edge of
e and b is always red. So for our new NOT subpuzzle in Figure 4, we have to show that
the edge between tiles x and b is always red, and that we have unique solutions for both
input colors.

First, let the input color be blue and suppose for a contradiction that the joint edge
of tiles b and x were blue. Then the joint edge of tiles b and c would be yellow. Since
x is a tile of type t13 and so does not contain the color-sequence substring bb, the edge
between tiles c and x must be yellow. But then the edges of tile w joint with tiles c and x
must both be blue. This is not possible, however, because w (which is of type t10) does
not contain the color-sequence substring bb. So if the input color is blue, the orientation
of tile b is fixed with yellow at the edge of b joint with tile y, and with red at the edges of
b joint with tiles c and x. This already ensures that the output color will be red, because
tiles c and d behave like a WIRE subpuzzle. Tile x does not contain the color-sequence
substring br, so the orientation of tile c is also fixed with blue at the joint edge of tiles
c and w. As a consequence, the joint edge of tiles w and d is yellow, and due to the fact
that the joint edge of tiles w and x is also yellow, the orientation of w and d is fixed
as well. Regarding tile a, the edge joint with tile y can be yellow or red, but tile x has
blue at the edge joint with tile y, so the joint edge of tiles y and a is yellow, and the
orientation of all tiles is fixed for the input color blue. The case of red being the input
color can be handled analogously.

The most complicated figure is the AND subpuzzle. The original four-color version
from [7] uses four tiles with green lines and the modified four-color AND subpuzzle

IN

OUT

(a) In: true

IN

OUT

(b) In: false

y

x

w

IN

a

b

c

d

OUT

(c) Scheme

Fig. 4. Three-color NOT subpuzzle

The 3-TRP and 2-TRP Problems Are NP-Complete 83

IN

OUT

IN

(a) In: true, true

IN

OUT

IN

(b) In: true, false

IN

OUT

IN

(c) In: false, true

IN

OUT

IN

(d) In: false, false

x

h

IN

a

b

v

c

j

k

g

l

m

n

OUT

w

u

o

IN

d

e
y

i

(e) Scheme

Fig. 5. Three-color AND subpuzzle

from [1] uses seven tiles with green lines. Figure 5 shows our new AND subpuzzle using
only three colors and having unique solutions for all four possible combinations of input
colors. To analyze this subpuzzle, we subdivide it into a lower and an upper part. The
lower part ends with tile c and has four possible solutions (one for each combination
of input colors), while the upper part, which begins with tile j, has only two possible
solutions (one for each possible output color). The lower part can again be subdivided
into three different parts.

The lower left part contains the tiles a, b, x, and h. If the input color to this part is blue
(see Figures 5(a) and 5(b)), the joint edge of tiles b and x is always red, and since tile x
(which is of type t11) does not contain the color-sequence substring rr, the orientation
of tiles a and x is fixed. The orientation of tiles b and h is also fixed, since h (which
is of type t2) does not contain the color-sequence substring by but the color-sequence
substring yy for the edges joint with tiles b and x. By similar arguments we obtain a
unique solution for these tiles if the left input color is red (see Figures 5(c) and 5(d)).
The connecting edge to the rest of the subpuzzle is the joint edge between tiles b and c,
and tile b will have the same color at this edge as the left input color.

Tiles d, e, i, w, and y form the lower right part. If the input color to this part is blue
(see Figures 5(a) and 5(c)), the joint edge of tiles d and y must be yellow, since tile y
(which is of type t9) does not contain the color-sequence substrings rr nor ry for the
edges joint with tiles d and e. Thus the joint edge of tiles y and e must be yellow, since i
(which is of type t6) does not contain the color-sequence substring bb for the edges joint
with tiles y and e. This implies that the tiles i and w also have a fixed orientation. If the

84 D. Baumeister and J. Rothe

input color to the lower right part is red (see Figures 5(b) and 5(d)), a unique solution is
obtained by similar arguments. The connection of the lower right part to the rest of the
subpuzzle is the edge between tiles w and g. If the right input color is blue, this edge
will also be blue, and if the right input color is red, this edge will be yellow.

The heart of the AND subpuzzle is its lower middle part, formed by the tiles c and g.
The colors at the joint edge between tiles b and c and at the joint edge between tiles
w and g determine the orientation of the tiles c and g uniquely for all four possible
combinations of input colors. The output of this part is the color at the edge between c
and j. If both input colors are blue, this edge will also be blue, and otherwise this edge
will always be yellow.

The output of the whole AND subpuzzle will be red if the edge between c and j
is yellow, and if this edge is blue then the output of the whole subpuzzle will also be
blue. If the input color for the upper part is blue (see Figure 5(a)), each of the tiles j,
k, l, m, and n has a vertical blue line. Note that since the colors red and yellow are
symmetrical in these tiles, we would have several possible solutions without tiles o, u,
and v. However, tile v (which is of type t9) contains neither rr nor ry for the edges
joint with tiles k and j, so the orientation of the tiles j through n is fixed, except that
tile n without tiles o and u would still have two possible orientations. Tile u (which is
of type t2) is fixed because of its color-sequence substring yy at the edges joint with l
and m, so due to tiles o and u the only color possible at the edge between n and o is
yellow, and we have a unique solution. If the input color for the upper part is yellow
(see Figures 5(b)–(d)), we obtain unique solutions by similar arguments. Hence, this
new AND subpuzzle uses only three colors and has unique solutions for each of the
four possible combinations of input colors.

Input and output subpuzzles: The input variables of the boolean circuit are repre-
sented by the subpuzzle BOOL. Our new three-color BOOL subpuzzle is presented in
Figure 6, and since it is completely different from the original four-color BOOL subpuz-
zle from [7], no tiles are marked here. The subpuzzle in Figure 6 has only two possible
solutions, one with the output color blue (if the corresponding variable is true), and one
with the output color red (if the corresponding variable is false). The original four-color
BOOL subpuzzle from [7] contains tiles with green lines to exclude certain rotations.
Our three-color BOOL subpuzzle does not contain any green lines, but it might not be
that obvious that there are only two possible solutions, one for each output color. The
proof can be found in the full version [2].

OUT

(a) Out: true

OUT

(b) Out: false

x

b
c

a

OUT

d

(c) Scheme

Fig. 6. Three-color BOOL subpuzzle

The 3-TRP and 2-TRP Problems Are NP-Complete 85

IN

(a) TEST-true

d

x

IN

a

c
b

(b) Scheme

Fig. 7. Three-color TEST subpuzzle

Finally, a subpuzzle is needed to check whether or not the circuit evaluates to true.
This is achieved by the subpuzzle TEST-true shown in Figure 7(a). It has only one valid
solution, namely that its input color is blue. Just like the subpuzzle BOOL, the original
four-color TEST-true subpuzzle from [7], which was not modified in [1], uses green
lines to exclude certain rotations. Again, since the new TEST-true subpuzzle is com-
pletely different from the original subpuzzle, no tiles are marked here. Our argument of
why this subpuzzle is correct can be found in the full version [2].

The shapes of the subpuzzles constructed above have changed slightly. However, by
Holzer and Holzer’s argument [7] about the minimal horizontal distance between two
wires and/or gates being at least four, unintended interactions between the subpuzzles
do not occur. This concludes the proof of Theorem 1. ❑

Corollary 1. 3-TRP is NP-complete.

Since the tile set T3 is a subset of the tileset T4, we have 3-TRP ≤p
m 4-TRP. Thus, the

hardness results for 3-TRP and its variants proven in this paper immediately are inher-
ited by 4-TRP and its variants, which provides an alternative proof of these hardness
results for 4-TRP and its variants established in [7,1]. In particular, Corollary 2 follows
from Theorem 1 and Corollary 1.

Corollary 2 ([7,1]). 4-TRP is NP-complete, via a parsimonious reduction from SAT.

3.2 Parsimonious Reduction from SAT to 2-TRP

In contrast to the above-mentioned fact that 3-TRP ≤p
m 4-TRP holds trivially, the re-

duction 2-TRP ≤p
m 3-TRP (which we will show to hold due to both problems being

NP-complete, see Corollaries 1 and 3) is not immediatedly straightforward, since the
tile set T2 is not a subset of the tile set T3 (recall Figure 2 in Section 2). In this section,
we study 2-TRP and its variants. Our main result here is Theorem 2 below the proof of
which can be found in the full version [2].

Theorem 2. SAT parsimoniously reduces to 2-TRP.

Corollary 3. 2-TRP is NP-complete.

3.3 Unique and Infinite Variants of 3-TRP and 2-TRP

Parsimonious reductions preserve the number of solutions and, in particular, the unique-
ness of solutions. Thus, Theorems 1 and 2 imply Corollary 4 below that also employs

86 D. Baumeister and J. Rothe

Valiant and Vazirani’s results on the DP-hardness of Unique-SAT under≤p
ran-reductions

(which were defined in Section 2). The proof of Corollary 4 follows the lines of the
proof of [1, Theorem 6], which states the analogous result for Unique-4-TRP in place
of Unique-3-TRP and Unique-2-TRP.

Corollary 4

1. Unique-SAT parsimoniously reduces to Unique-3-TRP and Unique-2-TRP.
2. Unique-3-TRP and Unique-2-TRP are DP-complete under ≤p

ran-reductions.

Holzer and Holzer [7] proved that Inf-4-TRP, the infinite TantrixTM rotation puzzle
problem with four colors, is undecidable, via a reduction from (the complement of) the
empty-word problem for Turing machines. The proof of Theorem 3 below, which can
be found in the full version [2], uses essentially the same argument but is based on our
modified three-color and two-color constructions.

Theorem 3. Both Inf-2-TRP and Inf-3-TRP are undecidable.

4 Conclusions

This paper studied the three-color and two-color TantrixTM rotation puzzle problems,
3-TRP and 2-TRP, and their unique and infinite variants. Our main contribution is
that both 3-TRP and 2-TRP are NP-complete via a parsimonious reduction from SAT,
which in particular solves a question raised by Holzer and Holzer [7]. Since restricting
the number of colors to three and two, respectively, drastically reduces the number of
TantrixTM tiles available, our constructions as well as our correctness arguments sub-
stantially differ from those in [7,1]. Table 1 in Section 1 shows that our results give a
complete picture of the complexity of k-TRP, 1 ≤ k ≤ 4. An interesting question still
remaining open is whether the analogs of k-TRP without holes still are NP-complete.

Acknowledgments. We are grateful to Markus Holzer and Piotr Faliszewski for inspir-
ing discussions on TantrixTM rotation puzzles, and we thank Thomas Baumeister for
his help with writing a program for checking the correctness of our constructions and
for producing reasonably small figures. We thank the anonymous LATA 2008 referees
for helpful comments, and in particular the referee who let us know that he or she has
also written a program for verifying the correctness of our constructions.

References

1. Baumeister, D., Rothe, J.: Satisfiability parsimoniously reduces to the TantrixTM rotation
puzzle problem. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 134–145. Springer, Heidelberg (2007)

2. Baumeister, D., Rothe, J.: The three-color and two-color TantrixTM rotation puzzle problems
are NP-complete via parsimonious reductions. Technical Report cs.CC/0711.1827, ACM
Computing Research Repository (CoRR) (November 2007)

3. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd ACM
Symposium on Theory of Computing, pp. 151–158. ACM Press, New York (1971)

The 3-TRP and 2-TRP Problems Are NP-Complete 87

4. Downing, K.: Tantrix: A minute to learn, 100 (genetic algorithm) generations to master.
Genetic Programming and Evolvable Machines 6(4), 381–406 (2005)

5. Goldschlager, L.: The monotone and planar circuit value problems are log space complete
for P. SIGACT News 9(2), 25–29 (1977)

6. Grädel, E.: Domino games and complexity. SIAM Journal on Computing 19(5), 787–804
(1990)

7. Holzer, M., Holzer, W.: TantrixTM rotation puzzles are intractable. Discrete Applied Mathe-
matics 144(3), 345–358 (2004)

8. McColl, W.: Planar crossovers. IEEE Transactions on Computers C-30(3), 223–225 (1981)
9. Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complex-

ity). Journal of Computer and System Sciences 28(2), 244–259 (1984)
10. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8(2),

189–201 (1979)
11. Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical Computer

Science 47, 85–93 (1986)

Optional and Iterated Types for

Pregroup Grammars

Denis Béchet1, Alexander Dikovsky1, Annie Foret2, and Emmanuelle Garel2

1 LINA CNRS – UMR 6241 – Université de Nantes
2, rue de la Houssiniére – BP 92208

44322 Nantes Cedex 03 – France
Denis.Bechet@univ-nantes.fr,

Alexandre.Dikovsky@univ-nantes.fr
2 IRISA – Université de Rennes 1
Campus Universitaire de Beaulieu

Avenue du Général Leclerc
35042 Rennes Cedex – France

Annie.Foret@irisa.fr,
Emmanuelle.Garel@irisa.fr

Abstract. Pregroup grammars are a context-free grammar formalism
which may be used to describe the syntax of natural languages. However,
this formalism is not able to naturally define types corresponding to op-
tional and iterated arguments such as optional complements of verbs or
verbs’ adverbial modifiers. This paper introduces two constructions that
make up for this deficiency.

Keywords: Pregroups, Lambek Categorial Grammars, Categorial De-
pendency Grammar.

1 Introduction

Pregroup grammars (PG) [1] have been introduced as a simplification of Lam-
bek calculus [2]. They have been used to model fragments of syntax of several
natural languages: English [1], Italian [3], French [4], German [5,6], Japanese [7],
Persian [8], etc. PG are based on the idea that the sentences are derived from
words using only lexical rules. The syntactic properties of each word in the lexi-
con are defined as a finite set of its grammatical categories. These grammatical
categories are types of a free pregroup generated by a set of basic types together
with a partial order on the basic types. A sentence is correct with respect to a
PG if for each word of the sentence, one can find in the lexicon such a type that
the concatenation of the selected types can be proved in the pregroup calculus
to be inferior than or equal to a particular basic type s. The PG are weakly
equivalent to CF-grammars [9]. It doesn’t mean that they are suitable to define
the syntax of natural languages. In particular, any formalism desined for this

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 88–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optional and Iterated Types for Pregroup Grammars 89

purpose should naturally handle the optional and iterated constructions such
as noun modifiers, attributes and relative clauses or verb’s optional arguments,
adverbials or location, manner and other circumstantial clauses. All of them are
optional and their number is not bounded. Whereas the CF-grammars handle
such constructions rather naturally, they are problematic for the conventional
PG. Like the Lambek categorial grammars, the PG are resource sensitive. In
particular, in PG proofs, every simple type (except s) should be linked and re-
duced with exactly one dual type. So a PG cannot define a simple type that is
optional or linked to zero, one, or several duals. This effect can be simulated in
PG using complex types, however this simulation has serious disadvantages (see
a discussion below) .

In this paper, we propose a different solution to this problem adding new rules
to the PG calculus. As a result, we obtain a class of PG with simple optional and
iterated types, which express the optional and iterated constructions in the way
the dependency grammars do ([10,11,12,13]). We prove that the new calculus is
decidable.

2 Background

Definition 1 (Pregroup). A pregroup is a structure (P,≤, ·, l, r, 1) such that
(P,≤, ·, 1) is a partially ordered monoid1 and l, r are two unary operations on P
that satisfy for all element x ∈ P, xlx ≤ 1 ≤ xxl and xxr ≤ 1 ≤ xrx.

Definition 2 (Free Pregroup). Let (P,≤) be an ordered set of basic types,
P (Z) = {p(i) | p ∈ P, i ∈ Z} be the set of simple types and T(P,≤) =

(
P (Z)

)∗
=

{p(i1)1 · · · p(in)
n | 0 ≤ k ≤ n, pk ∈ P and ik ∈ Z} be the set of types. The empty

sequence in T(P,≤) is denoted by 1. For X and Y ∈ T(P,≤), X ≤ Y iff this relation
is derivable in the following system where p, q ∈ P , n, k ∈ Z and X,Y, Z ∈
T(P,≤):

X ≤ X (Id)
X ≤ Y Y ≤ Z

(Cut)
X ≤ Z

XY ≤ Z
(AL)

Xp(n)p(n+1)Y ≤ Z

X ≤ Y Z
(AR)

X ≤ Y p(n+1)p(n)Z

Xp(k)Y ≤ Z
(INDL)

Xq(k)Y ≤ Z

X ≤ Y q(k)Z
(INDR)

X ≤ Y p(k)Z
q ≤ p if k is even, and p ≤ q if k is odd

1 We briefly recall that a monoid is a structure < M, ·, 1 >, such that · is associative
and has a neutral element 1 (∀x ∈ M : 1 · x = x · 1 = x). A partially ordered monoid
is a monoid < M, ·, 1 > with a partial order ≤ that satisfies ∀a, b, c: a ≤ b ⇒ c · a ≤
c · b and a · c ≤ b · c.

90 D. Béchet et al.

This construction, proposed by Buskowski [9], defines a pregroup that extends
≤ on basic types P to T(P,≤)

2,3.

The Cut Elimination. The cut rule in the Free Pregroup calculus can be
eliminated: every derivable inequality has a cut-free derivation.

Definition 3 (Pregroup Grammar). Let (P,≤) be a finite partially ordered
set. A pregroup grammar based on (P,≤) is a lexicalized4 grammar G = (Σ, I, s)
such that s ∈ T(P,≤). G assigns a type X to a string v1 · · · vn of Σ∗ iff for
1 ≤ i ≤ n, ∃Xi ∈ I(vi) such that X1 · · ·Xn ≤ X in the free pregroup T(P,≤). The
language L(G) is the set of strings in Σ∗ that are assigned s by G.

Example 1. Let us see the following sentence taken from ”Un amour de Swann”
by M. Proust: Maintenant, tous les soirs, quand il l’avait ramenée chez elle, il
fallait qu’il entrât.5 In Fig. 1 we show a proof of correctness of assignment of
types to its fragment. The primitive types used in this proof are: π3 and π3

= third person (subject) with π3 ≤ π3, p2 = past participle, ω = object, s =
sentence, s5 = subjunctive clause, with s5 ≤ s, σ = complete subjunctive clause,
τ = adverbial phrase. This grammar assigns s to the following sentence:

τ

quand

sl π3

il

πr
3sω

ll

l’

slπ3 π3
rs

avait

pl
2 p2

ramenée

ωlλl λ

chez-elle

π3

il

π3
rτ r

fallait

sσl σ

qu’

sl
5 π3

il

π3
r

entrât

s5

Fig. 1.

In more details, this grammar assigns σ to “qu’il entrât”, due to:

σ = σ(0) ≤ σ(0)

(AL)
σsl5s5 = σ(0)s

(−1)
5 s

(0)
5 ≤ σ(0)

(AL)
σsl5π3π3

rs5 = σ(0)s
(−1)
5 π3

(0)π3
(1)s

(0)
5 ≤ σ(0)

(INDL)
σsl5π3π3

rs5 = σ(0)s
(−1)
5 π3

(0)π3
(1)s

(0)
5 ≤ σ(0)

figured as:

σ

qu’

sl5 π3

il

π3
r

entrât

s5

3 Optional and Iterated Primitive Types

In Fig. 2, we present a more traditional analysis of the sentence in Example 1
represented as a dependency tree.
2 Left and right adjoints are defined by (p(n))l = p(n−1), (p(n))r = p(n+1), (XY)l =

Y lXl and (XY)r = Y rXr. We write p for p(0). We also iterate left and right adjoints
for every X ∈ T(P,≤) : X(0) = X, X(n+1) = (Xr)(n) and X(n−1) = (Xl)(n).

3 ≤ is only a preorder. Thus, in fact, the pregroup is the quotient of T(P,≤) by the
equivalence relation X ≤ Y & Y ≤ X.

4 A lexicalized grammar is a triple (Σ, I, s): Σ is a finite alphabet, I assigns a finite
set of categories (or types) to each c ∈ Σ, s is a category (or type) associated to
correct sentences.

5 [FR: Now, every evening when he took back her to her home, he ought to enter].

Optional and Iterated Types for Pregroup Grammars 91

Fig. 2.

We see that the verb fallait governs three consecutive circumstantial phrases:
Maintenant, tous les soirs and quand il l’avait ramenée chez elle. All the three
are optional and there might be some more dependent circumstantial phrases in
this sequence. We can also remark that the oblique object chez elle is optional
for the verb ramener.

A Dependency Grammar Appoach
In rule-based dependency grammars (cf. [13]), as well as in the local environment
dependency grammars of Sleator and Temperly [12], such optional and iterated
constructions are defined using restricted regular expressions. In categorial de-
pendency grammars (CDG) [14,15], which are a kind of categorial grammars with
dependency types as categories, these constructions are defined using rather tra-
ditional reduction rules. For instance, the left iterated types are defined by the
following two rules:

Il. a[a∗\α] � [a∗\α]
Ωl. [a∗\α] � α

Several Pregroup Approaches
Below, we denote the optional types by a? and the iterated types by a∗. Let us
show how such types might be defined in the free pregroup. We see at least three
approaches, among which only the last one is considered below in full detail.

A Simulation with Compound Types. The first way to define the optional
types might be using the following definitions:

a∗ Def= xa∗xr
a∗

a? Def= xa?ya?y
r
a?za?z

r
a?x

r
a?

Here, the basic types xa∗ , xa? , ya? and za? must not be used for any other
purpose. This simulation is not perfect because the duals of the optional type
xa∗xr

a∗ or of the iterated type xa?ya?y
r
a?za?z

r
a?x

r
a? are not simple but compound

types and that is problematic. In fact, we have to simulate a∗, ar and al, such as
we can obtain the composition of a∗, on the right with ar and on the left with
al. We have an other simulation to do with a?, ar and al.

92 D. Béchet et al.

A List-like Simulation. In order to simulate an iterated type [α/a∗] a∗ � α we
can distinguish two types, one type a for a first use in a sequence and one type
ara for next uses in a sequence of elements of type a (this encodes in fact one or
more iterations of a). To fully encode a∗, we may add assignments b, whenever
ba∗ was intended. As in

John run fast yesterday
n nr sal a ara

We have two assignments for run: in “John run”, run �→ nrs but in “John
run fast, yesterday”, “run” �→ nrsal. Unfortunately, this approach increases
the number of types in the lexicon: if a type has k iterated simple types, the
simulation associates 2k types. The same problem occurs with a simulation of
an optional simple type using two types, one with the optional simple type and
the second without it.

Adding Rules to Pregroup Grammars. We propose another definition of
the optional and iterated types adding to the PG calculus new rules. Our purpose
is to ensure properties such as a ≤ a?, a∗a ≤ a∗, aa∗ ≤ a∗, 1 ≤ a?, 1 ≤ a∗ (see
Corollary 1).

Definition 4 (PG with Optional and Iterated Types). We add the fol-
lowing rules to a PG that define p? and p∗ for p a basic type6:

XY ≤ Z
(? −WL)

Xp?
(2k+1)

Y ≤ Z
X ≤ Y Z

(? −WR)
X ≤ Y p?(2k)

Z

Xp(2k+1)Y ≤ Z
(? −DL)

Xp?
(2k+1)

Y ≤ Z
X ≤ Y p(2k)Z

(? −DR)
X ≤ Y p?(2k)

Z

XY ≤ Z
(∗ −WL)

Xp∗
(2k+1)

Y ≤ Z
X ≤ Y Z

(∗ −WR)
X ≤ Y p∗(2k)

Z

Xp∗
(2k+1)

p(2k+1)Y ≤ Z
(∗ − CL)

Xp∗
(2k+1)

Y ≤ Z
X ≤ Y p(2k)p∗

(2k)
Z

(∗ − CR)
X ≤ Y p∗(2k)

Z

Xp(2k+1)p∗
(2k+1)

Y ≤ Z
(∗ − C′

L)
Xp∗

(2k+1)
Y ≤ Z

X ≤ Y p∗(2k)
p(2k)Z

(∗ − C′
R)

X ≤ Y p∗(2k)
Z

As desired, this system enjoys the following property and corollary.

Proposition 1. Let Ui ≤ 1 for 0 ≤ i ≤ n and Cj ≤ a for 1 ≤ j ≤ n. Then
U0C1U1 ≤ a? and ∀k, 1 ≤ k ≤ n : U0C1U1C2 · · ·Uka

∗Uk+1 · · ·CnUn ≤ a∗.
6 p? and p∗ are considered as incomparable (with respect to the PG order) basic

types: Rules (AL) and (AR) are valid. (INDL) and (INDR) are useless (if p
= q
then p?
≤ q, p?
≤ q?, p?
≤ q∗, etc).

Optional and Iterated Types for Pregroup Grammars 93

Proof. It is easy to check that if Xi ≤ Yi for 1 ≤ i ≤ n, n ∈ N then X1 · · ·Xn ≤
Y1 · · ·Yn. Thus U0C1U1 ≤ a and using (?−DR), we find U0C1U1 ≤ a?. Similarly,
we have U0C1U1C2 · · ·Uka

∗Uk+1CnUn ≤ a · · ·aa∗a · · ·a. Using (∗ − CR) and
(∗ − C′

R), we find U0C1U1C2 · · ·Uka
∗Uk+1 · · ·CnUn ≤ a∗.

Corollary 1 (Optional and Iterated Basic Types). For a, a basic type:

a∗a ≤ a∗
a ≤ a? aa∗ ≤ a∗
1 ≤ a? 1 ≤ a∗

Theorem 2. This construction defines a pregroup that extends the free pregroup
based on (P,≤).

Proof. The structure is a monoid. It is partially ordered (the Cut rule implies
transitivity) and moreover with a deduction of X1 ≤ Y1 and a deduction of
X2 ≤ Y2, we can build a deduction of X1X2 ≤ Y1Y2: the structure is a partially
ordered monoid. Finally l and r define the left and right adjoints: the proofs use
(AL), (AR), (Id).

Example 2. In Fig. 3, we show an analysis of the sentence of Proust in the
calculus. The primitive types used below are: π3 = third person (subject), p2 =
past participle, ω = object, s = sentence, s5 = subjunctive clause, σ = complete
subjunctive clause, d = determinant, ρ = restrictive adjective, τ = adverbial
phrase.
ρ?

r

corresponds to a left optional restrictive adjective argument, λ?l

to a right
locative argument and τ∗

l

(or τ∗
r

) to right (or left) iterated adverbial phrase
arguments.

τ

maintenant

ρ

tous

d

les

drρ?
r

soirs

τ τ

quand

sl π3

il

πr
3sωll

l’

slπ3 π3
rs

avait

pl
2 p2

ramenée

ωl λ?
l

λ

chez-elle

π3

il

π3
rτ∗

r

fallait

sτ∗
l
σl σ

qu’

sl
5 π3

il

π3
r

entrât

s5

Fig. 3.

Theorem 3 (The Cut Elimination). The cut rule can be eliminated in the
extended calculus: every derivable inequality has a cut-free derivation.

Proof. The proof is given in Appendix A.

Corollary 2 (Decidability). The provability of an inequality in this system is
decidable

Proof. The provability of X ≤ Y for the free pregroup based on (P,≤) (without
iterated or optional basic type) is a direct consequence of the elimination of the
cut rule because the set of possible premises appearing in a cut-free deduction
of X ≤ Y is finite. The proof is also correct with the addition of optional basic
types. However, for a free pregroup with iterated basic types, this argument in

94 D. Béchet et al.

not valid because (∗−CL), (∗−CR), (∗−C′
L), (∗−C′

R) introduce new occurrences
of basic types in a cut-free derivation. However, we can limit the number of uses
of these rules by the number of basic types in X and Y (this is a consequence
of the parity condition on the exponent of the iterated or optional simple type).
Thus, even if the search space is infinite, we can limit it to a finite subset.

4 Conclusion

This paper introduces in pregroups two new type constructors ? (option) and ∗
(iteration) allowing to handle in a natural way the optional and iterated con-
structions such as optional noun modifiers and complements of verbs or their
circumstantials (adverbs, time or location clauses etc.). The extended sequent
calculus for pregroups formalising the two constructors has natural properties
and is decidable. The future work will concern the complexity of this calculus
(see [16]) and the development of a parser for this new class of PG.

References

1. Lambek, J.: Type grammars revisited. In: Lecomte, A., Lamarche, F., Perrier, G.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582. Springer, Heidelberg (1999)

2. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154–170 (1958)

3. Casadio, C., Lambek, J.: An algebraic analysis of clitic pronouns in italian. In: de
Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099.
Springer, Heidelberg (2001)

4. Bargelli, D., Lambek, J.: An algebraic approach to french sentence structure. In:
de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099.
Springer, Heidelberg (2001)

5. Lambek, J.: Type grammar meets german word order. Theoretical Linguistics 26,
19–30 (2000)

6. Lambek, J., Preller, A.: An algebraic approach to the german noun phrase. Lin-
guistic Analysis 31, 3–4 (2003)

7. Cardinal, K.: An algebraic study of Japanese grammar. Master’s thesis, McGill
University, Montreal (2002)

8. Sadrzadeh, M.: Pregroup analysis of persian sentences (2007)
9. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,

G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95–109. Springer,
Heidelberg (2001)

10. Tesnière, L.: Éléments de syntaxe structurale. Librairie C. Klincksiek, Paris (1959)
11. Hays, D.: Dependency theory: A formalism and some observations. Language 40,

511–525 (1964)
12. Sleator, D.D., Temperly, D.: Parsing English with a Link Grammar. In: Proc.

IWPT 1993, pp. 277–291 (1993)
13. Kahane, S. (ed.): Les grammaires de dépendance, Paris, Hermes. Traitement au-

tomatique des langues, vol. 41(1) (2000)
14. Dikovsky, A.: Dependencies as categories. In: Kruiff, G.J., Duchier, D. (eds.) Proc.

of Workshop Recent Advances in Dependency Grammars, In conjunction with
COLING 2004, Geneva, Switzerland, August, 28th 2004, pp. 90–97 (2004)

Optional and Iterated Types for Pregroup Grammars 95

15. Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Moortgat, M.,
Prince, V. (eds.) Proc. of Int. Conf. on Categorial Grammars, Montpellier (2004)

16. Béchet, D., Dikovsky, A., Foret, A., Garel, E.: Introduction of option and iteration
into pregroup grammars. In: Casadio, C., Lambek, J. (eds.) Computational Al-
gebric Approaches to Morphology and Syntax, Polimetrica, Monza (Milan), Italy
(2008)

17. Dos̆en, K.: Cut Elimination in Categories. Kluwer Academic publishers, Dordrecht
(1999)

18. Buszkowski, W.: Cut elimination for the lambek calculus of adjoints. In: Abrusci,
V., Casadio, C. (eds.) New Perspectives in Logic and Formal Linguisitics, Proceed-
ings Vth ROMA Workshop, Bulzoni Editore (2001)

Appendix A – Cut Elimination in S′ : Proof Details

This proof assumes lemmas detailed in the Appendix B. Take again the systems
precedently introduced and consider S the system without Cut and S′ the system
with the rule Cut Ċlearly a proof in S is also a proof in S′.

To show the converse, we proceed by in-
duction on the number of Cut and on the
length of a derivation γl, ending in Cut in
S′:

γl

��
�

. . .
Rl

X ≤ Y

. . .
Rr

Y ≤ Z

��
� γr

Cut
X ≤ Z

– If Rl is the axiom rule, the last rule (cut) can be suppressed since Rr has the same
conclusion as D. If Rr is the axiom rule, the last rule (cut) can also be suppressed
since Rl has the same conclusion as D. We now assume that neither Rl nor Rr is
the axiom rule.

– If Rl is the Cut rule, the induction hypothesis applies to γl, this Cut can be
suppressed, in a proof γ′

l, and the final Cut can be suppressed in this deduction.
If Rr is the Cut rule, we proceed similarly.

We now assume that neither γl or γr has a Cut rule.

– We consider the remaining possibilities
for Rl (left part) and Rr (right part):
these cases are detailed below.
- If Rl is a left rule,
Y remains in the antecedent,
we can easily permute Rl with Cut .
- If Rl is a right rule,
we apply a lemma or a rule on the right
then Cut with the antecedent of Rl

Rl Rr method

AL, ...L − permute Rl with Cut

AR − Cut and lemma (B1)

INDR − Cut and INDL

? − WR − Cut and lemma (B2)

? − DR − Cut and lemma (B3)

∗ − WR − Cut and lemma (B4)

∗ − CR − Cut and lemma (B5)

∗ − C′
R − Cut and lemma (B6)

– A typical case for a left rule is : [Rl =? − WL]

96 D. Béchet et al.

X1Y1 ≤ Y
? − WL

X = X1p
?(2k+1)Y1 ≤ Y

. . .
Rr

Y ≤ Z

��
� γr

Cut
X ≤ Z

�→

X1Y1 ≤ Y
. . .

Rr

Y ≤ Z

��
� γr

Cut
X1Y1 ≤ Z

? − WL

X1p
?(2k+1)Y1 ≤ Z

– A typical case for a right rule is : [Rl =? − WR]

X1 ≤ Y1Z1
? − WR

X1 ≤ Y1p
?(2k)

Z1 = Y

. . .
Rr

Y ≤ Z

��
� γr

Cut
X ≤ Z

�→
X1 ≤ Y1Z1

Y1p
?(2k)

Z1 ≤ Z
(lemmaB2)

Y1Z1 ≤ Z
Cut

X1 ≤ Z

The other cases are similar

Appendix B - Lemmas for Cut elimination in S′

(1) if Up(n+1)p′(n)
V ≤ Z with p′(n) ≤ p(n) and p, p′ are primitive not an iterated or

an optional type, then UV ≤ Z
(1’) if Up(n+1)p(n)V ≤ Z with p an iterated or an optional type, then UV ≤ Z
(1”) if UP(2k+1)p

∗(2k)V ≤ Z or Up∗(2k+2)P(2k+1)V ≤ Z

where P(2k+1) has the form p(2k+1)

� �� 	
n1 times

p∗(2k+1)

� �� 	
0 or 1occ.

p(2k+1)

� �� 	
n2 times

, then UV ≤ Z

(2) if Up?(2k)V ≤ Z then UV ≤ Z (3) if Up?(2k)V ≤ Z then Up(2k)V ≤ Z
(4) if Up∗(2k)V ≤ Z then UV ≤ Z
(5) if Up∗(2k)V ≤ Z then Up(2k)p∗(2k)V ≤ Z
(6) if Up∗(2k)V ≤ Z then Up∗(2k)p(2k)V ≤ Z

Proof. These properties are shown for the system without Cut by induction on the
premise of the inequality, according to the last applied rule.

We show (1’) and (1”) separately after.

– The axiom cases are gathered below, including those for (1’) and (1”).

(1), (1’), (1”) case Up(n+1)p′(n)
V = Z with p′(n) ≤ p(n) or p = p′ is an iterated or an

optional type

then

UV ≤ UV
AR

UV ≤ Up(n+1)p(n)V
INDR

UV ≤ Up(n+1)p′(n)
V

or

UV ≤ UV
AR

UV ≤ Up(n+1)p(n)V

(for p = p′ iterated or optional)

(1”) Axiom case with p = q∗ let Z = UQ(2k+1)q
∗(2k)V (first form) or Z =

Uq∗(2k+2)

Q(2k+1)V (second form)

where Q(2k+1) has the form q(2k+1)

� �� 	
n1 times

q∗(2k+1)

� �� 	
n3

q(2k+1)

� �� 	
n2 times

Optional and Iterated Types for Pregroup Grammars 97

We proceed by induction on n1, n2, to show that in the first form of Z,
if Z = U q(2k+1)

� �� 	
n1 times

q∗(2k+1)

� �� 	
n3

q(2k+1)

� �� 	
n2 times

q∗(2k)V , then UV ≤ Z

∗ for n3 = 0; n1 = n2 = 0, we get UV ≤ Z = Uq∗(2k)V , as conclusion of
rule ∗ − WR on UV ≤ UV

∗ for n3 = 0; n1 + n2 > 0,

UV ≤ UV
AR

UV ≤ Uq(2k+1)q(2k)V
∗WR

UV ≤ Uq(2k+1)q(2k)q∗(2k)V
∗CR

UV ≤ Uq(2k+1)q∗(2k)V

then for
n1+n2 >1:

UV ≤ U q(2k+1)

� �� 	
n1+n2−1

q∗(2k)V

AR

UV ≤ U q(2k+1)

� �� 	
n1+n2−1

q(2k+1)q(2k)q∗(2k)V

∗CR

UV ≤ U q(2k+1)

� �� 	
n1+n2

q∗(2k)V

∗ for n3 = 1; n1 = n2 = 0, it is shown above, applying AR

∗ for n3 = 1; n1 > 0 or n2 > 0, we start from above when n3 = 0

UV ≤ U q(2k+1)

� �� 	
n1

q∗(2k)V

∗WL

UV ≤ U q(2k+1)

� �� 	
n1

q∗(2k+1)q∗(2k)V

AR

UV ≤ U q(2k+1)

� �� 	
n1

q∗(2k+1)q(2k+1)q(2k)q∗(2k)V

∗CR

UV ≤ U q(2k+1)

� �� 	
n1

q∗(2k+1)q(2k+1)q∗(2k)V

we then repeat these last
two steps if n2 > 1.

The second form is similar.

(2) case Up?(2k)V = Z then
UV ≤ UV

? − WR

UV ≤ Up?(2k)V = Z

(3) case Up?(2k)V = Z then
Up(2k)V ≤ Up(2k)V

? − DR

Up(2k)V ≤ Up?(2k)V = Z

(4) case Up∗(2k)V = Z then
UV ≤ UV

∗ − WR

UV ≤ Up∗(2k)V = Z

(5) case Up∗(2k)V = Z then
Up(2k)p∗(2k)V ≤ Up(2k)p∗(2k)V

∗ − CR

Up(2k)p∗(2k)V ≤ Up?(2k)V = Z

(6) case Up∗(2k)V = Z then
Up∗(2k)p(2k)V ≤ Up∗(2k)p(2k)V

∗ − C′
R

Up∗(2k)p(2k)V ≤ Up?(2k)V = Z

98 D. Béchet et al.

– If the last rule is a right rule, it is easy to permute the induction hypothesis with
this rule.

– In all cases distinct from (1), if the last rule is a left rule distinct from AL, it cannot
create the type p?(2k) or p∗(2k) involved in the lemma. We can then permute the
induction hypothesis with this rule. The same remark holds in all cases distinct
from (1), if the last rule is AL, but does not create the type p?(2k) or p∗(2k) involved
in the lemma.

– In all cases distinct from (1), if the last rule is AL, and it creates p?(2k) or p∗(2k),
let p′ = p? according to case (2)(3), or p′ = p∗ for (4)(5)(6) such that:

Up′(2k)
V = U ′V ′ ≤ Z

AL

U ′p′(n)
p′(n+1)

V ′ ≤ Z
with Up′(2k)

=Up′(n)
or p′(2k)

V=p′(n+1)
V ′

We then apply appropriate rules on U ′V ′ ≤ Z:

–in case(2), if (n = 2k) we show U ′p?(2k+1)
V ′ ≤ Z, from (? − WL) on U ′V ′ ≤ Z

–in case(2), if (n = 2k − 1) we show U ′p?(2k−1)
V ′ ≤ Z similarly

–in case(3), if (n = 2k) we show U ′p(2k)p?(2k+1)
V ′ ≤ Z by AR then (? − DL)

–in case(3), if (n = 2k − 1) we show U ′p?(2k−1)
p(2k)V ′ ≤ Z by AR then (? − DL)

–in case(4), if (n = 2k) we show U ′p∗(2k+1)V ′ ≤ Z, from (∗ − WL) on U ′V ′ ≤ Z
–in case(4), if (n = 2k − 1) we show U ′p∗(2k+1)V ′ ≤ Z similarly
–in case(5), if (n = 2k) we show U ′p(2k)p∗(2k)p∗(2k+1)V ′ ≤ Z, by AL on U ′V ′ ≤ Z
we get : U ′p(2k)p(2k+1)V ′ ≤ Z,
then by AL again : U ′p(2k)p∗(2k)p∗(2k+1)p(2k+1)V ′ ≤ Z, finally by ∗ − CL.
–in case(5), if (n = 2k − 1) we show U ′p∗(2k−1)p(2k)p∗(2k)V ′ ≤ Z, similarly : by
AL on U ′V ′ ≤ Z we get : U ′p∗(2k−1)p∗(2k)V ′ ≤ Z,
then by AL again : U ′p∗(2k−1)p(2k−1)p(2k)p∗(2k)V ′ ≤ Z, finally by ∗ − CL.
–in case(6), if (n = 2k) we show U ′p∗(2k)p(2k)p∗(2k+1)V ′ ≤ Z, by AL on U ′V ′ ≤ Z
we get : U ′p∗(2k)p∗(2k+1)V ′ ≤ Z,
then by AL again : U ′p∗(2k)p(2k)p(2k+1)p∗(2k+1)V ′ ≤ Z, finally by ∗ − C′

L.
–in case(6), if (n = 2k − 1) we show U ′p∗(2k−1)p∗(2k)p(2k)V ′ ≤ Z, similarly : by
AL on U ′V ′ ≤ Z we get : U ′p(2k−1)p(2k)V ′ ≤ Z,
then by AL again : U ′p(2k−1)p∗(2k−1)p∗(2k)p(2k)V ′ ≤ Z, finally by ∗ − C′

L.
– In the inductive case for Lemma(1), we consider applications of the rule that can

interfere with p(n+1)p′(n)
(in the other cases we can then permute the induction

hypothesis with this rule) :

• AL case
U ′p′(n)

V ≤ Z
AL

U p(n+1)p′(n)
V = U ′p(n) p(n+1)p′(n)

V ≤ Z

p(n) ≤ p′(n)
, if p = p′, the premise is the desired inequality, otherwise we apply

INDL

• AL case (second possibility) the premise is the desired inequality :

Up′(n+1)
V ′ ≤ Z

AL

Up(n+1)p′(n)
V = Up(n+1)p′(n)

p′(n+1)
V ′ ≤ Z

• INDL case if p′(n) ≤ p′′(n)
Up(n+1)p′′(n)

V ≤ Z
INDL

Up(n+1)p′(n)
V ≤ Z

Optional and Iterated Types for Pregroup Grammars 99

we have p(n) ≤ p′(n) ≤ p′′(n)
and apply the induction hypothesis on the premise

using p(n) ≤ p′′(n)
.

• INDL case if p(n+1) ≤ q(n+1)
Uq(n+1)p′(n)

V ≤ Z
INDL

Up(n+1)p′(n)
V ≤ Z

we have q(n) ≤ p(n) ≤ p′(n)
and apply the induction hypothesis on the premise

using q(n) ≤ p′(n)
.

– Separate proof for (1’) and (1”) . We proceed similarly, with all other cases of the
lemma already proved. The axiom cases are already shown. We consider below the
case of a left rule that interferes with the formula involved in the lemma (otherwise
we can permute induction and the rule):

• ? − WL case, we can write p = q?,
subcase n = 2k

Uq?(2k)
V ≤ Z

? − WL

Uq?(2k+1)
q?(2k)

V ≤ Z

subcase n = 2k − 1

Uq?(2k)
V ≤ Z

? − WL

Uq?(2k)
q?(2k−1)

V ≤ Z

we then apply lemma B(2) on the premise.
• ? − DL case, we can write p = q?,

subcase n = 2k

Uq(2k+1)q?(2k)
V ≤ Z

? − DL

Uq?(2k+1)
q?(2k)

V ≤ Z

subcase n = 2k − 1

Uq?(2k)
q(2k−1)V ≤ Z

? − DL

Uq?(2k)
q?(2k−1)

V ≤ Z

we then apply lemma B(3) on the premise then B(1) and get the result.
• rules ∗ − WL

Let Q(2k+1) has the form q(2k+1)

� �� 	
n1 times

q∗(2k+1)

� �� 	
n3

q(2k+1)

� �� 	
n2 times

, where n3 ≤ 1, and non

empty (if empty, we apply lemma (4))

U ′q∗(2k)V ≤ Z
∗ − WL

UQ(2k+1) q∗(2k)V = U ′q∗(2k+1) q∗(2k)V ≤ Z

we have

UQ(2k+1) = U ′q∗(2k+1),
n2 = 0

U ′ = U q(2k+1)

� �� 	
n1 times

we

then apply the induction on the premise, that has a similar form.
The case Uq∗(2k+2)Q(2k+1)V ≤ Z is similar.

• ∗ − CL case, subcase n = 2k.
Let Q(2k+1) has the form q(2k+1)

� �� 	
n1 times

q∗(2k+1)

� �� 	
n3

q(2k+1)

� �� 	
n2 times

, where n3 ≤ 1, and non

empty (if empty, we apply lemma (4))

UQ(2k+1)q
(2k+1) q∗(2k)V = U ′q∗(2k+1)q(2k+1)q∗(2k)V ≤ Z

∗ − CL

UQ(2k+1) q∗(2k)V = U ′q∗(2k+1) q∗(2k)V ≤ Z

we have UQ(2k+1) = U ′q∗(2k+1), U ′ = U q(2k+1)

� �� 	
n1 times

,

we then apply the induction on the premise, that has a similar form.

100 D. Béchet et al.

• ∗ − CL case, subcase n = 2k − 1.
Let Q(2k−1) has the form q(2k−1)

� �� 	
n1 times

q∗(2k−1)

� �� 	
n3

q(2k−1)

� �� 	
n2 times

, where n3 ≤ 1 and non empty

(if empty, we apply lemma (4))

Uq∗(2k) q∗(2k−1)q(2k−1)V ′ ≤ Z
∗ − CL

Uq∗(2k) Q(2k−1)V = Uq∗(2k) q∗(2k−1)V ′ ≤ Z

we have Q(2k−1)V = q∗(2k−1)V ′, V ′ = q(2k−1)

� �� 	
n2 times

V ,

we then apply the induction on the premise, that has a similar form.
• rules ∗ − C′

L can be treated similarly to ∗ − CL

Transformations and Preservation of

Self-assembly Dynamics through Homotheties

Florent Becker

Laboratoire d’Informatique du Parallélisme
UMR 5668 CNRS, INRIA, Université Lyon 1, ÉNS Lyon

46 Allée d’Italie – 69364 Lyon Cedex 07 – France
Florent.Becker@ens-lyon.fr

Abstract. We introduce a new notion in self-assembly, that of trans-
forming the dynamics of assembly. This notion allows us to have trans-
formation of the plane computed within the assembly process. Then we
apply this notion to zooming. The possibility of zooming depends on the
order condition. This shows that this condition, which arose from engi-
neering concerns (how to design understandable tile systems) is indeed
an important condition of regularity for the assembly process.

1 Introduction and Definitions

Self-assembly, a concept introduced by Winfree in [6] and studied by Winfree,
Rothemund, Adelmann and others ([5],[1],[4]) is a model of universal computa-
tion by DNA, and of other physical mechanism of accretion and crystallization.
This model, consists of a soup with floating Wang tiles with glue on their sides
which can stick to each other whenever there is enough glue.

It is a kind of dynamic version of Wang tiling with interesting properties
as well as a quite realistic model of some physical or biological construction
processes, which has been used experimentally in [4]. In particular, the scale at
which the assembled patterned are observable is an important parameter. It can
for example be linked to time-complexity[5].

In this article, we are interested in transforming self-assembled tilings by
changing the set of tiles. We want these transformations to preserve the dynam-
ics of the assembly, that is the different ways in which a shape can be assembled.
This allows us to say that the transformation has been computed by the tile-
set itself rather than computing the image of a shape by the transformation
and then finding a tile-set that assembles into that image. More precisely, we
are interested in homotheties (or zooming), which allows to change the scale of
assembly.

These homotheties have been used in the literature ([8],[7],...) as tools to
enhance the properties of the assemblies, making it robust to error and even
self-healing. Yet, their interaction with complex assembly processes were not
rigorously defined, as all the tilesets were deterministic. Our notion of homo-
theties has two uses. First, it is an algorithmic notion, allowing us to scale some

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 101–112, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

102 F. Becker

tilesets, and a framework for applying a geometrical transformation to a tileset.
But it is also natural enough to be used as a tool for comparison of tilesets: if
the “macrotiles” are observed rather than designed, they characterize the rela-
tionship between two tilesets operating in the same manner, but at a different
scale.

We first explain these notions on an example, then we define formally what is
a dynamics and what it means to scale it, which gives a formal framework for the
study of the assembly process itself and its properties such as speed, robustness
and so on. This formal definition leads to an impossibility result: the dynamics
of some self-assembling tiling can depend on its precise size, with locality effects
such as information coming from opposite sides of a tile. Though, we are able
to show that given Rothemund’s RC-condition [4], or even the slightly more
generic order condition, tilesets can indeed be scaled, as these effect are then
impossible. This shows that this order condition represents an important measure
of regularity for the assembly process.

Our constructions, which can be extended to other transformations than ho-
motheties, allow to define a notion of computation which is much more repre-
sentative of what happens during the assembly.

1.1 The Model of Self-assembly

The model we study is based on Wang tiles, with some glue added to their sides.
The model of self assembly is the following : at a given time, a tile can be added
to a finite pattern if and only if its colors match these of its neighbors (like Wang
tiles), and if the total strength of the bounds linking the tile to the pattern is
more than a given parameter, called the temperature.

A Wang tile t on an alphabet Σ is an element of Σ4. We will note them as
follows: t = (cN (t), cS(t), cE(t), cW (t)).

We will use the usual direction functions on Z2: N(x, y) = (x, y+1), S(x, y) =
(x, y−1), E(x, y) = (x+1, y),W (x, y) = (x−1, y), and will note −S = N,−N =
S,−E =W,−W = E. Given T a set of Wang tiles, and p : Z2 → T a pattern, we
will say that N(x, y) is the northern neighbor of (x, y), and that cN (p(x, y)) and
cS(p(N(x, y))) are adjacent colors (or sides), and similarly for other directions.
We use the usual notations for intervals to represent intervals of integers: [a, b] =
{a, . . . , b}, [a, b) = {a, . . . , b− 1}, and so on.

Let J be a set of Wang tiles. A finite pattern is a partial mapping from Z2 to
J whose domain is finite and 4-connected. We call the domain of a pattern its
shape.

If a pattern is compatible with the colors on the edges of the tiles (that is
two adjacent edges always have the same color), we will say that it is a (finite)
configuration of J .

Definition 1. A self-assembly system is a 5-tuplet s = (Σ, g, T, t, seed) where

– Σ is a finite alphabet, the set of colors;
– g : (Σ → N) is called the strength function; for c ∈ Σ, we will say that g(c)

is the strength of the glue (c, g(c))

Transformations and Preservation of Self-assembly Dynamics 103

– T is a set of Wang tiles on the alphabet Σ, the tile set;
– t ∈ N is the temperature;
– seed ∈ T is the seed.

For graphical representations, we use the following conventions (see figure 1):
each tile is represented by a square with symbols representing the glues on their
side. The number of symbols on a side corresponds to the strength of the glue.
The seed (marked by a star) will be the first finite pattern, which will initiate
the growth process. The steps of this growth pattern are called transitions. A
transition is the addition of a tile whose colors match those of a free slot in the
pattern and whose bond are stronger than the temperature.

Definition 2 (transition). Given a system s = (Σ,G, T, t, seed) and two con-
figurations c and c′, there is a transition between c and c′, which we will note
c �→ c′ if

∃(x∗, y∗),

⎧⎨⎩
shape(c′) = shape(c) ∪ {(x∗, y∗)}
∀(x, y) ∈ shape(c), c(x, y) = c′(x, y)∑

{d∈{N,S,E,W}|d(x∗,y∗)∈shape(c)} g(cd(c
′(x∗, y∗))) ≥ t

The configurations c such that there is a sequence of transitions from the initial
pattern ({(0, 0) �→ seed}) to them are called productions.

Note that we will limit ourselves to self-assembly systems with a tempera-
ture of 2, as is the case in the literature1. Most of the time, when there is
no possible confusion, we use the terms tileset and system interchangeably,
and leave the alphabet and the temperature (2) unspecified when their val-
ues are obvious from the context. We call direction of a transition the set
{−d|d(x∗, y∗) ∈ c before the transition occurs.}

Definition 3. The dynamics of a self-assembled system is defined as the poset
of the production, where the order relation is the transitive closure of transitions.

Thus we have c > c′ (for c and c′ two configurations) if and only if c is obtained
from c′ by adding one or several tiles according to the rules above.

Let us note that for any self-assembled system, its dynamics is an semi-lattice
(that is, two elements always have a lower bound), and that for any production
c, the set {x ≤ c} is a lattice. The proof of these two facts is stated in [3].

This dynamics captures the way the assembly takes place, and allows us to
reason on the parallelism and synchronization phenomena which take place dur-
ing the assembly. The properties of the growth process are reflected by those of
the dynamics. For example, the speed of the growth in a given configuration is
the outgoing degree of the vertex corresponding to that configuration. Conflu-
ent branches represent parallelism, and so on. For a detailed reference on (semi)
lattices, see [2].
1 Temperature 1 self-assembly is rather trivial, as it corresponds to assembling a Wang

tiling with a greedy algorithm and higher temperatures do not seem to be very
different from temperature 2.

104 F. Becker

A final production is a maximal element of the dynamics, that is a production
to which no tile can be added. Given a tileset T , we say that T assembles the
set LT of all its final productions.

2 Scaling While Preserving Dynamics

2.1 An Example

When observing a tileset at larger scale, it is natural to consider each s × s
square as a single tile, and to look at their interactions. We will call these squares
macrotiles, and compare their interactions with those of the small scale tileset.
Before any formal definition, we give an example of scaling, which will help to
get the intuition of the kind of phenomenon we are going to capture.

In this section, we consider three tilesets. The first tileset, T , assembles a set
of shapes L. This set is the set of squares. The two other tilesets, F and D
(for same Final productions and same Dynamics) both assemble another set of
shapes L′, which is a scaled version of L. We contrast F and D as D has an
assembly process which is related to that of T , and not F .

The dynamics of T . Our reference tileset T , taken from [9] assembles the set of
all squares. That is, from the configuration {(0, 0) �→ seed}, T eventually reaches
a configuration whose shape is [0, n] × [0, n], where n is determined during the
assembly.

The assembly can be decomposed in two concurrent processes: the construc-
tion of the diagonal, and the filling of the square. The filling of the square is
conditioned by the construction of the diagonal: if the diagonal has been built

Fig. 1. The three tilesets T,F and D, and an example final production for each of them

Transformations and Preservation of Self-assembly Dynamics 105

up to the point (k, k), filling tiles can only be added in [0, k] × [0, k]. This con-
dition ensures that the shape we get when the diagonal process is stopped by a
stop tile and the filling process is completed is a square.

The dynamics of F . The tileset F assembles the set of all squares of even size.
This set is exactly the image of L by an homothety of factor 2. The assembly
process is the following : in a first phase, a square is built as by T , then another
of the same size n, then a n× 2n rectangle. Thus, the final shape is a 2n× 2n
rectangle. This assembly process is not at all related to the assembly process of
T and the fact that the final productions of F are the images of those of T is
somewhat a “happy coincidence”.

The dynamics of D. The set of shapes assembled by D is also the set of all
squares of even size, but the way the assembly works resembles much more to T :
there is also a diagonal being built, and completed into a square. More precisely,
let us consider the set of all 2×2 patterns which appear in squares whose lower-
left corner is in {2k, 2k′|k, k′ ∈ Z2}. We call these patterns macrotiles. Each of
these macrotiles can be identified to a tile of T , and the interactions between
these macrotiles “look like” the interactions between the corresponding tiles of T .

If we take a (non-terminal) production p of T , and replace each tile with
the matching macrotile, the result is a (non-terminal) production pD of D. The
addition of a tile in p corresponds to the addition of the four tiles of the macrotile
in D, and the addition of a tile in p is possible if and only if it is possible to add
the tiles of the macrotile in pD.

We say that the dynamics of a tileset D is the s-scaling of that of T whenever
one can find a set of macrotiles of size s such that the interactions between the
macrotiles of D correspond to the interactions between the tiles of T , and any
production of D can be cut in macrotiles.

2.2 Formal Definitions

We now define more formally the notion of scaling the assembly of a tileset T .
In this section, T, U are two tilesets, and the question is : “is the dynamics of U
a scaling of that of T at scale s ?” We first define our transformations on shapes
then extend them to patterns and dynamics.

Definition 4. Let σ be a shape. Then hs(σ) is {(x, y)|(�x/s�, �y/s�) ∈ σ}.

In order to be able to extend this definition to patterns, where each point is either
empty or contains a tile, we need to know what to do with this information. For
this, we will consider that s× s covered by tiles of U form “macrotiles”.

Definition 5 (s-macrotile, interpretation). A s-macrotile on U is a func-
tion [0, s[2→ U . Us is the set of s-macrotiles on U . For a pattern p, the macrotile
at (sx, sy) in p is the function from [0, s[2 to U defined by (i, j) �→ p(xs+i, ys+j).

An interpretation i is a function from Us to T .

106 F. Becker

Now that we have grouping functions we can map patterns onto patterns. is(p) is
the pattern p shrinked by a factor s, and reinterpreted in T (when this definition
makes sense).

Definition 6 (shrinking). Any pattern p on U such that there is a shape σ ⊂
Z2 such that shape(p) = hs(σ) is said to be s-shrinkable.

Given an interpretation i, for a s-shrinkable pattern p, is(p) is the pattern on
T defined by:

– shape(is(p)) is the σ from above,
– for all (x, y) ∈ σ, if m is the s-macrotile at (xs, ys) in p, then (is(p))(x, y) =
i(m).

– otherwise, (is(p))(x, y) is undefined.

Ds,U is the sublattice formed by the s-shrinkable productions of U .

Definition 7. Let DU be the lattice of productions of U , and DT be the lattice
of productions of T . We say that the dynamics of U is the image of the dynamics
of T at scale s when

1. There is an interpretation i mapping the s-macrotiles of U to T , such that
is is an isomorphism between Ds,U and DT .

2. for every production c of U , there is a c′ ≥ c which is s-shrinkable.

This definition formalizes the similarity we had between T andD in the example:
we could attribute to each 2-macro-tile of D a tile of T such that this macro-
tile behaved like the associated tile. The second condition ensures that we do
not have out-of control cancerous growth patterns which just happen not to be
shrinkable, and thus are not seen by Ds,U . Thus, as we can expect, we get the
following corollary:

Corollary 1. Let U and T be two tilesets, LT and LU the set of shapes they
assemble, if the dynamics of U is the image of the dynamics of T with the
interpretation i, then LU = hs(LT)

Proof. Let p be a final production of T . i−1
s (p) is soundly defined since is is an

isomorphism between DU and DT , it is a final production of U , and its shape
satisfies shape(i−1

s (p)) = hs(shape(p)).
Let p be a final production of U , p is shrinkable, and is(p) is a final production

of T , and its shape satisfies shape(p) = hs(shape(is(p))). �

Our condition does not give a transition-to-transition matching between DT and
Ds,U , but only a path-to-path matching. This is because the parallelism in U
can make several transitions from T take place at once.

Yet, it does allow us to link the transitions involved in both paths: to each
path p through the dynamics of U , we can associate another path p′ with the
same transitions, from which one can extract a sequence of shrinkable patterns
(p∗) such that the sequence (is(p∗)) is a valid path in the dynamics of T . Let
T and U be two tile-sets, s be an integer and i be an interpretation function

Transformations and Preservation of Self-assembly Dynamics 107

of Us in T , such that the dynamics of U is the image of that of T at scale s.
Let p = p(0) . . . p(n) be a path in the dynamics of T . There is a path p′ =
i−1
s (p(0)) . . . i−1

s (p(1)) . . . is(p(n)) in the dynamics of U . This path is not unique,
and there are paths going from i−1

s p(0) to i−1
s (n) without going through all the

i−1
s (p(k)), but as they have the same extremities as p′, they all have the same

transitions, but in a different order.

3 Zooming and Self-assembly

3.1 Zooming Sometimes Breaks Dynamics

Having defined a notion of preservation of dynamics, we would like to see if there
is a way to scale the dynamics of any tileset. The answer is that it is not possible
without some more conditions. What does it mean? It means that the notion
of locality which is used by these self-assembling tilings is very local, and thus
cannot be scaled. There is then an intrinsic scale in the process. By putting some
more conditions on how the assembly takes place, we can scale the dynamics.

To show that zooming (or scaling) necessarily breaks the dynamics of an
assembly, we use the fact that in our model, locality means simultaneity in
reactions. Thus, wherever we break locality, we will need synchronization, which
means putting tiles in advance. This is what breaks the dynamics.

Theorem 1. There is a tileset T such that there is no Ts whose dynamics is
the image of that of T at scale s for s ≥ 2.

Proof. Let T be the tileset of figure 2(a). T behaves thus: if the seed is at (0, 0),
then when the assembly stops, there are two integers l1 and l−1 such that there
are tiles in the following places:

– in {−1} × {0, . . . , l−1}; these tiles can each be either red or blue

j j

blueblue blue

red redred

(a) The tiles (b) The
problematic
part of its
dynamics

Fig. 2. Our counter-example

108 F. Becker

– in {1} × {0, . . . , l1}, also in red or blue,
– in the subset S of {0}×{0, . . . , h0} defined by {(0, y)|σE(−1, y) = σW (1, y)}

(where h0 = min(l1, l−1)).
– In {−2} × {0, . . . , l−1}, wherever the tile in the same row at x = −1 is red
– In {2} × {0, . . . , l1}, wherever the tile in the same row at x = 1 is red.

In the final productions, there are tiles in the central column whenever there
are tiles at both x = 2 and x = −2 in the same row, or whenever there are
neither.

This property cannot be ensured at greater scale. To show this, we do a proof
ad absurdum by considering a system TS which is a s-grouping of T . Let us
consider the fragment of the dynamics of T represented on figure 2(b), in which
no tile can be added at (0, 1) or (0, 2). This guarantee is given if the dependencies
between tiles can be expressed by a poset.

Let c′ij be the antecedent of cij by is, since is is an isomorphism, the c′ij
are in the same order as the cij. From c′21 and c′23, no tile can be added in the
central column. Thus, there can be no strength 2 glue on the marked edges in
c′21 and c′23 (represented in bold).

It is also impossible on the marked regions of c′22, because then they would
have been added before either c′11 or c′12, and would be present in c′21 or cs23.
As there are no strength 2 glues on the marked areas, no tile can be added in the
central column. This contradicts the fact that the dynamics of Ts is the image
of that of T ′. ��

Here, T was unscalable because the locality of the tiles could not be scaled:
sometimes, adding a macrotile to a configuration of Ts would have involved two
concurrent processes, none of which would have got the whole information on
the macrotile to be added. So, in order to scale dynamics, we need a guarantee
that we will always be able to have all the information on the tile to be added
at one place.

3.2 The Order Condition

To avoid this problem, one can add the classical Row-Column condition [4], or an
extension, the order condition. This condition removes all effects such as shown
in the previous section, and allows us to scale the dynamics. It states that one
can associate, to each tile in a production, a direction which corresponds to the
way it has extended the production when it was added. Thus, as we know where
each tile will extend the productions, we can put the information on colors and
glues where it is needed, which allows us to scale the tiling.

Definition 8 (Order condition).. Let c be a configuration. If there is a poset <c

on the shape of c such that the shapes of the productions p < c are the ideals of <c,
then c is said to satisfy the order condition, and <c is its dependency order.

If all the productions of a tileset obey the order condition, we will say that it is
an ordered tileset. Intuitively this condition states that the dependencies between

Transformations and Preservation of Self-assembly Dynamics 109

the tiles can be presented as a poset, and that this poset depends only on the
production and not on its history. <c represents the dependencies between tiles
in c as a tile can be attached to a production p in order to give c if and only
if all of its predecessors according to <c have already been attached. With this
condition, the direction of each tile (as defined above) can be decided by looking
only at <c and not at the history of the assembly. The direction of a tile is
the opposite of the relative location of its predecessors for <c. For example, if
the predecessors of z are S(z) and W (z), the tile at z will have direction NE.
This condition is slightly more general than Rothemund’s RC condition[4], as it
allows to build non-convex patterns. Yet, it is quite natural, and most if not all
tilesets in the literature obey this order condition.

A corollary of this condition is that there is never “too much glue” when
adding a tile: whenever a tile is added to a configuration, the sum of the glues
on its adjacent sides is exactly 2

3.3 A Construction for the Order Case

Given this order condition, we are able to construct a scaled image of a given
tile-set. We do this by cutting each of the tiles in s2 pieces (where s is the scaling
factor), and putting new glues on the new edges.

Theorem 2.. Let T be an ordered-tileset, and s an integer. Then there exists a Ts
whose dynamics is the image of that of T at scale s. Furthermore, Ts is also ordered.

Proof. To each tile of T , one can associate, thanks to the order condition, a set
of directions in which the tile can extend the productions. For example, the set
of directions associated with a tile having a glue of strength 2 on its southern
edge and glues of strength 1 on the other edges is {N, SE, SW}.

For each tile t and each direction d in which t can extend productions, td is
the tile t with arrows on its edges showing that t has been added in direction d.
These arrows indicate whether an edge is an input or output edge: for each edge
e, the arrow points into the tile (in direction −e) if the angle between e and d
is acute (either 0 or 45 degrees) , and out of the tile otherwise (in direction e).
A side with an arrow pointing into the tile is an input side, and a side with an
arrow pointing out of the tile is an output side. See figure 3.3.

We consider the tileset T ′ whose color set is Σ×{N, S, E, W}, and whose tiles
are the td for t ∈ T with strength function sT . Clearly T ′ has the same dynamics
as T , because of the order condition. We then build a tileset Ts having which is
a scaling of T ′, and thus of T .

Ts is defined as Seed ∪ Replicas.
Replicas is a set of pieces of tiles in T ′. Each tile in T ′ is cut into s2 squares of

size 1/s, and the internal edges are given new colors, each unique to the position
of the edge inside the tile and to the tile. The details of these glues are shown on
figure 3.3. Glues of strength 2 are only present once per edge, and are replaced by
equivalent force 1 glues elsewhere on the edge. By convention, they only appear
in the uppermost and leftmost parts of each macrotile.

110 F. Becker

1−A
1−A

A−1

A−1

1− 1−B
1−B

2−C2−B
2−B2−A

2−A

A−2

1−C

A−2

1−C

2−C

B−2
B−2

B−1

B−1

C−1

C−1

C−2

C−2

1−A
1−A

A−1

A−1

1− 1−B
1−B

2−C2−B
2−B2−A

2−A

A−2

1−C

A−2

1−C

2−C

B−2
B−2

B−1

B−1

C−1

C−1

C−2

C−2

1−A
1−A

A−1

A−1

1− 1−B
1−B

2−C2−B
2−B2−A

2−A

A−2

1−C

A−2

1−C

2−C

B−2
B−2

B−1

B−1

C−1

C−1

C−2

C−2

Fig. 3. Top, adding the arrows to the tiles of T : the triangle is the direction of the tile;
bottom, cutting into pieces for Seed and Replicas; all internal edges are unique within
each macrotile and between macrotiles

Seed is a set of tile which gives a square of size s with on its edges, the color
of the edges of the seed of T .

The interpretation i that we use for this construction is simple: the macrotiles
which correspond to the definition of Replicas are mapped to the matching tile
of T . The macrotile corresponding to the definition of Seed is mapped to the
seed of T . The other macrotiles are not actual.

Let us now look at the assembly of this tile set. Let us show that the dynamics
of Ts is the image of that of T ′.

We use the notion of local production. A local production is a configuration
which appears when building an actual macrotile m. A local production for m
is a configuration included in the square [0, s)2 which can be reached from the
empty square with the input colors for m on the sides adjacent to its input sides.

We need to show that if is(c) ≤ is(c′) are productions of T ′, then c ≤ c′.
To show this, it is sufficient to show that if there is a transition between is(c)
and is(c′), then c ≤ c′. This is easily seen, one only needs to reproduce the
constructions of figure 3.3, which is always possible.

We add an element ⊥ at the bottom of DT ′ and DTs (that is, for all c ∈
DT ′ , c ≥ ⊥). We will say that ⊥ is shrinkable, and is(⊥) = ⊥. We prove the
following lemma:

Lemma 1. For any shrinkable production d and any c ≥ d, there is a configu-
ration e of T ′ such that:

– shape(e) is the smallest domain σ ⊂ Z2 such that hs(σ) ⊃ shape(c))
– e ≥ is(d)

Transformations and Preservation of Self-assembly Dynamics 111

– For any square S = [xs, (x + 1)s[×[ys, (y + 1)s[, c restricted to S is a local
production of the macro-tile corresponding to e(x, y)

– and c verifies the order condition

Proof. For any d, we prove the lemma by induction on c. When c = d, we take
e = is(d).

Let c ≥ d, and τ be a transition from c to c′ where one adds a tile t at
(sx + i, sy + j), 0 ≤ i, j < s. Let e be given by the induction hypothesis for c.

If (x, y) ∈ shape(e), then e also verifies the lemma for c′. The condition on
the shapes is clearly true, and also that e ≥ is(d). Since c is made of local
productions and obeys the order condition, t can only be placed if it has its
neighbors on its input sides (because of the arrows on the sides). Thus, it can
only be added in accordance with the local productions, and cannot break the
order condition.

If (x, y) /∈ shape(e), then let t′ ∈ T be the tile corresponding to the macrotile
in which t appears. Let t1 and (if needed) t2 be the neighbors of t on its input
sides, and the corresponding t′1, t

′
2 ∈ T . As t could be added next to t1 and t2, t′

can be added between t′1 and t′2. Let e′ = e∪{(x, y) → t′}. e′ ≥ is(d), and it has
the smallest shape such that shape(c′) ⊂ hs(shape(e′)). t is a local production
of the macrotile corresponding to t′, and c′ has an order of dependency.

With this lemma, we get that if c ≤ c′ and c, c′ are shrinkable, then is(c) ≤ is(c′),
as when c is shrinkable, is(e) = c.

Let c be a production of Ts, then there is a corresponding production e of T ′,
such that c is made of local productions of e. Let (x0, y0, t0) . . . (xk, yk, tk) be a
chain of transitions from ⊥ to e, and i be the smallest k such that shape(c) ∩
([sxk, s(xk + 1)[×[syk, s(yk + 1)[) �= [sxk, s(xk + 1)[×[syk, s(yk + 1)[, if it ex-
ists. Then, as shape(c) ∩ ([sxk, s(xk + 1)[×[syk, s(yk + 1)[) is a local production
and its input neighbor(s) are complete, one can add a tile to c in [sxk, s(xk +
1)[×[syk, s(yk + 1)[. So if c is not shrinkable, there is a c′ > c shrinkable.

So the dynamics of Ts is the image of that of T ′.

4 Conclusion

We have defined a notion of transformation of a tile-set that allows us to com-
pute geometrical transformations of the plane within the tile-set, in parallel to
whatever construction the tile-set does. This notion allows to pinpoint which
aspects of locality a given transformation can break. We gave a demonstration
framework for these questions. The fact that in all generality, this notion is
not compatible with zooming can be interpreted as an acute sensibility of some
self-assembly processes with locality.

Looking at dynamics for making transformation gives a new kind of algorithms
on assemblies. Further investigation could lead to more uniform transformations
(less dependence on the tileset): if we accept to introduce some inaccuracy in
the tileset, then it is possible to have a set G of “growing tiles” such that for a
tileset T , the dynamics of G ∪ T is the image of that of T by an homothety.

112 F. Becker

This construction can also be seen as a framework for implementing other
geometrical transformations in self-assembly. The macrotiles construction is in
fact a kind of tensor products between two tilesets, one assembling a finite pat-
tern, and the other the image of the grid by a transformation. Whenever we
have these two elements2, we can implement the transformation. This expands
in a very interesting manner the toolbox of the self-assemblist, allowing for new
decompositions of shapes to be built.

References

1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanès, P.M.,
Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
STOC 2002: Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, pp. 23–32 (2002)

2. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press, Cambridge (2002)

3. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC, pp. 459–468 (2000)

4. Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-Assembly. PhD
thesis, University of Southern California (2001)

5. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Ferretti, C.,
Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–354. Springer,
Heidelberg (2005)

6. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)
7. Winfree, E.: Nanotechnology: Science and computation. In: Chen, J., Jonoska, N.,

Rozenberg, G. (eds.) Nanotechnology: Science and Computation, Natural Comput-
ing, Chapter Self-healing tilesets. Springer, Heidelberg (2006)

8. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–
144. Springer, Heidelberg (2003)

9. Éric Rémila et Ivan Rapaport. Self-assemblying (classes of) shapes with a constant
number of tile. Technical report, LIP, ÉNS Lyon (2004)

2 The grid part is not trivial for more involved transformations.

Deterministic Input-Reversal and

Input-Revolving Finite Automata

Suna Bensch1, Henning Bordihn2, Markus Holzer3, and Martin Kutrib2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Straße 89, 14482 Potsdam, Germany

aydin@cs.uni-potsdam.de
2 Institut für Informatik, Universität Giessen,

Arndtstraße 2, 35392 Giessen, Germany
{bordihn,kutrib}@informatik.uni-giessen.de

3 Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, 85748 Garching bei München, Germany

holzer@informatik.tu-muenchen.de

Abstract. Extended finite automata are finite state machines with the
additional ability to manipulate the remaining part of the input. We in-
vestigate three types of deterministic extended automata, namely
left-revolving, right-revolving, and input reversal finite automata. Con-
cerning their computational capacity it is shown that nondeterminism is
better than determinism, that is, for all three types of automata there is
a language accepted by the nondeterministic versions but not accepted
by any deterministic automaton of the same type. Concerning the clo-
sure properties most of the language families studied are not closed under
standard operations. In particular, we show that the family of languages
accepted by deterministic right-revolving finite automata is an anti-AFL
which is not closed under reversal and intersection.

1 Introduction

In automata theory various classes of automata mainly differ in the resources
of which they may make use during the computations. Typical resources are,
for example, storages such as pushdown tapes [5], stack tapes [8], or Turing
tapes, nondeterminism [11] or alternation [4]. For a more detailed discussion of
machines and languages from an automata theoretical point of view see [7]. The
investigations in [7] led to a rich theory of abstract families of automata, which is
the equivalent to the theory of abstract families of languages. For the definition
of an abstract family of languages (abbreviated AFL) we refer to [12].

In several recent papers, for example, see [1,2,3], extended finite automata
have been considered. These models are (nondeterministic) finite state machines
which are enriched with the ability to apply a string operation on the part
of the input that has not been consumed yet. Extended finite automata are
inspired by the model of flip pushdown automata [13] which can flip the contents
of their pushdown stores in certain configurations. The authors in [9] showed

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 113–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

114 S. Bensch et al.

that k + 1 pushdown-flips are better than k, and established an interrelation
between the pushdown-flips and reversal operations on the unprocessed input
of a flip pushdown automaton. In [1], both pushdown and finite automata with
input reversal operations have been studied. Moreover, in [2,3] further formal
language string operations such as revolving and interchanging have been taken
into consideration.

All the forerunner papers investigate nondeterministic automata as the most
general case—except in [10], where deterministic flip-pushdown automata were
considered. In the present paper, the additional resource of allowed input op-
erations is traded against the resource of nondeterminism. That is, a (single)
input operation remains permitted (its applicability depending on configura-
tions), but the automata are restricted to be deterministic. The input reversal,
left-revolving, and right-revolving operations will be allowed as prototypes of
operations on the unconsumed input string.

After providing the definitions and notation, the computational power of the
deterministic extended finite automata is investigated in Section 3. In particu-
lar, language families defined by those automata are related to the families of
the Chomsky hierarchy and other well-known classes. Section 4 is devoted to
compare the power of different input operations. In particular, the power of the
deterministic machines is compared with the power of the corresponding nonde-
terministic ones, proving strict inclusion results. Finally, closure and non-closure
properties of the families of deterministic extended finite automata languages
under standard language operations are investigated. It turns out that right-
revolving deterministic finite automata form a non-reversal and non-intersection
closed anti-AFL, what is surprising for a language class defined by a deter-
ministic automaton model. Although anti-AFLs are sometimes referred to an
“unfortunate family of languages” there is linguistical evidence that such lan-
guage families might be of crucial importance, since in [6] it was shown that the
family of natural languages is an anti-AFL. Hence the question for uncommon
automata models that induce anti-AFLs seem to be worth to consider.

2 Definitions and Preliminaries

We denote the powerset of a set S by 2S . The empty word is denoted by λ,
the reversal of a word w by wR, and for the length of w we write |w|. For the
number of occurrences of a symbol a in w we use the notation |w|a. We use ⊆
for inclusions and ⊂ for strict inclusions.

In the following we consider finite automata that can reverse or shift the
unread part of the input. We start with a uniform definition.

Definition 1. A (nondeterministic) extended finite automaton is a 6-tuple
A = (Q, Σ, δ, Δ, q0, F), where Q is a finite set of states, Σ is the input al-
phabet, δ and Δ are mappings from Q × (Σ ∪ {λ}) to 2Q, where δ is called the
transition function, and Δ is called the input operation function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of accepting states. Furthermore, A is said to
be λ-free, if both δ and Δ are mappings from Q × Σ to 2Q.

Deterministic Input-Reversal and Input-Revolving Finite Automata 115

a d· · · b · · · c

Left revolving

a d· · · b · · · c

Right revolving

a d· · · b · · · c

Input reversal

Fig. 1. Input operations

The different operations on the input are formally distinguished by different
interpretations of the mapping Δ. To this end, we consider configurations of
extended finite automata to be tuples (q, w), where q ∈ Q is the current state,
and w ∈ Σ∗ is the yet unread part of the input. If a is in Σ ∪ {λ} and w
in Σ∗, then we write (q, aw) �A (p, w), if p is in δ(q, a). Those transitions are
referred to as ordinary transitions. An input operation is performed by applying
the mapping Δ (cf. Fig. 1). For a ∈ Σ ∪ {λ}, b ∈ Σ, w ∈ Σ∗, and p in Δ(q, a),

1. a left-revolving transition is defined by (q, a) �A (p, a), (q, awb) �A (p, baw),
2. a right-revolving transition is defined by (q, aw) �A (p, wa), if a ∈ Σ, and

(q, bw) �A (p, wb) and (q, λ) �A (p, λ), otherwise, and
3. an input-reversal transition is defined by (q, aw) �A (p, wRa).

The corresponding transitions are referred to as non-ordinary transitions. Note
that, for any operation, if p ∈ Δ(q, λ), then (q, λ) �A (p, λ).

Of particular interest are deterministic computations. A deterministic ex-
tended finite automaton is an extended finite automaton for which there is at
most one choice of action for any possible configuration. A deterministic extended
finite automaton A = (Q, Σ, δ, Δ, q0, F) with left-revolving, right-revolving, or
input-reversal transitions is called a deterministic left-revolving finite automa-
ton (lr-DFA), right-revolving finite automaton (rr-DFA), or input-reversal fi-
nite automaton (ir-DFA), respectively. If the automata are nondeterministic,
then we use the notations lr-NFA, rr-NFA, or ir-NFA, respectively. The re-
flexive transitive closure of �A is denoted by �∗

A. The subscript A will be
dropped whenever the meaning remains clear. The language accepted by A is
L(A) = { w ∈ Σ∗ | (q0, w) �∗

A (q, λ), for q ∈ F }. Unless stated otherwise, we
denote the family of languages accepted by devices of type X by L (X), where
X ∈ {lr-DFA, ir-DFA, rr-DFA, lr-NFA, ir-NFA, lr-NFA}.

In order to clarify our notation we give an example.

Example 2. The non-context-free language { w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }
is accepted by the extended automaton A = (Q, {a, b, c}, δ, Δ, q0, {q0}), inter-
preted as either rr-DFA or lr-DFA, where Q = {q0, qab, qac, qbc, qa, qb, qc}, and:

1. δ(q0, a) = {qbc}
2. δ(qbc, b) = {qc}
3. δ(qbc, c) = {qb}
4. δ(q0, b) = {qac}
5. δ(qac, a) = {qc}
6. δ(qac, c) = {qa}
7. δ(q0, c) = {qab}

8. δ(qab, a) = {qb}
9. δ(qab, b) = {qa}

10. δ(qa, a) = {q0}
11. δ(qb, b) = {q0}
12. δ(qc, c) = {q0}
13. Δ(qa, b) = {qa}
14. Δ(qa, c) = {qa}

15. Δ(qb, a) = {qb}
16. Δ(qb, c) = {qb}
17. Δ(qc, a) = {qc}
18. Δ(qc, b) = {qc}
19. Δ(qab, c) = {qab}
20. Δ(qac, b) = {qac}
21. Δ(qbc, a) = {qbc}

116 S. Bensch et al.

From state q0, automaton A tries to read three different symbols consecutively.
It uses the transitions 1 to 12 to store the currently missing symbols in its finite
control in order to search for it. Being in a search state, all non-matching symbols
are shifted by the transitions 13 to 21. Thus, the input satisfies the property
|w|a = |w|b = |w|c when the automaton reaches the accepting state.

It is straightforward to generalize the construction to an arbitrary number of
symbols. That is, for any i ≥ 2, the language

{ w ∈ {a1, a2, . . . , ai}∗ | |w|a1 = |w|a2 = · · · = |w|ai }

is accepted by some rr-DFA and lr-DFA. �	

The situation is different for input-reversal finite automata. It is shown in [1]
that nondeterministic ir-NFA accept exactly the linear context-free languages.
So, clearly, ir-DFAs cannot accept non-context-free languages.

Example 3. The context-free language { wcwR | w ∈ {a, b}∗} is accepted by the
ir-DFA A = ({q0, qa, qb, q

′
a, q′b, qf}, {a, b, c}, δ, Δ, q0, {qf}), where

1. δ(q0, a) = {qa}
2. δ(q0, b) = {qb}
3. δ(q′a, a) = {q0}

4. δ(q′b, b) = {q0}
5. Δ(qa, λ) = {q′a}
6. Δ(qb, λ) = {q′b}

7. δ(q0, c) = {qf}

From state q0 automaton A tries to read matching symbol pairs one symbol
from each end of the input. The transitions 1 and 2 allow A to store the currently
read input letter in the finite control in order to search for a corresponding
mate letter, which must be at the end of the input. Then with transitions 5
through 8 the symbol at the end of the input is brought to the left, and with
transitions 3 and 4 it is verified. Then the search process is repeated. Finally,
with transition 9 the sole symbol c is read while A changes to the accepting state.
It is straightforward to modify the construction such that the nondeterministic
context-free language { wwR | w ∈ {a, b}∗} is accepted some ir-DFA. Similarly,
the language { anbn | n ≥ 1} is an ir-DFA language. �	

The definition of deterministic extended finite automata allows λ-transitions
of δ as well as of Δ. They have been included for the sake of compatibility
and convenience, since often constructive proofs are much more readable if λ-
transitions are used. In [3] it has been shown that λ-transitions do not increase
the computational power of nondeterministic extended finite automata. The next
theorem proves the same statement for the deterministic case.

Theorem 4. For a deterministic extended finite automaton A of any type, one
can construct a λ-free deterministic extended finite automaton B of the same
type, such that L(A) = L(B).

Proof. Given a deterministic extended finite automaton A = (Q, Σ, δ, Δ, q0, F)
we construct B = (Q, Σ, δ′, Δ′, q0, F

′) as follows. The non-λ-transitions of B are
defined to be the non-λ-transitions of A, that is, δ′(p, a) = δ(p, a) and Δ′(p, a) =

Deterministic Input-Reversal and Input-Revolving Finite Automata 117

Δ(p, a), for all p ∈ Q, a ∈ Σ. Next, we replace non-ordinary λ-transitions of A
that appear on non-empty input. To this end, if Δ(p, λ) is defined, then we set
Δ′(p, a) = Δ(p, λ), for any a ∈ Σ. After all non-ordinary λ-transitions have
been removed, we replace ordinary λ-transitions of A that appear on non-empty
input. As A is deterministic, we can assume without loss of generality that no
λ-cycles appear, that is, for all states p there is a unique state p̂, such that
(p, λ) �∗

A (p̂, λ) with ordinary transitions only and δ(p̂, λ) is undefined. Note
that p̂ = p holds if δ(p, λ) is undefined. Now, for all p ∈ Q and all a ∈ Σ,
we set δ′(p, a) = δ(p̂, a) if δ(p̂, a) is defined and Δ′(p, a) = Δ(p̂, a) if Δ(p̂, a) is
defined. These transitions do not violate the determinism of B since, for any
a ∈ Σ, neither δ(p, a) nor Δ(p, a) is defined if δ(p, λ) is defined. So far, B can
simulate λ-transitions of A that appear on non-empty input. But there may
be λ-transitions at the end of the computation when the whole input has been
consumed. In order to retain deterministic computations, we can overcome the
problem by adjusting the set of accepting states, since λ-transitions at the end of
the computation can only change the finally reachable states. So, for any p ∈ Q,
let Λp = { q ∈ Q | (p, λ) �∗

A (q, λ) } be the set of all states that are reachable
from some state p with ordinary and non-ordinary λ-transitions. Then we set
F ′ = F ∪ { p ∈ Q | Λp ∩ F �= ∅ }. �	

3 Computational Capacity

In this section we investigate the computational power of deterministic extended
finite automata. In particular, we compare the language families defined by those
automata to well-known language families. Clearly, every regular language is
accepted by any type of extended automaton in question. A straightforward
Turing machine simulation yields the following upper bounds.

Theorem 5
1. Every language accepted by a right- or left-revolving finite automaton belongs
to both complexity classes DTIME(n2) and DSPACE(n).
2. Every language accepted by an input-reversal finite automaton belongs to both
complexity classes DTIME(n) and DSPACE(n).

Obviously, unary languages accepted by extended finite automata are regular
since neither left- and right-revolving nor input-reversal moves change the re-
maining part of the input. Therefore, non-ordinary moves can be omitted.

Theorem 6. A unary language L is accepted by an extended finite automaton
if and only if L is regular.

An immediate consequence is that the inclusions of Theorem 5 are proper, since
the non-regular language { an2 | n ≥ 1 } belongs to the intersection DTIME(n)∩
DSPACE(n).

Once it is known that all regular languages are accepted by deterministic ex-
tended finite automata, there is a natural question for better lower bounds in

118 S. Bensch et al.

terms of known language families. A proper but still weak superclass of regular
languages is the family of languages accepted by deterministic one-turn push-
down automata. We denote this family DLIN. Though deterministic extended
finite automata accept rather complicated non-context-free languages, none of
the deterministic extended finite automata under consideration can accept all
languages from DLIN. Moreover, this will imply that nondeterminism is better
than determinism for the cases of left-revolving and input-reversal automata.

Lemma 7. Let L′ = { wcwR | w ∈ {a, b}∗}. The language L = L′∪L′{b}{a, b}∗
is not accepted by any lr-DFA.

Proof. In contrast to the assertion assume that L is accepted by some lr-DFA
A = (Q, Σ, δ, Δ, q0, F) with n states. According to Theorem 4 we may assume A
to be λ-free. The word w1 = a2nca2nbna2n belongs to L. Due to the choice of n,
there is an accepting computation such that some state q appears at least twice
while A reads a’s only, say

(q0, w1) �∗ (q, w′
1) �+ (q, w′′

1) �∗ (qf , λ),

where q ∈ Q, qf ∈ F . Moreover, we can derive w′
1 �= w′′

1 , and A has consumed
at most n symbols a each while computing w′

1 from w1 and w′′
1 from w′

1, that is,
|w1| − |w′

1| ≤ n and |w′
1| − |w′′

1 | ≤ n. We obtain w′
1 = a2n−i+jca2nbna2n−j , for

some 0 ≤ i+j ≤ n, where A consumes i symbols and performs j revolving steps.
Similarly, we have w′′

1 = a2n−i+j−�+mca2nbna2n−j−m, for some 0 < � + m ≤ n.
We conclude that there is an accepting computation

(q0, a
2n−�+mca2nbna2n−m) �∗ (q, a2n−�+m−i+jca2nbna2n−m−j) �∗ (qf , λ)

which implies � = m.
Now we consider the word w2 = a2nca2n that belongs to L. Since A is deter-

ministic, the accepting computation on w2 is

(q0, w2) �∗ (q, a2n−i+jca2n−j) �∗ (q, a2n−i+j−�+mca2n−j−m) �∗ (q′f , λ),

where q′f ∈ F . Moreover, we obtain the computation

(q0, a
2n−�+mca2n−m) �∗ (q, a2n−�+m−i+jca2n−m−j) �∗ (q′f , λ).

Since � = m the input a2nca2n−m is accepted. But � + m > 0 and � = m imply
m > 0, a contradiction. �	

Theorem 8. The families DLIN and L (lr-DFA) are incomparable.

Proof. Lemma 7 presents a deterministic one-turn pushdown automaton lan-
guage not belonging to L (lr-DFA). Example 2 shows that the non-context-free
language { w ∈ {a, b}∗ | |w|a = |w|b = |w|c } is accepted by an lr-DFA. �	

Theorem 9. The families DLIN and L (rr-DFA) are incomparable.

Deterministic Input-Reversal and Input-Revolving Finite Automata 119

Proof. In [2] it is shown that the deterministic one-turn pushdown automaton
language { anbn | n ≥ 1 } is not accepted by any rr-NFA. On the other hand, by
Example 2 the non-context-free language { w ∈ {a, b}∗ | |w|a = |w|b = |w|c } is
accepted by an rr-DFA. �	
It remains to investigate whether L (ir-DFA) is comparable with DLIN. It is
known that nondeterministic ir-NFAs characterize the linear context-free lan-
guages [1]. Therefore the question arises whether this relation remains true for
deterministic devices. The answer will be derived from the following lemma.

Lemma 10. The family L (ir-DFA) is properly included in L (lr-DFA).

Proof. As ir-NFAs characterize the linear context-free languages [1] and lr-DFAs
can accept non-context-free languages, it is only left to prove the inclusion.

Given some ir-DFA A = (Q, Σ, δ, Δ, q0, F) we construct an equivalent lr-DFA
A′ = (Q′, Σ, δ′, Δ′, q′0, F ′). Basically, reversing the input means to read the input
from right to left instead of left to right, and vice versa. The idea of the con-
struction is to remember the direction (where l indicates from left to right and r
from right to left), and to simulate right to left steps by reading a symbol which
previously has been fetched from the back by a left-revolving step. To this end,
it is convenient to store both the first and the last symbol of the remaining input
as parts of the state. Without loss of generality, we assume that A is λ-free, and
construct A′ formally as follows.

Q′ = (Q ∪ Q̄) × (Σ ∪ {�})2 × {l, r}, q′0 = (q0, �, �, l),

where Q̄ = {q̄ | q ∈ Q} is a disjoint copy of Q, and � is a blank.
For all q ∈ Q, a ∈ Σ, x ∈ Σ ∪ {�}, y ∈ Σ, and d ∈ {l, r}, the transitions

δ′((q, �, x, d), a) = (q, a, x, d),
Δ′((q, y, �, d), λ) = (q̄, y, �, d) and δ′((q̄, y, �, d), a) = (q, y, a, d)

are applied to store the first symbol as the second component of the state and
to fetch a symbol from the back and to store it as the third component of the
state, whenever at least one of these components is blank.

If δ(p, a) = q is a transition of A, for p, q ∈ Q and a ∈ Σ, then we simulate it
for any x ∈ Σ by

δ′((p, a, x, l), λ) = (q, �, x, l) and δ′((p, x, a, r), λ) = (q, x, �, r).

If A reads the input from left to right or from right to left, then it applies the
transition δ(p, a) = q to the first or the last input symbol, respectively. The left-
revolving automaton A′ has stored these symbols in the second and the third
components of its state, which subsequently get blank, and a new symbol is
fetched from the left or right end of the input, respectively.

If Δ(p, a) = q is an input-reversal transition of A, for p, q ∈ Q and a ∈ Σ,
then we simulate it for any x ∈ Σ by

δ′((p, a, x, l), λ) = (q, a, x, r) and δ′((p, x, a, r), λ) = (q, x, a, l).

These transitions change the first component of the state and l to r, or r to l.

120 S. Bensch et al.

A′ is deterministic since A is so. Moreover, computations of A are simulated
more or less directly until an input string of length 2 remains. In such a situation,
the input of A′ is already empty, since these symbols are always stored in the
state. In order to cope with the missing last transitions, we can adjust the set
of accepting states as follows. Let p ∈ Q, x, y ∈ Σ, and d ∈ {l, r}. Then

(p, x, y, d) ∈ F ′ if and only if (p, xy) �+
A (qf , λ),

for some qf ∈ F . If the input of A is of length less than 2, then we adjust the
set of accepting states accordingly. �	

Theorem 11. The families DLIN and L (ir-DFA) are incomparable.

Proof. Lemma 7 shows that there is a language belonging to DLIN but not to
L (lr-DFA). By Lemma 10 it does not belong to L (ir-DFA) either. On the other
hand, it is easy to see that the language { wwR | w ∈ {a, b}∗ } is accepted by
some ir-DFA but does not belong to DLIN. �	

So far, we have related the computational power of deterministic extended fi-
nite automata to the expressive power of well-known language families. It turns
out that all families in question properly include the regular languages and are
incomparable with DLIN. Together with Theorem 5 it follows that all families
are properly included in the deterministic context-sensitive languages. Together
with the results from [1,2] we obtain that L (ir-DFA) is properly included in
the family of linear context-free languages, whereas the families L (lr-DFA) and
L (rr-DFA) are incomparable to the class of context-free languages.

4 Comparing Modes

This section is devoted to the comparison of the different input operations. As
mentioned before, we can separate nondeterministic classes from determinis-
tic classes. Summarizing the investigations in the literature and the previous
section, we have the proper inclusions L (ir-DFA) ⊂ L (lr-DFA) (Lemma 10)
and L (ir-NFA) ⊂ L (lr-NFA) from [3]. Furthermore, L (ir-NFA) is equal to
the family of linear context-free languages [1], whereas all deterministic families
are incomparable with DLIN which, in turn, is properly included in the linear
context-free languages. Thus we immediately obtain the following theorem.

Theorem 12
1. The family L (ir-DFA) is properly included in L (ir-NFA).
2.The family L (lr-DFA) is properly included in L (lr-NFA). �	

For the sake of completeness we now present the remaining separation result. It
is a consequence of the different closure properties shown in the next section.

Theorem 13. The family L (rr-DFA) is properly included in L (rr-NFA).

Deterministic Input-Reversal and Input-Revolving Finite Automata 121

CSL

CFL L (lr-NFA) L (rr-NFA)

DCFL LIN = L (ir-NFA) L (lr-DFA) L (rr-DFA)

DLIN L (ir-DFA)

REG

Fig. 2. Inclusion structure. All shown inclusions are strict and families that are not
linked by a path are pairwise incomparable. CSL denotes the family of context-sensitive,
CFL that of context-free, DCFL that of deterministic context-free, LIN that of linear
context-free languages, and REG that of regular languages.

Proof. Clearly, the family L (rr-NFA) is closed under union. In Lemma 18 it is
shown that the deterministic family L (rr-DFA) is not closed under union. �	

We continue to compare the power of the different input operations among them-
selves. The complete picture is shown in Figure 2.

Lemma 14. There is a language L ∈ L (rr-DFA) \ L (lr-NFA).

Proof. We use L = { a2nbv | n ≥ 0, v ∈ {a, b}∗, n + |v|a = 1 + |v|b} as wit-
ness language. Contrarily, assume that L is accepted by some lr-NFA A =
(Q, Σ, δ, Δ, q0, F) with n states. Due to [2] A is assumed to be λ-free. We con-
sider the word w = a2nb4na3n which belongs to L. Due to the choice of n, there is
an accepting computation such that some state q appears at least twice while A
reads a’s only, say

(q0, w) �∗ (q, a2n−i+jb4na3n−j) �+ (q, a2n−i+j−�+mb4na3n−j−m) �∗ (qf , λ),

where q ∈ Q, qf ∈ F , and A consumes i symbols and performs j revolving
steps until the first q appears, and it consumes further � symbols and performs
further m revolving steps until the second q appears. Furthermore, i, j, �, m ≤ n
and � + m > 0. We conclude that there is an accepting computation

(q0, a
2n−�+mb4na3n−m) �∗ (q, a2n−�+m−i+jb4na3n−m−j) �∗ (qf , λ),

which implies a2n−�+mb4na3n−m ∈ L. Therefore, m−� is even and, thus, l+m ≥ 2
since � + m > 0. On the other hand, since n + m−�

2 + 3n − m = 4n − �+m
2 �= 4n,

we have a2n−�+mb4na3n−m /∈ L, a contradiction.
It remains to be shown that L is accepted by some rr-DFA A′. Basically, A′

scans the leading a’s, whereby every second symbol a is revolved until the first b
appears. Subsequently, A′ behaves as a known acceptor for the language { w ∈
{a, b}∗ | |w|a = |w|b }. �	

122 S. Bensch et al.

Corollary 15. There is a language L ∈ L (rr-DFA) \ L (ir-NFA).

Proof. The assertion follows by Lemma 14 and L (ir-NFA) ⊂ L (lr-NFA) shown
in [3]. �	

Lemma 16. There is a language L ∈ L (ir-DFA) \ L (rr-NFA), hence we have
L (lr-DFA) \ L (rr-NFA) �= ∅.

Proof. Example 3 revealed that the language L = { anbn | n ≥ 1 } is accepted by
some ir-DFA, hence also by some lr-DFA. On the other hand, it is shown in [2]
that L is not accepted by any rr-NFA. �	

Lemma 17. There is a language L ∈ L (lr-DFA) \ L (ir-NFA).

Proof. The witness language { w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c } does not
belong to L (ir-NFA) since it is not linear context free. But by Example 2 it is
accepted by some lr-DFA. �	

5 Closure Properties

We next discuss the closure properties of deterministic extended finite automata
languages. Due to the lack of space we only give two lemmata exemplarily here.
Further results are summarized in Table 1.

Table 1. Closure properties of families of deterministic extended automata languages;
entry + means the the language family is closed under the corresponding operation, −
means that it is not closed, and ? means that the answer is not known.

Operation

L (·) ∪ ∩ ∼ ∩reg R · ∗ h−1 hλ

lr-DFA − − − ? − − − − −
rr-DFA − − − − − − − − −
ir-DFA − − + + + − − + −

First, we show that L (lr-DFA) and L (rr-DFA) are neither closed under com-
plementation nor under union, and then we proof that these families of languages
are not closed under reversal.

Lemma 18. The families L (lr-DFA) and L (rr-DFA) are neither closed under
complementation nor under union.

Proof. Let L = { w ∈ {a, b}∗ | |w|a = |w|b }. We show that its complement L̄
belongs neither to L (lr-DFA) nor L (rr-DFA). Contrarily assume a deterministic
revolving finite automaton A accepts L̄, and consider an accepting computation
on input an, for n large enough. In order to accept the input, A has to read every
symbol. So, it must not run into loops consisting of revolving transitions only.

Deterministic Input-Reversal and Input-Revolving Finite Automata 123

This implies that after an initial part with some i ≥ 0 ordinary transitions and
j ≥ 0 revolving transitions, the computation becomes cyclic, where some k ≥ 1
ordinary transitions and � ≥ 0 revolving transitions appear in a single loop. Let
n = i + j + c(k + �), for some constant number c which is large enough. For A
being a rr-DFA we obtain the accepting computation

(q0, a
nbn−k) �∗ (qi, a

n−i−jbn−kaj) �+

(qi, a
n−i−j−k−�bn−kaj+�) �+ (qi, b

n−kaj+c·�) �+ (qf , λ),

for some state qi. Due to the deterministic behavior, the computation on input
an−k−�bn−ka� is

(q0, a
n−k−�bn−ka�) �∗ (qi, a

n−k−�−i−jbn−ka�+j) �+

(qi, b
n−ka�+j+(c−1)·�) �+ (qf , λ),

which is a contradiction, since an−k−�bn−ka� does not belong to L̄.
If A is a left-revolving finite automaton, we obtain a contradiction with the

inputs ai+c·kbn−kaj+c·� ∈ L̄ and ai+(c−1)·k+�bn−kaj+(c−1)·� ∈ L.
Hence, both families are not closed under complementation. Almost the same

reasoning can be used to show that the language { w ∈ {a, b}∗ | |w|a = |w|b } ∪
{ an | n ≥ 1 } is not accepted by any rr-DFA and lr-DFA. Hence, both families
are not closed under union either. �	

Lemma 19. Both L (lr-DFA) and L (rr-DFA) are not closed under reversal.

Proof. By Lemma 14, the language { a2nbv | n ≥ 0, v ∈ {a, b}∗, n+|v|a = 1+|v|b}
does not belong to L (lr-NFA). On the other hand, its reversal is accepted by
some lr-DFA A as follows. Automaton A starts to revolve a’s from the back
whereby every second a symbol is deleted (by a read transition). When the
first b appears, A behaves as a known acceptor for the language { w ∈ {a, b}∗ |
|w|a = |w|b }. So, L (lr-DFA) is not closed under reversal.

Now, let L be any language from L (rr-DFA) \ L (lr-NFA). By Lemma 14
such languages exist. In contrast to the assertion assume L (rr-DFA) were closed
under reversal. Then LR ∈ L (rr-DFA) and, trivially, LR is accepted by some
nondeterministic right-revolving finite automaton, too. By a result in [2] we
know, that if a language is accepted by a nondeterministic right-revolving finite
automaton, then its reversal is accepted by a nondeterministic left-revolving
finite automaton. We conclude L ∈ L (lr-NFA), a contradiction. �	
Finally, the closure of L (ir-DFA) is trivial.

Lemma 20. The family L (ir-DFA) is closed under reversal.

6 Conclusions

We have investigated left-revolving,- right-revolving and input reversal finite
automata. The main interest was on deterministic computations. For all mod-
els we have separated deterministic from nondeterministic automata and have

124 S. Bensch et al.

considered the relationships between the distinguished deterministic classes.
The inclusion relation between the language families considered are depicted in
Figure 2. Concerning the closure properties of the investigated language families
we refer to Table 1, where we summarize our results. It was shown that most
of the classes are not closed under standard language operations like union,
concatenation or Kleene closure. Although it is not known whether determinis-
tic left-revolving finite automata are closed under intersection with regular sets,
these automata might be of interest in the framework of mathematical linguistics,
since natural languages are an anti-AFL (see [6]). A model for natural languages
should include the three non-context-free languages L1 = { anbncn | n ≥ 1 },
L2 = { anbmcndm | n, m ≥ 1 }, and L3 = { ww | w ∈ {a, b}+ }. We know that L1

and L2 can be accepted by deterministic left-revolving automata and that L3

can be accepted if it is marked appropriately.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Input reversals and iterated pushdown au-
tomata: A new characterization of Khabbaz geometric hierarchy of languages. In:
Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
102–113. Springer, Heidelberg (2004)

2. Bordihn, H., Holzer, M., Kutrib, M.: Revolving-input finite automata. In: De Fe-
lice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 168–179. Springer,
Heidelberg (2005)

3. Bordihn, H., Holzer, M., Kutrib, M.: Hybrid extended finite automata. In: H.
Ibarra, O., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 34–45. Springer,
Heidelberg (2006)

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28, 114–133 (1981)

5. Chomsky, N.: Formal Properties of Grammars.In: Handbook of Mathematic Psy-
chology, vol. 2, pp. 323–418. Wiley & Sons, New York (1962)

6. Culy, C.: Formal properties of natural language and linguistic theories. Linguistics
and Philosophy 19, 599–617 (1996)

7. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland, Amsterdam (1975)

8. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. Journal of
the ACM 14, 389–418 (1967)

9. Holzer, M., Kutrib, M.: Flip-pushdown automata: k + 1 pushdown reversals are
better than k. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 490–501. Springer, Heidelberg (2003)

10. Holzer, M., Kutrib, M.: Flip-pushdown automata: Nondeterminism is better than
determinism. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 361–372.
Springer, Heidelberg (2003)

11. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3, 114–125 (1959)

12. Salomaa, A.: Formal Languages. Academic Press, London (1973)
13. Sarkar, P.: Pushdown automaton with the ability to flip its stack. Report TR01-

081, Electronic Colloquium on Computational Complexity (ECCC) (2001)

Random Context in Regulated Rewriting Versus

Cooperating Distributed Grammar Systems

Henning Bordihn1 and Markus Holzer2

1 Institut für Informatik, Universität Giessen,
Arndtstraße 2, D-35392 Giessen, Germany
bordihn@informatik.uni-giessen.de

2 Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching bei München, Germany

holzer@informatik.tu-muenchen.de

Abstract. It is well known that certain language families generated by
cooperating distributed (CD) grammar systems can be characterized in
terms of context-free random context grammars. In particular, the lan-
guage families generated by CD grammar systems working in the t- and
sf -modes of derivation obey a characterization in terms of ET0L sys-
tems, or equivalently by context-free disjoint forbidding random context
grammars, and of context-free random context grammars with appear-
ance checking, respectively. Now the question arises whether or not other
random context like language families can be characterized in terms of
CD grammar systems. We positively answer this question, proving that
there are derivation modes for CD grammar systems, namely the negated
versions of the aforementioned modes, which precisely characterize the
family of context-free disjoint forbidding random context languages and
that of languages generated by context-free random context grammars
without appearance checking. In passing we show that every language
generated by a context-free random context grammar without appear-
ance checking can also be generated by a context-free recurrent pro-
grammed grammar without appearance checking, and vice versa.

1 Introduction

Random context is viewed as one of the prototype mechanisms in regulated
rewriting [8]. The basic idea is, like in matrix or programmed grammars, to
restrict the applicability of the rules in order to enhance the generative capacity
of the underlying grammars. In the case of context-free grammars this yields
languages families which are strict supersets of the family of all context-free
languages. Random context grammars have been introduced by van der Walt [20]
as string rewriting mechanisms, and are recently treated in the framework of
picture and tree grammars, e.g., see [9,10]. In context-free random context string
grammars, every production consists of an ordinary context-free (core) rewriting
rule to which two sets of nonterminal symbols are associated, namely the sets
of permitting and forbidding random context. The core rule of a production is

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 125–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 H. Bordihn and M. Holzer

applicable to a sentential form α only if all symbols from the permitting random
context and no symbols from the forbidding random context appear in α, more
precisely, in the context of the nonterminal to be replaced. One can distinguish
three natural cases:
1. Both permitting and forbidding random context can be used. Then it is known

that all recursively enumerable languages can be generated.
2. There is only permitting random context. Then still a strict superset of the

family of context-free languages is obtained, which is included in the family of
languages generated by context-free programmed (or, equivalently, context-
free matrix) grammars without appearance checking. Whether or not the
latter inclusion is strict is a longstanding open problem in regulated rewriting
(see Open problem 1.2.2 in [8]). Permitting random context grammars are
also referred to as random context grammars without appearance checking.

3. There is only forbidding random context. Again, a strict superset of the fam-
ily of context-free languages (even of all languages generated by extended
tabled context-free Lindenmayer systems, for short ET0L systems) is ob-
tained. Moreover, these grammars are less powerful than type-0 Chomsky
grammars. A precise characterization of the family of all ET0L languages is
obtained in terms of context-free disjoint forbidding random context gram-
mars, where in each production, the forbidding random context does not
contain any symbol occurring in the context-free core rule, neither on its
left-hand nor on its right-hand side [18,22].

If erasing rules are prohibited, then one is led to subclasses, in most cases strict.
For a survey the reader may confer [8].

In the present paper, new characterizations of the families of context-free per-
mitting and disjoint forbidding random context grammars in terms of cooperating
distributed grammar systems will be given. Such systems have been introduced
in [5] as models of distributed problem solving, after a forerunner paper [16] has
treated a similar device in order to generalize two-level substitution grammars to
a multi-level concept. Moreover they can be viewed as sequential counterparts of
ET0L systems [3]. Context-free cooperating distributed grammar systems consist
of a finite number of context-free grammars which jointly work on a common sen-
tential form in turns. In what follows, we will restrict ourselves to context-free
components without further mentioning. The conditions under which the gram-
mar components may start and stop rewriting are determined by the cooperation
protocol. For instance, the components may be required to perform, for some pos-
itive integer k, exactly, at least or at most k derivation steps. Besides these and the
free mode of derivation, where no constraints have to be obeyed, two “competence
based” cooperation protocols are treated as standard derivation modes:
1. In the t-mode a component, once started, has to remain active as long as it

can apply one of its rules to the sentential form (terminating mode);
2. in the sf -mode a component, once started, has to remain active as long as it is

able to rewrite every nonterminal occurring in the sentential form and, more-
over, it can only start on sentential forms like this (full competence mode).

The latter cooperation protocol has been used in [16].

Random Context in Regulated Rewriting Versus CD Grammar Systems 127

In subsequent papers, also hybrid cooperating distributed grammar systems
have been considered, where several of the standard modes are combined. Two
kinds of hybridization can be defined: the external hybrid modes, where different
components can work according to distinct derivation modes [17], and internal hy-
brid modes, where all components rewrite according to one and the same deriva-
tion mode (of the system) but this mode is the Boolean combination of one or two
of the standard modes [13,14]. Concerning the internal hybrid modes, only little
has been done with respect to the negation of the “competence based” modes.
In [4] the non-t-mode has been treated as one derivation mode in external hybrid
grammar systems, as otherwise the system could never derive a terminal string.
To the knowledge of the authors, the non-sf -mode has never been considered. In
the present paper, the focus is set on these negated modes, where the external hy-
bridization is circumvented by allowing derivations leading to a terminal string,
as exceptions to the non-t condition. It turns out, that the language families corre-
sponding to the non-t- and non-sf -modes are precisely the families of context-free
permitting and context-free disjoint forbidding random context languages.

In the literature, random context has also been used in order to add to the
power of ET0L systems, where a table is applicable only if the random con-
text constraint associated to the table is obeyed. It is unknown whether or not
any recursively enumerable language can be generated by some random context
ET0L system. A characterization of this language family is given in terms of re-
stricted context-free programmed grammars (with appearance checking), namely
by recurrent programmed grammars. Here it is required that if a rewriting rule
can be used according to the program of the grammar, then it may be used
arbitrarily often in consecutive steps. Clearly, the class of context-free recurrent
programmed grammars without appearance checking determines a subfamily of
the family of context-free programmed grammars without appearance checking.
The question of whether or not this inclusion is strict forms another open prob-
lem. In passing, we prove that this natural subfamily of the family of languages
generated by context-free programmed grammars without appearance checking
coincides with the family of context-free permitting random context grammars,
thus with the family of languages generated by cooperating distributed grammar
systems working in the non-t-mode of derivation. After all, the new characteriza-
tions of the regulated rewriting classes under consideration may shed new light
on some problems in the field which are longstandingly open.

2 Definitions and Preliminaries

We assume the reader to be familiar with the standard notions of formal language
theory as contained in [8]. In particular, for some alphabet V , let V ∗ be the set of all
words over V , including the empty word λ. For a ∈ V and w ∈ V ∗, let |w|a denote
the number of occurrences of a in w. The cardinality of a set M is denoted by #M .

Further, the families of languages generated by context-free, context-sensitive,
general type-0 Chomsky grammars, and ET0L systems are denoted by L(CF),
L(CS), L(RE), and L(ET0L), respectively. We attach −λ in our notation if

128 H. Bordihn and M. Holzer

erasing rules are not permitted. In what follows, we will consider two languages
to be equal if they differ at most by the empty word λ.

A context-free random context grammar is a quadruple G = (N,T, P, S),
where N , T , and S ∈ N are the set of nonterminals, the set of terminals, and
the start symbol, respectively. Moreover, P is a finite set of context-free ran-
dom context rules, i.e., triples of the form (A → α,Q,R), where A → α is a
context-free production and Q,R ⊆ N are its permitting and forbidding ran-
dom context, respectively. For x, y ∈ (N ∪ T)∗ we write x ⇒ y if and only if
x = x1Ax2, y = x1αx2, all symbols of Q appear in x1x2, and no symbol of R
appears in x1x2. If either Q and/or R is empty, then the corresponding context
check is omitted. The language generated by the random context grammar G
is defined as L(G) = {w ∈ T ∗ | S ⇒∗ w }, where ⇒∗ is the reflexive transitive
closure of ⇒. The family of languages generated by context-free random context
grammars is denoted by L(RC,CF, ac). We replace CF by CF–λ in that notation
if erasing rules are forbidden. If no appearance checking features are involved,
i.e., all forbidding random contexts are empty, then G is said to be a context-free
permitting random context grammar or equivalently context-free random context
grammar without appearance checking, and we are led to the language families
L(RC,CF) and L(RC,CF–λ). It is known that1

L(CF) ⊂ L(RC,CF[−λ]) ⊆ L(RC,CF[−λ], ac) ⊆ L(RE),

and in particular L(RC,CF, ac) = L(RE) and that

L(ET0L) ⊂ L(RC,CF–λ, ac) ⊂ L(CS),

see, e.g., [8]. If all permitting random contexts are empty, then G is called context-
free forbidding random context grammar ; the corresponding families of languages
are denoted by L(fRC,CF) and L(fRC,CF–λ). A production (A → α, ∅, R) of a
context-free forbidding random context grammar is referred to as disjoint if the
intersection of R with the set {A} ∪ {B | |α|B > 0 } of symbols occurring in its
core rule A → α is empty. A context-free forbidding random context grammar G
is called disjoint if all productions of G are disjoint. We denote the language
families generated by context-free disjoint forbidding random context grammars
with and without erasing rules by L(dfRC,CF) and L(dfRC,CF–λ), respectively,
which are shown in [21] to be identical with the family L(ET0L). We are led to
the following inclusion chain:

L(ET0L) = L(dfRC,CF[−λ]) ⊂ L(fRC,CF[−λ]) ⊂ L(RC,CF[−λ], ac).

The first strict inclusion follows from [8], the latter one from [11], see also [12].
The characterization of the family of ET0L languages in terms of context-free
disjoint forbidding random context grammars is given in [21] and in [18] using a
different approach.

1 Whenever we use bracket notations like these, the statement is true both in case of
ignoring the brackets and when neglecting the bracket contents.

Random Context in Regulated Rewriting Versus CD Grammar Systems 129

A context-free cooperating distributed grammar system (CD grammar system,
for short) with n components, n ≥ 1, is a construct Γ = (N,T, P1, P2, . . . , Pn, S),
where each Gi = (N,T, Pi, S) is a context-free grammar. For 1 ≤ i ≤ n, Pi is
called a component of Γ . The domain of Pi, in symbols dom(Pi), is the set of
nonterminals which can be rewritten by some production in Pi. Furthermore,
Pi is said to be sentential form competent (sf -competent, for short) on a word
x ∈ (N ∪ T)∗ if, for any nonterminal A, |x|A > 0 implies A ∈ dom(Pi); we write
Pi |=sf x in this case and Pi �|=sf x otherwise.

For 1 ≤ i ≤ n, let ⇒i be the usual yield relation of the context-free gram-
mar Gi = (N,T, Pi, S), and ⇒∗

i its reflexive and transitive closure. A t-mode
(sf -mode) derivation step of Γ is defined by

x ⇒t
i y iff x ⇒∗

i y and there is no z with y ⇒i z,
and

x ⇒sf
i y iff x ⇒∗

i x′ ⇒i y and Pi |=sf x′ but Pi �|=sf y,

for some words x, x′, and y over N ∪ T and 1 ≤ i ≤ n. Note that, consequently,
component Pi is sf -competent on x and all intermediate sentential forms in
x ⇒∗

i x′, either. Therefore, if Pi is applied in the t-mode, then it has to continue
rewriting until there is no nonterminal from dom(Pi) left in the sentential form.
In the sf -mode it is active until and unless there appears a nonterminal in
the sentential form which is not in dom(Pi), that is, until and unless it is sf -
competent on the sentential forms.

The two negated derivation modes we will treat in the present paper shall
model the following intuition. In the non-t-mode, each component has to perform
an arbitrary number of derivations steps as long as at least one rule will remain
applicable to the sentential form, except when the derivation produces a terminal
word. That is the derivation process can be stopped whenever the sentential form
contains at least one nonterminal of the domain of the component (hence, it is
not a completed t-mode derivation) or the sentential form is terminal. In the
non-sf -mode, a component can start and stop rewriting, if and only if it is sf -
competent on the current sentential form (hence, it is not a completed sf -mode
derivation). Therefore, they are defined as follows:

x ⇒t̄
i y iff x ⇒∗

i y and there is a z with y ⇒i z,
and

x ⇒s̄f
i y iff x ⇒∗

i y and Pi |=sf y,

for some words x and y over N ∪ T and 1 ≤ i ≤ n.
Let f be some derivation mode, then the language generated by Γ working in

the f -mode is the set

L(Γ) = {w ∈ T ∗ | S = w0 ⇒f
i1

w1 ⇒f
i2

. . . ⇒f
im

wm = w, m ≥ 0,
1 ≤ ij ≤ n, and 1 ≤ j ≤ m },

where ⇒f
i denotes the f -mode derivation relation of the ith component.

130 H. Bordihn and M. Holzer

For an overview about the generative capacity of CD grammar systems we
refer to [6] and [7]. CD grammar systems working in the t-mode have been in-
vestigated in [5], where it was shown that context-free [λ-free] CD grammar
systems working in the t-mode precisely characterize the family L(ET0L) of
languages generated by ET0L systems, i.e., L(ET0L) = L(CD,CF[–λ], t). More-
over, CD grammar systems working in the sf -mode have been investigated, for
example, in [1,2]. In [16] the equalities L(P,CF[–λ], ac) = L(CD,CF[–λ], sf)
have been shown. In other words, the family of languages generated by context-
free [λ-free] CD grammar systems working in the sf -mode precisely characterize
the family L(P,CF[–λ], ac) of languages generated by programmed context-free
[λ-free] grammars with appearance checking. The definition of a context-free
programmed grammar is briefly recalled in the next section. We note that it is
known that L(P,CF[–λ], ac) = L(RC,CF[–λ], ac) and hence L(P,CF, ac) equals
the family of recursively enumerable languages, while L(P,CF–λ, ac) is a proper
subset of the family of context-sensitive languages.

In order to clarify our definitions, we give two examples.

Example 1. Let Γ be the CD grammar system Γ = (N,T, P1, P2, . . . , P6, S) with
nonterminals N = {S,A,B,A′, B′}, terminals T = {a, b, c}, and the production
sets

P1 = {S → AB,A → A}
P2 = {A → aA′b, B → B}
P3 = {A′ → A′, B → B′c}

P4 = {A′ → A,B′ → B′}
P5 = {A → A,B′ → B}
P6 = {A → ab,B → c}.

It is easy to see that running Γ in the non-t-mode results in the non-context-
free language L1 = { anbncn | n ≥ 1 }. The only way to start the deriva-
tion is to use production set P1 leading to the sentential form AB. Then,
for all natural numbers n ≥ 0, we find anAbnBcn ⇒t̄

2 an+1A′bn+1Bcn ⇒t̄
3

an+1A′bn+1B′cn+1 ⇒t̄
4 an+1Abn+1B′cn+1 ⇒t̄

5 an+1Abn+1Bcn+1 or the termi-
nating derivation anAbnBcn ⇒t̄

6 an+1bn+1cn+1. This shows the stated claim.
Observe, that the rules of the form X → X , for X ∈ {A,B,A′, B′}, are needed
to enforce that the derivation is non-blocking in the sense of a non-t-mode
derivation.

When comparing the t-mode and the non-t-mode we find that in the first mode
the CD grammar system Γ generates the empty set ∅. This fact is obvious, since
rules of the form X → X in production sets enforce that the derivation is not ter-
minating when X is already present in the sentential form or derived by the com-
ponent under consideration.Therefore, the termination cannot start from axiomS
since the only production set that can be applied onS is P1 and it contains the rules
S → AB and A → A, which immediately leads to a non-terminating derivation.

Let us turn to our second example.

Example 2. The language L2 = { anbncn | n ≥ 1 } is also generated by the
CD grammar system Γ = ({S,A,B,A′, B′}, {a, b}, P1, P2, . . . , P6, S) with the
production sets

Random Context in Regulated Rewriting Versus CD Grammar Systems 131

P1 = {S → AB,A → A,B → B}
P2 = {A → aA′b, A′ → A′, B → B}
P3 = {A′ → A′, B → B′c, B′ → B′}

P4 = {A → A,A′ → A,B′ → B′}
P5 = {A → A,B → B,B′ → B}
P6 = {A → ab,B → c}

if it is driven in the non-sf -mode of derivation. In fact, the successful derivation
sequences are exactly those, which are already presented in the previous example
for the non-t-mode of derivation. Again, the recurrent rules X → X , for X ∈
{A,B,A′, B′} are of special interest. Here the purpose of these rules is to force
the component to remain competent on the sentential form.

Finally, let us mention that CD grammar system Γ generates the empty set ∅
when run in conventional sf -mode of derivation. Observe, that one can modify
the components P1, P2, . . . , P6 such that the CD grammar system generates L2

when run in sf -mode. To this end, one has to erase the rules A → A and B → B
from P1, rule A′ → A′ from P2, rule B′ → B′ from P3, rule A → A from P4, and
rule B → B from P5. In this way one obtains nearly the CD grammar system
from the previous example (expect for the production set P1).

3 Simulation Results

We consider context-free CD grammar systems working in the non-t- and non-sf -
modes, showing equivalences to the context-free permitting and disjoint forbid-
ding random context grammars, respectively. First, the non-t-mode is treated. In
passing, another equivalence to a particular variant of programmed grammars,
namely that of recurrent programmed grammars, is proved.

Theorem 3. L(RC,CF[–λ]) ⊆ L(CD,CF[–λ], t̄).

Proof. Let G = (N,T, P, S) be a context-free random context grammar (without
appearance checking). With each random context production we associate a
unique label pj , 1 ≤ j ≤ #P . If (A → v, {B1, B2, . . . , Bkj}, ∅) is the production
labeled pj, for 1 ≤ j ≤ #P , then we set

N ′ = N ∪ {A(i)
pj

| A ∈ N, 1 ≤ i ≤ kj , and 1 ≤ j ≤ #P },

the union be disjoint, and construct a context-free CD grammar system Γ =
(N ′, T, P1, P2, . . . , Pn, S) equivalent to G as follows. For 1 ≤ j ≤ #P , the fol-
lowing components are introduced:

{A → A
(1)
pj , B1 → B1},

{A(i)
pj → A

(i+1)
pj , Bi+1 → Bi+1} for 1 ≤ i < kj ,

{A(kj)
pj → v} ∪ {B → B | B ∈ N }.

The application of the production labeled pj can be successfully simulated if
and only if all components associated with it are applied in sequence as listed
in the construction. As Γ works in the non-t-mode, this is possible if and only
if each symbol from the permitting context is present. Since Γ is λ-free if G is
so, the proof is finished. �

132 H. Bordihn and M. Holzer

For the next theorem we need the definition of context-free programmed gram-
mars. A context-free programmed grammar (see, e.g., [8]) is a septuple G =
(N,T, P, S, Λ, σ, φ), where N , T , P , and S, S ∈ N , are as in the definition of
context-free random context grammars; Λ is a finite set of labels (for the produc-
tions in P), such that Λ can be interpreted as a function which outputs a produc-
tion when being given a label; σ and φ are functions from Λ into the set of subsets
of Λ. Usually, the productions are written in the form (r : A → α, σ(r), φ(r)),
where r is the label of A → α. For (x, r1) and (y, r2) in (N ∪T)∗×Λ and Λ(r1) =
A → α, we write (x, r1) ⇒ (y, r2) if and only if either x = x1Ax2, y = x1αx2

and r2 ∈ σ(r1), or x = y and rule A → α is not applicable to x, and r2 ∈ φ(r1).
In the latter case, the derivation step is done in appearance checking mode. The
set σ(r1) is called success field and the set φ(r1) failure field of r1. As usual, the
reflexive transitive closure of ⇒ is denoted by ⇒∗. The language generated by G
is defined as L(G) = {w ∈ T ∗ | (S, r1) ⇒∗ (w, r2) for some r1, r2 ∈ Λ }. The
family of languages generated by programmed grammars containing only
context-free core rules is denoted by L(P,CF, ac). We replace CF by CF–λ in
that notation if erasing rules are forbidden. When no appearance checking fea-
tures are involved, i.e., φ(r) = ∅ for each label r ∈ Λ, we are led to the families
L(P,CF) and L(P,CF–λ). Obviously, L(P,CF[–λ]) ⊆ L(P,CF[–λ], ac). For the
relation between languages generated by context-free programmed grammars
and languages generated by context-free random context grammars the follow-
ing relations are well known, see, e.g., [8]: L(RC,CF[–λ]) ⊆ L(P,CF[–λ]) while
L(RC,CF[–λ], ac) = L(P,CF[–λ], ac). Whether the former inclusion is strict or
not is a long openstanding problem in regulated rewriting. Hence L(P,CF, ac)
equals L(RE) and L(P,CF–λ, ac) is a strict subset of L(CS).

A special variant of programmed grammars are recurrent programmed gram-
mars introduced in [22]. A context-free programmed grammar G is a context-free
recurrent programmed grammar if for every r ∈ Λ of G, we have r ∈ σ(r), and
if φ(r) �= ∅, then σ(r) = φ(r). The corresponding language families are de-
noted by L(RP,CF, ac) and L(RP,CF–λ, ac). When no appearance checking
features are involved, i.e., φ(r) = ∅ for each label r ∈ Λ, we omit ac in that
notation, again. Obviously, by definition L(RP,CF[–λ]) ⊆ L(P,CF[–λ]) and
L(RP,CF[–λ], ac) ⊆ L(P,CF[–λ], ac). Moreover, in [15] it was shown that

L(RC,CF[–λ]) ⊆ L(RP,CF[–λ]) ⊂ L(RP,CF[–λ], ac).

Note that the latter inclusion is a strict one. The following theorem shows how
CD grammar systems working in non-t-mode of derivation can be simulated by
recurrent programmed grammars without appearance checking.

Theorem 4. L(CD,CF[–λ], t̄) ⊆ L(RP,CF[–λ]).

Proof. Assume the given CD grammar system Γ has n components P1, P2,. . ., Pn,
with

Pi = {Ai,1 → vi,1, Ai,2 → vi,2, . . . , Ai,ki → vi,ki},

Random Context in Regulated Rewriting Versus CD Grammar Systems 133

for 1 ≤ i ≤ n. Then we consider the recurrent programmed grammar which
possesses, for 1 ≤ j ≤ ki and 1 ≤ i ≤ n, the productions

([i, j] : Ai,j → vi,j , { [i, �] | 1 ≤ � ≤ ki } ∪ { ci.� | 1 ≤ � ≤ ki }, ∅)

and
(ci,j : Ai,j → Ai,j , {ci,j} ∪ { [i′, �] | 1 ≤ i′ ≤ n, 1 ≤ � ≤ ki′ }, ∅).

Therefore, any number of consecutive steps performed by any component of Γ
can be mimicked, but a change from one component Pi to another one can only
successfully be done if a production labeled ci,j has been applied, for some j,
testing the appearance of Aj ∈ dom(Pi) in the current sentential form. Thus,
only non-t derivation steps can be simulated. In conclusion, the constructed
context-free recurrent programmed grammar is equivalent to Γ and is λ-free
if Γ has no erasing productions. This completes the proof. �

Finally, we show how to simulate a context-free recurrent programmed grammar
without appearance checking by a context-free random context grammar, also
without appearance checking.

Theorem 5. L(RP,CF[–λ]) ⊆ L(RC,CF[–λ]).

Proof. For a context-free recurrent programmed grammar G=(N,T, P, S, Λ, σ, φ),
we construct the context-free random context grammar G′ = (N ′, T, P ′, S′) with
N ′ = N∪{Ap, p, p

′ | p ∈ Λ }∪{S′}, the unions being disjoint, where P ′ contains,
for any (p : A → v, σ(p), ∅) in P , the following productions:

(S′ → Sp, ∅, ∅),
(A → Ap, {p}, ∅),
(p → p′, {Ap}, ∅),
(Ap → v, {p′}, ∅),
(p′ → q, ∅, ∅) for any q ∈ σ(p),
(p → λ, ∅, ∅).

After initiating a derivation according to G′ with the help of (S′ → Sp, ∅, ∅),
every application of a production from G is simulated by applying the corre-
sponding productions from G′ in the sequence they are listed above. Thus, every
derivation of G can be mimicked by G′. Hence, L(G) ⊆ L(G′). On the other
hand, the grammar G′ can skip applying Ap → v in those simulation cycles.
Then, symbols Ap can be resolved whenever p′ is present in the sentential form,
completing a former simulation of applying the production of G labeled p. As
all productions are context-free this only yields words in L(G). If the label sym-
bol p, that is, the rightmost symbol in sentential forms αp, is erased before α
has become terminal, then no further simulation cycles can be performed and
the derivation is blocked. The fact that several occurrences of A can be replaced
if p is present does not violate the simulation as G is a context-free recurrent
programmed grammar. Therefore, L(G′) ⊆ L(G).

If G is λ-free, the only erasing productions of G′ are used exactly once for
deleting the rightmost symbol p in the sentential forms. By a standard technique

134 H. Bordihn and M. Holzer

L(RE) = L(RC,CF, ac) = L(CD,CF, sf)

L(fRC,CF) L(CS)

L(RC,CF–λ, ac) = L(CD,CF–λ, sf) L(RP,CF, ac)

L(fRC,CF–λ) L(RP,CF–λ, ac) L(RC,CF) = L(RP,CF) = L(CD,CF, t̄)

L(RC,CF–λ) = L(RP,CF–λ) = L(CD,CF–λ, t̄)

L(ET0L) = L(CD,CF[–λ], t) = L(CD,CF[–λ], s̄f)

L(CF)

Fig. 1. Inclusion diagram—language families that are not linked by a path are not
necessarily pairwise incomparable

in formal language theory the erasing productions can be eliminated from G′

without affecting the generated language (for example, by encoding the label
as a component of the rightmost nonterminal from G instead of as a distinct
symbol); the details are omitted here. �

Hence we have shown the following equalities.

Corollary 6. L(CD,CF[–λ], t̄) = L(RC,CF[–λ]) = L(RP,CF[–λ]). �

Next, we turn to the non-sf -mode in relation to forbidding random context.

Theorem 7. L(CD,CF[–λ], s̄f) = L(dfRC,CF[–λ]).

Proof. First we show L(CD,CF, s̄f) ⊆ L(dfRC,CF). Let Γ be a CD grammar
system with n components P1, P2, . . . , Pn and nonterminal set N . A production
A → α in Pi, for 1 ≤ i ≤ n, can only be used in a non-sf -mode derivation, if every
nonterminal occurring in α belongs to the domain of Pi. Thus we can assume
without loss of generality that only rules with this property are present. Now,
an arbitrary number of derivation steps can be performed by any component
which is sf -competent whenever it starts rewriting the sentential form. This
can be tested with the help of the forbidding random context: With each rule
A → α in Pi we associate the random context production (A → α, ∅, R) with
R = N \ dom(Pi). By the explanation given above, the productions obtained
are disjoint. This verifies the equivalence of the constructed context-free disjoint
forbidding random context grammar and the CD grammar system Γ .

For the converse inclusion, we argue as follows. Let a context-free disjoint
forbidding random context grammar G = (N,T, P, S) be given. For the con-
struction of a CD grammar system which is equivalent to G when working
in the non-sf -mode, with each disjoint forbidding random context production
(A → α, ∅, R), we associate a component {A → α} ∪ {B → B | B ∈ N \ R }.
As the forbidding random context production is disjoint, the set R does not
contain A nor any nonterminal occurring in α. Therefore, A → α is applicable
if and only if no symbols from R are present in the current sentential form.

Random Context in Regulated Rewriting Versus CD Grammar Systems 135

Note that, inboth constructions, no newλ-rules are introduced. Hence the inclu-
sions, and therefore also the equality, are also valid if λ-rules are not permitted. �

Hence we have shown the following equalities.

Corollary 8. L(CD,CF[–λ], s̄f) = L(CD,CF[–λ], t) = L(ET0L). �

4 Conclusions

We have investigated whether context-free random context like language families
can be characterized in terms of CD grammars systems. The inclusion relation
between the language families considered are depicted in Figure 1. One of the
most interesting results obtained are the equivalence of context-free random
context grammars without appearance checking and of context-free recurrent
programmed grammars also without appearance checking, with respect to their
generative capacity.

Finally, it is worth mentioning, that also the language family L(RP,CF[–λ], ac)
can be characterized in terms of ET0L random context grammars, namely

L(RC,E[P]T0L) = L(RC,E[P]T0L, ac) = L(RP,CF[–λ], ac)

and L(ET0L) = L(fRC,E[P]T0L), where we refer to [22] for a definition of ET0L
random context grammars. Moreover, in, e.g., [4,13,19], also a characterization
of L(RP,CF[–λ], ac) in terms of CD grammar systems is given.

References

1. Bordihn, H.: On the number of components in cooperating distributed grammar
systems. Theoretical Computer Science 330(2), 195–204 (2005)

2. Bordihn, H., Csuhaj-Varjú, E.: On competence and completeness in CD grammar
systems. Acta Cybernetica 12, 347–360 (1996)

3. Bordihn, H., Csuhaj-Varjú, E., Dassow, J.: CD grammar systems versus L systems.
In: Păun, G., Salomaa, A. (eds.) Grammatical Model of Multi-Agent Systems,
Gordon and Breach, pp. 18–32 (1999)

4. Bordihn, H., Holzer, M.: Grammar systems with negated conditions in their coop-
eration protocols. Journal of Universal Computer Science 6(12), 1165–1184 (2000)

5. Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems. Jour-
nal of Information Processing and Cybernetics (formerly: EIK) 26(1/2), 49–63
(1990)

6. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation, Grodon and Breach (1994)

7. Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 155–213. Springer,
Heidelberg (1997)

8. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. In: EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

136 H. Bordihn and M. Holzer

9. Ewert, S., van der Walt, A.P.J.: Generating pictures using random forbidding con-
text. International Journal of Pattern Recognition and Ariticial Intelligence 12(7),
939–950 (1998)

10. Ewert, S., van der Walt, A.P.J.: Generating pictures using random permitting con-
text. International Journal of Pattern Recognition and Ariticial Intelligence 13(3),
339–355 (1999)

11. Fernau, H.: Membership for 1-limited ET0L languages is not decidable. Journal of
Information Processing and Cybernetics (formerly: EIK) 30(4), 191–211 (1994)

12. Fernau, H.: A predicate for separating language classes. Bulletin of the European
Association for Theoretical Computer Science 56, 96–97 (1995)

13. Fernau, H., Freund, R., Holzer, M.: Hybrid modes in cooperating distributed gram-
mar systems: internal versus external hybridization. Theoretical Computer Sci-
ence 259(1–2), 405–426 (2001)

14. Fernau, H., Holzer, M., Freund, R.: Bounding resources in cooperating distributed
grammar systems. In: Bozapalidis, S. (ed.) Proceedings of the 3rd International
Conference Developments in Language Theory, Aristotle University of Thessa-
loniki, Thessalomiki, Greece, July 1997, pp. 261–272 (1997)

15. Fernau, H., Wätjen, D.: Remarks on regulated limited ET0L systems and regulated
context-free grammars. Theoretical Computer Science 194, 35–55 (1998)

16. Meersman, R., Rozenberg, G.: Cooperating grammar systems. In: Winkowski, J.
(ed.) MFCS 1978. LNCS, vol. 64, pp. 364–374. Springer, Heidelberg (1978)

17. Mitrana, V.: Hybrid cooperating/distributed grammar systems. Computers and
Artificial Intelligence 12(1), 83–88 (1993)

18. Penttonen, M.: ET0L-grammars and N-grammars. Information Processing Let-
ters 4(1), 11–13 (1975)

19. ter Beek, M.H., Csuhaj-Varjú, E., Holzer, M., Vaszil, G.: On competence in CD
grammar systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004.
LNCS, vol. 3340, pp. 76–88. Springer, Heidelberg (2004)

20. van der Walt, A.P.J.: Random context languages. In: Freiman, C.V., Griffith, J.E.,
Rosenfeld, J.L. (eds.) Proceedings of the IFIP Congress 71, Ljubljana, Yugoslavia,
August 1971, vol. 1, pp. 66–68. North-Holland, Amsterdam (1971)

21. von Solms, S.H.: On T0L languages over terminals. Information Processing Let-
ters 3(3), 69–70 (1975)

22. von Solms, S.H.: Some notes on ET0L-languages. International Journal on Com-
puter Mathematics 5, 285–296 (1976)

Extending the Overlap Graph for Gene

Assembly in Ciliates�

Robert Brijder and Hendrik Jan Hoogeboom

Leiden Institute of Advanced Computer Science, Universiteit Leiden,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rbrijder@liacs.nl

Abstract. Gene assembly is an intricate biological process that has been
studied formally and modeled through string and graph rewriting sys-
tems. Recently, a restriction of the general (intramolecular) model, called
simple gene assembly, has been introduced. This restriction has subse-
quently been defined as a string rewriting system. We show that by
extending the notion of overlap graph it is possible to define a graph
rewriting system for two of the three types of rules that make up sim-
ple gene assembly. It turns out that this graph rewriting system is less
involved than its corresponding string rewriting system. Finally, we give
characterizations of the ‘power’ of both types of graph rewriting rules.
Because of the equivalence of these string and graph rewriting systems,
the given characterizations can be carried over to the string rewriting
system.

1 Introduction

Gene assembly is a highly involved process occurring in one-cellular organisms
called ciliates. Ciliates have two both functionally and physically different nuclei
called the micronucleus and the macronucleus. Gene assembly occurs during sex-
ual reproduction of ciliates, and transforms a micronucleus into a macronucleus.
This process is highly parallel and involves a lot of splicing and recombination
operations – this is true for the stichotrichs group of ciliates in particular. Dur-
ing gene assembly, each gene is transformed from its micronuclear form to its
macronuclear form.

Gene assembly has been extensively studied formally, see [6]. The process has
been modeled as either a string or a graph rewriting system [5,7]. Both sys-
tems are ‘almost equivalent’, and we refer to these as the general model. In [8]
a restriction of this general model has been proposed. While this model is less
powerful than the general model, it is powerful enough to allow each known
gene [4] in its micronuclear form to be transformed into its macronuclear form.
Moreover this model is less involved and therefore called the simple model. The
simple model was first defined using signed permutations [8], and later proved

� This research was supported by the Netherlands Organization for Scientific Research
(NWO) project 635.100.006 ‘VIEWS’.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 137–148, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

138 R. Brijder and H.J. Hoogeboom

equivalent to a string rewriting system [3]. The graph rewriting system of the
general model is based an overlap graphs. This system is an abstraction from
the string rewriting system in the sense that certain local properties within the
strings are lost in the overlap graph. Therefore overlap graphs are not suited for
the simple gene assembly model. In this paper we show that by naturally ex-
tending the notion of overlap graph we can partially define simple gene assembly
as a graph rewriting system. These extended overlap graphs form an abstraction
of the string model, and is some way easier to deal with. This is illustrated by
characterizing the power of two of the three types of recombination operations
that make up simple gene assembly. While this characterization is based on ex-
tended overlap graphs, due to its equivalence, it can be carried over to the string
rewriting system for simple gene assembly.

2 Background: Gene Assembly in Ciliates

In this section we very briefly describe the process of gene assembly. For a de-
tailed account of this process we refer to [6]. Gene assembly occurs in a group
of one-cellular organisms called ciliates. A characterizing property of ciliates is
that they have two both functionally and physically different nuclei called the
micronucleus (MIC) and the macronucleus (MAC). All the genes occur in both
the MIC and the MAC, but in very different forms. For each gene however, one
can distinguish a number of segments M1, . . . ,Mκ, called MDSs (macronuclear
destined segments), appearing in both the MIC and MAC form of that gene.
In the MAC form the MDSs appear as in Figure 1: each two consecutive MDSs
overlap in the MAC gene. The gray areas in the figure where the MDSs overlap
are called pointers. Moreover, there are two sequences denoted by b and e, which
occur on M1 and Mκ respectively, that indicate the beginning and ending of
the gene. The sequences b and e are called markers. In the MIC form the MDSs
appear scrambled and inverted with non-coding segments, called IESs (internal
eliminated segments), in between. As an example, Figure 2 shows the MIC form
of the gene that encodes for the actin protein in a ciliate called sterkiella nova
(see [10,4]). Notice that that the gene consists of nine segments, and that MDS
M2 occurs inverted, i.e. rotated 180 degrees, in the gene. The process of gene
assembly transforms the MIC into the MAC, thereby transforming each gene in
the MIC form to the MAC form. Hence, for each gene the MDSs are ‘sorted’ and
put in the right orientation (i.e., they do not occur inverted). This links gene
assembly to the well-known theory of sorting by reversal [2].

M3︷ ︸︸ ︷
︸ ︷︷ ︸

Mκ−1

Mκ︷ ︸︸ ︷
eb · · ·

M1︷ ︸︸ ︷
︸ ︷︷ ︸

M2

Fig. 1. The structure of a MAC gene consisting of κ MDSs

Extending the Overlap Graph for Gene Assembly in Ciliates 139

M3

M2

M1 M8M9M7M5M6M4

Fig. 2. The structure of the MIC gene encoding for the actin protein in sterkiella nova

It is postulated that there are three types of recombination operations that
cut-and-paste the DNA to transform the gene from the MIC form to the MAC
form. These operations are defined on pointers, so one can abstract from the
notion of MDSs by simply considering the MIC gene as a sequence of pointers
and markers, see Figure 3 corresponding to the gene in MIC form of Figure 2.
The pointers are numbered according to the MDS they represent: the pointer
on the left (right, resp.) of MDS Mi is denoted by i (i + 1, resp.). Pointers or
markers that appear inverted are indicated by a bar: hence pointers 2 and 3
corresponding to MDS M2 appear inverted and are therefore denoted by 2̄ and
3̄ respectively. In the general model the markers are irrelevant, so in that case
only the sequence of pointers is used.

5 3̄ 2̄ 982be9876576443

Fig. 3. Sequence of pointers and markers representing the gene in MIC form

3 Legal Strings with Markers

For an arbitrary finite alphabet A, we let Ā = {ā | a ∈ A} with A ∩ Ā = ∅. We
use the ‘bar operator’ to move from A to Ā and back from Ā to A. Hence, for
p ∈ A ∪ Ā, ¯̄p = p. For a string u = x1x2 · · ·xn with xi ∈ A, the inverse of u is
the string ū = x̄nx̄n−1 · · · x̄1. We denote the empty string by λ.

We fix κ ≥ 2, and define the alphabet ∆ = {2, 3, . . . , κ} and the alphabet
Π = ∆ ∪ ∆̄. The elements of Π are called pointers. For p ∈ Π , we define ‖p‖
to be p if p ∈ ∆, and p̄ if p ∈ ∆̄, i.e., ‖p‖ is the ‘unbarred’ variant of p. A legal
string is a string u ∈ Π∗ such that for each p ∈ Π that occurs in u, u contains
exactly two occurrences from {p, p̄}.

Let M = {b, e} with ∆∩{b, e} = ∅. The elements ofM are called markers. We
let Ξ = ∆ ∪ {b, e}, and let Ψ = Ξ ∪ Ξ̄. We define the morphism rm : Ψ∗ → Π∗

as follows: rm(a) = a, for all a ∈ Π , and rm(m) = λ, for all m ∈ M ∪ M̄ . We
say that a string u ∈ Ψ∗ is an extended legal string if rm(u) is a legal string and
u has one occurrence from {b, b̄} and one occurrence from {e, ē}. We fix m �∈ Ψ
and define for each q ∈M ∪ M̄ , ‖q‖ = m.

An extended legal string represents the sequence of pointers and markers of
a gene in MIC form. Hence, the extended legal string corresponding to Fig-
ure 3 is 34456756789e3̄̄2b289. The legal string corresponding to this figure is
344567567893̄2̄289 (without the markers). Legal strings are considered in the
general model since markers are irrelevant there.

140 R. Brijder and H.J. Hoogeboom

The domain of a string u ∈ Ψ∗ is dom(u) = {‖p‖ | p occurs in u}. Note that
m ∈ dom(v) for each extended legal string v. Let q ∈ dom(u) and let q1 and
q2 be the two occurrences of u with ‖q1‖ = ‖q2‖ = q. Then q is positive in u if
exactly one of q1 and q2 is in Ξ (the other is therefore in Ξ̄). Otherwise, q is
negative in u.

Example 1. String u = 24b4ē2̄ is an extended legal string since rm(u) = 2442̄ is
a legal string. The domain of u is dom(u) = {m, 2, 4}. Now, m and 2 are positive
in u, and 4 is negative in u.

Let u = x1x2 · · ·xn be an (extended) legal string with xi ∈ Ξ for 1 ≤ i ≤ n, and
let p ∈ dom(u). The p-interval of u is the substring xixi+1 · · ·xj where i and j
with i < j are such that ‖xi‖ = ‖xj‖ = p.

Next we consider graphs. A signed graph is a graph G = (V,E, σ), where V
is a finite set of vertices, E ⊆ {{x, y} | x, y ∈ V, x �= y} is a set of (undirected)
edges, and σ : V → {+,−} is a signing, and for a vertex v ∈ V , σ(v) is the
sign of v. We say that v is negative in G if σ(v) = −, and v is positive in G if
σ(v) = +. A signed directed graph is a graph G = (V,E, σ), where the set of
edges are directed E ⊆ V × V . For e = (v1, v2) ∈ E, we call v1 and v2 endpoints
of e. Also, e is an edge from v1 to v2.

4 Simple and General String Pointer Rules

Gene Assembly has been modeled using three types of string rewriting rules
on legal strings. These types of rules correspond to the types of recombination
operations that perform gene assembly. We will recall the string rewriting rules
now – together they form the string pointer reduction system, see [5,6]. The string
pointer reduction system consists of three types of reduction rules operating on
legal strings. For all p, q ∈ Π with ‖p‖ �= ‖q‖:

– the string negative rule for p is defined by snrp(u1ppu2) = u1u2,
– the string positive rule for p is defined by sprp(u1pu2p̄u3) = u1ū2u3,
– the string double rule for p, q is defined by sdrp,q(u1pu2qu3pu4qu5) =
u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over Π .
We now recall a restriction to the above defined model. The motivation for

this restricted model is that it is less involved but still general enough to allow
for the successful assembling of all known experimental obtained micronuclear
genes [4]. The restricted model, called simple gene assembly, is originally defined
on signed permutations, see [8,9]. In [3], the model is consequently defined (in
an equivalent way) as a string rewriting system – similar to the string pointer
reduction system described above for the general model. We recall it here. It
turns out that it is necessary to use extended legal strings adding symbols b and
e to legal strings.

The simple string pointer reduction system consists of three types of reduction
rules operating on extended legal strings. For all p, q ∈ Π with ‖p‖ �= ‖q‖:

Extending the Overlap Graph for Gene Assembly in Ciliates 141

– the string negative rule for p is defined by snrp(u1ppu2) = u1u2 as before,
– the simple string positive rule for p is defined by ssprp(u1pu2p̄u3) = u1ū2u3,

where |u2| = 1, and
– the simple string double rule for p, q is defined by ssdrp,q(u1pqu2pqu3) =
u1u2u3,

where u1, u2, and u3 are arbitrary (possibly empty) strings over Ψ . Note that
the string negative rule is not changed, and that the simple version of the string
positive rule requires |u2| = 1, while the simple version of the string double rule
requires u2 = u4 = λ (in the string double rule definition).

Example 2. Let u = 52̄445̄36̄26b3ē be an extended legal string. Then within the
simple string pointer reduction system only snr4 and sspr6̄ are applicable to
u. We have sspr6̄(u) = 52̄445̄32̄b3ē. Within the string pointer reduction system
also spr5 and spr2̄ are applicable to u. We will use u (in addition to a extended
legal string v, which is defined later) as a running example.

A composition ϕ = ρn · · · ρ2 ρ1 of string pointer rules ρi is a reduction of
(extended) legal string u, if ϕ is applicable to (i.e., defined on) u. A reduction
ϕ of legal string u is successful if ϕ(u) = λ, and a reduction ϕ of extended legal
string u is successful if ϕ(u) ∈ {be, eb, ēb̄, b̄ē}. A successful reduction corresponds
to the transformation using recombination operations of a gene in MIC form to
MAC form. It turns out that not every extended legal string has a successful
reduction using only simple rules – take e.g. b2342̄3̄4̄e.

Example 3. In our running example, ϕ = sspr3̄ sspr2 sspr5 snr4 sspr6̄ is a
successful reduction of u, since ϕ(u) = b̄ē. All rules in ϕ are simple.

5 Extended Overlap Graph

The general string pointer reduction system has been made more abstract by
replacing legal strings by so-called overlap graphs, and replacing string rewriting
rules by graph rewriting rules. The obtained model is called the graph pointer
reduction system. Unfortunately, this model is not fully equivalent to the string
pointer reduction system since the string negative rule is not faithfully simulated.
Also, overlap graphs are not suited for a graph model for simple gene assembly.
We propose an extension to overlap graphs that allows one to faithfully model
the string negative rule and the simple string positive rule using graphs and
graph rewriting rules. First we recall the definition of overlap graph.

Definition 1. The overlap graph for (extended) legal string u is the signed
graph (V,E, σ), where V = dom(u) and for all p, q ∈ dom(u), {p, q} ∈ E iff
q ∈ dom(p′) and p ∈ dom(q′) where p′ (q′, resp.) is the p-interval (q-interval) of
u. Finally, for p ∈ dom(u), σ(p) = + iff p is positive in u.

Example 4. Consider again extended legal string u = 52̄445̄36̄26b3ē. Then the
overlap graph Gu of u is given in Figure 4.

142 R. Brijder and H.J. Hoogeboom

m+ 3− 2+ 6+

4− 5+

Fig. 4. The overlap graph of u from Example 4

We say that p, q ∈ dom(u) overlap if there is an edge between p and q in the
overlap graph of u. We now define the extended overlap graph.

Definition 2. The extended overlap graph for (extended) legal string u is the
signed directed graph (V,E, σ), denoted by Gu, where V = dom(u) and for all
p, q ∈ dom(u), there is an edge (q, p) iff q or q̄ occurs in the p-interval of u.
Finally, for p ∈ dom(u), σ(p) = + iff p is positive in u.

Notice first that between any two (different) vertices p and q we can have the
following possibilities:

1. There is no edge between them. This corresponds to u = u1pu2pu3qu4qu5

or u = u1qu2qu3pu4pu5 for some (possibly empty) strings u1, . . . , u5 and
possibly inversions of the occurrences of p and q in u.

2. There are exactly two edges between them, which are in opposite direction.
This corresponds to the case where p and q overlap in u.

3. There is exactly one edge between them. If there is an edge from p to q, then
this corresponds to the case where u = u1qu2pu3pu4qu5 for some (possibly
empty) strings u1, . . . , u5 and possibly inversions of the occurrences of p and
q in u.

As usual, we represent two directed edges in opposite direction (corresponding
to case number two above) by one undirected edge. In the remaining we will
use this notation and consider the extended overlap graph as having two sets
of edges: undirected edges and directed edges. In general, we will call graphs
with a special vertex m and having both undirected edges and directed edges
simple marked graphs.

m+ 3− 2+ 6+

4− 5+

Fig. 5. The extended overlap graph of u from Example 5

Extending the Overlap Graph for Gene Assembly in Ciliates 143

m+ 3+ 4+

2+

Fig. 6. The extended overlap graph of v from Example 5

Example 5. Consider again extended legal string u = 52̄445̄36̄26b3ē. Then the
extended overlap graph Gu of u is given in Figure 5. Also, the extended overlap
graph of v = 4̄232̄4ē3̄b is given in Figure 6.

The undirected graph obtained by removing the directed edges is denoted by
[Gu]. This is the ‘classical’ overlap graph of u, cf. Figures 4 and 5. On the other
hand, the directed graph obtained by removing the undirected edges is denoted
by [[Gu]]. This graph represents the proper nesting of the p-intervals in the legal
string.

6 Simple Graph Rules

We will now define two types of rules for simple marked graphs γ. Each of
these rules transform simple marked graph of a certain form into another simple
marked graph. We will subsequently show that in case γ is the extended overlap
graph of a legal string, then these rules faithfully simulate the effect of the snr
and sspr rules on the underlying legal string.

Definition 3. Let γ be a simple marked graph. Let p be any vertex of γ not
equal to m.

– The graph negative rule for p, denoted by gnrp, is applicable to γ if p is
negative, there is no undirected edge e with p as an endpoint, and there is
no directed edge from a vertex to p in γ. The result is the simple marked
graph gnrp(γ) obtained from γ by removing vertex p and removing all edges
connected to p. The set of all graph negative rules is denoted by Gnr.

– The simple graph positive rule for p, denoted by sgprp, is applicable if p is
positive, there is exactly one undirected edge e with p as an endpoint, and
there is no directed edge from a vertex to p in γ. The result is the simple
marked graph sgprp(γ) obtained from γ by removing vertex p, removing all
edges connected to p, and flipping the sign of the other vertex q of e (i.e.
changing the sign of q to + if it is − and to − if it is +). The set of all simple
graph positive rules is denoted by sGpr.

These rules are called simple graph pointer rules.

Remark 1. The sgpr rule is much simpler than the gpr for ‘classical’ overlap
graphs. One does not need to compute the ‘local complement’ of the set of
adjacent vertices. Obviously, this is because the simple rule allows only a single
pointer/marker in the p-interval. �

144 R. Brijder and H.J. Hoogeboom

m+ 3− 2−

4− 5+

Fig. 7. The simple marked graph sgpr6(Gu)

Example 6. Rules gnr4 and sgpr6 are the only applicable rules on the simple
marked graph γ = Gu of Figure 5. Simple marked graph sgpr6(γ) is depicted in
Figure 7.

Similar as for strings, a composition ϕ = ρn · · · ρ2 ρ1 of graph pointer rules ρi

is a reduction of simple marked graph γ, if ϕ is applicable to (i.e., defined on) γ.
A reduction ϕ of γ is successful if ϕ(γ) is the graph having only vertex m where
m is negative. For S ⊆ {Gnr, sGpr}, we say that γ is successful in S if there is
a successful reduction of γ using only graph pointer rules from S.

Example 7. In our running example, ϕ = sgpr3 sgpr2 sgpr5 gnr4 sgpr6 is a
successful reduction of Gu.

We now show that these two types of rules faithfully simulate the string negative
rule and the simple string positive rule.

Lemma 1. Let u be a legal string and let p ∈ Π. Then snrp is applicable to u
iff gnr‖p‖ is applicable to Gu. In this case, Gsnrp(u) = gnr‖p‖(Gu).

Proof. We have snrp is applicable to u iff u = u1ppu2 for some strings u1 and
u2 iff ‖p‖ is negative in u and the ‖p‖-interval is empty iff ‖p‖ is negative in Gu

and there is no undirected edge with ‖p‖ as endpoint and there is no directed
edge to ‖p‖ iff gnr‖p‖ is applicable to Gu.

In this case, Gsnrp(u) is obtained from Gu by removing vertex ‖p‖ and the
edges connected to ‖p‖, hence Gsnrp(u) is equal to gnr‖p‖(Gu). �

u
snrp

G

snrp(u)

G

Gu

gnr‖p‖ Gsnrp(u)

Fig. 8. A commutative diagram illustrating Lemma 1

The previous lemma is illustrated as a commutative diagram in Figure 8. The
next lemma shows that a similar diagram can be made for the simple string
positive rule.

Extending the Overlap Graph for Gene Assembly in Ciliates 145

Lemma 2. Let u be a legal string and let p ∈ Π. Then ssprp is applicable to u
iff sgpr‖p‖ is applicable to Gu. In this case, Gssprp(u) = sgpr‖p‖(Gu).

Proof. We have ssprp is applicable to u iff u = u1pu2p̄u3 for some strings u1,
u2, and u3 with |u2| = 1 iff ‖p‖ is positive in u (or equivalently in Gu) and there
is exactly one undirected edge e with ‖p‖ as endpoint and there is no directed
edge with ‖p‖ as endpoint iff sgpr‖p‖ is applicable to Gu.

In this case, Gssprp(u) is obtained from Gu by removing vertex ‖p‖, removing
all edges connected to ‖p‖, and flipping the sign of the other vertex of e. Hence
Gssprp(u) is equal to sgpr‖p‖(Gu). �

Example 8. In our running example, one can easily verify that the extended
overlap graph of sspr6̄(u) = 52̄445̄32̄b3ē is equal to graph sgpr6(Gu) given in
Figure 7.

3−

m−

2− 4−

Fig. 9. The extended overlap graph of w = b234234e

One may be wondering at this point why we have not defined the simple graph
double rule. To this aim, consider extended legal string w = b234234e. Note
that ssdr2,3 and ssdr3,4 are applicable to w, but ssdr2,4 is not applicable to
w. However, this information is lost in Gw – applying the isomorphism that
interchanges vertices 2 and 3 in Gw obtains us Gw again, see Figure 9. Thus,
given only Gw it is impossible to deduce applicability of the simple graph double
rule.

To successfully define a simple graph double rule, one needs to retain informa-
tion on which pointers are next to each other, and therefore different concepts are
required. However, this concept would require that the linear representation of
the pointers in an extended legal string is retained. Hence, string representations
are more natural compared to graph representations.

The next lemma shows that simple marked graphs that are extended overlap
graphs are quite restricted in form. We will use this restriction in the next section.

Lemma 3. Let u be a legal string. Then [[Gu]] is acyclic and transitively closed.

Proof. There is a (directed) edge from p to q in [[Gu]] iff the p-interval is com-
pletely contained in the q-interval of u. A nesting relation of intervals is acyclic
and transitive. �

Remark 2. We have seen that [Gu] is the overlap graph of u. Not every graph
is an overlap graph – a characterization of which graphs are overlap graphs is
shown in [1]. Hence, both [[Gu]] and [Gu] are restricted in form compared to
graphs in general. �

146 R. Brijder and H.J. Hoogeboom

7 Characterizing Successfulness

In this section we characterize successfulness of simple marked graphs in S ⊆
{Gnr, sGpr}. First we consider the case S = {Gnr}.

Remark 3. In the general (not simple) model, which has different graph pointer
rules and is based on overlap graphs, successfulness in S has been characterized
for those S which include the graph negative rules (note that these rules are
different from the graph negative rules defined here) – the cases where S does
not contain the graph negative rules remain open. �

Theorem 1. Let γ be a simple marked graph. Then γ is successful in {Gnr} iff
each vertex of γ is negative, γ has no undirected edges, and γ is acyclic.

Proof. Since [[γ]] = γ is acyclic, there is a linear ordering (p1, p2, . . . , pn) of the
vertices of γ such that if there is an edge from pi to pj, then i < j. The result
now follows by the definition of gnr. In this case, linear ordering (p1, p2, . . . , pn)
corresponds to a successful reduction ϕ = gnrpn−1

· · · gnrp2
gnrp1

of γ. �

Using Lemma 3, more can be said if γ = Gu for some legal string u.

Corollary 1. Let γ = Gu for some legal string u. Then γ is successful in {Gnr}
iff each vertex of γ is negative and γ has no undirected edges. In this case, since
there are no overlapping pointers, γ is the transitive closure of a forest, where
edges in the forest are directed from children to their parents.

Next we turn to the case S = {Gnr, sGpr}.

Theorem 2. Let γ be a simple marked graph. Then γ is successful in {Gnr,
sGpr} iff the following conditions hold:

1. [γ] is a (undirected) forest,
2. for each vertex v of γ, the degree of v in [γ] is even iff v is negative in γ,

and
3. for each tree in the forest we can identify a root, where m is one such root,

such that the graph obtained by replacing each undirected edge e in γ by a
directed edge from the child to the parent in the tree to which e belongs, is
acyclic.

Proof. Proof sketch. It can be verified that each of both statements hold iff there
is an linear ordering L = (p1, p2, . . . , pn) of the vertices of γ such that pn = m,
and for each pi with i ∈ {1, . . . , n} the following holds:

1. if i < n, then there is at most one undirected edge between pi and another
vertex pj with j > i,

2. the number of undirected edges connected to pi is even iff pi is negative in
γ, and

3. there is no directed edge from a vertex pj to pi with j > i.

Extending the Overlap Graph for Gene Assembly in Ciliates 147

In this case, linear ordering L corresponds to a successful reduction ϕ of γ in
{Gnr, sGpr} where the graph rules are applied in the order described by L and
the vertices corresponding to roots in forest [γ] (except m) are used in gnr rules,
while the other vertices are used in sgpr rules. Hence ϕ = ρpn−1 · · · ρp2 ρp1

where ρpi is a gnr rule precisely when pi is a root. �

Example 9. Consider again extended legal string u of Example 5 with its ex-
tended overlap graph Gu given in Figure 5. Notice that [Gu] (see Figure 4) is a
forest, fulfilling condition 1) of Theorem 2. The forest consists of two trees, one of
which is the single vertex 4. Therefore, 4 is necessarily the root of the tree, and by
condition 3)m is the root of the other tree. All conditions of Theorem 2 hold, and
therefore Gu is successful in {Gnr, sGpr}. According to the proof of Theorem 2,
(6, 4, 5, 2, 3,m), (4, 6, 5, 2, 3,m), and (4, 5, 6, 2, 3,m) are the linear orderings of
the vertices that correspond to successful reductions of Gu in {Gnr, sGpr}. More-
over, in each case vertex 4 corresponds to the gnr4 rule while the other pointers
correspond to sgpr rules. Thus, e.g., ϕ = sgpr3 sgpr2 sgpr5 gnr4 sgpr6 is
a successful (graph) reduction of Gu. By Lemma 2, this in turn corresponds
to a successful (string) reduction ϕ′ of u – one can verify that we can take
ϕ′ = sspr3̄ sspr2 sspr5 snr4 sspr6̄.

The case S = {sGpr} is now an easy corollary.

Corollary 2. Let γ be a simple marked graph. Then γ is successful in {sGpr}
iff the all of the conditions of Theorem 2 hold, and moreover [γ] is a connected
graph. Or, equivalently, [γ] is a (undirected) tree.

Note that for the case S = {sGpr}, condition 3) Theorem 2 can be stated more
succinctly (since we cannot choose any root): “the graph obtained by replacing
each undirected edge in γ by a directed edge from the child to the parent in tree
[γ] with root m is acyclic”.

Example 10. Consider again extended legal string u of Example 5 with its ex-
tended overlap graph Gu given in Figure 5. Then by Corollary 2, Gu is not
successful in {sGpr}, since condition 1 is violated – [Gu] is not a tree as it has
two connected components.

Reconsider now extended legal string v of Example 5 with its extended overlap
graph Gv given in Figure 6. By Corollary 2, Gv is successful in {sGpr}. By the
proof of Theorem 2, (2, 4, 3,m) is a linear ordering of the vertices corresponding
to a successful reduction ϕ = sgpr3 sgpr4 sgpr2 of Gv. Moreover, by the proof
of Theorem 2, linear ordering (4, 2, 3,m) does not correspond to a successful
reduction of Gv (or of v).

8 Discussion

We have shown that we can partially model simple gene assembly based on
a natural extension of the well-known concept of overlap graph. The model is
partial in the sense that the simple double string rule does not have graph rule

148 R. Brijder and H.J. Hoogeboom

counterpart. Within this partial model we characterize which micronuclear genes
can be successfully assembled using 1) only graph negative rules, 2) only simple
graph positive rules, and 3) both of these types of rules. These results carry over
to the corresponding simple string pointer rules.

What remains to be found is a graph rule counterpart of the simple double
string rule. However such a counterpart would require different concepts since
the overlap graph or any natural extension does not capture the requirement
that pointers p and q (in the rule) are next to each other in the string.

References

1. Bouchet, A.: Circle graph obstructions. J. Comb. Theory, Ser. B 60(1), 107–144
(1994)

2. Brijder, R., Hoogeboom, H.J., Rozenberg, G.: Reducibility of gene patterns in cil-
iates using the breakpoint graph. Theoretical Computer Science 356, 26–45 (2006)

3. Brijder, R., Langille, M., Petre, I.: A string-based model for simple gene assembly.
In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 161–172.
Springer, Heidelberg (2007)

4. Cavalcanti, A.R.O., Clarke, T.H., Landweber, L.F.: MDS IES DB: a database
of macronuclear and micronuclear genes in spirotrichous ciliates. Nucleic Acids
Res. 33, D396–D398 (2005)

5. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Formal sys-
tems for gene assembly in ciliates. Theoretical Computer Science 292, 199–219
(2003)

6. Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells – Gene Assembly in Ciliates. Springer, Heidelberg (2004)

7. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: String and graph reduc-
tion systems for gene assembly in ciliates. Mathematical Structures in Computer
Science 12, 113–134 (2002)

8. Harju, T., Petre, I., Rozenberg, G.: Modelling Simple Operations for Gene Assem-
bly. In: Nanotechnology: Science and Computation, pp. 361–373. Springer, Heidel-
berg (2006)

9. Langille, M., Petre, I.: Simple gene assembly is deterministic. Fundam. In-
form. 73(1-2), 179–190 (2006)

10. Prescott, D.M., DuBois, M.: Internal eliminated segments (IESs) of oxytrichidae.
J. Euk. Microbiol. 43, 432–441 (1996)

Automatic Presentations for Cancellative

Semigroups

Alan J. Cain1, Graham Oliver2, Nik Ruškuc1, and Richard M. Thomas2

1 School of Mathematics and Statistics, University of St Andrews, North Haugh,
St Andrews, Fife KY16 9SS, United Kingdom

alanc@mcs.st-andrews.ac.uk, nik@mcs.st-andrews.ac.uk
2 Department of Computer Science, University of Leicester, University Road,

Leicester, LE1 7RH, United Kingdom
G.Oliver@mcs.le.ac.uk, rmt@mcs.le.ac.uk

Abstract. This paper studies FA-presentable structures and gives a
complete classification of the finitely generated FA-presentable cancella-
tive semigroups. We show that a finitely generated cancellative semigroup
is FA-presentable if and only if it is a subsemigroup of a virtually abelian
group.

1 Introduction

This paper is concerned with structures with automatic presentations. Recall
that a structure A is a tuple (A,R1, . . . , Rn) where:

– A is a set called the domain of A;
– for each i with 1 � i � n, there is an integer ri � 1 such that Ri is a subset

of Ari ; ri is called the arity of Ri.

An obvious instance of a structure is a relational database. However, there are
many other natural examples; for instance, a semigroup is a structure (S, ◦),
where ◦ has arity 3, and a group is a structure (G, ◦, e,−1), where ◦ has arity 3,
e has arity 1, and −1 has arity 2.

Khoussainov and Nerode introduced [12] the notion of FA-presentable struc-
tures (or structures with automatic presentations); see Definition 3 below. These
are interesting from a computer science perspective, in that they have some nice
algorithmic and logical properties (such as a decidable model checking problem).

One important field of research has been the attempt to classify classes of FA-
presentable structures. As any finite structure is FA-presentable, we are really
only interested in infinite structures here. In some cases this means that we have
no real examples (for example, any FA-presentable integral domain is finite [13]).
Essentially the only cases where we have a complete classification are those of:

– Boolean algebras [13];
– ordinals [5];
– finitely generated groups [17].

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 149–159, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

150 A.J. Cain et al.

For a number of further results for FA-presentable groups, see [16]; for some
necessary conditions for trees and linear orders to be FA-presentable, see [14].

As far as groups are concerned, we also have the notion of an “automatic
group” in the sense of [6]. This has been generalized to semigroups (as in
[3,18,11]). The considerable success of the theory of automatic groups was an-
other motivation to have a general notion of FA-presentable structures; see also
[19,20]. We note that a structure admitting an automatic presentation is often
called an “automatic structure”; although we will avoid that term, the reader
should be aware of the terminological clash with the different notion of an au-
tomatic structure for a group or semigroup in the sense of [6,3].

In this paper we will be particularly concerned with FA-presentable semi-
groups. When one moves from groups to semigroups, it appears that the prob-
lem becomes significantly more difficult. For example, if one has an undirected
graph Γ with vertices V and edges E, then we have a semigroup with elements
S = V ∪ {e, 0}, where we have the following products:

uv =

{
e if u, v ∈ V and {u, v} ∈ E;
0 if u, v ∈ V and {u, v} �∈ E;

ue = eu = u0 = 0u = 0 for u ∈ V ∪ {e, 0}.

Moreover, if we form the semigroup S from the graph Γ in this way, then S
is FA-presentable if and only if Γ is FA-presentable. It is known [13] that the
isomorphism problem for FA-presentable graphs is Σ1

1-complete; hence the iso-
morphism problem for FA-presentable semigroups is also Σ1

1-complete.
Given this, it seems sensible to restrict oneself to some naturally occurring

classes of semigroups. Given the classification of the FA-presentable finitely gen-
erated groups referred to above, a natural class to consider is that of the FA-
presentable finitely generated cancellative semigroups. In this paper we give a
complete classification of these structures:

Theorem 1. A finitely generated cancellative semigroup is FA-presentable if
and only if it embeds into a virtually abelian group.

We remark that there are many examples of non-cancellative finitely generated
FA-presentable semigroups. For example, it is easy to see that adjoining a zero
to a semigroup always preserves FA-presentability and destroys cancellativity. In
addition, all finite semigroups, whether cancellative or not, are FA-presentable.

2 Automatic Presentations

A semigroup is a set equipped with an associative binary operation ◦, although
the operation symbol is often suppressed, so that s ◦ t is denoted st. We recall
the idea of a “convolution mapping” which we will need throughout this paper:

Definition 1. Let L be a regular language over a finite alphabet A. Define, for
n ∈ N,

Ln = {(w1, . . . , wn) : wi ∈ L for i = 1, . . . , n}.

Automatic Presentations for Cancellative Semigroups 151

Let $ be a new symbol not in A. The mapping conv : (A∗)n → ((A ∪ {$})n)∗ is
defined as follows. Suppose

w1 = w1,1w1,2 · · ·w1,m1 , w2 = w2,1w2,2 · · ·w2,m2 , . . . , wn = wn,1wn,2 · · ·wn,mn ,

where wi,j ∈ A. Then conv(w1, . . . , wn) is defined to be

(w1,1, w2,1, . . . , wn,1)(w1,2, w2,2, . . . , wn,2) · · · (w1,m, w2,m, . . . , wn,m),

where m = max{mi : i = 1, . . . , n} and with wi,j = $ whenever j > mi.

Observe that the conv maps an n-tuple of words to a word of n-tuples. We then
have:

Definition 2. Let A be a finite alphabet, and let R ⊆ (A∗)n be a relation on
A∗. Then R is said to be regular if

{conv(w1, . . . , wn) : (w1, . . . , wn) ∈ R}

is a regular language over (A ∪ {$})n.

Having done this, we can now define the concept of an “automatic presentation”
for a structure:

Definition 3. Let S = (S,R1, . . . , Rn) be a relational structure. Let L be a
regular language over a finite alphabet A, and let φ : L → S be a surjective
mapping. Then (L, φ) is an automatic presentation for S if:

1. the relation L= = {(w1, w2) ∈ L2 : φ(w1) = φ(w2)} is regular, and
2. for each relation Ri of arity ri, the relation

LRi = {(w1, w2, . . . , wri) ∈ Lri : (φ(w1), . . . , φ(wri)) ∈ Ri}

is regular. A structure with an automatic presentation is said to be FA-
presentable.

As noted in Section 1, a semigroup can be viewed as a relational structure with
the binary operation ◦ becoming a ternary relation. The following definition
simply restates the preceding one in the special case where the structure is a
semigroup:

Definition 4. Let S be a semigroup. Let L be a regular language over a finite
alphabet A, and let φ : L → S be a surjective mapping. Then (L, φ) is an
automatic presentation for S if the relations

L= = {(w1, w2) ∈ L2 : φ(w1) = φ(w2)},
L◦ = {(w1, w2, w3) ∈ L3 : φ(w1)φ(w2) = φ(w3)}

are both regular.

152 A.J. Cain et al.

An interpretation of one structure inside another is, loosely speaking, a copy of
the former inside the latter. The following definition is restricted to an interpre-
tation of one semigroup inside another.

Definition 5. Let S and T be semigroups. Let n ∈ N. An (n-dimensional) in-
terpretation of T in S consists of the following:

– a first-order formula ψ(x1, . . . , xn), called the domain formula, which speci-
fied those n-tuples of elements of S used in the interpretation;

– a surjective map f : ψ(Sn) → T , called the co-ordinate map (where ψ(Sn)
denotes the set of n-tuples of elements of S satisfying the formula ψ);

– a first-order formula θ=(x1, . . . , xn; y1, . . . , yn) that is satisfied by

(a1, . . . , an; b1, . . . , bn)

if and only if f(a1, . . . , an) = f(b1, . . . , bn) in the semigroup T ;
– a first-order formula θ◦(x1, . . . , xn; y1, . . . , yn; z1, . . . , zn) that is satisfied by

(a1, . . . , an; b1, . . . , bn; c1, . . . , cn)

if and only if f(a1, . . . , an)f(b1, . . . , bn) = f(c1, . . . , cn) in the semigroup T .

The following result, although here stated only for semigroups, is true for struc-
tures generally:

Proposition 1 ([1, Proposition 3.13]). Let S and T be semigroups. If S has
an automatic presentation and there is an interpretation of T in S, then T has
an automatic presentation.

The fact that a tuple of elements (a1, . . . , an) of a structure S satisfies a first-
order formula θ(x1, . . . , xn) is denoted S |= θ(a1, . . . , an). We then have:

Proposition 2 ([12]). Let S be a structure with an automatic presentation. For
every first-order formula θ(x1, . . . , xn) over the structure there is an automaton
which accepts (w1, . . . , wn) if and only if S |= θ(φ(w1), . . . , φ(wn)).

(Proposition 1 is actually a consequence of Proposition 2.)
As mentioned in Section 1, a classification of the finitely generated groups with

an automatic presentation was given in [17]. For convenience, we state the result
here (along with some extra details from [17] that we will need later). Recall
that a group G is said to be virtually abelian if it has an abelian subgroup A of
finite index. If G is finitely generated, then the subgroup A is finitely generated
as well. Using the fact that any finitely generated abelian group is the direct
sum of finitely many cyclic groups, we may assume that A is of the form Zn for
some n � 0.

Theorem 2 ([17]). A finitely generated group admits an automatic presenta-
tion if and only if it is virtually abelian. In particular, a group G with a subgroup

Automatic Presentations for Cancellative Semigroups 153

Zn of index � admits an automatic presentation (L, φ), where L is the language
of words

giconv(ε1z1, . . . , εnzn),

where εi ∈ {+,−}, zi is a natural number in reverse binary notation, g1, . . . , g�

are representatives of the cosets of Zn in G, with φ : L → G being defined in the
natural way:

φ(giconv(ε1z1, . . . , εnzn)) = gi(ε1z1, . . . , εnzn).

3 Growth

In the proof of Theorem 2 above in [17], one essential ingredient was the notion
of growth:

Definition 6. Let S be a semigroup generated by a finite set X. Define δ(s) to
be the length of the shortest product of elements of X that equals s, i.e.

δ(s) = min{n ∈ N : s = x1 · · ·xn for some xi ∈ X}.

The growth function γ : N → N of S is given by

γ(n) = |{s ∈ S : δ(s) � n}|.

If the function γ is asymptotically bounded above by a polynomial function (that
is, if there exists a polynomial function β and some N ∈ N such that β(n) > γ(n)
for n > N), then S is said to have polynomial growth.

Note that whether a semigroup has polynomial growth or not is independent of
the choice of finite generating set [8]. We now have the following result:

Theorem 3. Any finitely generated semigroup admitting an automatic presen-
tation has polynomial growth.

For a proof of the Theorem 3 for finitely generated groups, see [17]; the proof
given there immediately generalizes to semigroups. We remark that polynomial
growth is dependent on the structures in question being semigroups: general alge-
bras admitting automatic presentations are only guaranteed to have exponential
growth [12, Lemma 4.5].

4 The Characterization

Recall that a semigroup S has a group of left (respectively, right) quotients G if
S embeds into G and every element of G is of the form t−1s (respectively, st−1)
for s, t ∈ S. If a semigroup S has a group of left (respectively, right) quotients,
then this group is unique up to isomorphism. For further information on groups
of left and right quotients, see [4, Section 1.10].

The following result, due to Grigorchuk, generalizes the result of Gromov [9]
that a finitely generated group of polynomial growth is virtually nilpotent (i.e.
it has a nilpotent subgroup of finite index):

154 A.J. Cain et al.

Theorem 4 ([7]). A finitely generated cancellative semigroup has polynomial
growth if and only if it has a virtually nilpotent group of left quotients.

We then have the following immediate consequence of Theorems 4 and 3:

Corollary 1. Let S be a finitely generated cancellative semigroup that admits
an automatic presentation. Then the group of left quotients of S exists and is
virtually nilpotent.

Note that the groups of left and right quotients of subsemigroups of virtually
nilpotent groups coincide (see [15] or [2, Sections 5.2–5.3]). We now have:

Proposition 3. Let S be a finitely generated cancellative semigroup that admits
an automatic presentation. Then the [necessarily virtually nilpotent] group of left
(and right) quotients of S admits an automatic presentation.

Proof. Let G be the group of left (and right) quotients of S. The strategy is to
show that G has a 2-dimensional interpretation in S.

– The domain formula is tautological: φ(x1, x2) := x1 = x1. Thus all pairs of
elements of S are used.

– The co-ordinate map is f(x1, x2) = x−1
1 x2. Since G is the group of left

quotients of S, the mapping f is surjective as required.
– The formula θ= is given by

θ=(x1, x2; y1, y2) := (∃a, b)(x1a = x2b ∧ y1a = y2b),

since

f(x1, x2) = f(y1, y2)

⇐⇒ (∃a, b)(f(x1, x2) = ab−1 ∧ f(y1, y2) = ab−1)

⇐⇒ (∃a, b)(x−1
1 x2 = ab−1 ∧ y−1

1 y2 = ab−1)
⇐⇒ (∃a, b)(x1a = x2b ∧ y1a = y2b).

– The formula θ◦ is given by

θ◦(x1, x2; y1, y2; z1, z2) :=
(∃a, b, c, d)(cx1a = dy2b ∧ cx2 = dy1 ∧ z2b = z1a),

since

f(x1, x2)f(y1, y2) = f(z1, z2)

⇐⇒ (∃a, b)(f(x1, x2)f(y1, y2) = ab−1 ∧ f(z1, z2) = ab−1)

⇐⇒ (∃a, b)(x−1
1 x2y

−1
1 y2 = ab−1 ∧ z−1

1 z2 = ab−1)

⇐⇒ (∃a, b, c, d)(c−1d = x2y
−1
1 ∧ x−1

1 c−1dy2 = ab−1 ∧ z−1
1 z2 = ab−1)

⇐⇒ (∃a, b, c, d)(cx2 = dy1 ∧ dy2b = cx1a ∧ z2b = z1a). �

We are now in a position to prove one direction of Theorem 1:

Automatic Presentations for Cancellative Semigroups 155

Proposition 4. A finitely generated cancellative semigroup admitting an auto-
matic presentation embeds into a finitely generated virtually abelian group.

Proof. Let S be a finitely generated cancellative semigroup with an automatic
presentation. By Proposition 3, its group of left quotients G has an automatic
presentation. Since S is finitely generated, G is also. Theorem 2 then shows that
G is virtually abelian. �

The other direction is provided by:

Proposition 5. Every finitely generated subsemigroup of a virtually abelian
group admits an automatic presentation.

Proof. Let G be a virtually abelian group. Let Zn be a finite-index abelian
subgroup of G. By replacing Zn by its core (the maximal normal subgroup of G
contained in Zn) if necessary, we may assume that Zn is normal in G. Let k be
the index of Zn in G. Let A be a finite alphabet representing a subset of G, and
let S be the semigroup generated by this subset. Throughout this proof, denote
by w the element of S represented by the word w over an alphabet representing a
generating set. This notational distinction is necessary to avoid confusion when
there are several representatives for the same element.

Let B = {a ∈ A : a ∈ Zn} and let C = A − B. So B consists of all letters
in A representing elements of the abelian subgroup Zn and C consists of letters
representing elements of other cosets of Zn.

Introduce a new alphabet D representing the set

{w : w ∈ C�k, w ∈ Zn}.

Notice that since the set C�k is finite, so is D. Furthermore, the semigroup S is
generated by B ∪ C ∪ D. We next observe the following lemma:

Lemma 1. Every element of the semigroup S is represented by a word over
B ∪ C ∪ D that contains at most k2 − 1 letters from C.

Proof. Let s ∈ S, and let w ∈ (B ∪ C ∪ D)+ with w = s. Then w is of the form

u0c1u1c2 · · ·um−1cmum, (1)

where each ui lies in (B ∪D)∗ and each ci in C. The aim is to show that such a
word w can be transformed into one that still represents s ∈ S but contains at
most k2 − 1 letters from C

First stage. For any word w of the form (1) and for i = 0, . . . ,m − 1, let ψw(i)
be maximal such that ci+1ui+1 · · · cmum and cψw(i)+1uψw(i)+1 · · · cmum lie in the
same coset of Zn in G. It is clear that ψw(i) is always defined and is not less
than i. Notice that since there are k distinct cosets of Zn in G, ψw(i) can take
at most k distinct values as i ranges from 0 to m − 1. Furthermore, for each i,
ci+1ui+1 · · · cψw(i)uψw(i) lies in Zn and so commutes with ui.

156 A.J. Cain et al.

Define a mapping β′ : (B ∪C ∪D)+ → (B ∪C ∪D)+ as follows: for w of the
form (1), β′(w) is defined to be

u0c1u1c2 · · · cici+1ui+1 · · · cψw(i)uψw(i)uicψw(i)+1 · · ·um−1cmum,

where i is minimal with ψw(i) �= i, and β′(w) = w if ψw(i) = i for all i. By the
remark at the end of the last paragraph, w = β′(w).

The mapping β : (B∪C∪D)+ → (B∪C∪D)+ is defined by β(w) = (β′)p(w),
where p is minimal with (β′)p(w) = (β′)p+1(w). Again, w = β(w).

So β(w) is the word obtained from w by shifting each ui rightwards to one of
at most k distinct positions between the various letters cj . Thus β(w) has the
form (1) with at most k of the words ui being non-empty.

Second stage. Define a mapping γ′ : (B ∪C ∪D)+ → (B ∪C ∪D)+ as follows: if
w ∈ (B∪C∪D)+ has a subword v ∈ C�k with v ∈ Zn, then choose the leftmost,
shortest such subword and replace it with the letter of D representing the same
element of S. (Such a letter exists by the definition of D.)

The mapping γ : (B∪C∪D)+ → (B∪C∪D)+ is defined by γ(w) = (γ′)p(w),
where p is minimal with (γ′)p(w) = (γ′)p+1(w). Since each application of γ′ that
results in a different word decreases the number of letters from C present, such
a p must exist. Observe that w = γ(w) and that γ(w) cannot contain a subword
of k letters from C, for such a string must contain a subword representing an
element of Zn.

Third stage. The final mapping δ : (B ∪ C ∪ D)+ → (B ∪ C ∪ D)+ is given
by δ(w) = (γβ)p(w), where p is minimal with (γβ)p(w) = (γβ)p+1(w). Observe
that w = δ(w). Now, δ(w) is of the form (1) with at most k words ui being
nonempty and does not contain k consecutive letters from C. So separated by
the k nonempty words ui are strings of at most k−1 letters from C. So the total
number of letters from C in δ(w) is at most (k − 1) × (k + 1) = k2 − 1. �

We now return to the proof of Proposition 5. Choose a set of representatives
g1, . . . , gk for the cosets of Zn in G. Suppose B ∪ D = {b1, . . . , bq}.

For c1, . . . , cm ∈ C with 0 � m � k2 − 1, define

Pc1···cm = {u0c1u1c2 · · ·um−1cmum : ui = b
αi,1
1 · · · bαi,q

q , αi,j ∈ N ∪ {0}}.

By Lemma 1 and the fact that the elements bj commute, every element of S is
represented by an element in at least one of the sets Pc1···cm . That is,

S =
⋃

c1,...,cm∈C
0�m�k2−1

Pc1···cm . (2)

By Theorem 2, the virtually abelian group G has an automatic presentation
(L, φ), where L is the language of words

ghconv(ε1z1, . . . , εnzn), (3)

Automatic Presentations for Cancellative Semigroups 157

where εi ∈ {+,−} and zi is a natural number in reverse binary notation. (In
L, the coset representative gh functions simply as a symbol.) The aim is now
to show that the subset of L representing elements of S is regular. To do so, it
suffices to show that the set of words in L representing elements of Pc1···cm is
regular, since (2) is a finite union.

To this end, fix c1, . . . , cm and write P for Pc1···cm . Let zi,j ∈ Zn be such that
bjci+1 · · · cm = ci+1 · · · cmzi,j . Let u0c1u1 · · · cmum ∈ P with ui = b

αi,1
1 · · · bαi,q

q .
Then

u0c1u1 · · · cmum = c1 · · · cm

m∏
i=0

q∏
j=1

z
αi,j

i,j ,

or, switching to additive notation and supposing c1 · · · cm = gh(z′1, . . . , z
′
n) and

zi,j = (zi,j,1, . . . , zi,j,n) for all i, j:

u0c1u1 · · · cmum = gh(z′1, . . . , z
′
n)

m∑
i=0

q∑
j=1

αi,j(zi,j,1, . . . , zi,j,n).

Therefore define θ(z1, . . . , zn) to be

(∃α0,1, . . . , αm,q)
(
(α0,1 � 0) ∧ . . . ∧ (αm,q � 0)

∧
(
z1 = z′1 +

m∑
i=0

m∑
j=1

αi,jzi,j,1

)
∧
(
z2 = z′2 +

m∑
i=0

m∑
j=1

αi,jzi,j,2

)
...

∧
(
zn = z′n +

m∑
i=0

m∑
j=1

αi,jzi,j,n

))
,

where αi,jzi,j,k is understood to be shorthand for

αi,j + . . . + αi,j︸ ︷︷ ︸
zi,j,k times

.

By a special case of Theorem 2, the structure (Z,+) admits an automatic
presentation (M,ψ), where M is the set of words εz, where ε ∈ {+,−} and z is
in reverse binary notation. Furthermore, it is clear that, in this presentation, the
relation � is regular. That is, (M,ψ) is an automatic presentation for (Z,+,�).

The set of words in L representing elements of P is then

{ghconv(z1, . . . , zn) : (Z,+,�) |= θ(ψ(z1), . . . , ψ(zn))}.

(Recall that gh is the representative of the coset in which c1 · · · cm lies.) By
Proposition 2, this set is a regular subset of L.

158 A.J. Cain et al.

Union together the [finitely many] regular subsets of L obtained for the various
c1, . . . , cm to see that the set LS consisting of those words in L representing
elements of S is regular. So S admits the automatic presentation (LS , φ|LS). �

Propositions 5 and 4 together yield Theorem 1.

Acknowledgements. The constructive comments of the referees were much
appreciated. Part of the work described in this paper was undertaken whilst
the fourth author was on study leave from the University of Leicester and the
support of the University in this regard is appreciated. The fourth author would
also like to thank Hilary Craig for all her help and encouragement.

References

1. Blumensath, A.: Automatic Structures (Diploma Thesis, RWTH Aachen) (1999)
2. Cain, A.J.: Presentations for Subsemigroups of Groups (Ph.D. thesis, University

of St Andrews) (2005)
3. Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Automatic semi-

groups. Theoret. Comput. Sci. 250, 365–391 (2001)
4. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Mathematical

Surveys 7, vol. 1. American Mathematical Society (1961)
5. Delhommé, C.: Automaticité des ordinaux et des graphes homogènes. C. R. Math.

Acad. Sci. Paris 339, 5–10 (2004)
6. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston,

W.P.: Word Processing in Groups. Jones & Bartlett (1992)
7. Grigorchuk, R.I.: Semigroups with cancellations of degree growth. Mat. Zametki 43,

305–319, 428 (1988) (in Russian); Grigorchuk, R. I.: Cancellative semigroups of
power growth. Math. Notes 43, 175–183 (1988) (translation in)

8. Grigorchuk, R.I.: On growth in group theory. In: Proceedings of the International
Congress of Mathematicians, Kyoto 1990, vol. I, II, pp. 325–338. Math. Soc. Japan
(1991)

9. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes
Études Sci. Publ. Math. 53, 53–78 (1981)

10. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society
Monographs 12. Oxford University Press, Oxford (1995)

11. Hudson, J.F.P.: Regular rewrite systems and automatic structures. In: Almeida,
J., Gomes, G.M.S., Silva, P.V. (eds.) Semigroups, Automata and Languages, pp.
145–152. World Scientific, Singapore (1998)

12. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

13. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness
and limitations. In: Proceedings of the 19th IEEE Symposium on Logic in Com-
puter Science, pp. 110–119. IEEE Computer Society, Los Alamitos (2004)

14. Khoussainov, B., Rubin, S., Stephan, F.: Automatic partial orders. In: Proceedings
of the 18th IEEE Symposium on Logic in Computer Science, pp. 168–177. IEEE
Computer Society, Los Alamitos (2003)

15. Neumann, B.H., Taylor, T.: Subsemigroups of nilpotent groups. Proc. Roy. Soc.
Ser. A 274, 1–4 (1963)

Automatic Presentations for Cancellative Semigroups 159

16. Nies, A.: Describing groups. Bull. Symbolic Logic 13, 305–339 (2007)
17. Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups.

In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693–704.
Springer, Heidelberg (2005)

18. Otto, F., Sattler-Klein, A., Madlener, K.: Automatic monoids versus monoids with
finite convergent presentations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379,
pp. 32–46. Springer, Heidelberg (1998)

19. Pelecq, L.: Isomorphismes et automorphismes des graphes context-free,
équationnels et automatiques. PhD Thesis, Bordeaux 1 University (1997)

20. Sénizergues, G.: Definability in weak monadic second-order logic of some infinite
graphs. In: Compton, K., Pin, J.-E., Thomas, W. (eds.) Automata Theory: Infinite
Computations, Wadern, Germany. Dagstuhl Seminar, vol. 9202, p. 16 (1992)

Induced Subshifts and Cellular Automata

Silvio Capobianco

School of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
silvio@ru.is

Abstract. Given a shift subspace over a finitely generated group, we
define the subshift induced by it on a larger group. Then we do the same
with cellular automata and, while observing that the new automaton can
model a different abstract dynamics, we remark several properties that
are shared with the old one. After that, we simulate the old automaton
inside the new one, and discuss some consequences and restrictions.

Keywords: Dynamical system, shift subspace, cellular automaton.
Mathematics Subject Classification 2000: 37B15, 68Q80.

1 Introduction

Cellular automata (briefly, CA) are presentations of global dynamics in local
terms: the phase space is made of configurations on an underlying lattice struc-
ture, and the transition function is induced by a pointwise evolution rule, which
changes the state at a node of the grid by only considering finitely many neigh-
bouring nodes. Modern CA theory employs tools from group theory, symbolic
dynamics, and topology (cf. [2,4,6]). The lattice structure is provided by a Cay-
ley graph of a finitely generated group: the “frames” of this class generalize the
“classical” hypercubic ones, allowing more complicated grid geometries. Such
broadening, however, preserves the requirement for finite neighbourhoods, and
this fact allows the definition of global evolution laws in local terms. Moreover,
the phase space can be a subshift, leaving out some configurations, but allow-
ing translations of single elements and limits of sequences. While this can be
questionable when seeing CA as computation devices, we remark how the richer
framework simplifies dealing with simulations between CA.

In this paper, we examine how subshifts and CA on a given group define other
subshifts and CA on another group, the former being a subgroup of the latter. A
lemma about mutual inclusion between images of shift subspaces via global CA
functions, showing that it is preserved either way when switching between the
smaller group and the larger one, ensures that our definitions are well posed. We
then show how several properties are transferred from the old objects to the new
ones, some even either way as well; this is of interest, because the new dynamics is
usually richer than the old one. A simulation of the original automaton into the
induced one is then explicitly constructed. This extends to the case of arbitrary,
finitely generated groups the usual embedding of d-dimensional cellular automata
into (d+ k)-dimensional ones; a consequence of this fact will be the collapse of

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 160–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Induced Subshifts and Cellular Automata 161

the hierarchy of cellular automata dynamics over free non-abelian groups. Some
remarks about sofic shifts are also made throughout the discussion.

2 Background

A dynamical system (briefly, d.s.) is a pair (X,F) where the phase space
X is compact and metrizable and the evolution function F : X → X is
continuous. If Y ⊆ X is closed (equivalently, compact) and F (Y) ⊆ Y , then
(Y, F) is a subsystem of (X,F). A morphism from a d.s. (X,F) to a d.s.
(X ′, F ′) is a continuous ϑ : X → X ′ such that ϑ ◦ F = F ′ ◦ ϑ; an embedding
is an injective morphism, a conjugacy a bijective morphism.

Let G be a group. We write H ≤ G if H is a subgroup of G. If H ≤ G
and xρy iff x−1y ∈ H , then ρ is an equivalence relation over G, whose classes
are called the left cosets of H , one of them being H itself. If J is a set of
representatives of the left cosets of H (one representative per coset) then
(j, h) �→ jh is a bijection between J × H and G. A (right) action of G over
a set X is a collection φ = {φg}g∈G ⊆ XX such that φgh(x) = φh(φg(x)) for
all g, h ∈ G, x ∈ X , and φ1G(x) = x for all x ∈ X . Observe that the φg’s are
invertible, with (φg)−1 = φ(g−1). When φ is clear from the context, φg(x) is often
written xg. Properties of functions (e.g., continuity) are extended to actions by
saying that φ has property P iff each φg has property P .

If G is a group and S ⊆ G, the subgroup generated by S is the set 〈S〉 of
all g ∈ G such that

g = s1s2 · · · sn (1)

for some n ≥ 0, with si ∈ S or s−1
i ∈ S for all i. S is a set of generators for G

if 〈S〉 = G; a group is finitely generated (briefly, f.g.) if it has a finite set of
generators (briefly, f.s.o.g.). The length of g ∈ G with respect to S is the least
n ≥ 0 such that (1) holds, and is indicated by ‖g‖S. The distance of g and h
w.r.t. S is the length dG

S (g, h) of g−1h; the disk of center g and radius R w.r.t.
S is DG

R,S(g) = {h ∈ G | dG
S (g, h) ≤ R}. In all such writings, G and/or S will be

omitted if irrelevant or clear from the context; g, if equal to 1G.
An alphabet is a finite set with two or more elements; all alphabets are given

the discrete topology. A configuration is a map c ∈ AG where A is an alphabet
and G is a f.g. group. Observe that the product topology on AG is induced by any
of the distances dS defined by putting dS(c1, c2) = 2−r, r being the minimum
length w.r.t. S of a g ∈ G s.t. c1(g) �= c2(g). The natural action σG of G over
AG is defined as

(σG
g (c))(h) = c(gh) ∀c ∈ AG ∀g, h ∈ G . (2)

Observe that σG is continuous. A closed subset X of AG that is invariant by σG

is called a shift subspace, or simply subshift. The restriction of σG to X is
again called the natural action of G over X and indicated by σG. From now on,
unless differently stated, we will write cg for σG

g (c).
Let E ⊆ G, |E| <∞. A pattern on A with support E is a map p : E → A;

we write E = supp p. A pattern p occurs in a configuration c if there exists

162 S. Capobianco

g ∈ G such that (cg)|supp p = p; p is forbidden otherwise. Given a set F of
patterns, the set of all the configurations c ∈ AG for which all the patterns in F
are forbidden is indicated as XA,G

F ; A and/or G will be omitted if irrelevant or
clear from the context. It is well known [4,6] that X is a subshift iff X = XA,G

F
for some F ; X is a shift of finite type if F can be chosen finite. A pattern p
is forbidden for X ⊆ AG if it is forbidden for all c ∈ X , i.e. (cg)|supp p �= p for all
c ∈ X , g ∈ G; if X is a subshift, this is the same as c|supp p �= p for all c ∈ X .

A map F : AG → AG is uniformly locally definable (UL-definable) if there
exist N ⊆ G, |N | <∞, and f : AN → A such that

(F (c))(g) = f
(
(cg)|N

)
(3)

for all c ∈ AG, g ∈ G; in this case, we write F = FA,G
f . Observe that any

UL-definable function F is continuous and commutes with the natural action of
G on AG; Hedlund’s theorem [4,5] states that, if X ⊆ AG is a subshift and
F : X → AG is continuous and commutes with the natural action of G over
X , then F is the restriction to X of a UL-definable function. Moreover, remark
that, if X is a subshift and F is UL-definable, then F (X) is a subshift too: if X
is of finite type, we say that F (X) is a sofic shift.

A cellular automaton (CA) with alphabet A and tessellation groupG is a
triple 〈X,N , f〉 where the support X ⊆ AG is a subshift, the neighbourhood
index N ⊆ G is finite, and the local evolution function f : AN → A satisfies
FA,G

f (X) ⊆ X ; the restriction FA of FA,G
f to X is the global evolution func-

tion, and (X,FA) is the associate dynamical system. Observe that (X,FA)
is a subsystem of (AG, FA,G

f). When speaking of bijectivity, finiteness of type,
etc. of A, we simply “confuse” it and either FA or X . A is a presentation of
(X ′, F ′) if the latter and (X,FA) are conjugate. We call CA(A,G) the class of
d.s. having a presentation as CA with alphabet A and tessellation group G.

A pattern p is a Garden of Eden (briefly, GoE) for a CA A = 〈X,N , f〉 if
it is allowed for X and forbidden for FA(X). Any CA having a GoE pattern is
nonsurjective; compactness of X and continuity of FA ensure that the vice versa
holds as well [4,7]. A is preinjective if FA(c1) �= FA(c2) for any two c1, c2 ∈ X
such that {g ∈ G | c1(g) �= c2(g)} is finite and nonempty. If G is amenable
(cf. [2,3]; Zd is amenable for all d) and X = AG, then A is surjective iff it is
preinjective [2]; this can be false [2,4] if G is not amenable or X �= AG.

3 Induced Subshifts

Let X = XA,G
F . The idea of “induced subshift” that first comes to the mind is

Definition 1. Let X = XA,G
F be a subshift, and let G ≤ Γ . The subshift induced

by X on AΓ is X ′ = XA,Γ
F .

According to Definition 1, X ′ is what we obtain instead of X by interpreting
F in the context provided by Γ instead of G. However, since different sets of
patterns can define identical subshifts, we must ensure that Definition 1 is well

Induced Subshifts and Cellular Automata 163

posed and X ′ only depends on X rather than F , i.e., XA,G
F1

= XA,G
F2

must imply
XA,Γ
F1

= XA,Γ
F2

. This actually follows from

Lemma 1. Let A be an alphabet, and let G and Γ be f.g. groups with G ≤ Γ .
For i = 1, 2, let Fi be a set of patterns on A with supports contained in G, let
Ni be a finite nonempty subset of G, and let fi : ANi → A. Then

FA,G
f1

(
XA,G
F1

)
⊆ FA,G

f2

(
XA,G
F2

)
iff FA,Γ

f1

(
XA,Γ
F1

)
⊆ FA,Γ

f2

(
XA,Γ
F2

)
.

Proof. Let J be a set of representatives of the left cosets of G in Γ such that
1G = 1Γ ∈ J . To simplify notation, we will write

Xi = XA,G
Fi

, Ξi = XA,Γ
Fi

, Fi = FA,G
fi

, Φi = FA,Γ
fi

,

so that the thesis becomes

F1(X1) ⊆ F2(X2) iff Φ1(Ξ1) ⊆ Φ2(Ξ2) .

For the “if” part, let c ∈ F1(X1), and let x1 ∈ X1 satisfy F1(x1) = c. Define
ξ1 ∈ AΓ by ξ1(jg) = x1(g) for all j ∈ J , g ∈ G: then for all j ∈ J , g ∈ G, p ∈ F1

(ξjg
1)|supp p = (xg

1)|supp p �= p ,

hence ξ1 ∈ Ξ1. Put χ = Φ1(ξ1): by hypothesis, there exists ξ2 ∈ Ξ2 such that
Φ2(ξ2) = χ, and by construction,

χ(g) = f1((ξ
g
1)|N1) = f1((x

g
1)|N1) = c(g) ∀g ∈ G .

Let x2 = (ξ2)|G: then x2 ∈ X2 by construction. But

f2((x
g
2)|N2) = f2((ξ

g
2)|N2) = χ(g) = c(g) ∀g ∈ G ,

thus c ∈ F2(X2).
For the “only if” part, let χ ∈ Φ1(Ξ1), and let ξ1 ∈ Ξ1 satisfy Φ1(ξ1) = χ.

For each j ∈ J , define x1,j ∈ AG as x1,j(g) = ξ1(jg) for all g ∈ G. It is
straightforward to check that x1,j ∈ X1 for all j ∈ J : let cj = F1(x1,j). By
hypothesis, for all j ∈ J there exists x2,j ∈ X2 such that F2(x2,j) = cj : define
ξ2 ∈ AΓ by ξ2(jg) = x2,j(g) for all j ∈ J , g ∈ G. It is straightforward to check
that ξ2 ∈ Ξ2; but for all j ∈ J , g ∈ G

f2((ξ
jg
2)|N2) = f2((x

g
2,j)|N2) = cj(g) = f1((x

g
1,j)|N1) = f1((ξ

jg
1)|N1) = χ(jg) ,

thus χ ∈ Φ2(Ξ2). �

Corollary 1. In the hypotheses of Lemma 1,

1. XA,G
F1

⊆ FA,G
f2

(XA,G
F2

) iff XA,Γ
F1

⊆ FA,Γ
f2

(XA,Γ
F2

),
2. FA,G

f1
(XA,G

F1
) ⊆ XA,G

F2
iff FA,Γ

f1
(XA,Γ

F1
) ⊆ XA,Γ

F2
, and

3. XA,G
F1

⊆ XA,G
F2

iff XA,Γ
F1

⊆ XA,Γ
F2
.

164 S. Capobianco

Proof. Consider the neighbourhood index {1G} and the local evolution function
f(1G �→ a) = a. Apply Lemma 1. �

Corollary 2. Let A be an alphabet, let G and Γ be f.g. groups with G ≤ Γ , and
let F be a set of patterns on A with supports contained in G. If XA,G

F is sofic
then XA,Γ

F is sofic.

Proof. By hypothesis, XA,G
F = F (XA,G

F ′) for some UL-definable function F and
finite set of patterns F ′. Apply points 1 and 2 of Corollary 1. �

4 Induced Cellular Automata

After having found a way to construct subshifts on large groups from subshifts
of smaller groups, we work on doing the same with cellular automata.

Definition 2. Let A = 〈X,N , f〉 be a CA with alphabet A and tessellation group
G, and let Γ be a f.g. group such that G ≤ Γ . The CA induced by A on Γ is the
cellular automaton

A′ = 〈X ′,N , f〉 , (4)

where X ′ is the subshift induced by X on AΓ .

Again, A′ is what we obtain by interpreting F , N , and f in the context provided
by Γ instead of G. Lemma 1 ensures that A′ is well defined.

In general, A′ is not conjugate to A: just consider the case Γ finite, G proper,
F = ∅. However, some important properties—notably, surjectivity—are pre-
served in the passage from the original CA to the induced one; which is not
surprising, because intuitively FA,Γ

f is going to operate “slice by slice” on AΓ ,
each “slice” being “shaped” as G. The next statement extends a result in [2]
from the case X = AG to the general case when X is an arbitrary subshift.

Theorem 1. Let A = 〈X,N , f〉 be a CA with alphabet A and tessellation group
G, let G ≤ Γ , and let A′ be the CA induced by A on Γ .

1. A is surjective iff A′ is surjective.
2. A is preinjective iff A′ is preinjective.
3. A is injective iff A′ is injective.

Proof. Let F satisfyX = XA,G
F (andX ′ = XA,Γ

F). Take J as in proof of Lemma 1.
To prove the “if” part of point 1, suppose A has a GoE pattern p. By con-

tradiction, assume that there exists χ ∈ X ′ such that FA′(χ)|supp p = p. Let c
be the restriction of χ to G. Then, since both N and supp p are subsets of G by
hypothesis,

(FA(c))(x) = f
(
(cx)|N

)
= f

(
(χx)|N

)
= (FA′ (χ))(x) = p(x)

for every x ∈ supp p: this is a contradiction.

Induced Subshifts and Cellular Automata 165

To prove the “only if” part of point 1, suppose A′ has a GoE pattern π. By
hypothesis, there exists χ ∈ X ′ such that χ|suppπ = π. For all j ∈ J define
cj ∈ AG as

cj(g) = χ(jg) ∀g ∈ G ,
and for all j ∈ J such that jG ∩ suppπ �= ∅ define the pattern pj over G as

pj(x) = π(jx) ∀x s.t. jx ∈ suppπ .

Observe that cj ∈ X for all j, and that pj = (cj)|jG∩supp π when defined. But at
least one of the patterns pj must be a GoE for A: otherwise, for all j ∈ J , either
jG ∩ suppπ = ∅, or there would exist kj ∈ X ′ such that FA(kj)|supp pj

= pj . In
this case, however, κ ∈ AΓ defined by κ(jg) = kj(g) for all j ∈ J , g ∈ G would
satisfy κ ∈ X ′ and FA′(κ)|supp π = π, against π being a GoE for A′.

For the “if” part of point 2, suppose c1, c2 ∈ X differ on all and only the
points of a finite nonempty U ⊆ G, but FA(c1) = FA(c2). For all j ∈ J , g ∈ G,
put χ1(jg) = c1(g), and set χ2(jg) as c2(g) if j = 1Γ , c1(g) otherwise. Then χ1

and χ2 belong to X ′ and differ precisely on U . Moreover, for every γ ∈ Γ , either
γ ∈ G or γN ∩ G = ∅, so either (FA′ (χi))(γ) = (FA(ci))(γ) or (FA′ (χ1))(γ) =
(FA′(χ2))(γ).

For the “only if” part of point 2, suppose A is preinjective. Let χ1, χ2 ∈ X ′

differ on all and only the points of a finite nonempty U ′ ⊆ Γ . For i ∈ {1, 2},
γ ∈ Γ , let ci,γ be the restriction of χγ

i to G: these are all in X , because a pattern
occurring in ci,γ also occurs in χi, and cannot belong to F . Let Uγ = {g ∈ G |
c1,γ(g) �= c2,γ(g)} : then |Uγ | ≤ |U | for all γ ∈ Γ , plus Uγ �= ∅ for at least one γ.
For such γ, there exists g ∈ G such that (FA(c1,γ))(g) �= (FA(c2,γ))(g) : then by
construction (FA′(χ1))(γg) �= (FA′(χ2))(γg) as well.

The proof of point 3 is straightforward to see. For the “if” part, let c1 �= c2,
FA(c1) = FA(c2), and consider χi(γ) = ci(g) iff γ = jg. For the “only if” part,
given χ1 �= χ2, consider ci,j(g) = χi(jg), and observe that FA(c1,j) �= FA(c2,j)
for at least one j ∈ J . �

Surjectivity and preinjectivity are always shared by A and A′, even when these
two properties are not equivalent. Moreover, even if A and A′ are non-conjugate,
there always exists an embedding of the former into the latter.

Lemma 2. Let A be an alphabet, and let G and Γ be f.g. groups with G ≤ Γ ;
let A = 〈X,N , f〉 be a CA with alphabet A and tessellation group G, and let
A′ = 〈X ′,N , f〉 be the CA induced by A over Γ . Let J be a set of representatives
of the left cosets of G in Γ , and let ιJ : AG → AΓ be defined by

(ιJ (c))(γ) = c(g) iff ∃j ∈ J : γ = jg . (5)

Then ιJ is an embedding of A into A′, so that

ιJ (A) = 〈ιJ (X),N , f〉 (6)

is a CA conjugate to A. In particular, CA(A,G) ⊆ CA(A,Γ).

166 S. Capobianco

Proof. First, we observe that ιJ is injective and ιJ (X) ⊆ X ′. In fact, if c1(g) �=
c2(g), then (ιJ (c1))(jg) �= (ιJ (c2))(jg) for all j ∈ J . Moreover, should a pattern
p exist such that (ιJ (c))(γx) = p(x) for all x ∈ supp p ⊆ G, by writing γ = jg
and applying (5) we would find c(gx) = p(x) for all x ∈ supp p, a contradiction.

Next, we show that ιJ is continuous. Let S be a f.s.o.g. for G, Σ a f.s.o.g. for
Γ . Let R ≥ 0, and let

ER = {g ∈ G | ∃j ∈ J | jg ∈ DΓ
R,Σ} .

Since the writings γ = jg are unique and DΓ
R,Σ is finite, ER is finite too. Let

ER ⊆ DG
r,S : if (c1)|DG

r,S
= (c2)|DG

r,S
, then (ιJ (c1))|DΓ

R,Σ
= (ιJ (c2))|DΓ

R,Σ
.

Next, we show that ιJ is a morphism of d.s. For every c ∈ AG, γ = jg ∈ Γ ,
x ∈ N we have γx ∈ jG and (ιJ (c))(γx) = (ιJ (c))(jgx) = c(gx). Thus,

((FA′ ◦ ιJ)(c))(γ) = f (ιJ (c)γ |N) = f (cg|N) = (FA(c))(g) = ((ιJ ◦ FA)(c))(γ) ,

so that FA′ ◦ ιJ = ιJ ◦FA. Moreover, FA′(ιJ (X)) = ιJ (FA(X)) ⊆ ιJ (X) because
FA(X) ⊆ X .

Finally, we observe that ιJ (X) is a subshift. In fact, ifX = XA,G
F , then ιJ(X) =

XA,Γ
F∪F ′, where

F ′ =
{
p ∈ A{j1g,j2g} | j1, j2 ∈ J, g ∈ G, j1 �= j2, p(j1g) �= p(j2g)

}
. (7)

It is straightforward that ιJ(X) ⊆ XA,Γ
F∪F ′. Let χ ∈ XA,Γ

F∪F ′: then c(g) = χ(jg) is
well defined, and χ = ιJ (c) by construction. Moreover, for every g ∈ G, p ∈ F ,
and any j ∈ G (cg)supp p = (χjg)supp p �= p, so c ∈ X and χ ∈ ιJ(X). �

Observe that, in the hypotheses of Lemma 2, we are not assuming 1Γ ∈ J .
Hence, in general, ER �⊆ DG

R,S , even if S ⊆ Σ. As a counterexample, let Γ = Z2,
G = {(x, 0) | x ∈ Z}, J = {(1, 0)} ∪ {(0, y) | y ∈ Z, y �= 0}, S = {(1, 0)},
Σ = {(1, 0), (0, 1)}: then E1 = {(0, 0), (−1, 0), (−2, 0)} �⊆ DG

1,S .
Lemma 2 says that growing the tessellation group does not shrink the class

of presentable dynamics. This is also true for growing the alphabet, and holds
up to alphabet bijections and group isomorphisms. Before proving this fact, we
state a definition, on which these and other results will be based.

Definition 3. Let X be a set, A an alphabet, G a group, φ an action of G
over X. X is discernible on A by φ if there exists a continuous function π :
X → A such that, for any two distinct x1, x2 ∈ X, there exists g ∈ G such that
π(φg(x1)) �= π(φg(x2)).

Observe, in Definition 3, the continuity requirement, which demands that π(x) =
π(y) if x, y ∈ X are “near enough”. We now state and prove the following result
from [1].

Theorem 2. Let A be an alphabet, G a f.g. group, (X,F) a d.s. The following
are equivalent:

Induced Subshifts and Cellular Automata 167

1. (X,F) ∈ CA(A,G);
2. there exists a continuous action φ of G over X such that F commutes with
φ and X is discernible on A by φ.

Proof. We start with supposing that A = 〈Y,N , f〉 is a presentation of (X,F).
Let θ : X → Y be a conjugacy from (X,F) to (Y, FA); put

φg = θ−1 ◦ σG
g ◦ θ

for all g ∈ G, and
π(x) = (θ(x))(1G) .

Remark that φ = {φg}g∈G is an action of G over X and that (θ(x))(g) =
(θ(x))g(1G) for all x and g. Continuity of φ and commutation with F are straight-
forward to verify. If x1 �= x2, then (θ(x1))(g) �= (θ(x2))(g) for some g ∈ G, thus

π(φg(x1)) = (σG
g (θ(x1)))(1G) �= (σG

g (θ(x2)))(1G) = π(φg(x2)) .

For the reverse implication, let π as in Definition 3: then τ : X → AG defined
by

(τ(x))(g) = π(φg(x))

is injective. Moreover, (τ(φg(x))(h) = π(φh(φg(x))) = π(φgh(x)) = (τ(x))(gh)
for every x ∈ X , g, h ∈ G: thus, τ ◦ φg = σG

g ◦ τ for all g ∈ G, and X ′ = τ(X) is
invariant under σG.

We now prove that τ is continuous. Let limn∈N xn = x in X : by continuity of π
and φ, limn∈N(τ(xn))(g) = (τ(x))(g) in A for all G. Since A is discrete, for each
g ∈ G there exists ng such that π(φg(xn)) = π(φg(x)) for every n > ng. Hence,
for every finite E ⊆ G, if n > nE = maxg∈E ng, then τ(xn) and τ(x) coincide on
E: this is the same as saying that limn∈N τ(xn) = τ(x) in the product topology
of AG.

Since X and AG are compact and Hausdorff,X ′ is closed in AG and a subshift,
while τ is a homeomorphism between X and X ′. Define F ′ : X ′ → X ′ by
F ′ = τ ◦ F ◦ τ−1: then (X ′, F ′) is a d.s. and τ is a conjugacy between (X,F)
and (X ′, F ′). But for every g ∈ G

φg ◦ τ−1 = (τ ◦ φg−1)−1 = (σG
g−1 ◦ τ)−1 = τ−1 ◦ σG

g ,

thus
σG

g ◦ F ′ = τ ◦ φg ◦ F ◦ τ−1 = τ ◦ F ◦ φg ◦ τ−1 = F ′ ◦ σG
g ;

hence, F ′ commutes with σG. By Hedlund’s theorem, there exist a finite N ′ ⊆ G
and a map f ′ : AN ′ → A such that (F ′(c))g = f ′ (cg|N ′) for all c ∈ X , g ∈ G:
then 〈X ′,N ′, f ′〉 is a presentation of (X,F) as a cellular automaton. �

Theorem 2 has two immediate consequences, the first one being Richardson’s
lemma [8]: if (X,F) ∈ CA(A,G) is invertible and φ is as in Theorem 2, then
it is straightforward to check that F−1 commutes with φ, so that (X,F−1) ∈
CA(A,G). The second one is

168 S. Capobianco

Lemma 3. Let A and B be alphabets, and let G and Γ be f.g. groups.

1. If |A| ≤ |B| then CA(A,G) ⊆ CA(B,G).
2. If G is isomorphic to Γ then CA(A,G) = CA(A,Γ).

Proof. To prove point 1, let ι : A → B be injective. Let (X,F) ∈ CA(A,G),
and let φ satisfy point 2 of Theorem 2, π being the discerning map. Then X is
discernible over B by φ, ι ◦ π being the discerning map.

To prove point 2, let ψ : G → Γ be a group isomorphism. Let (X,F) ∈
CA(A,G) and let φ satisfy point 2 of Theorem 2, π being the discerning map.
Define φ′ = {φ′γ}γ∈Γ as

φ′γ = φψ−1(γ) .

It is straightforward to check that φ′ is an action which commutes with F . Let
x1 �= x2: if g ∈ G is such that π(φg(x1)) �= π(φg(x2)), then π(φ′ψ(g)(x1)) �=
π(φ′ψ(g)(x2)) as well. Thus φ′ satisfies condition 2 of Theorem 2, and (X,F) ∈
CA(A,Γ). From the arbitrariness of (X,F) follows CA(A,G) ⊆ CA(A,Γ): by
swapping the roles of G and Γ and repeating the argument with ψ−1 in place of
ψ we obtain the reverse inclusion. �

Lemma 2 and Lemma 3 together yield

Theorem 3. Let A, B be alphabets and G, Γ be f.g. groups. If |A| ≤ |B| and
G is isomorphic to a subgroup of Γ , then CA(A,G) ⊆ CA(B,Γ).

Proof. Let G ∼= H ≤ Γ . Then CA(A,G) = CA(A,H) ⊆ CA(A,Γ) ⊆ CA(B,Γ).
�

Corollary 3. Let Fn be the free group on n <∞ generators. For every alphabet
A and every n > 1, CA(A,Fn) = CA(A,F2).

Proof. Follows from Theorem 3 and the fact that F2 has a free subgroup on
infinitely many generators. �

Remark that it is not possible to replace F ′ (7) with the smaller set

F ′′ =
{
p ∈ A{j1,j2} | j1, j2 ∈ J, p(j1) �= p(j2)

}
.

Indeed, for ιJ (X) to be of finite type, it would then suffice X being of finite type
and G being of finite index in Γ . Instead, we have

Theorem 4. Let Γ be the group of ordered pairs (i, k), i ∈ {0, 1}, k ∈ Z with
the product

(i1, k1)(i2, k2) = (i1 + i2 − 2i1i2, (−1)i2k1 + k2) .

Let A = {a, b}, G = {(0, k), k ∈ Z} ≤ Γ , and J = {(0, 0), (1, 0)}. Then ιJ (AG)
is not a shift of finite type.

Induced Subshifts and Cellular Automata 169

Proof. Let S = {(1, 0), (0, 1)}: it is straightforward to check that 〈S〉 = Γ .
By contradiction, assume that ιJ (AG) = XA,Γ

F with |F| < ∞; it is not re-
strictive to choose F so that supp p = DΓ

M,S for all p ∈ F . Let δ ∈ AΓ satisfy
δ(x) = b iff x = (0, 0): then δ �∈ ιJ (AG), so there must exist p ∈ F , η ∈ Γ such
that δη|supp p = p. It is straightforward to check that there exists exactly one
y ∈ DΓ

M such that p(y) = b, and that y = η−1 = (i, (−1)1−ix) if η = (i, x).
Now, for all k ∈ Z we have dΓ

S ((0, k), (1, k)) = ‖(1, 2k)‖Γ
S = 2|k|+1. This can be

checked by observing the following two facts. Firstly, (1, 2k) = (1, 0)(0, t) . . . (0, t),
with 2|k| factors (0, t), and t = 1 or t = −1 according to k > 0 or k < 0. Secondly,
multiplying (i, x) on the right by (0, 1) or (0,−1) does not change the value of i,
while multiplying (i, x) on the right by (1, 0) does not change |x|: hence, at least
one multiplication by (1, 0) and 2|k| multiplications by either (0, 1) or (0,−1) are
necessary to reach (1, 2k) from (0, 0).

For i ∈ {0, 1} let γi = (i, 2M+1). Let χ ∈ AΓ be such that χ(γ) = b iff γ = γ0
or γ = γ1: then χ ∈ ιJ(AG). However, since η−1 ∈ DΓ

M,S , for all x ∈ DΓ
M (η−1)

we have γ0ηx ∈ DΓ
2M (γ0). Hence, either x = η−1, γ0ηx = γ0, and χγ0η(x) = b;

or x �= η−1, 0 < dS(γ0, γ0ηx) ≤ 2M < 4M + 3 = dS(γ0, γ1), and χγ0η(x) = a.
Thus, (χγ0η)|supp p = p: this is a contradiction. �

Corollary 4. For cellular automata on arbitrary f.g. groups, finiteness of type
is not invariant by conjugacy. In particular, for subshifts on arbitrary f.g. groups,
finiteness of type is not a topological property.

The first statement in Corollary 4 seems to collide with Theorem 2.1.10 of [6],
stating that any two conjugate subshifts of AZ are either both of finite type
or both not of finite type. Actually, in the cited result, conjugacies are always
intended as being between shift dynamical systems, which is a much more special-
ized situation than ours. Moreover, the tessellation group is always Z, so that the
action is also the same, while we have different groups and different actions. Last
but not least, translations are UL-definable if and only if the translating factor
is central, i.e. commutes with every element in the tessellation group: thus, the
only groups where all the translations are UL-definable are the abelian groups.
On the other hand, the second statement remarks the well-known phenomenon
that homeomorphisms do not preserve finiteness of type, not even in “classical”
symbolic dynamics. For instance, the even shift (there is always an even number
of 0’s between any two 1’s) is not of finite type, but it is homeomorphic to the
Cantor set, thus also to the full shift.

Things are better for direct products.
Theorem 5. Let H and K be f.g. groups; let S be a finite set of generators for
H such that 1H �∈ S and H = 〈S〉; let Γ = H×K, G = {1H}×K, J = H×{1K}.
Let A be an alphabet and let

FS =
{
p ∈ A{(1H ,1K),(s,1K)} | s ∈ S ∪ S−1 \ {1H}, p((1H , 1K)) �= p((s, 1K))

}
.

For every set F of patterns on A with supports contained in G, ιJ(XA,G
F) =

XA,Γ
F∪FS

. In particular, if X ⊆ AG is a shift of finite type, then ιJ(X) is also a
shift of finite type.

170 S. Capobianco

Proof. First, observe that FS ⊆ F ′, where F ′ is given by (7), so that ιJ (XA,G
F) =

XA,Γ
F∪F ′ ⊆ XA,Γ

F∪FS
.

Let now χ ∈ AΓ \ ιJ (X); suppose that no p ∈ F occurs in χ. Let h1, h2 ∈ H ,
k ∈ K satisfy χ((h1, k)) �= χ((h2, k)), and let h−1

1 h2 = s1s2 · · · sN be a writing
of minimal length of the form (1). For i ∈ {0, . . . , N} let ai = χ(h1s1 . . . si, k) ;
for i ∈ {1, . . . , N} define pi : {(1H , 1K), (si, 1K)} → A by pi(1H , 1K) = ai−1

and pi(si, 1K) = ai . Since a0 �= aN , ai−1 �= ai for some i: then pi ∈ FS and
(χ(h1s1···si−1,k))|supp pi

= pi. Since χ is arbitrary, XA,Γ
F∪FS

⊆ ιJ (XA,G
F). �

Observe that G needs not to be of finite index in Γ . We conclude with

Theorem 6. Let A, G, Γ , and J be as in Lemma 2. Suppose ιJ(X) is a shift
of finite type for every shift of finite type X ⊆ AG. Then ιJ(X) is a sofic shift
for every sofic shift X ⊆ AG.

Proof. Let X = F (Y) for some shift of finite type Y ⊆ AG and UL-definable
function F : AG → AG. Let N ⊆ G, |N | < ∞, and f : AN → A be such
that (F (c))g = f(cg|N) for all c ∈ AG, g ∈ G; let A =

〈
AG,N , f

〉
and let F ′

be the global evolution function of ιJ (A). By Lemma 2, F ′ ◦ ιJ = ιJ ◦ F , so
that ιJ(X) = ιJ (F (Y)) = F ′(ιJ (Y)) is the image of a shift of finite type via a
UL-definable function. �

5 Conclusions

We have shown how to construct new shift subspaces and cellular automata
by enlarging their underlying groups; we have then remarked the properties of
old objects inherited by the new ones, while taking note of some exceptions;
finally, we have observed how enlarging the group makes the class of presentable
dynamics grow. However, there is surely much work to do; in particular, the
problem whether the reverse of Corollary 2—namely, that XA,G

F is sofic if XA,Γ
F

is—does or does not hold, has not yet, at the best of our knowledge, found a
solution. Aside of looking ourselves for the answers to such questions, our hope
is that our work can be interesting, or even useful, to researchers in the field.

Acknowledgements

The author was partially supported by the project “The Equational Logic of
Parallel Processes” (nr. 060013021) of The Icelandic Research Fund. We also
thank the anonymous referees for their many insightful suggestions.

References

1. Capobianco, S.: Structure and Invertibility in Cellular Automata. PhD thesis, Uni-
versity of Rome “La Sapienza” (2004)

2. Ceccherini-Silberstein, T.G., Mach̀ı, A., Scarabotti, F.: Amenable groups and cellu-
lar automata. Ann. Inst. Fourier, Grenoble 42, 673–685 (1999)

Induced Subshifts and Cellular Automata 171

3. de la Harpe, P.: Topics in Geometric Group Theory. Chicago Lectures in Mathe-
matics. University of Chicago Press (2000)

4. Fiorenzi, F.: Cellular automata and strongly irreducible shifts of finite type. Theor.
Comp. Sci. 299, 477–493 (2003)

5. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system.
Math. Syst. Th. 3, 320–375 (1969)

6. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cambridge
University Press, Cambridge (1995)

7. Mach́ı, A., Mignosi, F.: Garden of Eden Configurations for Cellular Automata on
Cayley Graphs on Groups. SIAM J. Disc. Math. 6, 44–56 (1993)

8. Richardson, D.: Tessellations with local transformations. J. Comp. Syst. Sci. 6, 373–
388 (1972)

Hopcroft’s Algorithm and Cyclic Automata

Giusi Castiglione, Antonio Restivo, and Marinella Sciortino

Università di Palermo, Dipartimento di Matematica e Applicazioni,
via Archirafi, 34 - 90123 Palermo, Italy
{giusi,restivo,mari}@math.unipa.it

1 Introduction

Minimization of deterministic finite automata is a largely studied problem of the
Theory of Automata and Formal Languages. It consists in finding the unique (up
to isomorphism) minimal deterministic automaton recognizing a set of words.
The first approaches to this topic can be traced back to the 1950’s with the works
of Huffman and Moore (cf. [12,15]). Over the years several methods to solve this
problem have been proposed but the most efficient algorithm in the worst case
was given by Hopcroft in [11]. Such an algorithm computes in O(n log n) the min-
imal automaton equivalent to a given automaton with n states. The Hopcroft’s
algorithm has been widely studied, described and implemented by many authors
(cf. [13,4,16,2]). In particular, in [4] the worst case of the algorithm is considered.
The authors of [4] introduce an infinite family of automata associated to circular
words. The circular words taken into account are the de Bruijn words, and, by
using the associated automata, it is shown that the complexity of the algorithm
is tight. More precisely, the Hopcroft’s algorithm has some degrees of freedom
(see Section 3) in the sense that there can be several executions of the algorithm
on a given deterministic automaton. The running time of such executions can be
different. With regard to the family of automata proposed in [4] it is shown that
there exist some “unlucky” sequences of choices that slow down the computation
to achieve the bound Ω(nlogn). However, there are also executions that run in
linear time for the same automata. The authors of [4] leave the open problem
whether there are automata on which all the executions of Hopcroft’s algorithm
do not run in linear time. In [16] the author proves that the exact worst case
(i.e. in terms of the exact number of operations) of the algorithm for unary lan-
guages is reached only for the family of automata given in [4] when a queue is
used in the implementation. He remarks that a stack implementation is more
convenient for such automata. At the same time in [16] the author conjectures
that there is a strategy for processing the stack used in the implementation such
that the minimization of all unary languages will be realized in linear time by
the Hopcroft’s algorithm.

In the present paper we provide an answer to both the above questions by
giving an infinite family of automata for which the running time is Θ(n log n),
whatever implementation strategy is used. Such automata, presented in Section
6, are obtained by developing the idea of Berstel and Carton proposed in [4].
We reach our aim by investigating, in a more general context, the connections

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 172–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Hopcroft’s Algorithm and Cyclic Automata 173

between combinatorial properties of circular words and minimality conditions of
the associated automata (see Section 4).

We show in Section 5 that, in the case of automata associated to circular
standard words, the Hopcroft’s algorithm has a unique execution. Moreover, we
prove in Section 6 that, in case of automata associated to circular Fibonacci
words, the unique execution of the Hopcroft’s algorithm runs in time Θ(n log n).
The result is obtained by the exact computation of the running time of the
algorithm, expressed in terms of the Fibonacci convolution sequence.

2 Minimization of Finite State Automata

In this section we give some basics about minimization of finite automata.
Let A = (Q,Σ, δ, q0, F) be a deterministic finite automaton (DFA) over the

finite alphabet Σ, where Q is a finite state set, δ is a transition function Q×Σ →
Q, q0 ∈ Q is the initial state and F ⊆ Q the set of final states. If C is a subset
of Q and a ∈ Σ, with δ−1

a (C) we denote the set {q ∈ Q|δ(q, a) ∈ C}.
Two finite automata are equivalent if they recognize the same language.
A DFA is minimal if it has the minimum number of states among all its equiv-

alent deterministic automata. For each regular language there exists a unique
(up to isomorphism) minimal automaton recognizing it. It is computed by using
the Nerode equivalence, as described below.

For any state p ∈ Q, it is considered the language

Lp(A) = {v ∈ Σ∗|δ(p, v) ∈ F}.

The Nerode equivalence on Q, denoted by ∼, is defined as follows: for p, q ∈ Q,
p ∼ q if Lp(A) = Lq(A).

We say that an equivalence relation ∼ defined on the set Q of the states of
A is a congruence of A if it is compatible with the transitions of A, i.e. for any
a ∈ Σ, p ∼ q implies δ(p, a) ∼ δ(q, a).
It is also known (cf. [9]) that the Nerode equivalence is the coarsest congruence
of A that saturates F , i.e. such that F is union of classes of the congruence.

The minimal automaton equivalent to a given DFA can be computed by merging
states which are equivalent w.r.t. the Nerode equivalence. Let A = (Q,Σ, δ, q0, F)
be a DFA that recognizes the languageL, andΠ = {Q1, Q2, ..., Qm} the partition
corresponding to Nerode equivalence. For q ∈ Qi, the class Qi is denoted by [q].
Then the minimal automaton that recognizes L is MA = (Q,Σ, δ, q0, F), where:

– Q = {Q1, Q2, ..., Qm}

– q0 = [q0]

– δ([q], a) = [δ(q, a)], ∀ q ∈ Q and ∀ a ∈ Σ

– F = {[q]| q ∈ F}

174 G. Castiglione, A. Restivo, and M. Sciortino

The Nerode equivalence is commonly computed by the Moore construction
(cf. [15]) as follows.

For any integer k ≥ 0, we define

Lk
p = {v ∈ Lp | |v| ≤ k}.

Then the equivalence ∼k on Q is defined as follows:

p ∼k q ⇔ Lk
p = Lk

q .

Such a relation means that in order to distinguish the two states p and q, a
word of length at least k + 1 is needed.

Theorem 1. (Moore) The Nerode equivalence is equal to ∼|Q|−2.

There exist several methods which can be used to compute the Nerode equiv-
alence in order to minimize a finite automaton A. Some of them operate by
successive refinements of a partition of the states of a given DFA (cf. [15,11]).
Moore’s algorithm compute in time O(|Σ||Q|2) the minimal automaton, the
Hopcroft’s algorithm is the most efficient in the worst case and its running time
is O(|Σ||Q| log |Q|). The Brzozowski’s method (cf. [6]) operates by reversal and
determinization repeated twice and it can be applied also to a non deterministic
finite automata. The time complexity is exponential in the worst case, but it
has good performance in practice (cf. [7]). Other methods work only for a re-
stricted class of automata, for instance for acyclic automata (cf. [17,8]) and local
automata (cf. [3]).

A taxonomy of finite automata minimization algorithms is given in [21]. Very
recently many authors have worked on experimental comparison of minimization
algorithms (cf. [19,1]).

Here we are interested in the study of the Hopcroft’s algorithm.

3 Hopcroft’s Algorithm

In 1971 Hopcroft gave an algorithm for minimizing a finite state automaton
with n states, over an alphabet Σ, in O(|Σ|n log n) time (c.f. [11]). This algo-
rithm has been widely studied and described by many authors (see for example
[10,13,14,21]) cause of the difficult to give its theoretical justification, to prove
correctness and to compute running time.

In this section we give a brief description of the Hopcroft’s algorithm.
Given an automaton A = (Q,Σ, δ, q0, F), it computes the coarsest congru-

ence that saturates F . Let us observe that the partition {F,Q \ F}, trivially,
saturates F.

Given a partition Π = {Q1, Q2, ..., Qm} of Q, we say that the pair (Qi, a),
with a ∈ Σ, splits the class Qj if δ−1

a (Qi) ∩ Qj �= ∅ and Qj � δ−1
a (Qi). In this

case the class Qj is split into Q′
j = δ−1

a (Qi) ∩ Qj and Q′′
j = Qj \ δ−1

a (Qi). Let
us note that if Π saturates F then Π \ {Qj} ∪ {Q′

j, Q
′′
j } saturates F and it is

coarser than Π . Furthermore, we have that a partition Π is a congruence if and
only if for any 1 ≤ i, j ≤ m and any a ∈ Σ, the pair (Qi, a) does not splits Qj.

Hopcroft’s Algorithm and Cyclic Automata 175

Minimization (A = (Q,Σ, δ, q0, F))
1. Π ← {F, Q \ F}
2. for all a ∈ Σ do
3. W ← {(min(F, Q \ F), a)}
4. while W
= ∅ do
5. choose and delete any (C, a) from W
6. for all B ∈ Π do
7. if B is split from (C,a) then
8. B′ ← δ−1

a (C) ∩ B
9. B′′ ← B \ δ−1

a (C)
10. Π ← Π \ {B} ∪ {B′, B′′}
11. for all b ∈ Σ do
12. if (B, b) ∈ W then
13. W ← W \ {(B, b)} ∪ {(B′, b), (B′′, b)}
14. else
15. W ← W ∪ {(min(B′, B′′), b)}

The main idea of the algorithm is the following. It starts from the partition
{F,Q \ F} and refines it by means of splitting operations until it obtains a
congruence, i.e. until no split is possible. To do that it maintains the current
partition Π and a set W ⊆ Π × Σ, called waiting set, that contains the pairs
for which it has to check whether some classes of the current partition is split.

The main loop of the algorithm takes and deletes one pair (C, a) from W and,
for each class B of Π , checks if it is split by (C, a). If it is the case, the class B
in Π is replaced by the two sets B′ and B′′ obtained from the split. For each
b ∈ Σ, if (B, b) ∈ W , it is replaced by (B′, b) and (B′′, b), otherwise the pair
(min(B′, B′′), b) is added to W (with the notation min(B′, B′′) we mean the set
with minimum cardinality between B′ and B′′). Let us observe that a class is
split by (B′, b) if and only if it is split by B′′, hence, the pair (min(B′, B′′), b)
is chosen for convenience.

We point out that the algorithm is not deterministic because the pair (C, a) to
be processed at each step is freely chosen. This implies that for each automaton
there can be many different executions that produce the same partition and, as
consequence, different running time. The most common implementations of the
set W use a FIFO strategy, but it is still unknown whether there exist more
convenient data structures. In [2] an implementation using a LIFO strategy is
given.

Another “nondeterministic” choice intervenes when a set B is split into B′

and B′′ and B is not present in W . In this case the algorithm chooses which set
B′ or B′′ to be added to W and such a choice is based on the minimal number of
states in these two sets. When both B′ and B′′ have the same number of states,
we could add indifferently B′ or B′′.

As regards the running time of the algorithm we can observe that the splitting
of classes of the partition, with respect to the pair (C, a), takes a time propor-
tional to the cardinality of the set C. Hence, the running time of the algorithm
is proportional to the sum of the cardinality of all sets processed.

176 G. Castiglione, A. Restivo, and M. Sciortino

Hopcroft proved that the running time is bounded by O(|Σ||Q| log |Q|). In
[4] the authors prove that this bound is tight, in the sense that they provide
a class of unary automata for which there exist executions of the Hopcroft’s
algorithm that run in time O(|Σ||Q| log |Q|) by using a FIFO strategy for the
implementation of W . Such a bound is reached by using a non-splitting strategy
in choosing the class to add at each step in W . Other strategy could produce
executions that run in linear time for the same automata. In [16] the author
proves that the exact worst case of the algorithm (i.e. in terms of the exact
number of states in the waiting set) for unary languages is reached when a
strategy FIFO is used and only for the family of automata given in [4]. He
remarks that a stack implementation is more convenient for such automata. In
Section 6 we present a family of unary automata representing the worst case
for the Hopcroft’s algorithm, whatever strategies for implementing W and for
choosing the class to add at each step are used.

4 Circular Words and Cyclic Automata

In this section we consider a class of automata over a unary alphabet. These
automata have a very simple structure since they are just made of a single cycle.
The final states of these automata are defined by a pattern given by a given
binary circular word.

Let A = {0, 1} be a binary alphabet and v, u be two words in A∗. We say
that v and u are conjugate if for some words z, w ∈ A∗ one has that v = zw
and u = wz. It is easy to see that conjugation is an equivalence relation. Note
that many combinatorial properties of words in A∗ can be thought as properties
of the respective conjugacy classes. So, in order to investigate some structural
properties of conjugacy classes of words, in this section we consider a conjugacy
class of words as a circular word. In particular, we denote by (w) the circular
word corresponding to all the conjugates of the word w. Circular words has been
widely studied, in particular in [5] such a notion is used in order to shed some
light onto the circular structure of Christoffel words.

A word w in A∗ is called primitive if all conjugates of its are distinct. In this
case we say that the circular word (w) is primitive. For instance, it is easy to verify
that the circular word (bcabcabca) is not primitive, while (abaab) is primitive.

We say that a word v ∈ A∗ is a factor of a circular word (w) if v is a factor of
some conjugate of w. Equivalently, a factor of (w) is a factor of ww of length not
greater that |w|. Not that, while each factor of w is also a factor of (w), there
exist circular words (w) having factors that are not factor of w. For instance, ca
is a factor of (abc) without being factor of abc.

The following proposition is a little improvement of a result proved in [5].

Proposition 1. Let w a word of length n ≥ 2. The following statements are
equivalent:
1. (w) is primitive;
2. for k = 0, . . . , n−1 the circular word (w) has at least k+1 factors of length k;
3. (w) has n factors of length n− 1.

Hopcroft’s Algorithm and Cyclic Automata 177

We can define analogously the notion of special factor of a circular binary word.
Given a circular word (w) defined over the alphabet A, we say that u is a special
factor of (w) if both u0 and u1 are factors of (w). For instance, 00 is a special
factor of (01001100) because 001 and 000 are factors.

We recall the notion of standard word. Let d1, d2, ..., dn, ... be a sequence
of natural integers, with d1 ≥ 0 and di > 0, for i = 2, ..., n, Consider the
following sequence of words {sn}n≥0 over the alphabet A: s0 = 1, s1 = 0, sn+1 =
sdn

n sn−1 for n ≥ 1. Each finite words sn in the sequence is called standard word.
It is uniquely determined by the (finite) directive sequence (d0, d1, ..., dn−1). In
the special case the directive sequence is of the form (1, 1, ..., 1, ...) we obtain the
sequence of Fibonacci words.

We say that a circular word defined over a binary alphabet A is standard if
some word in its conjugacy class is a standard word. For instance, the circular
word (baaba) is standard because the abaab is a Fibonacci word.

The following proposition, proved in [5] provides some characterization of the
standard circular words.

Proposition 2. Let w a word of length n ≥ 2. The following statements are
equivalent:

1. (w) is a standard circular word;
2. for k = 0, . . . , n− 1 the circular word (w) has exactly k+ 1 factors of length
k;

3. (w) has n− 1 factors of length n− 2 and w is primitive.

From such a proposition we can derive the following

Corollary 1. Let w be a word of length n. The circular word (w) is standard if
and only if for each k = 0, . . . , n − 2 there exists a unique special factor of (w)
of length k.

Proof. If (w) is standard then it has exactly k+1 factors of length k. In particular
each factor of length k has a unique right extension into a factor of length k+ 1
except one, which has two right extensions. Conversely, if for k = 0, . . . , n − 2
there exists a unique special factor of (w) of length k then for each k = 0, . . . , n−1
there exist exactly k + 1 factors of (w) of length k. �

Following the idea introduced in [4], we associate to a circular word (w) an
automaton Aw.

Definition 1. Let (w) be a circular word, where w = a1a2...an be a word of
length n over the binary alphabet A = {0, 1}. The cyclic automaton associated
to w, denoted by Aw, is the automaton (Q,Σ, δ, F) such that:

– Q = {1, 2, ..., n}
– Σ = {a}
– δ(i, a) = (i+ 1), ∀ i ∈ Q \ {n} and δ(n, a) = 1
– F = {i ∈ Q| ai = 1}

178 G. Castiglione, A. Restivo, and M. Sciortino

1

2

3

4

5

6

7

8

a

a a

a

a

aa

a

Fig. 1. Cyclic automaton Aw for w = 01001010

See Fig.1 for example. We do not specify the initial state because for our aim
it does not matter.

We want to observe as combinatorial properties of the word w are closed to
the properties of the state of the automaton Aw.

Remark 1. For any i ∈ Q and any k, 0 ≤ k ≤ n, the path starting from i and
having label ak corresponds to the factor aiai+1...ai+k of (w), i.e. the factor
of (w) of length k + 1 starting from the position i. From the definition of the
equivalence ∼k one has that i ∼k j if the factors of w of length k + 1 starting
from i and j, respectively, are equal.

Theorem 2. Aw is minimal iff (w) is primitive.

Proof. By the theorem of Moore, Aw is minimal if and only if each class of ∼n−2

is a singleton. By the previous remark, this corresponds to the fact that all the
factors of (w) of length n − 1 have a unique occurrence in (w). This means, by
Proposition 1, that w is primitive. �

We call cyclic standard the automaton Aw associated to a circular standard word.

5 Hopcroft’s Algorithm on Cyclic Automata

In this section we deepen the connection between the refinements strategy of the
Hopcroft’s algorithm on unary cyclic automata and the combinatorial properties
of circular words. By using such properties we analyze algorithm’s behavior with
respect to cyclic automata associated to circular standard words.

For a word u ∈ A∗, we define a subset Qu of states of Aw as the set of positions
of occurrences of the factor u in (w). Trivially, we have that Qε = Q, Q1 = F
and Q0 = Q \F . Let u be a factor of (w) such that Qu is a class of the partition
of Q. We say that Qu is a splitting subset of states if there exists v ∈ A∗ such
that Qv is a class of the partition and it splits Qu.

The following proposition establishes a close relation between the execution
of the Hopcroft’s algorithm on a cyclic automata and the notion of special factor
of a circular word.

Hopcroft’s Algorithm and Cyclic Automata 179

Proposition 3. If Qu is a splitting subset of states, then u is a prefix of a
special factor of (w).

Proof. Since Qu is a splitting subset, then there exists a binary word v such that
Qv splits Qu. It follows that there exists b ∈ {0, 1} such that some occurrences
of u are occurrences of bv, too. If |v| < |u|, then bv should be a prefix of u, so
each occurrence of u is an occurrence of bv and Qv could not split Qu. So, we
have that |u| ≤ |v|. Let us denote by z the longest word whose prefix is u and
Qu = Qz. If Qv splits Qz then there exist c ∈ {0, 1} and a word s in {0, 1}+ such
that cv = zs. Moreover the resulting sets are Qzs and Qzt where t ∈ {0, 1}+ and
t �= s. So, it follows that u is prefix of a special factor of (w). �

Corollary 2. Let Qu and Qv be classes of the partition. If Qv splits Qu and
|u| = |v| then u is a special factor of (w) and the resulting sets are Qu0 and Qu1.

The classes that appear during each execution of Hopcroft’s algorithm on cyclic
automaton Aw are all of the form Qu for some factor u of (w). Then the nodes
of the associated derivation tree are labeled with Qu.

Let us denote by Πk and Wk the partition and the waiting set at the k-th
step of the algorithm.

Proposition 4. The executions of the Hopcroft’s algorithm on a cyclic standard
automaton Aw, where (w) is a circular standard word, are uniquely determined.
In particular, at each step 1 ≤ k ≤ n − 2, Πk = {Qv|v is a factor of length k}
and |Wk| = 1.

Proof. We prove the statement by induction on k. Let us suppose that the num-
ber of occurrences of 1’s in (w) is greater than 0’s, so |Q0| < |Q1|. Let us consider
k = 1. In this case the starting partition Π1 = {Q0, Q1} and W1 = Q0. Let us
suppose now that Pk = {Qv|v is a factor of length k} and |Wk| = 1. In particu-
lar Wk containsQv where v is one of the factors of (w) of length k that were added
during the (k−1)-th step. Let u be the k-length factor of (w) such that Qv splits
Qu. Such a word exists and satisfies the equality bv = ua, for some a, b ∈ {0, 1}.
By Corollary 2, u is the unique special factor of length k. After the split the
resulting sets are Qu0 and Qu1 and for each k-length factor z �= u, there exists
b ∈ {0, 1} such that Qz = Qzb. Then Πk+1 = {Qv|v is a factor of length k + 1}
and |Wk+1| = 1. Note that whatever subset of states (Qu0 or Qu1) is included
in Wk+1, then both Qu0 and Qu1 will split the same subset at the next step. In
fact, if Qu0 splits Qt for some (k + 1)-length factor t of (w), then td = cv0, so
t = cv. It is easy to see that Qu1 splits Qt, too. Moreover the resulting sets are
equal to the ones obtained by Qu0. �

Remark 2. From Proposition 4 and its proof it follows that the execution of
the Hopcroft’s algorithm on cyclic standard automata is deterministic. Since W
contains only one element at each step, both LIFO and FIFO strategies produce
the same execution. Furthermore, if the class Qu is split in Qu0 and Qu1, the
execution does not change whatever class resulting from the split is added to the
waiting set W .

180 G. Castiglione, A. Restivo, and M. Sciortino

6 Hopcroft’s Algorithm and Fibonacci Words

In this section we recall definition of Fibonacci numbers and words and some of
its properties. Furthermore we study Hopcroft’s algorithm on automata associ-
ated to Fibonacci words and give the main result of the paper.

The infinite Fibonacci word f , over the alphabet {0, 1} is the limit of the
infinite sequence {fn}n≥0 of binary words inductively defined as f0 = 1, f1 = 0,
fn+1 = fnfn−1, n ≥ 2. Words fn are called finite Fibonacci words. We denote
by fn also each circular Fibonacci word. The numbers Fn = |fn|, for n ≥ 1, are
the Fibonacci numbers defined by the recurrence equation Fn+1 = Fn + Fn−1,
with F0 = F1 = 1.

We want to analyze the execution of cyclic automata associated to circular
Fibonacci words fn, with n ≥ 2, that we denote by Afn = (Q,Σ, δ, F). Since
finite Fibonacci words are standards words we will refer to results in Section 5.

First, we recall some combinatorial properties of finite Fibonacci words that
will be useful.
For each n > 1, with Qn

v we denote the set of states corresponding to the
positions of the occurrences of v in the circular word fn. Trivially, we have that
|Qn

0 | = Fn−1 and |Qn
1 | = Fn−2.

For each n, the circular word fn can be factorized in {0, 01} or, equivalently,
in {10, 100}. Hence, if v �= 1 is a factor of fn starting with 0 (resp. 1) then
v ∈ (0 + 01)+ (resp. (100 + 10)+). Hence, if we consider the two morphism
ϕ, ψ : Σ → Σ∗ defined as follows:

ϕ(1) = 0, ϕ(0) = 01

and
ψ(1) = 10, ψ(0) = 100

we have the following remarks.

Remark 3. For each v factor of fn−1, ϕ(v) is a factor of fn and

|Qn
ϕ(v)| = |Qn−1

v |.

Remark 4. For each v factor of fn−2, ψ(v) is a factor of fn and

|Qn
ψ(v)| = |Qn−2

v |.

Previous remarks allows us to create a correspondence between occurrences of
factors in the n-th finite Fibonacci words and occurrences of factors in the n−1-
th and n− 2-th ones. That is a useful tools to compute the running time of the
execution on Afn by using a recursive method.

Lemma 1. Let v ∈ Σ∗, for each n we have that:

– v is a special factor of fn−1 iff ϕ(v)0 is a special factor of fn.
– v is a special factor of fn−2 iff ψ(v)10 is a special factor of fn.

Hopcroft’s Algorithm and Cyclic Automata 181

Proof. If v is a special factor of fn−1 then both v0 and v1 are factors of fn−1.
Let ut consider ϕ(v)0. It is a factor of fn because equal to ϕ(v1). Furthermore,
ϕ(v0) = ϕ(v)01 and ϕ(v10) = ϕ(v)001 are factors of fn that is ϕ(v)0 is a special
factor of fn. One can analogously prove that v is a special factor of fn−2 then
ψ(v)10 is a special factor of fn. Now, let us observe that, since Fibonacci words
does not contain the factor 11, special factors of any finite Fibonacci words ends
with 0. Hence, if w is a special factors of fn, either w starts with 0 (and then
w ∈ (0+01)∗0) or w starts with 1 (and then w ∈ (10+100)∗10). In the first case
w = u0 and let v = ϕ−1(u). Since u0 is special then u01 and u00 (and necessarily
u001) exist. We have that both ϕ−1(u)0 = ϕ−1(u01) and ϕ−1(u)10 = ϕ−1(u001)
are factors of fn−1. One can proceed analogously if w starts with 1. �

For each n ≥ 2, with c(Fn) we denote the running time of the algorithm to
minimize Afn .

Proposition 5. For each n ≥ 2,

c(Fn) = c(Fn−1) + c(Fn−2) + Fn−2,

with the position c(F1) = c(F0) = 0.

Proof. The starting partition of Q is Π = {Qn
0 , Q

n
1} and the waiting set is

W = Qn
1 . Recall that, by Proposition 4, at each step k of the execution,

Pk = {Qv| v is a k-length factor of fn}

and only one class Qv, with v special factor of fn, is split in Qv0 and Qv1. Then,
at each step k, |Sk| = 1 and

Sk = {min(Qn
v0, Q

n
v1)| v is a k-length special factor of fn}.

Our aim is to compute the running time of Hopcroft’s algorithm on Afn , that
is, the sum of the sizes of the minimum classes that each time result from the
splitting. Let sp(fn) be the set of special factors of fn, L0 = sp(fn)∩ (0 + 01)∗0
and L1 = sp(fn) ∩ (10 + 100)∗10.

c(Fn) = |Qn
1 | +

∑
w∈sp(fn)

min(|Qn
w0|, |Qn

w1|) =

|Qn
1 | +

∑
w∈L0

min(|Qn
w0|, |Qn

w1|) +
∑

w∈L1

min(|Qn
w0|, |Qn

w1|) =

|Qn
1 | +

∑
ϕ(v)0∈L0

min(|Qn
ϕ(v)00|, |Qn

ϕ(v)01|) +
∑

ψ(v)10∈L1

min(|Qn
ψ(v)100|, |Qn

ψ(v)101|) =

|Qn
1 | +

∑
v∈sp(fn−1)

min(|Qn−1
v0 |, |Qn−1

v1 |) +
∑

v∈sp(fn−2)

min(|Qn−2
v0 |, |Qn−2

v1 |) =

Fn−2 + c(Fn−1) + c(Fn−2). �

182 G. Castiglione, A. Restivo, and M. Sciortino

Previous theorem states that the sequence {c(Fn)}n≥0 of running time of
Hopcroft’s algorithm on automaton associated to finite Fibonacci words is the
Fibonacci convolution sequence (sequence A001629 in [18]). It is a well-known
sequence that involves Fibonacci and Lucas numbers (sequence A000204 in [18])
indeed

c(Fn+1) =
1
5
(nLn − Fn),

Theorem 3. Hopcroft’s algorithm on cyclic automata associated to finite Fi-
bonacci words has a unique execution that runs in time Θ(|Q|log|Q|).

Proof. We know that |Q| = Fn. The n-th term of the sequence {c(Fn)}n≥0 is

c(Fn) = 1
5 ((n− 1)Fn + 2nFn−1) (cf. [20]).

The theorem follows by the relation between n and Fn, Fn = [φn
√

5
], where [x]

is the nearest integer function and φ is the golden ratio 1+
√

5
2 . In fact, one can

prove, by simple computations, that definitively we have

k

φ
FnlogFn ≤ c(Fn) ≤ kFnlogFn,

where k = 3
5logφ . �

References

1. Almeida, M., Moreira, N., Reis, R.: On the performance of automata minimization
algorithms. Technical Report DCC-2007-03, Universidade do Porto (2007)

2. Baclet, M., Pagetti, C.: Around Hopcroft’s algorithm. In: H. Ibarra, O., Yen, H.-C.
(eds.) CIAA 2006. LNCS, vol. 4094, pp. 114–125. Springer, Heidelberg (2006)

3. Béal, M.-P., Crochemore, M.: Minimizing local automata. In: ISIT 2007 (to appear,
2007)

4. Berstel, J., Carton, O.: On the complexity of Hopcroft’s state minimization algo-
rithm. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004.
LNCS, vol. 3317, pp. 35–44. Springer, Heidelberg (2005)

5. Borel, J.P., Reutenauer, C.: On Christoffel classes. RAIRO-Theoretical Informatics
and Applications 450, 15–28 (2006)

6. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for def-
inite events. Mathematical Theory of Automata

7. Champarnaud, J.-M., Khorsi, A., Paranthon, T.: Split and join for minimizing:
Brzozowskis algorithm. In: Proceedings of PSC 2002 (Prague Stringology Confer-
ence), pp. 96–104 (2002)

8. Daciuk, J., Watson, R.E., Watson, B.W.: Incremental construction of acyclic finite-
state automata and transducers. In: Finite State Methods in Natural Language
Processing, Bilkent University, Ankara, Turkey (1998)

9. Eilenberg, S.: Automata, Languages, and Machines, vol. A (1974)

10. Gries, D.: Describing an algorithm by Hopcroft. Acta Inf. 2, 97–109 (1973)

Hopcroft’s Algorithm and Cyclic Automata 183

11. Hopcroft, J.E.: An n log n algorithm for mimimizing the states in a finite automa-
ton. In: Paz, A., Kohavi, Z. (eds.) Theory of machines and computations (Proc.
Internat. Sympos. Technion, Haifa, 1971), pp. 189–196. Academic Press, New York
(1971)

12. Huffman, D.A.: The synthesis of sequencial switching circuits. J. Franklin Insti-
tute 257, 161–190 (1954)

13. Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoret.Comput. Sci. 250,
333–363 (2001)

14. Matz, O., Miller, A., Potthoff, A., Thomas, W., Valkema, E.: Report on the pro-
gram AMoRE. Technical Report 9507, Inst. f. Informatik u.Prakt. Math., CAU
Kiel (1995)

15. Moore, E.F.: Gedaken experiments on sequential machines. In: Automata Studies,
pp. 129–153 (1956)

16. Paun, A.: On the Hopcroft’s minimization algorithm. CoRR, abs/0705.1986 (2007)
17. Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor.

Comput. Sci. 92(1), 181–189 (1992)
18. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/∼njas/sequences/

19. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions

20. Vajda, S.: Fibonacci and Lucas numbers, and the golden section. Technical Report
98/183, Ellis Horwood Ltd., Chichester (1989)

21. Watson, B.: A taxonomy of finite automata minimization algorithms. Technical
Report 93/44, Eindhoven University of Technology, Faculty of Mathematics and
Computing Science (1994)

http://www.research.att.com/~njas/sequences/

Efficient Inclusion Checking for Deterministic

Tree Automata and DTDs

Jérôme Champavère, Rémi Gilleron, Aurélien Lemay, and Joachim Niehren

INRIA Futurs and Lille University, LIFL, Mostrare project

Abstract. We present a new algorithm for testing language inclusion
L(A) ⊆ L(B) between tree automata in time O(|A| ∗ |B|) where B is
deterministic. We extend this algorithm for testing inclusion between
automata for unranked trees A and deterministic DTDs D in time O(|A|∗
|Σ| ∗ |D|). No previous algorithms with these complexities exist.

1 Introduction

Language inclusion for tree automata is a basic decision problem that is closely
related to universality and equivalence [5,14,15]. Tree automata algorithms are
generally relevant for XML document processing [11,17,7,13]. Regarding inclu-
sion checking, a typical application is inverse type checking for tree transduc-
ers [10]. Another one is schema-guided query induction [4], the motivation for
the present study. There, candidate queries produced by the learning process are
to be checked for consistency with deterministic DTDs, such as for HTML.

We investigate language inclusion L(A) ⊆ L(B) for tree automata A and B
under the assumption that B is (bottom up) deterministic, not necessarily A.
Without this assumption the problem becomes DEXPTIME complete [15]. De-
terministic language inclusion still subsumes universality of deterministic tree
automata L(B) = TΣ up to a linear time reduction, as well as equivalence of
two deterministic automata L(A) = L(B). The converse might be false, i.e., we
cannot rely on polynomial time equivalence tests, as for instance, by comparing
number of solutions [14] or minimal deterministic tree automata.

In the case of standard tree automata for ranked trees, the well-known naive
algorithm for inclusion goes through complementation. It first computes an au-
tomaton Bc that recognizes the complement of the language of B, and then
checks whether the intersection automaton for Bc and A has a nonempty lan-
guage. The problematic step is to complete B before complementing its final
states, since completion might require to add rules for all possible left-hand
sides. The overall running time may thus become O(|A| ∗ |Σ| ∗ |B|n), which is
exponential in the maximal rank n of function symbols in the signature Σ.

It seems folklore that one can bound the maximal arity of a signature to 2.
This can be done by transforming ranked trees into binary trees, and then con-
verting automata for ranked trees into automata for binary trees correspondingly.
The problem is to preserve determinism in such a construction, while the size of
automata should grow at most linearly. We show how to obtain such a transfor-
mation by stepwise tree automata [3,5]. Thereby we obtain an inclusion test in

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 184–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Inclusion Checking for Deterministic Tree Automata and DTDs 185

time O(|A| ∗ |Σ| ∗ |B|2). This is still too much in practice with DTDs, where A
and B may be of size 500 and Σ of size 100.

Our first contribution is a more efficient algorithm for standard tree automata
on binary trees that verifies inclusion in time O(|A| ∗ |B|) if B is deterministic.
This bound is independent of the size of the signature, even though Σ is not fixed.
As a second contribution, we show how to test inclusion between automata A for
unranked trees and deterministic DTDs D in time O(|A|∗|Σ|∗|D|). Determinism
is required by the XML standards. Our algorithm first computes the Glushkov
automata of all regular expressions of D in time O(|Σ| ∗ |D|), which is possible
for deterministic DTDs [2]. The second step is more tedious. We would like to
transform the collection of Glushkov automata to a deterministic stepwise tree
automaton of the same size. Unfortunately, this seems difficult to achieve, since
the usual construction of [9] eliminates ε-rules on the fly, which may lead to a
quadratic blowup of the number of rules (not the number of states). We solve
this problem by introducing factorized tree automata, which use ε-transitions
for representing deterministic automata more compactly. We show how to adapt
our inclusion test to factorized tree automata and thus to DTDs.

Related Work and Outline. Heuristic algorithms for inclusion between non-
deterministic schemas that avoid the high worst-case complexity were proposed
in [16]. The complexity of inclusion for various fragments of DTDs and extended
DTDs was studied in [8]. The algorithms presented there assume the same types
of regular expressions on both sides of the inclusion test. When applied to deter-
ministic DTDs, the same complexity results may be obtainable. Our algorithm
permits richer left-hand sides.

We reduce inclusion for the ranked case to the binary case in Section 2. The
efficient algorithm for binary tree automata is given in Section 3. In Section 4,
we introduce deterministic factorized tree automata and lift the algorithm for
inclusion testing to them. Finally in Section 5, we apply them to testing inclusion
of automata for unranked trees in deterministic DTDs.

2 Standard Tree Automata for Ranked Trees

We reduce the inclusion problem of tree automata for ranked trees [5] to the
case of binary trees with a single binary function symbol.

A ranked signature Σ is a finite set of function symbols f ∈ Σ, each of which
has an arity n ≥ 0. A constant a ∈ Σ is a function symbol of arity 0. A tree
t ∈ TΣ is either a constant a ∈ Σ or a tuple f(t1, . . . , tn) consisting of a function
symbol f of arity n and n trees t1, . . . , tn ∈ TΣ .

A tree automaton (possibly with ε-rules) A over Σ consists of a finite set
s(A) of states, a subset final(A) ⊆ s(A) of final states, and a set rules(A) of
rules of the form f(p1, . . . , pn) → p or p′ ε→ p where f ∈ Σ has arity n and
p1, . . . , pn, p, p

′ ∈ s(A). We write p′ ε→A p iff p′ ε→ p ∈ rules(A), ε→
∗
A for the

reflexive transitive closure of ε→A, and ε→
≤1

A for the union of ε→A and the identity
relation on s(A).

186 J. Champavère et al.

The size |A| of A is the sum of the cardinality of s(A) and the number of
symbols in rules(A), i.e.,

∑
f(p1,...,pn)→p∈rules(A)(n + 2). The cardinality of the

signature can be ignored, since our algorithms will not take unused function
symbols into account. Every tree automaton A defines an evaluator evalA :
TΣ∪s(A) → 2s(A) such that evalA(f(t1, . . . , tn)) = {p | p1 ∈ evalA(t1), . . . , pn ∈
evalA(tn), f(p1, . . . , pn) → p′ ∈ rules(A), p′ ε→

∗
A p} and evalA(p) = {p}. A tree

t ∈ TΣ is accepted by A if final(A) ∩ evalA(t) �= ∅. The language L(A) is the set
of trees accepted by A.

A tree automaton is (bottom-up) deterministic if it has no ε-rules, and if
no two rules have the same left-hand side. It is complete if there are rules for
all potential left-hand sides. It is well-known that deterministic complete tree
automata can be complemented in linear time, by switching the final states.

We will study the inclusion problem for tree automata, whose input consists
of a ranked signature Σ, tree automata A with ε-rules and deterministic B, both
over Σ. Its output is the truth value of L(A) ⊆ L(B). We can deal with this
problem by restriction to so-called stepwise signatures Σ@, consisting of a single
binary function symbol @ and a finite set of constants a ∈ Σ. A stepwise tree
automaton [3] is a tree automaton over a stepwise signature.

Proposition 1. The above inclusion problem for ranked trees can be reduced in
linear time to the corresponding inclusion problem for stepwise tree automata
over binary trees.

We first encode ranked trees into binary trees via Currying. Given a ranked
signature Σ we define the corresponding signature Σ@ = {@} % Σ whereby all
symbols of Σ become constants. Currying is defined by a function curry : TΣ →
TΣ@ which for all trees t1, . . . , tn ∈ TΣ and f ∈ Σ satisfies:

curry(f(t1, . . . , tn)) = f@curry(t1)@ . . . @curry(tn)

For instance, f(a, g(a, b), c) is mapped to f@a@(g@a@b)@c which is infix nota-
tion with left-most parenthesis for the tree @(@(@(f, a),@(@(g, a), b)), c). Now
we encode tree automata A over Σ into stepwise tree automata step(A) over Σ@,
such that the language is preserved up to Currying, i.e., such that L(step(A)) =
curry(L(A)). The states of step(A) are the prefixes of left-hand sides of rules
in A, i.e., words in Σ(s(A))∗:

s(step(A)) = {fq1 . . . qi | f(q1, . . . , qn) → q ∈ rules(A), 0 ≤ i ≤ n} � s(A)

Its rules extend prefixes step by step by states qi according to the rule of A.
Since constants do not need to be extended, we distinguish two cases in Fig. 1.

Lemma 1. The encoding of tree automata A over Σ into stepwise tree automata
step(A) over Σ@ preserves determinism, the tree language modulo Currying, and
the automata size up to a constant factor of 3.

As a consequence, L(A) ⊆ L(B) is equivalent to L(step(A)) ⊆ L(step(B)), and
can be tested in this way modulo a linear time transformation. Most importantly,
the determinism of B carries over to step(B).

Efficient Inclusion Checking for Deterministic Tree Automata and DTDs 187

f(q1, . . . , qn) → q ∈ rules(A) 1 ≤ i < n

f → f ∈ rules(step(A))
fq1 . . . qi−1@qi → fq1 . . . qi ∈ rules(step(A))

fq1 . . . qn−1@qn → q ∈ rules(step(A))

a → q ∈ rules(A)

a → q ∈ rules(step(A))

Fig. 1. Transforming ranked tree automata into stepwise tree automata

3 Stepwise Tree Automata for Binary Trees

We present a new inclusion test that applies to stepwise tree automata over
binary trees. We first characterize inclusion into deterministic tree automata,
second, express the characterization in Datalog [6] and third, turn it into an
efficient algorithm. While the two first steps are easy, the last step is nontrivial.

Characterization of Inclusion. We call a state p ∈ s(A) accessible if there
exists a tree t such that p ∈ evalA(t). We call p co-accessible if there exists a
tree t ∈ TΣ∪{p} with a unique occurrence of p such that evalA(t) ∩ final(A) �= ∅.
A tree automaton is productive if all its states are accessible and co-accessible.
We denote the product of two automata A and B with the same signature by
A×B. The state set of A×B is s(A) × s(B). For inferring its rules, we assume
that B does not have ε-rules:

a → p ∈ rules(A)
a → q ∈ rules(B)

a → (p, q)

p1@p2 → p ∈ rules(A)
q1@q2 → q ∈ rules(B)

(p1, q1)@(p2, q2) → (p, q)

p′ ε→ p ∈ rules(A)
q ∈ s(B)

(p′, q)
ε→ (p, q)

We do not care about final states of A × B since these are useless in our char-
acterization of inclusion.

Proposition 2. Inclusion L(A) ⊆ L(B) for a productive stepwise tree automa-
ton A with ε-rules and a deterministic stepwise tree automaton B fails iff:

fail0: there exists a rule a → p ∈ rules(A) but no state q ∈ s(B) such that
a → q ∈ rules(B), or

fail1: there exist accessible states (p1, q1) and (p2, q2) of A × B and a rule
p1@p2 → p ∈ rules(A) but no state q ∈ s(B) such that q1@q2 → q ∈ rules(B),
or

fail2: some accessible state (p, q) of A×B satisfies p ∈ final(A) but q �∈ final(B).

Proof. If one of the failure conditions holds, then failure of inclusion follows from
the hypotheses that A is productive and B deterministic.

For the converse, let us consider a tree t such that t ∈ L(A) and t �∈ L(B).
There are two cases to be considered, depending on evalB(t).

(i) Assume evalB(t) = ∅. There exists a minimal subtree t′ of t such that
evalB(t′) = ∅, too. If t′ = a is a leaf then evalA(a) �= ∅, since t ∈ L(A), and
evalB(a) = ∅, thus fail0 holds. If t′ = t1@t2, then there exist p1 ∈ evalA(t1),
p2 ∈ evalA(t2) and p1@p2 → p ∈ rules(A), since t ∈ L(A). Since t′ is defined as a

188 J. Champavère et al.

(acc/1)
a → p ∈ rules(A) a → q ∈ rules(B)

acc(p, q).
(acc/2)

p′ ε→A p ∈ q ∈ s(B)

acc(p, q) :− acc(p′, q).

(acc/3)
p1@p2 → p ∈ rules(A) q1@q2 → q ∈ rules(B)

acc(p, q) :− acc(p1, q1), acc(p2, q2).

(frb)

p1@p2 → p ∈ rules(A) �q.q1@q2 → q ∈ rules(B)

frb(p2, q2) :− acc(p1, q1).
frb(p1, q1) :− acc(p2, q2).

(fail0)
a → p ∈ rules(A) �q.a → q ∈ rules(B)

fail0.

(fail1)
p ∈ s(A) q ∈ s(B)

fail1 :− acc(p, q), frb(p, q).
(fail2)

p ∈ final(A) q
∈ final(B)

fail2 :− acc(p, q).

Fig. 2. Transforming tree automata A and B into a Datalog program D1(A, B)

minimal subtree and B is deterministic, evalB(t1) = {q1}, evalB(t2) = {q2}, and
since evalB(t′) = ∅, there is no rule q1@q2 → q ∈ rules(B). This leads to fail1.

(ii) If evalB(t) �= ∅ then there exists q ∈ evalB(t); B being deterministic this
q is necessarily unique. Since t �∈ L(B), q �∈ final(B). Moreover, since t ∈ L(A),
there exists p ∈ evalA(t) ∩ final(A). This leads to fail2. �

Testing the Characterization. The following efficiency theorem for ground
Datalog will be fundamental to all what follows. Given a Datalog program P
(without negation), we write lfp(P) for its least fixed point semantics.

Theorem 1 (Efficiency of Ground Datalog [6]). For every ground Datalog
program P , the least fixed point semantics lfp(P) can be computed in linear time
O(|P |) where the size |P | is the number of symbols in P .

This result holds even without any bound on the arity of the relation symbols
of P , which will be very useful later on. If relation symbols of higher arities are
used, the number of their arguments is accounted for by the size of P .

Fig. 2 presents a Datalog program D1(A,B) that verifies the characterization
of L(A) ⊆ L(B) in Proposition 2. Transformation rules (acc/1), (acc/2), and
(acc/3) define clauses for accessibility in A×B through predicate acc. The clauses
produced by transformation rule (frb) define forbidden states of A×B through
predicate frb. These are states that lead to fail1 when accessed. Transformation
rules (fail0), (fail1), and (fail2) define clauses for failures. The characterization
of inclusion from Proposition 2 is captured in the following sense:

Proposition 3. Let A and B be stepwise tree automata for binary trees. If A
is productive and B deterministic then:

L(A) ⊆ L(B) ⇔ lfp(D1(A,B)) ∩ {fail0, fail1, fail2} = ∅

The sum of the sizes of the clauses defined by transformation rules (acc/1),
(acc/2), (acc/3), (fail0), (fail1), and (fail2) is O(|A| ∗ |B|). The sizes of the clauses

Efficient Inclusion Checking for Deterministic Tree Automata and DTDs 189

(frbc
/2)

p1@p2 → p ∈ rules(A) q1 ∈ s(B) Q2 = {q2 | q1@q2 → q ∈ rules(B)}
frbc(p2, Q2) :− acc(p1, q1).

(frbc
/1)

p1@p2 → p ∈ rules(A) q2 ∈ s(B) Q1 = {q1 | q1@q2 → q ∈ rules(B)}
frbc(p1, Q1) :− acc(p2, q2).

Fig. 3. Grouping (frb) transformations

defined by transformation rule (frb) sum up to O(|A| ∗ |s(B)|2). The overall size
of the ground Datalog program D1(A,B) is O(|A| ∗ (|B|+ |s(B)|2)), which may
be O(|A| ∗ |B|2) in the worst case. Therefore, using Theorem 1, inclusion can be
decided in time O(|A| ∗ |B|2).

Efficient Algorithm. This running time is not better than that of the naive
algorithm. The square factor is due to the computation of forbidden states for
capturing fail1. Since (frb) rules cannot be inferred efficiently enough with a
Datalog program, we introduce a new predicate frbc that will group (frb) rules.
Using an appropriate data structure, the frb predicates can be induced efficiently
from frbc. The semantics of the latter is given below:

A, B |= frbc(p, Q) ⇔ ∀q ∈ s(B) \ Q, A, B |= frb(p, q)

Formally, we impose an order < on s(B) and consider frbc(p, {q1, . . . , qn}) as
(n + 1)-ary literals frbc(p, qi1 , . . . , qin) such that {qi1 , . . . , qin} = {q1, . . . , qn}
and qi1 < . . . < qin .

In Fig. 3, we propose two transformations (frbc
/1) and (frbc

/2) for inferring frbc

clauses, both of which group (frb) transformations. Note that for every state p,
there may be several sets Q such that frbc(p,Q) gets inferred. Therefore, we will
have to test efficiently whether a state belongs to the union of complements of
those state sets. This will be further detailed.

Let us consider the transformation of tree automata A and B into a ground
Datalog program D2(A,B) defined by transformation rules (acc/1), (acc/2),
(acc/3), (frbc

/1), (frbc
/2), (fail0), and (fail2). The clauses producing acc, fail0, and

fail2 of D1(A,B) and D2(A,B) are identical and their number is in O(|A|∗|B|).

p1@p2 → p ∈ rules(A)

q1@q1
2 → q1 ∈ rules(B)

...
q1@qn

2 → qn ∈ rules(B)

⎫⎪⎬⎪⎭ all the rules for q1

frbc(p2, {q1
2 , . . . , qn

2 }) :− acc(p1, q1).
acc(p, q1) :− acc(p1, q1), acc(p2, q

1
2).

...
acc(p, qn) :− acc(p1, q1), acc(p2, q

n
2).

Fig. 4. Rewriting grouping rules for complexity analysis of (frbc
/2) clauses

190 J. Champavère et al.

The number of frbc clauses introduced by rule (frbc
/1) is in O(|A|∗ |s(B)|) but the

size of each such clause is n + 1 which in the worst case could be |s(B)|+ 1, and
symmetrically for (frbc

/2). The overall size of all frbc clauses, however, is bounded
by the overall number of acc clauses, which in turn is bounded by O(|A| ∗ |B|),
too! To see this, we can rewrite (frbc

/2) as shown in Fig. 4, such that the corre-
sponding (acc/3) clauses are inferred simultaneously (and these don’t overlap).
Therefore the overall size of D2(A,B) is in O(|A| ∗ |B|).

Inclusion Test. First it computes lfp(D2(A,B)) in time O(|A|∗|B|). If fail0 or
fail2 belong to lfp(D2(A,B)) then inclusion does not hold, so false is returned.
Otherwise, we test for fail1 in a second step, by checking for all states acc(p, q) ∈
lfp(D2(A,B)) whether there is a frbc(p,Q) ∈ lfp(D2(A,B)) such that q ∈ s(B) \
Q. If so, false is returned, otherwise true.

0 q1 q2 q3 q4 q5 . . .
p 2 0 1 2 1 0 . . .

Fig. 5. Data structure bad state.
Here, it has been set up frbc(p,
{q2, q3}) and frbc(p, {q3, q4}). Wh-
en frbc(p, {q2, q3}) is set up,
bad state(p)(0), bad state(p)(q2)
and bad state(p)(q3) are incre-
mented. We have for instance
frb(p, q4) since bad state(p)(q4) = 1
is lower than bad state(p)(0) = 2.
In fact, the only not forbidden state
is (p, q3) because q3 belongs to the
intersection of {q2, q3} and {q3, q4}.

We have to prove that the second step
can be done in time O(|A| ∗ |B|). For every
state p ∈ s(A), there are some state sets
Q1, . . . , Qm such that for 1 ≤ j ≤ m,
frbc(p,Qj) ∈ lfp(D2(A,B)) and we have to
check efficiently whether some state q is in⋃j=m

j=1 s(B) \ Qj. For this, we define a data
structure bad states(p) as an array T of
size |s(B)| + 1. Counters are indexed by el-
ements in s(B) and one counter is indexed
by 0. All counter values are set to 0 initially.
The initialization of all bad states(p) can
be done in O(|s(A)| ∗ |s(B)|). For every
p and every Qj such that frbc(p,Qj) ∈
lfp(D2(A,B)), counter T [0] is incremented by 1 and counter T [q] is incremented
by 1 for all q ∈ Qj, which can be done in time O(|Qj |). As the overall size of frbc

clauses in lfp(D2(A,B)) is in O(|A| ∗ |B|), the computation of all bad states(p)
can be done in time O(|A| ∗ |B|).

It remains to test for all states acc(p, q) ∈ lfp(D2(A,B)) whether there ex-
ists a frbc(p,Q) ∈ lfp(D2(A,B)) such that q ∈ s(B) \ Q. This is done by
checking whether T [q] < T [0] in bad states(p) (see, e.g., Fig. 5). Indeed, if
{Q | frbc(p,Q) ∈ lfp(D2(A,B))} = {Q1, . . . , Qm} then bad states(p) is defined
such that T [q] = T [0] iff q ∈

⋂j=m
j=1 Qj , thus T [q] < T [0] iff q ∈

⋃j=m
j=1 s(B) \ Qj .

Each such test costs O(1) so the overall time is bounded by O(|A| ∗ |B|).
This concludes the inclusion test for stepwise tree automata, for productive

A and deterministic B. Every tree automaton can be made productive in linear
time. Higher arities can be reduced to 2 by Proposition 1. This yields:

Theorem 2. Let A and B be standard tree automata for ranked trees of some
signature Σ possibly with ε-rules. If B is deterministic, inclusion L(A) ⊆ L(B)
can be decided in time O(|A| ∗ |B|) independently of the size of Σ.

Efficient Inclusion Checking for Deterministic Tree Automata and DTDs 191

4 Factorized Tree Automata

We next relax the determinism assumption on B in a controlled manner, that
will be crucial to deal with DTDs. We replace B by deterministic factorized
automata, that we introduce. These are automata with ε-rules, that represent
deterministic automata in a compact manner.

Definition 1. A factorized tree automaton F over a stepwise signature Σ is a
stepwise tree automaton with ε-rules and a partition s(F) = s1(F) % s2(F) such
that if q1@q2 → q in rules(F) then q1 ∈ s1(F) and q2 ∈ s2(F).

We say that q is of sort i in F if q ∈ si(F). The sort determines which states
may be used in the i-th position of the binary symbol @ in rules of F .

Every factorized automaton F defines a tree automaton ta(F) without ε-rules
that recognizes the same language. Both automata have the same signature and
states; the rules of ta(F) are inferred as follows from those of F :

(E1)
a → q ∈ rules(F)

a → q ∈ rules(ta(F))
(E2)

q1
ε→∗

F r1 q2
ε→∗

F r2 r1@r2 → q ∈ rules(F)

q1@q2 → q ∈ rules(ta(F))

We set final(ta(F)) = {q | q ε→
∗
F r, r ∈ final(F)}. Note that the size of ta(F) may

be O(|rules(F)| ∗ |s(F)|2) which is cubic in that of F in the worst case. Besides
their succinctness, the truly interesting bit about factorized tree automata is
their notion of determinism.

Definition 2. A factorized tree automaton F is (bottom-up) deterministic if:

d0: the ε-free part of F is (bottom-up) deterministic;
d1: for all q ∈ s(F) and sorts i ∈ {1, 2}, there is at most one state r of sort i

such that q
ε→
∗
F r.

Nonredundant ε-rules must change the sort: if q
ε→F r for two states of the same

sort then r = q by d1 and q
ε→
∗
F q. A similar argument shows that all proper

chains of ε-rules are redundant so that ε→
∗
F is equal to ε→

≤1

F .

Proposition 4. The tree automaton ta(F) represented by a deterministic fac-
torized tree automaton F is deterministic.

Proof. Let B = ta(F) which by construction is free of ε-rules. For every constant
a ∈ Σ, the uniqueness of q such that a → q ∈ rules(B) follows from d0. For every
q1@q2 → q in rules(B) we have to show that q is uniquely determined by q1 and
q2. By d1 there is at most one state r1 of sort 1 such that q1

ε→
∗
F r1 at most one

r2 of sort 2 such that q2
ε→
∗
F r2. Condition d0 implies that there exists at most

one state q such that r1@r2 → q ∈ rules(F). �

We fix a stepwise tree automaton A and a deterministic factorized tree automa-
ton F , and let us B = ta(F). We now show how to test language inclusion

192 J. Champavère et al.

(acc/3a)
p1@p2 → p ∈ rules(A) q1@q2 → q ∈ rules(F)

acc(p, q) :− f.acc(p1, q1), f.acc(p2, q2).
(f.acc)

p ∈ s(A) q
ε→≤1

F r

f.acc(p, r) :− acc(p, q).

(f.frbc
2)

p1@p2 → p ∈ rules(A) q1 ∈ s1(F)

f.frbc
2(p2, Q

F
2 (q1)) :− f.acc(p1, q1).

(f.frbc
1)

p1@p2 → p ∈ rules(A) q2 ∈ s2(F)

f.frbc
1(p1, Q

F
1 (q2)) :− f.acc(p2, q2).

(frbc
2)

p1@p2 → p ∈ rules(A) q1 ∈ s(F)

frbc
2(p2, R

F
2) :− acc(p1, q1).

(frbc
1)

p1@p2 → p ∈ rules(A) q2 ∈ s(F)

frbc
1(p1, R

F
1) :− acc(p2, q2).

(frbc
/1a)

p1@p2 → p ∈ rules(A) q2
∈ RF
2

frbc(p1, ∅) :− acc(p2, q2).
(frbc

/2a)
p1@p2 → p ∈ rules(A) q1
∈ RF

1

frbc(p2, ∅) :− acc(p1, q1).

(fail2a)
p ∈ final(A) ∀r. q

ε→≤1

F r ⇒ r
∈ final(F)

fail2 :− acc(p, q).

The clauses from (acc/1), (acc/2) and (fail0) in D2(A,F) belong to D3(A,F), too. We
use sets of states QF

2 (q1) = {q′ | q1@q′ → q′′ ∈ rules(F)}, QF
1 (q2) symmetrically, and

sets of states reaching a sort RF
i = {q | ∃r ∈ si(F). q

ε→≤1

F r}.

Fig. 6. Inferring clauses of Datalog program D3(A,F) simulating D2(A, B)

L(A) ⊆ L(B) from A and F without computing B. This is done by the ground
Datalog program D3(A,F) of Fig. 6.

We need new predicates for properties of F in order to infer corresponding
properties of B. The accessibility predicate f.acc for F subsumes the accessibility
predicate acc for B. Subsumption may by proper as stated by the rule (f.acc) of
D3(A,F). Vice versa, we infer accessibility in F from accessibility in B according
to the rule (acc/3a). Rules (acc/1) and (acc/2) of D2(A,F) remain valid for
accessibility in B, too.

Lemma 2. acc(p, q) ∈ lfp(D3(A,F)) iff acc(p, q) ∈ lfp(D2(A,B))

We need to refine predicate frb into predicates frb1 and frb2 that take sorts into
account, and corresponding predicates f.frb1 and f.frb2 in the factorized case.
Their semantics can be defined as follows, where A,B are tree automata and F
is a factorized tree automaton. The semantics of frb1 and f.frb1 are symmetric.

A,B |= frb2(p2, q2)⇔ ∃p, p1, q1. A,B |= acc(p1, q1), p1@p2 → p ∈ rules(A), q2 /∈ QB2 (q1)
A,F |= f.frb2(p2, r2)⇔ ∃p, p1, r1. A, F |= f.acc(p1, r1), p1@p2 → p ∈ rules(A), r2 /∈ QF2 (r1)

The relation to the previous predicate frb is that A,B |= frb(p, q) if and only if
A,B |= frb1(p, q) ∨ frb2(p, q).

The Datalog program D3(A,F) infers for sorts i ∈ {1, 2} literals with predi-
cates f.frbc

i that are to be understood by grouping of f.frbi literals, and similarly
frbc

i by grouping of frbi. These grouping mechanisms account for sorts, since
complementation is with respect to sorts.

Efficient Inclusion Checking for Deterministic Tree Automata and DTDs 193

A,F |= f.frbc
i (p, Q) ⇔ ∀q ∈ si(F) \ Q. A, F |= f.frbi(p, q)

A,F |= frbc
i (p, Q) ⇔ ∀q ∈ si(F) \ Q. A, F |= frbi(p, q)

The clauses produced by (f.frbc
i) and (frbc

i) are sound with respect to this
semantics for deterministic F ’s. This is easier to see for (f.frbc

i) than for (frbc
i).

We prove it by the next lemma. For states p, q, r and sorts i ∈ {1, 2} we define:

A, B � frbi(p, q) iff ∃Q ⊆ s(B) \ {q}. frbc(p, Q) ∈ lfp(D2(A, B)) via (frbc
/i)

A, F � f.frbi(p, r) iff ∃R ⊆ s(F) \ {r}. f.frbc
i (p, R) ∈ lfp(D3(A, F))

A, F � frbi(p, r) iff ∃R ⊆ s(F) \ {r}. frbc
i (p,R) ∈ lfp(D3(A, F))

or frbc(p, ∅) ∈ lfp(D3(A,F)) via (frbc
/ia)

Lemma 3 (Core). A,B � frbi(p, q) iff A,F � frbi(p, q) or the unique state r

of sort i with q
ε→≤1

F r exists and satisfies A,F � f.frbi(p, r).

Since the size of D3(A,F) is in O(|A| ∗ |F |) we can compute the set of all
f.frbc

1(p,R) and f.frbc
2(p,R) literals in lfp(D3(A,F)) in time O(|A| ∗ |F |). It re-

mains to infer the induced literals f.frbi(p, r) literals in an efficient manner.
Computing all A,F � f.frbi(p, r) from lfp(D3(A,F)) can be done by the same
clever algorithm as before for deducing all A,B � frb(p, q) given lfp(D2(A,B)).
Note, however, that we now need two different data structures for the two sorts.

Theorem 3. For a stepwise tree automaton with ε-rules A and a deterministic
factorized tree automaton F over the same signature, inclusion L(A) ⊆ L(F)
can be decided in time O(|A| ∗ |F |).

5 Automata for Unranked Trees and DTDs

We lift our results to deterministic tree automata for unranked trees possibly
with factorization, so that they become applicable to deterministic DTDs.

An unranked signature Σ is a finite set of symbols (without arity restric-
tions). The set T u

Σ of unranked trees over Σ is the least set that contains all
pairs a(t1, . . . , tn) where a ∈ Σ and (t1, . . . , tn) is a possibly empty sequence of
unranked trees in T u

Σ . Currying carries over literally from ranked to unranked
trees. This yields a bijection curry : T u

Σ → TΣ@ . Thus, we can reuse stepwise
tree automata to recognize languages of unranked trees, and as before, we can
factorize them. So, as a corollary of Theorem 3 we have:

Corollary 2. For a stepwise tree automaton for unranked trees A and a deter-
ministic factorized tree automaton for unranked trees F over the same signa-
ture Σ, L(A) ⊆ L(F) can be decided in time O(|A| ∗ |F |) independently of |Σ|.

Note that hedge automata [5] can be translated in linear time to stepwise tree
automata with ε-rules [9]. The automata of [12] support factorization, too. We
finally show how to convert deterministic DTDs D to deterministic factorized
tree automata in time O(|Σ|∗|D|), so that we can reuse our algorithm for testing
inclusion in deterministic DTDs. Factorization avoids the quadratic blowup from
translating hedge to stepwise automata [9].

194 J. Champavère et al.

< !ELEMENT doc (b lock+)>
< !ELEMENT block (text , (l ink , t e x t ?)?

| l ink , t e x t ?)>
< !ELEMENT t e x t (#PCDATA)>
< !ELEMENT l i n k (#PCDATA)>

block

doc
block

block
text text

text

link

link

text

link
1 2

3
4 5 6

7 8

9

10

Fig. 7. An example DTD and the corresponding Glushkov automata

A DTD D with elements in a set Σ is a function mapping letters a ∈ Σ
to regular expressions e over Σ, what we write a →D e in this case. One of
these elements is the distinguished start symbol. The language La(D) ⊆ T u

Σ of
elements a of a DTD D is the smallest set of unranked trees such that:

La(D) = {a(t1, . . . , tn) | a →D e, a1 . . . an ∈ L(e), ti ∈ Lai(D) for 1 ≤ i ≤ n}

The language of a DTD D is L(D) = La(D) where a is the start symbol of D.
The size of D is the total number of symbols in the regular expressions of D.
An example in XML syntax is given in Fig. 7. The set of elements of D is
Σ = {doc, block, text, link}, of which the element doc is the start symbol.
The regular expression for #PCDATA recognizes only the empty word.

A DTD is deterministic if all its regular expressions are one-unambiguous [2].
This is equivalent to say that all corresponding Glushkov automata are deter-
ministic, which is a requirement by the W3C. See Fig. 7 for the example.

Theorem 4 (Brüggemann-Klein [1]). The collection of Glushkov automata
for a deterministic DTD D over Σ can be computed in time O(|Σ| ∗ |D|).

1

2

doc

block

doc

3

4 5 6

7

text

8

block

link

block

block

text

text

textlink

link

9 text

10 link
ε-transitions

Fig. 8. The deterministic factorized tree au-
tomaton for the DTD in Fig. 7

We transforma collection ofGlushkov
automata for a deterministic DTD D
into a single factorized tree automa-
ton F as follows. The set of states
of sort 1 of F is the disjoint union of
the states of the Glushkov automata.
The states of sort 2 of F are the el-
ements of D. For every element a,
we connect all final states q of its
Glushkov automaton to the state a,
i.e., q

ε→ a ∈ rules(F). The only fi-
nal state of F is the start symbol of
the DTD D. The result is a finite au-
tomaton, that represents a factorized
tree automaton, as for instance in Fig. 8. This needs time of at most O(|Σ|∗|D|).
Note that the size of the example automaton would grow quadratically, when
eliminating ε-edges. For every a ∈ Σ, there is a → q ∈ rules(F) for the unique
initial state q of the Glushkov automaton of a. For every transition q

a→ q′ of
one of the Glushkov automata, we add a rule q@a → q′ ∈ rules(F).

Efficient Inclusion Checking for Deterministic Tree Automata and DTDs 195

Note that F is deterministic as a factorized automaton. The ε-free part of
F is deterministic since all Glushkov automata are: d0. Let q be a state of the
Glushkov automaton for some letter a. The only state of sort 1 q can reach by
ε-edges is a and the only state of sort 2 is q itself. All other states of F are
elements of a ∈ Σ, which have no outgoing ε-edges: d1.

Theorem 5. Deterministic DTDs D over Σ can be translated to deterministic
factorized tree automata that recognize the same language in time O(|Σ| ∗ |D|).
Corollary 3. Language inclusion of hedge automata A over Σ in deterministic
DTDs D with elements in Σ can be decided in time O(|A| ∗ |Σ| ∗ |D|).

References

1. Brüggemann-Klein, A.: Regular expressions to finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

2. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182–206 (1998)

3. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–118.
Springer, Heidelberg (2004)

4. Champavère, J., Gilleron, R., Lemay, A., Niehren, J.: Towards schema-guided XML
query induction. In: ICML CAGI Workshop (2007)

5. Comon, H., et al.: Tree automata techniques and applications (2007),
http://tata.gforge.inria.fr

6. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM computing surveys 33(3), 374–425 (2001)

7. Maneth, S., Berlea, A., Perst, T., Seidl, H.: XML type checking with macro tree
transducers. In: 24th PODS, pp. 283–294 (2005)

8. Martens, W., Neven, F., Schwentick, T.: Complexity and decision problems for
XML Schemas and chain regular expressions. Journal extension of MFCS 2004
(2008)

9. Martens, W., Niehren, J.: On the minimization of XML schemas and tree automata
for unranked trees. J. of Comp. and Sys. Sci. 73(4), 550–583 (2007)

10. Milo, T., Suciu, D., Vianu, V.: Type checking XML transformers. J. of Comp. and
Sys. Sci. 1(66), 66–97 (2003)

11. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,
V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 134–145. Springer,
Heidelberg (1998)

12. Raeymaekers, S.: Information Extraction from Web Pages Based on Tree Automata
Induction. PhD thesis, Katholieke Universiteit Leuven (2008)

13. Schwentick, T.: Automata for XML—a survey. J. of Comp. and Sys. Sci. 73(3),
289–315 (2007)

14. Seidl, H.: Deciding equivalence of finite tree automata. SIAM Journal on Comput-
ing 19(3), 424–437 (1990)

15. Seidl, H.: Haskell overloading is DEXPTIME-complete. Information Processing
Letters 52(2), 57–60 (1994)

16. Tozawa, A., Hagiya, M.: XML schema containment checking based on semi-implicit
techniques. In: Int. Conf. on Impl. and Appl. of Automata (2003)

17. Dal Zilio, S., Lugiez, D.: XML schema, tree logic and sheaves automata. In: RTA
2003. LNCS, vol. 2706, pp. 246–263. Springer, Heidelberg (2003)

http://tata.gforge.inria.fr

Consensual Definition of Languages by Regular Sets�

Stefano Crespi Reghizzi and Pierluigi San Pietro

Dipartimento di Elettronica e Informazione, Politecnico di Milano
P.za Leonardo da Vinci 32, I–20133 Milano

crespi@elet.polimi.it,
sanpietr@elet.polimi.it

Abstract. A new language definition model is introduced and investigated, based
on agreement or consensus between similar strings. Considering a regular set of
strings over a bipartite alphabet made by pairs of unmarked/marked symbols, a
match relation is introduced, in order to specify when such strings agree. Then
a regular set over the bipartite alphabet can be interpreted as defining another
language over the unmarked alphabet, called the consensual language. A string
is in the consensual languages if a set of corresponding matching strings is in
the original language. The family defined by this approach includes the regular
languages and also interesting non-semilinear languages. The word problem can
be solved in polynomial time, using a multi-counter machine. Closure properties
of consensual languages are proved for intersection with regular sets and inverse
alphabetical homomorphism.

1 Introduction

An ever present, common sense idea in language modelling research is that, for a string
to to be a valid phrase, it should comply with several constraints at once. Theories
of grammar have taken various approaches for expressing the constraints by different
mechanisms, such as by superimposing semantic constraints to syntactic ones, or by us-
ing intersections of, say, context-free languages. Here we propose a very simple novel
mechanism, where the constraints are expressed by an elementary character by charac-
ter agreement between strings belonging to a regular language. The alphabet is bipartite,
made by pairs of unmarked/marked characters. The agreement is formalized by a k-ary
relation, called match, that is satisfied by a set of k equally long strings if, in each posi-
tion, exactly one string has an unmarked character and the other strings have the same
character but marked. In our metaphor we view such strings as providing consensus on
the validity of the corresponding unmarked string. This justifies the name “consensual”
proposed for the new family, which strictly includes the regular one.

Here some reader may prefer to jump to the definition (Def. 1, 2 and 3) of consensual
language before reading the next discussion of the position of the new model from the
perspective of language theory.

With respect to their storage, language recognition devices can be classified as using
tapes (Turing machines, push-down machines, nested push-down machines) or coun-
ters. The latter case includes various models of counter machines and also Petri Nets.
� Partially supported by PRIN 2005015419, FIRB “Applicazioni della Teoria degli Automi

all’Analisi, Compilazione e Verifica di Software Critico e in Tempo Reale”, and CNR-IEIIT.

C. Martı́n-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 196–208, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Consensual Definition of Languages by Regular Sets 197

Consensual languages are recognized by real-time non-deterministic multi counter ma-
chines with a linear bound on the counter values.

Considering the complexity of the word recognition problem, consensual languages
belong to the polynomial time class.

With respect to generative capacity, the new family shares little ground with the
families of context-free and mildly context-sensitive [6] languages. For instance, the
Dyck language over two letters can be defined but not the language of palindromes.
On the other hand interesting non-semilinear languages (in the Parikh sense [5]) can be
easily defined.

Next we compare the computation performed by a consensual recognizer versus a
finite non-deterministic alternating automaton [1]. Although both machines perform si-
multaneous computations for recognizing a given string, they apply entirely different
acceptance criteria. All possible computations must be successful for a string to be
recognized by an alternating machine when using universal non-determinism, and their
number may be exponential with respect to the string length. On a consensual device,
the computations performed on the finite automaton, which can be assumed to be deter-
ministic, are not labelled by the input string (except in the trivial case when the language
is regular) but by matching strings over the marked/unmarked alphabet. The number of
computations is bounded by the input length.

Recalling that certain Petri net language families [2] include non-semilinear lan-
guages and that their recognizers use counters, a vague resemblance between the two
models may be mentioned. In fact C.A. Petri introduced his nets as a formal model of
synchronization between computations performed by finite automata and our model too
specifies a matching rule between the labels of different computations.

Notwithstanding the fact that the proposed approach has little to do with any classical
model we know, we hope its simplicity and expressivity may attract some attention.

The paper is organized as follows. Section 2 lists the basic definitions, and provides
an example giving evidence of the strict inclusion of regular languages. Section 3 shows
the Parikh image may be not linear, and proves some closure properties. Section 4
presents the construction of a counter machine as recognizer. Then it shows that the
word recognition problem is polynomial in time, and that the languages of palindromes
and replicas exceed the power of consensual languages. The conclusion mentions some
directions of continuation.

2 First Definitions

Let Σ be an alphabet called terminal, and let Σ be the disjoint alphabet obtained by
marking each symbol a ∈ Σ as a, referred to as the marked copy of a. The set Σ ∪ Σ
is called internal alphabet.
The empty string is denoted by the letter ε. Given a string x, its length is denoted by |x|
and the i-th character is x(i), 1 ≤ i ≤ |x|.

A deterministic finite automaton DFA over the internal alphabet is specified as A =
(Σ ∪ Σ,Q, δ, q1, F) where Q is the state set, δ : Q × (Σ ∪Σ)∗ → Q is the state-
transition function, q1 is the initial state, and F is the set of final states. For conve-
nience, the setQ is considered to be ordered: q1, q2, . . . q|Q|, with the first state q1 being

198 S. Crespi Reghizzi and P. San Pietro

the initial state. Furthermore, to simplify some proofs, the transition function δ is al-
ways assumed to be total. Hence, δ(q1, y) is defined for every string y over the internal
alphabet.

Definition 1. The partial, symmetrical, and associative binary operator, called match

@ : (Σ ∪Σ) × (Σ ∪Σ) → (Σ ∪Σ)

is defined as follows, for all a ∈ Σ:

a@a = a@a = a
a@a = a

in every other case = undefined

The operator can be naturally extended to strings of equal length, by assuming ε@ε = ε.
For any strings w,w′ ∈ (Σ ∪Σ)∗, |w| = |w′|, for every a, b ∈ Σ ∪Σ

aw@bw′ = (a@b)(w@w′)

where we assume the match yields precedence to concatenation.

Since the operation is associative and symmetrical, for any number m > 1 of compo-
nent strings w1, w2, . . . , wm we may write w1@w2@ . . .@wm without parentheses and
in any order.

The numberm is called the breadth of the match.
Ifw1@w2@ . . .@wm is defined, then the stringsw1, w2, . . . , wm are said to (weakly)

match; furthermore, if w1@w2@ . . .@wm ∈ Σ∗, they are said to strongly match.
Notice the match is undefined on strings w,w′ of unequal lengths, or else if there

exists a position i such that w(i)@w′(i) is undefined. The latter condition occurs in
three cases: when both characters are in Σ, when both are in Σ and differ, and when
either one is marked but is not the marked copy of the other.

Next we extend the match operator to languages over the internal alphabet. For two
languages, L′, L′′ ⊆ (Σ ∪Σ)∗:

L′@L′′ = {w′@w′′ | w′ ∈ L′, w′′ ∈ L′′}

Proposition 1. If L′, L′′ ⊆ (Σ ∪Σ)∗ are regular then L′@L′′ is also regular.

Proof. Let A′ = (Σ ∪ Σ,Q′, δ′, q′1, F
′), A′′ = (Σ ∪ Σ,Q′′, δ′′, q′′1 , F

′′) be two DFA
for L′, L′′, respectively. LetA′@A′′ be the (possibly nondeterministic) finite automaton
(Σ ∪ Σ,Q′ × Q′′, δ, (q′1, q

′′
1), F ′ × F ′′), with δ : (Q′ × Q′′) × (Σ ∪ Σ) → 2Q′×Q′′

such that for every q′, p′ ∈ Q′, q′′, p′′ ∈ Q′′, for every a ∈ Σ:

〈p′, p′′〉 ∈ δ(〈q′, q′′〉, a) if p′ = δ′(q′, a), p′′ = δ′′(q′′, a)
〈p′, p′′〉 ∈ δ(〈q′, q′′〉, a) if p′ = δ′(q′, a), p′′ = δ′′(q′′, a)
〈p′, p′′〉 ∈ δ(〈q′, q′′〉, a) if p′ = δ′(q′, a), p′′ = δ′′(q′′, a)

The construction is similar to the traditional Cartesian product machine of two DFAs’
for recognizing their intersection. Here A′@A′′ recognizes L′@L′′, because the con-
struction has been modified to match an a with a and an a with a, but not to match a
with a. �

Consensual Definition of Languages by Regular Sets 199

The repeated application of the match operation to a language is formalized next.

Definition 2. The closure under match, or @-closure, of a language L ⊆ (Σ ∪Σ)∗ is:

L@ = L ∪ {w1@w2@ . . .@wm | m > 1, w1, w2 . . . , wm ∈ L}

An alternative definition can be given. Let L1@ = L,Li@ = L@Li−1@, i > 1.

L@ =
⋃
i≥1

Li@

Focusing on languages over the terminal alphabetΣ, the main definition comes next.

Definition 3. The consensual language with base L ⊆ (Σ ∪Σ)∗ is the set

C(L) = L@ ∩Σ∗

Let L be in a language family F : then C(L) is called a consensual language based on
F , and the corresponding family is written CF .

In this paper we study the family of consensual languages based on the family of regular
languages, CREG .

Example 1. Consider the regular expression

R = a∗aa∗b∗bb∗

Then R@ is the set of strings of the form:

a∗a1a
∗a2a

∗ . . . amb
∗b1b∗b2 . . . bmb∗

where m ≥ 1, and each ai is a and each bi is b. The consensual language with base R
is C(R) = {anbn | n > 0}. For instance, the string aaabbb can be obtained in different
ways, matching together the strings of R in the first column, or matching those in the
second column:

aaabbb aaabbb
aaabbb aaabbb
aaabbb aaabbb

Hence, if the base L is regular, C(L) and L@ may be not regular. However, from Prop.
1, for any finite i, Li@ is regular. This corresponds, in Def. 2, to the case where at most
i strings w1, . . . , wi are matched. Notice that in general Li@ �⊆ L(i+1)@ even when L@

is regular. For instance, consider the regular expression R = a∗aa∗: R@ is (a∗aa∗)+

while Ri@ is (a∗aa∗)i.

3 First Properties

We introduce further useful terminology and make intuitive comments about previous
definitions and concepts.

200 S. Crespi Reghizzi and P. San Pietro

By Def. 1, 2, in a strong match the component strings and the result have the same
length n = |w1| = |w| and for each position 1 ≤ i ≤ n exactly one component string,
say wk is unmarked, i.e. wk(i) ∈ Σ and wr(i) ∈ Σ for all r �= k. We say that string wk

places the character into position i and the other strings consent to it.
The match of identical strings containing at least one unmarked character is unde-

fined. Therefore we may safely assume that in a match closure all component strings are
distinct and that any phrase w in a consensual language is the result of a strong match
with breadth at most |w| + 1, that is

C(L)= (L ∩Σ∗) ∪ {w ∈ Σ∗ | w=w1@w2@. . .@wk, 1 ≤k ≤ |w|+1, wi ∈ L} (1)

Consider a deterministic recognizer (DFA) of the base languageR. A string w is in the
consensual language C(R), if, and only if, the automaton performs 1 ≤ k ≤ |w| + 1
successful computations, accepting a set of strings that strongly match to w. We may
say that such computations strongly (or weakly) match.

The case k = 1 clearly corresponds to the usual recognition condition of a DFA. As
the consensual language of Ex. 1 is not regular we have

Proposition 2. The family CREG of consensual languages on a regular language base
strictly includes the family of regular languages.

The next examples show languages which are not semilinear (in Parikh’s sense [5]).

Example 2

1. Series of identical unary integers.
Choose the base:

R1 = (a∗aa∗b)+ ∪ (a+b)+

Then the consensual language is:

L1 = C(R1) = {anbanbanb . . . anb | n > 0}
2. Enumeration of unary integers.

The language L2 = {aba2b . . . banb | n > 0} is consensually defined by the
regular base

R2 = (a∗aa∗b)+︸ ︷︷ ︸
1

∪
(
a+b
)∗
a+b (a∗aa∗b)∗︸ ︷︷ ︸

2

Call a run a minimal substring of L2 delimited by b or by an edge. R2 is the union
of two clauses, numbered 1 and 2. Clause 1 places an a in each one of the n runs.
Clause 2 places one b and one a in each run to its right. Therefore the j-th run,
1 ≤ j ≤ n will get exactly j letters a.

3. Series of exponential unary numbers.
For Σ = {a, b, c} let

R3 = Σ∗a (a ∪ c)∗ b (a ∪ c)∗ cacΣ∗ ∪ acb
(
(ac)+ b

)∗
(ac)+ b ∪ acb

The consensual language C(R3) is

L3 = {ac b(ac)2b(ac)4b(ac)8b . . . (ac)2
m

b | m ≥ 0}

The proof is in the Appendix.

Consensual Definition of Languages by Regular Sets 201

Proposition 3. The family CREG is closed under:

1. intersection with regular languages;
2. inverse alphabetic homomorphism;
3. mirror operation;
4. marked concatenation [5] of consensual languages;
5. union of consensual languages with disjoint alphabets.

Proof.

1. Let R ⊆ (Σ ∪Σ)∗, S ⊆ Σ∗ be two regular languages, and let h : Σ ∪Σ → Σ be
the alphabetic homomorphism defined by h(a) = h(a) = a for every a ∈ Σ.

We claim that
C(R) ∩ S = C

(
R ∩ h−1(S)

)
thus proving the statement.

Let x ∈ C(R) ∩ S. Hence, ∃k, 1 ≤ k ≤ |x|, ∃x1, . . . xk ∈ R such that
x1@x2 . . .@xk = x and for every i, 1 ≤ i ≤ k, h(xi) = x. Hence, every xi ∈
h−1(x) ⊆ h−1(S) since x ∈ S. Hence, for every i, 1 ≤ i ≤ k, xi ∈ R ∧ xi ∈
h−1(S): if follows that x ∈ C

(
R ∩ h−1(S)

)
.

Assume now x ∈ C
(
R ∩ h−1(S)

)
. Hence, ∃k, 1 ≤ k ≤ |x|, ∃x1, . . . xk such

that x1@x2 . . .@xk = x and for every i, 1 ≤ i ≤ k, xi ∈ R ∩ h−1S, with
h(xi) = x. Then x ∈ C(R) (since each xi ∈ R). Also, x ∈ h−1(S) (since each
xi ∈ h−1(S)). Therefore, x ∈ S, since S = h−1(S) ∩Σ∗ and x ∈ Σ∗.

2. Let R ⊆ (Σ ∪ Σ)∗ be a regular language, and let ∆ be another finite alphabet.
Let h : ∆ → Σ be a homomorphism. We need to prove that h−1(C(R)) is a
consensual language with regular base. Extend first h to the internal alphabet as
follows: ĥ : ∆ ∪∆→ Σ ∪Σ is defined as ĥ(A) = h(A), ĥ(A) = h(A) for every

A ∈ ∆. We notice that ĥ−1(a@a) = ĥ−1(a) = ĥ−1(a)@ĥ−1(a), and that ĥ−1(a@a)
= ĥ−1(a) = ĥ−1(a)@ĥ−1(a), while both ĥ−1(a)@ĥ−1(a) and ĥ−1(a@a) are un-
defined. Hence, ĥ−1(X@Y) = ĥ−1(X)@ĥ−1(Y) for everyX,Y ∈ Σ ∪Σ. Hence,
if u, u′ ∈ (Σ ∪ Σ)∗ then ĥ−1(u@u′) = ĥ−1(u)@ĥ−1(u′). We now claim that

ĥ−1(R@) =
(
ĥ−1(R)

)@

. From here the thesis follows, since ĥ−1(R) is regu-

lar and h−1(C(R)) = ĥ−1(R@) ∩ ∆∗ =
(
ĥ−1(R)

)@

∩ ∆∗. Let x ∈ ĥ−1(R@).

Hence, there is w ∈ R@ such that x ∈ h−1(w). By Def. 3, there exist k > 0
strings w1, . . . , wk ∈ R, with 1 ≤ k ≤ |x|, such that w1@ . . .@wk = w. Hence,

x ∈ ĥ−1(w) = ĥ−1(w1)@ . . .@ĥ−1(wk) ⊆
(
ĥ−1(R)

)@

. Let x ∈
(
ĥ−1(R)

)@

.

Hence, there exist k > 0 strings x1, . . . , xk ∈ ĥ−1(R) such that x1@ . . .@xk = x.
Therefore, there exist k > 0 strings w1, . . . , wk ∈ R such that
x1 ∈ ĥ−1(w1), . . . , xk ∈ ĥ−1(wk), and hence:
x = x1@ . . .@xk ⊆ ĥ−1(w1)@ . . .@ĥ−1(wk) =
= ĥ−1(w1@w2@ . . .@wk) ⊆ ĥ−1(R@).

3. For items 3, 4, and 5 the obvious proofs are based on simple transformations of the
DFAs’ recognizing the base languages. �

202 S. Crespi Reghizzi and P. San Pietro

4 Consensual Languages Are in P

We have observed that the DFA accepting the base languageL (on the internal alphabet)
can be used to recognize the strings over Σ that strongly match to a phrase w of the
consensual language C(L) (on the alphabetΣ).

A recognition algorithm for consensual languages performs as many computations
on the DFA, as the breadth of the match producingw, which following Eq. 1 is bounded
by |w| + 1. All computations start in the initial state and at any time their labels are
strings on the internal alphabet, such that they strongly match to a prefix of w. Notice
that the algorithm is in general non-deterministic, although the base automaton is deter-
ministic. Acceptance occurs when all the computations reach a final state. A configura-
tion reached by the algorithm at some point can be naturally encoded by a multi-set of
states of the DFA: the multiplicity of a state qj in the multi-set encodes the number of
computations that have reached state qj . Concretely, a multi-set can be represented by
multiplicity counters, and the recognition algorithm becomes a counter machine.

Let N be the set of natural numbers. Boldface capital letters, such as V,V′,V′′, . . . ,
denote vectors on N|Q|. Vk denotes the k-th component of V = [V1V2 . . . Vk . . . V|Q|].
The Kronecker function is γk,k = 1 and γk,h = 0 for every h �= k. It will be used to
add or subtract one from a counter Vj , leaving all other counters unchanged. Another

useful shorthand is the norm of a vector V, ‖V‖ =
∑|Q|

j=1 Vj .
Consider a base language L = L(A) with A = (Σ ∪Σ,Q = 〈q1, q2, . . . q|Q|〉, δ, q1,

F) a DFA defined as in Sect. 2.

Definition 4. The consensual transition relation for A ⇒A ⊆ N|Q| × Σ × N|Q| is

defined for every a ∈ Σ, V,V′ ∈ N|Q|, as: V
a

⇒A V′ holds if, an only if, ∃h, k, with
1 ≤ h, k ≤ |Q| such that:

1. Vh > 0 ∧ δ(qh, a) = qk
2.

∀i, 1 ≤ i ≤ |Q|, V ′
i = γk,i +

∑
j:qi=δ(qj ,a)

(Vj − γh,jγk,i)

We say that character a is the label of the transition from V to V′.

In general the consensual transition relation is not deterministic, in the sense that there

may be V′ �= V′′ such that V
a
⇒A V′, V

a
⇒A V′′. In fact, more than one pair of states

qh, qk may verify the conditions of the definition of
a

⇒A, even if the original automaton
A is deterministic.

A nondeterministic (one-way) counter machine with |V | counters may easily imple-
ment the consensual transition relation of a DFA, which only specifies linear relations
among counters. In practice, a counter machine reads in a move the current (unmarked)
input character and updates the counter values as specified in Def. 4.

The move simulates a set of strongly matching transitions performed by the DFA on
marked and unmarked characters. More precisely, exactly one instance of a state (qh of
Eq. 1) places the current character a, while the remaining (Vh − 1) instances consent to
it. For any other counter i �= h, Vi instances of state qi consent to character a.

Consensual Definition of Languages by Regular Sets 203

To complete the simulation, the counter updating rule calculates how many times
each state is entered by a transition originating in the current state instances.

For ease of reading, in the following, we will write ⇒ instead of ⇒A when no con-
fusion can arise. For a string y ∈ Σ∗ the notation

V
y

⇒ V′

stands for

V = V0

y(1)

⇒ V1

y(2)

⇒ V2 . . .V|y|−1

y(|y|)
⇒ V|y| = V′

Definition 5. Let A as above be a DFA, and V ∈ N|Q| be a vector. If V1 > 0 and
Vi = 0 for i > 1 then V is called initial.

If
∑

i:qi∈F Vi > 0 and
∑

i:qi
∈F Vi = 0 then V is called final.

Definition 6. The consensual language of the automatonA, denoted L@(A), is the set
of strings w ∈ Σ∗ such that there exist an initial vector V0, 1 ≤ ‖V0‖ ≤ |w| + 1, and

a final vector V: V0
w
⇒ V.

A counter automaton implementing relation ⇒ accepts a string w if it starts with an
initial vector and checks, upon reading the last character of w, whether in the last con-
figuration some counters associated with the final states of the DFA differ from zero
and all other counters are null.

We observe another cause of nondeterminism for a counter automaton implementing
⇒ is that there are multiple initial configurations, since the value ‖V0‖ of the initial
counter is any integer up to |w| + 1.1

The sum of the counter values of a configuration is constant during a computation as
next stated. In fact, the transition function of the DFA is assumed to be total, hence if

V
a
⇒ V′ then∑

1≤i≤|Q| (γk,i) +
∑

j:qi=δ(qj ,a) (Vj − γh,jγk,i) =
= 1 +

∑
1≤i≤|Q|

∑
j:qi=δ(qj ,a) (Vj) −

∑
1≤i≤|Q|

∑
j:qi=δ(qj ,a) γh,jγk,i =

=
∑

1≤i≤|Q|
∑

j:qi=δ(qj ,a) (Vj) = ‖V‖.

Lemma 1. Let V0 be a vector. For every word w ∈ Σ+, if there exist V1 . . .V|w| such
that

V0
w(1)

⇒ V1
w(2)

⇒ V2 . . .
w(|w|)
⇒ V|w|

then for every i, 1 ≤ i ≤ |w|, ‖Vi‖ = ‖V0‖

Since a counter machine simulating ⇒ has |Q| counters (i.e., a fixed number) and the
sum of its counter values is always bounded by the length of the input string, its com-
putational complexity is NLOGSPACE:

Proposition 4. Given a DFA A, the word problem for L@(A) can be computed in non-
deterministic logspace.

1 This is not essential and is done to simplify definitions and proofs. It would be equivalent to
define a counter machine that always starts with V1 = 1.

204 S. Crespi Reghizzi and P. San Pietro

Our goal is to prove that C (L(A)) = L@(A), thus proving that CREG is in the com-
plexity class NLOGSPACE and hence in P [4]. The proof requires a few technical
definitions and lemmas

Definition 7. Let m ≥ 1 be an integer, and let A be a finite automaton. A m-vector

Y ∈
(
2N
)|Q|

is a vector of (possibly empty) |Q| componentsY1, . . . ,Y|Q| ⊆ {1, . . .m},
such that Y1, . . .Y|Q| is a partition of {1, . . . ,m}.

The intended meaning of an m-vector Y is to represent a partition of strings y1, . . . ym

over the internal alphabet into subsets.

Definition 8. Relation ���⊆
(
2N
)|Q| × Σ ×

(
2N
)|Q|

is defined, for every a ∈ Σ for

everym-vectors Y ,Y ′ asY a��� Y ′ if, and only if:
∃r, 1 ≤ r ≤ m, ∃h, k, with 1 ≤ h, k ≤ |Q|, such that r ∈ Yh and δ(qh, a) = qk and

for every i, 1 ≤ i ≤ |Q|,

Y ′
i =

⋃
1≤j≤|Q|:δ(qj ,a)=qi

{z | z ∈ Yj , z �= r} ∪ (if i = k then {r} else ∅)

This definition of ��� is actually equivalent, as explained next, to relation ⇒, but sets
of integers are considered rather than integers. Their equivalence allows to use ���
instead of ⇒, in order to simplify proofs. Notice that a Turing machine implementing
⇒ only uses logarithmic space in the size of the input, while implementing am-vector
Y requires a super-logarithmic memory.

Lemma 2. Let y ∈ Σ+, letm ≥ 1 and let A be a DFA.

1. Given two m-vectors for A Y,Y ′ such that Y y��� Y ′ then there exist two vectors
for A: V,V′, such that for every i, 1 ≤ i ≤ |Q|, |Yi| = Vi, |Y ′

i | = V ′
i and

V
y

⇒ V′.

2. Given two vectors for A,V,V′, such that V
y

⇒ V′ there exist two m-vectors for

A: Y,Y ′ such that for every i, 1 ≤ i ≤ |Q|, |Yi| = Vi, |Y ′
i| = V ′

i and Y y��� Y ′.

Proof. 1) The proof obviously only has to show the case for y = a ∈ Σ. Assume

Y a��� Y ′. Let r, k, h as in Def. 8. V
a

⇒ V′ follows from the fact that the update rules
for ��� update each set Y ′

i with a cardinality given by the sum of cardinalities of sets
Yj , using the same update mechanism of ⇒. In fact, for i �= k,

Y ′
i =

⋃
1≤j≤|Q|:δ(qj ,a)=qi

{z | z ∈ Yj , z �= r} =

{z | z ∈ Yh, z �= r} ∪
⋃

1≤j≤|Q|,j
=h:δ(qj ,a)=qi

{z | z ∈ Yj}

since r ∈ Yh.
Hence,
|Y ′

i | = Vh − 1 +
∑

1≤j≤|Q|,j
=h:δ(qj ,a)=qi
Vj =

∑
1≤j≤|Q|:δ(qj ,a)=qi

(Vj − γh,jγk,i)

Consensual Definition of Languages by Regular Sets 205

= γk,i +
∑

1≤j≤|Q|:δ(qj ,a)=qi
(Vj − γh,jγk,i) since γk,i = 0. If i = k, then the same

argument finds the same expression for |Y ′
i |, but this time with γk,i = 1. Hence, since

V ′
i = |Y ′

i| for every i, V
a
⇒ V′.

2) Assume now V
a
⇒ V′, and let k, h as in Def. 4. Hence, |Vh| > 0. Let m = ‖V‖.

Let Y be any m-vector satisfying |Yi| = Vi for every i. Hence, Yh �= ∅. Let r be any
value in Yh. Then define Y ′ as in Def. 8 (this is always possible when Yh �= ∅). But this
definition does not depend on the actual value r chosen among the elements of Yh. The
same counting argument as for part (1) above shows that |Y ′

i | = Vi for every i. �

The following lemma is easier to prove for ��� rather than for ⇒:

Lemma 3. Let y ∈ Σ∗,m > 0, let A be a DFA and let Y,Y ′ be m-vectors such that

Y y��� Y ′ and Y1 = {1, . . . ,m}, Yi = ∅ for i > 1. Then there exist y1, . . . ym strings of
length |y| over the internal alphabet such that y = y1@ . . .@ym, if, and only, for every
i, 1 ≤ i ≤ |Q|,

Y ′
i = {z | 1 ≤ z ≤ m, δ(q1, yz) = qi}

Proof. Let y,m,Y,Y ′ be as in the hypothesis of the statement. Consider the case that
there exist y1, . . . ym such that y = y1@ . . .@ym. The proof that for each i Y ′

i = {z |
1 ≤ z ≤ m, δ(q1, yz) = qi} is by induction on |y|. Let y = xa, a ∈ Σ, x ∈ Σ∗.
If x = ε then m = 1, y1 = a. Let k be such that δ(q1, a) = qK . Then Y ′

i = ∅ for
i �= k, Y ′

K = {1} (by Def. 8 with h = 1, r = 1). If |x| > 0, then there exist x1, . . . xm

such x = x1@ . . .@xm, with each xi simply being the prefix of yi with length |y| − 1.
Hence, there exists r in {1 . . .m} such that yi = xia for i �= r, yr = xra. By induction
hypothesis there exists a m-vector Y ′′ such that Y ��� Y ′′ with Y ′′

i = {z | 1 ≤ z ≤
m, δ(q1, xz) = qi}. Let h, k be such that r ∈ Yh, δ(qh, a) = qk. By applying Def. 8,
the thesis follows: for each z, i with z �= r, one has z ∈ Y ′

i if, and only if, there exists
j: z ∈ Y ′′

j , and δ(qj , a) = qi. But yz = xza, hence δ(q1, yz) = qi. Similarly for the
case z = r: r ∈ Y ′

k , yr = xra, δ(q1, yr) = qk.
Consider the converse case Y ′

i = {z | 1 ≤ z ≤ m, δ(q1, yz) = qi}. The proof
that ∃y1, . . . , ym such that y = y1@ . . .@ym is also by induction on |y|. Let y = xa,
a ∈ Σ, ax ∈ Σ∗. If x = ε, then m = 1, y1 = a. Then there exists k such that
δ(q1, a) = qK , Y ′

i = ∅ for i �= k, Y ′
K = {1}. Hence, y = y1. For |x| > 0, let

Y ′′ be a m-vector such that Y x��� Y ′′ a��� Y ′. By induction hypothesis there exist
x1, . . . , xm, such that Y ′′

i = {z | 1 ≤ z ≤ m, δ(q1, xz) = qi} and x = x1@ . . .@xm.
Therefore, there exist r, h, k such that δ(q1, xr) = qh, δ(q1, xra) = qk. By Def. 8,
r ∈ Y ′

k . Consider now z �= r. By Def. 8, z ∈ Y ′
i if, and only if, there exists j such that

z ∈ Y ′′
j and δ(qj , a) = qi. But z ∈ Y ′′

j if, and only if, δ(q1, xz) = qj . Hence, z ∈ Y ′
i

if, and only if, δ(q1, xza) = qi. Then yr = xra, yz = xza for z �= r are such that
Y ′

i = {z | 1 ≤ z ≤ m, δ(q1, yz) = qi}. By induction hypothesis, x = x1@ . . .@xm,
and hence y = xa = y1@ . . .@ym.

From Lemma 3 and Lemma 2, the equivalence with consensual languages follows al-
most immediately:

Proposition 5. Let R ⊆ (Σ ∪ Σ)∗ be a regular language, and A be its DFA. Then
L@(A) = C(R)

206 S. Crespi Reghizzi and P. San Pietro

Corollary 1. The word problem for the family CREG is in the time complexity class P .

5 Further Results

In order to compare consensual languages with some classical language families, we
show that certain languages exceed the capacity of consensual languages based on reg-
ular sets.

Proposition 6. The languages
{
ucuR | u ∈ {a, b}∗

}
and {ucu | u ∈ {a, b}∗} are not

in the family CREG.

Proof. LetL = {ucu | u ∈ {a, b}∗}. The proof for
{
ucuR | u ∈ {a, b}∗

}
is completely

analogous. Assume by contradiction there is a DFA A = ({a, b, a, b}, Q, δ, q1, F) such
that L@(A) = L. Given in input a string of length n > 0, by Lemma 1, every vector
V appearing in a configuration of A@ is such that ‖V‖ ≤ n+ 1. Hence, there are only
(n + 1)|Q| different vectors. However, there are 2n different strings in {a, b}n. For n
large enough, the number of possible strings is much larger than the number of different
vectors: there exist u,w ∈ {a, b}n, u �= w, such that there are initial vectors V1,V2,

final vectors V′,V′′ and a vector V: V1
u

⇒ V
cu

⇒ V′, V2
w

⇒ V
cw

⇒ V′′. But then also

V1
u
⇒ V

cw
⇒ V′′, a contradiction since ucw �∈ L. �

From Prop. 6, and from Ex. 2 it follows:

Corollary 2

1. The family CREG is not comparable with the families of context-free languages and
of tree adjoining languages [3];

2. The commutative (or Parikh) image of a language in CREG may be not semilinear.

Among the typical context-free languages, the Dyck sets (see e.g. [5]) with two or more
pairs of parentheses trespass the family CREG. To see it it suffices to observe that the
proof of Prop. 6 also applies to the case of a language

L =
{
uc h(uR) | u ∈ {a, b}∗

}
where h is the morphism h(a) = a′, h(b) = b′

Let D2 be the Dyck language with opening parentheses a, b and closing parentheses
a′, b′ respectively. LetR be the regular language composed of all strings on {a, b, a′, b′}
where there is no occurrence of the factors a′a, b′b, a′b, b′a. Hence,D2 ∩R = L, and if
D2 were in CREG then by closure of CREG under intersection with regular languages
also L would be in CREG.

6 Conclusion

Our simple notion of consensus by strong matching is admittedly not the only one pos-
sible and sensible, yet it permits rather remarkable selectivity. For instance two variants
would be to allow (or to oblige) a finite number k of component strings to place each
character in each position of the match. Such variants would then model systems where

Consensual Definition of Languages by Regular Sets 207

stronger consensus between independent computations is possible (or is requested), in
order for a string to be accepted. We believe our definitions though possibly the sim-
plest, already capture a rather reach range of language paradigms.

Since the formalism is new, the research is in its early stages. There remain many
problems open for investigation, for instance concerning minimality and decidability of
equivalence or of ambiguity, as well as closure properties.

We also hope the consensual approach could be fruitfully studied for different fami-
lies of base languages.

References

1. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. Journal of ACM 28, 114–133 (1981)
2. Jantzen, M.: On the hierarchy of Petri net languages. R.A.I.R.O. Informatique théorique/

Theoretical Informatics 13(1), 19–30 (1979)
3. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Rozenberg, G., Salomaa, A. (eds.) Hand-

book of Formal Languages, vol. 3, pp. 69–124. Springer, Berlin (1997)
4. Kozen, D.: Theory of Computation. Springer, New York (2006)
5. Salomaa, A.: Theory of Automata. Pergamon Press, Oxford (1969)
6. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars.

Mathematical Systems Theory 27(6), 511–546 (1994)

Appendix

The third language of Ex. 2.

Lemma 4. Let Σ = {a, b, c} and let

R3 = Σ∗a(a ∪ c)∗b (a ∪ c)∗ cacΣ∗︸ ︷︷ ︸
1

∪ acb((ac)+b)∗(ac)+b︸ ︷︷ ︸
2

∪ acb︸︷︷︸
3

i.e., R3 is the union of three expressions, numbered 1, 2 and 3. We claim that the con-
sensual language C(R3) is

L3 = {acb(ac)2b(ac)4b(ac)8b . . . (ac)2m

b | m ≥ 0}

Proof. We show thatL3 ⊆ C(R3). Any string in C(R3), apart from acb, must be obtained
by matching a string in Expression 2 with strings in Expression 1, since neither regular
expression can generate alone a string inΣ+. We now show, by induction on the number
m for strings of the form wm = acb(ac)2b(ac)4b(ac)8b . . . (ac)2

m

(which exhaust all
languageL3), that ifwm ∈ L3 thenwm ∈ C(R3). The base step ism = 0, corresponding
to the case acb, both in C(R3) and inL3. Assume now that the induction hypothesis holds
for m − 1. Hence, string wm−1 = acb(ac)2b(ac)4b(ac)8b . . . (ac)2

m−1
b ∈ C(R3). But

wm−1 must be obtained as a match of h > 0 strings x1, x2, . . . xh of Expression 1, with
one string ym−1 = acb(ac)2b . . . (ac)2

m−2
b(ac)2

m−1
b of Expression 2. But also

ym = acb(ac)2b . . . b(ac)2
m−1

(ac)2
m

b

208 S. Crespi Reghizzi and P. San Pietro

is in Expression 2, and if xi is in Expression 1 then also x′i = xi(ac)2
m

b is in Expression
1, since Expression 1 ends with Σ∗. Therefore, by matching ym with x′1, . . . x

′
m, one

obtains:

w′
m = acb(ac)2b(ac)4b(ac)8b . . . b(ac)2

m−2
b(ac)2

m−1
b(ac)2

m

b ∈ R@
3 .

The strings

zi = acb(ac)2b . . . b(ac)2
m−2

b(ac)iac(ac)2
m−1−i−1b(ac)2iacac(ac)2

m−2i−2b

are in Expression 1, for every i, 1 ≤ i ≤ 2m−1. Hence, for every a placed in group
m− 1 (the group with 2m−1 occurrences of ac), there must be two occurrences of c in
groupm. Hence, the number of c’s (and therefore also of a’s) in groupmmust be twice
the number of c’s in groupm− 1:

wm = acb(ac)2b(ac)4b(ac)8b . . . (ac)2
m−1

b(ac)2
m

b ∈ C(R3).

For the converse case, notice first that, since any w in C(R3) must match a string in
Expression 2, C(R3) ⊆ acb ((ac)+b)∗. An induction on the number m ≥ 0 of groups
b(ac)+b in strings of C(R3) completes the proof. The base case is obvious (correspond-
ing to the string acb). By induction hypothesis, all strings with m − 1 ≥ 0 groups are
in L3. Assume that there is a string xm with m groups but which is not in L3. Hence,
there exists i > 0 such that the group in position i has a number of c which is not the
double of the number of a of the group in position i−1. But i = m, otherwise one could
define also a string which is not in L3 while having less than m groups, contradicting
the induction hypothesis. However, the only way to place a c in group m is by using
strings in Expression 1, which place two occurrences of c in groupm for an occurrence
of a in groupm-1. Since no other strings can place a in groupm− 1, then the number
of c’s in groupm must be exactly the double of the number of a in groupm− 1 (2m−1

by induction hypothesis), that is there are 2m occurrences of c in groupm.

k-Petri Net Controlled Grammars

Jürgen Dassow1 and Sherzod Turaev2

1 Otto-von-Guericke-Universität Magdeburg
PSF 4120, D-39016 Magdeburg, Germany

dassow@iws.cs.uni-magdeburg.de
2 GRLMC, Universitat Rovira i Virgili

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
sherzod.turaev@estudiants.urv.cat

Abstract. We introduce a new type of regulated grammars using Petri
nets as a control of the derivations of a context-free grammar. We inves-
tigate the generative power and give closure properties of the families of
languages generated by such Petri net controlled grammars.

1 Introduction

A context-free grammar and its derivation process can be described by a Petri
net, where places correspond to nonterminals and terminals, transitions are the
counterpart of the productions, and the tokens reflect the occurrences of symbols
in the sentential form, and there is a one-to-one correspondence between the
application of (sequences of) rules and the firing of a (sequence of) transitions.
Therefore it is a very natural and very easy idea to control the derivations in a
context-free grammar by adding some features to the associated Petri net.

In [2] and [9] it has been shown that by adding some places and arcs which
satisfy some structural requirements one can generate well-known families of
languages as random context languages, vector languages and matrix languages.
Thus the control by Petri nets can be considered as a unifying approach to differ-
ent types of control (note that random context is a control by occurrence/non-
occurrence of letters whereas matrices give a prescribed set of sequences in which
the productions have to be applied).

In this paper we add additional places, called counters, and additional arcs as-
sociated with the new places. Adding k places leads to a control by k-Petri nets.
The aim of this paper is the study of properties of the family of languages which
can be generated by context-free grammars with a control by k-Petri nets. We
present results on the generative power and we give some closure properties.

The paper is organized as follows. In Section 2 we give some notions and defi-
nitions from the theories of formal languages and Petri nets needed in the sequel.
Moreover we introduce the Petri net associated with a context-free grammar.

In Section 3 we construct the new Petri net control mechanism and define
the corresponding grammars. Furthermore, we give some examples. In Section 4
we show that context-free grammars with the simple control by one additional
place can generate non-context-free languages. We also give relations to valence

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 209–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

210 J. Dassow and S. Turaev

grammars and vector grammars. Furthermore, we show that we get an infinite
hierarchy with respect to the numbers of additional places. In Section 5 we inves-
tigate the fundamental closure properties of the families of languages generated
by k-Petri net controlled grammars.

2 Preliminaries

The reader is assumed to be familiar with basic notions of formal language theory
and Petri net theory as, e.g. contained in [4,5,7,8].

2.1 Grammars

Let Σ = {a1, a2, . . ., ak} be an alphabet. A string over Σ is a sequence of
symbols from the alphabet. The length of a string w is denoted by |w|, and the
number of a symbol a in a string w by |w|a. The empty string is denoted by λ
which is of length 0. The number of the occurrences of all symbols of U ⊆ Σ
in a string w is denoted by |w|U . The set of all strings over the alphabet Σ is
denoted by Σ∗. A subset L of Σ∗ is called a language. For languages L,L′ ⊆ Σ∗,
the operation shuffle is defined by Shuf(L,L′) = {x1y1 · · ·xnyn | x1 · · ·xn ∈
L, y1 · · · yn ∈ L′, xi, yi ∈ Σ∗, 1 ≤ i ≤ n} and for L ⊆ Σ∗: Shuf1(L) = L;
Shufi(L) = Shuf(Shufi−1(L), L) for i ≥ 2; Shuf∗(L) = ∪i≥1Shufi(L).

A context-free grammar is a quadruple G = (V,Σ, S,R) where V and Σ are
the finite sets of nonterminal and terminal symbols, respectively, S ∈ V is the
start symbol and R ∈ V × (V ∪ Σ)∗ is the set of (production) rules. Usually, a
rule (A, x) is written as A → x. A rule of the form A → λ is called an erasing
rule. x ∈ (V ∪ Σ)+ directly derives y ∈ (V ∪ Σ)∗, written as x ⇒ y, iff there
is a rule r = A → α ∈ R such that x = x1Ax2 and y = x1αx2. The reflexive
and transitive closure of ⇒ is denoted by ⇒∗. A derivation using the sequence
of rules π = r1r2 · · · rn is denoted by π=⇒ or r1r2···rn=====⇒. The language generated by
G is defined by L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

A vector grammar is a quadruple G = (V,Σ, S,M) where V,Σ, S are defined
as for context-free grammars, and M is a finite set of strings over a set R of
context-free rules called matrices. The language generated by G is L(G) = {w ∈
Σ∗ | S π=⇒ w and π ∈ Shuf∗(M)}.

An additive valence grammar is a quintuple G = (V,Σ, S,R, v) where V , Σ,
S, R are defined as for context-free grammars and v is a mapping from R into
the set Z of integers. The language generated by G consists of all strings w ∈ Σ∗

such that there is a derivation S r1r2···rk=====⇒ w such that
∑k

i=1 v(ri) = 0.
A positive valence grammar is a quintuple G = (V,Σ, S,R, v) whose compo-

nents are defined as for additive valence grammars. The language generated by
G consists of all strings w ∈ Σ∗ such that there is a derivation S r1r2···rk=====⇒ w such
that

∑k
i=1 v(ri) = 0 and for any 1 ≤ j < k,

∑j
i=1 v(ri) ≥ 0.

The families of languages generated by context-free, vector, additive valence
and positive valence grammars (with erasing rules) are denoted by CF, V, aV
and pV (CFλ, Vλ, aVλ and pVλ), respectively.

k-Petri Net Controlled Grammars 211

2.2 Petri Nets

A Petri net is a construct N = (P, T, F, ϕ) where P and T are disjoint finite
sets of places and transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the set of
directed arcs, ϕ : F → {1, 2, . . .} is a weight function.

A Petri net can be represented by a bipartite directed graph with the node set
P ∪ T where places are drawn as circles, transitions as boxes and arcs as arrows
with labels ϕ(p, t) or ϕ(t, p). If ϕ(p, t) = 1 or ϕ(t, p) = 1, the label is omitted.

A mapping µ : P → {0, 1, 2, . . .} is called a marking. For each place p ∈ P ,
µ(p) gives the number of tokens in p. Graphically, tokens are drawn as small
solid dots inside circles. •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F} are
called pre- and post-sets of x ∈ P ∪ T , respectively.

A transition t ∈ T is enabled by marking µ iff µ(p) ≥ ϕ(p, t) for all p ∈ P .
In this case t can occur (fire). Its occurrence transforms the marking µ into the
marking µ′ defined for each place p ∈ P by µ′(p) = µ(p)−ϕ(p, t)+ϕ(t, p). A finite
sequence t1, t2, . . . , tk of transitions is called an occurrence sequence enabled at
a marking µ if there are markings µ1, µ2, . . . , µk such that µ t1−→ µ1

t2−→ . . .
tk−→

µk. In short this sequence can be written as µ t1t2···tk−−−−−→ µk or µ ν−→ µk where
ν = t1t2 · · · tk.

A marked Petri net is a system N = (P, T, F, ϕ, ι) where (P, T, F, ϕ) is a
Petri net, ι is the initial marking. We also define the final marking τ at which
we stop the execution of N under some conditions. An occurrence sequence ν of
transitions is called successful if it is enabled at the initial marking ι and finished
at a final marking τ .

2.3 cf Petri Nets

The construction of the following type of Petri nets is based on the idea of using
similarity between the firing of a transition and the application of a production
rule in a derivation in which places are terminal and nonterminal symbols and
tokens are separate occurrences of symbols.

Definition 1. Let G = (V,Σ, S,R) be a context-free grammar. Let β : P →
(V ∪ Σ) and γ : T → R be bijections. The cf Petri net corresponding to the
grammar G is a marked Petri net N = (P, T, F, ϕ, ι) where

– each place p ∈ P is labeled by the corresponding symbol x = β(p) ∈ V ∪ Σ
and each transition t ∈ T is labeled by the corresponding rule r = γ(t) ∈ R;

– (p, t) ∈ F iff γ(t) = r, r : A→ w ∈ R where β(p) = A and ϕ(p, t) = 1;
– (t, p) ∈ F iff γ(t) = r, r : A → w ∈ R where β(p) = x, |w|x > 0 and
ϕ(t, p) = |w|x;

– ι(β−1(S)) = 1 and ι(β−1(x)) = 0 for all x ∈ (V ∪Σ) \ {S}.

Example 2. Let G1 be a context-free grammar with the following rules: r0 :
S → AB, r1 : A → aAb, r2 : A → ab, r3 : B → cB, r4 : B → c (the other
components of the grammar can be seen from these rules). Figure 1 illustrates
the corresponding cf Petri net N . Obviously, L(G1) = {anbncm | n ≥ 1,m ≥ 1}.

212 J. Dassow and S. Turaev

• S

A B

a

b c

r0

r1

r2

r3

r4

Fig. 1. A cf Petri net N

The following proposition, which directly follows from the definition, shows the
similarity between terminal derivations in a context-free grammar and successful
occurrences in the corresponding cf Petri net.

Proposition 3. Let N = (P, T, F, ϕ, ι) be the cf Petri net corresponding to a
context-free grammar G = (V,Σ, S,R). Then S r1r2···rn=====⇒ w ∈ Σ∗ is a derivation
in G iff ι

t1t2···tn−−−−−→ τ is an occurrence sequence of transitions in N such that
ti = γ−1(ri), 1 ≤ i ≤ n, and τ(β−1(x)) = 0 for all x ∈ V .

3 Petri Net Controlled Grammars

Now we consider cf Petri nets with k ≥ 1 additional places, pre-sets and post-sets
of which are disjoint, respectively. Let N = (P, T, F, ϕ, ι) be the corresponding
cf Petri net corresponding to a context-free grammar G = (V,Σ, S,R). For k ≥ 1
we set T k

1 = {tk11, tk12, . . . , tk1m(1)} ⊂ T and T k
2 = {tk21, tk22, . . . , tk2m(2)} ⊂ T where

T k1
i ∩ T k2

j = ∅ for 1 ≤ i < j ≤ 2 or 1 ≤ k1 < k2 ≤ k and T i
1 = ∅ iff T i

2 = ∅ for
any 1 ≤ i ≤ k.

Let Q = {q1, q2, . . . , qk} be the set of new places called counters. Let F1 =
{(t, qi) | t ∈ T i

1, 1 ≤ i ≤ k} and F2 = {(qi, t) | t ∈ T i
2, 1 ≤ i ≤ k}.

Definition 4. A k-Petri net (in short k-PN) with respect to the grammar G is
a system Nk = (P ′, T ′, F ′, ϕ′, ι′,M ′) where

– P ′ = P ∪Q, T ′ = T and F ′ = F ∪ F1 ∪ F2,
– ϕ′(x, y) = ϕ(x, y) if (x, y) ∈ F and ϕ′(x, y) = 1 if (x, y) ∈ F1 ∪ F2,
– ι′(β−1(S)) = 1 and ι′(p) = 0 for all p ∈ P ′ \ {β−1(S)},
– M ′ is the set of final markings and for any τ ′ ∈ M ′, τ ′(p) = 0 for all
p ∈ P ′ \ {β−1(x) | x ∈ Σ}.

Definition 5. Let k ≥ 1. A k-PN controlled grammar is a quintuple G = (V ,
Σ, S, R,Nk) where V,Σ, S,R are defined as for a context-free grammar and Nk

is the k-PN with respect to the context-free grammar (V,Σ, S,R).

k-Petri Net Controlled Grammars 213

Definition 6. The language generated by a k-PN controlled grammar G, de-
noted by L(G), consists of all strings w ∈ Σ∗ such that there is a derivation
S

π=⇒ w, π = r1r2 · · · rn where ν = t1t2 · · · tn, ti = γ−1(ri) ∈ T, 1 ≤ i ≤ n is an
occurrence sequence of the transitions of Nk enabled at the initial marking ι and
finished at a final marking τ .

We denote the family of languages generated by k-PN controlled grammars
(without erasing rules) by PNλ

k (PNk), k ≥ 1.
We give two examples which will be used in the sequel.

Example 7. Figure 2 illustrates a 1-PNN1 which is constructed from the cf Petri
net N in Figure 1 adding a single counter place q. Let G2 = (V,Σ, S,R,N1) be
the 1-PN controlled grammar where V,Σ, S,R are defined as for the grammar
G1 in Example 2. It is easy to see that L(G2) = {anbncn | n ≥ 1}.

• S

A B

a
b c

q

r0

r1

r2

r3

r4

Fig. 2. A 1-PN N1

Example 8. Let G3 be a 2-PN controlled grammar with the production rules:
r0 : S → A1B1A2B2, r1 : A1 → a1A1b1, r2 : A1 → a1b1, r3 : B1 → c1B1,
r4 : B1 → c1, r5 : A2 → a2A2b2, r6 : A2 → a2b2, r7 : B2 → c2B2, r8 : B2 → c2.
and the corresponding 2-PN N2 is given in Figure 3. Then it is easy to see that
G3 generates the language L(G3) = {an

1 b
n
1 c

n
1a

m
2 b

m
2 c

m
2 | n,m ≥ 1}.

Lemma 9. The language L′ = {an
1 b

n
1 c

n
1a

m
2 b

m
2 c

m
2 | n,m ≥ 1} cannot be generated

by a 1-PN controlled grammar.

Proof. Suppose the contrary: there is a 1-PN controlled grammar G = (V , Σ, S,
R, N1) where Σ = {a1, b1, c1, a2, b2, c2} such that L(G) = L′. Since the set V is
finite, for large n and m each derivation S ⇒∗ w ∈ L′ contains a subderivation
of the form D: A ⇒∗ xAy where A ∈ V and x, y ∈ Σ∗. As L′ is infinite, there
are words with large enough length obtained by iterating such a derivation D
arbitrarily many times. Suppose

S ⇒∗ uAv ⇒∗ uxAyv ⇒∗ · · · ⇒∗ uxnAynv ⇒∗ w′ ∈ Σ∗ (1)

is also a derivation in G. Then xn and yn are subwords of w′. It follows that x
and y can be only powers of two symbols from Σ ∪ {λ}. Therefore, in order to

214 J. Dassow and S. Turaev

•

S

A1

B1

a1

b1

c1

A2

B2

a2

b2

c2

q1 q2r0

r1

r2

r3

r4

r5

r6

r7

r8

Fig. 3. A 2-PN N2

generate a word w = an
1 b

n
1 c

n
1a

m
2 b

m
2 c

m
2 ∈ L′ for large n and m, we need at least

three subderivations of the form

D1 :A1 ⇒∗ x1A1y1, (2)

D2 :A2 ⇒∗ x2A2y2, (3)

D3 :A3 ⇒∗ x3A3y3 (4)

where x1, x2, x3, y1, y2, y3 are powers of the symbols from Σ, i.e. xi = αki

i and
yi = βli

i where αi, βi ∈ Σ and ki + li ≥ 1, i = 1, 2, 3.
Obviously, any of the subderivations (2)–(4) produces additional tokens at the

counter or consumes tokens from the counter or does not change the number of
tokens at the counter.

According to the production and consumption of tokens by the subderivations
(2)–(4) we distinguish some cases and show a contradiction in all cases. By reasons
of space we discuss here only two cases (the other ones canbe handled analogously).

Case I. One of the derivations (2)–(4) does not produce and consume any token
at the counter. Without loss of generality we can assume that this derivation is
(2). If S ⇒∗ uA1v ⇒∗ uwv ∈ L′ then for any k > 1 we apply (2) k times and
get a word which is not in L′, i.e.,

S ⇒∗ uA1v ⇒∗ ux1A1y1v ⇒∗ ux2
1A1y

2
1v ⇒∗ uxk

1A1y
k
1v ⇒∗ uxk

1wy
k
1v �∈ L′

since (2) increases only the powers of at most two symbols.

Case II. The subderivation (2) produces p ≥ 1 tokens, the subderivation (3)
consumes q ≥ 1 tokens, {α1, β1, α2, β2} ∩ {ai, bi, ci} �= ∅ for 1 ≤ i ≤ 2, and there
is a derivation S ⇒∗ u1A1u2A2u3 ⇒∗ u1w1u2w2u3 ∈ L′. Then the derivation

S ⇒∗ u1A1u2A2u3

⇒∗ u1x1A1y1u2A2u3 ⇒∗ u1x
k
1A1y

k
1u2A2u3

⇒∗ u1x
k
1A1y

k
1u2x2A2y2u3 ⇒∗ u1x

k
1A1y

k
1u2x

l
2A2y

l
2u3

⇒∗ u1x
k
1w1y

k
1u2x

l
2w2y

l
2u3

k-Petri Net Controlled Grammars 215

where k, l ≥ 1, should be in G. It can be done by choosing the numbers k, l and
the symbols α1, β1, α2, β2 ∈ Σ ∪ {λ}.

If we choose k = q and l = p, then we also come to the final marking (kp−lq =
0). By the supposition 1 ≤ |{α1, β1, α2, β2} ∩ {ai, bi, ci}| ≤ 2 for at least one i,
1 ≤ i ≤ 2. Thus at most two letters from {ai, bi, ci} are changed in there power.

4 Hierarchy Results

We start with a simple fact.

Lemma 10. CF � PN1.

Proof. It is clear that CF ⊆ PN1 if we take T1 = T2 = ∅. From Example 7 it
follows that CF � PN1. �

Now we present some relations to (positive) additive valence languages.

Lemma 11. PN1 ⊆ pV and PNλ
1 ⊆ pVλ.

Proof. Let G = (V,Σ, S,R,N1) where N1 = (P, T, F, ϕ, ι,M) is the correspond-
ing 1-PN with the counter q (with the notions of Definition 4) be a 1-PN con-
trolled grammar (with or without erasing rules). We define a positive valence
grammar G′ = (V,Σ, S,R, v) where V,Σ, S,R are defined as for the grammar
G and for each r ∈ R, the mapping v is defined by v(r) = 1 if γ−1(r) ∈ •q,
v(r) = −1 if γ−1(r) ∈ q• and v(r) = 0 otherwise.

Let S π=⇒ w ∈ Σ∗, π = r1r2 · · · rk be a derivation in G. Then ν = t1t2 · · · tk,
ti = γ−1(ri), 1 ≤ i ≤ k is an occurrence sequence of transitions in N1 en-
abled at the initial marking ι and finished at a final marking τ . By defini-
tion if |ν|t > 0 for some t ∈ •q then there is a transition t′ ∈ q• such that
|ν|t′ > 0. Let U1 = {t11, t12, . . . , t1k(1)} ⊆ •q where |ν|t1j > 0, 1 ≤ j ≤ k(1) and
U2 = {t21, t22, . . . , t2k(2)} ⊆ q• where |ν|t2j > 0, 1 ≤ j ≤ k(2).

As µi(q) ≥ 0 for any occurrence step 1 ≤ i ≤ k we have |ν|U1 ≥ |ν|U2 ,
consequently, v(r1) + v(r2) + . . .+ v(rj) ≥ 0 for any 1 ≤ j < k and from ι(q) =

τ(q) = 0, τ ∈ M , it follows that
∑

t∈U1
|ν|t −

∑
t∈U2

|ν|t def=
∑n

i=1 v(ri) = 0.
Hence, L(G) ⊆ L(G′).

Let D : S π=⇒ w ∈ Σ∗, π = r1r2 · · · rk be a derivation in G′ where v(r1) +
v(r2) + . . .+ v(rk) = 0 and v(r1) + v(r2) + . . .+ v(rj) ≥ 0 for any 1 ≤ j < k. By
construction of G′ D is a derivation in (V,Σ, S,R).

According to the bijection γ : T → R, there is an occurrence sequence in N1:
µ0

ν−→ µk, ν = t1t2 · · · tk such that ti = γ−1(ri), 1 ≤ i ≤ k.
µ0 = ι as D starts from S, i.e. µ0(β−1(S)) = 1 and µ0(β−1(x)) = 0 for all

x ∈ (V ∪Σ) \ {S} as well as µ0(q) = 0.
Since w ∈ Σ∗ for the last marking, we have µk(β−1(x)) = 0 for all x ∈

V . From
∑j

i=1 v(ri) ≥ 0, it follows that µi(q) ≥ 0 for any 1 ≤ j < k. Also∑k
i=1 v(ri)

def=
∑

γ−1(r)∈ •q v(r) +
∑

γ−1(r)∈q• v(r) = 0 shows that in k steps the
counter place q has received and given the same number of tokens, i.e. µk(q) = 0.
Hence µk ∈M . Consequently, L(G′) ⊆ L(G). �

216 J. Dassow and S. Turaev

Lemma 12. aV � PN2 and aVλ � PN2
λ.

Proof. Let G = (V,Σ, S,R, v) be an additive valence grammar (with or without
erasing rules). Without loss of generality we can assume that v(r) ∈ {1, 0,−1}
for each r ∈ R (theorem 2.1.10 in [4]).

For each rule r : A → α ∈ R, v(r) �= 0 we add a nonterminal symbol Ar and
a pair of rules r′ : A → Ar , r′′ : Ar → α and set V ′ = V ∪ {Ar | r : A → α ∈
R, v(r) �= 0}, R′ = R ∪ {r′ : A→ Ar, r

′′ : Ar → α | r : A→ α ∈ R, v(r) �= 0}.
Let N = (P, T, F, ϕ, ι) be the cf Petri net corresponding to (V ′, Σ, S,R′). We

construct 2-PN N ′
2 = (P ′, T ′, F ′, ϕ′, ι,M) by adding the counter places q, q′ and

the arcs: (t, q), t = γ−1(r) for each r ∈ R, v(r) = 1 and (q, t), t = γ−1(r) for
each r ∈ R, v(r) = −1, (t′, q′), t′ = γ−1(r′) for each r ∈ R, v(r) = −1, (q′, t′),
t′ = γ−1(r′) for each r ∈ R, v(r) = 1. The value of the weight function ϕ′ for
each new arc is 1. Consider 2-PN controlled grammar G′ = (V ′, Σ, S,R′, N ′

2).
L(G′) ⊆ L(G) is obvious: according to the definitions of the initial and final

markings for the counter places q and q′, i.e. ι(q) = ι(q′) = 0 and for any τ ∈M ,
τ(q) = τ(q′) = 0, we have

∑n
i=1 v(ri) = 0, for any derivation S r1r2···rn=====⇒ w ∈ Σ∗.

Let S r1r2···rn=====⇒ w ∈ Σ∗ be a derivation in G. For any 1 ≤ k ≤ n
(1) if

∑k
i=1 v(ri) > 0 then for the rule rk+1, v(rk+1) ∈ {1, 0,−1} in G, we also

choose the rule rk+1 in G′;
(2) if

∑k
i=1 v(ri) ≤ 0 then (a) for the rule rk+1, v(rk+1) �= 0 in G, we choose

the rules r′k+1 and r′′k+1 in G′; (b) for the rule rk+1, v(rk+1) = 0 in G then we
also choose rk+1. Hence, w ∈ L(G′).

The strict inclusion follows from the fact that {an
1 b

n
1 c

n
1a

m
2 b

m
2 c

m
2 | n,m ≥

1} ∈ PN2 cannot be generated by an additive valence grammar (Example 2.1.7
in [4]). �

The following lemma shows that, for any n ≥ 1, an n-PN controlled grammar
generates a vector language.

Lemma 13. For any n ≥ 1, PNn ⊆ V and PNλ
n ⊆ Vλ.

Theorem 14. For k ≥ 1, PNk � PNk+1 and PNλ
k � PNλ

k+1.

Proof. We first prove that PN1 ⊆ PN2.
Let G = (V,Σ, S,R,N1) be a 1-PN controlled grammar (with or without

erasing rules) where N1 = (P, T, F, ϕ, ι,M) 1-PN with the counter place q. Let
•q = {t11, t12, . . . , t1k(1)}, k(1) ≥ 1 and q• = {t21, t22, . . . , t2k(2)}, k(2) ≥ 1 where
tij = γ−1(rij), rij : Aij → wij , 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i) and by definition
•q ∩ q• = ∅.

We set V ′ = V ∪ {A′
ij | 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)} where A′

ij , 1 ≤ i ≤ 2,
1 ≤ j ≤ k(i) are new nonterminal symbols. For each rule rij : Aij → wij ,
1 ≤ i ≤ 2, 1 ≤ j ≤ k(i) we add the new rules r′ij : Aij → A′

ij , r
′′
ij : A′

ij → wij

and we consider the 2-PN controlled grammar G′ = (V ′, Σ, S,R′, N ′
2) where R′

consists of all rules of R and all rules constructed above.
Let pij = β−1(Aij) where Aij → wij , 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i). We add

the new places and transitions: p′ij , t
′
ij , t

′′
ij , 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i) and

k-Petri Net Controlled Grammars 217

define extended bijections β̂ and γ̂ by β̂(p) = β(p) if p ∈ P and β̂(p) = A′
ij if

p = p′ij , 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i), and γ̂(t) = γ(t) if t ∈ T , γ̂(t) = r′ij if t = t′ij
and γ̂(t) = r′′ij if t = t′′ij , 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i). Let q′ be a new counter place.

We construct 2-PN N ′
2 = (P ′, T ′, F ′, ϕ′, ι′,M ′) corresponding to the grammar

(V ′, Σ, S,R′) where

P ′ = P ∪ {p′ij | 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)} ∪ {q′},
T ′ = T ∪ {t′ij | 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)} ∪ {t′′ij | 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)},
F ′ = F ∪ {(pij , t

′
ij) | 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)}

∪ {(t′ij , p′ij) | 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)}
∪ {(p′i,j , t′′i,j) | 1 ≤ i ≤ 2, 1 ≤ j ≤ s(i)}
∪ {(t′′ij , p) | p = β−1(x), |wij |x > 0, 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i)}
∪ {(t′′ij , q′) | 1 ≤ j ≤ k(1)}
∪ {(q′, t′′2j) | 1 ≤ j ≤ k(2)}.

For the weight function we set ϕ′(x, y) = ϕ(x, y) if (x, y) ∈ F and ϕ′(x, y) = 1,
otherwise.

The initial and final markings are defined by ι′(β̂−1(S)) = 1, ι′(p) = 0 for all
p ∈ P ′\{β̂−1(S)} and for any τ ′ ∈M ′, τ ′(p) = 0 for all p ∈ P ′\{β̂−1(x) | x ∈ Σ}.

The inclusion L(G) ⊆ L(G′) is obvious, it follows from the construction of G′.
Let S π=⇒ w, π = r1r2 · · · rn be a derivation in G′ with the occurrence sequence
ν = t1t2 · · · tn of transitions N ′

2 where ti = γ̂−1(ri), 1 ≤ i ≤ n enabled at ι′ and
finished at τ ′ ∈M ′.

It is obvious that if for some 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i) a production rule
|π|r′

ij
> 0, r′ij : Aij → A′

ij then |π|r′′
ij
> 0, r′′ij : A′

ij → wij , and |π|r′
ij

= |π|r′′
ij

.
Without loss of generality we can assume that a rule r′′ij is the next to a rule r′ij

in π (as to the nonterminal A′
ij only the rule r′′ij is applicable and we can change

the order in which the derivation π is used). Then we can replace any derivation
steps of the form x1Aijx2 ⇒r′

ij
x1A

′
ijx2 ⇒r′′

ij
x1wijx2 by x1Aijx2 ⇒rij x1wijx2.

Accordingly, the occurrence sequence µ
t′ij−−→ µ′

t′′ij−−→ µ′′ is replaced by µ
tij−−→ µ′′

where tij = γ̂−1(rij), t′ij = γ̂−1(r′ij) and t′′ij = γ̂−1(r′′ij), 1 ≤ i ≤ 2, 1 ≤ j ≤ k(i).
Clearly, L(G′) ⊆ L(G).

Let us consider the general case k ≥ 1. Let G = (V,Σ, S,R,Nk) be a k-PN
controlled grammar (with or without erasing rules) whereNk = (P, T, F, ϕ, ι,M)
is a k-PN with the counters q1, q2, . . . , qk. We can repeat the arguments of the
proof for k = 1 considering qk instead of q and adding the new counter place
qk+1.

For k ≥ 1, let the language Lk be defined by

Lk = {
k∏

i=1

ani

i b
ni

i c
ni

i | ni ≥ 1, 1 ≤ i ≤ k}.

218 J. Dassow and S. Turaev

Then we can show analogously to Example 8 and Lemma 9 that, for k ≥ 1,

Lk+1 ∈ PNk+1 and Lk+1 �∈ PNk.

Thus the inclusions are strict. �

5 Closure Properties

We define the following binary form for k-PN controlled grammars, which will
be used in some of the next proofs.

Definition 15. A k-PN controlled grammar G = (V,Σ, S,R,Nk) is said to be
in a binary form if for each rule A → α the length of the α is not greater than
2, i.e. |α| ≤ 2.

Lemma 16 (Binary Form). For each k-PN controlled grammar there exists
an equivalent k-PN controlled grammar in the binary normal form.

Lemma 17 (Union). The family of languages PNk, k ≥ 1 is closed under
union.

Proof. Let G1 = (V1, Σ1, S1, R1, Nk1) and G2 = (V2, Σ2, S2, R2, Nk2) be k-PN
controlled grammars. We assume (without loss of generality) that V1∩V2 = ∅. Let
(Pi, Ti, Fi, ϕi, ιi) be the cf Petri net corresponding to the context-free grammar
(Vi, Σi, Si, Ri), i = 1, 2 and let Qi = {qij | i = 1, 2, 1 ≤ j ≤ k}, i = 1, 2 be
the set of the counters. Then k-PN is defined by Nki = (Pi ∪ Qi, Ti, Fi ∪ Fi1 ∪
Fi2, ϕ

′
i, ι

′
i,M

′
i), i = 1, 2 (with the notions of Definition 4). We construct the k-PN

controlled grammar G = (V1 ∪ V2 ∪ {S}, Σ1 ∪ Σ2, S,R1 ∪ R2 ∪ {S → S1, S →
S2}, Nk) where Nk = (P, T, F, ϕ, ι,M) is defined by

– P = P1 ∪ P2 ∪Q1 ∪ {q} where q is labeled by S;
– T = T1 ∪ T2 ∪ {t01, t02} where t01 and t02 are labeled by the rules S → S1

and S → S2, respectively;
– F = F1 ∪ F2 ∪ F11 ∪ F12 ∪ {(q, t0i), (t0i, q0i) | i = 1, 2} ∪ {(t, q1i) | (t, q2i) ∈
F21, 1 ≤ i ≤ k} ∪ {(q1i, t) | (q2i, t) ∈ F22, 1 ≤ i ≤ k} where q0i is labeled by
Si, i = 1, 2;

– ϕ(x, y) = ϕ′
i(x, y) if (x, y) ∈ Fi, i = 1, 2 and ϕ(x, y) = 1 otherwise;

– ι(q) = 1, ι(q01) = ι(q02) = 0 and τ(q) = τ(q01) = τ(q02) = 0 for any τ ∈M
ι(p) = ι′i(p) and for any τ ∈M , τ(p) = τ ′i(p) if p ∈ Pi \ {q0i}, i = 1, 2;
ι(p) = 0 and for any τ ∈M , τ(p) = 0 if p ∈ Q1.

By the construction of Nk any occurrence of its transitions can start by firing of
t01 or t02 then transitions of T1 or transitions of T2 can occur, correspondingly
we start a derivation with the rule S → S1 or S → S2 then we can use rules of
R1 or R2.

A string w is in L(G) iff there is a derivation S ⇒ Si ⇒∗ w ∈ L(Gi), i = 1, 2.
On the other hand, we can initialize any derivation Si ⇒∗ w ∈ L(Gi) with the
rule S → Si, i = 1, 2, i.e. w ∈ L(G). �

k-Petri Net Controlled Grammars 219

Lemma 18 (Concatenation). The family of languages PNk, k ≥ 1 is not
closed under concatenation.

Proof. Let Lk be the language given at the end of the proof of Theorem 14.
Then Lk ∈ PNk and L2k = Lk · Lk /∈ PNk.

Using the standard proof we can show that

Lemma 19. For L1 ∈ PNk, k ≥ 1 and L2 ∈ PNm, m ≥ 1, L1 ·L2 ∈ PNk+m.

Lemma 20 (Substitution). The family of languages PNk, k ≥ 1 is closed
under substitution by context-free languages.

Proof. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar with k-Petri net
Nk = (P, T, F, ϕ, ι,M). Let P = PV ∪ PΣ where PV = {p | p = β−1(A), A ∈ V }
and PΣ = {p | p = β−1(a), a ∈ Σ}. We consider a substitution s : Σ∗ → 2U∗

with s(a) ∈ CF for each a ∈ Σ. Let Ga = (Va, Σa, Sa, Ra) be a context-free
grammar for s(a), a ∈ Σ. We can assume that V ∩ Va = ∅ for any a ∈ Σ and
Va ∩ Vb = ∅ for any a, b ∈ Σ, a �= b.

Let Na = (Pa, Ta, Fa, ϕa, ιa) be the corresponding cf Petri net to Ga, a ∈ Σ
with the bijections βa and γa. For each place p ∈ PΣ we replace its label
a = β(p) by Sa in Nk and we define the k-PN controlled grammar G′ =
(V ∪

⋃
a∈Σ Va, U, S,R

′ ∪
⋃

a∈Σ Ra, N
′
k) where R′ is the set of rules obtained

by replacing each occurrence of a ∈ Σ by Sa in R and N ′
k is defined by

N ′
k = (P ∪

⋃
a∈Σ Pa, T ∪

⋃
a∈Σ Ta, F ∪

⋃
a∈Σ Fa, ϕ

′, ι′,M ′) where

– ϕ′(x, y) = ϕ(x, y) if (x, y) ∈ F and ϕ′(x, y) = ϕa(x, y) if (x, y) ∈ Fa, a ∈ Σ;
– ι′(p) = ι(p) if p ∈ P and ι′(p) = 0 if p ∈ Pa, a ∈ Σ;
– for any τ ′ ∈M ′, τ ′(p) = 0 if p ∈ P or p ∈ Pa \ {β−1

a (b) | b ∈ Σa}, a ∈ Σ.

Obviously, L(G′) ∈ PNk. �

Lemma 21 (Mirror Image). The family of languages PNk, k ≥ 1 is closed
under mirror image.

Proof. Let G = (V,Σ, S,R,Nk) be a k-PN controlled grammar. The context-free
grammar (V,Σ, S,R) and its reversal (V,Σ, S,RR) have the same corresponding
cf Petri net N = (P, T, F, ϕ, ι) as N does not preserve the order of the positions
of the output places for each transition. Thus we can also use the k-Petri net
Nk as a control mechanism for the grammar (V,Σ, S,RR), i.e. we define GR =
(V,Σ, S,RR, Nk). Clearly, L(GR) ∈ PNk. �

Lemma 22 (Intersection with Regular Languages). The family of lan-
guages PNk, k ≥ 1 is closed under intersection with regular languages.

The results of the previous lemmas are summarized in the following theorem

Theorem 23. The family of languages PNk, k ≥ 1 is closed under union, sub-
stitution, mirror image, intersection with regular languages and it is not closed
under concatenation.

220 J. Dassow and S. Turaev

References

1. ter Beek, M.H., Kleijn, H.C.M.: Petri net control for grammar systems. In: Brauer,
W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing.
LNCS, vol. 2300, pp. 220–243. Springer, Heidelberg (2002)

2. Ceska, M., Marek, V.: Petri nets and random-context grammars. In: Proc. 35th
Spring Conference: Modeling and Simulation of Systems (MOSIS 2001), MARQ
Ostrava Hardec nad Moravici, pp. 145–152 (2001)

3. Crespi-Reghizzi, S., Mandrioli, D.: Petri nets and commutative grammars. Internal
Report No. 74-5, Laboratorio di Calcolatori, Instituto de Elettrotecnica ed Elettron-
ica del Politecnico di Milano, Italy (1974)

4. Dassow, J., Pǎun, G.: Regulated rewriting in formal language theory. Springer,
Berlin (1989)

5. Hack, M.: Petri net languages. Computation Structures Group Memo 124, p. 128.
MIT, Cambridge (1975)

6. Hauschildt, D., Jantzen, M.: Petri nets algorithms in the theory of matrix grammars.
Acta Informatica 31, 719–728 (1994)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and com-
putation. Addison-Wesley Longman Publishing Co., Inc, Amsterdam (1990)

8. Reisig, W., Rozenberg, G. (eds.): Lectures on Petri nets I: Basic models. LNCS,
vol. 1491. Springer, Heidelberg (1998)

9. Turaev, S.: Petri Net Controlled Grammars. In: Proc. 3rd Doctoral Workshop on
MEMICS-2007, Znojmo, Czech Republic, pp. 233–240 (2007)

2-Synchronizing Words

Pawe�l Gawrychowski1,� and Andrzej Kisielewicz2,��

1 Institute of Computer Science, University of Wroc�law
ul. Joliot-Curie 15, 50-383 Wroc�law, Poland

gawry1@gmail.com
2 Institute of Mathematics, University of Wroc�law

pl. Grunwaldzki 2, 50-384 Wroc�law, Poland
kisiel@math.uni.wroc.pl

Abstract. A word w over an alphabet Σ is n-synchronizing if it resets
every (n + 1)-state synchronizing automaton over this alphabet. For a
fixed n and Σ, n-synchronizing words can be recognized in polynomial
time, yet no practical algorithm is known. In this paper we show that
one cannot expect to find such an algorithm. We prove that the problem
of recognizing 2-synchronizing words, where the input consists of a word
and an alphabet, is co-NP-complete. We also show that the length of a
2-synchronizing word is at least 2|Σ|2, which improves the lower bound
known so far.

Keywords: Formal languages, synchronizing automata.

1 Introduction

In this paper we consider deterministic finite automata A = 〈Q,Σ, δ〉 (in short
DFA) with the state set Q, the input alphabet Σ, and the total transition func-
tion δ : Q × Σ → Q. The action of Σ on Q given by δ extends naturally on
the action of the words over Σ on Q; this action, in this paper, will be denoted
simply by concatenation: qw = δ(q, w). Similarly, Qw will stand for ∪q∈Qδ(q, w).

The automaton A is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A in the sense that |Qw| = 1. The problem of DFA synchronization
is very natural and its various aspects were considered in the literature (see e.g.,
[2,3,7] and [8] for more references). The most famous is Černý’s conjecture which
states that for a synchronizing automaton with n states there exists a reset word
of length not exceeding (n− 1)2 (see [5]).

In [1], a word w over a fixed alphabet Σ is called n-synchronizing if it resets
every synchronizing DFA with n+ 1 states (cf. also [3]). In [9] it is proved that
each such a word is n-full, that is, it contains any word of length n among its
subwords (in particular, the alphabet in question is determined by the letters
occurring in the word). Since there are finitely many automata with n+1 states
� Research supported by MNiSW grant number N206 024 31/3826, 2006-2008 and

AutoMathA program of the ESF.
�� Research supported by Polish KBN grant P03A 03430.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 221–231, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 P. Gawrychowski and A. Kisielewicz

and a fixed finite alphabet, recognizing n-synchronizing words is decidable and
may be done in polynomial time. (This is in contrast with the fact that recog-
nizing 2-collapsing words is co-NP-complete; cf. [6]). In fact, the language of
n-synchronizing words over a fixed alphabet is regular, as it is an intersection
of finitely many regular languages (see [3]). Yet, so far no efficient algorithm of
recognizing 2-synchronizing words is known. For example, algebraic characteri-
zation from [1] leads to an exponential time algorithm (with respect to the word
length). In this paper we prove that the problem becomes clearly hard once we
do not fix the alphabet. This is important, because it shows that certain types
of characterizations and algorithms sought so far cannot exist.

Another question in this context is that concerning the minimum possible length
of an n-synchronizing word. It has received much attention in a similar setting
of n-collapsing words (recall that w is n-collapsing if |Qw| ≤ |Q| − n for each
automaton for which such decrease is possible; eachn-collapsingword is easily seen
to be also n-synchronizing, but the converse is not true). Let C(n, t) and S(n, t)
be the minimum possible lengths of an n-collapsing word and an n-synchronizing
word over an alphabet of size t, respectively. Construction of [9] shows that

S(n, t) ≤ C(n, t) ≤ t 12 (n2+n) + o(t
1
2 (n2+n))

thus improving the work of [12]. On the other hand, as an immediate consequence
of the fact that both n-collapsing and n-synchronizing words are n-full, we get
the following lower bound (see [9]):

tn + n− 1 ≤ S(n, t) ≤ C(n, t)

In [11] the above lower bound has been improved to 2t2 for the case of C(2, t).
We strengthen this result by proving the same for S(2, t).

2 Computational Complexity

Definition 1. A word w over a fixed alphabet Σ is called n-synchronizing if
it resets every synchronizing DFA over Σ with n + 1 states (in the sense that
|Qw| = 1).

It is well known that each such word is n-full, meaning that it contains any word
of length n as a factor (to see why, take automaton recognizing word s of length
n; it has n+1 states and is synchronized by w iff s is a subword of w). It justifies
the following:

Definition 2.A wordwover any alphabet isn-synchronizing if it isn-synchronizing
over the alphabet consisting of the letters occurring in w.

In this section we will consider the following decision problem:
INSTANCE: A word w;
QUESTION: Is w 2-synchronizing?

where letters of w are reasonably encoded (for example as 1i0).

2-Synchronizing Words 223

The problem above can be viewed as one concerning automata with exactly
3 states. Given a word w, let Σ(w) denote the letters occurring in w. To show
that the above problem is co-NP-complete, we will focus on the following com-
plementary problem:

INSTANCE: A word w;
QUESTION: Is there a synchronizing automatonA = 〈{0, 1, 2}, Σ(w), δ〉

such that |{0, 1, 2}w| > 1?

To prove that this problem is NP-hard we shall use a reduction from 3SAT.
Our idea is to treat 3-state DFA’s as objects encoding truth assignments. To
make things easier (and working) we shall restrict ourselves to a certain type of
synchronizing DFA, which we call TA-automata, and to a special kind of words
designed to encode instances of 3-SAT. We assume that each such a word is of
the form w = pq, where p is a fixed word resetting every synchronizing DFA
except for TA. For TA-automata we will have {0, 1, 2}p = {1, 2}. The remaining
suffix q will depend on the instance C of 3-SAT so that for each TA-automaton
we will have |{1, 2}q| > 1 if and only if the corresponding truth assignment
satisfies all the clauses of C.

Given an automaton A = 〈Q,Σ, δ〉, transformations of Q determined by the
letters of Σ are called transformations of A and are denoted by corresponding
letters, if no confusion can arise. Following [6], we say that a transformation a
is of type {x, y}/z if xa = ya, while z is the unique state not in Qa.

To define TA-automata and construct p we will need some insight into the
structure of synchronizing automata. It is clear that for a DFA to be synchro-
nizing at least one letter has to act as a non-permutation (though this condition
is clearly not sufficient). As we are interested in automata that are ”hardest” to
synchronize, we omit from our consideration those DFA that can be reset by a
word of length not exceeding 3.

Lemma 1. Let A be a synchronizing DFA with 3 states that cannot be reset by
a word of length at most 3. Then the states may be labeled with numbers 0, 1, 2
so that the following conditions hold:

(i) There is a transformation a of type {0, 1}/0 in A.
(ii) All transformations of A are either permutations or transformations of type

{0, 1}/0.
(iii) All permutations of A belong to {(0, 1, 2), (0)(1, 2), (0, 1)(2), (0)(1)(2)}.
(iv) Either (0, 1, 2) is among the permutations of A or both (0)(1, 2) and (0, 1)(2)

are among the permutations of A.

Proof. First note that since no single letter is resetting A, all transformations
of A are either permutations or transformations of type {x, y}/z. If a is of type
{x, y}/z with z /∈ {x, y}, then aa is resetting A. This yields (i).

Suppose that w = a1a2 . . . an, is a synchronizing word with the smallest n ≥ 4.
We may assume that a1 is a non-permutation and that a1 = a. By assumption,
for all i = 1, . . . , n− 1,

|{0, 1, 2}a1 . . . ai| = 2

224 P. Gawrychowski and A. Kisielewicz

0 1 2

0 1 2

Fig. 1. Transformations of type {0, 1}/0

0

1

2

(a)

0

1

2

(b)

0

1

2

(c)

Fig. 2. A from Lemma 1 contains (a) or
both (b) and (c) among its permutations

and all {0, 1, 2}a1 . . . ai are pairwise distinct (otherwise there would be a shorter
synchronizing word). Since there are only 3 different subsets of {0, 1, 2} consisting
of exactly 2 elements, we get that in fact n = 4 (which proves the well known
fact that Černý’s conjecture holds for |Q| = 3). We may consider now in detail
the sequence of images under prefixes of w:

{0, 1, 2} a1→ {1, 2} a2→ {0, 2} a3→ {0, 1} a4→ {s}

for some s ∈ {1, 2}. Note that {0, 1} has to appear as the last 2-element image,
since otherwise the synchronizing word would be shorter. For the same reason it
is clear that each non-permutation is of the type {0, 1}/z, and further that z = 0,
which proves (ii). It follows also that a3 and a2 are permutations. Consequently,
for each permutation c, {1, 2}c = {0, 2} or {1, 2}, which proves (iii); and if
c = (0, 1, 2) is among the permutations of A, then acca is a synchronizing word;
otherwise, we must have a2 = (0, 1)(2) and a3 = (0)(1, 2), proving (iv). �

Now we define TA-automaton to be one isomorphic to A = 〈Q,Σ, δ〉 with Q =
{0, 1, 2} and Σ = {a, b} ∪ V , such that a acts as a non-permutation of type
{0, 1}/0, b acts as the permutation (0, 1, 2), and all v ∈ V act as permutations
(0)(1, 2) or (0)(1)(2) (the identity) (see Figure 3).

To construct the word p we will use the obvious fact that if w resets A, then
each word with a factor w resets A as well. We will need the following:

Lemma 2. Let a, b ∈ Σ. If p ∈ Σ∗ contains as a factor every word:

(i) xyz, for each x, y, z ∈ Σ,
(ii) xyzx, for each x, y, z ∈ Σ satisfying x �= a or y �= b,
(iii) ab3za, for each z ∈ Σ,

then p is synchronizing for each synchronizing automaton A which is not TA.

Proof. Observe that the above conditions easily ensure that p resets each syn-
chronizing automaton which can be synchronized by a word of length at most
3 or has a non-permutation among transformations corresponding to letters dif-
ferent than a. So, we may assume that the letter a acts as the transformation of
type {0, 1}/0 (and is the only non-permutation), and (iv) of Lemma 1 holds.

2-Synchronizing Words 225

a

or

0

1

2

0

1

2

b

0

1

2

v (representing variable)

or

0

1

2

false

0

1

2

true

Fig. 3. Transformations of TA-automaton

Now, if there are d, e ∈ Σ such that d acts as (0, 1)(2) and e acts as (0)(1, 2),
then we have two possibilities:

(i) d �= b, then xyzx is synchronizing for x = a, y = d and z = e,
(ii) d = b, then ab3za is synchronizing for z = e (since d3 = b3 = b = d).

Otherwise, there is c ∈ Σ acting as (0, 1, 2) and again we have two possibilities:

(i) c �= b, then xyzx is synchronizing with x = a, y = z = c,
(ii) c = b is the only letter acting as (0, 1, 2).

In the latter case, if there is d ∈ Σ acting as (0, 1)(2), then xyzx is synchro-
nizing with x = a, y = d, z = b; otherwise, every letter different from a and b
acts as (0)(1, 2) or as the identity, which means that A is TA. �

Recall that we wish to make p synchronizing for exactly those synchronizing
automata which are not TA. Using the lemma above it is easy to ensure that
p will be synchronizing for required automata, but making sure that it is not
synchronizing for TA-automata requires more work.

Lemma 3. Let a, b ∈ Σ and p be a concatenation of the following words:

(i) x2(xyz)z5a, for each x, y ∈ Σ,
(ii) y2x5(xyzx)x5a, for each x, y, z ∈ Σ satisfying x �= a or y �= b,
(iii) ab3za, for each z ∈ Σ.

Then p is synchronizing exactly for those synchronizing automata that are not
TA. For TA-automata we have {0, 1, 2}p = {1, 2}.

Proof. Due to the previous lemma we only have to check whether {1, 2}w =
{1, 2} for every w being one of the above words when A is TA-automaton. It is
an easy (although a little tedious) case inspection:

(i) {1, 2}x2(xyz)z5a = {1, 2}x3yz6a = {1, 2}yz6a

{1, 2}yz6a =

⎧⎪⎨⎪⎩
{1, 2}z6a = {1, 2}a = {1, 2} if y �= b

{0, 2}z6a = {0, 2}a = {1, 2} if y = b, z �= a

{0, 2}z6a = {1, 2}a = {1, 2} if y = b, z = a

226 P. Gawrychowski and A. Kisielewicz

(ii) y2x5(xyzx)x5a ≡ y2x6yzx6a. We have two possibilities:
• x = a, y �= b, so

{1, 2}y2x6yzx6a = {1, 2}x6yzx6a = {1, 2}yzx6a = {1, 2}zx6a

{1, 2}zx6a =

{
{1, 2}x6a = {1, 2}a = {1, 2} if z �= b

{0, 2}x6a = {1, 2}a = {1, 2} if z = b

• x �= a, then y2x6yzx6a ≡ y2yza ≡ y3za and

{1, 2}y3za = {1, 2}za =

{
{0, 2}a = {1, 2} if z = b

{1, 2}a = {1, 2} if z �= b

(iii) {1, 2}ab3za = {1, 2}za = {1, 2}.

As p is just a concatenation of the words w for which {1, 2}w = {1, 2}, we know
that {1, 2}p = {1, 2}. On the other hand, at least one of these words contains a,
so in fact {0, 1, 2}p = {1, 2}. �

Now we can proceed to construct the suffix q of the input word. Let C =
{C1, . . . , Cm} be a 3-SAT instance, where Ci are 3-literal clauses, and let V
be the set of variables occurring in C. With each truth assignment T for C we
associate a TA-automaton A = 〈{0, 1, 2}, Σ, δ〉, where Σ = {a, b} ∪ V , a acts
as a non-permutation of type {0, 1}/0, b acts as (0, 1, 2), and all v ∈ V act as
permutations (0)(1)(2) or (0)(1, 2), depending on whether T (v) is false or true,
respectively. We put

q = c1ac2a . . . acma

where ci ∈ ({b} ∪ V)∗ will be an encoding of the clause Ci. Observe that
|{1, 2}q| = 1 if and only if there is i ∈ {1, . . . ,m} such that 2 /∈ {1, 2}ci. So
we wish to construct ci so that {1, 2}ci = {0, 1} if and only if A corresponds to
a truth assignment T that makes Ci false (note that at this point we consider
only TA-automata).

Permutation linear function

(0)(1)(2) x

(012) x + 1

(021) x + 2

(0)(12) 2x

(01)(2) 2x + 1

(02)(1) 2x + 2

Fig. 4. Correspondence between elements of S3 and nonconstant linear functions over Z3

At this step we make use of the fact that that the permutations of S3 can
be presented as nonconstant linear functions αx+ β over Z3 (see Figure 4). For
example, in terms of the linear functions b ≡ x + 1, and each v ∈ V is equal

2-Synchronizing Words 227

either to x or to 2x. This correspondence gives us a convenient way of dealing
with permutation transformations of a TA-automaton (their composition can be
viewed as a multilinear polynomial, which is easy to describe).

For a given TA-automaton A (associated with a truth assignment T as de-
scribed above), we define

val(v) =

{
1 if v is set to false in T
2 otherwise.

Then v ≡ val(v)x for any truth assignment. Our aim is to construct ci so that
ci ≡ x + 2 whenever the corresponding clause is valuated false, and ci ≡ x + 1,
otherwise (then {1, 2}ci = {0, 1} or {0, 2}, respectively). To this aim we will
need the following observation:

Lemma 4. For each mapping φ : 2V → Z3 there is a word w ∈ ({b}∪ V)∗ such
that

w ≡ x+
∑
U⊆V

φ(U)
∏
v∈U

val(v)

for all truth assignments on V .

Proof. Obviously, it is enough to show that for each U ⊆ V there is a word w
such that

w ≡ x+
∏
v∈U

val(v)

We apply induction on the size of U :

(i) U = ∅, then we can take w = b.
(ii) |U | > 0. Choose vi ∈ U . By induction hypothesis there is a word w′ such

that
w′ ≡ x+

∏
v∈U ′

val(v)

where U ′ = U \ {vi}. We can simply take w = viw
′vi because

viw
′vi ≡ val(vi)

(
val(vi)x+

∏
v∈U ′

val(v)

)
≡ x+

∏
v∈U

val(v)

(the last equality follows from the fact that x2 ≡ 1 (mod 3) for x ∈ {1, 2}). �

Now, let Ci = {l1, l2, l3} be a clause in C. To construct ci with the required
properties observe first that for any r, s, t ∈ {1, 2} the product r(s+2)(t+2) ≡ 2
(mod 3) if and only if r = s = t = 2. By the last lemma there exists a word
ci ∈ {b, v1, v2, v3}∗ such that:

ci ≡ x+α1val(v1) (α2val(v2)+2) (α3val(v3)+2), where αi =

{
1 if li = ¬vi

2 if li = vi

228 P. Gawrychowski and A. Kisielewicz

As ci maps 0 to 2 if and only if all li are set to false, {1, 2}cia = {1, 2} or {z},
depending on whether TA-automaton A corresponds to a truth assignment that
makes Ci true or false, respectively.

For the whole word w = pq we have that there exists a synchronizing automa-
ton A such that w does not reset A if and only if there is a truth assignment T
such that all the clauses in C are satisfied. Definitions in Lemma 3 and Lemma 4
show that the whole construction of w may be done in polynomial time. The
original problem is easily seen to be in co-NP (as we only have to guess automata
for which the given word is not synchronizing and check whether it is indeed the
case), so we have completed the proof of the following theorem:

Theorem 1. The problem ofrecognizing 2-synchronizing words is co-NP-complete.

It seems that the above reasoning used to settle the computational complexity
of recognizing n-synchronizing words for n = 2 could be used to prove co-NP-
completeness of this problem for other values of n. It turns out, however, that
choosing suitable encoding requires finding automata having shortest synchro-
nizing word of greatest length for the given value of |Q|. It seems possible for
n = 3 but the details become very tedious. For greater values of n this ap-
proach does not seem feasible as the number of different automata that should
be considered becomes very large.

3 Lower Bound

Let S(n, t) be the minimum possible length of a n-synchronizing word over Σ =
{a1, . . . , at}. Knowing that n-synchronizing word must be n-full yields:

Lemma 5
S(n, t) ≥ tn + n− 1

Proof. Take any n-synchronizing word w over Σ. For each s ∈ Σn mark the last
letter of its first occurrence in w. As no letter was marked twice and the first
n− 1 letters could not been marked |w| ≥ tn + n− 1. �

Knowing that n-synchronizing word must be n-full is not enough to show better
lower bound as we can easily construct a n-full word of length tn + n− 1 using
de Bruijn sequence. Using a stronger method we will prove

S(2, t) ≥ 2t2

which is much closer to the known values of S(2, 2) = 8 and S(2, 3) = 20.
The general approach is similar to the one of [11], where it was used to deal

with collapsing words. Let w be a 2-synchronizing word over Σ = {a1, . . . , at}.
We will show that each ak ∈ Σ must occur in w at least 2t times. Choose any
ak ∈ Σ and rewrite w as

w = w0a
+
k w1a

+
k w2 . . . a

+
k wma

+
k wm+1, each wi ∈ (Σ \ {ak})∗

2-Synchronizing Words 229

To show that m cannot be small, we will focus on some subset of all syn-
chronizing automata which is easy to deal with, yet complicated enough. Let ak

correspond to a transformation of type {0, 1}/0 and the remaining n = t − 1
letters to permutations belonging to the set {x, x + 1, x + 2} (where we again
represent elements of S3 as nonconstant linear functions over Z3).

As long as at least one permutation is different than x, defined automaton
A is synchronizing. ak is the only nonpermutation so the only way for w to
synchronize A is that |{1, 2}wiak| = 1 holds for some i ∈ {1, . . . ,m}. This
condition is equivalent to 0wi = 2 for some i ∈ {1, . . . ,m}.

Thus from the assumption that w is 2-synchronizing follows that for some
v1, . . . ,vm ∈ Zn

3

∀x∈Zn
3 \�0∃i∈{1,...,m} vix ≡ 2 (mod 3) (1)

holds, where vector vi is simply a compact description of wi: its k-th coordinate
is the number of times (modulo 3) the k-th element of Σ \ {ak} occurs in wi.
Now we can focus on this algebraic formulation, which turns out to be quite easy
to deal with.

Define

A =

⎧⎨⎩
⎛⎝v1

. . .
vm

⎞⎠x | x ∈ Zn
3

⎫⎬⎭
and observe that dimA = n as otherwise the equation⎛⎝v1

. . .
vm

⎞⎠x = #0

would have at least two different solutions, one of them being nonzero and con-
tradicting (1). Hence n ≤ m, but we can prove even more. W.l.o.g assume that

A = {[y1, . . . , yn,u1y, . . . ,um−ny] | y ∈ Zn
3 }

We can restate (1) in the following form:

∀y∈{0,1}n\�0∃i∈{1,...,m−n} uiy ≡ 2 (mod 3) (2)

It is very easy to find u1, . . . ,um−n for which the above condition is satisfied
when m− n ≥ n:

u
(j)
i =

{
2 if i = j and i ≤ n
0 otherwise

What is a little surprising, this simple construction is the best we can hope
for. To prove its optimality, assume that m− n < n. From (2) we get that it is
possible to find m − n + 1 vectors v1, . . . ,vm−n+1 such that sum of their each
nonempty subset have at least one coordinate equal to 2 (modulo 3). Thus to
get contradiction we need the following lemma:

Lemma 6. Take any v1, . . . ,vk+1 ∈ Zk
3 . Then

∑
v∈V v ∈ {0, 1}k (where coor-

dinates are taken modulo 3) for some nonempty V ⊆ {v1, . . . ,vk+1}.

230 P. Gawrychowski and A. Kisielewicz

Proof. We use the beautiful Combinatorial Nullstellensatz method of Noga Alon
(see [10]). Assume that there are v1, . . . ,vk+1 ∈ Zk

3 such that
∑

v∈V v /∈ {0, 1}k

for each nonempty V . We can restate this condition by defining

P (x1, . . . , xk+1) =
k∏

i=1

1 +
k+1∑
j=1

v
(i)
j xj

and saying that P (x1, . . . , xk+1) = 0 for each [x1, . . . , xk+1] ∈ {0, 1}k+1 \#0. Now
take

Pall(x1, . . . , xk+1) = P (x1, . . . , xk+1) −
k+1∏
i=1

(1 − xi)

which equals 0 for each [x1, . . . , xk+1] ∈ {0, 1}k+1. As each xi is 0 or 1, the same
is true for the truncated version of Pall, Pall, in which we replace each xe

i by xi

(for example x2
1x

3
2 + x3

1x2 becomes 2x1x2). Pall is a multilinear polynomial over
Z3 so the following lemma applies:

Lemma 7. Let Q = Q(x1, . . . , xm) be a multilinear polynomial over Z3. If
Q(x1, . . . , xm) = 0 for each [x1, . . . , xm] ∈ {0, 1}m then Q ≡ 0.

Proof. Induction on m.

(i) m = 1, then Q(x1) = ax1 + b. As Q(0) = Q(1) = 0, a = b = 0.
(ii) m > 1, then Q(x1, . . . , xm) = Q1(x1, . . . , xm−1) + xmQ2(x1, . . . , xm−1). By

induction hypothesis, Q1 ≡ 0. But if Q1 ≡ 0 then by induction hypothesis
also Q2 ≡ 0 so the whole Q vanishes. �

Now applying the above lemma we get that Pall ≡ 0 which is a contradiction: P
has degree at most k so the term

∏k+1
i=1 xi cannot vanish in Pall. �

This argument shows that m ≥ 2n = 2(t− 1). Combining with the fact that a2
k

must be a factor of w, we get that ak occurs in w at least 2t times. As ak was
arbitrarily chosen:

Theorem 2. The length of a 2-synchronizing word over Σ must be at least 2|Σ|2.

The improved lower bound still seems to be really far from being accurate
(though it is much better that the previously known, especially for the case
of S(2, 2) and S(2, 3)). The best known explicit construction gives words that
are actually n-collapsing so it should be possible to improve it by using the fact
that n-synchronizing word does not have to be n-collapsing (but it seems that
such modification is not easy).

References

1. Ananichev, D.S., Cherubini, A., Volkov, M.V.: Image reducing words and sub-
groups of free groups. Theor. Comput. Sci. 307, 77–92 (2003)

2. Ananichev, D.S., Volkov, M.V.: Synchronizing monotonic automata. Theor. Com-
put. Sci. 327(1), 225–239 (2004)

2-Synchronizing Words 231

3. Ananichev, D.S., Volkov, M.V.: Collapsing words vs. synchronizing words. In:
Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
166–174. Springer, Heidelberg (2002)

4. Ananichev, D.S., Petrov, I.V., Volkov, M.V.: Collapsing words: A Progress Report.
In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 11–21. Springer,
Heidelberg (2005)

5. Černý, J.: Poznámka k. homogénnym experimentom s konecnými automatmi. Mat.
fyz. čas SAV 14, 208–215 (1964)

6. Cherubini, A., Gawrychowski, P., Kisielewicz, A., Piochi, B.: A combinatorial ap-
proach to collapsing words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 256–266. Springer, Heidelberg (2006)

7. Kari, J.: Synchronizing finite automata on Eulerian digraphs. In: Sgall, J., Pultr, A.,
Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 432–438. Springer, Heidelberg
(2001)

8. Mateescu, A., Salomaa, A.: Many-valued truth functions, Černy’y’s conjecture and
road coloring. EATCS Bull. 68, 134–150 (1999)

9. Margolis, S.W., Pin, J.-E., Volkov, M.V.: Words guaranteeing minimum image.
Internat. J. Foundations Comp. Sci. 15, 259–276 (2004)

10. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8, 7–29 (1999)
11. Pribavkina, E.V.: On Some Properties of the Language of 2-Collapsing Words. In:

De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572. Springer, Heidelberg
(2005)

12. Sauer, N., Stone, M.G.: Composing functions to reduce image size. Ars Combina-
toria 31, 171–176 (1991)

Not So Many Runs in Strings

Mathieu Giraud1,2

1 CNRS, LIFL, Université Lille 1, 59 655 Villeneuve d’Acsq cedex, France
2 INRIA Lille Nord-Europe, 59 650 Villeneuve d’Ascq, France

mathieu.giraud@lifl.fr

Abstract. Since the work of Kolpakov and Kucherov in [5,6], it is known
that ρ(n), the maximal number of runs in a string, is linear in the length
n of the string. A lower bound of 3/(1+

√
5)n ∼ 0.927n has been given by

Franek and al. [3,4], and upper bounds have been recently provided by
Rytter, Puglisi and al., and Crochemore and Ilie (1.6n) [8,7,1]. However,
very few properties are known for the ρ(n)/n function. We show here
by a simple argument that limn�→∞ ρ(n)/n exists and that this limit is
never reached. Moreover, we further study the asymptotic behavior of
ρp(n), the maximal number of runs with period at most p. We provide
a new bound for some microruns : we show that there is no more than
0.971n runs of period at most 9 in binary strings. Finally, this technique
improves the previous best known upper bound, showing that the total
number of runs in a binary string of length n is below 1.52n.

1 Introduction

The study of repetitions is an important field of research, both for word combi-
natorics theory and for practice, with applications in domains like computational
biology or cryptanalysis. The notion of run (also called maximal repetition or
m-repetition [5]) allows a compact representation of the set of all tandem pe-
riodicities, even fractional, in a string. The proper counting of those runs is
important for all algorithms dealing with repetitions.

Since the work of Kolpakov and Kucherov in [5,6], it is known that ρ(n), the
maximal number of runs in a string, is linear in the length n of the string. They
gave the first algorithm computing all runs in a linear time, but without an
actual constant.

Upper bounds have been recently provided by Rytter (5n) [8] and Puglisi,
Simpson, and Smyth (3.48n) [7]. The best upper bound known today, 1.6n, was
obtained by Crochemore and Ilie [1]. They count separately the microruns, that
is the runs with short periods, and the runs with larger ones. Crochemore and
Ilie show that the number of microruns with period at most 9 verifies ρ9(n) ≤ n.
For larger runs, they prove that

ρ≥p(n) ≤ 2
p

(∞∑
i=0

(
2
3

)i
)
n =

6
p
· n

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 232–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Not So Many Runs in Strings 233

Table 1. Values of ρ(n) for small values of n for binary strings, from [5]

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ρ(n) 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25

A lower bound of αn, with α = 3/(1 +
√

5) = 0.927..., has been given by
[3] then [4]. In [3], Franek, Simpson and Smyth propose a sequence of strings
(xn) with increasing lengths such that limn�→∞ r(xn)/|xn| = α, where r(x) is the
number of runs in the string x. In [4], Franek and Yang show that α is an as-
ymptotic lower bound by showing that there exists a whole family of asymptotic
lower bounds arbitrarily close to α.

In fact, very few properties are known for the ρ(n)/n function [4,9]. In this
paper, after giving some definitions (Section 2), we show by a simple rewriting
argument that 	 = limn�→∞ ρ(n)/n exists and that this limit is never reached
(Section 3), proving that

ρ(n)
n

≤ 	− 1
4n

Section 4 proves the convergence of ρ(n)/n even in the case of a fixed alpha-
bet, for example for binary strings. Moreover, we further study the asymptotic
behavior of ρp(n), the number of runs with short periods (Section 5), showing
that 	p = limn�→∞ ρp(n)/n exists and that, for some constant zp,

	p −
zp
n

≤ ρp(n)
n

≤ 	p ≤ 	

Practically, this inequality implies that the count of some microruns is below
n, and this improves the upper bound of [1] to 1.52n for binary strings. Section 6
gives some concluding remarks.

2 Definitions

Let x = x1x2 . . . xn be a string over an alphabet. Let p ≥ 1 be an integer. We
say that x has a period p if for any i with 1 ≤ i ≤ n− p, xi+p = xi. We denote
by x[i...j] the substring xixi+1 . . . xj . A run is a substring x[i...j] :

– which has a period p ≤ �(j − i+ 1)/2�,
– that is maximal : if they exist, neither xi−1 = xi−1+p, nor xj+1 = xj+1−p,
– and such that x[i...i+p−1] is primitive : it is not an integer power of another

string.

We define by rp(x) the number of runs of period ≤ p in x, called microruns
in [1], and by r(x) = r�|x|/2�(x) the total number of runs in x. For example,
the four runs of x = atattatt are x[4, 5] = tt, x[7, 8] = tt, x[1, 4] = atat and
x[2, 8] = tattatt, and thus r1(x) = 2, r2(x) = 3, and r3(x) = r(x) = 4.

Given an integer n ≥ 2, we now consider all strings of length n. We define as

ρp(n) = max{rp(x) | |x| = n}

234 M. Giraud

the maximal number of runs of period ≤ p in a string of length n. Then we
define as

ρ(n) = max{r(x) | |x| = n} = ρ�n/2�(n)

the maximal total number of runs in a string of length n. Kolpakov and Kucherov
gave in [6] some values for ρ(n) (Table 1). Table 3, at the end of this paper,
shows some values for ρp(n). Note that r(x) = ρ(|x|) does not imply that rp(x) =
ρp(|x|) for all p : for example, r(aatat) = 2 = ρ(5) but r1(aatat) = 1 < ρ1(5) = 2.

Finally, we can define values r≥p(x) and ρ≥p(n) for macroruns, that is runs
with a period at least p. Again, r(x) = ρ(|x|) does not imply that r≥p(x) =
ρ≥p(|x|). For example, r≥2(aatt) = 0 < ρ≥2(4) = 1 = r≥2(atat).

3 Asymptotic Behavior of the Number of Runs

Franek and al. [3,4] list some known properties for ρ(n) :

– For any n, ρ(n+ 2) ≥ ρ(n) + 1
– For any n, ρ(n+ 1) ≤ ρ(n) + �n/2�
– For some n, ρ(n+ 1) = ρ(n)
– For some n, ρ(n+ 1) = ρ(n) + 2

We add the following two simple properties.

Proposition 1. The function ρ is superadditive : for any m and n, we have
ρ(m+ n) ≥ ρ(m) + ρ(n).

Proof. Take two strings x et y of respective lengths m and n such that r(x) =
ρ(m) and r(y) = ρ(n). Let ȳ be a rewriting of y with characters not present in
x. Then xȳ is a string of length m+ n containing exactly the runs of x and the
rewritten runs of y. Thus ρ(m+ n) ≥ r(xȳ) = r(x) + r(y) = ρ(m) + ρ(n).

Proposition 2. For any n, ρ(4n) ≥ 4ρ(n) + 1

Proof. Take a string x of length n with r(x) = ρ(n). Let x̄ be a rewriting of x
with characters not present in x. Then r(xx̄xx̄) ≥ 4r(x) + 1.

We have in particular ρ(tn) ≥ tρ(n), giving our main result :

Theorem 1. ρ(n)/n converges to its upper limit 	. Moreover, the limit is never
reached, as for any n we have

ρ(n)
n

≤ 	− 1
4n

Proof. Let 	 be the upper limit of ρ(n)/n. This limit is finite because of [6]. Given
ε, there is a n0 such that ρ(n0)/n0 ≥ 	− ε/2. For any n ≥ n0, let be t = �n/n0�.
Then we have ρ(n)/n ≥ ρ(tn0)/n ≥ tρ(n0)/n by Proposition 1, thus ρ(n)/n ≥
t/(t+ 1) · ρ(n0)/n0. Let be t0 such that t0/(t0 + 1) · ρ(n0)/n0 ≥ ρ(n0)/n0 − ε/2.
Then, for any n ≥ t0n0, we have ρ(n)/n ≥ 	 − ε, thus 	 = limn�→∞ ρ(n)/n.
Finally, Proposition 2 gives 	 ≥ ρ(4n)/4n ≥ ρ(n)/n+ 1

4n .

Not So Many Runs in Strings 235

The proof of convergence of f(n)/n when f is superadditive is known as Fekete’s
Lemma [2,10]. This convergence result was an open question of [4]. In fact, the
motivation of [4] was the remark that “the sequence |xi| (of [3]) is only “probing”
the domain of the function ρ(n) and r(xi) is “pushing” the value of ρ(n) above αn
in these “probing” points”. Then Franek and Yang [4] prove that every α−ε is an
actual asymptotic lower bound by building specific sequences. With Theorem 1,
it is now sufficient to study bounds on any (ρ(ni)/ni) sequence (for a growing
sequence (ni)) to give bounds on ρ(n)/n.

Note that this convergence does not imply monotonicity. In fact, if 	 < 1,
then ρ(n)/n is asymptotically non monotonic, as there will be in this case an
infinity of n’s such that ρ(n+ 1) = ρ(n). Note also that, although Proposition 1
and 2 require to double the alphabet size, the alphabet remains finite : the
proof of Theorem 1 only requires to double once this alphabet size. Moreover,
it is possible to prove Proposition 1 without rewriting in a larger alphabet, thus
proving the convergence of ρ(n)/n when considering only binary strings. This
second proof, more elaborated, is given in the next section.

The bound 	 − 1
4n can be improved. For example, with a rewriting similar

to the one used in Proposition 2, it can be shown that ρ(2n2) ≥ (2n + 1)ρ(n),
giving by successive iterations ρ(n)/n ≤ 	− 1

2n . This has not been reported here
to keep the proof simple.

Concerning microruns with period at most p, Proposition 1 still holds :

Proposition 3. For any p, m, and n, we have ρp(m + n) ≥ ρp(m) + ρp(n).
Thus for any p, ρp(n)/n converges to its upper limit 	p.

The proof is the same as above. On the contrary, Proposition 2 may be not true
for microruns. For example, for any n, ρ1(n) = �n/2�, and thus for any even n,
we have ρ1(n)/n = 	1 = 1/2.

Finally, Theorem 1 is fully valid for macroruns, and as a rewriting argument
shows that ρ≥p(n) ≥ ρ(�n/p�), we have 	≥p ≥ 	/p.

4 A Proof of Proposition 1 for Fixed Alphabets

Here we prove Proposition 1 without rewriting in a larger alphabet, thus proving
the convergence of ρ(n)/n when considering only binary strings. This proof is
borrowed and simplified from one part of a proof of Franek and al. (Theorem 2
of [3]). A key observation is that some runs of x and y are merged in xy only
when a word z2 is both a suffix of x and a prefix of y (case a2 on Figure 1). We
first have this property :

Proposition 4. Let Σ be an alphabet with |Σ| ≥ 2, and let x and y be strings
on Σ such that |y| ≥ 1. Then there exists strings x′ and y′ on Σ such that
|x′| + |y′| = |x| + |y|, |y′| < |y| and r(x′) + r(y′) ≥ r(x) + r(y).

Proof. Let w be the largest string, eventually empty, such that w is a suffix of
x and a prefix of y. Thus x = uw and y = wv for some strings u and v. Let

236 M. Giraud

x′ = uwv and y′ = w. Clearly |x′|+ |y′| = |x|+ |y| and |y′| ≤ |y|. Without loss of
generality, we assume that y is not a suffix of x. (If it is not the case, we rewrite
y into ȳ using an isomorphism of Σ onto itself.) Thus |y′| < |y|. Now we count
the runs of x and y. The runs of period p that have 2p characters (“a square”)
completely included in w were once in x and once in y. Such runs can be found
again once in x′ and once in y′. By definition of w, all the others runs of x and
y are found exactly once in x′, without being merged.

To prove Proposition 1, we take two strings x0 and y0 of respective lengthsm and
n such that r(x0) = ρ(m) and r(y0) = ρ(n). Applying recursively Proposition 4
gives a finite sequence of pairs of strings (x0, y0), (x1, y1), . . . (xt, yt) with r(xi)+
r(yi) ≥ r(xi−1) + r(yi−1) and |y0| > |y1| > . . . > |yt| = 0 for some t. Finally
|xt| = |x0| + |y0| = m + n, and thus ρ(m + n) ≥ r(xt) ≥ r(x0) + r(y0) =
ρ(m) + ρ(n), proving Proposition 1.

Note that the proof of Franek and al. in [3] was in a different context, and
that no result leading to our Proposition 1 was stated as such in their paper.

5 On the Number of Microruns

In this section, we study the asymptotic behavior of the number of microruns
beyond the result of Proposition 3. Additionally, we provide a new bound on the
number of some microruns (see the end of the section).

The idea to bound the number of microruns is to count the new runs created
by the concatenation of two strings. Let x and y be two strings, and s be a run of
xy with period q. Then s is exactly in one of the following two cases (Figure 1) :

– a) s has a substring that is a run (with the same period q) completely
included in x, or in y, or in both;

– b) s has strictly less than 2 periods in x and in y.

We call the runs in the case b) the new runs between x and y, and we denote
by zp(x, y) the number of such runs. Then rp(xy) ≤ rp(x) + rp(y)+ zp(x, y), the

a1)

a2)

b) q q
b) q q

4p − 2

x y

Fig. 1. a1) Runs with a substring that is a run included in x. a2) Runs with two
substrings that are runs both in x and y. b) “New runs” between x and y. To count
the new runs with period q ≤ p, it is sufficient to consider words of length 4p − 2.

Not So Many Runs in Strings 237

inequality coming from the fact that a run from x can be merged with a run
from y (case a2 on Figure 1). We can bound the number of new runs, and thus
have an upper bound on rp(xy) :

Proposition 5. Let zp = max{zp(x, y) | |x| = |y| = 2p−1} the maximal number
of new runs between words of length 2p− 1. Then, for every strings x and y of
any length, we have zp(x, y) ≤ zp.

Proposition 6. For any p, m, and n, ρp(m+ n) ≤ ρp(m) + ρp(n) + zp.

Proof. (Proposition 5.) Any new run with period q ≤ p has less than 2q − 1 ≤
2p− 1 characters in x, and in y (Figure 1). (Proposition 6.) Let x and y be two
strings such that |x| = m, |y| = n, and rp(xy) = ρp(m+ n). Then ρp(m+ n) =
rp(xy) ≤ rp(x) + rp(y) + zp(x, y) ≤ ρp(m) + ρp(n) + zp.

Table 2 provides actual values of zp for small values of p. An immediate bound on
zp is zp ≤ zp−1 + 2. Knowing bounds on zp helps to characterize the asymptotic
behavior of the number of microruns :

Theorem 2. For any p and n, we have 	p ≤ ρp(n)/n+ zp/n, and thus

	p −
zp
n

≤ ρp(n)
n

≤ 	p ≤ 	

Proof. By Proposition 6, for any t ≥ 1, we have ρp(tn) ≤ tρp(n) + (t − 1)zp.
Thus ρp(tn)/tn ≤ ρp(n)/n + t−1

t zp/n. Taking this inequality to the limit gives
the result.

Thus we know that the convergence of ρp(n)/n to 	p is faster than zp/n. Note
that we do not have a similar result for ρ(n), as we do not have a convenient
way to bound ρ(m+ n) like in Proposition 5.

With Theorem 2, one can show that the number of some microruns is below
n. For example, we have for binary strings z9 = 7 and ρ9(34) = 26, thus 	9 ≤
33/34 = 0.970.... Thus there are less than 0.971n runs of period ≤ 9 in any
binary string of length n. This result is better than Lemma 2 of [1] which proved
the n bound by the count of amortizing positions for centers of runs.

Using the result of Crochemore and Ilie’s Proposition 1 [1] for large runs,
we get an upper bound on ρ(n)/n. The best bound we obtain, with z10 = 7
and ρ10(34) = 26, gives 	10 ≤ 33/34, and finally, with Crochemore and Ilie’s
Proposition 1 :

	 ≤ 	10 +
6
11

= 1.516...

Thus the number of runs in a binary string of length n is not more than 1.52n.
This result could be further extended by choosing other periods for the count of
microruns, by computation or by other techniques.

238 M. Giraud

Table 2. Values for zp for binary strings with worst-case examples of length ≤ 4p − 2

p zp example

1, 2 1 t t
3 2 ttat ta
4 4 ataaata attaat

5, 6, 7 5 ttatatta taatataa
8 6 ttttattattttat taattattaa

9, 10 7 ttatatatattatata taatatatataa

Table 3. Values of ρp(n) for small values of n and p for binary strings. For each n, the
value in bold shows the smallest p such that ρp(n) = ρ(n).

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
ρ(n) 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 27 28

1, 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17
3 3 4 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18 18 19 20 21 21 22 23 24 24
4 5 5 6 7 8 8 9 9 10 11 12 13 13 14 15 16 16 17 18 18 19 20 21 21 22 23 24 24
5 6 7 8 8 9 10 11 11 12 13 14 14 15 16 17 18 18 19 20 21 21 22 23 24 25 25
6 8 8 9 10 11 11 12 13 14 14 15 16 17 18 18 19 20 21 21 22 23 24 25 25
7 10 10 11 12 13 14 14 15 15 16 18 18 19 20 21 21 22 23 24 25 26 26
8 11 12 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 26 27
9 13 14 15 15 16 17 18 18 19 20 21 22 23 24 25 26 26 27
10 15 15 16 17 18 18 19 20 21 22 23 24 25 26 26 27
11 16 17 18 19 19 21 21 22 23 24 25 26 26 27
12 18 19 19 21 21 22 23 24 25 26 26 27
13 20 21 22 23 24 25 26 27 27 28
14 22 23 24 25 26 27 27 28

6 Perspectives

The results on the asymptotic behavior of the functions ρ and ρp of Theorems 1
and 2 simplify the research on lower and upper bounds. We hope that these results
will bring a better understanding of the number of runs and be a step towards
proving the conjecture of [5] (≤ 1) or the stronger conjecture of [3] (= 0.927...).

A side result of Theorem 2 was a new upper bound for some microruns, and
thus an upper bound for the total number of runs. This upper bound can be
lowered again by doing a more precise analysis, theoretical or computational, of
the zp values. This would require large evaluations of some zp and ρp(n) values.
Other techniques could provide better bounds for microruns. For example, it
should be possible to push the idea of Crochemore and Ilie by finding more
amortizing positions than the number of centers of runs in a given interval of
positions. Again, when the number of possible positions grows, the complexity
of their method increases.

For the lower bound, it remains to be shown if one can find strings with more
runs than those of [3,4]. Although Theorem 1 also provides a way to have a lower
bound on ρ(n)/n, all the computations we ran gave not better bounds than the
0.927 bound of [3,4].

Now an important question is if the actual value of 	 can be found with such
a separation between microruns and macroruns. The inequality 	 ≤ 	p + 	≥p+1

Not So Many Runs in Strings 239

may be strict for some p, as the values 	1 = 1/2 and 	≥2 > 1/2 may suggest. If
this inequality is strict for several p’s, the conjecture may be impossible to prove
by this way if one choose a bad splitting period p.

Another open question is if one of the constants 	p = limn�→∞ ρp(n)/n is
equal to 	, or if, more probably, the limit 	 is obtained by considering asymptot-
ically runs with any period. Finally, it remains to be proven if strings on binary
alphabets can always achieve the highest number of runs.

References

1. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Systems
Sci. 74(5), 796–807 (2008)

2. Fekete, M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichun-
gen mit ganzzahligen Koeffizienten. Mathematische Zeitschrift 17, 228–249 (1923)

3. Franek, F., Simpson, R.J., Smyth, W.F.: The maximum number of runs in a string.
In: Proceedings of the 2003 Australasian Workshop on Combinatorial Algorithms
(AWOCA 2003), pp. 26–35 (2003)

4. Franek, F., Yang, Q.: An asymptotic lower bound for the maximal-number-of-runs
function. In: Prague Stringology Conference 2006, pp. 3–8 (2006)

5. Kolpakov, R., Kucherov, G.: Maximal repetitions in words or how to find all squares
in linear time. Technical Report 98-R-227, LORIA (1998)

6. Kolpakov, R., Kucherov, G.: On maximal repetitions in words. Journal on Discrete
Algorithms 1(1), 159–186 (2000)

7. Puglisi, S.J., Simpson, J., Smyth, B.: How many runs can a string contain? Theo-
retical Computer Science 401(1-3), 165–171 (2008)

8. Rytter, W.: The number of runs in a string: improved analysis of the linear upper
bound. Information and Computation 205(9), 1459–1469 (2007)

9. Smyth, B.: The maximum number of runs in a string. In: International Workshop
on Combinatorial Algorithms (IWOCA 2007), Problems Session (2007)

10. van Lint, J.L., Wilson, R.M.: A course in combinatorics. Cambridge University
Press, Cambridge (1992)

A Hybrid Approach to Word Segmentation of

Vietnamese Texts

Lê Hông Phuong1, Nguyên Thi Minh Huyên2, Azim Roussanaly1,
and Hô Tuòng Vinh3

1 LORIA, Nancy, France
2 Vietnam National University, Hanoi, Vietnam

3 IFI, Hanoi, Vietnam

Abstract. We present in this article a hybrid approach to automatically
tokenize Vietnamese text. The approach combines both finite-state au-
tomata technique, regular expression parsing and the maximal-matching
strategy which is augmented by statistical methods to resolve ambigui-
ties of segmentation. The Vietnamese lexicon in use is compactly repre-
sented by a minimal finite-state automaton. A text to be tokenized is first
parsed into lexical phrases and other patterns using pre-defined regular
expressions. The automaton is then deployed to build linear graphs corre-
sponding to the phrases to be segmented. The application of a maximal-
matching strategy on a graph results in all candidate segmentations of
a phrase. It is the responsibility of an ambiguity resolver, which uses
a smoothed bigram language model, to choose the most probable seg-
mentation of the phrase. The hybrid approach is implemented to create
vnTokenizer, a highly accurate tokenizer for Vietnamese texts.

1 Introduction

As many occidental languages, Vietnamese is an alphabetic script. Alphabetic
scripts usually separate words by blanks and a tokenizer which simply replaces
blanks with word boundaries and cuts off punctuation marks, parentheses and
quotation marks at both ends of a word, is already quite accurate [5]. How-
ever, unlike other languages, in Vietnamese blanks are not only used to separate
words, but they are also used to separate syllables that make up words. Fur-
thermore, many of Vietnamese syllables are words by themselves, but can also
be part of multi-syllable words whose syllables are separated by blanks between
them. In general, the Vietnamese language creates words of complex meaning
by combining syllables that most of the time also possess a meaning when con-
sidered individually. This linguistic mechanism makes Vietnamese close to that
of syllabic scripts, like Chinese. That creates problems for all natural language
processing tasks, complicating the identification of what constitutes a word in
an input text.

Many methods for word segmentation have been proposed. These methods
can be roughly classified as either dictionary-based or statistical methods, while
many state-of-the-art systems use hybrid approaches [6].

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 240–249, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Hybrid Approach to Word Segmentation of Vietnamese Texts 241

We present in this paper an efficient hybrid approach for the segmentation
of Vietnamese text. The approach combines both finite-state automata tech-
nique, regular expression parsing and the maximal-matching method which is
augmented by statistical methods to deal with ambiguities of segmentation. The
rest of the paper is organized as follows. The next section gives the construction
of a minimal finite-state automaton that encodes the Vietnamese lexicon. Sect. 3
discusses the application of this automaton and the hybrid approach for word
segmentation of Vietnamese texts. The developed tokenizer for Vietnamese and
its experimental results are shown in Sect. 4. Finally, we conclude the paper with
some discussions in Sect. 5.

2 Lexicon Representation

In this section, we first briefly describe the Vietnamese lexicon and then intro-
duce the construction of a minimal deterministic, acyclic finite-state automaton
that accepts it.

2.1 Vietnamese Lexicon

The Vietnamese lexicon edited by the Vietnam Lexicography Center (Vietlex1)
contains 40, 181 words, which are widely used in contemporary spoken language,
newspapers and literature. These words are made up of 7, 729 syllables. It is
noted that Vietnamese is an inflexionless language, this means that every word
has exactly one form.

There are some interesting statistics about lengths of words measured in syl-
lables as shown in Table 1. Firstly, there are about 81.55% of syllables which are
words by themselves, they are called single words; 15.69% of words are single
ones. Secondly, there are 70.72% of compound words which are composed of two
syllables. Finally, there are 13, 59% of compounds which are composed of at least
three syllables; only 1, 04% of compounds having more than four syllables.

Table 1. Lengths of words measured in syllables

Length # %

1 6, 303 15.69
2 28, 416 70.72
3 2, 259 5.62
4 2, 784 6.93

≥ 5 419 1.04

Total 40, 181 100

The high frequency of two-syllable compounds suggests us a simple but efficient
method to resolve ambiguities of segmentation. The next paragraph presents the
representation of the lexicon.
1 http://www.vietlex.com/

242 L. Hông Phuong et al.

2.2 Lexicon Representation

Minimal deterministic finite state automata (MDFA) have been known to be the
best representation of a lexicon. They are not only compact but also give the opti-
mal access time to data [1]. The Vietnamese lexicon is represented by an MDFA.

We implement an algorithm developed by J. Daciuk et al. [2] that incremen-
tally builds a minimal automaton in a single phase by adding new strings one
by one and minimizing the resulting automaton on-the-fly.

The minimal automaton that accepts the Vietnamese lexicon contains 42, 672
states in which 5, 112 states are final ones. It has 76, 249 transitions; the max-
imum number of outgoing transitions from a state is 85, and the maximum
number of incoming transitions to a state is 4, 615. The automaton operates in
optimal time in the sense that the time to recognize a word corresponds to the
time required to follow a single path in the deterministic finite-state machine,
and the length of the path is the length of the word measured in characters.

3 Vietnamese Word Segmentation

We present in this section an application of the lexicon automaton for the word
segmentation of Vietnamese texts. We first give the specification of segmentation
task.

3.1 Segmentation Specification

We have developed a set of segmentation rules based on the principles discussed
in the document of the ISO/TC 37/SC 4 work group on word segmentation
(2006) [3]. Notably, the segmentation of a corpus follows the following rules:

1. Compounds: word compounds are considered as words if their meaning is
not compound from their sub parts, or if their usage frequency justifies it.

2. Derivation: when a bound morpheme is attached to a word, the result is
considered as a word. The reduplication of a word (common phenomenon in
Vietnamese) also gives a lexical unit.

3. Multiword expressions: expressions such as “because of” are considered as
lexical units.

4. Proper names: name of people and locations are considered as lexical units.
5. Regular patterns: numbers, times and dates are recognized as lexical units.

3.2 Word Segmentation

An input text for segmentation is first analyzed by a regular expression recog-
nizer for detection of regular patterns such as proper names, common abbre-
viations, numbers, dates, times, email addresses, URLs, punctuations, etc. The
recognition of arbitrary compounds, derivation, and multiword expressions is
committed to a regular expression that extracts phrases of the text.

The regular recognizer analyzes the text using a greedy strategy in that all
patterns are scanned and the longest matched pattern is taken out. If a pattern is

A Hybrid Approach to Word Segmentation of Vietnamese Texts 243

a phrase, that is a sequence of syllables and spaces, it is passed to a segmenter for
detection of word composition. In general, a phrase usually has several different
word compositions; nevertheless, there is typically one correct composition which
the segmenter need to determine.

A simple segmenter could be implemented by the maximal matching strat-
egy which selects the segmentation that contains the fewest words [8]. In this
method, the segmenter determines the longest syllable sequence which starts at
the current position and is listed in the lexicon. It takes the recognized pattern,
moves the position pointer behind the pattern, and starts to scan the next one.
Although this method works quite well since long words are more likely to be
correct than short words. However, this is a too greedy method which sometimes
leads to wrong segmentation because of a large number of overlapping candidate
words in Vietnamese. Therefore, we need to list all possible segmentations and
design a strategy to select the most probable correct segmentation from them.

Aphrase canbe formalized as a sequence of blank-separated syllables s1s2 · · · sn.
We ignore for the moment the possibility of seeing a new syllable or a new word
in this sequence. Due to the fact that, as we showed in the previous section, most
of Vietnamese compound words are composed of two syllables, the most frequent
case of ambiguities involves three consecutive syllables sisi+1si+2 in which both of
the two segmentations (sisi+1)(si+2) and (si)(si+1si+2) may be correct, depend-
ing on context. This type of ambiguity is called overlap ambiguity, and the string
sisi+1si+2 is called an overlap ambiguity string.

· vi+0 vi+1 vi+2 vi+3 ·
si si+1 si+2

sisi+1

si+1si+2

Fig. 1. Graph representation of a phrase

The phrase is represented by a linearly directed graph G = (V,E), V =
{v0, v1, . . . , vn, vn+1}, as shown in Fig. 1. Vertices v0 and vn+1 are respectively
the start and the end vertex; n vertices v1, v2, . . . , vn are aligned to n syllables of
the phrase. There is an arc (vi, vj) if the consecutive syllables si+1, si+2, . . . , sj

compose a word, for all i < j. If we denote accept(A, s) the fact that the lexicon
automaton A accepts the string s, the formal construction of the graph for a
phrase is shown in Algorithm 1. We can then propose all segmentations of the
phrase by listing all shortest paths on the graph from the start vertex to the end
vertex.

As illustrated in Fig. 1, each overlap ambiguity string results in an ambiguity
group, therefore, if a graph has k ambiguity groups, there are 2k segmentations
of the underlying phrase2. For example, the ambiguity group in Fig. 1 gives two
segmentations (sisi+1)si+2 and si(si+1si+2).
2 If these ambiguity groups do not overlap each other.

244 L. Hông Phuong et al.

Algorithm 1. Construction of the graph for a phrase s1s2 . . . sn

1: V ← ∅;
2: for i = 0 to n + 1 do
3: V ← V ∪ {vi};
4: end for
5: for i = 0 to n do
6: for j = i to n do
7: if (accept(AW , si · · · sj)) then
8: E ← E ∪ {(vi, vj+1)};
9: end if

10: end for
11: end for
12: return G = (V, E);

We discuss in the next subsection the ambiguity resolver which we develop
to choose the most probable segmentation of a phrase in the case it has overlap
ambiguities.

3.3 Resolution of Ambiguities

The ambiguity resolver uses a bigram language model which is augmented by
the linear interpolation smoothing technique.

In n-gram language modeling, the probability of a string P (s) is expressed
as the product of the probabilities of the words that compose the string, with
each word probability conditional on the identity of the last n− 1 words, i.e., if
s = w1 · · ·wm we have

P (s) =
m∏

i=1

P (wi|wi−1
1) ≈

m∏
i=1

P (wi|wi−1
i−n+1), (1)

where wj
i denotes the words wi · · ·wj . Typically, n is taken to be two or three,

corresponding to a bigram or trigram model, respectively.3

In the case of a bigram model n = 2, to estimate the probabilities P (wi|wi−1)
in (1), we can use training data, and take the maximum likelihood (ML) estimate
for P (wi|wi−1) as follows

PML(wi|wi−1) =
P (wi−1wi)
P (wi−1)

=
c(wi−1wi)/N
c(wi−1)/N

=
c(wi−1wi)
c(wi−1)

,

where c(α) denotes the number of times the string α occurs and N is the total
number of words in the training data.

The maximum likelihood estimate is a poor one when the amount of training
data is small compared to the size of the model being built, as is generally the
3 To make the term P (wi|wi−1

i−n−1) meaningful for i < n, one can pad the beginning of
the string with a distinguished token. We assume there are n − 1 such distinguished
tokens preceding each phrase.

A Hybrid Approach to Word Segmentation of Vietnamese Texts 245

case in language modeling. A zero bigram probability can lead to errors of the
modeling. Therefore, a variety of smoothing techniques have been developed to
adjust the maximum likelihood estimate in order to produce more accurate prob-
abilities. Not only do smoothing methods generally prevent zero probabilities,
but they also attempt to improve the accuracy of the model as a whole. When-
ever a probability is estimated from few counts, smoothing has the potential to
significantly improve estimation [7].

We adopt the linear interpolation technique to smooth the model. This is a
simple yet effective smoothing technique which is widely used in the domain of
language modeling [4]. In this method, the bigram model is interpolated with a
unigram model PML(wi) = c(wi)/N , a model that reflects how often each word
occurs in the training data. We take our estimate P̂ (wi|wi−1) to be

P̂ (wi|wi−1) = λ1PML(wi|wi−1) + λ2PML(wi), (2)

where λ1 + λ2 = 1 and λ1, λ2 ≥ 0.
The objective of smoothing techniques is to improve the performance of a

language model, therefore the estimation of λ values in (2) is related to the
evaluation of the language model. The most common metric for evaluating a
language model is the probability that the model assigns to test data, or more
conveniently, the derivative measured of entropy. For a smoothed bigram model
that has probabilities p(wi|wi−1), we can calculate the probability of a sentence
P (s) using (1). For a test set T composed of n sentences s1, s2, . . . , sn, we can
calculate the probability P (T) of the test set as the product of the probabilities
of all sentences in the set P (T) =

∏n
i=1 P (si). The entropy Hp(T) of the model

on data T is defined by

Hp(T) =
− log2 P (T)

NT
= − 1

NT

n∑
i=1

log2 P (si), (3)

where NT is the length of the text T measured in words. The entropy is inversely
related to the average probability a model assigns to sentences in the test data,
and it is generally assumed that lower entropy correlates with better performance
in applications.

Starting from a part of the training set which is called the “validation” data,
we define C(wi−1, wi) to be the number of times the bigram (wi−1, wi) is seen
in the validation set. We need to choose λ1, λ2 to maximize

L(λ1, λ2) =
∑

wi−1,wi

C(wi−1, wi) log2 P̂ (wi|wi−1) (4)

such that λ1 + λ2 = 1, and λ1, λ2 ≥ 0.
The λ1 and λ2 values can be estimated by an iterative process given in Al-

gorithm 2. Once all the parameters of the bigram model have been estimated,
the smoothed probabilities of bigrams can be easily computed by (2). These
results are used by the resolver to choose the most probable segmentation of a

246 L. Hông Phuong et al.

Algorithm 2. Estimation of values λ

1: λ1 ← 0.5, λ2 ← 0.5;
2: ε ← 0.01;
3: repeat
4: λ̂1 ← λ1, λ̂2 ← λ2;

5: c1 ←
∑

wi−1,wi

C(wi−1 ,wi)λ1PML(wi|wi−1)

λ1PML(wi|wi−1)+λ2PML(wi)
;

6: c2 ←
∑

wi−1,wi

C(wi−1,wi)λ2PML(wi)

λ1PML(wi|wi−1)+λ2PML(wi)
;

7: λ1 ← c1
c1+c2

, λ2 ← 1 − λ̂1;

8: ε̂ ←
√

(λ̂1 − λ1)2 + (λ̂2 − λ2)2;

9: until (ε̂ ≤ ε);
10: return λ1, λ2;

phrase, say, s, by comparing probabilities P (s) which is estimated using (1). The
segmentation with the greatest probability will be chosen.

We present in the next section the experimental setup and obtained results.

4 Experiments

We present in this section the experimental setup and give a report on results
of experiments with the hybrid approach presented in the previous sections.
We also describe briefly vnTokenizer, an automatic software for segmentation of
Vietnamese texts.

4.1 Corpus Constitution

The corpus upon which we evaluate the performance of the tokenizer is a col-
lection of 1264 articles from the “Politics – Society” section of the Vietnamese
newspaper Tui tr (The Youth), for a total of 507, 358 words that have been man-
ually spell-checked and segmented by linguists from the Vietnam Lexicography
Center. Although there can be multiple plausible segmentations of a given Viet-
namese sentence, only a single correct segmentation of each sentence is kept. We
assume a single correct segmentation of a sentence for two reasons. The first one
is of its simplicity. The second one is due to the fact that we are not currently
aware of any effective way of using multiple segmentations in typical applications
concerning Vietnamese processing.

We perform a 10-fold cross validation on the test corpus. In each experiment,
we take 90% of the gold test set (≈ 456, 600 lexical units) as training set, and
10% as test set. We present in the next paragraph the training and results of
the model.

4.2 Results

In an experiment, the bigram language model is trained on a training set. An
estimation of parameters λs in the Algorithm 2 is given in Table 2. With a given
error ε = 0.03, the estimated parameters converge after four iterations.

A Hybrid Approach to Word Segmentation of Vietnamese Texts 247

Table 2. Estimation of lambda values

Step λ1 λ2 ε

0 0.500 0.500 1.000
1 0.853 0.147 0.499
2 0.952 0.048 0.139
3 0.981 0.019 0.041
4 0.991 0.009 0.015

The above experimental results reveal a fact that the smoothing technique
basing on the linear interpolation adjusts well bigram and unigram probabilities,
it thus improves the estimation and the accuracy of the model as a whole. Table 3
presents the values of precisions, recalls and F -measures of the system on two
versions with or without ambiguity resolution. Precision is computed as the
count of common tokens over tokens of the automatically segmented files, recall
as the count of common tokens over tokens of the manually segmented files, and
F -measure is computed as usual from these two values.

Table 3. Precision, recall and F -measure of the system

Precision Recall F -measure

0.948 0.960 0.954
0.950 0.963 0.956

The system has good recall ratios, about 96%. However, the use of the resolver
for resolution of ambiguities only slightly improves the overall accuracy. This
can be explained by the fact that the bigram model exploits a small amount of
training data compared to the size of the universal language model. It is hopeful
that the resolver may improve further the accuracy if it is trained on larger
corpora.

4.3 vnTokenizer

We have developed a software tool named vnTokenzier that implements the
presented approach for automatic word segmentation of Vietnamese texts. The
tool is written in Java and bundled as an Eclipse plug-in and it has already been
integrated into vnToolkit, an Eclipse Rich Client4 application which is intended
to be a general framework integrating tools for processing of Vietnamese text.
vnTokenizer plug-in, vnToolkit and related resources, include the lexicon and
test corpus are freely available for download5. They are distributed under the
GNU General Public License6.
4 http://www.eclipse.org/rcp/
5 http://www.loria.fr/∼lehong/projects.php
6 http://www.gnu.org/copyleft/gpl.html

248 L. Hông Phuong et al.

5 Conclusion

We have presented an efficient hybrid approach to word segmentation of Viet-
namese texts that gives a relatively high accuracy. The approach has been imple-
mented to produce vnTokenizer, an automatic tokenizer for Vietnamese texts.

By analyzing results of experiments, we found two types of ambiguity strings
in word segmentation of Vietnamese texts: (1) overlap ambiguity strings and
(2) combination ambiguity strings. A sequence of syllables s1s2 . . . sn is called
a combination ambiguity string if it is a compound word by itself and there
exists its sub sequences which are also words by themselves in some context. For
instance, the word b ba (a kind of pajamas) may be segmented into two words b
and ba (the third wife), and there exists contexts under which this segmentation
is both syntactically and semantically correct. Being augmented with a bigram
model, our tokenizer is able to resolve effectively overlap ambiguity strings, but
combination ambiguity strings have not been discovered. There is a delicate
reason, it is that combination ambiguities require a judgment of the syntactic
and semantic sense of the segmentation – a task where an agreement cannot be
reached easily among different human annotators. Furthermore, we observe that
the relative frequency of combination ambiguity strings in Vietnamese is small.
In a few ambiguity cases involving bigrams, we believe that a trigram model
resolver would work better. These questions would be of interest for further
research to improve the accuracy of the tokenizer.

Finally, we found that the majority of errors of segmentation are due to
the presence in the texts of compounds absent from the lexicon. Unknown
compounds are a much greater source of segmenting errors than segmentation
ambiguities. Future efforts should therefore be geared in priority towards the au-
tomatic detection of new compounds, which can be performed by means either
statistical in a large corpus or rule-based using linguistic knowledge about word
composition.

Acknowledgements

The work reported in this article would not have been possible without the en-
thusiastic collaboration of all the linguists at the Vietnam Lexicography Center.
We thank them for their help in data preparation.

References

1. Maurel, D.: Electronic Dictionaries and Acyclic Finite-State Automata: A State of
The Art. Grammars and Automata for String Processing (2003)

2. Daciuk, J., Mihov, S., Watson, B.W., Watson, R.E.: Incremental Construction of
Minimal Acyclic Finite-State Automata. Computational Linguistics 26(1) (2000)

3. ISO/TC 37/SC 4 AWI N309, Language Resource Management - Word Segmentation
of Written Texts for Mono-lingual and Multi-lingual Information Processing - Part
I: General Principles and Methods. Technical Report, ISO (2006)

A Hybrid Approach to Word Segmentation of Vietnamese Texts 249

4. Jelinke, F., Mercer, R.L.: Interpolated estimation of Markov source parameters from
sparse data. In: Proceedings of the Workshop on Pattern Recognition in Practice,
The Netherlands (1980)

5. Schmid, H.: Tokenizing. In: Lüdeling, A., Kytö, M. (eds.) Corpus Linguistics. An
International Handbook. Mouton de Gruyter, Berlin (2007)

6. Gao, J., et al.: Chinese Word Segmentation and Named Entity Recognition: A Prag-
matic Approach. Computational Linguistics (2006)

7. Chen, S.F., Goodman, J.: An Empirical Study of Smoothing Techniques for Lan-
guage Modeling. In: Proceedings of the 34th Annual Meeting of the ACL (1996)

8. Wong, P., Chan, C.: Chinese Word Segmentation based on Maximum Matching
and Word Binding Force. In: Proceedings of the 16th Conference on Computational
Linguistics, Copenhagen, DK (1996)

On Linear Logic Planning and Concurrency

Ozan Kahramanoğulları

Imperial College London, Department of Computing
ozank@doc.ic.ac.uk

Abstract. We present an approach to linear logic planning where an
explicit correspondence between partial order plans and multiplicative
exponential linear logic proofs is established. This is performed by ex-
tracting partial order plans from sound and complete encodings of plan-
ning problems in multiplicative exponential linear logic in a way that
exhibits a non-interleaving behavioral concurrency semantics. Relying
on this fact, we argue that this work is a crucial step for establishing a
common language for concurrency and planning that will allow to carry
techniques and methods between these two fields.

1 Introduction

Planning1 and concurrency are two fields of computer science that evolved in-
dependently, aiming at solving tasks that are similar in nature but different in
perspective: while planning formalisms focus on finding a plan, if there exists
such a plan, that solves a given planning problem; the focus in concurrency
theory is on the global behaviour of a given concurrent system, resulting in
universally quantified queries, e.g., deadlock freeness, verification of a security
protocol. In contrast to approaches to planning, in order to be able to han-
dle such queries, languages for concurrency are equipped with a rich arsenal of
mathematical methods that allow for an analysis of equivalence of processes.

In concurrency theory, parallel and sequential composition are expressed at
the same level of representation, since they are equivalently important notions
for expressing concurrent processes. However, in planning, although parallel be-
haviour between actions have been studied in partial order planners, e.g., UCPOP
[28], Graphplan [1], these investigations focused on increasing the efficiency of the
planners. In these approaches, the independence and causality between partially
ordered actions, which is crucial from a concurrency theoretic point of view, is
often specified by means of linguistic constraints (see, e.g., [19,2]). Another line
of research, which aims at capturing the concurrent behaviour of actions in the
logical AI literature, e.g., in [30], defines concurrency over the parametrised time
spans shared by the actions.2

Linear logic is widely recognised as a logic of concurrency (see, e.g., [26])
also because of its resource conscious features. In this paper, we propose linear
1 A preliminary version of this paper has been presented as short paper at the 14th

Int. Conference on Logic for Programming Artificial Intelligence and Reasoning.
2 For a survey on reasoning about actions, planning and concurrency, see [13].

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 250–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Linear Logic Planning and Concurrency 251

logic planning (see. e.g., [25,24,17,18]) as a platform for a common language
for planning and concurrency, aiming at bringing these two fields closer and
allowing the techniques and tools in both fields to be interchanged. We establish a
strict correspondence between partial order plans and the proofs of multiplicative
exponential linear logic encodings of planning problems. The partial order plans
which we extract from the proofs by an algorithm exhibit a non-interleaving
behavioural concurrency semantics. Our result also contributes to the field of
petri nets because of the strict correspondence between the reachability problem
in petri nets and linear logic planning problems (see, e.g., [4]).

As the underlying formalism we employ the proof theoretic formalism of the
calculus of structures (see, e.g., [11,31]) instead of the sequent calculus. The
distinguishing feature of this formalism is deep inference: the inference rules
can be applied at arbitrary depths inside logical expressions. This brings about
properties of proofs and deductive systems that are interesting from the point
of view of computer science applications (see, e.g., [13]): in particular, in the
complementary work in [15], the logic that we use heavily relies on a notion of
deep inference as in the calculus of structures [11,14], and it cannot be given
as a sequent calculus system, as it was shown by Tiu [33]. Furthermore, more
possibilities in the permutability of the inference rules in the calculus of struc-
tures yield optimised presentations (decomposition) of proofs [31]. By using the
formalism of calculus of structures instead of the sequent calculus, it becomes
possible to profit from these properties and also combine the results of this paper
and the results of [15] for a common language for planning and concurrency, e.g.,
in [16]. Space restrictions do not allow to give the proofs here, we refer to [13].

2 Linear Logic Planning and Concurrency

In the following, we review multiplicative exponential linear logic in its deep
inference presentation, following [31].

2.1 MELL in the Calculus of Structures

There are countably many atoms, denoted by a, b, c, . . . The formulae P , Q, R,
S. . . of multiplicative exponential linear logic are generated by

R ::= a | 1 | ⊥ | (R � R) | (R � R) | !R | ?R | R̄,

where a stands for any atom, 1 and ⊥, called one and bottom. A formula
(R1 � Rh) is a par formula, (R1 � Rh) is a times formula, !R is an of-course for-
mula, and ?R is a why-not formula; R̄ is the negation of the formula R. Formulae
are considered to be equivalent modulo the relation ≈, which is the smallest con-
gruence relation induced by the equations for associativity and commutativity
for par and times formulae together with the following equations.

(⊥�R) ≈ R
(1 �R) ≈R

??R ≈ ?R !!R ≈ !R
⊥ ≈ ?⊥ 1 ≈ !1

(R� T) ≈ (R̄� T̄) ?R ≈ !R̄ ¯̄R ≈ R
(R� T) ≈ (R̄ � T̄) !R ≈ ?R̄

252 O. Kahramanoğulları

A formula context, denoted as in S{ }, is a formula with a hole that does not
appear in the scope of negation. The formula R is a subformula of S{R} and
S{ } is its context. Context braces are omitted if no ambiguity is possible.

An inference rule is a scheme of the kind
T

ρ
R
, where ρ is the name of the

rule, T is its premise and R is its conclusion. A typical deep inference rule has

the shape
S{T }

ρ
S{R}

and specifies a step of rewriting, by the implication T ⇒ R

inside a generic context S{ }, which is linear implication in our case. Rules with
empty contexts correspond to the case of the sequent calculus.

The following rules give the multiplicative exponential linear logic system
in the calculus of structures [31], or system ELS. The rules of system ELS are
called atomic interaction (ai↓), switch (s), promotion (p↓), weakening (w↓), and
absorption (b↓), respectively.

S{1}
ai↓
S(a� ā)

S((R� T) � U)
s
S((R� U) � T)

S{!(R� T)}
p↓

S(!R� ?T)
S{⊥}

w↓
S{?R}

S(?R�R)
b↓

S{?R}

A derivation ∆ is a finite chain of instances of these inference rules. A deriva-
tion can consist of just one formula. The top-most formula in a derivation, if
present, is called the premise, and the bottom-most formula is called its conclu-
sion. A derivation ∆ whose premise is T , conclusion is R, and inference rules are

in S is written as
T

R
S∆ . A proof Π is a finite derivation whose premise is the

unit 1.

2.2 Linear Logic Planning

Following [25,9], a linear logic planning problem P is given by 〈I,G,A 〉 where
I : {̇ r1, . . . , rm }̇ is a multiset3 of fluents called the initial state. The multiset
G : {̇ g1, . . . , gn }̇ of fluents is the goal state. A is a finite set of actions of the
form a : {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇, where {̇ c1, . . . , cp }̇ and {̇ e1, . . . , eq }̇
are multisets of fluents called conditions and effects, respectively, and a is the
name of the action. Action a is applicable to a state S iff {̇ c1, . . . , cp }̇ ⊆̇ S. The
application of such an action a to a state S is defined by the function Φ, where
it is applicable, as Φ(a,S) = (S−̇{̇ c1, . . . , cp }̇) ∪̇ {̇ e1, . . . , eq }̇ .

A goal G is satisfied iff there is a plan P, i.e., a sequence of actions P =
〈a1; . . . ; ak〉 such that Φ(ak, . . . , Φ(a1, I) . . .) = G . Then, we say P transforms the
initial state I into the state G. If there exists such a plan P then P is a solution
for the planning problem P. Then we say P solves P. We denote the empty
plan with ◦. If it is more convenient, Φ(ak, . . . , Φ(a1, I) . . .) is abbreviated with
Φ(P, I). The length of a plan is the number of actions in that plan.

3 Multisets are denoted by the curly brackets “{̇ }̇”. ∪̇ , −̇ and ⊆̇ denote the multiset
operations corresponding to the usual set operations ∪ , − and ⊆ , respectively.

On Linear Logic Planning and Concurrency 253

Example 1. Consider the following planning problem: the actions α and β, re-
spectively, buy an apple for fifty cents and buy a banana for fifty cents, i.e.,
A = {α : {̇ f }̇ → {̇ a }̇ , β : {̇ f }̇ → {̇ b }̇ } . The initial state and goal state
are I = {̇ f, f }̇ and G = {̇ a, b }̇, respectively. The solutions for this planning
problem are the plans 〈α;β〉 and 〈β;α〉. A plan which is executable at the initial
state, however not a solution for this problem is the plan 〈α;α〉.

It is important to observe that the explicit representation of resources, given
by the multiset representation, demonstrates that there are no resource con-
flicts between the actions α and β in the solution plans above. This observation
permits the parallel execution of these two actions when there is no hardware
constraints. However, in the encodings of linear logic planning, e.g, in [25,9,18],
plans are extracted by sequentially reading the proper axioms corresponding to
actions from the leaves of the proof tree, constructed by using the cut-rule. This
does not allow to observe such a parallel execution semantics and breaks the
cut-elimination property (see, e.g., [8,31]).

Let us now present our encoding of the planning problems in multiplicative
exponential linear logic, which allows the construction of cut-free proofs.

Definition 1. Let a = {̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ be an action. An action
formula for a (Aa) is of the form ? (c̄1 � . . .� c̄p � (e1 � . . .� eq)) . A problem
formula is of the form ! (r1 � . . .� rm � (t̄1 � . . .� t̄n)) .

Definition 2. Given a planning problem P =〈 I,G,A 〉 where I= {̇ r1, . . . , rm }̇
is the initial state, G = {̇ t1, . . . , tn }̇ is the goal state, and A is a set of actions.

(?A1 � . . .� ?As � ! (r1 � . . .� rm � (t̄1 � . . .� t̄n)))

is the planning problem formula (ppf) that corresponds to P where A1, . . . , As

are action formulae for all the actions a ∈ A .

Example 2. When we consider the planning problem of Example 1, we obtain
the planning problem formula ?(f̄ � a) � ?(f̄ � a)� ! (f � f � (ā� b̄)).

Lemma 1. (i.)The rule action below is derivable (sound) in ELS. (ii.) Let a :
{̇ c1, . . . , cp }̇ → {̇ e1, . . . , eq }̇ be an action, and S = {̇ r1, . . . , rm }̇ and S′ =
{̇ t1, . . . , tn }̇ be states. For some formulae R, T , and E

Φ(a,S) = S′ iff
(?(c̄1 � . . .� c̄p � E) � ! (t1 � . . .� tn �R) � T)

action
(?(c̄1 � . . .� c̄p � E) � ! (r1 � . . .� rm �R) � T)

.

Lemma 2. The following rule is derivable (sound) in ELS.

1
termination

(?A1 � . . .� ?As � ! (g1 � . . .� gm � (ḡ1 � . . .� ḡm)))

254 O. Kahramanoğulları

Theorem 3. Let P = (?A1 � . . .� ?As � ! (r1 � . . .� rm � (t̄1 � . . .� t̄n))) be a
ppf that corresponds to a planning problem P. There is a proof with k number
of applications of the p↓ rule iff there is a plan p with length k that solves the
planning problem P, where I = {̇ r1, . . . , rm }̇ and G = {̇ t1, . . . , tn }̇ .

Theorem 3 states the equivalence of existence of a plan solving a planning prob-
lem with the existence of a proof of the encoding of this planning problem. How-
ever, by resorting to this theorem, and Lemma 1 and Lemma 2, we can use the
inference rules action and termination as the operational semantics of a planner:
these inference rules can be used as machine instructions in an implementation
for searching for plans.

Example 3. A proof of the planning problem of Example 1 can be constructed
bottom-up as follows. The shaded regions denote the action formula being used
at every inference step and the name of the action is displayed on the right-hand
side of the inference rules. Then the plan can be extracted by reading these
names bottom-up. Thus, the proof below reads the plan 〈α;β〉.

1
termination

?(f̄ � a) � ?(f̄ � b)� ! (a� b� (ā� b̄))
action β

?(f̄ � a) � ?(f̄ � b) � ! (a� f � (ā� b̄))
action α

?(f̄ � a) � ?(f̄ � b)� ! (f � f � (ā� b̄))

3 Independence and Causality in Plans

Given that a planning problem has a solution, the ppf of this planning problem
can be proved in many different ways. Although these different proofs are distinct
syntactic objects, they can be considered equivalent, because they share the
instances of the rule ai↓ applied to the same pairs of atoms. Such an equivalence
can be observed, for example, when two multiplicative linear logic proofs are
mapped to the same proof net [8] or they can be decomposed to the same proof
by permutation of the inference rules [31].

Example 4. We can construct the following proof which is a different syntactic
object from the proof in Example 3, however the ai↓ rule instances, hidden in
the instances of the rules action and termination in the proof below (see Lemma
1 and Lemma 2), are identical in these two proofs.

1
termination

?(f̄ � a) � ?(f̄ � b)� ! (a� b� (ā� b̄))
action α

?(f̄ � a) � ?(f̄ � b)� ! (f � b� (ā� b̄))
action β

?(f̄ � a) � ?(f̄ � b) � ! (f � f � (ā� b̄))

In this section, by using this idea, we present an algorithm for extracting partial
order plans, which exhibit a concurrency semantics, from the proofs of the ppf.

On Linear Logic Planning and Concurrency 255

Definition 4. Let Π be a proof S{T }
ρ
S{R}

ELSΠ′

where the atoms in an action formula

are labelled with the name of that action. Furthermore, whenever there is an
application of the rule b↓, the labels of the atoms in the premise, which are
copied, are extended with a natural number that does not occur with the same
action name elsewhere in the proof. Similarly, in a problem formula, all the
positive and negative atoms are labelled with init and goal, respectively. Let Label
denote the set of all the labels occurring in Π. The function µ on Π is defined
as follows. If Π = 1, then µ(Π) = 1. Otherwise,

– if ρ is the application of a rule other than ai↓ then µ(Π) = µ(Π ′) .
– if ρ is the application of the rule ai↓ where R is the formula (al � āk) for an

atom a such that l, k ∈ Label, then

µ(Π) = { (l, k) } ∪ µ

(
S{1}

ELSΠ′
)
.

Given a proof Π of P, a constraint set of Π for P (CP,Π) is given with µ(Π).

Proposition 1. For any proof Π of a ppf, µ(Π) terminates in linear time in
the number of atoms in Π.

The constraint sets are obtained by recording the atoms that get annihilated by
the ai↓ instances. This idea is very similar to using proof nets [8] as a means for
identifying classes of equivalent proofs up to permutation of inference rules, or
the ideas used to describe classes of proofs that are equivalent upto a geometric
criterion similar to proof nets [21]. Because each atom that gets annihilated is
produced and consumed by a specific action formula, a constraint set provides an
explicit record of causality between the actions producing and consuming each
atom in the execution of a plan. Thus, the actions that are partially ordered in a
constraint set are independent events in the execution because they do not have
any resource conflicts.

Example 5. A proof of Example 1 that is syntactically different from the proofs
given in Example 3 and Example 4 is as follows.

1
ai↓

! (bβ � b̄goal)
ai↓

! ((aα � āgoal) � (bβ � b̄goal))
ai↓

! ((finit � f̄β) � (aα � āgoal) � (bβ � b̄goal))
ai↓

! ((finit � f̄α) � (finit � f̄β) � (aα � āgoal) � (bβ � b̄goal))
s 7

! ((f̄α � aα) � ?(f̄β � bβ)� ! (finit � finit � (āgoal � b̄goal)))
p↓2

?(f̄α � aα) � ?(f̄β � bβ) � ! (finit � finit � (āgoal � b̄goal))

256 O. Kahramanoğulları

When we plug into the function µ of Definition 4 this proof, or any of the proofs
in Example 3 or Example 4 expanded with respect to Lemma 1 and Lemma 2,
we obtain the following partial order.

init

goal

α β

Proposition 5. Let P be a ppf defined on the action set A and CP,Π be a con-
straint set of a proof Π for P. (i) CP,Π is antisymmetric. (ii) CP,Π is irreflexive.

Definition 6. Let P be a ppf defined on the action set A and CP,Π be a con-
straint set of a proof Π for P. The concurrent plan of Π for P is ΓP,Π is the
transitive reduction (cover relation) of CP,Π.

Definition 7. A plan P is induced by a strict total order ≺ if for any pair
(x, y) ∈≺, x appears to the left of y in P.

Theorem 8. Let P be a ppf of a planning problem P, Π a proof of P and ΓP,Π

the concurrent plan of Π for P. For any strict total order ≺⊇ ΓP,Π, if P is a
plan induced by ≺ then P solves P.

This theorem provides an interleaving semantics of the plans computed as proofs
of ppf. Let us now give a non-interleaving semantics for these plans.

4 Partial Order Plans with a Concurrency Semantics

In linear logic planning, states are defined over the data structure multiset, ac-
tions are considered as multiset rewriting rules. Multiset rewriting is also com-
plete for representing computations of place/transition petri nets [29] (see, e.g.,
[4,12]). In such an encoding, the multiset rewrite rules represent the possible
firings of the transitions of a petri net. The places of the net are represented by
elements of multisets. Such a view allows to consider a planning problem as the
reachability problem of the corresponding petri net and vice versa.

4.1 Planning and Concurrency

When planning problems are considered from the point of view of concurrent
computations, e.g., as those in petri nets, due to the explicit representation of
resources, multiset rewriting planning allows to observe true concurrency in the
computations: in a language with true concurrency, when two actions are par-
tially ordered, the outcome of their execution in parallel is same as the outcome
of their execution in either order. Because the explicit treatment of resources
provides a representation of independence and causality, when two actions are
partially ordered, in an execution that involves both of these actions, they are

On Linear Logic Planning and Concurrency 257

independent in terms of the resources that they require to be executed. Thus,
their parallel composition results in an action that has the same effect as their
execution in any order. It becomes possible to define the parallel composition of
two actions by taking the multiset-union of their condition and effect multisets
[15]. Here, we speak about concurrency, in contrast to only parallelism, because
the common predecessors and successors of the two composed actions provide a
synchronisation mechanism when they are considered as points in time.

Example 6. In the planning problem of Example 1, we can compose the two
actions α and β and obtain the action {̇ f, f }̇ → {̇ a, b }̇, which corresponds to
concurrent executions of these two actions. These two actions are then synchro-
nised by their predecessor init and successor goal.

However, when planning problems are modelled in common AI planning for-
malisms, that are based on properties instead of resources, e.g., STRIPS [5], it
is not always possible to observe true concurrency in the partial order plans of
these languages, e.g., UCPOP [28] and Graphplan [1]. A simple modification of
the famous dining philosophers problem is helpful to see the reason for this.

Example 7. There are two hungry philosophers, a and b, sitting at a dinner
table. In order for a philosopher to eat, she must have a fork. However, there is
only one fork on the table. The problem consists in finding a plan where both
philosophers have eaten. The solution of this problem is a plan in which a and b
eat in either order. A plan where a and b eat concurrently cannot be a solution
for this problem, because a and b cannot have the fork at the same time. Because
the fork is a resource, which cannot be shared, eating of one is dependent on
the others finishing eating and leaving the fork. Hence, these two actions can be
executed in either order but not in parallel. A simple encoding of this scenario
as a planning problem allows to observe such a semantics: let I = {̇ ha, hb, f }̇,
G = {̇ ea, eb, f }̇ and A = { a : {̇ha, f }̇ → {̇ ea, f }̇ , b : {̇ hb, f }̇ → {̇ eb, f }̇ } .
In the encoding above, for a philosopher x, the resource hx denotes that x is
hungry and ex denotes that x has eaten. f denotes the resource fork. The actions
a and b can be executed in either order. However, their parallel composition
results in the action [a, b] : {̇ ha, hb, f, f }̇ → {̇ ea, eb, f, f }̇ which requires two
instances of the resource f in order to be executed. Thus the parallel composition
of these two actions cannot be executed in the initial state I. An encoding of
this problem by means of properties, in a propositional language, in a way which
delivers such a semantics is not straight-forward, if not impossible.

Due to the explicit treatment of resources, in contrast to the partial order plan-
ners in the literature, such as, UCPOP or Graphplan, the approach of the present
paper respects the dependency and causality between actions in a planning
domain, and results in a non-interleaving, behavioural concurrency semantics,
namely, labelled event structure semantics.

4.2 Labelled Event Structure Semantics of Planning Problems

Labelled event structures (LES) is a non-interleaving branching-time behavioural
model of concurrency [34]. An interleaving model of concurrency is equipped

258 O. Kahramanoğulları

with an expansion law that identifies parallel composition by means of choice
and sequential composition. In an interleaving model, parallel composition of
two events indicates that these events can take place in either order. A model
for concurrency without such an expansion law is said to be a non-interleaving
model: when two events are composed in parallel they can take place simulta-
neously or in either order. In such a view of the systems, the independence and
causality between the events of the system is central. In a LES the causality
between actions is captured in terms of their dependencies in a partial order.

Apart from the causality given by a partial order, in a LES, the nondetermin-
ism in the computation is captured by a conflict relation, which is a symmetric
irreflexive relation of events. In a planning perspective, this corresponds to ac-
tions that are applicable in the same state, but are in conflict. When two actions
are in conflict with each other, execution of one of them instead of the other
determines a different state space ahead. This provides a branching-time model
of the possible computations.

By using the operational semantics given by the rule action, in [13], we provide
a procedure for obtaining a LES from the specification of a planning problem:
for each planning problem, we obtain a labelled transition system determined
by the possible applications of the rule action. We then apply the standard tech-
niques for obtaining a LES from these transition systems (see, e.g., [34,10]). The
LES obtained takes all the possible computations in the planning domain into
consideration and reflects the plans that are in conflict with each other. Because
of the explicit treatment of resources in linear logic, the computations in the
LES reflect the independence and causality between actions of the computation.
The concurrent plans of Definition 6 reflect this semantics.

Example 8. Consider the planning problem of Example 1. The computations of
this system are given as the LES depicted below, where # denotes the con-
flict relation. The four events are partially ordered because they are causally
independent. The events α1 and β2 are in conflict because they cannot co-occur.
Similarly, the events α2 and β1 are in conflict. The events that are not in conflict
and causally independent can co-occur, e.g., α1 and α2 or α1 and β1.

• • • •
α1 β2 α2 β1# #

Example 9. There are two tables. On Table 1 there are four blocks which are
stacked on top of each other as shown on the left-hand side of the Figure 1. The
only available action takes a block from Table 1 and puts it on Table 2. The goal
of the problem is moving three of the blocks from Table 1 to Table 2. Because
block a is stacked on blocks c and d, blocks c and d cannot be moved before
block a. Similarly, block d cannot be moved before block b.

The LES displaying the causality and independence of the planning problem
is on the right-hand side of Figure 1. Each event there represents moving the cor-
responding block. Events a and b are independent, however b and c are also inde-
pendent although event c causally requires event a in order to occur. The events
c and d are independent but they cannot co-occur in an execution of the system
because they are in conflict. The possible concurrent plans are the two maximal

On Linear Logic Planning and Concurrency 259

a b

c d

Table 1 Table 2

a b

c d

• •

• •
#

Fig. 1. A planning problem and the corresponding LES

conflict-free partial order in LES, i.e., { (init, a), (init, b), (b, goal), (a, c), (c, goal) }
and { (init, a), (init, b), (a, d), (b, d), (d, goal) }. The interleavings of these concur-
rent plans are given by the plans 〈a; c; b〉, 〈b; a; c〉, 〈a; b; c〉, 〈a; b; d〉 and 〈b; a; d〉,
which solve this problem.

5 Relation to Other Work

The reachability problem in petri nets is known to be EXPSPACE-hard [22].
Thus, the encoding of petri nets as multiset rewriting systems in multiplicative
exponential linear logic delivers the lower bound of this logic to be EXPSPACE-
hard [23]. When the complexity of a language is seen as a measure of expressive
power, this also sets the scene for the expressive power of the propositional lan-
guages based on multiset rewriting in comparison to propositional languages
based on STIRPS: given that planning in STRIPS is PSPACE-complete [3], be-
cause PSPACE is a strict subset of EXPSPACE multiset rewriting is strictly
more expressive than propositional languages based on STRIPS. In order to
achieve the same expressive power, these languages must be enriched with a
constant-only first order language, i.e., DATALOGSTRIPS. However, a charac-
terisation of STRIPS in multiset planning is possible (see, e.g., [20]).

If we consider the planning languages based on properties, e.g., ADL [27], we
see that any planning problem expressed in these languages can be expressed as
a multiset planning problem: [32] shows that multiset planning languages can be
employed to encode the domain descriptions of the action description language A
[6]. As it is stated in [7], because the action description language A is equivalent
to the propositional fragment of the planning language ADL the result of [32]
also implies that the multiset rewriting approach can be used for ADL domains.

For a more extensive survey on reasoning about actions, planning and con-
currency we refer to [13].

6 Discussion

In [15,13], we have introduced a deductive language 4 for multiset planning within
an extension of multiplicative exponential linear logic with a noncommutative
4 Prototype implementations of planners based on this approach, mainly in Maude lan-

guage, are available at http://www.doc.ic.ac.uk/~ozank/maude cos.html

260 O. Kahramanoğulları

self-dual operator [11]. In this language, the sequential composition of the ac-
tions is represented by means of the non-commutative self-dual logical operator,
whereas the parallel composition of the actions is naturally mapped to the com-
mutative par operator of linear logic. Thus, by means of this language parallel
and sequential composition of actions and plans can be represented at the same
logical level as in process algebra and logical reasoning can be performed on
these plan expressions. Ongoing work includes using the ideas of this paper to
provide an event structure semantics to this deductive language with a proof
theoretical operational semantics. This language should then benefit from a rich
arsenal of tools and techniques that are imported from the both fields of planning
and concurrency, and find applications, e.g., in modelling biological systems as
complex reactive systems [16].

Acknowledgements. The author would like to thank Alessio Guglielmi, Steffen
Hölldobler, Luca Cardelli, Max Kanovich and anonymous referees for valuable
comments and improvements.

References

1. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial
Intelligence 90, 281–300 (1997)

2. Boutilier, C., Brafman, R.: Partial-order planning with concurrent interacting ac-
tions. Journal of Artificial Intelligence Research 14, 105–136 (2001)

3. Bylander, T.: Complexity results for serial decomposability. In: Proc. of the Tenth
National Conf. on AI (AAAI-1992), San Jose, pp. 729–734. AAAI Press, Menlo
Park (1992)

4. Cervesato, I.: Petri nets and linear logic: a case study for logic programming. In:
Proceedings of the Joint Conference on Declarative Programming: GULP-PRODE
1995, Marina di Vietri, Ital (1995)

5. Fikes, R.E., Nilsson, H.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–205 (1971)

6. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs.
Journal of Logic Programming 17(2/3–4), 301–321 (1993)

7. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial
Intelligence 2 (3–4), 193–210 (1998)

8. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
9. Große, G., Hölldobler, S., Schneeberger, J.: Linear deductive planning. Journal of

Logic and Computation 6 (2), 233–262 (1996)
10. Guglielmi, A.: Abstract Logic Programming in Linear Logic Independence and

Causality in a First Order Calculus. PhD thesis, Universita di Pisa (1996)
11. Guglielmi, A.: A system of interaction and structure. ACM Transactions on Com-

putational Logic 8(1), 1–64 (2007)
12. Ishihara, K., Hiraishi, K.: The completeness of linear logic for petri net models.

Logic Journal of IGPL 9(4), 549–567 (2001)
13. Kahramanoğulları, O.: Nondeterminism and Language Design in Deep Inference.

PhD thesis, Technische Universität Dresden (2006)
14. Kahramanoğulları, O.: System BV is NP-complete. Annals of Pure and Applied

Logic (to appear, 2007)

On Linear Logic Planning and Concurrency 261

15. Kahramanoğulları, O.: Towards planning as concurrency. In: Proceedings of the
IASTED International Conference on Artificial Intellgence and Applications, AIA
2005, Innsbruck, Austria, pp. 387–393 (2005)

16. Kahramanoğulları, O.: A deductive compositional approach to petri nets for sys-
tems biology. Poster presentation at the Computational Methods in Systems Biol-
ogy Conference (2007)

17. Kanovich, M.I., Vauzeilles, J.: The classical AI planning problems in the mirror of
horn linear logic: semantics, expressibility, complexity. Mathematical Structures in
Computer Science 11(6), 689–716 (2001)

18. Kanovich, M.I., Vauzeilles, J.: Strong planning under uncertainty in domains with
numerous but identical elements (a generic approach). Theoretical Computer Sci-
ence 379, 84–119 (2007)

19. Craig, A.: Knoblock. Generating parallel execution plans with a partial-order plan-
ner. In: Artificial Intelligence Planning Systems, pp. 98–103 (1994)

20. Küngas, P.: Linear logic for domain-independent AI planning (extended abstract).
In: Proc. of Doctoral Consortium at 13th Int. Conf. on Automated Planning and
Scheduling, ICAPS 2003, Trento, Italy, pp. 68–72 (2003)

21. Lamarche, F., Straßburger, L.: Naming proofs in classical propositional logic. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 246–261. Springer, Heidelberg
(2005)

22. Lipton, R.J.: The reachability problem requires exponential space. Technical Re-
port 62, Yale University (1976)

23. Mart́ı-Oliet, N., Meseguer, J.: From petri nets to linear logic. Mathematical Struc-
tures in Computer Science 1, 66–101 (1991)

24. Mart’i-Oliet, N., Meseguer, J.: Action and change in rewriting logic. In: Pareschi,
R., Fronhofer, B. (eds.) Dynamic Worlds: From the Frame Problem to Knowledge
Management, vol. 11–2, pp. 1–53. Kluwer Academic Publishers, Dordrecht (1999)

25. Masseron, M., Tollu, C., Vauzeilles, J.: Generating plans in linear logic I–II. In:
Veni Madhavan, C.E., Nori, K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 63–75.
Springer, Heidelberg (1990)

26. Miller, D.: The π-calculus as a theory in linear logic: Preliminary results. In:
Lamma, E., Mello, P. (eds.) ELP 1992. LNCS, vol. 660, pp. 242–265. Springer,
Heidelberg (1993)

27. Pednault, E.P.D.: ADL: Exploring the middle ground between STRIPS and the
situation calculus. In: Brachmann, R., Levesque, H.J., Reiter, R. (eds.) Principles
of Knowledge Representation and Reasoning: Proc. of the First Int. Conf (KR-
1989), Toronto, ON, pp. 324–332. Morgan Kaufmann, San Francisco (1989)

28. Penberthy, J., Weld, D.: UCPOP: A sound, complete, partial order planner for
ADL. In: KR 1992. Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference, pp. 103–114 (1992)

29. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instru-
mentelle Mathematik, Bonn (1962)

30. Reiter, R.: Natural actions, concurrency and continuous time in the situation cal-
culus. In: Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, pp. 2–13. Morgan Kaufmann, Cambridge (1996)

31. Straßburger, L.: MELL in the calculus of structures. Theoretical Computer Sci-
ence 309, 213–285 (2003)

262 O. Kahramanoğulları

32. Thielscher, M.: Representing Actions in Equational Logic Programming. In: Van
Hentenryck, P. (ed.) Proc. of the Int. Conf. on Logic Programming (ICLP), Santa
Margherita Ligure, Italy, pp. 207–224. MIT Press, Cambridge (1994)

33. Tiu, A.: A system of interaction and structure II: The need for deep inference.
Logical Methods in Computer Science 2(2),4: 1–24 (2006)

34. Winskel, G., Nielsen, M.: Models for concurrency. In: Handbook of Logic in Com-
puter Science, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)

On the Relation between Multicomponent Tree

Adjoining Grammars with Tree Tuples
(TT-MCTAG) and Range Concatenation

Grammars (RCG)

Laura Kallmeyer and Yannick Parmentier

Collaborative Research Center 441, University of Tübingen, Germany
lk@sfs.uni-tuebingen.de, parmenti@sfs.uni-tuebingen.de

Abstract. This paper investigates the relation between TT-MCTAG, a
formalism used in computational linguistics, and RCG. RCGs are known
to describe exactly the class PTIME; simple RCG even have been shown
to be equivalent to linear context-free rewriting systems, i.e., to be mildly
context-sensitive. TT-MCTAG has been proposed to model free word
order languages. In general, it is NP-complete. In this paper, we will
put an additional limitation on the derivations licensed in TT-MCTAG.
We show that TT-MCTAG with this additional limitation can be trans-
formed into equivalent simple RCGs. This result is interesting for the-
oretical reasons (since it shows that TT-MCTAG in this limited form
is mildly context-sensitive) and, furthermore, even for practical reasons:
We use the proposed transformation from TT-MCTAG to RCG in an
actual parser that we have implemented.

1 Introduction

1.1 Tree Adjoining Grammars (TAG)

Tree Adjoining Grammar (TAG, [1]) is a tree-rewriting formalism. A TAG con-
sists of a finite set of trees (elementary trees). The nodes of these trees are labelled
with nonterminals and terminals (terminals only label leaf nodes). Starting from
the elementary trees, larger trees are derived by substitution (replacing a leaf
with a new tree) and adjunction (replacing an internal node with a new tree).
In case of an adjunction, the tree being adjoined has exactly one leaf that is
marked as the foot node (marked with an asterisk). Such a tree is called an
auxiliary tree. When adjoining it to a node n, in the resulting tree, the subtree
with root n from the old tree is attached to the foot node of the auxiliary tree.
Non-auxiliary elementary trees are called initial trees. A derivation starts with
an initial tree. In a final derived tree, all leaves must have terminal labels. For a
sample derivation see Fig. 1.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 263–274, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 L. Kallmeyer and Y. Parmentier

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived S
tree: NP VP

John ADV VP

always V

laughs

derivation tree:
laugh

1 2

john always

Fig. 1. TAG derivation for John always laughs

Definition 1 (Tree Adjoining Grammar)
A Tree Adjoining Grammar (TAG) is a tuple G = 〈I, A,N, T 〉 with

– N and T being disjoint finite sets, the nonterminals and terminals
– I being a finite set of initial trees with nonterminals N and terminals T , and
– A being a finite set of auxiliary trees with nonterminals N and terminals T .

The internal nodes in I ∪ A can be marked as OA (obligatory adjunction) and
NA (null adjunction, i.e., no adjunction allowed).

Definition 2 (TAG derivation and tree language). Let G = 〈I, A,N, T 〉
be a TAG. Let γ and γ′ be finite trees.

– γ ⇒ γ′ in G iff there is a node position p and a tree γ′0 that is either
elementary or derived from some elementary tree such that γ′ = γ[p, γ′0]

1.
∗⇒ is the reflexive transitive closure of ⇒.

– The tree language of G is LT (G) = {γ |α ∗⇒ γ for some α ∈ I, all leaves in
γ have terminal labels and there are no remaining OA nodes in γ}.
The string language L(G) contains all yields of trees from the tree language.

TAG derivations are represented by derivation trees (unordered trees) that
record the history of how the elementary trees are put together. A derived tree is
the result of carrying out the substitutions and adjunctions, i.e., the derivation
tree describes uniquely the derived tree. Each edge in a derivation tree stands
for an adjunction or a substitution. The edges are labelled with Gorn addresses2.
E.g., the derivation tree in Fig. 1 indicates that the elementary tree for John
is substituted for the node at address 1 and always is adjoined at node address
2 (the fact that the former is an adjunction, the latter a substitution can be
inferred from the fact that the node at address 1 is a leaf that is no foot node
while the node at address 2 is an internal node).

Definition 3 (TAG derivation tree). Let G = 〈I, A,N, T 〉 be a TAG. Let γ
be a tree derived as follows in G:
γ = γ0[p1, γ1] . . . [pk, γk] where γ0 is an instance of an elementary tree and the

substitutions/adjunctions of the γ1, . . . , γk are all the substitutions/adjunctions
to γ0 that are performed to derive γ.
1 For trees γ, γ1, . . . , γn and pairwise different node positions p1, . . . , pn in γ,

γ[p1, γ1] . . . [pn, γn] denotes the result of subsequently substituting/adjoining the
γ1, . . . , γn to the nodes in γ with addresses p1, . . . , pn respectively.

2 The root address is ε, and the jth child of a node with address p has address pj.

On the Relation between Multicomponent Tree 265

Then the corresponding derivation tree has a root labelled with γ0 that has k
daughters. The edges from γ0 to these daughters are labelled with p1, . . . , pk, and
the daughters are the derivation trees for the derivations of γ1, . . . , γk.

1.2 Range Concatenation Grammars (RCG)

This section defines RCGs [2,3].

Definition 4 (Range Concat-enation Grammar). A positive Range Con-
catenation Grammar is a tuple G = 〈N,T, V, S, P 〉 such that a) N is a finite
set of predicates, each with a fixed arity; b) T and V are disjoint alphabets of
terminals and of variables; c) S ∈ N is the start predicate, a predicate of arity
1; d) P is a finite set of clauses
A0(x01, . . . , x0a0) → ε, or
A0(x01, . . . , x0a0) → A1(x11, . . . , x1a1) . . . An(xn1, . . . , xnan) with n ≥ 1

where Ai ∈ N, xij ∈ (T ∪ V)∗ and ai the arity of Ai.

Since throughout the paper, we use only positive RCGs, whenever we say “RCG”,
we actually mean “positive RCG”3. An RCG with maximal predicate arity n is
called an RCG of arity n.

When applying a clause with respect to a string w = t1 . . . tn, the arguments
of the predicates are instantiated with substrings of w, more precisely with the
corresponding ranges. A range 〈i, j〉 with 0 ≤ i < j ≤ n corresponds to the
substring between positions i and j, i.e., to the substring ti+1 . . . tj . If i = j,
then 〈i, j〉 corresponds to the empty string ε. If i > j, then 〈i, j〉 is undefined.

Definition 5. For a given clause, an instantiation with respect to a string w =
t1 . . . tn consists of a function f : {t′ | t′ is an occurrence of some t ∈ T in the
clause} ∪ V → {〈i, j〉 | i ≤ j, i, j ∈ IN} such that

a) for all occurrences t′ of a t ∈ T in the clause: f(t′) := 〈i, i + 1〉 for some
i, 0 ≤ i < n such that ti = t,

b) for all v ∈ V : f(v) = 〈j, k〉 for some 0 ≤ j ≤ k ≤ n, and
c) if consecutive variables and occurrences of terminals in an argument in the

clause are mapped to 〈i1, j1〉, . . . , 〈ik, jk〉 for some k, then jm = im+1 for
1 ≤ m < k. By definition, we then state that f maps the whole argument to
〈i1, jk〉.

The derivation relation is defined as follows:

Definition 6 (RCG derivation and string language)

– For a predicate A of arity k, a clause A(. . .) → . . ., and ranges 〈i1, j1〉, . . . ,
〈ik, jk〉 with respect to a given w: if there is a instantiation of this clause
with left-hand-side A(〈i1, j1〉, . . . , 〈ik, jk〉), then in one derivation step (. . . ⇒
. . .) A(〈i1, j1〉, . . . , 〈ii, jk〉) can be replaced with the right-hand side of this
instantiation. ∗⇒ is the reflexive transitive closure of ⇒.

3 The negative variant allows for negative predicate calls of the form A(α1, . . . , αn).
Such a predicate is meant to recognize the complement language of its positive
counterpart. See [3].

266 L. Kallmeyer and Y. Parmentier

– The language of an RCG G is
L(G) = {w |S(〈0, |w|〉) ∗⇒ ε with respect to w}.

For illustration, consider the RCG G = 〈{S,A,B}, {a, b}, {X,Y, Z}, S, P 〉 with
P ={S(X Y Z) →A(X,Z)B(Y), A(aX, a Y) → A(X,Y),B(bX) → B(X),A(ε, ε) → ε,
B(ε) → ε}.
L(G) = {anbkan | k, n ∈ IN}. Take w = aabaa. The derivation starts with

S(〈0, 5〉). First we apply the following clause instantiation:

S(X Y Z) → A(X , Z) B(Y)

〈0, 2〉 〈2, 3〉 〈3, 5〉 〈0, 2〉 〈3, 5〉 〈2, 3〉
aa b aa aa aa b

With this instantiation, S(〈0, 5〉) ⇒ A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉). Then
B(b X) → B(X)

〈2, 3〉 〈3, 3〉 〈3, 3〉
b ε ε

and B(ε) → ε

lead to A(〈0, 2〉, 〈3, 5〉)B(〈2, 3〉) ⇒ A(〈0, 2〉, 〈3, 5〉)B(〈3, 3〉) ⇒ A(〈0, 2〉, 〈3, 5〉).
A(a X a Y) → A(X , Y)

〈0, 1〉 〈1, 2〉 〈3, 4〉 〈4, 5〉 〈1, 2〉 〈4, 5〉
a a a a a a

leads to A(〈0, 2〉, 〈3, 5〉) ⇒ A(〈1, 2〉, 〈4, 5〉). Then
A(a X a Y) → A(X , Y)

〈1, 2〉 〈2, 2〉 〈4, 5〉 〈5, 5〉 〈2, 2〉 〈5, 5〉
a ε a ε ε ε

and A(ε, ε) → ε

lead to A(〈1, 2〉, 〈4, 5〉) ⇒ A(〈2, 2〉, 〈5, 5〉) ⇒ ε

Definition 7 (Simple Range Concatenation Grammar). An RCG is

– non-combinatorial if each of the arguments in the right-hand sides of the
clauses are single variables.

– linear if no variable appears more than once in the left-hand sides of a clause
or more than once in the right-hand side of a clause.

– non-erasing if each variable occurring in the left-hand side of a clause occurs
also in its right-hand side and vice versa.

– simple if it is non-combinatorial, linear and non-erasing.

Simple RCGs and linear context-free rewriting systems (LCFRS, [4]) are equiv-
alent (see [5]). Consequently, simple RCGs are mildly context-sensitive [6].

1.3 From TAG to RCG

Now let us sketch the general idea of the transformation from TAG to RCG,
following [7]: The RCG contains predicates 〈α〉(X) and 〈β〉(L,R) for initial and
auxiliary trees respectively. X covers the yield of α and all trees added to α,

On the Relation between Multicomponent Tree 267

while L and R cover those parts of the yield of β (including all trees added to
β) that are to the left and the right of the foot node of β. The clauses in the
RCG reduce the argument(s) of these predicates by identifying those parts that
come from the elementary tree α/β itself and those parts that come from one of
the elementary trees added by substitution or adjunction. A sample TAG with
an equivalent RCG is shown in Fig. 2.

TAG:

α1 SNA

a S F

ε

α2

F

d

α3

F

e

β S

b S∗
NA c

Equivalent RCG:
S(X) → 〈α1〉(X) | 〈α2〉(X) | 〈α3〉(X) (every word in the language is the yield of an α ∈ I)

〈α1〉(aF) → 〈α2〉(F) | 〈α3〉(F) (the yield of α1 is a followed by the tree that substitutes at F)

〈α1〉(aB1B2F) → 〈β〉(B1, B2)〈α2〉(F) | 〈β〉(B1, B2)〈α3〉(F) (or β adjoins to S in α;

then the yield is a followed by the left part of β, the right part of β and the tree substituted at F)

〈β〉(B1b, cB2) → 〈β〉(B1, B2) (β can adjoin to its root; then the left part is the left part

of the adjoined β followed by b; the right part is c followed by the right part of the adjoined β)

〈α2〉(d) → ε 〈α3〉(e) → ε 〈β〉(b, c) → ε (the yields of α2, α3 and β can be

d, e and the pair b (left) and c (right) resp.)

Fig. 2. A sample TAG and an equivalent RCG

2 TT-MCTAG

For a range of linguistic phenomena, multicomponent TAG (MCTAG, [4]) have
been proposed. The motivation is the desire to split the contribution of a single
lexical item (e.g., a verb and its arguments) into several elementary trees. An
MCTAG consists of sets of elementary trees, so-called multicomponents. If a
multicomponent is used in a derivation, all its members must be used.

Definition 8 (MCTAG). A multicomponent TAG (MCTAG) is a tuple G =
〈I, A,N, T,A〉 where GTAG := 〈I, A,N, T 〉 is a TAG, and A is a partition of
I ∪A, the set of elementary tree sets.

The particular type of MCTAG we are concerned with is Tree-Tuple MCTAG
with Shared Nodes (TT-MCTAG, [8]). TT-MCTAG were introduced to deal
with free word order phenomena in languages such as German. An example is
(1) where the argument es of reparieren precedes the argument der Mechaniker
of verspricht and is therefore not adjacent to the predicate it depends on:

(1) ... dass es der Mechaniker zu reparieren verspricht
... that it the mechanic to repair promises
‘... that the mechanic promises to repair it’

A TT-MCTAG is slightly different from standard MCTAG since the elemen-
tary tree sets contain two parts: 1. one lexicalized tree γ, marked as the unique

268 L. Kallmeyer and Y. Parmentier

head tree, and 2. a set of auxiliary trees, the argument trees. Such a pair is called
a tree tuple. During derivation, the argument trees must either adjoin directly
to their head tree or they must be linked by a chain of adjunctions at root nodes
to a tree that attaches to the head tree. In other words, in the corresponding
TAG derivation tree, the head tree must dominate the auxiliary trees such that
all positions on the path between them, except the first one, must be ε. This
captures the notion of adjunction under node sharing from [9]4.

Definition 9 (TT-MCTAG). Let G = 〈I, A,N, T,A〉 be an MCTAG. G is a
TT-MCTAG iff

1. every Γ ∈ A has the form {γ, β1, . . . , βn} where γ contains at least one leaf
with a terminal label, the head tree, and β1, . . . , βn are auxiliary trees, the
argument trees. We write such a set as a tuple 〈γ, {β1, . . . , βn}〉.

2. A derivation tree D for some t ∈ L(〈I, A,N, T 〉) is licensed as a TAG deriva-
tion tree in G iff D satisfies the following conditions (MC) (“multicomponent
condition”) and (SN-TTL) (“tree-tuple locality with shared nodes”):
(a) (MC) There are k pairwise disjoint instances Γ1, . . . , Γk of elementary

tree sets from A for some k ≥ 1 such that
⋃k

i=1 Γi is the set of node
labels in D.

(b) (SN-TTL) for all nodes n0, n1, . . . , nm, m > 1, in D with labels from
the same elementary tree tuple such that n0 is labelled by the head tree:
for all 1 ≤ i ≤ m: either 〈n0, ni〉 ∈ PD

5 or there are ni,1, . . . , ni,k

with auxiliary tree labels such that ni = ni,k, 〈n0, ni,1〉 ∈ PD and for
1 ≤ j ≤ k − 1: 〈ni,j , ni,j+1〉 ∈ PD where this edge is labelled with ε.

Fig. 3 shows a TT-MCTAG derivation for (1). Here, the NPnom auxiliary tree
adjoins directly to verspricht (its head) while the NPacc tree adjoins to the root
of a tree that adjoins to the root of a tree that adjoins to reparieren.

In the general case, the recognition problem for TT-MCTAG is NP-hard [10].
In the following, we define a limitation for TT-MCTAG based on a suggestion
from [10]: TT-MCTAG are of rank k if, at any time during the derivation, at
most k argument trees depending on higher head trees in the derivation tree are
still waiting for adjunction.

Definition 10 (k-TT-MCTAG). Let G = 〈I, A,N, T,A〉 be a TT-MCTAG.
G is of rank k (or a k-TT-MCTAG for short) iff for each derivation tree D
licenced in G, the following holds:

(TT-k) There are no nodes n, h0, . . . , hk, a0, . . . , ak in D such that the label
of ai is an argument tree of the label of hi and 〈hi, n〉, 〈n, ai〉 ∈ P+

D for 0 ≤ i ≤ k.
4 The intuition is that if a tree γ′ adjoins to some γ, its root in the resulting derived

tree somehow belongs both to γ and γ′, it is shared by them. A further tree β
adjoining to this node can then be considered as adjoining to γ, not only to γ′ as
in standard TAG. Note that we assume that foot nodes do not allow adjunctions,
otherwise node sharing would also apply to them.

5 For a tree γ, Pγ is the parent relation on the nodes, i.e., 〈x, y〉 ∈ Pγ for nodes x, y
in γ iff x is the mother of y.

On the Relation between Multicomponent Tree 269

�
VP

VP∗ verspricht
,

�
VP

NPnom VP∗

� � �
NPnom

der Mech.
, {}

�

�
VP

zu reparieren
,

�
VP

NPacc VP∗

� � �
NPacc

es
, {}

�

derivation tree:
reparieren

ε

verspricht
ε

NPnom

1 ε

Mechaniker NPacc

1

es

Fig. 3. TT-MCTAG derivation of (1)

With the analyses proposed in [8], that lead to a binary branching structure with a
verbal projection line, the linguistic signification of this restriction is roughly that
for every VP node on the verbal projection line, at most k NPs can be scrambled
over this node. It is hard to say whether such a restriction is empirically valid.
Note however, that the number of verbs that allow for non-local scrambling of
their arguments is limited. Furthermore, the number of arguments of these verbs
is fixed. This indicates that such a limit k actually exists, although it might be
motivated rather by semantic and pragmatic reasons than by syntactic reasons.

3 From k-TT-MCTAG to RCG

We construct equivalent simple RCGs for k-TT-MCTAG in a way similar to the
RCG construction for TAG. There are predicates 〈γ〉 for the elementary trees
(not the tree sets) that characterize the contribution of γ. Recall that each TT-
MCTAG is a TAG, a TT-MCTAG derivation is a derivation in the underlying
TAG. (This is how we defined TT-MCTAG.) Consequently, we can construct
the RCG for the underlying TAG, enrich the predicates in a way that allows to
keep track of the “still to adjoin” argument trees and constrain thereby further
the RCG clauses. In this case, the yield of a predicate corresponding to a tree γ
contains not only γ and its arguments but also arguments of predicates that are
higher in the derivation tree and that are adjoined below γ via node sharing6.

Our construction leads to an RCG of arity 2 with complex predicate names.
In order to keep the number of necessary predicates finite, the limit k is crucial.

A predicate 〈γ〉 must encode the set of argument trees that depend on higher
head trees and that still need to be adjoined. We call this set the list of pending
arguments (LPA). These trees need to either adjoin to the root or to be passed
to the LPA of the root-adjoining tree. The LPA is a multiset since we allow for
several occurrences of a single tree.
6 An alternative possibility is to consider only γ and its arguments as the yield of γ.

This leads to an RCG with simpler predicate names (the LPAs are not be needed)
but with predicates of higher arity since the contribution of γ can be discontinuous:
Every argument of a higher head adjoining below γ interrupts the contribution of γ.
This construction is much more complex than the one we choose here.

270 L. Kallmeyer and Y. Parmentier

In order to reduce the number of clauses, we distinguish between tree clauses
(predicates 〈γ...〉) and branching clauses (predicates 〈adj...〉 and 〈sub...〉) follow-
ing [2]. We therefore have three kinds of predicates:

1. 〈γ, LPA〉 with LPA being the list of pending arguments coming from higher
trees (not arguments of γ). This predicate has arity 2 if γ is an auxiliary tree,
arity 1 otherwise. 〈γ, LPA〉-clauses distribute the variables for the yields
of the trees that substitute or adjoin into γ among corresponding adj and
sub predicates. Furthermore, they pass the LPA to the root-position adj
predicate and distribute the arguments of γ among the LPAs of all adj
predicates.

2. 〈adj, γ, dot, LPA〉 as intermediate predicates (of arity 2). Here, LPA contains
a) the list of higher args if dot = ε, and b) arguments of γ. We assume as
a condition that it contains only trees that can be adjoined to dot in γ.
〈adj, γ, dot, LPA〉-clauses adjoin a γ′ to the dot in γ. If γ′ ∈ LPA, then the
new predicate receives LPA \ {γ′}. Otherwise, γ′ must be a head and LPA
is passed unchanged.

3. 〈sub, γ, dot〉 as intermediate predicates (arity 1). 〈sub, γ, dot〉-clauses substi-
tute a γ′ into dot in γ.

More precisely, the construction goes as follows:
We define the decoration string σγ of an elementary tree γ as in [2]: each inter-

nal node has two variables L and R and each substitution node has one variable
X (L and R represent the left and right parts of the yield of the adjoined tree
and X represents the yield of a substituted tree). In a top-down-left-to-right
traversal the left variables are collected during the top-down traversal, the ter-
minals and variables of substitution nodes are collected while visiting the leaves
and the right variables are collected during bottom-up traversal. Furthermore,
while visiting a foot node, a separating “,” is inserted. The string obtained in
this way is the decoration string.

1. We add a start predicate S and clauses S(X) → 〈α, ∅〉(X) for all α ∈ I.
2. For every γ ∈ I ∪ A: Let Lp, Rp be the left and right symbols in σγ for the

node at position p if this is not a substitution node. Let Xp be the symbol
for the node at position p if this is a substitution node.

We assume that p1, . . . , pk are the possible adjunction sites, pk+1, . . . , pl

the substitution sites in γ. Then the RCG contains all clauses
〈γ, LPA〉(σγ) → 〈adj, γ, p1, LPAp1〉(Lp1 , Rp1). . .〈adj, γ, pk, LPApk

〉(Lpk
, Rpk

)
〈sub, γ, pk+1〉(Xpk+1) . . . 〈sub, γ, pl〉(Xpl

)
such that
– If LPA �= ∅, then ε ∈ {p1, . . . , pk} and LPA ⊆ LPAε, and
–
⋃k

i=0 LPApi = LPA∪Γ (γ) where Γ (γ) is either the set of arguments of
γ (if γ is a head tree) or (if γ is an argument itself), the empty set.

3. For all predicates 〈adj, γ, dot, LPA〉 the RCG contains all clauses
〈adj, γ, dot, LPA〉(L,R) → 〈γ′, LPA′〉(L,R) such that γ′ can be adjoined at
position dot in γ and

On the Relation between Multicomponent Tree 271

�
αv VPOA

v0

, {}
� �

αn1 NP1NA

n1

, {}
� �

αn2 NP2NA

n2

, {}
�

�
βv1 VPOA

v1 VP∗
NA

,

�
βn1 VP

NP1 VP∗
NA

�� �
βv2 VPOA

v2 VP∗
NA

,

�
βn2 VP

NP2 VP∗
NA

��

Fig. 4. TT-MCTAG

– either γ′ ∈ LPA and LPA′ = LPA \ {γ′},
– or γ′ /∈ LPA, γ′ is a head (i.e., a head tree), and LPA′ = LPA.

4. For all predicates 〈adj, γ, dot, ∅〉 where dot in γ is no OA-node, the RCG
contains a clause 〈adj, γ, dot, ∅〉(ε, ε) → ε.

5. For all predicates 〈sub, γ, dot〉 and all γ′ that can be substituted into position
dot in γ the RCG contains a clause 〈sub, γ, dot〉(X) → 〈γ′, ∅〉(X).

As an example consider the TT-MCTAG from Fig. 4. For this TT-MCTAG
we obtain (amongst others) the following RCG clauses:

– 〈αv, ∅〉(L v0 R) → 〈adj, αv, ε, ∅〉(L,R) (only one adjunction at the root,
address ε)

– 〈adj, αv, ε, ∅〉(L,R) → 〈βv1 , ∅〉(L,R) | 〈βv2 , ∅〉(L,R) (βv1 or βv2 might
be adjoined at ε in αv, LPA (here empty) is passed)

– 〈βv1 , ∅〉(L v1, R) → 〈adj, βv1 , ε, {βn1}〉(L,R) (in βv1 , there is only one
adjunction site, address ε; the argument is passed to the new LPA)

– 〈adj, βv1 , ε, {βn1}〉(L,R) →
〈βn1 , ∅〉(L,R) | 〈βv1 , {βn1}〉(L,R) | 〈βv2 , {βn1}〉(L,R) (either

βn1 is adjoined and removed from the LPA or another tree (βv1 or βv2) is
adjoined; in this case, the LPA remains)

– 〈βv1 , {βn1}〉(L v1, R) → 〈adj, βv1 , ε, {βn1 , βn1}〉(L,R) (again, only one
adjunction in βv1 ; the argument βn1 is added to the LPA)

– 〈βn1 , ∅〉(L X,R) → 〈adj, βn1 , ε, ∅〉(L,R) 〈sub, βn1 , 1, 〉(X) (adjunction to
root and substitution to 1 in βn1)

– 〈adj, βn1 , ε, ∅〉(ε, ε) → ε (adjunction at root of βn1 not obligatory as long
as LPA is empty)

– 〈sub, βn1 , 1, 〉(X) → 〈αn1 , ∅〉(X) (substitution of αn1 at address 1)
– 〈αn1 , ∅〉(n1) → ε (no adjunctions or substitutions at αn1)

Take the input word n1n2n1v2v1v1v0. The RCG derivation goes as follows7:
S(n1 n2 n1 v2 v1 v1 v0) ⇒ 〈αv, ∅〉(n1 n2 n1 v2 v1 v1 v0)

⇒ 〈adj, αv, ε, ∅〉(n1 n2 n1 v2 v1 v1, ε) (adjoin at ε, scan v0)

⇒ 〈βv1 , ∅〉(n1 n2 n1 v2 v1 v1, ε) (adjoin βv1)

⇒ 〈adj, βv1 , ε, {βn1}〉(n1 n2 n1 v2 v1, ε) (adj. at ε, scan v1, βn1 in LPA)

7 In this example, we replace the ranges with the corresponding input substrings since
this way the example is easier to read.

272 L. Kallmeyer and Y. Parmentier

⇒ 〈βv1 , {βn1}〉(n1 n2 n1 v2 v1, ε) (adjoin βv1)

⇒ 〈adj, βv1 , ε, {βn1 , βn1}〉(n1 n2 n1 v2, ε) (adj. at ε, scan v1, βn1 in LPA)

⇒ 〈βv2 , {βn1 , βn1}〉(n1 n2 n1 v2, ε) (adjoin βv2)

⇒ 〈adj, βv2 , ε, {βn2 , βn1 , βn1}〉(n1 n2 n1, ε) (adj. at ε, scan v2, βn2 in LPA)

⇒ 〈βn1 , {βn2 , βn1}〉(n1 n2 n1, ε) (adjoin βn1 from LPA)

⇒ 〈adj, βn1 , ε, {βn2, βn1}〉(n1 n2, ε) 〈sub, βn1 , 1, 〉(n1) (adj. at ε,

subst. at 1)

⇒ 〈adj, βn1 , ε, {βn2, βn1}〉(n1 n2, ε) 〈αn1 , ∅〉(n1) (subst. of αn1)

⇒ 〈adj, βn1 , ε, {βn2, βn1}〉(n1 n2, ε) ε (scan n1)

⇒ 〈βn2 , {βn1}〉(n1 n2, ε) (adjoin βn2 from LPA)

⇒ 〈adj, βn2 , ε, {βn1}〉(n1, ε) 〈sub, βn2 , 1, 〉(n2) (adj. at ε, subst. at 1)

⇒ 〈adj, βn2 , ε, {βn1}〉(n1, ε) 〈αn2 , ∅〉(n2) (subst. of αn2)

⇒ 〈adj, βn2 , ε, {βn1}〉(n1, ε) ε (scan n2)

⇒ 〈βn1 , ∅〉(n1, ε) (adjoin βn1 from LPA)
∗⇒ 〈adj, βn1 , ε, ∅〉(ε, ε) 〈αn1 , ∅〉(n1) (subst. of αn1)
∗⇒ ε (scan n1)

This example requires LPAs of maximal cardinality 3, i.e., a 3-TT-MCTAG.
Note that with this construction, the grouping into tree sets gets lost. E.g., in

our example, we do not know which of the n1 came with which of the v1. However,
in our parser we construct the RCG only for the TT-MCTAG of a given input
sentence and if the same terminal occurs more than once in the input sentence,
we use different occurrences of the corresponding tree tuples.This way, we avoid
using the same elementary tree twice and the grouping can be inferred from the
tuple identifiers encoded in the names of the trees.

With the above construction the following can be shown:

Theorem 1. For each k-TT-MCTAG G there is a simple RCG G′ with L(G) =
L(G′)8.

As a corollary, we obtain that the string languages of k-TT-MCTAG are mildly
context-sensitive.

To prove the theorem, we introduce TT-RCG derivation trees. These trees
are obtained from an RCG derivation by turning the 〈γ, LPA〉 predicates into
nodes and the branching predicates into edges.

Definition 11 (TT-RCG derivation tree). Let G′ be an RCG constructed
from a k-TT-MCTAG as above. A tree DG′ with node and edge labels is a TT-
RCG derivation tree for G′ iff
8 We suspect that the reverse does not hold. In other words, we suspect that the

k-TT-MCTAG languages are properly contained in the set of languages of simple
RCGs. An example of a language that is probably not in L(k-TT-MCTAG) is the
double copy language {www | w ∈ {a, b}∗}. The intuition is that, in order to obtain
the correct dependencies, the three copies of a terminal (or their substitution slots)
must be introduced in a single tree tuple. This means that two of them adjoin via
node sharing. But then it is not clear how to avoid getting not only crossing but also
other dependencies.

On the Relation between Multicomponent Tree 273

– each node in DG′ is labeled with a predicate name 〈γ, LPA〉 and with a
sequence of one or (if γ is an auxiliary tree) two w ∈ T ∗;

– the outgoing edges of a γ-node are labeled with pairwise different adjunction
and substitution sites in γ;

– if the root label is 〈γ, LPA〉, then there is a clause S(X) → 〈γ, LPA〉(X);
– for every node with label 〈γ, LPA〉 and with l daughters with node labels

〈γi, LPA
′
i〉 and edge labels doti (1 ≤ i ≤ l), there is a 〈γ, LPA〉-clause

〈γ, LPA〉(σγ) → 〈adj, γ, p1, LPAp1〉(Lp1 , Rp1) . . .
. . . 〈adj, γ, pk, LPApk

〉(Lpk
, Rpk

)〈sub, γ, pk+1〉(Xpk+1) . . . 〈sub, γ, pl〉(Xpl
)

such that

• for all adjunction sites p in γ, p /∈ {doti | 1 ≤ i ≤ l}: LPAp = ∅, and
there is a clause 〈adj, γ, p, ∅〉(ε, ε) → ε

• for all adjunction sites p = doti in γ (for some i, 1 ≤ i ≤ l): there is a
clause 〈adj, γ, doti, LPAp〉(L,R) → 〈γi, LPA

′
i〉(L,R)

• all substitution sites p = doti in γ are in {doti | 1 ≤ i ≤ l} and there is a
clause 〈sub, γ, doti〉(X) → 〈γi, ∅〉(X)

– for every leaf with label 〈γ, LPA〉 and 〈w〉 (or 〈w1, w2〉 resp.), there is a
clause 〈γ, LPA〉(w) → ε (or 〈γ, LPA〉(w1, w2) → ε resp.).

– the sequences of strings for a mother node are computed from the daughters
such that for at least one word w, the clauses leading from the mother to the
daughters can be instantiated successfully, assuming an instantiation with an
empty range for all variables not passed to one of the daughter predicates.

Furthermore, we call a TAG derivation tree whose nodes are equipped with the
yields of the derivation trees they root (one component for initial trees, two
components for auxiliary trees) and the set of arguments they dominate that
actually depend on higher head trees a decorated TAG derivation tree.

Once these structures are defined, we can prove the correspondence between
the decorated TAG derivation trees licensed in the k-TT-MCTAG G and the
TT-RCG derivation trees of the RCG G′. More precisely, we show that for each
decorated TAG derivation tree in G, there is an isomorphic TT-RCG derivation
tree in G′ and vice versa. We can show this by an induction on the height of the
subtree rooted by a node. (Due to space limitations, we omit the proof here.)

4 Conclusion

This paper has investigated the relation between two grammar formalisms, TT-
MCTAG and RCG. TT-MCTAG is a tree rewriting formalism that allows to
adequately model the free word order in certain languages, e.g., German. RCG,
on the other hand, is known to have nice formal properties: RCGs in general are
polynomially parsable, simple RCGs are even mildly context-sensitive. Further-
more, parsing algorithms for simple RCGs are already available.

In this paper, we have shown how to construct for a given TT-MCTAG with
a certain limitation (a so-called k-TT-MCTAG) an equivalent simple RCG. As

274 L. Kallmeyer and Y. Parmentier

a formal result, we obtain that the class of string languages generated by k-TT-
MCTAG is contained in the class of languages generated by simple RCGs. In
particular, k-TT-MCTAG are mildly context-sensitive.

As a practical result, we can use this transformation from k-TT-MCTAG to
simple RCG for a 2-step k-TT-MCTAG parser that, in a first step, does the
transformation and, in a second step, parses with the RCG obtained from the
first step. As we have seen from the correspondence between the two derivation
structures, the derivation tree of the k-TT-MCTAG can be retrieved from the
RCG parse tree in a straightforward way. We have implemented this within a
project that develops a TAG-based grammar for German along with a parser for
this grammar9.

References

1. Joshi, A.K., Schabes, Y.: Tree-Adjoning Grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, pp. 69–123. Springer, Berlin (1997)

2. Boullier, P.: On TAG Parsing. In: TALN 1999, 6e conférence annuelle sur le Traite-
ment Automatique des Langues Naturelles, Cargèse, Corse, pp. 75–84 (1999)

3. Boullier, P.: Range Concatenation Grammars. In: Proceedings of the Sixth Inter-
national Workshop on Parsing Technologies (IWPT 2000), Trento, Italy, pp. 53–64
(2000)

4. Weir, D.J.: Characterizing mildly context-sensitive grammar formalisms. PhD the-
sis, University of Pennsylvania (1988)

5. Boullier, P.: A Proposal for a Natural Language Processing Syntactic Backbone.
Technical Report 3342, INRIA (1998)

6. Joshi, A.K.: Tree adjoining grammars: How much contextsensitivity is required ro
provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
Cambridge (1985)

7. Boullier, P.: A Generalization of Mildly Context-Sensitive Formalisms. In: Pro-
ceedings of the Fourth International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+4), University of Pennsylvania, Philadelphia, pp. 17–20
(1998)

8. Lichte, T.: An MCTAG with Tuples for Coherent Constructions in German. In:
Proceedings of the 12th Conference on Formal Grammar 2007, Dublin, Ireland
(2007)

9. Kallmeyer, L.: Tree-local multicomponent tree adjoining grammars with shared
nodes. Computational Linguistics 31(2), 187–225 (2005)

10. Søgaard, A., Lichte, T., Maier, W.: The complexity of linguistically motivated
extensions of tree-adjoining grammar. In: Recent Advances in Natural Language
Processing 2007, Borovets, Bulgaria (2007)

9 See http://www.sfb441.uni-tuebingen.de/emmy/tulipa

Anti-pattern Matching Modulo

Claude Kirchner1, Radu Kopetz2, and Pierre-Etienne Moreau2

1 INRIA Bordeaux – Sud Ouest
2 INRIA Nancy – Grand Est

Abstract. Negation is intrinsic to human thinking and most of the time
when searching for something, we base our patterns on both positive and
negative conditions. In a recent work, the notion of term was extended to
the one of anti-term, i.e. terms that may contain complement symbols.

Here we generalize the syntactic anti-pattern matching to anti-pattern
matching modulo an arbitrary equational theory E , and we study the
specific and practically very useful case of associativity, possibly with a
unity (AU). To this end, based on the syntacticness of associativity, we
present a rule-based associative matching algorithm, and we extend it
to AU . This algorithm is then used to solve AU anti-pattern matching
problems. This allows us to be generic enough so that for instance, the
AllDiff standard predicate of constraint programming becomes simply
expressible in this framework. AU anti-patterns are implemented in the
Tom language and we show some examples of their usage.

1 Introduction

Anti-patterns were introduced in [8] in order to provide a compact and expressive
representation for sets of terms. Just by properly placing complement symbols in
a pattern, a nice expressivity can be obtained, which can spare the user of using
more complex and harder to read constructions (like disjunctions for instance).

Syntactic anti-patterns (i.e. when operators have no particular property) are
very useful, but the anti-patterns are even more valuable when associated with
equational theories, in particular with associativity, unit, and eventually with
commutativity. For instance, consider the associative matching with neutral el-
ement as provided by Tom (http://tom.loria.fr) — a programming lan-
guage that extends C and Java with algebraic data-types, pattern matching
and strategic rewriting facilities [1]. The pattern list(∗,�a, ∗) denotes a list
which contains at least one element different from the constant a, whereas
�list(∗, a, ∗) denotes a list which does not contain any a (list is an associative
operator having the empty list as its neutral element, and ∗ denotes any sub-
list). By using non-linearity we can express, in a single pattern, list constraints as
AllDiff or AllEqual. Take for instance the pattern list(∗, x, ∗, x, ∗) that denotes
a list with at least two equal elements (x is a variable). The complement of this,
�list(∗, x, ∗, x, ∗) matches lists that have only distinct elements, i.e. AllDiff . In a
similar way, as list(∗, x, ∗,�x, ∗) matches the lists that have at least two distinct
elements, its complement �list(∗, x, ∗,�x, ∗) denotes any list whose elements are
all equal. Without anti-patterns, these constructions would have to be expressed

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 275–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://tom.loria.fr

276 C. Kirchner, R. Kopetz, and P.-E. Moreau

as loops, disjunctions etc. Of course, instead of the constant a or the variable x,
we could have used any complex pattern or anti-pattern.

After presenting some general notions in Section 2, our first contribution, in
Section 3, is to solve associative matching problems using a rule-based algorithm.
We further adapt it to also support neutral elements. A second main contribution
is to provide, in Section 4, an anti-pattern matching algorithm for an arbitrary
equational theory, provided that a finitary matching algorithm is available for the
given theory. We show how an equational anti-pattern matching problem can be
transformed into a finite subset of equivalent equational problems. We then focus
on the associative anti-patterns with neutral elements and we present a practical
and efficient algorithm for solving such problems. In Section 5 we show how they
are integrated in the Tom language. A survey of related work can be found in [9].

2 Terms and Anti-patterns

Terms and equality. A signature F is a set of function symbols, each one having
a fixed arity associated to it. T (F ,X) is the set of terms built from a given
finite set F of function symbols where constants are denoted a, b, c, . . ., and a
denumerable set X of variables denoted x, y, z, . . . A term t is said to be linear
if no variable occurs more than once in t. The set of variables occurring in a
term t is denoted by Var(t). If Var(t) is empty, t is called a ground term and
T (F) is the set of ground terms.

A substitution σ is an assignment from X to T (F ,X), denoted σ = {x1 �→
t1, . . . , xk �→ tk} when its domain Dom(σ) is finite. Its application, written σ(t),
is defined by σ(xi) = ti, σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for f ∈ F , and
σ(y) = y if y �∈ Dom(σ). Given a term t, σ is called a grounding substitution
for t if σ(t) ∈ T (F) (usually different from a ground substitution, which does
not depend on t). The set of substitutions is denoted Σ. The set of grounding
substitutions for a term t is denoted GS(t).

The ground semantics of a term t ∈ T (F ,X) is the set of all its ground
instances: �t�g = {σ(t) | σ ∈ GS(t)}. In particular, �x�g = T (F).

A position in a term is a finite sequence of natural numbers. The subterm u of
a term t at position ω is denoted t|ω, where ω describes the path from the root
of t to the root of u. t(ω) denotes the root symbol of t|ω. By t[u]ω we express
that the term t contains u as subterm at position ω. Positions are ordered in
the classical way: ω1 < ω2 if ω1 is a prefix of ω2.

For an equational theory E , an E-matching equation (matching equation for
short) is of the form p ≺≺E t where p is a term classically called a pattern and t
is a term, generally considered as ground. The substitution σ is an E-solution of the
E-matching equation p ≺≺E t if σ(p) =E t, and it is called an E-match from p to t.

An E-matching system S is a possibly existentially quantified conjunction of
matching equations: ∃x̄(∧ipi ≺≺E ti). A substitution σ is an E-solution of such a
matching system if there exists a substitution ρ, with domain x̄, such that σ is
a solution of all the matching equations ρ(pi) ≺≺E ρ(ti). The set of solutions of
S is denoted by SolE(S).

Anti-pattern Matching Modulo 277

An E-matching disjunction D is a disjunction of E-matching systems. Its solu-
tions are the substitutions solution of at least one of its system constituents. Its
free variables FVar(D) are defined as usual in predicate logic. We use the nota-
tion D[S] to denote that the system S occurs in the context D, i.e. S is part of the
disjunction D.

Given an equational theory E and two sets of terms A and B, we consider
as usual that: t ∈E A ⇔ ∃t′ ∈ A such that t =E t′; A ⊆E B ⇔ ∀t ∈
A we have t ∈E B; A =E B ⇔ A ⊆E B and B ⊆E A.

A binary operator f is called associative if it satisfies the equational axiom
∀x, y, z ∈ T (F ,X) : f(f(x, y), z) = f(x, f(y, z)) and commutative if ∀x, y ∈
T (F ,X) : f(x, y) = f(y, x). A binary operator can have neutral elements — sym-
bols of arity zero: ef is a left neutral operator for f if ∀x ∈ T (F ,X), f(ef , x) = x;
ef is a right neutral operator for f if ∀x ∈ T (F ,X), f(x, ef) = x; ef is a neutral
or unit operator for f if it is a left and right neutral operator for f . When f is
associative or associative with a unit, this is denoted A or AU respectively.

Anti-terms. An anti-term [8] is a term that may contain complement symbols,
denoted by �. The BNF of anti-terms is:

AT ::= X | f(AT , . . . ,AT) | �AT , where f respects its arity.

The set of anti-terms (resp. ground anti-terms) is denoted AT (F ,X) (resp.
AT (F)). Any term is an anti-term, i.e. T (F ,X) ⊂ AT (F ,X).

The free variables of an anti-term t are denoted FVar(t), and the non-free
ones NFVar(t). Intuitively, a variable is free if it is not under a �. Typically,
FVar(�t) = ∅ and FVar(f(x,�x)) = {x}.

The substitutions are only active on free variables. For anti-terms, a grounding
substitution is a substitution that instantiates all the free variables by ground
terms. As detailed in [8], the ground semantics is defined as follows:

Definition 2.1. Given an anti-term q ∈ AT (F ,X), the ground semantics is
defined by: �q[�q′]ω�g = �q[z]ω�g\�q[q′]ω�g, where z is a fresh variable and for
all ω′ < ω, q(ω′) �= �.

As stressed in [8], the last condition is essential as it prevents abstracting sub-
terms in a complemented context. This would lead to counter-intuitive situations.

Example 2.1

1. �h(a,�b)�g = �h(a, z)�g\�h(a, b)�g = {h(a, σ(z)) | σ ∈ GS(h(a, z))}\{h(a, b)}
2. Non-linearity is crucial to denote for instance ‘any term except those rooted

by h with identical subterms’:
��h(x, x)�g = �z�g\�h(x, x)�g = T (F)\{h(σ(x), σ(x)) | σ ∈ GS(h(x, x))}

The anti-terms are also called anti-patterns, in particular when they appear
in the left-hand side of a match equation. The notions of matching equations,
systems and disjunctions are extended to anti-patterns by allowing the left-hand
side of match equations to be anti-patterns. When a match equation contains
anti-patterns, we often refer to it as an anti-pattern matching equation. The
solutions of such problems are defined later.

278 C. Kirchner, R. Kopetz, and P.-E. Moreau

3 Associative Matching

To provide an equational anti-matching algorithm in the next section, we first
need to make precise the matching algorithm that serves as our starting point.
The rule-based presentation of an AU matching algorithm is also the first con-
tribution of this paper.

In this section we focus on the particular useful case of matching modulo A and
AU . The reason why we chose to detail these specific theories are their tremen-
dous usefulness in rule-based programming such as ASF+SDF [2] or Maude [4,5]
for instance, where lists, and consequently list-matching, are omnipresent.

Since associativity and neutral element are regular axioms (i.e. equivalent
terms have the same set of variables), we can apply the combination results for
matching modulo the union of disjoint regular equational theories [13,15] to get
a matching algorithm modulo the theory combination of an arbitrary number
of A, AU as well as free symbols. Therefore we study in this section matching
modulo A or AU of a single binary symbol f , whose unit is denoted ef . The only
other symbols under consideration are free constants. For syntactic matching, a
simple rule-based matching algorithm can be found in [3,8].

3.1 Matching Associative Patterns

By making precise this algorithm, our purpose is to provide a simple and intu-
itive one that can be easily proved to be correct and complete and that will be
later adapted to anti-pattern matching1. In terms of efficiency, more appropriate
solutions were developed in [4,5].

Unification modulo associativity has been extensively studied [14,10]. It is
decidable, but infinitary, while A-matching is finitary. Our algorithm A-Matching
is described in Figure 1 and is quite reminiscent from [12] although not based
on a Prolog resolution strategy. It strongly relies on the syntacticness of the
associative theory [6,7].

Proposition 3.1. Given a matching equation p ≺≺A t with p ∈ T (F ,X) and
t ∈ T (F), the application of A-Matching always terminates.

If no solution is lost in the application of a transformation rule, the rule is called
preserving. It is a sound rule if it does not introduce unexpected solutions.

Proposition 3.2. The rules in A-Matching are sound and preserving modulo A.

Proof. The rule Mutate is a direct consequence of the decomposition rules for
syntactic theories presented in [7]. The rest of the rules are usual ones for which
these results have been obtained for example in [3]. �

Theorem 3.1. Given a matching equation p ≺≺A t, with p ∈ T (F ,X) and
t ∈ T (F), the normal form w.r.t. A-Matching exists and it is unique. It can only
be of the following types:
1 Due to the lack of space, lengthy proofs are given in the technical report [9].

Anti-pattern Matching Modulo 279

Mutate f(p1, p2) ≺≺A f(t1, t2) �→�→ (p1 ≺≺A t1 ∧ p2 ≺≺A t2) ∨
∃x(p2 ≺≺A f(x, t2) ∧ f(p1, x) ≺≺A t1) ∨
∃x(p1 ≺≺A f(t1, x) ∧ f(x, p2) ≺≺A t2)

SymClash1 f(p1, p2) ≺≺A a �→�→ ⊥
SymClash2 a ≺≺A f(p1, p2) �→�→ ⊥
ConstantClash a ≺≺A b �→�→ ⊥ if a
= b
Replacement z ≺≺A t ∧ S �→�→ z ≺≺A t ∧ {z �→ t}S if z ∈ FVar(S)

Utility Rules:
Delete p ≺≺A p �→�→ �
Exists1 ∃z(D[z ≺≺A t]) �→�→ D[�] if z
∈ Var(D[�])
Exists2 ∃z(S1 ∨ S2) �→�→ ∃z(S1) ∨ ∃z(S2)
DistribAnd S1 ∧ (S2 ∨ S3) �→�→ (S1 ∧ S2) ∨ (S1 ∧ S3)

PropagClash1 S ∧ ⊥ �→�→ ⊥
PropagClash2 S ∨ ⊥ �→�→ S
PropagSuccess1 S ∧ � �→�→ S
PropagSuccess2 S ∨ � �→�→ �

Fig. 1. A-Matching: pi are patterns, ti are ground terms, and S is any conjunction of
matching equations. Mutate is the most interesting rule, and it is a direct consequence
of the fact that associativity is a syntactic theory. ∧, ∨ are classical boolean connectors.

1. *, then p and t are identical modulo A, i.e. p =A t;
2. ⊥, then there is no match from p to t;
3. a disjunction of conjunctions

∨
j∈J (∧i∈Ixij ≺≺A tij) with I, J �= ∅, then the

substitutions σj = {xij �→ tij}i∈I,j∈J are all the matches from p to t.

Example 3.1. Applying A-Matching for f ∈ FA, x, y ∈ X , and a, b, c, d ∈ T (F):

f(x, f(a, y)) ≺≺A f(f(b, f(a, c)), d)
�→�→Mutate(x ≺≺A f(b, f(a, c)) ∧ f(a, y) ≺≺A d) ∨
∃z(f(a, y) ≺≺A f(z, d) ∧ f(x, z) ≺≺A f(b, f(a, c))) ∨
∃z(x ≺≺A f(f(b, f(a, c)), z) ∧ f(z, f(a, y)) ≺≺A d)
�→�→SymClash1,PropagClash2 ∃z(f(a, y) ≺≺A f(z, d) ∧ f(x, z) ≺≺A f(b, f(a, c)))
�→�→Mutate,SymClash1 ∃z(f(a, y) ≺≺A f(z, d) ∧
((x ≺≺A b ∧ z ≺≺A f(a, c)) ∨ (x ≺≺A f(b, a) ∧ z ≺≺A c)))
�→�→DistribAnd,Replacement,Mutate,SymClash1,2 ∃z(f(a, y) ≺≺A f(z, d) ∧ x ≺≺A b ∧ z ≺≺A
f(a, c)) �→�→Replacement,Exists,Mutate,SymClash1,2 x ≺≺A b ∧ y ≺≺A f(c, d).

3.2 Matching Associative Patterns with Unit Elements

It is often the case that associative operators have a unit and we know since the
early works on e.g. OBJ, that this is quite useful from a rule programming point of
view. For example, to state a list L that contains the objects a and b. This can be ex-
pressedby the pattern f(x, f(a, f(y, f(b, z)))),wherex, y, z ∈ X , which will match
f(c, f(a, f(d, f(b, e)))) but not f(a, b) or f(c, f(a, b)). When f has for unit ef , the
previouspatterndoesmatchmoduloAU , producing the substitution{x �→ ef , y �→
ef , z �→ ef} for f(a, b), and {x �→ c, y �→ ef , z �→ ef} for f(c, f(a, b)). However,A
is a theory with a finite equivalence class, which is not the case ofAU , and an imme-
diate consequence is that the set ofmatches becomes trivially infinite. For instance,
Sol(x ≺≺AU a) = {{x �→ a}, {x �→ f(ef , a)}, {x �→ f(ef , f(ef , a))}, . . .}.

In order to obtain a matching algorithm for AU , we replace SymClash rules
in A-Matching to appropriately handle unit elements (remember that we assume,

280 C. Kirchner, R. Kopetz, and P.-E. Moreau

because of modularity, that we only have in F a single binary AU symbol f , and
constants, including ef):

SymClash+
1 f(p1, p2) ≺≺AU a �→�→ (p1 ≺≺AU ef ∧ p2 ≺≺AU a) ∨ (p1 ≺≺AU a ∧ p2 ≺≺AU ef)

SymClash+
2 a ≺≺AU f(p1, p2) �→�→ (ef ≺≺AU p1 ∧ a ≺≺AU p2) ∨ (a ≺≺AU p1 ∧ ef ≺≺AU p2)

In addition, we keep all other transformation rules, only changing all match
symbols from ≺≺A to ≺≺AU . The new system, named AU -Matching, is clearly ter-
minating without producing in general a minimal set of solutions. After proving its
correctness, we will see what can be done in order to minimize the set of solutions.

Proposition 3.3. The rules of AU-Matching are sound and preserving mod-
ulo AU .

In order to avoid redundant solutions we further consider that all the terms are
in normal form w.r.t. the rewrite system U = {f(ef , x) → x, f(x, ef) → x}.
Therefore, we perform a normalized rewriting [11] modulo U . This technique
ensures that before applying any rule from Figure 1, the terms are in normal
forms w.r.t. U .

4 Anti-pattern Matching Modulo

In [8], anti-patterns were studied in the case of the empty theory. In this section
we generalize the matching algorithm to an arbitrary regular equational theory
E , that doesn’t contain the symbol �. The presented results allow the use of
anti-patterns in a general context, and they constitute the main contributions
of the paper.

Definition 4.1. Given an equational theory E and t ∈ T (F ,X), the ground
semantics of t modulo E is defined as: �t�gE = {t′ | t′ ∈E �t�g}.

Therefore, the ground semantics of t modulo E is the set of all the ground terms
that can be computed from the ground semantics of t by applying the axioms
of E .

Definition 4.2. Given q ∈ AT (F ,X) and a theory E, the ground semantics of
q modulo E is defined recursively in the following way:

�q[�q′]ω�gE =

⎧⎨⎩
�q[z]ω�gE \�q[q′]ω�gE , if FVar(q[�q′]ω) = ∅

otherwise �σ(q[�q′]ω)�gE , for all σ ∈ GS(q[�q′]ω)

where z is a fresh variable and for all ω′ < ω, q(ω′) �= �.

When E is the empty theory, this definition is perfectly compatible with Defi-
nition 2.1. However, in the equational case a direct adaptation cannot be used.
Consider the pattern f(x, f(�a, y)), where f is AU . This intuitively denotes
the lists that contain at least one element different from a, like f(b, f(a, c)) for

Anti-pattern Matching Modulo 281

instance. Suppose we use Definition 2.1 to compute the ground semantics, we
would get �f(x, f(z, y))�gAU \�f(x, f(a, y))�gAU , which does not contain the term
f(b, f(a, c)). This happens because giving different values to x, y and applying
the AU axioms differently on the two terms, we obtain different term structures
in the two sets. But this is not the intuitive semantics of anti-patterns.

Example 4.1

��f(x, f(�a, y)�gAU = �z�gAU \�f(x, f(�a, y))�gAU = T (F)\
⋃
σ

�f(σ(x), f(�a, σ(y)))�gAU

= T (F)\
⋃
σ

(�f(σ(x), f(z, σ(y)))�gAU \�f(σ(x), f(a, σ(y)))�gAU)

= everything that is not an f or an f with only a inside

In the empty theory, given q ∈ AT (F ,X) and t ∈ T (F), the matching equation
q ≺≺ t has a solution when there exists a substitution σ such that t ∈ �σ(q)�g .
This is extended to matching modulo E as follows:

Definition 4.3. For all q ∈ AT (F ,X) and t ∈ T (F), the solutions of the anti-
pattern matching equation q ≺≺E t are:

Sol(q ≺≺E t) = {σ | t ∈ �σ(q)�gE , with σ ∈ GS(q)}.

A general anti-pattern matching problem P is any first-order expression whose
atomic formulae are anti-pattern matching equations. To define their solutions,
we rely on the usual definition of validity in predicate logic:

Definition 4.4. Given an anti-pattern matching problem P, the solutions mod-
ulo E are defined as: SolE (P) = {σ | |= σ(P)}, where |= q ≺≺E t ⇔ |= t ∈ �q�gE .

Let us look at several examples of anti-pattern matching modulo in some usual
equational theories:

Example 4.2. In the syntactic case we have:
− Sol(h(�a, x) ≺≺ h(b, c)) = {x �→ c},
− Sol(h(x,�g(x)) ≺≺ h(a, g(b))) = {x �→ a},
− Sol(h(x,�g(x)) ≺≺ h(a, g(a))) = ∅.
In the associative theory:
− Sol(f(x, f(�a, y)) ≺≺A f(b, f(a, f(c, d))) = {x �→ f(b, a), y �→ d},
− Sol(f(x, f(�a, y)) ≺≺A f(a, f(a, a)) = ∅.
The following patterns express that we do not want an a below an f :
− Sol(�f(x, f(a, y)) ≺≺A f(b, f(a, f(c, d))) = ∅,
− Sol(�f(x, f(a, y)) ≺≺A f(b, f(b, f(c, d))) = Σ.
A combination of the two previous examples, �f(x, f(�a, y)), would naturally
correspond to ”an f with only a inside”:

− Sol(�f(x, f(�a, y)) ≺≺A f(a, f(b, a)) = ∅,
− Sol(�f(x, f(�a, y)) ≺≺A f(a, f(a, a)) = Σ.
Non-linearity can be also useful: Sol(�f(x, x) ≺≺A f(a, f(b, f(a, b))) = ∅,
but Sol(�f(x, x) ≺≺A f(a, f(b, f(a, c))) = Σ. If we consider that f is also

282 C. Kirchner, R. Kopetz, and P.-E. Moreau

commutative, then we have the following results for matching modulo AC:
Sol(f(x, f(�a, y)) ≺≺AC f(a, f(b, c))) = {{x �→ a, y �→ c}, {x �→ a, y �→ b}, {x �→
b, y �→ a}, {x �→ c, y �→ a}}.

4.1 From Anti-pattern Matching to Equational Problems

To solve anti-pattern matching modulo, a solution is to first transform the initial
matching problem into an equational one. This is performed using the following
transformation rule:

ElimAnti q[�q′]ω ≺≺E t �→�→ ∃z q[z]ω ≺≺E t ∧ ∀x ∈ FVar(q′) not(q[q′]ω ≺≺E t)
if ∀ ω′ < ω, q(ω′) �= � and z a fresh variable

An anti-pattern matching problem P not containing any � symbol, is a first-
order formula where the symbol not is the usual negation of predicate logic, the
symbol≺≺E is interpreted as =E and the symbol ∀ is the usual universal quantifica-
tion: ∀xP ≡ not(∃x not (P)). Therefore they are exactly E-disunification problems.

Proposition 4.1. The rule ElimAnti is sound and preserving modulo E.

The normal forms w.r.t. ElimAnti of anti-pattern matching problems are spe-
cific equational problems. Although equational problems are undecidable in gen-
eral [16], even in case of A or AU theories, we will see that the specific equational
problems issued from anti-pattern matching are decidable for A or AU theories.

Summarizing, if we know how to solve equational problems modulo E , then
any anti-pattern matching problem modulo E can be translated into equivalent
equational problems using ElimAnti and further solved. These statements are
formalized by the following Proposition:

Proposition 4.2. An anti-pattern matching problem can always be translated
into an equivalent equational problem in a finite number of steps.

Solving equational problems resulting from normalization with ElimAnti can be
performed with techniques like disunification for instance in the case of syntactic
theory. These techniques were designed to cover more general problems. In our
case, a more efficient and tailored approach can be developed. Given a finitary
E-match algorithm, a first solution would be to normalize each match equation
separately, then to combine the results using replacements and some cleaning
rules (as ForAll, NotOr, NotTrue, NotFalse from Figure 2). This approach can be
used to effectively solve A, AU , and AC anti-pattern matching problems. We
further detail the AU case.

4.2 A Specific Case: Matching AU Anti-patterns

To compute the set of solutions for an AU anti-pattern matching equation we
develop now a specific approach.

Definition 4.5. AU-AntiMatching: Given an AU anti-pattern matching prob-
lem q ≺≺AU t, apply the rules from Figure 2, giving a higher priority to ElimAnti.

Anti-pattern Matching Modulo 283

ElimAnti q[�q′]ω ≺≺AU t �→�→ ∃z q[z]ω ≺≺AU t ∧ ∀x ∈ FVar(q′) not(q[q′]ω ≺≺AU t)
if ∀ ω′ < ω, q(ω′)
= � and z a fresh variable

ForAll ∀ȳ not(D) �→�→ not(∃ȳ D)
NotOr not(D1 ∨ D2) �→�→ not(D1) ∧ not(D2)
NotTrue not(�) �→�→ ⊥
NotFalse not(⊥) �→�→ �

Plus all the rules of AU-Matching (Section 3.2)

Fig. 2. AU -AntiMatching

Note that instead of giving a higher priority to ElimAnti the algorithm can be
decomposed in two steps: first normalize with ElimAnti to eliminate all � symbols,
then apply all the other rules.

We further prove that the algorithm is correct. Moreover, the normal forms of
its application on an AU anti-pattern matching equation do not contain any �
or not symbols. Actually they are the same as the ones exposed in Theorem 3.1.

Proposition 4.3. The application of AU -AntiMatching is sound and preserving.

Proof. For ElimAnti these properties were shown in the proof of Proposition 4.1.
Similarly, Proposition 3.3 states the sound and preserving properties for the rules
of AU -Matching. The rest of the rules are trivial. �

Theorem 4.1. The normal forms of AU -AntiMatching are AU-matching prob-
lems in solved form.

AU-AntiMatching is a general algorithm, that solves any anti-pattern matching
problem. Note that it can produce 2n matching equations, wheren is the number of
� symbols in the initial problem. For instance, applying ElimAnti on f(a,�b) ≺≺AU
f(a, a) gives∃zf(a, z) ≺≺AU f(a, a)∧not(f(a, b) ≺≺AU f(a, a)).Note that all equa-
tions have the same right-hand sides f(a, a), and almost the same left-hand sides
f(a,). Therefore,when solving the second equation for instance, we perform some
matches that were already done when solving the first one. This approach is clearly
not optimal, and in the following we propose a more efficient one.

4.3 A More Efficient Algorithm for AU Anti-patterns Matching

In this section we consider a subclass of anti-patterns, called PureFVars, and
we present a more efficient algorithm that has the same complexity as AU-
Matching. In particular, it does no longer produce the 2n equations introduced
by AU -AntiMatching.

Definition 4.6. Given F ,X we define a subclass of anti-patterns:

PureFVars =
{
q ∈ AT (F ,X)

q = C[f(t1, . . . , ti, . . . , tj , . . . , tn)],
∀i �= j, FVar(ti) ∩ NFVar(tj) = ∅

}
The anti-patterns in PureFVars are special cases of non-linearity respecting
that at any position, we don’t find a term that has a free variable in one of its
children, and the same variable under a � in another child. For instance, f(x, x)
∈ PureFVars, f(�x,�x) ∈ PureFVars, but f(x,�x) �∈ PureFVars.

284 C. Kirchner, R. Kopetz, and P.-E. Moreau

Definition 4.7. AU-AntiMatchingEfficient: The algorithm corresponds to AU-
AntiMatching, where the rule ElimAnti is replaced with the following one, and
which has no longer any priority:

ElimAnti’ �q ≺≺AU t �→�→ ∀x ∈ FVar(q) not(q ≺≺AU t)

Note that our algorithms are finitary and based on decomposition. Therefore,
when considering syntactic or regular theories the composition results for match-
ing algorithms are still valid. Note also that PureFVars is trivially stable w.r.t.
to this algorithm and that now the rules apply on problems that potentially con-
tain � symbols. For instance, we may apply the rule Mutate on f(a,�b) ≺≺AU
f(a, a). The algorithm is still terminating, with the same arguments as in the
proof of Proposition 3.1, but the proof of Proposition 3.3 is no longer valid in
this new case. The correctness of the algorithm has to be established again:

Proposition 4.4. Given q ≺≺AU t, with q ∈ PureFVars, the application of
AU-AntiMatchingEfficient is sound and preserving.

This approach is much more efficient, as no duplications are being
made. Let us see on a simple example: f(x,�a) ≺≺AU f(a, b) �→�→Mutate

(x ≺≺AU a ∧ �a ≺≺AU b) ∨ D1 ∨ D2 �→�→ElimAnti′ (x ≺≺AU a ∧ not(a ≺≺AU b))
∨ D1 ∨ D2 �→�→ConstantClash (x ≺≺AU a ∧ not(⊥)) ∨ D1 ∨ D2 �→�→NotFalse,PropagSuccess2

x ≺≺AU a ∨ D1 ∨ D2. We continue in a similar way for D1,D2 and we finally
obtain the solution {x �→ a}.

In practice, when implementing an anti-pattern matching algorithm, one can
imagine the following approach: a traversal of the term is done, and if the spe-
cial non-linear case is detected (i.e. /∈ PureFVars), then AU -AntiMatching is
applied; otherwise we apply AU-AntiMatchingEfficient. This is the method used
in the Tom compiler for instance.

In this section we have given a general algorithm for solving AU anti-pattern
matching problems, and a more efficient one for a subclass which encompassesmost
of the practical cases. We also conjecture that modifying the universal quantifica-
tion of ElimAnti’ to only quantify variables that respect the conditionFVar(q1) ∩
NFVar(q2) = ∅ of PureFVars, would still lead to a sound and complete algo-
rithm. For instance, when applying ElimAnti’ to f(x,�x), the variable xwould not
be quantified. This algorithm has been experimented and tested without showing
any counter example. Proving this conjecture is part of our future work.

5 Anti-matching Modulo in Tom

Anti-patterns are successfully integrated in the Tom language for syntactic and
AU matching. In this section we show how they can be used and we illustrate the
expressiveness they add to the pattern matching capabilities of this language. It
is worth mentioning that for all the theories considered, the size of the generated
code is linear in the size of the patterns.

In order to support anti-patterns, we enriched the syntax of the Tom patterns
to allow the use of operator ‘!’ (representing ‘�’). For syntactic matching, here
is an example of a match in Tom:

Anti-pattern Matching Modulo 285

%match(s) {

f(a(),g(b())) -> { /* executed when f(a,g(b)) matches s */ }

f(!a(),g(b())) -> { /* when f(x,g(b)) matches s with x!=a */ }

!f(x,!g(x)) -> { /* when not ‘f(x,y) matches s’ or ... */ }

!f(x,g(y)) -> { /* action 4 */ }

}

Similarly to switch/case, an action part is executed when its corresponding
pattern matches the subject s. Note that non-linear patterns are allowed. When
combined with lists, anti-patterns are even more useful:
%match(s) {

list(_*,a(),_*) -> { /* executed when s contains a */ }

list(_*,!a(),_*) -> { /* s has one elem. diff. from a */ }

!list(_*,a(),_*) -> { /* s does not contain a */ }

!list(_*,!a(),_*) -> { /* s contains only a */ }

list(_*,x,_*,x,_*) -> { /* s has at least 2 equal elem. */ }

!list(_*,x,_*,x,_*) -> { /* s has only distinct elem. */ }

list(_*,x,_*,!x,_*) -> { /* s has at least 2 diff elem. */ }

!list(_*,x,_*,!x,_*) -> { /* when s has only equal elem. */ }

}

In the above patterns list is AU , a _* stands for any sublist, a() is a
constant and x is a variable that cannot be instantiated by the empty list.
Note that we mainly used the constant a(), but any other pattern or anti-
pattern could have been used instead, like in: list(_*,f(!a(),g(b())),_*),
or !list(_*,f(!a(),g(b())),_*). There is no restriction.

The following example prints all the elements that do not appear twice or
more in a list s:
%match(s) {
list(_*,x,_*) && !list(_*,x,_*,x,_*) << s -> { print(x); }
}

For instance, if s is instantiated with the list of integers (1,2,1,3,2,1,5), the
above code would output: 3 and 5. Note that the && is the classical boolean
connector ∧ and << is the ≺≺. The idea is that the first pattern selects an element
from the list, and the second one verifies that it doesn’t appear twice.

Without using anti-patterns, one would be forced to verify additional con-
ditions in the action part, which would make the code more complicated and
difficult to maintain (see [8], Section 6). Besides, they may improve efficiency,
by verifying some conditions earlier in the matching process.

6 Conclusion

We have generalized the notion of anti-pattern matching to anti-pattern matching
modulo an arbitrary regular theory E . Because of their usefulness for rule-based
programming, we chose to exemplify the anti-patterns for the A and AU theories.

What is worth noting is that the algorithms we presented are not neces-
sarily specific to AU , and that they can be used for other theories as well (like the

286 C. Kirchner, R. Kopetz, and P.-E. Moreau

empty one, AC, etc), just by adapting the AU rules to the considered theory.
This is quite interesting even for the syntactical case, as the disunification-based
algorithm presented in [8] is not appropriate for an efficient implementation.

Although some of the results may at first glance seem straightforward, subtle
details are not so easy to establish. The main difficulties come from matching
non-linear anti-patterns, which cannot be performed using classical decomposi-
tion rules, as the semantics is not preserved.

The work in this paper opens a number of challenging directions like proving
the correctness of the third algorithm presented as a conjecture. We also plan
to study some theoretical properties such as the confluence, termination, and
complete definition of systems that include anti-patterns. Another interesting
direction is the study of unification problems in the presence of anti-patterns.

References

1. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking
rewriting on java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

2. van den Brand, M., Deursen, A., Heering, J., Jong, H., Jonge, M., Kuipers, T.,
Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser, E., Visser, J.: The
ASF+SDF Meta-Environment: a Component-Based Language Development Envi-
ronment. In: Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 365–370. Springer,
Heidelberg (2001)

3. Comon, H., Kirchner, C.: Constraint solving on terms. In: Comon, H., Marché, C.,
Treinen,R. (eds.)CCL1999.LNCS,vol. 2002,pp.47–103.Springer,Heidelberg (2001)

4. Eker, S.: Associative matching for linear terms. Report CS-R9224, CWI, ISSN
0169-118X (1992)

5. Eker, S.: Associative-commutative rewriting on large terms. In: Nieuwenhuis, R.
(ed.) RTA 2003. LNCS, vol. 2706, pp. 14–29. Springer, Heidelberg (2003)

6. Kirchner, C.: Computing unification algorithms, pp. 206–216 (1986)
7. Kirchner, C., Klay, F.: Syntactic theories and unification, pp. 270–277 (June 1990)
8. Kirchner, C., Kopetz, R., Moreau, P.: Anti-pattern matching. In: De Nicola, R.

(ed.) ESOP 2007. LNCS, vol. 4421, pp. 110–124. Springer, Heidelberg (2007)
9. Kirchner, C., Kopetz, R., Moreau, P.: Anti-pattern matching modulo. Technical

report, INRIA & LORIA Nancy (2007),
http://hal.inria.fr/inria-00129421/fr/

10. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
USSR Sbornik 32(2), 129–198 (1977)

11. Marché, C.: Normalized rewriting: an alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation 21(3), 253–288 (1996)

12. Nipkow, T.: Proof transformations for equational theories, pp. 278–288 (June 1990)
13. Nipkow, T.: Combining matching algorithms: The regular case. Journal of Symbolic

Computation 12(6), 633–653 (1991)
14. Plotkin, G.: Building-in equational theories. Machine Intelligence 7, 73–90 (1972)
15. Ringeissen, C.: Combining decision algorithms for matching in the union of disjoint

equational theories. Information and Computation 126(2), 144–160 (1996)
16. Treinen, R.: A new method for undecidability proofs of first order theories. Journal

of Symbolic Computation 14(5), 437–457 (1992)

http://hal.inria.fr/inria-00129421/fr/

Counting Ordered Patterns in Words Generated

by Morphisms

Sergey Kitaev1, Toufik Mansour2, and Patrice Séébold3

1 Reykjav́ık University, Kringlan 1, 103 Reykjav́ık, Iceland
sergey@ru.is

2 Department of Mathematics, Haifa University, 31905 Haifa, Israel
toufik@math.haifa.ac.il

3 LIRMM, Univ. Montpellier 2, CNRS, 161 rue Ada, 34392 Montpellier, France
Patrice.Seebold@lirmm.fr

Abstract. We start a general study of counting the number of occur-
rences of ordered patterns in words generated by morphisms. We consider
certain patterns with gaps (classical patterns) and that with no gaps
(consecutive patterns). Occurrences of the patterns are known, in the
literature, as rises, descents, (non-)inversions, squares and p-repetitions.
We give recurrence formulas in the general case, then deducing exact
formulas for particular families of morphisms. Many (classical or new)
examples are given illustrating the techniques and showing their interest.

Keywords: Morphisms, patterns, rises, descents, inversions, repetitions.

1 Introduction

In algebraic combinatorics, an occurrence of a pattern p in a permutation π is a
subsequence of π (of the same length as that of p) whose elements are in the same
relative order as those in p. For example, the permutation π = 536241 contains
an occurrence of the pattern p = 2431. Babson and Steingŕımsson introduced
generalized patterns where two adjacent elements of a pattern must also be
adjacent in the permutation [2].

In combinatorics on words, an occurrence of a pattern p in a word u is a
factor of u having the same shape as p. For example the word u = abaabaaabab
contains an occurrence of the pattern p = ααβααβ.

Burstein [4] realized a “mixing” of these two notions by considering ordered
alphabets. An occurrence of an (ordered) pattern in a word is a factor or a
subsequence having the same shape, and in which the relative order of the letters
is the same as that in the pattern. In [5] one computed the number of occurrences
of many of ordered patterns in the Peano words. In the present paper we start
a general study of counting the number of occurrences of ordered patterns in
words generated by morphisms.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 287–298, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 S. Kitaev, T. Mansour, and P. Séébold

2 Preliminaries

2.1 Definitions and Notations

We refer to [7] for standard definitions in combinatorics on words.
Let n be a non-negative integer. The incidence matrix of fn is the k×k matrix

M(fn) = (mn,i,j)1≤i,j≤k where mn,i,j is the number of occurrences of the letter
ai in the word fn(aj), i.e., mn,i,j = |fn(aj)|ai .

Property 1. For every n ∈ IN, M(f)n = M(fn).

2.2 Ordered Patterns

Let A be a totally ordered alphabet and let ℵ be the ordered alphabet whose
letters are the first n positive integers in the usual order (thus ℵ = {1, 2, . . . , n}).

An ordered pattern is any word over ℵ∪{#}, # �∈ ℵ, without two consecutive
#. If a pattern contains at least one #, not at the very beginning or at the very
end, it is an ordered pattern with gaps; otherwise it is an ordered pattern with no
gaps. Moreover, in this paper the four ordered patterns u, #u, u#, and #u# are
considered to be the same (but of course u#u is not the same pattern as uu). In
particular, if x is a word over ℵ, we will write (x#)� or (#x)� to represent the
ordered pattern x#x# · · ·#x containing l occurrences of the word x.

A word v over A contains an occurrence of the ordered pattern

u = u1#u2# · · ·#un,

ui ∈ ℵ+ and n ≥ 1, if v = w0v1w1v2w2 · · ·wn−1vnwn and there exists a literal
morphism f : ℵ∗ → A∗ such that f(ui) = vi, 1 ≤ i ≤ n, and if x, y ∈ ℵ, x < y ⇒
f(x) < f(y). Thus the word v contains an occurrence of the ordered pattern u
if v contains a subsequence v′ which is equal to f(u′) where u′ is obtained from
u by deleting all the occurrences of #, with the additional condition that two
adjacent (not separated by #) letters in u must be adjacent in v. The number
of different occurrences of u as an ordered pattern in v is denoted by |v|u.
Example. Let A = {a, b, c, d, e, f} with a < b < c < d < e < f. The word
v = eafdbc contains one occurrence of the ordered pattern 2#31, namely the
subsequence efd (|e afd b c|2#31 = 1). In v, the ordered pattern 2#3#1 occurs in
three occurrences: efd, ef b, and efc (|e afd b c|2#3#1 = 3); the ordered pattern
231 does not occur in v (|e afd b c|231 = 0).

3 Ordered Patterns with Gaps and Morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 <
· · · < ak}. Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with
pi ≥ 0 (pi = 0 if and only if f(ai) = ε).

Counting Ordered Patterns in Words Generated by Morphisms 289

3.1 Inversions, Non-inversions, and Repetitions with Gaps of fn

In what follows we are interested in some particular forms of ordered patterns.
In accordance with permutations theory, an inversion (resp. non-inversion) is
an occurrence of the ordered pattern 2#1 (resp. 1#2). Repetitions with gaps of
one letter are occurrences of the ordered patterns (1#)p, p ≥ 1.

Inversions and Non-inversions. Let n be a non-negative integer.
The vector RG(fn) of non-inversions (resp. vector DG(fn) of inversions) of

fn is the k vector whose i-th entry is the number of occurrences of the ordered
pattern 1#2 (resp. 2#1) in the word fn(ai), i.e.,

RG(fn) = (|fn(ai)|1#2)1≤i≤k DG(fn) = (|fn(ai)|2#1)1≤i≤k.

Our goal is to obtain recurrence formulas giving the entries of RG(fn+1) and
DG(fn+1). Since fn+1 = fn ◦f = f ◦fn, we have two different ways to compute
RG(fn+1) and DG(fn+1).

Let 	 be an integer, 1 ≤ 	 ≤ k. Either |fn+1(a�)|1#2 (resp. |fn+1(a�)|2#1) will
be obtained from the word f(a�) and the entries of RG(fn) (resp. DG(fn)) (see
1. below), or it will be computed from the values of RG(f) (resp. DG(f)) and
fn(a�) (see 2. below).

1. From fn+1 = fn ◦ f :
Since f(a�) = a�1 . . . a�p

, the number of occurrences of the ordered pattern 1#2
in fn+1(a�) = fn(f(a�)) = fn(a�1 . . . a�p

) is obtained by adding two values:
• The number of occurrences of the ordered pattern 1#2 in each fn(a�i),

1 ≤ i ≤ p�. Since the 	-th column of the incidence matrix of f indicates which
letters appear in f(a�) (and how many times), this number is obtained by mul-
tiplying the vector RG(fn) by the 	-th column of M(f), i.e., it is equal to∑k

t=1 |fn(at)|1#2 ·m1,t,�.
• The number of occurrences of the ordered pattern 1#2 in each of the

fn(a�ia�j), 1 ≤ i < j ≤ p�, where the letter corresponding to 1 is in fn(a�i)
and the letter corresponding to 2 is in fn(a�j). In what follows we will call such
an occurrence of 1#2 in fn(a�ia�j) an external occurrence of the ordered pattern
1#2 in fn(a�ia�j), and denote it |fn(a�ia�j)|ext

1#2.
The value of |fn(a�ia�j)|ext

1#2 is obtained by adding, for all the integers r,
1 ≤ r ≤ k − 1, the product of the number of occurrences of the letter ar in
fn(a�i) (|fn(a�i)|ar) by the number of occurrences of all the letters of fn(a�j)
greater than ar (|fn(a�j)|as , r + 1 ≤ s ≤ k). This gives

k−1∑
r=1

(mn,r,�i ·
k∑

s=r+1

mn,s,�j).

The number of external occurrences of 1#2 in all the fn(a�ia�j), 1 ≤ i < j ≤
p�, is thus given by

∑
1≤i<j≤p

|fn(a�ia�j)|ext
1#2 =

∑
1≤i<j≤p

(
k−1∑
r=1

(mn,r,�i ·
k∑

s=r+1

mn,s,�j)).

290 S. Kitaev, T. Mansour, and P. Séébold

2. From fn+1 = f ◦ fn.
Let q� = |fn(a�)| : fn+1(a�) = f(fn(a�)) = f(a�′1

. . . a�′q

). Here the number of

occurrences of the ordered pattern 1#2 in fn+1(a�) is obtained by adding:
• The number of occurrences of the ordered pattern 1#2 in each fn(a�′i

),
1 ≤ i ≤ q�. As above it is equal to

∑k
t=1 |f(at)|1#2 ·mn,t,�.

• The number of external occurrences of the ordered pattern 1#2 in each of
the f(a�′i

a�′j
), 1 ≤ i < j ≤ q�. As above, this number is given by

∑
1≤i<j≤q

|f(a�′i
a�′j

)|ext
1#2 =

∑
1≤i<j≤q

(
k−1∑
r=1

(m1,r,�′i
·

k∑
s=r+1

m1,s,�′j
)).

The same reasoning applies for calculating the entries of DG(fn+1), replacing
1#2 by 2#1 and “greater” by “smaller”. Thus we have the following.

Proposition 1. For each letter a� ∈ A, let p� and q� be such that f(a�) =
a�1 . . . a�p

and fn(a�) = a�′1
. . . a�′q

. Then, for all n ∈ IN,

|fn+1(a�)|1#2 =
∑

1≤i<j≤q

(
k−1∑
r=1

(m1,r,�′i
·

k∑
s=r+1

m1,s,�′j
))+

k∑
t=1

|f(at)|1#2 ·mn,t,�, (1)

|fn+1(a�)|2#1 =
∑

1≤i<j≤q

(
k∑

r=2

(m1,r,�′i
·
r−1∑
s=1

m1,s,�′j
)) +

k∑
t=1

|f(at)|2#1 ·mn,t,� . (2)

Of course, the analysis we have done above could be realized to compute more
complex ordered patterns with gaps, such as 1#23, 1#2#3, · · · The only diffi-
culty is to adapt the computation of external inversions and non-inversions.

Repetitions of One Letter. Let n be a non-negative integer and p a positive
integer. The vector of p-repetitions with gaps of one letter of fn is the k vector
whose i-th entry is the number of occurrences of the ordered pattern (1#)p in
the word fn(ai), i.e., RpG(fn) = (|fn(ai)|(1#)p)1≤i≤k. The following is obvious.

Proposition 2. For each letter a� ∈ A and for all n ∈ IN,

|fn(a�)|(1#)p =
k∑

t=1

(
mn,t,�

p

)
. (3)

3.2 Some Examples in the Binary Case

The Thue-Morse Morphism. The Thue-Morse morphism µ ([10],[9],[8]) is
defined by µ(a1) = a1a2, µ(a2) = a2a1. It generates the famous Thue-Morse
sequence t = µω(a1) which has been widely studied.

Counting Ordered Patterns in Words Generated by Morphisms 291

For every positive integers n, the incidence matrix of µn is

M(µn) =
[
2n−1 2n−1

2n−1 2n−1

]
.

Thus, from equations (1), (2), and (3) we obtain

|µn+1(a1)|1#2 = |µn+1(a2)|1#2 = 22(n−1) + |µn(a1)|1#2 + |µn(a2)|1#2,

|µn+1(a1)|2#1 = |µn+1(a2)|2#1 = 22(n−1) + |µn(a1)|2#1 + |µn(a2)|2#1,

|µn(a1)|(1#)p = |µn(a2)|(1#)p = 2 ·
(
2n−1

p

)
.

Since RG(µ) =
[
1 0
]

and DG(µ) =
[
0 1
]
, Proposition 1 gives the following

well known result.

Corollary 1. For any integer n ≥ 2,

RG(µn) = DG(µn) =
[
22n−3 22n−3

]
and RpG(µn) =

[
2 ·
(
2n−1

p

)
2 ·
(
2n−1

p

)]
.

The Fibonacci Morphism. The Fibonacci morphism ϕ is defined by ϕ(a1) =
a1a2, ϕ(a2) = a1. It generates the well known Fibonacci sequence f = ϕω(a1)
which is the prototype of a Sturmian word (see, e.g., [7]).

Let (Fn)n≥−1 be the sequence of Fibonacci numbers: F−1 = 0, F0 = 1, Fn =
Fn−1 + Fn−2 for n ≥ 1. The following property of Fibonacci numbers will be
useful below.

Property 2. For every positive integer n, Fn ·Fn−2 = F 2
n−1+

{
1 if n is even,

−1 if n is odd.

An easy computation gives that, for every positive integer n, the incidence matrix

of ϕn is M(ϕn) =
[
Fn Fn−1

Fn−1 Fn−2

]
.

The vector of non-inversions of ϕ is RG(ϕ) =
[
1 0
]
. Moreover equation (1)

(see Property 2) gives, for n ≥ 1

|ϕn+1(a1)|1#2 = mn,1,1 ·mn,2,2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= Fn · Fn−2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= F 2
n−1 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2 +

{
1 if n is even,

−1 if n is odd

The vector of inversions of ϕ is DG(ϕ) =
[
0 0
]
. Moreover, equation (2) gives,

for n ≥ 1

|ϕn+1(a1)|2#1 = mn,2,1 ·mn,1,2 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1

= F 2
n−1 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1.

Now, |ϕn+1(a2)|1#2 = |ϕn(a1)|1#2 and |ϕn+1(a2)|2#1 = |ϕn(a1)|2#1 because
ϕ(a2) = a1.

From this we obtain formulas to compute, for every n ≥ 0, |ϕn+2(a1)|1#2 and
|ϕn+2(a1)|2#1 from the sequence of Fibonacci numbers.

292 S. Kitaev, T. Mansour, and P. Séébold

Corollary 2. For every integer n ≥ 0,

|ϕn+2(a1)|2#1 =
∑n

p=0 FpF
2
n−p ,

|ϕn+2(a1)|1#2 = |ϕn+2(a1)|2#1 + Fn +
{

1 if n is odd,
−1 if n is even.

Regarding repetitions of one letter, RpG(ϕ) =
[(

1
p

)
+
(
1
p

) (
1
p

)]
and, for n ≥ 0,

the vector RpG(ϕn+2) is obtained from equation (3).

Corollary 3. For any integer n ≥ 0, RpG(ϕn+2)=
[(

Fn+2
p

)
+
(
Fn+1

p

)(
Fn+1

p

)
+
(
Fn

p

)]
.

4 A Particular Family of Morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 <
· · · < ak}. In this section we are interested in morphisms f having the following
particularities:

1. there exists a positive integer m such that |f(a1)|ai = m, 1 ≤ i ≤ k ,
2. there exists a positive integer d such that |f(a2 . . . ak)|ai = d, 1 ≤ i ≤ k ,
3. for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext

1#2 = |f(ajai)|ext
1#2.

(Conditions 1. and 2. are particular cases of the more general situation, consid-
ered in Theorem 1 below, in which the alphabet A is partitioned in sets A1, A2,
. . ., An such that, for each Ai, the sum of the number of occurrences of each
letter in the images of letters of Ai is the same.) In this case we are able to give
direct formulas to compute |fn+1(a1)|1#2 and others from m, d, and n.

Proposition 3. For every positive integer n,

|fn+1(a1)|1#2

= m(d+m)n−1
k∑

i=1

|f(ai)|1#2 + [m(d+m)n−1−1]m(d+m)n−1

2

k∑
j=1

|f(ajaj)|ext
1#2

+m2(d+m)2n−2
∑

1≤i<j≤k

|f(aiaj)|ext
1#2 ,

|fn+1(a2 . . . ak)|1#2

= d(d+m)n−1
k∑

i=1

|f(ai)|1#2 + [d(d+m)n−1−1]d(d+m)n−1

2

k∑
j=1

|f(ajaj)|ext
1#2

+d2(d+m)2n−2
∑

1≤i<j≤k

|f(aiaj)|ext
1#2 .

Now the same reasoning can be applied for

|fn+1(a1)|2#1 and |fn+1(a2 . . . ak)|2#1,

because of the following obvious property.

Property 3. Let f be a morphism on A. For every non-negative integer n, and
for every integers i, j, 1 ≤ i, j ≤ k, |fn(aiaj)|ext

1#2 = |fn(ajai)|ext
2#1.

Counting Ordered Patterns in Words Generated by Morphisms 293

Thus, using equation (2), we have the following.

Proposition 4. For every positive integer n,

|fn+1(a1)|2#1

= m(d+m)n−1
k∑

i=1

|f(ai)|2#1 + [m(d+m)n−1−1]m(d+m)n−1

2

k∑
j=1

|f(ajaj)|ext
2#1

+m2(d+m)2n−2
∑

1≤i<j≤k

|f(aiaj)|ext
2#1 ,

|fn+1(a2 . . . ak)|2#1

= d(d+m)n−1
k∑

i=1

|f(ai)|2#1 + [d(d+m)n−1−1]d(d+m)n−1

2

k∑
j=1

|f(ajaj)|ext
2#1

+d2(d+m)2n−2
∑

1≤i<j≤k

|f(aiaj)|ext
2#1 .

The previous reasoning can of course be applied if conditions 1. and 2. are verified
for any partition of the alphabet (in Propositions 3 and 4 the partition is in two
sets A = {a1} ∪ {a2 . . . ak}). Then we obtain the following general result.

Theorem 1. Let k be an integer (k ≥ 2), and A the k-letter ordered alphabet
A = {a1 < a2 < . . . < ak}. Let f be a morphism on A fulfilling the following
conditions:

– there exist a positive integer p and a set of p positive integers {m1, . . . ,mp}
such that A can be partitioned into p subsets A1, . . . , Ap with

∑
a∈A

|f(a)|ai

= m�, 1 ≤ i ≤ k,
– for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext

1#2 = |f(ajai)|ext
1#2.

Let M = m1 + . . .+mp and let u = 1#2 or u = 2#1. For every integer n ≥ 1
and for each A�, 1 ≤ 	 ≤ p,∑

a∈A

|fn+1(a)|u = m�M
n−1

k∑
i=1

|f(ai)|u + (m
Mn−1−1)m
Mn−1

2

k∑
j=1

|f(ajaj)|ext
u

+m2
�M

2n−2
∑

1≤i<j≤k

|f(aiaj)|ext
u .

5 Examples

In this section we give a series of examples of application of Theorem 1.

5.1 The Thue-Morse Morphism

The Thue-Morse morphism (see Section 3.2) is the simplest example of a mor-
phism fulfilling conditions 1. to 3. above. Indeed m = d = 1, and

|µ(a1a2)|ext
1#2 = |a1a2a2a1|ext

1#2 = 1 = |a2a1a1a2|ext
1#2 = |µ(a2a1)|ext

1#2,

|µ(a1a1)|ext
1#2 = |µ(a2a2)|ext

1#2 = 1. Since |µ(a1)|1#2 = |µ(a2)|2#1 = 1, and
|µ(a1)|2#1 = |µ(a2)|1#2 = 0, we obtain from Propositions 3 and 4 that

|µn+1(a1)|1#2 = |µn+1(a1)|2#1 = |µn+1(a2)|1#2 = |µn+1(a2)|2#1 = 22n−1.

294 S. Kitaev, T. Mansour, and P. Séébold

5.2 The Prouhet Morphisms

Let k ≥ 2, and let A be the k-letter ordered alphabet A = {a1 < · · · < ak}. The
Prouhet morphism πk ([9]) is defined on A by πk(ai) = aiai+1 . . . aka1 . . . ai−1, 1
≤ i ≤ k. As above we obtain a corollary of Theorem 1.

Corollary 4. For every i, 1 ≤ i ≤ k, and for every positive integer n,

|πn+1
k (ai)|1#2 =

(k − 1)kn

12
(
3kn+1 + k − 2

)
,

|πn+1
k (ai)|2#1 =

(k − 1)kn

12
(
3kn+1 − k + 2

)
.

5.3 The Arshon Morphisms

Let k be any even positive integer. The morphism βk ([1]) is defined, for every
r, 1 ≤ r ≤ k/2, by

a2r−1 �→ a2r−1a2r . . . ak−1aka1a2 . . . a2r−3a2r−2,
a2r �→ a2r−1a2r−2 . . . a2a1akak−1 . . . a2r+1a2r.

Corollary 5. Let k be any even positive integer. For every i, 1 ≤ i ≤ k, and
for every positive integer n,

|βn+1
k (ai)|1#2 = kn−1

4

[
kn+2 · (k − 1) + 2k

]
,

|βn+1
k (ai)|2#1 = kn−1

4

[
kn+2 · (k − 1) − 2k

]
.

Example. For every i, 1 ≤ i ≤ k, and for every n ≥ 1,

|βn+1
6 (ai)|1#2 = 6n−1 · (45 · 6n + 3), |βn+1

6 (ai)|2#1 = 6n−1 · (45 · 6n − 3).

5.4 Three Other Examples

1. Let A be the four-letter ordered alphabet A = {a1 < a2 < a3 < a4}.Define the
morphism f on A by f(a1) = a1a3a2a4, f(a2) = ε, f(a3) = a1a4, f(a4) = a2a3.

The morphism f fulfills the conditions of Theorem 1. Here we choose p = 3,
A = A1∪A2∪A3 with A1 = {a1}, A2 = {a2}, A3 = {a3, a4}, and m1 = m3 = 1,
m2 = 0, thus M = 2.

Corollary 6. For every positive integer n,

|fn+1(a1)|1#2 = |fn+1(a3a4)|1#2 = 3 · 2n−1 · (2n+1 + 1),

|fn+1(a1)|2#1 = |fn+1(a3a4)|2#1 = 3 · 2n−1 · (2n+1 − 1),

|fn+1(a2)|1#2 = |fn+1(a2)|2#1 = 0.

Counting Ordered Patterns in Words Generated by Morphisms 295

2. Let A be the five-letter ordered alphabet A = {a1 < a2 < a3 < a4 < a5}.
Define the morphism g on A by g(a1) = a1a3a5a4a2, g(a2) = a4a2a3, g(a3) =
a5a1, g(a4) = a1a5, g(a5) = a2a3a4.

The morphism g fulfills the conditions of Theorem 1. Here we choose p = 3,
A = A1 ∪ A2 ∪ A3 with A1 = {a1}, A2 = {a2, a4}, A3 = {a3, a5}, and m1 =
m2 = m3 = 1, thus M = 3.

Corollary 7. For every positive integer n,

|gn+1(a1)|1#2 = |gn+1(a2a4)|1#2 = |gn+1(a3a5)|1#2 = 3n−1 · (5 · 3n+1 + 2),
|gn+1(a1)|2#1 = |gn+1(a2a4)|2#1 = |gn+1(a3a5)|2#1 = 3n−1 · (5 · 3n+1 − 2).

3. Let A be the three-letter ordered alphabet A = {a < b < c}. Define the
morphism h on A by h(a) = aba cab cac bab cba cbc, h(b) = aba cab cac bca bcb abc,
h(c) = aba cab cba cbc acb abc.

This morphism was proved square-free by Brandenburg in [3]. It fulfills the
conditions of Theorem 1 with p = 3, A = A1∪A2∪A3 with A1 = {a}, A2 = {b},
A3 = {c}, and m1 = m2 = m3 = 6, thus M = 18.

Corollary 8. For every x ∈ A and for every positive integer n,

|hn+1(x)|1#2 = 6 · 18n−1 · (9 · 18n+1 + 40),
|hn+1(x)|2#1 = 6 · 18n−1 · (9 · 18n+1 − 40).

6 Ordered Patterns with No Gaps and Morphisms

6.1 Rises, Descents, and Squares of fn

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 <
· · · < ak}. Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with
pi ≥ 0 (pi = 0 if and only if f(ai) = ε).

The vector of rises (resp. vector of descents, resp. vector of squares of one
letter) of fn is the k vector whose i-th entry is the number of occurrences of the
ordered pattern 12 (resp. 21, resp. 11) in the word fn(ai), i.e.,

R(fn) = (|fn(ai)|12)1≤i≤k, D(fn) = (|fn(ai)|21)1≤i≤k,
R2(fn) = (|fn(ai)|11)1≤i≤k.

We define two sequences of k vectors, (F (fn))n∈IN and (L(fn))n∈IN, where
F (fn)[i] is the first letter of fn(ai) and L(fn)[i] is the last letter of fn(ai) if
fn(ai) �= ε, and F (fn)[i] = L(fn)[i] = 0 if fn(ai) = ε. Of course these two
sequences take their values in a finite set: they are ultimately periodic. Thus
they can be computed a priori from f.

Given a non-negative integer n, let ℵ′ be the subset of ℵ such that, for each
i ∈ ℵ, fn(ai) �= ε if and only if i ∈ ℵ′. We associate to the two vectors F (fn)
and L(fn) an application C12

n : ℵ′ × ℵ′ → {0, 1} defined by

C12
n (i, j) =

{
1, if L(fn)[i] < F (fn)[j]
0, if L(fn)[i] ≥ F (fn)[j].

296 S. Kitaev, T. Mansour, and P. Séébold

Similarly we define

C21
n (i, j) =

{
1, if L(fn)[i] > F (fn)[j]
0, if L(fn)[i] ≤ F (fn)[j], C

11
n (i, j) =

{
1, if L(fn)[i] = F (fn)[j]
0, if L(fn)[i] �= F (fn)[j].

For any morphism f on A, there exists a least integer Mf (Mf ≤ k and
Mf depends only on f) such that, for every positive integer n and every a ∈ A,
fn(a) = ε if and only if fMf (a) = ε. By convention, if f is a nonerasing morphism
then Mf = 0. The integer Mf is known in the literature about L-systems as the
mortality exponent of f ([6]).

Now let 	 be an integer, 1 ≤ 	 ≤ k. One has f(a�) = a�1 . . . a�p

and we denote

by 	′1 . . . 	
′
p′

the subsequence of 	1 . . . 	p

such that fn+1(a�) = fn(a�′1
. . . a�′

p′

)

for every n ≥ Mf . This means that, for every n ≥ Mf , a letter a�i appears in
a�1 . . . a�p

but not in a�′1
. . . a�′

p′

if and only if fn(a�i) = ε. Of course p′� ≤ p�,

and if Mf = 0 then p′� = p� for each 1 ≤ 	 ≤ k.
Here also, as in Section 3, the number of occurrences of the ordered pattern

12 in fn+1(a�) = fn(a�1 . . . a�p

) = fn(a�′1

. . . a�′
p′

) (n ≥ Mf) is obtained by

adding two values: (1) the number of occurrences of the ordered pattern 12
in each fn(a�i), 1 ≤ i ≤ p�. As in the previous case, this number is equal to∑k

t=1 |fn(at)|12 ·m1,t,�, and (2) the number of external occurrences of the ordered
pattern 12 in fn(a�′i

a�′j
) for each subsequence a�′i

a�′j
of f(a�), 1 ≤ i < j ≤ p′�.

But the only possibility for 12 to be an external occurrence in fn(a�′i
a�′j

) is that
j = i+ 1 and the last letter of fn(a�′i

) is smaller than the first letter of fn(a�′j
).

Thus, the number of occurrences of such patterns is only the number of times
L(fn)[i] < F (fn)[i+1] with i+1 ≤ p′�, i.e., the number of times C12

n (′i, 	
′
i+1) = 1

for 1 ≤ i ≤ p′� − 1.
We proceed similarly with the patterns 21 and 11. Consequently we have the

following proposition.

Proposition 5. For each letter a� ∈ A, f(a�) = a�1 . . . a�p

, and for all n ≥Mf ,

let 	′1 . . . 	′p′

be the subsequence of 	1 . . . 	p

such that fn+1(a�) = fn(a�′1

. . . a�′
p′

)

and fn(a�′i
) �= ε, 1 ≤ i ≤ p′�. Then

|fn+1(a�)|12 =
k∑

t=1

|fn(at)|12 ·m1,t,� +
p′

−1∑
i=1

C12
n (′i, 	

′
i+1), (4)

|fn+1(a�)|21 =
k∑

t=1

|fn(at)|21 ·m1,t,� +
p′

−1∑
i=1

C21
n (′i, 	

′
i+1), (5)

|fn+1(a�)|11 =
k∑

t=1

|fn(at)|11 ·m1,t,� +
p′

−1∑
i=1

C11
n (′i, 	

′
i+1). (6)

Counting Ordered Patterns in Words Generated by Morphisms 297

6.2 Some Examples

No External Rises, No External Descents, No External Squares. Let
us suppose that the morphism f is such that, for all i and j, L(f)[i] ≥ F (f)[j]
(there are no external rises). According to equation (4), in this case, for each
letter a� ∈ A, f(a�) = a�1 . . . a�p

, and for all n ≥Mf ,

|fn+1(a�)|12 =
k∑

t=1

|fn(at)|12 ·m1,t,�.

Moreover, if the above inequality is strict then, according to equation (5),

|fn+1(a�)|21 =
k∑

t=1

|fn(at)|21 ·m1,t,� + p′� − 1.

Now if we suppose that, conversely to the previous case, the morphism f is
such that, for all i and j, L(f)[i] ≤ F (f)[j] (there are no external descents) then
we obtain the same result by switching 12 and 21 in the above formulas.

To end, if we suppose that the morphism f is such that, for all i and j,
L(f)[i] �= F (f)[j] then, according to equation (6), for each letter a� ∈ A, f(a�) =
a�1 . . . a�p

, and for all n ≥Mf ,

|fn+1(a�)|11 =
k∑

t=1

|fn(at)|11 ·m1,t,�.

The Thue-Morse Morphism. Since R(µ)=
[
1 0
]
,D(µ) =

[
0 1
]
andR2(µ) =[

0 0
]

we obtain again a well known result.

Corollary 9. For any integer n ≥ 0,

R(µ2n) =
[

4n−1
3

4n−1
3

]
= D(µ2n) = R2(µ2n)

R(µ2n+1) =
[

2(4n−1)
3 + 1 2(4n−1)

3

]
D(µ2n+1) =

[
2(4n−1)

3
2(4n−1)

3 + 1
]

R2(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3

]
.

The Fibonacci Morphism. Since R(ϕ) =
[
1 0
]

and D(ϕ) = R2(ϕ) =
[
0 0
]

we have again a well known result.

Corollary 10. For any integer n ≥ 1,

R(ϕn) =
[
Fn−1 Fn−2

]
D(ϕ2n) =

[
F2n−1 F2n−2 − 1

]
= R2(ϕ2n+1)

R2(ϕ2n) =
[
F2n−2 − 1 F2n−3

]
= D(ϕ2n−1).

Erasing Morphisms. Let A be the four-letter ordered alphabet A = {a1 <
a2 < a3 < a4}.

298 S. Kitaev, T. Mansour, and P. Séébold

1. Here we consider the erasing morphism f , given in Section 5.4, defined on A
by f(a1) = a1a3a2a4, f(a2) = ε, f(a3) = a1a4, f(a4) = a2a3. One has Mf = 1.

Starting from R(f) =
[
2 0 1 1

]
, we obtain the following corollary of Proposi-

tion 5.

Corollary 11. For any integer n ≥ 1, R2(fn) =
[
0 0 0 0

]
and

if n is even

⎧⎨⎩R(fn) =
[
2n 0 2n+1+1

3
2n−1

3

]
D(fn) =

[
2n − 1 0 2n+1−2

3
2n−4

3

]
,

if n is odd

⎧⎨⎩R(fn) =
[
2n 0 2n+1−1

3
2n+1

3

]
D(fn) =

[
2n − 1 0 2n+1−4

3
2n−2

3

]
.

2. Now we consider the erasing morphism g defined on A by g(a1) = a1a2a4a3,
g(a2) = a3, g(a3) = ε, g(a4) = a1a2a4. Here we have Mf = 2.

Corollary 12. R(g) =
[
2 0 0 2

]
, D(g) =

[
1 0 0 0

]
, R2(g) =

[
0 0 0 0

]
, and,

for any integer n ≥ 2,

R(gn) =
[
2n 0 0 2n

]
, D(gn) =

[
2n−1 + 2n−2 − 1 0 0 2n−1 + 2n−2 − 1

]
R2(gn) =

[
2n−2 0 0 2n−2

]
.

References

1. Arshon, S.: Démonstration de l’existence de suites asymétriques infinies. Mat.
Sb. 44, 769–779 (in Russian); 777–779 (French summary) (1937)

2. Babson, E., Steingŕımsson, E.: Generalized permutation patterns and a classifica-
tion of the Mahonian statistics. Sém. Lothar. Comb. 44, Art. B44b (2000)

3. Brandenburg, F.-J.: Uniformly growing k-th power-free homomorphisms. Theoret.
Comput. Sci. 23, 69–82 (1983)

4. Burstein, A.: Enumeration of words with forbidden patterns, Ph.D. thesis, Univer-
sity of Pennsylvania (1998)

5. Kitaev, S., Mansour, T., Séébold, P.: The Peano curve and counting occurrences
of some patterns. J. Autom., Lang. Combin. 9(4), 439–455 (2004)

6. Levé, F., Richomme, G.: On a conjecture about finite fixed points of morphisms.
Theoret. Comput. Sci. 339-1, 103–128 (2005)

7. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

8. Morse, M.: Recurrent geodesics on a surface of negative curvature. Trans. Amer.
Math. Soc. 22, 84–100 (1921)

9. Prouhet, M.E.: Mémoire sur quelques relations entre les puissances des nombres.
Comptes Rendus Acad. Sci. Paris 33, 225 (1851)

10. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,
Vidensk.-Selsk. Skrifter. I. Mat. Nat. Kl. 1 Kristiania. In: Nagell, T. (ed.), Univer-
sitetsforlaget, Oslo, pp. 1–67 (1912); Reprinted in Selected Mathematical Papers
of Axel Thue, 413-478 (1977)

Literal Varieties of Languages Induced by

Homomorphisms onto Nilpotent Groups

Ondřej Kĺıma and Libor Polák�

Department of Mathematics, Masaryk University
Janáčkovo nám 2a, 662 95 Brno, Czech Republic

Abstract. We present here new hierarchies of literal varieties of
languages. Each language under consideration is a disjoint union of a
certain collection of “basic” languages described here. Our classes of lan-
guages correspond to certain literal varieties of homomorphisms from
free monoids onto nilpotent groups of class ≤ 2.

Keywords: Literal varieties of languages, homomorphisms onto monoids,
nilpotent groups. MSC 2000 Classification: 68Q45 Formal languages
and automata.

1 Introduction

By the classical Eilenberg’s theorem, the (Boolean) varieties of recognizable lan-
guages correspond to pseudovarieties of finite monoids. The last classes appear
exactly as finite members of unions of varieties of monoids. Therefore, it is nat-
ural to start our investigations with varieties of monoids.

Recognizable languages over Xn = {x1, . . . , xn} corresponding to certain va-
rieties of groups are well-known (the notation is explained in the next section)
– see [4], [14], [15], [9], [3]:

1. Boolean combinations of

{ u ∈ X∗
n | |u|i ≡ �′ mod � }, i ∈ {1, . . . , n}, � ∈ N, �′ ∈ {0, . . . , �− 1}

for the class of all abelian groups.
2. Boolean combinations of

{ u ∈ X∗
n | |u|i ≡ �′ mod � }, i ∈ {1, . . . , n}, �′ ∈ {0, . . . , �− 1}

for the class of all abelian groups satisfying x� = 1.
3. Boolean combinations of

{ u ∈ X∗
n |
(
u

v

)
≡ r′ mod r }, v ∈ X∗

n, r ∈ N, r′ ∈ {0, . . . , r − 1}

for the class of all nilpotent groups.
� Both authors were supported by the Ministry of Education of the Czech Republic

under the project MSM 0021622409 and by the Grant no. 201/06/0936 of the Grant
Agency of the Czech Republic.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 299–310, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

300 O. Kĺıma and L. Polák

4. Boolean combinations of

{ u ∈ X∗
n |
(
u

v

)
≡ r′ mod r }, v ∈ X∗

n, |v| ≤ c, r ∈ N, r′ ∈ {0, . . . , r − 1}

for the class of all nilpotent groups of class ≤ c.

Such characterizations can be refined as follows :
1’. Disjoint unions of

{ u ∈ X∗
n | |u|1 ≡ �1, . . . , |u|n ≡ �n mod � }, � ∈ N, �1, . . . , �n ∈ {0, . . . , �− 1}

for the class of all abelian groups.
It is not difficult to refine the results 2, 3 and 4 in a similar way.
Recent investigations in language theory lead to the notion of a literal variety

of languages (Ésik and Ito) [6] and Straubing [13]. Such classes of languages
generalize the classical varieties, we postulate only the closeness with respect to
inverse literal homomorphisms, not with respect to all inverse homomorphisms.
Numerous examples are given in paper quoted above and in [7] and [5]. The alge-
braic counterpart was invented by (Ésik and Larsen)[7] and [13]. The appropriate
equational logic was created by Kunc [8] and by Pin and Straubing [10].

The aim of our contribution is to find rich families of literal varieties of homo-
morphisms onto nilpotent groups of class ≤ 2 and to present the corresponding
languages in the finer form. All the varieties of nilpotent groups of class ≤ 2 are
well-known and one can find (refined) formulas for all of them. Our new classes
are disjoint unions of

{ u ∈ X∗
n | |u| ≡ �′ mod �, |u|1 ≡ k1, . . . , |u|n ≡ kn mod k,

|u|j,i ≡ rj,i mod r for all 1 ≤ i < j ≤ n } ,

where n, �, k, r ∈ N with r | k | � are fixed and �′ ∈ {0, . . . , � − 1}, k1, . . . , kn ∈
{0, . . . , k − 1} satisfying k1 + · · · + kn ≡ �′ mod k, rj,i ∈ {0, . . . , r − 1} for
1 ≤ i < j ≤ n.

The next section fixes notation. In Sections 3 and 4 we recall the basics of
the classical and the literal universal algebra. Next section summarizes known
results about abelian groups. The main body of our contribution is Section 6
dealing with homomorphisms onto nilpotent groups. Finally, the last section
describes how to check membership to our classes of languages using minimal
deterministic automata.

2 Our Languages

Let N = {1, 2, . . .}, and N0 = N∪{0} be the sets of all positive integers, and non-
negative integers. The relation of divisibility is denoted by |, i.e., for k, � ∈ N0,
k | � if and only if there exists m ∈ N0 such that mk = � and the meaning of
k ≡ � mod m is that m | (k − �). The greatest common divisor of k, � ∈ N0 is

Literal Varieties of Languages Induced by Homomorphisms 301

denoted by gcd(k, �). For a mapping f : B → A, we write imf = { f(b) | b ∈ B }
and ker f = { (b, c) ∈ B ×B | f(b) = f(c) }.

Our alphabets/sets of variables will be X = {x1, x2, . . . } and, for n ∈ N,
Xn = {x1, . . . , xn}. The free semigroup (monoid) over the set Y is denoted
by Y + and Y ∗, respectively. We have Y ∗ = Y + ∪ {1} where 1 is the empty
word. When using only several first variables, we write x, y, z, . . . instead of
x1, x2, x3,

Let u, v ∈ X∗, i, j ∈ N, i < j. We denote:

|u| – the length of the word u,(
u
v

)
– the number of occurrences of v in u as a subword,

in particular, we write
|u|i =

(
u
xi

)
– the number of occurrences of xi in u

|u|j,i =
(

u
xjxi

)
– the number of occurrences of xjxi in u as a subword, i.e.

the number of different factorizations u = pxjqxir, p, q, r ∈ X∗.

Our basic ingredients are the following languages:
let n, �, k, r ∈ N with r | k | �, let �′ ∈ {0, . . . , �− 1}, k1, . . . , kn ∈ {0, . . . , k − 1}
satisfying k1 + · · · + kn ≡ �′ mod k, rj,i ∈ {0, . . . , r − 1} for 1 ≤ i < j ≤ n. We
put

A(n; �, �′; k, k1, . . . , kn) =

= { u ∈ X∗
n | |u| ≡ �′ mod �, |u|1 ≡ k1, . . . , |u|n ≡ kn mod k } ,

N(n; �, �′; k, k1, . . . , kn; r, r2,1, . . . , rn,1, . . . , rn,n−1) =

= { u ∈ X∗
n | |u| ≡ �′ mod �, |u|1 ≡ k1, . . . , |u|n ≡ kn mod k,

|u|j,i ≡ rj,i mod r for all 1 ≤ i < j ≤ n } .

Already at this place we can mention that :

(i) Preimages of a given A(n; �, �′; k, k1, . . . , kn) in literal homomorphisms (i.e.
each letter goes to a letter) from X∗

m into X∗
n are disjoint unions of

A(m; �, · · · ; k, · · · , . . . , · · ·)’s.
(ii) Preimages of a given A(n; �, �′; k, k1, . . . , kn) in arbitrary homomorphisms

from X∗
m into X∗

n are not of the above form since, for instance, it is not the case
for A(2; 6, 3; 2, 0, 1) and f : X∗

2 → X∗
2 , x1 �→ 1, x2 �→ x2.

3 Classical Universal Algebra

We recall here the basis of universal algebra of monoids. For more information
see Almeida’s book [1].

Let M denote the class of all monoids. For V ⊆ M, let FinV denote the
class of all finite members from V . A class of monoids is a variety if it is closed
with respect to the forming of homomorphic images, submonoids and products.
Similarly, a class of finite monoids is a pseudovariety if it is closed with respect to
the forming of homomorphic images, submonoids and products of finite families.

302 O. Kĺıma and L. Polák

Result 1 (Baldwin and Berman [2]). The pseudovarieties of finite monoids are
exactly the classes of the form FinU where U is a union of a chain of varieties
of monoids.

Recall that an n-ary identity is a pair u = v where u, v ∈ X∗
n, n ∈ N. A monoid

M ∈ M satisfies u = v if (∀ α : X∗
n → M) α(u) = α(v). In fact, the choice of

n is not significant and we write M |= u = v in this case. For a class V ⊆ M,
we put

IdV = { (u, v) ∈ X∗ ×X∗ | (∀ M ∈ V) M |= u = v } .

Let Π ⊆ X∗ ×X∗ be a set of identities. We put

ModΠ = {M ∈ M | (∀ π ∈ Π) M |= π } .

Further, for π ∈ X∗ ×X∗, the meaning of Π |= π is

(∀ M ∈ M) (M |= Π implies M |= π) ,

and Π is closed if (∀ π ∈ X∗ ×X∗) (Π |= π implies π ∈ Π).
A congruence � on Y ∗ is fully invariant if for each u, v ∈ Y ∗ and each endo-

morphism g : Y ∗ → Y ∗, u � v implies g(u) � g(v).
The following classical theorems are credited to Birkhoff:

Result 2. The varieties of monoids are exactly the classes of the form ModΠ
where Π ⊆ X∗ ×X∗

Result 3. Let Π ⊆ X∗ × X∗. Then Π is an closed set of identities if and only
if it is a fully invariant congruence.

Result 4. The mappings V �→ IdV and Π �→ ModΠ are mutually inverse
bijections between the class of all varieties of monoids and the class of all fully
invariant congruences on X∗.

4 Literal Universal Algebra

Let L be the category having all Y ∗’s, Y is a set, as objects and

f ∈ L(Z∗, Y ∗) if and only if f(Z) ⊆ Y .

We speak about literal homomorphisms.
Note that we can take an arbitrary category of free monoids instead of L and

that classes of homomorphisms from finitely generated free monoids onto finite
monoids were studied before the results which appear in [11].

Let M denote the class of all homomorphisms from free monoids onto monoids.
Such homomorphism φ : A∗ 	 M is finite if both A and M are finite. For
V ⊆ M, let FinV denote the class of all finite members from V and we define:

HV = { σφ : Y ∗ 	 N | (φ : Y ∗ 	 M) ∈ V , N ∈ M, σ : M 	 N surj. homom.},

Literal Varieties of Languages Induced by Homomorphisms 303

SL V = {φf : Z∗ 	 im(φf) | Z a set, f ∈ L(Z∗, Y ∗), (φ : Y ∗ 	 M) ∈ V } ,

PV = { (φγ)γ∈Γ : Y ∗ 	 im((φγ)γ∈Γ) | Γ a set, (φγ : Y ∗ 	 Mγ) ∈ V for γ ∈ Γ }
(here (φγ)γ∈Γ : Y ∗ →

∏
γ∈Γ Mγ , u �→ (φγ(u))γ∈Γ).

A more transparent definition of the product is the following: consider kernels
kerφγ of all φγ ’s and take the canonical homomorphism Y ∗ 	 Y ∗/∩γ∈Γ kerφγ .

A class V ⊆ M is a L-variety (or literal variety) if it is closed with respect to
the operators H, SL and P. Similarly, a class X ⊆ FinM is an L-pseudovariety
(or literal pseudovariety) of finite homomorphisms onto monoids if it is closed
with respect to H, SL and Pf (products of finite families).

Result 5 ([11], Theorem 3). The literal pseudovarieties of finite homomor-
phisms onto monoids are exactly the classes of the form FinU where U is a
union of a chain of literal varieties of homomorphisms onto monoids.

Let u, v ∈ X∗
n. A homomorphism (φ : Y ∗ 	 M) ∈ M L-satisfies (or literally

satisfies) the identity u = v if (∀ f ∈ L(X∗
n, Y

∗)) (φf)(u) = (φf)(v). We write
φ |=L u = v. Let (φ : Y ∗ 	 M) |= u = v mean M |= u = v.

For a class V ⊆ M, we put

IdL V = { (u, v) ∈ X∗ ×X∗ | (∀ φ ∈ V) φ |=L u = v } .

Let Π ⊆ X∗ ×X∗ be a set of identities. We set

φ |=L Π if (∀ π ∈ Π) φ |=L π , and ModL Π = {φ ∈ M | φ |=L Π } .

Further, for π ∈ X∗ ×X∗, the meaning of Π |=L π is

(∀ φ ∈ M) (φ |=L Π implies φ |=L π) ,

and Π is L-closed (or literally closed) if

(∀ π ∈ X∗ ×X∗) (Π |=L π implies π ∈ Π) .

A congruence � on Y ∗ is L-invariant if for each u, v ∈ Y ∗ and each g ∈ L(Y ∗, Y ∗),
u � v implies g(u) � g(v).

The following statements are modifications of Results 2–4 :

Result 6 ([11], Theorem 1). The varieties of homomorphisms from free monoids
onto monoids are exactly the classes of homomorphisms of the form ModLΠ where
Π ⊆ X∗ ×X∗.

Result 7 ([12], Lemma 2.1). Let Π ⊆ X∗ ×X∗. Then Π is an L-closed set of
identities if and only if it is an L-invariant congruence.

Result 8 ([12], Theorem 2.1.). The mappings V �→ IdL V and Π �→ ModL Π
are mutually inverse bijections between the class of all literal varieties of ho-
momorphisms onto monoids and the class of all literally invariant congruences
on X∗.

304 O. Kĺıma and L. Polák

5 Abelian Groups

The parts (i) and (ii) of the following result are well-known and the item (iii)
appears in the sources quoted in the introduction.

Result 9. (i) The varieties of monoids consisting of abelian groups are exactly

A(�) = Mod (xy = yx, x� = 1), where � ∈ N .

Moreover, A(�) ⊆ A(�′) if and only if � | �′.
(ii) The corresponding fully invariant congruences are

α(�) = { (u, v) ∈ X∗ ×X∗ | (∀ i ∈ N) |u|i ≡ |v|i mod � } .

(iii) For the corresponding varieties of languages A(�) we have: (A(�))(X∗
n)

consists of disjoint unions of

{ u ∈ X∗
n | |u|1 ≡ �1, . . . , |u|n ≡ �n mod � }, �1, . . . , �n ∈ {0, . . . , �− 1} .

The case of literal varieties of homomorphisms is solved by the following:

Result 10.([12]) (i) The literal varieties of homomorphisms onto abelian groups
are exactly

A(�, k) = ModL (xy = yx, x� = 1, xk = yk), where k, � ∈ N, k | � .

Moreover, A(�, k) ⊆ A(�′, k′) if and only if k | k′ and � | �′.
(ii) The corresponding literally invariant congruences are α(�, k) =

= { (u, v) ∈ X∗ ×X∗ | |u| ≡ |v| mod � and (∀ i ∈ N) |u|i ≡ |v|i mod k } .

(iii) For the corresponding literal varieties of languages A(�, k), we have:
(A(�, k))(X∗

n) consists of disjoint unions of

A(n; �, �′; k, k1, . . . , kn)

where �′ ∈ {0, . . . , �− 1}, k1, . . . , kn ∈ {0, . . . , k− 1}, k1 + · · ·+ kn ≡ �′ mod k .

6 Nilpotent Groups

Let (G, ·) be a group. For g, h ∈ G, we define the commutator [g, h] of g and h by
[g, h] = g−1h−1gh. Further, we put [g1, . . . , gs] = [g1, [g2, . . . , gs]] for s ∈ N, s ≥
3, g1, . . . , gs ∈ G. A group (G, ·) is said to be nilpotent of the class ≤ s (s ∈ N)
if it satisfies the identity [x1, . . . , xs+1] = 1. We denote by Ns the class of all
such groups. Let N =

⋃
s∈N

Ns be the class of all nilpotent groups and note
that A = N1 be the class of all abelian groups. Notice that each group satisfies
gh[h, g] = hg and that both [gg′, h] = [g, h][g′, h] and [g, hh′] = [g, h][g, h′] hold
in the class N2. We denote by Ns the class of all homomorphisms from M which
are onto groups from Ns.

We consider the case s = 2. By the following lemma, we can restrict our atten-
tion to the literal varieties of homomorphisms onto members of N2. Moreover,
we can suppose that our homomorphisms are “literally periodic”.

Literal Varieties of Languages Induced by Homomorphisms 305

Lemma 1. Let G be a variety of groups and let V be a literal variety of ho-
momorphisms from free monoids onto monoids whose finite members are onto
groups from G. Then there exists a literal variety W of homomorphisms from
free monoids onto groups from G and � ∈ N such that both V and W literally
satisfy x� = 1 and FinW = FinV.

Proof. Let φ : {a}∗ 	 M be the free object in V over A = {a}, that is, φ is the
product of all (we consider representatives of classes giving the same kernels)
(φi : {a}∗ 	 Mi) ∈ V where i ∈ I. If M is infinite, then M = {1, b, b2, . . . }
where b = φ(a), and bk �= b� for k �= �, k, � ∈ N0. Putting b, b2, . . . into a
single class we get a congruence τ on M such that M/τ is finite and it is not a
group, a contradiction. Consequently, M consists of pairwise different elements
1, b, b2, . . . , bk+�−1 with bk+� = bk, for some k ∈ N0, � ∈ N. Since M is a group,
we have k = 0.

Now we show that V |=L x� = 1. Indeed, for an arbitrary (ψ : B∗ 	 N) ∈ V
consider the compositions of ψ with {a}∗ → B∗, a �→ b, b ∈ B.

Let W = 〈 FinV 〉 be a literal variety generated by FinV. All members of W
satisfy the identity x� = 1 literally. Notice that if a monoid M with a generating
set A satisfies g� = 1 for all g ∈ A, then M is a group since g�−1

m . . . g�−1
1 is the

inverse of g1 . . . gm. Moreover, each homomorphism of W is onto a group from G.
Since FinV ⊆ 〈 FinV 〉 = W , we have FinV ⊆ FinW . Conversely, from

W ⊆ V it follows that FinW ⊆ FinV . �

For any t ∈ N and x, y ∈ X , we define [x, y]t = xt−1yt−1xy ∈ X∗. If we consider
φ : X∗

n 	 G satisfying x� = 1 literally then φ([x, y]�) = [φ(x), φ(y)] for x, y ∈ Xn.
From that reason [x, y] will always mean [x, y]� for an appropriate �.

A crucial role in our considerations is played by certain numerical parameters.
The relationships between them are explored in the following result.

Lemma 2. Let (φ : Y ∗ 	 G) ∈ N 2 and let there exist t ∈ N such that
φ |=L xt = 1. Then there exist m, �, k, r ∈ N, each smallest (with respect to
the divisibility), satisfying

φ |= xm = 1, φ |=L x� = 1, φ |=L xk = yk, φ |=L [x, y]r = 1 .

Moreover, those parameters are related by

(a) k | �,
(b) r | k,
(c) If � is odd or 2r | � then m = �; m = 2� otherwise.

Proof. Using the Bezout’s Lemma we see that, for each �, �′ ∈ N0, the facts φ |=L

x� = 1, x�′ = 1 imply φ |=L xgcd(�,�′) = 1. Therefore there exists the smallest
� ∈ N0 (with respect to the divisibility) such that φ |=L x� = 1. Moreover,
φ |=L x�′ = 1 if and only if � divides �′.

The same is true for the literal satisfaction of xk = yk and [x, y]r = 1 and for
the (usual) satisfaction of xm = 1. Let A = φ(Y).

� | m : (gm = 1 for all g ∈ G) implies (am = 1 for all a ∈ A).

306 O. Kĺıma and L. Polák

k | � : (for all a ∈ A, a� = 1) implies (for all a, b ∈ A, a� = b�).
r | k : Let a, b ∈ A. Then abk = a · ak = ak · a = bk · a = abk[b, a]k and thus

[b, a]k = 1.
By the assumptions, � ∈ N.
The proof of (c) : For each a, b ∈ A, p ∈ N, we have (ab)p = apbp · [b, a](

p
2).

If � is odd or 2r | � then r |
(

�
2

)
and thus (ab)� = 1. For (a1 . . . , aq)�, q ∈ N,

use induction. Clearly r |
(
2�
2

)
. Conversely, if G |= x� = 1 and � is even, then, in

particular, for all a, b ∈ A, we have [b, a](
�
2) = 1. Thus r |

(
�
2

)
= �

2 (�− 1). Since r

and �− 1 are relatively prime we have r | �
2 . �

Remark. In fact, we will not need the parameter m in our considerations. We
added it to show that the relationship between identities being satisfied literally
and globally is far from being trivial.

The next result helps us to understand our languages.

Lemma 3. Let n, �, k, r ∈ N satisfy r | k | �. Then the classes

N(n; �, �′; k, k1, . . . , kn; r, r2,1, . . . , rn,1, . . . , rn,n−1)

where �′ ∈ {0, . . . , � − 1}, k1, . . . , kn ∈ {0, . . . , k − 1} satisfying k1 + · · · + kn ≡
�′ mod k, rj,i ∈ {0, . . . , r − 1} for 1 ≤ i < j ≤ n form a partition of the set X∗

n.

Proof. Indeed, using sequences of transpositions pxixjq → pxjxiq on the word
xk

i x
k
j , one gets exactly the words u with the following parameters |u|i = |u|j =

k, |u|j,i ∈ {0, . . . , k2}. To get a word

u ∈ N(n; �, �′; k, k1, . . . , kn; r, r2,1, . . . , rn,1, . . . , rn,n−1)

apply an appropriate sequence of transpositions on

xk1
1 . . . xkn

n · xk
1x

k
2 · . . . · xk

1x
k
n · . . . · xk

n−1x
k
n .

Clearly, the union of the classes is X∗
n and they are pairwise disjoint. �

The following result will help us to distinguish varieties with different parameters
(even their finite members).

Lemma 4. Let �, k, r ∈ N satisfy r | k | �. Then the formula

ξ : Zr → (Z� × Zk)Z�×Zk , u �→
(

(a, p) �→ (a + up
�

r
, p)
)

(,)

correctly defines an action of the group (Zr,+) on (Z� × Zk,+) by automor-
phisms.

Moreover, the formula

(a, p, u) ◦ (b, q, v) = (a + b + uq
�

r
, p + q, u + v) (∗)

Literal Varieties of Languages Induced by Homomorphisms 307

defines a group operation on the set Z� × Zk × Zr; in particular (0, 0, 0) is the
neutral element and (a, p, u)−1 = (−a + up �

r ,−p,−u).
This group is nilpotent of class 2. Let

α = (1, 0, 0), β = (1, 1, 0), γ = (1, 0, 1) .

Then the set {α, β, γ} generates (Z� × Zk × Zr, ◦), the number k is the smallest
(with respect to the divisibility) with αk = βk = γk and the order of each of
α, β, γ is �. Finally, r is the smallest number such that [β, γ]r = 1, and for each
(a, p, u), (b, q, v) ∈ Z� × Zk × Zr, we have [(a, p, u), (b, q, v)]r = 1.

Proof. Taking representatives u′, u′′ ∈ Z of u ∈ Zr, a′, a′′ ∈ Z of a ∈ Z� and
p′, p′′ ∈ Z of p ∈ Zk, we see that

a′ + u′p′
�

r
≡ a′′ + u′′p′′

�

r
mod � ,

which means that the formula (,) correctly defines a mapping.
Let u ∈ Zr. It is easy to see that ξ(u) is a bijective homomorphisms of

(Z� × Zk,+) onto itself.
Further, for each u, v ∈ Zr, (a, p) ∈ Z� × Zk, we have (ξ(u + v))(a, p) =

ξ(u)(ξ(v)(a, p)) and thus ξ is a homomorphism of the group (Zr) into the group
Aut(Z� × Zk,+) of all automorphisms of the group (Z� × Zk,+).

The formula (∗) describes the well-known semidirect product of groups.
The commutator [(a, p, u), (b, q, v)] equals to ((uq − vp) �

r , 0, 0) and therefore
it commutes with all elements and r is as mentioned in the lemma. The rest
follows from the formula

(a, p, u)m = (ma+
m(m − 1)

2
up

�

r
,mp,mu), m ∈ N . �

Lemma 5. Let G be a finite group with a generating set A, such that a[b, c] =
[b, c]a for all a, b, c ∈ A. Then G is nilpotent of the class ≤ 2.

Proof. Since G is a finite group, each element of G can be written as a product
of generators, i.e. it can be viewed as a word from A∗. So, it is enough to prove
that [u, v] commutes with w for all u, v, w ∈ A∗.

We prove this by the induction with respect to |u|+ |v|. It is clear for u = 1 or
v = 1. If u, v ∈ A then [u, v] commutes with each generator by the assumption,
hence [u, v] commutes with each w ∈ A∗. So, we have proved the statement for
u, v ∈ A∗ such that |u| + |v| ≤ 2.

Now suppose that n ∈ N, n > 2 and that the statement is true for all
u, v, w ∈ A∗, |u| + |v| < n. Assume first, that u = u1u2, where u1, u2 ∈ A+.
Then [u1u2, v] = u−1

2 [u1, v]v−1u2v. Now from the induction assumption we have
that [u1, v] commutes with u−1

2 . Hence [u1u2, v] = [u1, v][u2, v]. Again by the
induction assumption both [u1, v] and [u2, v] commute with each w ∈ A∗ and we
can conclude that also [u1u2, v] commutes with each w ∈ A∗.

The case when u ∈ A can be treated in a similar way: we write v as a product
of two shorter words. �

308 O. Kĺıma and L. Polák

Theorem 1. (i) The following literal varieties of homomorphisms from free
monoids onto nilpotent groups of class ≤ 2 are pairwise different:

N (�, k, r) = ModL([x, [y, z]] = 1, x� = 1, xk = yk, [x, y]r = 1)

where �, k, r ∈ N, r | k | �.
Moreover, N (�, k, r) ⊆ N (�′, k′, r′) if and only if � | �′, k | k′, r | r′.
(ii) The corresponding literally invariant congruences on X∗ are of the form

ν(�, k, r) = { (u, v) ∈ X∗ ×X∗ |

|u| ≡ |v| mod �, |u|i ≡ |v|i mod k for i ∈ N, |u|j,i ≡ |v|j,i mod r for 1 ≤ i < j } .

(iii) For the corresponding literal varieties of languages N(�, k, r), we have:
N(�, k, r)(X∗

n) consists of disjoint unions of

N(n; �, �′; k, k1, . . . , kn; r, r2,1, . . . , rn,1, . . . , rn,n−1)

where �′ ∈ {0, . . . , �− 1}, k1, . . . , kn ∈ {0, . . . , k− 1}, k1 + · · ·+ kn ≡ �′ mod k ,

rj,i ∈ {0, . . . , r − 1} for 1 ≤ i < j ≤ n .

Proof. (i) It follows from Lemmas 2, 4 and 5.
(ii) Claim 1. ν(�, k, r) is a literally invariant congruence on X∗. Clearly, the

mentioned relation is an equivalence on the set X∗. Now notice that for arbitrary
u ∈ X∗, i, j ∈ N, i �= j, ξ : X → X , we have:

(a) |xiu| = |u| + 1,
(b) |xiu|i = |u|i + 1, |xiu|j = |u|j,
(c) |xiu|i,j = |u|i,j + |u|j ,
(d) |ξ(u)| = |u|,
(e) |ξ(u)|i =

∑
s=1,...,p |u|is where ξ−1(xi) = {xi1 , . . . , xip}, i1, . . . , ip pairwise

different,
(f) |ξ(u)|i,j =

∑
s=1,...,p, t=1,...,q |u|is,jt with i1, . . . , ip as above and ξ−1(xj) =

{xj1 , . . . , xjq}, j1, . . . , jq pairwise different.

Let (u, v) ∈ ν(�, k, r). Then (xiu, xiv) ∈ ν(�, k, r) by (a) – (c) and (uxi, vxi) ∈
ν(�, k, r) by their duals. Finally, (ξ(u), ξ(v)) ∈ ν(�, k, r) due to (d) – (f).

Claim 2. ν(�, k, r) is generated as literally invariant congruence by the set

{ ([x, [y, z]], 1), (x�, 1), (xk, yk), ([x, y]r , 1) | x, y, z ∈ X } .

Indeed, let (u, v) ∈ ν(�, k, r) and let all the variables of u and v be among
x1, . . . , xn. The identity u = u′ where

u′ = x
|u|1
1 . . . x|u|n

n [x2, x1]|u|2,1 . . . [xn, x1]|u|n,1 . . . [xn, xn,n−1]|u|n,n−1

is valid in each nilpotent group of class ≤ 2. Similarly for v = v′ where

v′ = x
|v|1
1 . . . x|v|n

n [x2, x1]|v|2,1 . . . [xn, x1]|v|n,1 . . . [xn, xn,n−1]|v|n,n−1 .

Literal Varieties of Languages Induced by Homomorphisms 309

Since [xj , xi] = x�−1
j x�−1

i xjxi, we have

|u′| ≡ |u| mod �, |u′|i ≡ |u|i mod � for each i ∈ N ,

|u′|i,j ≡ |u|i,j mod r for each i, j ∈ N, i �= j .

and similarly for v.
Now we will rewrite u′ to v′. Since [x, y]r = 1 literally we are done with

commutators. Then we literally use xk = yk

to rewrite x
|u|1
1 to x

|v|1
1 x

|u|1−|v|1
2 to get x

|v|1
1 x

|u|1−|v|1+|u|2
2 x

|u|3
3 . . . x|u|n

n ,

then to rewrite x
|u|1−|v|1+|u|2
2 to x

|v|2
2 x

|u|1−|v|1+|u|2−|v|2
3

to get x
|v|1
1 x

|v|2
2 x

|u|1−|v|1+|u|2−|v|2+|u|3
3 x

|u|4
4 . . . x|u|n

n and so on .

Finally, we use x� = 1 literally to rewrite x
|u|1−|v|1+···+|u|n−1−|v|n−1+|u|n
n to x

|v|n
n .

We succeed since |u| ≡ |v| mod � literally.
(iii) : The restriction of the relation ν(�, k, r) onto X∗

n × X∗
n has exactly

the classes N(n; �, �′; k, k1, . . . , kn; r, r2,1, . . . , rn,1, . . . , rn,n−1). The result follows
from [12] Theorem 5.1.2. �

Remarks. 1. Putting r = 1 we get all the results concerning homomorphisms
onto abelian groups.
2. The case k = � = m corresponds to the classical varieties of nilpotent groups
of the class ≤ 2.

7 Automata

Let A = (Q,A, ·, i, T) be a complete deterministic automaton, i.e. Q is a non-
empty finite set of states, A is an alphabet, · : Q × A → Q is the action by
letters, i ∈ Q is the initial state, and T ⊆ Q is the set of all terminal states.

For any a ∈ A, we have the action αa : Q → Q, q �→ q · a. We speak about an
action of the first type. If each action of the first type is a permutation of the set
Q then we can define actions of the second type in the following way. For given
a, b ∈ A we define the action βa,b as a mapping βa,b : Q → Q by the rule

p · βa,b = q if and only if (∃ r ∈ Q)(r · ba = p and r · ab = q) .

Because actions by a and b are permutations, the state r in the defining property
is uniquely determined. Hence the previous definition is correct and moreover,
the action βa,b is also a permutation of the set Q.

We say that an automaton A is 2-nilpotent if and only if it is a complete
deterministic automaton in which the actions of the first type are permutations
and commute with the actions of the second type.

For a 2-nilpotent automaton A, we define �A as the least common multiple
of the lengths of all cycles in all actions of the first type; kA as the smallest
number such that the kA-th iteration of each action of the first type gives the
same mapping from Q to Q; rA as the least common multiple of the lengths of
all cycles in all actions of the second type.

310 O. Kĺıma and L. Polák

Proposition 1. Let L be a language over Xn with minimal automaton A(L).
Then L ∈ N(�, k, r)(X∗

n) if and only if A(L) is 2-nilpotent and �AL |�, kAL |k and
rAL |r.

Proof. It is a consequence of Theorem 1 and the well-known fact that trans-
formation monoid of a minimal automaton A(L) is isomorphic to the syntactic
monoid of L. �

References

1. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore
(1994)

2. Baldwin, J., Berman, J.: Varieties and finite closure conditions. Colloq. Math. 35,
15–20 (1976)

3. Carton, O., Pin, J.-E., Soler-Escrivà, X.: Languages recognized by finite supersol-
uble groups (submitted)

4. Eilenberg, S.: Automata, Languages and Machines, vol. A,B. Academic Press, New
York (1974-1976)

5. Ésik, Z.: Extended temporal logic on finite words and wreath product of monoids
with distinguished generators. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS,
vol. 2450, pp. 43–58. Springer, Heidelberg (2003)

6. Ésik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybernetica 16, 1–28 (2003); a preprint BRICS 2001

7. Ésik, Z., Larsen, K.G.: Regular languages defined by Lindström quantifiers. Theo-
retical Informatics and Applications 37, 197–242 (2003); preprint BRICS 2002

8. Kunc, M.: Equational description of pseudovarieties of homomorphisms. Theoret-
ical Informatics and Applications 37, 243–254 (2003)

9. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, ch. 10. Springer, Heidelberg (1997)

10. Pin, J.-E., Straubing, H.: Some results on C-varieties. Theoretical Informatics and
Applications 39, 239–262 (2005)

11. Polák, L.: On varieties, generalized varieties and pseudovarieties of homomor-
phisms. In: Contributions to General Algebra, vol. 16, pp. 173–187. Verlag Jo-
hannes Heyn, Klagenfurt (2005)

12. Polák, L.: On varieties and pseudovarieties of homomorphisms onto abelian groups.
In: Proc. International Conference on Semigroups and Languages, Lisboa 2005, pp.
255–264. World Scientific Publishing, Singapore (2007)

13. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.)
LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

14. Thérien, D.: Languages of Nilpotent and Solvable Groups. In: Maurer, H.A. (ed.)
ICALP 1979. LNCS, vol. 71, pp. 616–632. Springer, Heidelberg (1979)

15. Thérien, D.: Subwords counting and nilpotent groups. In: Cummings, L. (ed.)
Combinatorics on Words, Progress and Perspectives, pp. 293–306. Academic Press,
London (1983)

Characterization of Star-Connected Languages

Using Finite Automata

Barbara Klunder

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University
Toruń, Poland

klunder@mat.uni.torun.pl

Abstract. In this paper we characterize star-connected languages using
finite automata: any language is star-connected if and only if it is ac-
cepted by a finite automaton with cycles which are proper compositions
of connected cycles. Star-connected (flat) languages play an important
role in the theory of recognizable languages of monoids with partial com-
mutations. In addition we introduce a flat counterpart of concurrent star
operation used in the theory of recognizable languages.

The theory of traces (i.e. monoids with partial commutations) has two inde-
pendent origins: combinatorial problems and the theory of concurrent systems.
Since the fundamental Mazurkiewicz’s paper [6], trace languages are regarded
as a powerful means for description of behaviours of concurrent systems. The
formal language theory over traces, limited to recognizable and rational trace
languages, is the subject of [8]. It is known that rational expressions with the
classical meaning are useless for expressing recognizable trace languages. For
example classical iteration T � of a recognizable trace language T need not be
recognizable.

We assume the reader knows basic notions of the theory of free monoids: finite
automata, regular expressions (named, from now on, rational expressions) and
regular languages. A language L ⊆ A� is recognizable if it is recognizable by a
finite automaton, and is rational if it is defined by a rational expression.

The classes Rec of recognizable and Rat of rational subsets are different
in all trace monoids which are not free. In spite of this, rational expressions
over trace monoids are proved to be quite useful for description of recognizable
subsets of arbitrary trace monoids. Namely, in any trace monoid, the class Rec
can be characterized with some special kind of rational expressions, called the
star-connected rational expressions. By virtue of that fact, the role of rational
expressions in trace monoids appears not less important than in free monoids.

1 Preliminaries

We assume the reader knows basics of formal language theory. Nevertheless, we
recall briefly some of them, in order to fix the notation, used in the paper. The
set of non-negative integers is denoted by N.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 311–320, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

312 B. Klunder

1.1 Flat Languages and Trace Languages

An alphabet A is a finite set of letters. Strings of letters of A are words over A; the
set of all finite words over A is denoted by A�, the empty word is denoted by ε.
The set A� with the operation of concatenation is the free monoid. The length of
w ∈ A� is denoted by |w|. The set of letters occurring in a wordw ∈ A� is denoted
by Alph(w). Subsets of A� are called languages. In order to avoid possible confu-
sions with trace languages, defined below, subsets of free monoids will be called
flat languages. Basic operations on languages are: set-theoretical operations of
union, intersection and difference, and algebraic operations of concatenation:
XY = {xy|x ∈ X&y ∈ Y }, power: X0 = {ε}, Xn+1 = XXn, and iteration (or
the star operation): X� =

⋃
{Xn|n ≥ 0} (as usual X+ =

⋃
{Xn|n ≥ 1}).

Let I ⊆ A × A be a symmetric and irreflexive relation on A. Such a relation
is named the independency relation; it expresses possibilities of concurrent execu-
tions of atomic actions of systems. The complement D = A×A \ I of I is named
the dependency relation. One can extend the relations I andD onto the wholeA�:

uIv iff ∀a ∈ Alph(u), ∀b ∈ Alph(v): aIb
uDv iff ∃a ∈ Alph(u), ∃b ∈ Alph(v): aDb

The pair (A, I) or (A,D) is said to be a concurrent alphabet. Given a concur-
rent alphabet (A, I), the trace monoid A�/I is the quotient of the free monoid
A� by the least congruence on A� containing the relation {ab = ba|aIb}. Mem-
bers of A�/I are called traces, and sets of traces (i.e. subsets of A�/I) are called
trace languages. Operations on trace languages - union, intersection, difference,
concatenation, power and iteration - are defined exactly in the same way as the
respective operations on flat languages.

Let (A, I) be a concurrent alphabet. Any word w ∈ A� induces a trace [w] ∈
A�/I - the congruence class of w. Any flat language L ⊆ A� induces a trace
language [L] = {[w]|w ∈ L} - the set of all traces induced by members of L. Any
class R ⊆ 2A�

of flat languages induces a class of trace languages [R] ⊆ 2A�/I -
the set of all trace languages induced by flat languages of R.

Let T ⊆ A�/I be a trace language. The flattening of T is a flat language⋃
T = {w ∈ A�|[w] ∈ T } - the union of traces in T , viewed as subsets of A�. A

flat language L is said to be closed (w.r.t. I) iff L =
⋃

[L].

1.2 Rational and Recognizable Languages

A language L ⊆ A� is recognizable if it is recognizable by a finite automaton,
and is rational if it is defined by a rational expression. The well known Kleene
Theorem says that both the notions are equivalent in finitely generated free
monoids. For this reason, the classes of recognizable and rational subsets of A�

will be uniformly denoted by RegA, and its members be called regular languages.
A trace language T ⊆ A�/I is rational iff T = [L] for some L ∈ RegA, and

is recognizable iff
⋃
T = {w ∈ A�|[w] ∈ T } ∈ RegA. The classes of rational and

recognizable trace languages in A�/I will be denoted, respectively, by RatA,I

and RecA,I . Indices A and I will be omitted, if it will not lead to a confusion.
It is easily seen that Rec ⊆ Rat and the inclusion is proper, whenever I �= ∅.

Characterization of Star-Connected Languages Using Finite Automata 313

1.3 Connected Words, Traces and Languages

Definition 1 (Connected words, traces and languages). Let (A, I) be a
concurrent alphabet; let D = A×A \ I be the dependency relation.

– A word w ∈ A� is connected (w.r.t. D) iff the graph D|Alph(w) is connected;
– A flat language L ⊆ A� is connected iff all its members are connected;
– A trace [w] ∈ A�/I is connected iff the word w is connected;
– A trace language T ⊆ A�/I is connected iff all its members are connected.

Connected trace languages play an important role in trace theory. We know
that the star may destroy the recognizability. It is not the case, if the iterated
language is connected. The following result is due to E. Ochmański [7] and, in a
more general framework of semicommutations, to Clerbout/Latteux [1].

Proposition 1. Let A�/I be a trace monoid.
If T ⊆ A�/I is recognizable and connected, then T � is recognizable.

Example 1. Let (X, I) = ({a, b}, {(a, b), (b, a)}), the trace [ab] is not connected
and has a decomposition [ab] = [a][b] = [b][a], of course [a], [b] are connected
traces. The trace language T = {[ab]} is an example of a recognizable language
such that T � is not recognizable (see [7]).

Definition 2 (Concurrent star). Let M = A�/I be a trace monoid and let
α, γ be nonempty traces in M . The trace γ is a component of α iff γ is connected
and α = βγ for some β ∈M , such that Alph(β)×Alph(γ) ⊆ I. The decomposi-
tion of a trace α �= [ε] is the set /α/ of all components of α, The decomposition
of [ε] is defined as /[ε]/ = {[ε]}. The decomposition of a trace language T ⊆ M
is the trace language /T/ =

⋃
{/α/ ; α ∈ T }. The concurrent star of T is defined

as T⊗ = /T/�.

The decomposition operation of trace languages has the following interesting
property (see [7]).

Lemma 1. Let A�/I be a trace monoid. If T ⊆ A�/I is recognizable, then /T/
is recognizable.

The following corollary holds

Corollary 1. Let A�/I be a trace monoid. If T ⊆ A�/I is recognizable, then
T⊗ is recognizable.

2 Star-Connected Expressions and Languages

Let (A, I) be the fixed concurrent alphabet.

314 B. Klunder

Definition 3 (Rational expressions and languages)

– A rational expression (over A) is any string over the extended alphabet
A ∪ {∅, ε,∪, ·,
, (,)}, built with the following rules: Any atomic expression
(i.e., ∅, ε and a, for a ∈ A) is a rational expression. If R and S are rational
expressions, then (R ∪ S), (RS) and R� are rational expressions.

– Assuming the natural semantics for symbols ∪, · and
 (union, concatenation
and iteration, respectively), any rational expression R defines, in a unique
way, a flat language L(R).

– The trace language defined by rational expression R is the trace language
[L(R)] induced by the flat language L(R).

– A rational expression R is said to be connected iff the flat language L(R) is
connected. The last condition is equivalent to “the trace language [L(R)] is
connected”, because, for any L ⊆ A�, the flat language L is connected iff the
trace language [L] is connected.

Definition 4 (Star-connected expressions and languages)

– A rational expression (over A) is star-connected iff it has a connected ex-
pression under any of its stars. Formally: Any atomic expression (∅, ε, and
a, for a ∈ A) is star-connected. If R and S are star-connected, then (R ∪ S)
and (RS) are star-connected as well. If, moreover, R is connected, then R�

is also star-connected. The class of star-connected (w.r.t. I) rational expres-
sions (over A) is the least class of rational expressions built with the above
rules.

– A flat language L ⊆ A� is star-connected iff there is a star-connected ex-
pression R such that L = L(R). The class of all star-connected (w.r.t. I)
languages (over A) will be denoted by StarConI(A).

– A trace language T ⊆ A�/I is star-connected iff there is a star-connected ex-
pression R such that T = [L(R)]. Or equivalently: iff there is a star-connected
flat language L ⊆ A� such that T = [L].

Star-connected flat languages induce the whole class of recognizable trace lan-
guages. For the proof see [7,8].

Theorem 1 RecA,I = [StarConI(A)], i.e. T ∈ RecA,I iff (∃L ∈ StarConI

(A)) T = [L].

Example 2 Any star-connected language has infinitely many rational expres-
sions, defining it. For instance:

(a ∪ b)� = (a�b�)�

(a ∪ b)�b = (a� ∪ bb�a)�bb�

Notice that, if aIb, then the left-hand-side expressions are star-connected, whereas
the right-hand-side ones are not.

Example 3 Let X = {x1, . . . , xn} be any subset of A. Let Sn denote the set of
all permutations of {1, . . . , n}. Then the expression

Characterization of Star-Connected Languages Using Finite Automata 315

RX =
⋃

σ∈Sn

X�xσ(1)X
�xσ(2) . . .X

�xσ(n)X
�

is star-connected and defines the language LX = {w ∈ A�|Alph(w) = X}.

Example 4 Let C(A, I) = {X ⊆ A | (X,D|X) is connected}. Then

C(A,I) =
⋃

X∈C(A,I)

RX

is star-connected expression which defines the language Con(A, I) of all con-
nected words over the alphabet (A, I).

In [4] we proved the following lemma.

Lemma 2 (About intersections) Let L be star-connected flat language and
let X ⊆ A. Then the flat language L ∩ LX is star-connected. If L is defined
by a star-connected expression R then we can effectively find the star-connected
expression RX defining L ∩ LX.

From Example 4 we obtain immediately the following corollary.

Corollary 2 Let L be any star-connected flat language. Let X be any subset
of A. Then the flat languages Con(X, I) = X� ∩ Con(A, I), L ∩ Con(X, I) are
star-connected.

Using the last corollary we shall characterize automata accepting star-connected
languages.

3 Automata Accepting Star-Connected Languages

A finite automaton A =< A,Q, δ, q, F > (with ε-transitions) over A consists of
a finite set Q of states, a finite set δ ⊆ Q × A × Q (δ ⊆ Q × (A ∪ {ε}) × Q)
of transitions, an initial state q ∈ Q and a set F ⊆ Q of final states. A path of
A is a sequence s0a1s1a2s2 . . . ansn such that n > 0 and (si, ai+1, si+1) ∈ δ for
all i = 0, . . . n − 1. The word w = a1a2 . . . an is called a label of the path. A
defines the language L(A =< A,Q, δ, q, F >) of labels of all paths starting in q
and ending in some state f ∈ F . When F is a singleton (F = {f}) we identify
it with the element f .

Let I ⊆ A×A be an independency on A.

Definition 5 (Composition of cycles) Let A =< A,Q, δ, q, F > be an au-
tomaton. A cycle of A is a path s0a1s1a2s2 . . . ansn such that n > 0 and s0 = sn;
a cycle is simple if si �= sj whenever i �= j (for i, j = 0, . . . , n − 1). A cy-
cle is connected if its label w is a connected word. If for some k ≥ 0 and
i0 = 0 < i1 < . . . < ik < ik+1 = n equations sij = s0 hold the cycle is
a composition in s0 of cycles sijaij+1 . . . sij+1 for 0 ≤ j ≤ k. If the sequence
i0 = 0 < i1 < . . . < ik < ik+1 = n contains all occurrences of s0 then the
composition is proper.

316 B. Klunder

Fig. 1. Automaton with connected simple cycles. Let aIb. Then every simple cycle of A
is connected, but the cycle with a label ababa starting in initial state 1 is not isomorphic
to any cycle which is a proper composition of connected cycles. We can show that the
language L(A) of all words with even occurrence of b is not star-connected.

For every 0 < i < n the cycle siai+1 . . . ansna1s1 . . . aisi is isomorphic to a
cycle s0a1s1a2s2 . . . ansn of a given automaton A.

It is easy to see that for any R ⊆ A�, R is star-connected iff R \ {ε} is
star-connected.

Let us denote StarConI(A+) = {R ⊆ A�|R is star-connected and ε �∈ R}.
Then StarConI(A+) is the least family of A-languages containing all singletons,
except {ε}, and closed under union, concatenation and +-operation applied to
connected languages.

Lemma 3 For every star-connected language R ∈ StarConI(A+) there exists
an automaton A =< A,Q, δ, q, f > with two different states q, f ∈ Q, initial and
final, respectively, such that

1. R = L(A), i.e. R is accepted by A;
2. every simple cycle of A is connected;
3. for every cycle s0a1s1a2s2 . . . ansn there exist 0 ≤ i ≤ n such that the iso-

morphic cycle siai+1 . . . ansna1s1 . . . aisi is a proper composition in si of
connected cycles;

4. for every cycle s0a1s1a2s2 . . . ansn such that si = f for some 0 ≤ i ≤ n the
isomorphic cycle siai+1 . . . ansna1s1 . . . aisi is a proper composition in si of
connected cycles.

Proof The construction of A is inductive. It adopts the classical inductive con-
struction (see [3], for instance) to obtain an automaton without ε-transitions.
Because the same argument was applied in [5] we only consider the case of +

operation.
Let A =< A,Q, δ, q, f > accept a connected language S ∈ StarConI(A+),

and assume that A satisfies all conditions of the lemma. Let a ∈ A, Sa = {s ∈
Q|(q, a, s) ∈ δ} and

δ+ = δ ∪ δ+ where δ+ =
⋃
a∈A

{(f, a, s)|s ∈ Sa}

Then A+ =< A,Q, δ+, q, f > accepts S+. Every simple cycle fasa1 . . . f with a
transition (f, a, s) is either a cycle of A or its label aw is accepted by A so every
simple cycle of A+ is connected. Let π : s0a1s1a2s2 . . . ans0 be a cycle of A+.

Characterization of Star-Connected Languages Using Finite Automata 317

If π does not contain transitions from δ+ \ δ, then it obviously satisfies the last
condition. So we can assume that the set F = {i ≤ n|si = f ∧ (f, ai+1, si+1) ∈
δ+ \ δ} is nonempty and 0 ∈ F i.e. s0 = f . Let F1 = {i1, . . . , ik} , ij < ij+1

for 0 < j < k, be the set of all occurrences of f in π. We claim that π is a
composition in f of connected cycles. Indeed, for every j < k such that sij ∈ F
the label of a cycle sijaij+1 . . . aij+1sij+1 is accepted by A. If sij ∈ F1 \ F then
sijaij+1 . . . aij+1sij+1 is a cycle of A such that f occurs in it only on positions ij
and ij+1. Thus this cycle is connected by the induction hypothesis (4).

In this way we obtain stronger version of Lemma 3.1 [4]. This result implies
the following modification of the classical pumping lemma for a star-connected
language L (see [4]):

There existm > 0 such that for all z ∈ L if |z| ≥ m then for someu, v1, v2, v3, w ∈
A�: z = uv1v2v3w, words v2, v3v1 are nonempty and connected,uv1(v2∪v3v1)�v3w
⊆ L.

In this assertion we can require that |v1v2v3| ≤ m. Using this property of
star-connected languages it is easy to prove that the language L = (a∪ ba�b)� is
not star-connected. For m > 0 the word (ab)2m does not satisfy this condition.

Definition 6 Let X be any subset of A and πX : A �→ X� be defined by the
equation:

πX(a) =

{
a if a ∈ X
ε otherwise.

Then the unique extension of πX to A� we call the projection (on X) and denote
in the same way.

Now we can formulate the fundamental result of this section.

Proposition 2 Let (A, I) be any concurrent alphabet. Let X ⊆ A be such that
X and A \ X are independent: X × (A \ X) ⊆ I. Let A =< A,Q, δ, q, F > be
any automaton satisfying conditions 2 and 3 of Lemma 3. Then the language
πX(L(A)) is star-connected.

Proof Let us define for S ⊆ Q and i, j ∈ Q the set LS
ij of all projections of

labels of paths of A starting in i, ending in j and going through the states of S.
We shall prove that all those languages are star-connected by the induction on
cardinality of S. Clearly

L∅
ij =

{
{πX(a)|a ∈ A ∧ (i, a, j) ∈ δ} if i �= j

{πX(a)|a ∈ A ∧ (i, a, j) ∈ δ} ∪ {ε} otherwise.

and if S �= ∅

LS
ij =

⋃
k∈S

L
S\{k}
ik (LS\{k}

kk)�L
S\{k}
kj ∪

⋃
k∈S

L
S\{k}
ij

318 B. Klunder

But in the induction step we have to prove the languages (LS\{k}
kk)� are star-

connected. We claim that

(LS\{k}
kk)� =

⋃
j∈S

L
S\{j}
kj (LS\{j}

jj ∩Con(X, I))�L
S\{j}
jk

Indeed, (LS\{k}
kk)� is in fact the set of projections of all labels of cycles starting

in k and visiting only states of S. Every such cycle is isomorphic to a cycle which
is a proper composition in some state j of connected cycles, by Lemma 3 (3).
If X × (A \X) ⊆ I then for every connected word w (being a label of a cycle)
either Alph(w) ⊆ X or Alph(w) ⊆ A \X . Finally, by the induction hypothesis
and Corollary 2 the intersection of LS\{j}

jj with the language Con(X, I) of all
connected words over the alphabet X is star-connected.

As a consequence of Lemma 3 and Proposition 2 we obtain the main theorem.

Theorem 2 (about characterization) Let (A, I) be any concurrent alphabet.
Then the language L ⊆ A� is star-connected iff L is accepted by some automaton
satisfying conditions 2 and 3 of Lemma 3.

4 Concurrent Star Operation

Let w ∈ A� and X,Y be two independent subsets of Alph(w) (X × Y ⊆ I) such
that X∪Y = Alph(w). It is easy to see that if πX(w) = u is connected then [u] is
a component of [w]. On the other hand every component of the trace [w] can be
obtained in this way. But Proposition 2 allows us to introduce flat counterpart
of decomposition and concurrent star operation (see Definition 2).

Lemma 4 Let L be star-connected flat language. Then the following languages
are star-connected:

1. the decomposition of L:

/L/ =
⋃

{X∈C(A,I)|X×(A\X)⊆I}
πX(L) ∩ LX

2. the concurrent iteration of L: L⊗ = /L/�.

If L is defined by a star-connected expression R then we can effectively find
star-connected expressions Rd, Rc such that L(Rd) = /L/ and L(Rc) = L⊗.

The poof of the above lemma follows easily from the previous considerations.
Because we characterized star-connected languages in terms of transitions of
some automaton accepting it we can expect that the set StarConI(A) is closed
under some classical operations too.

Characterization of Star-Connected Languages Using Finite Automata 319

Corollary 3 Let L ∈ StarConI(A) and M ⊆ A�. Then the language L/M =
{w|∃v∈Mwv ∈ L} is star-connected.

The proof is easy if we realize that it is enough to change the set of accepting
states of automaton accepting L (and satisfying assertions of Lemma 3).

On the other hand it is natural to ask if the property characterizing automata
accepting star-connected languages is preserved in the process of determinization
or minimalization. The positive answer to this question implies the decidability
of the following problem:

Is a regular language L star-connected?

Fig. 2. Deterministic automaton without connected simple cycles. Let aIb. The second
automaton (without connected cycles) is the result of determinization of the first one.

The automaton given on the next figure shows that the property characteriz-
ing automata accepting star-connected languages is not preserved in the process
of minimalization.

The status of the problem ”Is a regular language L star-connected?” is un-
known.

Fig. 3. Minimal deterministic automaton without connected simple cycles. Let aIb.
Then the simple cycle 1b2a1 of A is not connected, but the language accepted by A of
all words ending with b is defined by the following star-connected expression: (a∪ b)�b.

320 B. Klunder

References

1. Clerbout, M., Latteux, M.: Semi-commutations. Information & Computation 73,
59–74 (1987)

2. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

3. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading (2001)

4. Klunder, B.: Star-Connected Flat Languages and Automata. Fundamenta Informat-
icae 72(1-3), 235–243 (2006)

5. Klunder, B., Ochmański, E., Stawikowska, K.: On Star-Connected Flat Languages.
Fundamenta Informaticae 67(1-3), 93–105 (2005)

6. Mazurkiewicz, A.: Concurrent Program Schemes and Their Interpretations. Report
DAIMI-PB-78, Aarhus University (1977)

7. Ochmański, E.: Regular Behaviour of Concurrent Systems. Bulletin of EATCS 27,
56–67 (1985)

8. Ochmański, E.: Recognizable Trace Languages. In: [2], pp. 167–204. World Scientific,
Singapore (1995)

Match-Bounds with Dependency Pairs for

Proving Termination of Rewrite Systems

Martin Korp and Aart Middeldorp

Institute of Computer Science
University of Innsbruck

Austria

Abstract. The match-bound technique is a recent and elegant method
to prove the termination of rewrite systems using automata techniques.
To increase the applicability of the method we incorporate it into the
dependency pair framework. The key to this is the introduction of two
new enrichments which take the special properties of dependency pair
problems into account.

1 Introduction

The use of word automata for proving the termination of string rewrite sys-
tems was proposed by Geser, Hofbauer, and Waldmann [5]. In [8] tree automata
were used to cover left-linear term rewrite systems. We extended the latter
work to arbitrary term rewrite systems in [17] by considering so-called quasi-
deterministic tree automata. Variations and improvements of the basic method
for string rewrite systems are discussed in [6,7]. The fact that the method has
been implemented in several different termination provers ([10,16,21,22,23]) is a
clear witness of the success of the automata based approach.

In this paper we integrate the method into the dependency pair framework
[11,20]. To guarantee a successful integration we need to modularise the method
in order to be able to simplify dependency pair problems. We achieve this by
introducing two new enrichments which exploit the special properties of depen-
dency pair problems.

The remainder of the paper is organised as follows. In the next section we
recall basic definitions concerning the automata theory approach for proving
termination and the dependency pair framework. In Section 3 we introduce the
concept of e-DP-bounds which is based on two new enrichments that allow us
to simplify dependency pair problems. In Section 4 we consider right-hand sides
of forward closures to reduce the set of terms which have to be considered. To
simplify the discussion, we restrict ourselves to left-linear rewrite systems. The
extension to non-left-linear term rewrite systems is sketched in Section 5. Ex-
perimental data is presented in Section 6. Missing proofs can be found in the full
version, which is available from http://cl-informatik.uibk.ac.at/~mkorp/

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 321–332, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

322 M. Korp and A. Middeldorp

2 Preliminaries

We assume familiarity with term rewriting [2] and tree automata [3]. General
knowledge of the match-bound technique [5,8] and dependency pairs [1,11,13,15]
will be helpful.

Match-Bounds
Let F be a signature, R a term rewrite system (TRS for short) over F , and
L ⊆ T (F) a set of ground terms. The set {t ∈ T (F) | s →∗

R t for some s ∈ L} of
descendants of L is denoted by →∗

R(L). Given a set N ⊆ N of natural numbers,
the signature F ×N is denoted by FN . Here function symbols (f, n) with f ∈ F
and n ∈ N have the same arity as f and are written as fn. The mappings
liftc : F → FN, base : FN → F , and height : FN → N are defined as liftc(f) = fc,
base(fi) = f , and height(fi) = i for all f ∈ F and c, i ∈ N. They are extended to
terms and to sets of terms in the obvious way. Let R be a TRS over the signature
F and e a function that maps every rewrite rule l → r ∈ R to a nonempty subset
of FPos(l), where FPos(l) = {p ∈ Pos(l) | l(p) ∈ F}. The TRS e(R) over the
signature FN consists of all rewrite rules l′ → liftc(r) for which there exists a
rule l → r ∈ R such that base(l′) = l and c = 1+min{height(l′(p)) | p ∈ e(l, r)}.
Let c ∈ N. The restriction of e(R) to the signature F{0,...,c} is denoted by ec(R).
We consider three concrete functions e in the following: top(l → r) = {ε},
roof(l → r) = {p ∈ FPos(l) | Var(r) ⊆ Var(l|p)}, and match(l → r) = FPos(l).
Let e ∈ {top, roof,match} and L a set of terms. The TRS R is called e-bounded
for L if there exists a c ∈ N such that the maximum height of function symbols
occurring in terms in →∗

e(R)(lift0(L)) is at most c. If we want to precise the
bound c, we say that R is e-bounded for L by c. If we do not specify the set of
terms L then it is assumed that L = T (F).

Theorem 1 (Geser et al. [8]). If a left-linear TRS R is top-bounded, roof-boun-
ded, or both right-linear and match-bounded for a language L then R is termi-
nating on L. �

In order to prove that a TRS R is e-bounded for some language L and some
e ∈ {top, roof,match}, the idea is to construct a tree automaton that is com-
patible with e(R) and lift0(L). A tree automaton A = (F , Q,Qf , ∆) is said to
be compatible with some TRS R and some language L if L ⊆ L(A) and for each
rewrite rule l → r ∈ R and state substitution σ : Var(l) → Q such that lσ →∗

∆ q
it holds that rσ →∗

∆ q.

Dependency Pairs
The dependency pair method [1] is a powerful approach for proving termination
of TRSs. The dependency pair framework [12,20] is a modular reformulation and
improvement of this approach. We present a simplified version which is sufficient
for our purposes.

Match-Bounds with DP for Proving Termination of Rewrite Systems 323

Let R be a TRS over a signature F . The signature F is extended with symbols
f � for every symbol f ∈ {root(l) | l → r ∈ R}, where f � has the same arity as f ,
resulting in the signature F �. If t ∈ T (F ,V) with root(t) defined then t� denotes
the term that is obtained from t by replacing its root symbol with root(t)�. If
l → r ∈ R and t is a subterm of r with a defined root symbol that is not a
proper subterm of l then the rule l� → t� is a dependency pair of R. The set of
dependency pairs of R is denoted by DP(R). A DP problem is a pair of TRSs
(P ,R) such that symbols in {root(l), root(r) | l → r ∈ P} do neither occur in R
nor in proper subterms of the left and right-hand sides of rules in P . The problem
is said to be finite if there is no infinite sequence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · ·

such that all terms t1, t2, . . . are terminating with respect to R. Such an infinite
sequence is said to be minimal. Here the ε in ε−→P denotes that the application
of the rule in P takes place at the root position. The main result underlying the
dependency pair approach states that a TRS R is terminating if and only if the
DP problem (DP(R),R) is finite.

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem
as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a set
returned by a DP processor are finite then the initial DP problem is finite. In
addition, to ensure that a DP processor can be used to prove non-termination it
must be complete which means that if one of the DP problems returned by the
DP processor is not finite then the original DP problem is not finite.

3 DP-Bounds

To prove finiteness of a DP problem (P ,R) it must be shown that it admits no
minimal rewrite sequence. This is done by removing step by step those rewrite
rules in P which cannot be used infinitely often in any minimal rewrite sequence.
In each step a different DP processor can be applied. As soon as P is empty, we
can conclude that the DP problem (P ,R) is finite.

It is easy to incorporate the match-bound technique into the DP framework
by defining a processor that checks for e-boundedness of P ∪R.

Theorem 2. The DP processor

(P,R) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if P ∪R is left-linear and either top-bounded,

roof-bounded, or both linear and match-bounded
for T (F)

{(P,R)} otherwise

where F is the signature of P ∪R, is sound and complete. �

This DP processor either succeeds by proving that the combined TRS P ∪R is
e-bounded or, when the e-boundedness of P∪R cannot be proved, it returns the
initial DP problem. Since the construction of a compatible tree automaton does
not terminate for TRSs that are not e-bounded, the latter situation typically

324 M. Korp and A. Middeldorp

does not happen. Hence the DP processor of Theorem 2 is applicable only at
the leaves of the DP search tree, which means that it can be used only as a last
option in a termination proving strategy. So it cannot cooperate with other DP
processors.

Below we address this problem by adapting the match-bound technique in
such a way that it can remove single rules of P . We introduce two new enrich-
ments top-DP(P , s → t,R) and match-DP(P , s → t,R) to achieve this. The
basic idea behind these TRSs is that every height increasing infinite sequence
descends from an infinite sequence of (P ,R) in which the rule s → t, which is
to be removed from P , is used infinitely often.

To simplify the presentation we consider only left-linear TRSs. The extension
to non-left-linear TRSs is briefly discussed in Section 5.

Definition 3. Let S be a TRS over a signature F . The TRS e-DP(S) over the
signature FN consists of all rules l′ → liftc(r) such that base(l′) → r ∈ S and

c = min ({height(l′(ε))} ∪ {1 + height(l′(p)) | p ∈ e(base(l′), r)})

Given a DP problem (P ,R) and a rule s → t ∈ P, the TRS e-DP(P , s → t,R)
is defined as the union of e-DP((P \{s → t})∪R) and e(s → t). The restriction
of e-DP(P , s → t,R) to the signature F{0,...,c} is denoted by e-DPc(P , s → t,R).

Example 4. Consider the DP problem (P ,R) with R consisting of the rewrite
rules f(g(x), y) → g(h(x, y)) and h(x, y) → f(x, g(y)), and P = DP(R) consisting
of F(g(x), y) → H(x, y) and H(x, y) → F(x, g(y)). Let s → t be the first of the
two dependency pairs. Then match-DP(R) contains the rules

f0(g0(x), y) → g0(h0(x, y)) h0(x, y) → f0(x, g0(y))
f0(g1(x), y) → g0(h0(x, y)) h1(x, y) → f1(x, g1(y))
f2(g0(x), y) → g1(h1(x, y)) · · ·

match-DP(P \ {s → t}) contains

H0(x, y) → F0(x, g0(y)) H1(x, y) → F1(x, g1(y))
H2(x, y) → F2(x, g2(y)) · · ·

and match(s → t) contains

F0(g0(x), y) → H1(x, y) F1(g0(x), y) → H1(x, y)
F0(g1(x), y) → H1(x, y) · · ·

The union of these three infinite TRSs constitutes match-DP(P , s → t,R). If we
replace match(s → t) by match-DP({s → t}), which consists of the rules

F0(g0(x), y) → H0(x, y) F1(g0(x), y) → H1(x, y)
F0(g1(x), y) → H0(x, y) · · ·

we obtain the TRS match-DP(P ∪R).

Match-Bounds with DP for Proving Termination of Rewrite Systems 325

The idea now is to use the enrichment e-DP(P , s → t,R) to simplify the DP
problem (P ,R) into (P \ {s → t},R). For that we need the property defined
below.

Definition 5. Let (P ,R) be a DP problem and let s → t ∈ P. We call (P ,R)
e-DP-bounded for s → t and a set of terms L if there exists a c ∈ N such that
the height of function symbols occurring in terms in →∗

e-DP(P,s→t,R)(lift0(L)) is
at most c.

Moreover, we need to ensure that every restriction of e-DP(P , s → t,R) to a
finite signature does not admit minimal rewrite sequences with infinitely many
ε−→e(s→t) rewrite steps. For e = top this is shown below. Note that if we would
use e-DP(P∪R) instead of e-DP(P , s → t,R) then this property would not hold
because every rewrite sequence in P ∪R can be simulated by an e-DP0(P ∪R)-
sequence.

Lemma 6. Let (P ,R) be a DP problem, let s → t ∈ P, and let c � 0. The TRS
top-DPc(P , s → t,R) does not admit rewrite sequences with infinitely many
ε−→top(s→t) rewrite steps.

Proof. Assume to the contrary that there is such an infinite rewrite sequence

s1
ε−→top(s→t) t1 →∗

top-DP((P\{s→t})∪R) s2
ε−→top(s→t) t2 →∗

top-DP((P\{s→t})∪R) · · ·

Because the root symbols in P do not appear anywhere else in P or R, we know
that only rewrite rules from top-DP(P \ {s → t}) and top(s → t) are applied
at root positions. Every rewrite rule l → r in top-DP(P \ {s → t}) has the
property that height(l(ε)) = height(r(ε)). Hence height(ti(ε)) = height(si+1(ε))
for all i � 1. By definition, for every l → r ∈ top(s → t) we have height(r(ε)) =
height(l(ε))+ 1 and thus height(ti(ε)) = height(si(ε)) + 1 for all i � 1. It follows
that height(tc+1(ε)) � c + 1, contradicting the assumption. �

Theorem 7. Let (P ,R) be a DP problem and let s → t ∈ P such that (P ,R)
is top-DP-bounded for s → t and a set of terms L. If P ∪ R is left-linear then
(P ,R) is finite for L if and only if (P \ {s → t},R) is finite for L.

Proof. The only-if direction is trivial. For the if direction, suppose that the DP
problem (P \ {s → t},R) is finite for L. If (P ,R) is not finite for L then there
exists a minimal rewrite sequence

s1
ε−→s→t t1 →∗

(P\{s→t})∪R s2
ε−→s→t t2 →∗

(P\{s→t})∪R s3
ε−→s→t · · ·

with s1 ∈ L. Due to left-linearity, this sequence can be lifted to an infinite
top-DP(P , s → t,R) rewrite sequence starting from lift0(s1). Since the original
sequence contains infinitely many ε−→s→t rewrite steps the lifted sequence contains
infinitely many ε−→top(s→t) rewrite steps. Moreover, because (P ,R) is top-DP-
bounded for L, there is a c � 0 such that the height of every function symbol
occurring in a term in the lifted sequence is at most c. Hence the employed
rules must come from top-DPc(P , s → t,R) and therefore top-DPc(P , s → t,R)
contains an infinite rewrite sequence consisting of infinitely many ε−→top(s→t)

rewrite steps. This however is excluded by Lemma 6. �

326 M. Korp and A. Middeldorp

If we restrict Lemma 6 to minimal rewrite sequences, it also holds for e =
match provided P and R are non-duplicating. The proof is considerably more
complicated and omitted for reasons of space.

Lemma 8. Let (P ,R) be a DP problem, let s → t ∈ P, and let c � 0. If P∪R is
non-duplicating then the TRS match-DPc(P , s → t,R) does not admit minimal
rewrite sequences with infinitely many ε−→match(s→t) rewrite steps. �

Theorem 9. Let (P ,R) be a DP problem and let s → t ∈ P such that (P ,R)
is match-DP-bounded for s → t and a set of terms L. If P ∪ R is linear then
(P ,R) is finite for L if and only if (P \ {s → t},R) is finite for L.

Proof. Similarly to the proof of Theorem 7, using Lemma 8 instead of Lemma 6.
Note that in the presence of left-linearity, the non-duplicating requirement in
Lemma 8 is equivalent to linearity. �

We conjecture that Lemma 6 also holds for e = roof. A positive solution is
important as roof-bounds are strictly more powerful than top-bounds [8,17].

Theorem 10. The DP processor

(P ,R) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(P \ {s → t},R)} if (P ,R) is left-linear and top-DP-bounded

or linear and match-DP-bounded for s → t
and T (F)

{(P ,R)} otherwise

where F is the signature of P ∪R, is sound and complete.

Proof. Immediate consequence of Theorems 7 and 9. �

Example 11. We show that the DP problem (P ,R) of Example 4 over the sig-
nature F = {a, f, g, h,F,H} is match-DP-bounded for F(g(x), y) → H(x, y) by
constructing a compatible tree automaton. As starting point we consider the
initial tree automaton

a0 → 1 f0(1, 1) → 1 g0(1) → 1
h0(1, 1) → 1 F0(1, 1) → 2 H0(1, 1) → 2

which accepts the set of all ground terms that have F0 or H0 as root symbol
and a0, f0, g0, and h0 below the root. Since F0(g0(x), y) →match(s→t) H1(x, y)
and F0(g0(1), 1) →∗ 2, we add the transition H1(1, 1) → 2. Next we consider
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) with H1(1, 1) → 2. By adding the
transitions F1(1, 3) → 2 and g1(1) → 3 this compatibility violation is solved.
After that the rewrite rule F1(g0(x), y) →match(s→t) H1(x, y) and the deriva-
tion F1(g0(1), 3) →∗ 2 give rise to the transition H1(1, 3) → 2. Finally we have
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) and H1(1, 3) → 2. In order to ensure
F1(1, g1(3)) →∗ 2 we reuse the transition F1(1, 3) → 2 and add the new transi-
tion g1(3) → 3. After that step, the obtained tree automaton is compatible with

Match-Bounds with DP for Proving Termination of Rewrite Systems 327

match-DP(P , s → t,R). Hence the DP problem (P ,R) is match-DP-bounded for
F(g(x), y) → H(x, y) by 1. Applying the DP processor of Theorem 10 yields the
new DP problem ({H(x, y) → F(x, g(y))},R), which is easily (and automatically
by numerous DP processors) shown to be finite. We note that the DP processor
of Theorem 2 fails on (P ,R).

To ensure that the TRS e-DP(P , s → t,R) can assist to prove finiteness of the
DP problem (P ,R), it is crucial that every minimal rewrite sequence in (P ,R)
with infinitely many ε−→s→t rewrite steps can be simulated by an infinite height
increasing sequence in e-DP(P , s → t,R). To this end it is important that rewrite
rules in e-DP((P \ {s → t}) ∪ R) do not propagate the minimal height of the
contracted redex unless the height of the root symbol of the redex is minimal.
This is the reason for the slightly complicated definition of c in Definition 3. The
following example shows what goes wrong if we would simplify the definition.

Example 12. Consider the DP problem (P ,R) with R consisting of the rewrite
rules f(x) → g(x) and g(a(x)) → f(a(x)) and P = DP(R) consisting of F(x) →
G(x) and G(a(x)) → F(a(x)). The DP problem (P ,R) is not finite because the
term G(a(x)) admits a minimal rewrite sequence. If we change the definition of
c in Definition 3 to

c = min {height(l′(p)) | p ∈ e(base(l′), r)}

then for s → t = F(x) → G(y) we have

F0(a0(x)) →match(s→t) G1(a0(x)) →match-DP(P\{s→t}) F0(a0(x))

and it would follow that (P ,R) is match-DP-bounded for F(x) → G(x). However,
removing this rule from P would leave a finite DP problem and hence we would
falsely conclude termination of the original TRS R.

4 Forward Closures

When proving the termination of a TRS R that is non-overlapping [9] or right-
linear [4] it is sufficient to restrict attention to the set RFCrhs(R)(R) of right-
hand sides of forward closures. This set is defined as the closure of the right-hand
sides of the rules in R under variable renaming and narrowing. More formally,
RFCL(R) is the least extension of L such that

– t[r]pσ ∈ RFCL(R) whenever t ∈ RFCL(R) and there exist a position p ∈
FPos(t) and a fresh variant l → r of a rewrite rule in R with σ a most
general unifier of t|p and l,

– tσ ∈ RFCL(R) whenever t ∈ RFCL(R) and σ is a variable renaming.

Dershowitz [4] obtained the following result.

Theorem 13. A right-linear TRS R is terminating if and only if R is termi-
nating on RFCrhs(R)(R). �

328 M. Korp and A. Middeldorp

In our setting we can benefit from the properties of DP problems.

Lemma 14. Let (P ,R) be a DP problem. If P and R are right-linear then
(P ,R) is finite if and only if it is finite on RFCrhs(P)(P ∪R).

Proof. Easy consequence of Theorem 13 and the definition of DP problems. �

Lemma 14 can be used in connection with the DP processor of Theorem 2. For
the DP processor of Theorem 10 we can do better.

Lemma 15. Let (P ,R) be a DP problem and s → t ∈ P. If P and R are
right-linear then (P ,R) admits a minimal rewrite sequence with infinitely many
ε−→s→t rewrite steps if and only if it admits such a sequence starting from a term

in RFC{t}(P ∪R). �

In general RFCL(P ∪R) is not computable. We can however over-approximate
RFCL(P ∪R) by using tree automata as described in [8] and [17].

5 Raise-DP-Bounds

The reason why e-DP-bounds can be used only for DP problems (P ,R) consist-
ing of left-linear TRSs P and R is that without left-linearity, rewrite sequences
in (P ,R) cannot be lifted to sequences in e-DP(P , s → t,R), cf. the proof of
Theorem 7. As described in [17] one can solve that problem by using raise rules.

Definition 16. Let F be a signature. The TRS raise(F) over the signature FN

consists of all rules fi(x1, . . . , xn) → fi+1(x1, . . . , xn) with f an n-ary function
symbol in F , i ∈ N, and x1, . . . , xn pairwise different variables. For terms s, t ∈
T (FN,V) we write s � t if s →∗

raise(F) t and s ↑ t for the least term u with s � u
and t � u. Furthermore, this notion is extended to ↑S for finite nonempty sets
S ⊂ T (FN,V) in the obvious way.

The raise rules are used below to modify the rewrite relation associated to
e-DP(P , s → t,R) in such a way that non-left-linear rules are handled prop-
erly.

Definition 17. Let (P ,R) be a DP problem over a signature F . We define the
relation �−→e-DP(P,s→t,R) on T (FN,V) as follows: s

�−→e-DP(P,s→t,R) t if and only
if there exist a rewrite rule l → r ∈ e-DP(P , s → t,R), a position p ∈ Pos(s),
a context C, and terms s1, . . . , sn such that l = C[x1, . . . , xn] with all variables
displayed, s|p = C[s1, . . . , sn], base(si) = base(sj) whenever xi = xj, and t =
s[rθ]p. Here the substitution θ is defined as follows: θ(x) = ↑{si | xi = x} if
x ∈ {x1, . . . , xn} and θ(x) = x otherwise.

Definition 18. Let (P ,R) be a DP problem and let s → t ∈ P. We say that
(P ,R) is e-raise-DP-bounded for s → t and a set of terms L if there ex-
ists a c ∈ N such that the height of function symbols occurring in terms in
�−→∗

e-DP(P,s→t,R)(lift0(L)) is at most c.

Match-Bounds with DP for Proving Termination of Rewrite Systems 329

For left-linear TRSs e-raise-DP-boundedness coincides with e-DP-boundedness.
The following result is a straightforward adaption of Theorem 10.

Theorem 19. The DP processor

(P ,R) �→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{(P \ {s → t},R)} if (P ,R) is top-raise-DP-bounded or non-

duplicating and match-raise-DP-bounded
for s → t and T (F)

{(P ,R)} otherwise

where F is the signature of P ∪R, is sound and complete. �

In [17] we showed that deterministic tree automata—a common approach to
handle non-linearity with automata techniques (cf. [3,18,19])—are unsuitable.
The problem with deterministic automata is that during the construction of a
compatible tree automaton A, it can happen that A becomes non-deterministic.
Making A deterministic could lead to the removal of transitions that were added
in earlier stages to ensure compatibility. However as soon as we add those transi-
tions again, they are removed since they cause A to be non-deterministic. In [17]
we introduced quasi-deterministic tree automata to solve this problem. This
carries over to the present setting without any problems.

6 Experiments

The techniques described in the preceding sections are implemented in TTT2 [21].
TTT2 is written in OCaml1 and consists of about 25000 lines of code. About 20%
is used to implement the match-bound technique.

An important criterion for the success of e(-raise)-DP-bounds is the choice of
the rewrite rule from P that should be removed from the DP problem (P ,R)
under consideration. To find a suitable rule, TTT2 simply starts the construction
of a (quasi-)compatible tree automaton for each s → t ∈ P in parallel. As
soon as one of the processes terminates the procedure stops and returns the
corresponding rule.

Below we report on the experiments we performed with TTT2 on the 1321 TRSs
in version 4.0 of the Termination Problem Data Base that fulfill the variable
condition, i.e., Var(r) ⊆ Var(l) for each rewrite rule l → r ∈ R.2 All tests were
performed on a workstation equipped with an Intel R© PentiumTM M processor
running at a CPU rate of 2 GHz and 1 GB of system memory. Our results are
summarized in Table 1.

We list the number of successful termination attempts, the average system
time needed to prove termination (measured in milliseconds), and the number
of timeouts. For all experiments we used a 60 seconds time limit. Besides the
recursive SCC algorithm [14] and the improved estimated dependency graph
processor [12], we use the following four DP processors:
1
http://caml.inria.fr/

2
http://www.lri.fr/~marche/tpdb

330 M. Korp and A. Middeldorp

Table 1. Summary

no RFC RFC
no ur ur no ur ur

sp spb spd spb spd spb spd spb spd

successes 497 558 587 584 612 574 588 605 615
average time 150 95 228 96 246 114 189 130 197
timeouts 12 763 734 737 709 747 733 716 706

s the subterm criterion of [15],
p polynomial orderings with 0/1 coefficients [13],
b the DP processor of Theorem 2 extended to non-left-linear TRSs,
d the DP processor of Theorem 10 for left-linear TRSs and the one of Theorem 19

for non-left-linear TRSs.

For the latter two, if the DP problem is non-duplicating we take e = match. For
duplicating problems we take e = roof for b and e = top for d.

A widely used approach to increase the power of DP processors is to consider
only those rewrite rules of R which are usable [13,15]. Since in general usable
rules (ur in Table 1) do not preserve the minimality of rewrite sequences for
duplicating TRSs [13], it must be guaranteed that the DP processors of Theo-
rem 2, 10 and 19 do not rely on the minimality of infinite rewrite sequences. For
the DP processor of Theorem 2 this is obviously the case, since e(-raise)-bounds
take all infinite rewrite sequences into account. For the DP processor of Theo-
rem 10 with e = top this follows from Lemma 6. For e = match there is also no
problem since e = match can only be used for non-duplicating systems and it
is known that usable rules can be used without restrictions for non-duplication
systems ([11, Example 29] and [15, Theorem 23]).

The advantage of the DP processors of Theorems 10 and 19 over the naive
one of Theorem 2 is clear, although the difference decreases when usable rules
and RFC are in effect. There are two TRSs that could not be proved terminating
by any tool participating in last year’s termination competition3 but which can
now be handled by TTT2 due to the results of this paper: secret05-teparla3
and secret06-matchbox-gen-25.

Example 20. The TRS secret06-matchbox-gen-25 (R in the following) con-
sists of the following rewrite rules:

c(c(z, x, a), a, y) → f(f(c(y, a, f(c(z, y, x)))))
f(f(c(a, y, z))) → b(y, b(z, z))

b(a, f(b(b(z, y), a))) → z

The dependency graph contains one strongly connected component, consisting
of the dependency pairs

1: C(c(z, x, a), a, y) → C(y, a, f(c(z, y, x)))
2 : C(c(z, x, a), a, y) → C(z, y, x)

3
http://www.lri.fr/~marche/termination-competition/2007

Match-Bounds with DP for Proving Termination of Rewrite Systems 331

Hence termination of R is reduced to finiteness of the DP problem ({1, 2},R).
This problem is top-DP-bounded for rule 1; the compatible tree automaton com-
puted by TTT2 consists of the following transitions:

a0 → 1 c0(2, 2, 2) → 4 C0(1, 5, 1) → 3 f1(13) → 1, 10, 14
a1 → 6 c1(1, 1, 1) → 10 C0(2, 1, 5) → 3 f1(17) → 4

b0(1, 1) → 1 c1(1, 2, 1) → 14 C1(5, 6, 8) → 3 f1(20) → 21
b1(1, 1) → 9 c1(1, 5, 1) → 7 f0(1) → 1 f1(22) → 23
b1(1, 9) → 1 c1(1, 6, 11) → 12 f0(4) → 5 f1(23) → 12

b1(6, 18) → 1, 10, 14 c1(1, 11, 1) → 20 f1(7) → 8 f1(24) → 25
b1(6, 19) → 4 c1(1, 15, 1) → 24 f1(10) → 11 f1(26) → 27

b1(11, 11) → 18 c1(2, 6, 15) → 16 f1(12) → 13 f1(27) → 16
b1(15, 15) → 19 c1(11, 6, 21) → 22 f1(14) → 15 1 → 2, 9
c0(1, 1, 1) → 1 c1(15, 6, 25) → 26 f1(16) → 17 6 → 1

Hence the DP processor of Theorem 10 is applicable. This results in the new
DP problem ({2},R), which is proved finite by the subterm criterion with the
simple projection π(C) = 1.

7 Conclusion

In this paper we showed how the match-bound technique can be incorporated
into the dependency pair framework. We introduced two new enrichments which
take care of the special properties of DP problems. We also showed how to
strengthen the method by taking right-hand sides of forward closures into ac-
count. Experimental results demonstrated the usefulness of our approach.

An important open question is whether we can use the roof enrichment in this
setting. To ensure soundness of roof(-raise)-DP-bounds, it has to be proved that
no restriction of roof-DP(P , s → t,R) to a finite signature admits a minimal
rewrite sequence with infinitely many ε−→roof(s→t) (�−→roof(s→t)) rewrite steps. We
conjecture that this claim holds for arbitrary P and R. We anticipate that a
positive solution would make additional termination proofs possible.

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS 236,
133–178 (2000)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree automata techniques and applications (2002),
www.grappa.univ-lille3.fr/tata

4. Dershowitz, N.: Termination of linear rewriting systems (preliminary version). In:
Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 448–458. Springer,
Heidelberg (1981)

www.grappa.univ-lille3.fr/tata

332 M. Korp and A. Middeldorp

5. Geser, A., Hofbauer, D., Waldmann, J.: Match-bounded string rewriting systems.
AAECC 15(3-4), 149–171 (2004)

6. Geser, A., Hofbauer, D., Waldmann, J.: Termination proofs for string rewriting
systems via inverse match-bounds. JAR 34(4), 365–385 (2005)

7. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: Finding finite automata that
certify termination of string rewriting systems. International Journal of Founda-
tions of Computer Science 16(3), 471–486 (2005)

8. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. I&C 205(4), 512–534 (2007)

9. Geupel, O.: Overlap closures and termination of term rewriting systems. Report
MIP-8922, Universität Passau (1989)

10. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

11. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg
(2005)

12. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

13. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

14. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method.
I&C 199(1,2), 172–199 (2005)

15. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
I&C 205(4), 474–511 (2007)

16. Jambox, http://joerg.endrullis.de/
17. Korp, M., Middeldorp, A.: Proving termination of rewrite systems using bounds.

In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 273–287. Springer, Heidelberg
(2007)

18. Middeldorp, A.: Approximating dependency graphs using tree automata tech-
niques. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI),
vol. 2083, pp. 593–610. Springer, Heidelberg (2001)

19. Nagaya, T., Toyama, Y.: Decidability for left-linear growing term rewriting sys-
tems. I&C 178(2), 499–514 (2002)

20. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
PhD thesis, RWTH Aachen, Available as technical report AIB-2007-17 (2007)

21. Tyrolean Termination Tool 2, http://colo6-c703.uibk.ac.at/ttt2
22. Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oost-

rom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)
23. Zantema, H.: Termination of rewriting proved automatically. JAR 34(2), 105–139

(2005)

http://joerg.endrullis.de/
http://colo6-c703.uibk.ac.at/ttt2

Further Results on Insertion-Deletion Systems

with One-Sided Contexts

Alexander Krassovitskiy1, Yurii Rogozhin1,2, and Serghey Verlan2,3

1 Rovira i Virgili University,
Research Group on Mathematical Linguistics,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
alexander.krassovitskiy@estudiants.urv.cat
2 Institute of Mathematics and Computer Science

Academy of Sciences of Moldova
5, str. Academiei, MD-2028, Chişinău, Moldova

rogozhin@math.md
3 LACL, Département Informatique, Université Paris Est,

61, av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Abstract. In this article we continue the investigation of insertion-
deletion systems having a context only on one side of insertion or deletion
rules. We show a counterpart of the results obtained in (Matveevici et
al., 2007) by considering corresponding systems and exchanging dele-
tion and insertion parameters. We prove three computational complete-
ness results and one non-completeness result for these systems. We also
solve the remaining open problem concerning the generative power of
insertion-deletion systems having both contexts by proving the compu-
tational completeness of systems having a context-free insertion of two
symbols and a contextual deletion of one symbol.

Keywords: Insertion-deletion systems, universality, computational non-
completeness.

1 Introduction

The operations of insertion and deletion are fundamental in formal language the-
ory, and generative mechanisms based on them were considered (with linguistic
motivation) for some time, see [6] and [2]. Related formal language investiga-
tions can be found in several places; we mention only [3], [5], [8], [10]. In the
last years, the study of these operations has received a new motivation from
molecular computing see [1], [4], [11], [13].

In general form, an insertion operation means adding a substring to a given
string in a specified (left and right) context, while a deletion operation means
removing a substring of a given string from a specified (left and right) context.
A finite set of insertion-deletion rules, together with a set of axioms provide a
language generating device (an InsDel system): starting from the set of initial

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 333–344, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

334 A. Krassovitskiy, Y. Rogozhin, and S. Verlan

strings and iterating insertion-deletion operations as defined by the given rules
we get a language. The number of axioms, the length of the inserted or deleted
strings, as well as the length of the contexts where these operations take place are
natural descriptional complexity measures in this framework. As expected, inser-
tion and deletion operations with context dependence are very powerful, leading
to characterizations of recursively enumerable languages. Most of the papers
mentioned above contain such results, in many cases improving the complexity
of insertion-deletion systems previously available in the literature. However, the
power of the above operations is not necessarily related to the used context: the
paper [7] contains an unexpected result: context-free insertion-deletion systems
with one axiom are already universal, they can generate any recursively enumer-
able language. Moreover, this result can be obtained by inserting and deleting
strings of a rather small length, at most three.

The further study of context-free insertion-deletion systems led in [14] to the
complete description of this class. In particular, it was shown that if inserted or
deleted strings are at most of length two, then a specific subclass of the family
of context-free languages is obtained. This result showed that the traditional
complexity measures for insertion-deletion systems, in particular the total weight
based on the size of contexts, need a revision, because both systems from [13]
and [14] have same total weight, but different computational power. In the same
article, new complexity measures taking in account the sizes of both left and
right context were proposed.

The article [9] investigates insertion-deletion systems which use a context only
on one side of insertion or deletion rules. Such systems are very similar to context-
free insertion-deletion systems where insertions or deletions are uncontrollable
and may happen an arbitrary number of times at any place. It shows three
computational completeness results and one non-completeness result based on
different combination of parameters. Moreover, this article uses a new technique
to prove the computational completeness results by simulating previously known
insertion-deletion systems.

In this article we continue the investigation of insertion-deletion systems with
one-sided contexts. We prove the counterpart of the results from [9] by consid-
ering corresponding systems and exchanging deletion and insertion parameters.
Surprisingly, the obtained classes have the same computational completeness
properties as their counterparts. Hence, we prove three completeness and one
non-completeness result. A table with a summary of these results might be found
in Section 4.

We also show a computational completeness for insertion-deletion systems
which insert two symbols in a context-free manner, but delete one symbol in one-
symbol left and right context. This result closes the last open problem concerning
the generative power of insertion-deletion systems having both contexts.

The article refines the borderline between universality and non-universality
(and even decidability) for insertion-deletion systems and leaves a number of
open problems related to other combinations of parameters.

Further Results on Insertion-Deletion Systems with One-Sided Contexts 335

2 Prerequisites

All formal language notions and notations we use here are elementary and stan-
dard. The reader can consult any of the many monographs in this area – for
instance, [12] – for the unexplained details.

We denote by |w| the length of word w and by card(A) the cardinality of the
set A.

An InsDel system is a construct ID = (V, T,A, I,D), where V is an alphabet,
T ⊆ V , A is a finite language over V , and I,D are finite sets of triples of the form
(u, α, v), α �= ε of strings over V , where ε denotes the empty string. The elements
of T are terminal symbols (in contrast, those of V −T are called nonterminals),
those of A are axioms, the triples in I are insertion rules, and those from D
are deletion rules. An insertion rule (u, α, v) ∈ I indicates that the string α can
be inserted in between u and v, while a deletion rule (u, α, v) ∈ D indicates
that α can be removed from the context (u, v). Stated otherwise, (u, α, v) ∈ I
corresponds to the rewriting rule uv → uαv, and (u, α, v) ∈ D corresponds
to the rewriting rule uαv → uv. We denote by =⇒ins the relation defined by
an insertion rule (formally, x =⇒ins y iff x = x1uvx2, y = x1uαvx2, for some
(u, α, v) ∈ I and x1, x2 ∈ V ∗) and by =⇒del the relation defined by a deletion
rule (formally, x =⇒del y iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D
and x1, x2 ∈ V ∗). We refer by =⇒ to any of the relations =⇒ins,=⇒del, and
denote by =⇒∗ the reflexive and transitive closure of =⇒ (as usual, =⇒+ is its
transitive closure).

The language generated by ID is defined by L(ID) = {w ∈ T ∗ | x =⇒∗ w,
for all x ∈ A}.

The complexity of an InsDel system ID = (V, T,A, I,D) is traditionally de-
scribed by the vector (n,m; p, q) called weight, where

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I or (v, α, u) ∈ I},
p = max{|α| | (u, α, v) ∈ D},
q = max{|u| | (u, α, v) ∈ D or (v, α, u) ∈ D},

The total weight of ID is the sum γ = m + n + p + q.
However, it was shown in [14] that this complexity measure is not accurate

and it cannot distinguish between universality and non-universality cases (there
are families having same total weight but not the same computational power).
In the same article it was proposed to use the length of each context instead of
the maximum. More exactly,

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I},
m′ = max{|v| | (u, α, v) ∈ I},
p = max{|α| | (u, α, v) ∈ D},
q = max{|u| | (u, α, v) ∈ D},
q′ = max{|v| | (u, α, v) ∈ D}.

336 A. Krassovitskiy, Y. Rogozhin, and S. Verlan

Hence the complexity of an insertion-deletion system will be described by the
vector (n,m,m′; p, q, q′) that we call size. We also denote by INSm,m′

n DELq,q′

p

corresponding families of insertion-deletion systems. Moreover, we define the
total weight of the system as the sum of all numbers above: ψ = n + m + m′ +
p+q+q′. Since it is known from [14] that systems using a context-free insertion or
deletion of one symbol are not powerful, we additionally require n+m+m′ ≥ 2
and p + q + q′ ≥ 2.

If some of the parameters n,m,m′, p, q, q′ is not specified, then we write in-
stead the symbol ∗. In particular, INS0,0

∗ DEL0,0
∗ denotes the family of languages

generated by context-free InsDel systems. If one of numbers from the couples m,
m′ and/or q, q′ is equal to zero (while the other is not), then we say that corre-
sponding families have a one-sided context.

InsDel systems of a “sufficiently large” weight can characterize RE, the family
of recursively enumerable languages. A collection of these results may be found
in Section 4.

3 Main Results

In this section we present the main results of the paper. We start with the
following lemma:

Lemma 1. For any insertion-deletion system ID = (V, T,A, I,D) having the
size (n, 0, 0; p, 0, 0) it is possible to construct an insertion-deletion system
ID2 = (V ∪ {X,Y }, T, A2, I,D ∪ D′) of size (n, 0, 0; p, 0, 0) such that
L(ID2) = L(ID) and all insertions and deletions in ID2 are made inside the
site X . . . Y and D′ = {(ε,X, ε), (ε, Y, ε)}.

Proof. Consider A2 = {XwY | w ∈ A}. To prove the statement it is enough
to observe that for any terminal derivation in ID it is possible to do the same
derivation inside the site X . . . Y and after that erase these surrounding symbols
(X and Y are like parentheses that surround the derivation site).

We also recall the following lemma proved in [9]:

Lemma 2. For any insertion-deletion system ID = (V, T,A, I,D) having the
size (n,m,m′; p, q, q′) it is possible to construct an insertion-deletion system
ID2 = (V ∪ {X,Y }, T, A2, I2, D2 ∪ D′

2) having same size such that L(ID2) =
L(ID). Moreover, all rules from I2 have the form (u, α, v), where |u| = m,
|v| = m′, all rules from D2 have the form (u′, α, v′), where |u′| = q, |v′| = q′ and
D′

2 = {(ε,X, ε), (ε, Y, ε)}.

Now we prove the following theorem which is a counterpart of the result from [11]
where a system of size (1, 1, 1; 2, 0, 0) is presented.

Further Results on Insertion-Deletion Systems with One-Sided Contexts 337

Theorem 3. INS0,0
2 DEL1,1

1 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-deletion
systems of size (2, 0, 0; 3, 0, 0). It is known that these systems generate any re-
cursively enumerable language [7]. Consider ID = (V, T,A, I,D) to be such a
system. Now we construct a system ID2 = (V2, T, A, I2, D2) of size (2, 0, 0; 1, 1, 1)
that will generate same language as ID.

It is clear that in order to show the inclusion L(ID) ⊆ L(ID2) it is sufficient
to show how a deletion rule (ε, abc, ε) ∈ D, with a, b, c ∈ V , may be simulated
by using rules of system ID2, i.e., insertion rules of type (ε, xy, ε) and deletion
rules of type (a′, y′, b′), with a′, b′ ∈ V2 ∪ {ε}, x, y, y′ ∈ V2.

We may suppose that for any deletion rule (ε, abc, ε) of ID following conditions
hold:
a. a �= b �= c.
b. Insertions are made inside the site X . . . Y , where X and Y are from lemma 1.

Indeed, if condition (a) does not hold, i.e., we have a rule (ε, aac, ε), then we
replace this rule by an insertion rule (ε,AA′, ε) and two deletion rules (ε, aA, ε)
and (ε,A′ac, ε). If a deletion rule (ε, aaa, ε) is present, then it can be replaced
by two insertion rules (ε,AA′, ε), (ε,BB′, ε) and three deletion rules (ε, aA, ε),
(ε,A′aB, ε) and (ε,B′a, ε).

Consider V2 = V ∪ {Li, L
′
i, Ri, R

′
i,Ki,K

′
i | 1 ≤ i ≤ card(D)}.

Let us label all rules from D by integer numbers. Consider now a rule i :
(ε, abc, ε) ∈ D, where 1 ≤ i ≤ card(D) is the label of the rule. We introduce
following insertion rules in I2:

(ε, LiL
′
i, ε) (1)

(ε,R′
iRi, ε) (2)

(ε,KiK
′
i, ε) (3)

and following deletion rules in D2 (l,m ∈ V):

(Li, L
′
i, a) (4)

(Li, a, b) (5)
(c, R′

i, Ri) (6)
(b, c, Ri) (7)
(Li, b, Ri) (8)

(Ki,K
′
i, Li) (9)

(Ki, Li, Ri) (10)
(Ki, Ri,m) (11)
(l,Ki,m) (12)

We say that these rules are i-related.
The rule i : (ε, abc, ε) ∈ D is simulated as follows. We first perform two

insertions:

w1abcw2 =⇒1 w1LiL
′
iabcw2 =⇒2 w1LiL

′
iabcR

′
iRiw2

338 A. Krassovitskiy, Y. Rogozhin, and S. Verlan

And after that some deletions

w1LiL
′
iabcR

′
iRiw2 =⇒4 w1LiabcR

′
iRiw2 =⇒6 w1LiabcRiw2 =⇒5

w1LibcRiw2 =⇒7 w1LibRiw2 =⇒8 w1LiRiw2

Now we delete symbols LiRi using same technique as above with the help of
KiK

′
i

w1LiRiw2 =⇒3 w1KiK
′
iLiRiw2 =⇒9 w1KiLiRiw2 =⇒10 w1KiRiw2 =⇒11

w1Kiw2 =⇒12 w1w2

Hence, L(ID) ⊆ L(ID2). Now in order to prove the converse inclusion, we
observe that we perform insertions of non-terminal symbols from V2. After per-
forming any of these insertions, the whole sequence of insertion and deletion
rules above must be performed, otherwise some non-terminal symbols are left
and cannot be deleted any more. Moreover, the above sequence permits to elim-
inate three symbols abc in a string. Indeed, the symbol Li deletes a if and only if
it was inserted one time at the left of a. Similarly, Ri deletes c if it was inserted
one time at the right of c. Now, Ri and Li are eliminated if and only if they
meet, this means that they delete b (and of course a and c). In order to delete
Li, KiK

′
i must be inserted before it. Symbol Ki deletes symbols K ′

i, Li and Ri,
and only after that it is eliminated.

Now we prove the following theorem which is a counterpart of the result from [9]
where a system of size (1, 1, 2; 1, 1, 0) is presented.

Theorem 4. INS1,0
1 DEL1,2

1 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-deletion
systems of size (1, 1, 1; 1, 1, 1). It is known that these systems generate any re-
cursively enumerable language [13]. Consider ID = (V, T,A, I,D) to be such a
system. Now we construct a system ID2 = (V2, T, A, I2, D2) of size (1, 1, 0; 1, 1, 2)
that will generate the same language as ID.

Using Lemma 2 it is clear that in order to show the inclusion L(ID) ⊆ L(ID2)
it is sufficient to show how an insertion rule (a, x, b) ∈ I, with a, b, x ∈ V , may
be simulated by using rules of system ID2, i.e., insertion rules of type (a′, x′, ε)
and deletion rules of type (a′, y′, b′c′), with a′, b′, c′ ∈ V2 ∪ {ε}, x′, y′ ∈ V2.

We may suppose that for any rule (a, x, b) ∈ I it holds x �= b. Indeed, if this
is not the case then this rule may be replaced by two insertion rules (a,B, b),
(a, b, B) and one deletion rule (b, B, b).

Consider V2 = V ∪ {Ai | 1 ≤ i ≤ card(I)}.
Let us label all rules from I by integer numbers. Consider now a rule

i : (a, x, b) ∈ I, where 1 ≤ i ≤ card(I) is the label of the rule. We introduce
insertion rules (a,Ai, ε), (Ai, x, ε) in I2 and the deletion rule (a,Ai, xb) in D2.
We say that these rules are i-related. The rule i : (a, x, b) ∈ I is simulated as
follows. We first perform insertions of Ai and x:

w1abw2 =⇒+ w1a(Ai)+bw2 =⇒+ w1a(Ai(x)+)+bw2

Further Results on Insertion-Deletion Systems with One-Sided Contexts 339

And after that one deletion (it is applicable to the string w1aAixbw2)

w1aAixbw2 =⇒ w1axbw2

Hence, L(ID) ⊆ L(ID2). Now in order to prove the converse inclusion, we
observe that we perform insertion of non-terminal symbol Ai from V2. After
performing this insertion, the only way to get rid of this symbol is to erase it
with the introduced deletion rule. But this means that x is inserted between
a and b. To conclude the proof we remark that if more than one Ai or x are
inserted, then it is impossible to eliminate the corresponding symbol Ai.

Now we prove the following theorem which is a counterpart of the result from [9]
where a system of size (2, 0, 2; 1, 1, 0) is presented.

Theorem 5. INS1,0
1 DEL0,2

2 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-deletion
systems of size (1, 1, 0; 1, 1, 2) from Theorem 4. Let ID = (V, T,A, I,D) be such a
system. Now we construct a system ID2 = (V2, T, A, I2, D2) of size (1, 1, 0; 2, 0, 2)
that will generate the same language as ID.

From Lemma 2 it is clear that in order to show the inclusion L(ID) ⊆ L(ID2)
it is sufficient to show how a deletion rule (a, x, bc) ∈ D, with a, b, c, x ∈ V , may
be simulated by using rules of system ID2, i.e., insertion rules of type (a, x, ε)
and deletion rules of type (ε, x′y′, b′c′), with b′, c′ ∈ V2 ∪ {ε}, x′, y′ ∈ V2.

We may suppose that for any rule (a, x, bc) ∈ D it does not hold x = b = c.
Indeed, if this is not the case then this rule may be replaced by an insertion rule
(x,Dx, ε) and two deletion rules (a, x,Dxx), (a,Dx, xx).

Consider V2 = V ∪ {Ai | 1 ≤ i ≤ card(D)}.
Let us label all rules from D by integer numbers. Consider now a rule

i : (a, x, bc) ∈ D, where 1 ≤ i ≤ card(D) is the label of the rule. We intro-
duce insertion rule (a,Ai, ε) in I2 and the deletion rule (ε,Aix, bc) in D2. The
rule i : (a, x, bc) ∈ D is simulated as follows. We first perform insertions of Ai:

w1axbcw2 =⇒+ w1a(Ai)+xbcw2

And after that one deletion (it is applicable to the string w1aAixbcw2)

w1aAixbcw2 =⇒ w1abcw2

Hence, L(ID) ⊆ L(ID2). Now in order to prove the converse inclusion, we
observe that we perform insertion of non-terminal symbol Ai from V2. After
performing this insertion, the only way to get rid of this symbol is to erase it
with the introduced deletion rule. But this means that x is deleted between a
and b. To conclude the proof we remark that if more than one Ai is inserted,
then it is impossible to eliminate the corresponding symbol Ai.

Now we prove the following theorem which is a counterpart of the result from [9]
where a system of size (2, 0, 1; 2, 0, 0) is presented.

340 A. Krassovitskiy, Y. Rogozhin, and S. Verlan

Theorem 6. INS0,0
2 DEL0,1

2 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-deletion
systems of size (2,0,0;3,0,0) from [7]. Let ID = (V, T,A, I,D) be such a system.
Now we construct a system ID2 = (V2, T, A, I2, D2) of size (2, 0, 0; 2, 0, 1) that
will generate the same language as ID.

It is clear that in order to show the inclusion L(ID) ⊆ L(ID2) it is sufficient
to show how a deletion rule (ε, abc, ε) ∈ D, with a, b, x ∈ V , may be simulated by
using rules of system ID2, i.e., insertion rules of type (ε, xy, ε) and deletion rules
of type (ε, x′y′, b′) or (ε, x′, b′), with b′ ∈ V2 ∪ {ε}, x′, y′ ∈ V2. From Lemma 1
we can assume that all insertions and deletions are done inside the site X...Y .

Consider V2 = V ∪ {A(j)
i , B

(j)
i , | j ∈ {1, 2, 3, 4}, 1 ≤ i ≤ card(D)}.

Let us label all rules from D by integer numbers. Consider now a rule i :
(ε, abc, ε) ∈ D, where 1 ≤ i ≤ card(D) is the label of the rule. We introduce
following insertion rules in I2:

(ε,A(1)
i B

(1)
i , ε) (13)

(ε,A(2)
i B

(2)
i , ε) (14)

(ε,A(3)
i B

(3)
i , ε) (15)

(ε,A(4)
i B

(4)
i , ε) (16)

and following deletion rules in D2:

(ε, aA(1)
i , B

(1)
i) (17)

(ε, bA(2)
i , B

(2)
i) (18)

(ε, cA(3)
i , B

(3)
i) (19)

(ε,B(2)
i B

(3)
i , A

(4)
i) (20)

(ε,B(1)
i A

(4)
i , B

(4)
i) (21)

(ε,B(4)
i , ε) (22)

The rule i : (ε, abc, ε) ∈ D is simulated as follows. At first we perform inser-
tions of A

(j)
i B

(j)
i , j ∈ {1, 2, 3, 4} using rules (13) – (16):

w1abcw2 =⇒+ w1aA
(1)
i B

(1)
i bA

(2)
i B

(2)
i cA

(3)
i B

(3)
i A

(4)
i B

(4)
i w2

After that deletion rules (17) – (19) are be applied:

w1aA
(1)
i B

(1)
i bA

(2)
i B

(2)
i cA

(3)
i B

(3)
i A

(4)
i B

(4)
i w2 =⇒+ w1B

(1)
i B

(2)
i B

(3)
i A

(4)
i B

(4)
i w2

Further Results on Insertion-Deletion Systems with One-Sided Contexts 341

Now the remaining introduced symbols are removed:

w1B
(1)
i B

(2)
i B

(3)
i A

(4)
i B

(4)
i w2 =⇒20 w1B

(1)
i A

(4)
i B

(4)
i w2 =⇒21

=⇒21 w1B
(4)
i w2 =⇒22 w1w2

Thus, we obtain string w1w2, so we model rule i : (ε, abc, ε) ∈ D correctly.
Hence, L(ID) ⊆ L(ID2). Now in order to prove the converse inclusion, we

observe that we perform insertion of non-terminal symbol from V2. After per-
forming this insertion, the deletion rule above must be performed, otherwise
some non-terminal symbol are left and cannot be deleted any more.

Now we consider the class INS1,0
1 DEL1,1

1 . We show that this class is not com-
plete. Firstly we prove the following lemma which shows that the deletion of
terminal symbols may be excluded.

Lemma 7. For any insertion-deletion system ID = (V, T,A, I,D) having the
size (1, 1, 0; 1, 1, 1) there is a system ID′ = (V ∪ V ′, T, A ∪ A′, I ∪ I ′, D′) such
that L(ID′) = L(ID). Moreover, for any rule (a, b, c) ∈ D′ it holds b �∈ T .

Proof. Indeed, we can transform system ID = (V, T,A, I,D) to an equivalent
system ID′ = (V ∪ V ′, T, A ∪ A′, I ∪ I ′, D′) as follows:

Any rule (a, b, c) ∈ D, a, c ∈ V , b ∈ V \T will also be part of D′. Now consider
a rule (A, t, C) ∈ D, A,C ∈ V , t ∈ T . Then we add the rule (A,Nt, C) to D′,
where Nt ∈ V ′ is a new nonterminal. Moreover, we add also following rules to
I ′ and strings to A′:

– If w1tw2 ∈ A, then we add w1Ntw2 to A′, where w1, w2 ∈ V ∗,
– if (t, A, ε) ∈ I, then we add (Nt, A, ε) to I ′,
– if (A, t, ε) ∈ I, then we add (A,Nt, ε) to I ′,
– if (A,C, t) ∈ D, then we add (A,C,Nt) to D′, and
– if (t, A,C) ∈ D, then we add (Nt, A, C) to D′.

It is clear that L(ID′) = L(ID) because there is no difference between erasing
t or Nt.

The following result shows that the class INS1,0
1 DEL1,1

1 is not computationally
complete.

Theorem 8. REG \ INS1,0
1 DEL1,1

1 �= ∅.

Proof. Consider the regular language L = (ba)+. We claim that there is no
insertion-deletion system Γ of size (1,1,0;1,1,1) such that L(Γ) = L.

We shall prove the above statement by contradiction. Suppose there is such
system Γ = (V, {a, b}, A, I,D) and L(Γ) = L. From lemma 7 we can suppose
that Γ does not delete terminal symbols.

342 A. Krassovitskiy, Y. Rogozhin, and S. Verlan

Table 1. Known results on insertion-deletion systems

Nb. γ (n, m; p, q) family references ψ (n, m,m′; p, q, q′)

1 6 (3, 0; 3, 0) RE [7] 6 (3, 0, 0; 3, 0, 0)

2 5 (1, 2; 1, 1) RE [4,11] 8 (1, 2, 2; 1, 1, 1)

3 5 (1, 2; 2, 0) RE [4,11] 7 (1, 2, 2; 2, 0, 0)

4 5 (2, 1; 2, 0) RE [4,11] 6 (2, 1, 1; 2, 0, 0)

5 5 (1, 1; 1, 2) RE [13] 8 (1, 1, 1; 1, 2, 2)

6 5 (2, 1; 1, 1) RE [13] 7 (2, 1, 1; 1, 1, 1)

7 5 (2, 0; 3, 0) RE [7] 5 (2, 0, 0; 3, 0, 0)

8 5 (3, 0; 2, 0) RE [7] 5 (3, 0, 0; 2, 0, 0)

9 4 (1, 1; 2, 0) RE [11] 5 (1, 1, 1; 2, 0, 0)

10 4 (1, 1; 1, 1) RE [13] 6 (1, 1, 1; 1, 1, 1)

11 4 (2, 0; 2, 0) � CF [14] 4 (2, 0, 0; 2, 0, 0)

12 m + 1 (m, 0; 1, 0) � CF [14] − (m, 0, 0; 1, 0, 0)

13 p + 1 (1, 0; p, 0) � REG [14] − (1, 0, 0; p, 0, 0)

14 4 (2, 0; 1, 1) RE Theorem 3 5 (2, 0, 0; 1, 1, 1)

Consider a terminal derivation in Γ :
w =⇒+ wf , where w ∈ A and wf ∈ (ba)+. Now consider an arbitrary ba block

of wf (wf = αbaβ, α, β ∈ (ba)∗) and take its letter a. Since there are no deletion
rules in Γ this letter is either inserted by an insertion rule or it was a part of
an axiom. We may omit the latter case by taking a derivation that produces a
string that is long enough. We may also omit the case when this letter a was
inserted by a rule (ε, a, ε) ∈ I, because in this case a may be inserted at any
place in the final string, in particular a string αbaaβ might be obtained. Now
suppose that this letter was inserted using a rule (z, a, ε) ∈ I, z ∈ V :

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒∗ αbaβ = wf . (23)

This means that:
w1z =⇒∗ αb
w2 =⇒∗ β

(24)

Now we remark that symbol a might be inserted twice:

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒ w1zaaw2. (25)

From (25) and (24) we obtain:

w =⇒∗ w1zaaw2 =⇒∗ αbaaβ
which is a contradiction.

4 Complexity Measures

We collect known results on insertion-deletion systems in the two tables below. We
indicate both traditional measures and measures proposed in [14] (see Section 2
for definitions). The first table contains the systems with both contexts and the
second table concentrates on systems with one-sided contexts. In table 2 we do
not present the symmetrical variants which have same generation capabilities.

Further Results on Insertion-Deletion Systems with One-Sided Contexts 343

Table 2. Known results on insertion-deletion systems with one-sided contexts

Nb. γ (n, m; p, q) family references ψ (n, m, m′; p, q, q′)

15 5 (1, 2; 1, 1) RE [9] 6 (1, 1, 2; 1, 1, 0)

16 6 (2, 2; 1, 1) RE [9] 6 (2, 0, 2; 1, 1, 0)

17 5 (2, 1; 2, 0) RE [9] 5 (2, 0, 1; 2, 0, 0)

18 4 (1, 1; 1, 1) � RE [9] 5 (1, 1, 1; 1, 1, 0)

19 5 (1, 1; 1, 2) RE Theorem 4 6 (1, 1, 0; 1, 1, 2)

20 6 (1, 1; 2, 2) RE Theorem 5 6 (1, 1, 0; 2, 0, 2)

21 5 (2, 0; 2, 1) RE Theorem 6 5 (2, 0, 0; 2, 0, 1)

22 4 (1, 1; 1, 1) � RE Theorem 8 5 (1, 1, 0; 1, 1, 1)

5 Conclusions

In this article we have investigated insertion-deletion systems having a one-sided
context, in particular, systems with minimal insertion. We showed that systems
of size (1, 1, 0; 1, 1, 2) and (1, 1, 0; 2, 0, 2) generate all recursively enumerable lan-
guages, while systems of size (1, 1, 0; 1, 1, 1) are not computationally complete
and that they cannot generate the language (ba)+. We also have considered sys-
tems with a minimal context-free insertion and we showed that systems of size
(2, 0, 0; 2, 0, 1) also generate all recursively enumerable languages.

We remark that these results are a counterpart of the results from [9]. More-
over, corresponding systems have the same computational completeness proper-
ties. These results leave an open question about generative power for 10 classes
of insertion-deletion systems having the total weight equal to 5.

We also solved the last open problem concerning the generative power of
insertion-deletion systems having both contexts by showing that systems of size
(2, 0, 0; 1, 1, 1) are computationally complete.

We note that the proof of the above results is based on a simulation of classes
of insertion-deletion systems (previously simulations of Chomsky grammars were
used) and the corresponding approach was firstly used in [9].

Acknowledgments

The first author acknowledges the grant of Ramon y Cajal from University Rovira
i Virgili 2005/08. The second author acknowledges the support of European Com-
mission, project MolCIP, MIF1-CT-2006-021666.The second and the third author
acknowledge the Science and Technology Center in Ukraine, project 4032.

References

1. Daley, M., Kari, L., Gloor, G., Siromoney, R.: Circular contextual insertions/dele-
tions with applications to biomolecular computation. In: Proc. of 6th Int. Symp.
on String Processing and Information Retrieval, SPIRE1999, Cancun, Mexico, pp.
47–54 (1999)

2. Galiukschov, B.S.: Semicontextual grammars. In: Matematika Logica i Matematika
Linguistika, Tallin University, pp. 38–50 (1981) (in Russian)

344 A. Krassovitskiy, Y. Rogozhin, and S. Verlan

3. Kari, L.: On insertion and deletion in formal languages, PhD Thesis, University of
Turku (1991)

4. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and
formal languages: characterizing RE using insertion-deletion systems. In: Proc. of
3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333
(1997)

5. Kari, L., Thierrin, G.: Contextual insertion/deletion and computability. Informa-
tion and Computation 131(1), 47–61 (1996)

6. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534
(1969)

7. Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free insertion-
deletion systems. Theoretical Computer Science 330, 339–348 (2005)

8. Martin-Vide, C., Păun, G., Salomaa, A.: Characterizations of recursively enu-
merable languages by means of insertion grammars. Theoretical Computer Sci-
ence 205(1-2), 195–205 (1998)

9. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-Deletion Systems with One-
Sided Contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS,
vol. 4664, pp. 205–217. Springer, Heidelberg (2007)

10. Păun, G.: Marcus contextual grammars. Kluwer Academic Publishers, Dordrecht
(1997)

11. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. New Computing Para-
digms. Springer, Berlin (1998)

12. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer,
Berlin (1997)

13. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion
systems. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 269–
280. Springer, Heidelberg (2003)

14. Verlan, S.: On minimal context-free insertion-deletion systems. In: Mereghetti, C.,
Palano, B., Pighizzini, G., Wotschke, D. (eds.) Seventh International Workshop on
Descriptional Complexity of Formal Systems, Como, Italy, June 30 - July 2, 2005,
pp. 285–292 (2005); Technical repport no. 06-05, University of Milan. Journal of
Automata Languages and Combinatorics (in publication)

On Regularity-Preservation

by String-Rewriting Systems

Peter Leupold�

Department of Mathematics, Faculty of Science
Kyoto Sangyo University
Kyoto 603-8555, Japan

leupold@cc.kyoto-su.ac.jp

Abstract. When using string-rewriting systems in the context of formal
languages, one of the most common questions is whether they preserve
regularity. A class of string-rewriting systems that has received attention
lately are idempotency relations. They were mainly used to generate
languages starting from a single word.

Here we apply these relations to entire languages and investigate
whether they preserve regularity. For this, it turns out to be convenient
to define two more general classes of string-rewriting systems, the k-
period expanding and the k-period reducing ones. We show that both
preserve regularity. This implies regularity preservation for many classes
of idempotency relations.

1 Introduction

The root of our investigations lies in the operation called duplication and in-
troduced by Dassow et al. [3], who rediscovered a result shown earlier by Bovet
and Varricchio [2] for so-called copy systems introduced by Ehrenfeucht and
Rozenberg [4]. Mainly, a string-rewriting system that duplicates factors via rules
u→ u2 is applied iteratively to a word; then the question is whether the result-
ing language is regular or context-free. Later, this operation was also applied to
entire languages rather than single words [7]. On the other hand, the duplication
of words was also generalized to so-called idempotency languages [8]. These are
generated by rules um → un for any fixed m and n rather than only by rules
u1 → u2.

Another line of research has dealt with classes of string-rewriting like monadic
or prefix rewriting systems. It was investigated whether the result is regular/
context-free if they are iteratively applied to regular/context-free languages. An
example is the work of Hofbauer and Waldmann on deleting string-rewriting
systems [5] which provides many references to earlier work. Also the book by
Book and Otto contains a few results in this direction [1].

� This work was done, while the author was funded as a post-doctoral fellow by the
Japanese Society for the Promotion of Science under number P07810.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 345–356, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

346 P. Leupold

So far, investigations on idempotency relations have been focused on whether
they produce regular or context-free languages when applied to singleton lan-
guages. In the context of the work on regularity preservation of string-rewriting
systems it seems even more interesting to look at their behaviour when applied
to entire languages. This is the object of this article, which therefore in some
sense brings the two lines of research described above together. We consider only
the length-bounded variants of idempotency relations; only here the underlying
rewriting-systems are finite and therefore they are more tractable in this context.

In the section about uniformly length-bounded systems we actually treat a
more general class of systems. Namely, we abandon the restriction that all rules
must be of the form um → un for fixed m and n. First we define k-period-
expanding string-rewriting systems, where only m ≤ n is required. Then we
also consider the somewhat inverse class of k-period-reducing string-rewriting
systems, which are characterized by the condition m ≥ n. Both of these classes
are shown to preserve regularity. Finally, we show that also finite unions of k-
expanding and k-reducing systems, so-called k-periodic systems preserve regular-
ity. It is a direct consequence of these results that all relations =k$%n

m preserve
regularity except for k ≥ 2, m = 0, and n ≥ 2. For the latter cases it is already
known that they generate non-regular languages from single words [8].

There are less results about idempotency relations with just an upper bound
on the left side of rules. Mainly a result on k-period reducing systems can
be adapted and yields that length-decreasing bounded idempotency relations
preserve regularity. The proof also shows that their inverses preserve context-
freeness. We also solve a problem left open in earlier work [7]: duplications with
length three preserve regularity.

2 String-Rewriting Systems

Terms and notation from general formal language theory, logic and set theory
are assumed to be known by the reader. Let w[i] denote the i-th letter of a word
w for 1 ≤ i ≤ |w|, where |w| is w’s length. By w[i . . . j] we denote the factor of
a word w, which begins in position i and ends in j. A word w has a positive
integer k as a period, iff for all i, j such that i ≡ j(mod k) we have w[i] = w[j],
if both w[i] and w[j] are defined. u ⊂pref v means that u is a prefix of v, ⊂suff

is our symbol for suffix. Two words u and v are conjugates iff there exists a
factorization u = rs such that v = sr. If not specified otherwise, the alphabet
we use will be denoted by Σ.

In our notation on string-rewriting systems we mostly follow Book and Otto
[1] and define a string-rewriting system (SRS) R on Σ to be a subset of Σ∗×Σ∗.
Its single-step reduction relation is defined as u →R v iff there exists (, r) ∈ R
such that for some u1, u2 we have u = u1	u2 and v = u1ru2. We also write
simpler just →, if it is clear which is the underlying rewriting system. By ∗→ we
denote the relation’s reflexive and transitive closure, which is called the reduction
relation or rewrite relation. The inverse of a single-step reduction relation → is
→−1:= {(r,) : (, r) ∈ →}. Note that we also use the notation u→ v for rewrite

On Regularity-Preservation by String-Rewriting Systems 347

rules, mainly when speaking about rules in a natural language sentence to make
it graphically clear that we are speaking about a rewrite rule and not some other
ordered pair. All the SRSs in this article will be finite.

An SRS is said to be confluent, iff for all w,w1, w2 ∈ Σ∗ always w1
∗← w

∗→ w2

implies the existence of some w′ such that w1
∗→ w′ ∗← w2. Here we use w1 ← w

as a sometimes convenient way of writing w → w1.
By imposing restrictions on the format of the rewriting rules, many special

classes of rewriting systems can be defined. Following Hofbauer and Waldmann
[5], we will call a rule (, r) context-free (inverse context-free), if |	| ≤ 1 (|r| ≤ 1).
A system is monadic, if it is inverse context-free and for all its rewrite rules (, r)
we have |	| > |r|. Finally, we define deleting SRSs again following Hofbauer and
Waldmann [5]. For these, we need a precedence, i.e. a irreflexive partial ordering
< on the alphabet. This is extended to words by defining that u < v holds iff u
and v do not use the same set of letters, and for every letter x which occurs in
u there exists a letter y which occurs in v such that x < y. Now a SRS over the
alphabet Σ is called <-deleting, iff it is a subset of <−1; this means every right
side of a rule is smaller than the corresponding left side with respect to <. More
general, a SRS is called deleting iff it is deleting for some precedence. Hofbauer
and Waldmann have shown that all deleting SRSs preserve regularity.

The bounded idempotency relations, which are one of the origins of the work
here were first defined in [8]. For fixed parameters m, n, and k they are the
rewrite relations

u≤k$%n
mv :⇔ ∃z[z ∈ Σ+ ∧ u = u1z

mu2 ∧ v = u1z
nu2 ∧ |z| ≤ k]

and the corresponding SRSs are {(zm, zn) : |z| ≤ k}. We will denote it by the
same symbol ≤k$%n

m ; no confusion should arise. A restricted version are the
uniformly bounded idempotency relations

u=k$%n
mv :⇔ ∃z[z ∈ Σ+ ∧ u = u1z

mu2 ∧ v = u1z
nu2 ∧ |z| = k]

and the corresponding SRSs are {(zm, zn) : |z| = k}. We denote the languages
generated by these relations from a word w by w

≤k��n
m := {u : w(≤k$%n

m)∗u}
and w

=k��n
m := {u : w(=k$%n

m)∗u}.
For a string-rewriting system R and a language L we denote the set of all

descendants of words from L modulo R by R∗(L) following Hofbauer and Wald-
mann [5]. In the case of idempotency relations, however, we will still use the
established notation L��n

m meaning the same as ($%n
m)∗(L). A class of languages

C is said to be closed under (rewriting by) a class S of SRSs, iff the following
holds: ∀L,R[L ∈ C ∧R ∈ S ⇒ R∗(L) ∈ C].

3 Uniformly Length-Bounded Systems

Idempotency relations without restrictions on their rules’ lengths often generate
very complicated structures. The relations with length bound are in general
much more accessible, especially the ones with uniform length bound. The main

348 P. Leupold

reasons for this are that on the one hand they are closely related to periodicity
and thus tools from that field can be used; on the other hand, the underlying
SRSs are finite and thus more tractable. Here we will not only use periodicity
as a tool, but we will define a new class of SRSs based on periodicity in their
rules. These will include almost the entire class of uniformly length bounded
idempotency relations. Thus regularity preservation of the latter will be implied
by our results.

But first we recall a single non-closure result that follows directly from prior
work on the idempotency closure of words [8].

Proposition 1. String-rewriting systems =k$%n
m do not preserve regularity for

k ≥ 2, m = 0, and n ≥ 2.

In the course of this section, we will see that these are actually the only com-
binations of parameters, for which regularity is not preserved. Now we define a
class of SRSs all of whose rules increase the length of factors with period k.

Definition 2 . An SRS is called k-period-expanding, if for all of its rules (, r)

(i) 	 is non-empty,
(ii) 	, r ∈ w∗ for a word w of length k, and
(iii) 	 ⊂pref r.

Thus the left sides of all rules of a k-period-expanding SRS have period k and the
corresponding right sides add repetitions of that period — therefore the name.
Now we establish an interesting property of this type of SRS.

Lemma 3. k-period-expanding SRS are confluent.

Proof. It is known that the diamond property implies confluence [1]. Therefore
it suffices to show for k-period-expanding SRS that for every pair of derivation
steps w1 ← u → w2 there exists a word v such that w1 → v ← w2. So let two
words w1 and w2 be direct successors of another word u via such a k-period-
expanding SRS R.

If the factors in u, where the rules are applied, do not overlap, then obviously
in both cases the respectively other rule can be applied afterwards and one
arrives at a common descendant v. So let two application sites rm and si in u
for rules rm → rn and si → sj overlap. Without loss of generality, let rm occur
first from the left. If si is completely inside of rm, then s and r are conjugates
as both have length k. The result of applying the rules in either order will be
rn+j−i.

If si is not completely inside of rm, then let us call u′ the factor from the start
of rm till the end of si such that u = u1u

′u2 for some u1, u2 ∈ Σ∗. Now we can
interpret the application of rm → rn as the insertion of rn−m just in front of u′;
equally si → sj amounts to the insertion of sj−i just after u′. Since application
of these rules leaves u′ unchanged, the two derivations

u1u
′u2 → u1r

n−mu′u2 → u1r
n−mu′sj−iu2

On Regularity-Preservation by String-Rewriting Systems 349

and
u1u

′u2 → u1u
′sj−iu2 → u1r

n−mu′sj−iu2

are possible, and the fact that they result in the same word with only two steps
each concludes our proof. �

The proof shows even more than the lemma states: all rules can be applied
from left to right, that is in an order such that the prefix left of an application
site will never be altered by another rule. Thus in some sense the different rule
applications are independent from each other. This will help us in showing that
they preserve regularity.

Proposition 4. k-period-expanding SRSs preserve regularity.

Proof. Let R be a k-period-expanding SRS. Let the longest left side of a rule
from R have length km. We will insert additional symbols from the alphabet
Γ := {[wi] : |w| = k ∧ i ≤ m} ∪ {∇} into the words of a given language L.
The [wi] will mark positions that are preceded by a factor wi in the original
word. ∇ is an auxiliary symbol, which is used to construct a deleting SRS S
that essentially simulates R. Since it is deleting it preserves regularity and thus
R∗(L) is regular if L is.

First we describe informally the gsm mapping g, which introduces the symbols
of Γ . Reading an input word from left to right, the gsm needs to remember at
any given point the last km letters of the input. If they have a suffix wi, which
is the left side of a rule from R, then the letter [wi] must be output; notice that
there can be several such letters to output. After each [wi] an arbitrary number
of ∇ is written. Then the gsm advances and writes also the letter from Σ, which
it reads, on the output.

Now we define the SRS that will work on the words produced by g. It simulates
the rules from R by inserting the newly produced symbols to the left of the
corresponding symbols from Γ , and deleting, in some sense consuming one ∇ in
every step.

S := {([wi]∇, wj [wi]) : (wi, wi+j) ∈ R}
This is a deleting SRS as for a precedence where ∇ is greater than all the

other symbols, since all the rules delete ∇. Finally, to obtain R∗(L) we need to
delete all the symbols from Γ . This is done by the morphism

δ :=
{
x if x ∈ Σ
λ if x ∈ Γ.

Now we try to prove the inclusion R∗(L) ⊂ δ((S)∗(g(L))). Obviously L =
δ(g(L)). Further it should be clear that the rules from S can simulate the rules
from R in the sense that if for some w ∈ Σ∗ we have w →R w′, then there is
also g(w) →S w

′′ such that w′ = δ(w′′). So the first crucial fact here is that also
further applications of rules to w′ can be simulated starting from w′′; this is not
obvious, because g(w′) �= w′′. The difference is that the second word contains
less symbols from Γ since the rules from S do not create these. Thus these are
missing in the newly created factor. This factor and a preceding factor (to which
the rule was applied) have period k.

350 P. Leupold

The one problem here is if some periodic factor in the original word is not
long enough to be the application side for a rule from R, but through application
of shorter rules this one can become applicable. Then the corresponding symbol
from Γ is not there. See the following Example 5 for an illustration. In these
cases an iteration of the process is necessary. In every iteration, k-periodic factors
that allow rule applications are expanded as far as possible, in the next iteration
longer rules will be applicable, too. Therefore the maximum number of iterations
necessary is the number of different rules in R. To see this, observe that rule
applications to a k-periodic factor can be ordered in such a way that first all
applications of the rule with the shortest left side are done, then applications of
the rule with the second shortest left-hand side etc. The first of these blocks of
applications of the same rule will be possible in the first iteration, the second
one in the second iteration and so forth. Thus we have

R∗(L) ⊂ δ((S)∗(g(. . . δ((S)∗(g(︸ ︷︷ ︸
|R| times

L))) . . .))).

The inverse inclusion does not need further arguments. It is clear that rewrit-
ing the symbols of Γ does not produce anything that is outside of R∗(L) after
the application of δ.

In conclusion, we have shown the equality

R∗(L) = δ((S)∗(g(. . . δ((S)∗(g(︸ ︷︷ ︸
|R| times

L))) . . .))),

and since all the finitely many operations on the right hand side preserve regu-
larity this proves the proposition. �

We now illustrate with an example, why so many iterations of the procedure can
be necessary to fully simulate the original SRS.

Example 5. We consider the SRS R = {(a, a6), (a8, a15), (a17, a21)} and the
regular language L = {a}. Applying the construction from the proof of Proposi-
tion 4, in one iteration only a symbol for simulating the first rule is inserted, the
resulting language δ(S∗(g(L))) is {a5i+1 : i ≥ 0}. In a second iteration, symbols
for the other two rules are inserted, too. However, in the word a11 no symbol for
the second rule is inserted, because the word is too short. Analysis of all possi-
ble derivations shows that therefore a22 �∈ δ(S∗(g(δ(S∗(g(L)))))) although via R
the derivation a → a6 → a11 → a18 → a22 is possible. Thus for this three-rule
system three iterations of the procedure are necessary.

Since a large class of uniformly bounded idempotency relations falls in the class
of k-period-expanding SRSs, we obtain an immediate corollary.

Corollary 6. String-rewriting systems =k$%n
m preserve regularity for k ≥ 0,

m > 0, and n ≥ m.

On Regularity-Preservation by String-Rewriting Systems 351

Looking at the SRS S from the proof, we also see that the left sides of all rules
consist of one letter of the form [wi] and one ∇. If we simply delete all the ∇
from the proof, the language generated is still the same, only S is not deleting
any more. Instead, now S is context-free and this observation provides us with
another closure property.

Corollary 7. String-rewriting systems =k$%n
m preserve context-freeness for k ≥

0, m > 0, and n ≥ m.

Let us look a moment at the reason for the cases m = 0 not to be included here.
The proof of Proposition 4 does not work, because rules with empty left side
are applicable anywhere. Thus after every rule application another iteration of
the process would be necessary, and there is no bound on this number. We now
define a class of SRSs somewhat inverse to the k-period expanding ones, namely
ones that reduce the length of periodic factors. Note that here right sides of
length 0, i.e. deletions, are not excluded.

Definition 8. An SRS is called k-period-reducing, if for all of its rules (, r)

(i) 	, r ∈ w∗ for a word w of length k and
(ii) r ⊂pref 	.

Also here, we can show that all systems of this class preserve regularity.

Proposition 9. k-period-reducing SRSs preserve regularity.

Proof. For a given regular languageL and a k-period-reducing SRSsR, we will de-
fine a context-free SRS T such that T−1 simulatesR. Since the inverse context-free
SRS T−1 we construct is monadic, and since monadic SRSs preserve regularity,
our claim follows.

First, we transform words from Σ+ into a redundant representation, where
every letter contains also the information about the mk−1 following ones, where
mk is the length the longest right side of a rule in R. This way, rewrite rules
from R can be simulated by ones with a right side of length only one, i.e. by
inverse context-free ones.

First off we define the mapping φ : Σ+ �→ ((Σ ∪ {�})mk)+ as follows. We
delimit with (. . .) letters from (Σ ∪ {�})mk and with [. . .] factors of a word as
usual. The image of a word u is

u �→ (u[1 . . .mk]) (u[2 . . .mk + 1]) · · · (u[|u| −mk + 1 . . . |u|]) ·
(u[|u| −mk + 2 . . . |u|]�) · · · (u[|u|]�mk−1).

Thus every letter contains also the information about the mk following ones
from the original word u. At the end of the word letters are filled up with the
space symbol �. φ is a gsm mapping and as such preserves regularity.

This encoding can be reversed by a letter-to-letter morphism h defined as
h(x) := x[1] if x[1] ∈ Σ, for the other case we select for the sake of completeness
some arbitrary letter a and set h(x) := a if x[1] = �; the latter case will never

352 P. Leupold

occur in our context. It is clear that h(φ(u)) = u for words from Σ∗. Both
mappings are extended to languages in the canonical way such that φ(L) :=
{φ(u) : u ∈ L} and h(L) := {h(u) : u ∈ L}.

Now we define the string-rewriting system T over the alphabet (Σ ∪ {�})mk

as follows:

T := {(uivv′), (φ(ujv)[1 . . . |uj−i|]) : (uj, ui) ∈ R ∧ |uivv′| = mk ∧
uiv ∈ Σ+ ∧ v′ ∈ {�}∗}.

A letter (uivv′) is replaced by the image of ujv under φ minus the suffix of
letters that are already there in the image of uiv. In this way, application of
rules from T keeps this space symbol only in the last letters of our words. If we
have w ∗→R w′, then clearly also φ(w′) →∗

T φ(w) and thus φ(w) ∗→T−1 φ(w′).
This shows that R∗(w) ⊂ h((T−1)∗φ(w)). For the inverse inclusion, let us take a
look at what rules from T−1 do. For any such rule (, r) we have h() = uj−iu[1]
and h(r) = u[1] for some rule uj → ui from R. Thus exactly the same subword
is deleted. Further examination of the rules and their contexts show that also
w

(uj ,ui)→ w′ iff φ(w)
(�,r)→ φ(w′). Thus only images under φ of words in R∗(w) can

be reached. Example 10 following this proof will further illustrate this.
As all the rules of T have left sides of length one and right sides of length

greater than one, their inverses are all monadic, i.e. the system T−1 is monadic.
Monadic string-rewriting systems are known to preserve regularity, see for ex-
ample the textbook by Book and Otto [1].

Summarizing, we can obtain R∗(L) by a series of regularity-preserving oper-
ations in the following way:

R∗(L) = h((T−1)∗(φ(L))). �

Example 10. Let R be a 1-period reducing SRS which contains a rule a3 → a2

and whose longest left-hand side of a rule is of length 4. Then the reduction
ba3bc→R ba

2bc is possible. The SRS T constructed in the proof of Proposition 9
has a rule [a2bc] → [a3b][a2bc]. The inverse is applicable to the word φ(ba3bc) =
[ba3][a3b][a2bc][abc�][bc��][c���] where it deletes the letter [a3b]. The result
is exactly φ(ba2bc) and in this way the original rule is simulated. Here it is
clearly visible how we can know from only looking at the letter [a2bc] that also
the following two start with an a and thus in the original word a rule with the
left-hand side a3 is applicable.

Once more, the consequences for idempotency systems are immediate.

Corollary 11. String-rewriting systems =k$%n
m preserve regularity for k ≥ 0,

m ≥ 0, and m > n.

Further, we have stated already in the proof that T is context-free, and thus it
preserves context-freeness.

Corollary 12. String-rewriting systems =k$%n
m preserve context-freeness for

k ≥ 0, m ≥ 0, and m < n.

On Regularity-Preservation by String-Rewriting Systems 353

Proof. Let T be the string-rewriting system and h and φ be the mappings from
the proof of Proposition 9 constructed for =k$%n

m . From the argumentation
there we can see that

L
=k��n

m = h(T ∗(φ(L))).

Since T is context-free and since this class of string-rewriting system preserves
context-freeness, also L

=k��n
m is context-free for the given combinations of pa-

rameters. �

Now we can define a more general class of SRSs that can expand as well as
reduce factors of period k and we can show that also these preserve regularity
and context-freeness.

Definition 13. Any union of finitely many k-period-expanding and k-period
reducing SRSs is called a k-periodic SRS.

Proposition 14. k-periodic SRSs preserve regularity.

Proof. We can combine the proofs for k-period-expanding and k-period-reducing
systems. First, observe that all factors of a word that have period k can be
considered independently in the following sense: application of a rule to one of
them does not affect applicability of rules in other such factors. That is, in doing
a reduction via R we can look at the first such block of a word, apply all the
rules that are to be applied there, then go to the second block etc.

Further, observe that such a block has the form viv′ for a word v of length
k and a word v′ shorter than k. Application of any rule in this factor will only
change the exponent i. Thus we can look at k-period-expanding rules as additions
to the exponent, at k-period-reducing rules as subtractions.

Over integers, a series of additions and subtractions can be done in any order,
the result is always the same. Since v+v′ can only represent non-negative integers,
in our case we just have to be sure that the intermediary results are always non-
negative; by doing first all the additions, then the subtractions, this is ensured.
This shows us that we can reorder the application of rules in such a way that first
all of the k-period-expanding ones are applied, then the k-period-reducing ones.
Only the original order of the length-increasing rules must be preserved, because
some long left side might be created only by earlier application of shorter ones.

We can partition a k-periodic SRS R into two systems R↗ and R↘, the first
of which contains all the k-period-expanding rules while the second one contains
all the k-period-reducing rules. Now we construct for R↗ the SRS S from the
proof of Proposition 4 and the corresponding mappings; for R↘ we construct
the SRS T from the proof of Proposition 9 and the corresponding mappings.
The considerations above then show us that

R∗(L) = h((T−1)∗(φ(δ((S)∗(g(. . . δ((S)∗(g(︸ ︷︷ ︸
|R↗| times

L))) . . .))))))

which proves the proposition’s claim. �

In most cases, k-periodic SRSs preserve also context-freeness. Only rules of the
formλ→ umust be excluded as can be seen from the various results in this section.

354 P. Leupold

4 Length-Bounded Relations

From prior work on the idempotency closure of single words we can deduce
several results. Namely all the cases, where already the closure of a single word
is not regular cannot preserve regularity in general. Thus we have the following.

Proposition 15. String-rewriting systems ≤k$%n
m do not preserve regularity

for the following combinations of parameters:

– k ≥ 1, m = 0, n ≥ 2,
– k ≥ 4, m = 1, n ≥ 2.

The second clause leaves the question of regularity preservation open for k ≤ 3
and this is the case we will treat now for n = 2.

Proposition 16. String-rewriting systems ≤k$%21 preserve regularity for k ≤ 3.

Proof. Since the left sides of all rules have at most three different letters, we can
restrict our attention to an alphabet of three letters here. We will decompose
the SRS ≤3$%21 into three regularity preserving ones. For this, notice that a rule
(a2, a4) can easily be simulated by two applications of the rule (a, a2). So with
left sides of length two, only rules (ab, (ab)2) with a �= b are necessary to obtain
the entire language. Similar considerations show that with left sides of length
three only rules (abc, (abc)2) for a �= b �= c are necessary. For example, the result
of (aba, (aba)2) can be obtained by first applying (ab, (ab)2) and then (a, a2). Let
us denote the sets of rules of the latter two types by Rab and Rabc respectively.

Let us define the letter sequence seq(u) of a word u as follows: any word u
can be uniquely factorized as u = xi1

1 x
i2
2 · · ·xi

� for some integers 	 ≥ 0 and
i1, i2, . . . , i� ≥ 1 and for letters x1, x2, . . . , x� such that always xj �= xj+1; then
seq(u) := x1x2 · · ·x�. Intuitively speaking, every block of several adjacent occur-
rences of the same letter is reduced to just one occurrence.

Now we can identify two classes of rules: Those from =1$%21 only change the
length of a consecutive block of occurrences of the same letter, but leave the let-
ter sequence unchanged. The other rules from Rab and Rabc do not change such
lengths but change the letter sequence. Changing the letter sequence does not af-
fect the possibilities of later expanding a block of letters, therefore the latter action
can be postponed and we see that L

≤3��2
1 = ((Rab ∪Rabc)∗(L))

=1��2
1 .

For the SRS Rab ∪Rabc it is obvious that the diamond property holds. There-
fore we can interchange the sequence in which rules are applied. This way we
can order them to first apply all the rules from Rabc, and thus we see that

L
≤3��2

1 = ((L
=3��2

1)
=2��2

1)
=1��2

1 .

The three systems applied on the right hand side preserve regularity by Propo-
sition 4, and thus also their composition does.

Now it is clear that also L
≤2��2

1 = (L
=2��2

1)
=1��2

1 . �

On Regularity-Preservation by String-Rewriting Systems 355

This also solves the problem whether ≤3$%21 preserves regularity, which was left
open in earlier work [7]. Through personal communication with Masami Ito
we know that also he has a proof for this fact, which is, however, based on a
automata-theoretic construction.

Proposition 17. String-rewriting systems ≤k$%n
m preserve regularity form ≥ n.

Proof. This proof goes along lines completely analogous to the one of Proposition
9. Therefore we omit here the definition of the mappings φ and h and only define
the modified, context-free SRS T derived from a given SRS ≤k$%n

m .

T := {[ui], (φ(uj)[1 . . . |uj−i|]) : (uj , ui) ∈ ≤k$%n
m }.

The differences to the system T from proof the of Proposition 9 are that the
length of u is not fixed, while the parameters m and n are.

Again, we can obtain L
≤k��n

m by a series of regularity-preserving operations
in the following way:

L
≤k��n

m = h((T−1)∗(φ(L))). �

Again, the consequence corresponding to Corollary 12 is true.

Corollary 18. String-rewriting systems ≤k$%n
m preserve context-freeness for

m ≤ n.

5 Outlook

When looking at the languages generated by idempotency relations without
length bounds from single words, we see that almost all cases generate non-
regular languages, Thus the questions treated here are not of great interest in
that context. However, when the size of the alphabet is limited to two or even
one letter, the picture changes [7,9]. The reason for this is mainly that often
–as in the case of duplication– there exists a finite SRS, which is equivalent to
the infinite one. For these cases also the closure of regular languages under the
respective SRSs is an interesting question. The cases of $%10 and $%01, however, are
regular over any alphabet size as shown in work summarized by Ito [6].

References

1. Book, R., Otto, F.: String-Rewriting Systems. Springer, Berlin (1993)
2. Bovet, D.P., Varricchio, S.: On the Regularity of Languages on a Binary Alphabet

Generated by Copying Systems. Information Processing Letters 44, 119–123 (1992)
3. Dassow, J., Mitranaand, V., Păun, G.: On the Regularity of Duplication Closure.

Bull. EATCS 69, 133–136 (1999)
4. Ehrenfeucht, A., Rozenberg, G.: On Regularity of Languages Generated by Copying

Systems. Discrete Applied Mathematics 8, 313–317 (1984)

356 P. Leupold

5. Hofbauer, D., Waldmann, J.: Deleting String-Rewriting Systems preserve regularity.
In: Theoretical Computer Science, vol. 327, pp. 301–317 (2004)

6. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific, New Jersey
(2004)

7. Ito, M., Leupold, P., Shikishima-Tsuji, K.: Closure of Language Classes under
Bounded Duplication. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036,
pp. 238–247. Springer, Heidelberg (2006)

8. Leupold, P.: Languages Generated by Iterated Idempotencies. Theoretical Computer
Science 370(1-3), 170–185 (2007)

9. Leupold, P.: General Idempotency Languages over Small Alphabets. Journal of Au-
tomata, Languages and Combinatorics (accepted for publication)

Minimizing Deterministic Weighted Tree

Automata

Andreas Maletti�

International Computer Science Institute
1947 Center Street, Suite 600

Berkeley, CA 94704, USA
maletti@icsi.berkeley.edu

Abstract. The problem of efficiently minimizing deterministic weighted
tree automata (wta) is investigated. Such automata have found promis-
ing applications as language models in Natural Language Processing. A
polynomial-time algorithm is presented that given a deterministic wta
over a commutative semifield, of which all operations including the com-
putation of the inverses are polynomial, constructs an equivalent minimal
(with respect to the number of states) deterministic and total wta. If the
semifield operations can be performed in constant time, then the algo-
rithm runs in time O(rmn4) where r is the maximal rank of the input
symbols, m is the number of transitions, and n is the number of states
of the input wta.

1 Introduction

Weighted tree automata (wta) [9,8,20,6] are a joint generalization of weighted
string automata [21] and tree automata [14,15]. Weighted string automata have
successfully been applied as language models in Natural Language Processing
largely due to their ability to easily incorporate n-gram models. Several tool-
kits (e.g., Carmel [16], Fire Station [13], and OpenFst [1]) enable language
engineers to rapidly prototype and develop language models because of the stan-
dardized implementation model and the consolidated algorithms made available
by the toolkits.

In recent years, the trend toward more syntactical approaches in Natural
Language Processing [19] sparked renewed interest in tree-based devices. The
weighted tree automaton is the natural tree-based analogue of the weighted
string automaton. First experiments with toolkits (e.g., Tiburon [24]) based
on tree-based devices show that the situation is not as consolidated here. In
particular, many basic algorithms are missing in the weighted setting.

In general, a wta processes a given input tree stepwise using a locally specified
transition behavior. During this process transition weights are combined using the

� Author on leave from Technische Universitãt Dresden, Faculty of Computer Science,
01062 Dresden, Germany with the help of financial support by a DAAD (German
Academic Exchange Service) grant.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 357–372, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

358 A. Maletti

operations (addition and multiplication) of a semiring to form the weight associ-
ated with the input tree. Altogether, the wta thus recognizes (or computes) a map-
ping ϕ : TΣ → A where TΣ is the set of all input trees and A is the carrier set of
the semiring. Such a mapping is also called a tree series, and if it can be computed
by a wta, then it is recognizable. The deterministically recognizable tree series are
exactly those recognizable tree series that can be computed by deterministic wta.
Recognizable and deterministically recognizable tree series have been thoroughly
investigated (see [20,5] and references provided therein). In fact, [6] and [23] show
which recognizable tree series are also deterministically recognizable.

In this contribution, we consider deterministically recognizable tree series. To
the author’s knowledge, we propose the first polynomial-time minimization algo-
rithm for deterministic wta over semifields. A Myhill-Nerode theorem for tree
series recognized by such automata is known [3]. However, it only asserts the exis-
tence of a unique, up to slight changes of representation, minimal (with respect to
the number of states) deterministic wta recognizing a given tree series. The con-
struction of such a wta, which is given in [3], is not effective, but with the help
of the pumping lemma of [4] an exponential-time algorithm, which given a deter-
ministic wta constructs an equivalent minimal deterministic and total wta, could
easily be derived. For (not necessarily deterministic) wta over fields the situation
is similar. In [9,7] the existence of a unique, up to slight changes of representation,
minimal wta is proved. Moreover, [7] shows that minimization is effective by pro-
viding the analogue to the pumping argument already mentioned above in this
more general setting. However, the trivially obtained algorithm is exponential.

Angluin [2] learning algorithms exist for both general [17] and determinis-
tic [11,22] wta. In principle, those polynomial-time learning algorithms could
also be used for minimization since they produce minimal wta recognizing the
taught tree series. However, this also requires us to implement the oracle, which
answers coefficient and equivalence queries. Although equivalence is decidable
in polynomial time in both cases [26,4], a simple implementation would return
counterexamples of exponential size, which would yield an exponential-time min-
imization algorithm. Clearly, this can be avoided by the method presented in this
contribution.

Finally, let us mention the minimization procedures [25,12] for deterministic
weighted string automata. They rely on a weight normal-form obtained by a
procedure called pushing. After this normal form is obtained, the weight of a
transition is treated as an input symbol and the automaton is minimized as if
it were unweighted. We do not follow this elegant approach here because we
might have to explore several distributions of the weight to the input states of a
transition (in a tree automaton a transition can have any number of input states
whereas in a string automaton it has exactly one) during pushing. It remains
open whether there is an efficient heuristic that prescribes how to distribute the
weight such that we obtain a minimal deterministic wta recognizing the given
series after the unweighted minimization.

Herewe give a directminimization construction,whichuses partition refinement
as in the unweighted case [10]. To this end, we first define the Myhill-Nerode

Minimizing Deterministic Weighted Tree Automata 359

relation on states of the deterministic input wta. This definition, as well as
the Myhill-Nerode relation on tree series [3], will include a scaling factor
and Algorithm 2 will determine those scaling factors. In the refinement process
(see Definition 13) we check for the congruence property (as in the unweighted
case) and the consistency of the weight placement on the transitions. Overall,
our algorithm runs in time O(rmn4) where r is the maximal rank of the input
symbols, m is the number of transitions, and n is the number of states of the
input wta.

2 Preliminaries

The set of nonnegative integers is IN. Given l, u ∈ IN we denote
{i ∈ IN | l ≤ i ≤ u} simply by [l, u]. Let n ∈ IN and Q a set. We write Qn

for the n-fold Cartesian product of Q. The empty tuple () ∈ Q0 is some-
times displayed as ε. We reserve the use of a special symbol � /∈ Q. The set of
n-ary contexts over Q, denoted by Cn(Q), is

⋃
i+j+1=nQ

i × {�} × Qj . Given
C ∈ Cn(Q) and q ∈ Q we write C[q] to denote the tuple of Qn obtained from C
by replacing � by q.

An equivalence relation ≡ on Q is a reflexive, symmetric, and transitive subset
ofQ2. Let ≡ and ≡′ be equivalence relations on Q. Then ≡ is a refinement of ≡′ if
≡ ⊆ ≡′. The equivalence class of q ∈ Q is [q]≡ = {q′ ∈ Q | q′ ≡ q}. Whenever ≡
is obvious from the context, we simply omit it. The system (Q/≡) = {[q] | q ∈ Q}
actually forms a partition of Q; i.e., a system Π of subsets (also called blocks)
of Q such that

⋃
P∈Π P = Q and P ∩ P ′ = ∅ for every P, P ′ ∈ Π with P �= P ′.

A mapping r : (Q/≡) → Q is a representative mapping if r(P) ∈ P for every
P ∈ (Q/≡). The number of blocks of (Q/≡) is denoted by index(≡). Let Π be
any partition on Q and F ⊆ Q. The equivalence relation ≡Π on Q is defined for
every p, q ∈ Q by p ≡Π q if and only if {p, q} ⊆ P for some block P ∈ Π . We
say that Π saturates F if ≡Π is a refinement of ≡{F,Q\F}; i.e.,

⋃
P∈Π′ P = F

for some Π ′ ⊆ Π .
An alphabet is a finite and nonempty set of symbols. A ranked alpha-

bet (Σ, rk) is an alphabet Σ and a mapping rk: Σ → IN. Whenever rk is
clear from the context, we simply drop it. The subset of n-ary symbols of Σ is
Σn = {σ ∈ Σ | rk(σ) = n}. The set TΣ(Q) of Σ-trees indexed by Q is inductively
defined to be the smallest set such that Q ⊆ TΣ(Q) and σ(t1, . . . , tn) ∈ TΣ(Q)
for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). We write TΣ for TΣ(∅). The mapping
var: TΣ(Q) → P(Q), where P(Q) is the power set of Q, is inductively defined
by var(q) = {q} for every q ∈ Q and var(σ(t1, . . . , tn)) =

⋃n
i=1 var(ti) for every

σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). For every P ⊆ Q, we use varP(t) as a short-
hand for var(t) ∩ P. Moreover, we use |t|q to denote the number of occurrences
of q ∈ Q in t ∈ TΣ(Q). Finally, we define the height and size of a tree with
the help of the mappings ht, size : TΣ(Q) → IN inductively for every q ∈ Q by
ht(q) = size(q) = 1 and ht(σ(t1, . . . , tn)) = 1 + max{ht(ti) | i ∈ [1, n]} and
size(σ(t1, . . . , tn)) = 1 +

∑n
i=1 size(ti) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q).

Note that max ∅ = 0.

360 A. Maletti

The set CΣ(Q) of Σ-contexts indexed by Q is defined as the smallest set such
that � ∈ CΣ(Q) and σ(t1, . . . , ti−1, C, ti+1, . . . , tn) ∈ CΣ(Q) for every σ ∈ Σn

with n ≥ 1, index i ∈ [1, n], t1, . . . , tn ∈ TΣ(Q), and C ∈ CΣ(Q). We write CΣ

for CΣ(∅). Note that CΣ(Q) ⊆ TΣ(Q ∪ {�}). Next we recall substitution. Let
V be an alphabet (possibly containing �), v1, . . . , vn ∈ V be pairwise distinct,
and t1, . . . , tn ∈ TΣ(V). Then we denote by t[vi ← ti | 1 ≤ i ≤ n] the tree
obtained from t by replacing every occurrence of qi by ti for every i ∈ [1, n]. We
abbreviate C[� ← t] simply by C[t] for every C ∈ CΣ(Q) and t ∈ TΣ(V).

A (commutative) semiring is a tuple A = (A,+, ·, 0, 1) such that (A,+, 0)
and (A, ·, 1) are commutative monoids; a · 0 = 0 = 0 · a for every a ∈ A; and
· distributes over + from both sides. The semiring A is a semifield if for every
a ∈ A\{0} there exists a−1 ∈ A such that a ·a−1 = 1. A tree series is a mapping
ϕ : T → A where T ⊆ TΣ(Q). The set of all such tree series is denoted by A〈〈T 〉〉.
For every ϕ ∈ A〈〈T 〉〉 and t ∈ T , the coefficient ϕ(t) is usually denoted by (ϕ, t).

A weighted tree automaton [9,8,20,6] (for short: wta) is a tuple
M = (Q,Σ,A, µ, ν) such that (i) Q is an alphabet of states; (ii) Σ is a ranked
alphabet; (iii) A = (A,+, ·, 0, 1) is a (commutative) semiring; (iv) µ = (µn)n≥0

with µn : Σn → AQn×Q; and (v) ν ∈ AQ is a final weight vector. The semantics
of M is the tree series ϕM ∈ A〈〈TΣ〉〉 given by (ϕM , t) =

∑
q∈Q hµ(t)q · νq (or

simply the scalar product hµ(t)·ν) where hµ : TΣ → AQ is inductively defined by

hµ(σ(t1, . . . , tn))q =
∑

q1,...,qn∈Q

µn(σ)(q1,...,qn),q ·
n∏

i=1

hµ(ti)qi

for every σ ∈ Σn, q ∈ Q, and t1, . . . , tn ∈ TΣ . The wtaM is said to recognize ϕM

and two wta are equivalent if they recognize the same tree series.
The wtaM is deterministic and total [6] if for every σ ∈ Σn and w ∈ Qn there

exists exactly one q ∈ Q such that µn(σ)w,q �= 0. Since we will exclusively deal
with deterministic and total wta over semifields from now on, we will use the
following representation: M = (Q,Σ,A, δ, c, ν) where δ ⊆

⋃
n≥0Q

n ×Σn ×Q is
finite and c : δ → A \ {0}. In particular, (w, σ, q) ∈ δ if and only if µn(σ)w,q �= 0,
and for every τ = (w, σ, q) ∈ δ we have c(τ) = µn(σ)w,q. The determinism and to-
tality restriction ensures that δ can be represented as (δσ)σ∈Σ with δσ : Qn → Q.
We extend δ to a mapping δ : TΣ(Q) → Q as follows: δ(q) = q for every q ∈ Q and
δ(σ(t1, . . . , tn)) = δσ(δ(t1), . . . , δ(tn)) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q).
A state q ∈ Q is useful if there exists t ∈ TΣ such that δ(t) = q. The deter-
ministic and total wta M is said to have no useless states if all states of Q are
useful.

Similarly, c can be represented as (cσ)σ∈Σ with cσ : Qn → A\ {0}. Due to the
semifield restriction, this can be extended to a mapping c : TΣ(Q) → A \ {0} by
c(q) = 1 for every q ∈ Q and c(σ(t1, . . . , tn)) = cσ(δ(t1), . . . , δ(tn)) ·

∏n
i=1 c(ti)

for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). It is then easy to show that
(ϕM , t) = c(t) · νδ(t) for every t ∈ TΣ . In fact, we extend ϕM to a tree se-
ries of A〈〈TΣ(Q)〉〉 by defining (ϕM , t) = c(t) · νδ(t) for every t ∈ TΣ(Q). The
following property, which will be used without explicit mention in the sequel,
follows immediately.

Minimizing Deterministic Weighted Tree Automata 361

Proposition 1 (cf. [3, Theorem 1]). We have (ϕM , t) = 0 if and only if
νδ(t) = 0 for every t ∈ TΣ(Q). Moreover,

c(t[qi ← ti | 1 ≤ i ≤ n]) = c(t) ·
n∏

i=1

c(ti)|t|qi

for all pairwise distinct q1, . . . , qn ∈ Q and t1, . . . , tn ∈ TΣ(Q) such that
δ(ti) = qi for every i ∈ [1, n].

Finally, let us recall the Myhill-Nerode congruence relation [3] for tree se-
ries. To this end, we first recall Σ-algebras and congruences. A Σ-algebra (S, f)
consists of a carrier set S and f = (fσ)σ∈Σ such that fσ : Sn → S for every
σ ∈ Σn. The term Σ-algebra is given by (TΣ, Σ) where Σ = (σ)σ∈Σ with
σ(t1, . . . , tn) = σ(t1, . . . , tn) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ. In the se-
quel, we will drop the overlining. Note that (Q, δ) is a Σ-algebra. Let ≡ be an
equivalence relation on S. Then ≡ is a congruence of (S, f) if for every σ ∈ Σn

and s1, . . . , sn, t1, . . . , tn ∈ S such that si ≡ ti for every i ∈ [1, n] we also have
fσ(s1, . . . , sn) ≡ fσ(t1, . . . , tn).

Let ϕ ∈ A〈〈TΣ〉〉. The Myhill-Nerode [3] relation ≡ϕ ⊆ TΣ × TΣ is defined
for every t, u ∈ TΣ by t ≡ϕ u if and only if there exists a ∈ A \ {0} such that
(ϕ,C[t]) = a · (ϕ,C[u]) for every C ∈ CΣ . We note that ≡ϕ is a congruence
of (TΣ , Σ) [3, Lemma 5].

3 Myhill-Nerode Relation

In this section, we recall the theoretical foundations for the minimization pro-
cedure and introduce the Myhill-Nerode relation on states of a deterministic
and total wta. We keep it short because most of the material is only slightly
adapted. Readers who are familiar with the Myhill-Nerode congruence ≡ϕ

for a tree series ϕ may decide to read only Definition 2 and proceed to the next
section. For the rest of the paper, let M = (Q,Σ,A, δ, c, ν) be a deterministic
and total wta without useless states and A = (A,+, ·, 0, 1) a semifield, of which
multiplication and calculation of inverses can be performed in constant time.
Note that, depending on the actual semifield used, this might be an unrealistic
assumption, but it simplifies the complexity analysis and is typically true for the
fixed-precision arithmetic implemented on stock hardware. Finally, let ϕ = ϕM .

Definition 2 (cf. [3, page 8]). The Myhill-Nerode relation ≡ ⊆ Q×Q is
defined for every p, q ∈ Q by p ≡ q if and only if there exists a ∈ A \ {0} such
that (ϕ,C[p]) = a ·(ϕ,C[q]) for every C ∈ CΣ. We denote such a scaling factor a
by ap,q for every p, q ∈ Q such that p ≡ q.

Note the similarity with the definition of the Myhill-Nerode relation ≡ϕ [3].
This similarity allows us to retain some of the useful properties of ≡ϕ. In the
remainder of this section, we show some of those properties. We start with the
fact that ≡ is a congruence relation on (Q, δ).

362 A. Maletti

Proposition 3 (cf. [3, Lemma 5]). The relation ≡ is a congruence relation
on (Q, δ).

The next lemma introduces a more restricted variant of ≡ and relates it to ≡.
The more restricted variant will be very useful in the sequel and allows us to
avoid an exponential blow-up.

Lemma 4. The relation ≡′ ⊆ Q×Q, which is given for every p, q ∈ Q by p ≡′ q
if and only if there exists a ∈ A \ {0} such that (ϕ,C[p]) = a · (ϕ,C[q]) for every
C ∈ CΣ(Q), coincides with ≡.

In fact, for every p, q ∈ Q such that p ≡ q the scaling factor ap,q also verifies
p ≡′ q. This leads to the second main property (the first being the congruence
property) that we will later use for refinement (see Proposition 12). The final
lemma of this section establishes the relation of ≡ to ≡ϕ. Note that index(≡ϕ)
coincides with the number of states of a minimal deterministic and total wta
recognizing ϕ [3, Theorem 3].

Lemma 5. index(≡) = index(≡ϕ).

Proof. Let t, u ∈ TΣ such that t ≡ϕ u. There exists a ∈ A \ {0} such that
(ϕ,C[t]) = a · (ϕ,C[u]) for every C ∈ CΣ . We reason as follows:

c(t) · (ϕ,C[δ(t)]) = (ϕ,C[t]) = a · (ϕ,C[u]) = a · c(u) · (ϕ,C[δ(u)]) .

Since a · c(t)−1 · c(u) does not depend on C, we obtain δ(t) ≡ δ(u). Since M has
no useless states, ≡ thus has at most as many equivalence classes as ≡ϕ. For
the converse, let p, q ∈ Q such that p ≡ q. Moreover, let t, u ∈ TΣ be such that
δ(t) = p and δ(u) = q. Then analogous to the above we can prove that t ≡ϕ u.
Hence, index(≡) and index(≡ϕ) coincide. �

4 Minimization Algorithm

In this section, we will develop our minimization algorithm for deterministic
wta. Throughout, let F = {q ∈ Q | νq �= 0}. Note that any deterministic
wta M ′ can be converted in linear time (in the number of transitions) into an
equivalent deterministic and total wta without useless states. In contrast to the
classical minimization algorithm for deterministic unweighted tree automata, we
need to determine the scaling factor ap,q (see Definition 2) for each pair (p, q) of
equivalent states. We will use the concept of a sign of life to help us determine it.

Definition 6. A state q ∈ Q is live if δ(C[q]) ∈ F for some context C ∈ CΣ(Q).
Such a context is called a sign of life of q. If no sign of life of q exists, then q is
dead.

Roughly speaking, a state q is live if some final state can be reached from it.
A sign of life of q shows one such path. Note that the sign-of-life context may
contain states. Our first task is to determine signs of life for all states. This also

Minimizing Deterministic Weighted Tree Automata 363

identifies live and dead states. Let n be the number of states ofM ,m the number
of transitions of M , and r the maximal rank of the symbols in Σ. To simplify
the complexity statements, suppose that r ≥ 1. Note that consequently m ≥ n.

.Algorithm 1 ComputeSoL(M): Compute signs of life and initial partition.
Require: deterministic and total wta M = (Q, Σ, A, δ, c, ν)

D ← Q \ F // unexplored states
2: sol ← {(q, �) | q ∈ F} // final states have trivial sign of life

T ← {(w, σ, q) ∈ δ | q ∈ F} // add all transitions leading to a final state to FIFO queue
4: while T
= ∅ do

let τ = ((q1, . . . , qk), σ, q) ∈ T // get first element in FIFO queue T
6: I ← {i ∈ [1, k] | qi ∈ D, ∀j ∈ [1, i − 1] : qj
= qi} // select indexes of unexplored states

sol ← sol ∪ {(qi, sol(q)[σ(q1, . . . , qi−1, �, qi+1, . . . , qk)]) | i ∈ I} // add signs of life
8: P ← {qi | i ∈ I} // new live states

D ← D \ P // remove new live states from unexplored states
10: T ← (T \ {τ}) ∪ {(w, γ, p) ∈ δ | p ∈ P} // add all transitions leading to new live states

end while
12: Π ← {{q ∈ Q \ D | ht(sol(q)) = i} | i ≥ 1} ∪ {D} // group states by height of sign of life

return (Π, sol, D)

Algorithm 1 returns an initial partition Π , signs of life sol, and the set D of
dead states. Let us make two remarks. First, it is essential that T is handled
as a FIFO queue with additions at the end and removal at the beginning. This
guarantees that the height of the constructed signs of life is minimal. Second,
∅ might be an element of Π . To avoid complicated case distinctions, we permit
this slightly nonstandard behavior, which does not affect the correctness of our
algorithms.

Lemma 7. Let (Π, sol,D) be the result of running Algorithm 1 on M .
Then sol(q) is a sign of life of q of size at most rn for every state q of Q \D,
D is the set of all dead states, Π saturates F , and ≡ is a refinement of ≡Π.
Moreover, Algorithm 1 can be implemented to run in time O(rm).

Proof. Lines 1–3 run in time O(m) because m ≥ n. Clearly, each transition can
be added at most once to T , so lines 4–11 can be executed at most m times.
Lines 6–8 can be executed in time O(r); note that this requires a list representa-
tion of the signs of life (i.e., a sign of life is a list of pairs consisting of a transition
and an integer indicating the position of �) to avoid the creation and/or copying
of transitions. If we suppose that access to the list of transitions leading to a
certain state is constant (which can be achieved by a O(m) preprocessing step
sorting the transitions in n buckets), then line 10 can be executed in O(r) time.
Since r ≥ 1, we obtain a running time of O(rm). Finally, we note that the par-
tition constructed in line 12 could have been constructed during the loop at no
additional expense; we presented it this way for clarity.

Next, we prove that sol(q) is indeed a sign of life of q for every q ∈ Q\D. The
trivial contexts added for each final state in line 2 are obviously signs of life.

364 A. Maletti

It remains to show that C, the second component in the pair of line 7, is a sign
of life of qi. By induction hypothesis, we may assume that sol(q) is a sign of life
of q; i.e., δ(sol(q)[q]) ∈ F. SinceM is deterministic and ((q1, . . . , qk), σ, q) ∈ δ, we
obtain δ(C[qi]) = δ(sol(q)[q]) ∈ F and thus C is a sign of life of qi. It is obvious
that Π saturates F . We leave the proof of the fact that D is indeed the set of
all dead states to the reader.

Clearly, final states are assigned a sign of life of height 1 and size 1 ≤ r. Further
signs of life are always constructed as C = sol(q)[σ(q1, . . . , qi−1,�, qi+1, . . . , qk)]
(see line 7). Thus, the height (respectively, the size) of the new sign of life C is 1
(respectively, at most r) greater than that of the sign of life sol(q). Consequently,
height and size of every sign of life sol(q) with q ∈ Q \D are at most n and rn,
respectively. Finally, we have to show that ≡ is a refinement of ≡Π . To this
end, we have to show that p ≡ q implies that p ≡Π q for every p, q ∈ Q. Let
p, q ∈ Q be such that p ≡ q. Clearly, p and q share all signs of life (see Lemma 4).
Consequently, if p is dead, then also q must be dead, and in that case, p ≡Π q.
Otherwise, p and q are live. We already remarked that Algorithm 1 computes
signs of life that are minimal in height; the proof of that statement is left as an
exercise. The height-minimal sign of life sol(p) must be a sign of life of q as well,
and consequently, ht(sol(p)) = ht(sol(q)), which yields p ≡Π q. �

We allow contexts of CΣ(Q) instead of only contexts of CΣ as signs of life in
order to obtain the linear size complexity given in Lemma 7. The more common
approach to use contexts of CΣ would yield signs of life, whose size might be
exponential in n. Since we will run M on signs of life, this would have led to an
exponential time complexity.

The principal approach of the minimization algorithm is partition refine-
ment as, for example, in the classical minimization algorithm for minimizing
unweighted deterministic tree automata [10]. We successively refine the initial
partition returned by Algorithm 1 until ≡ is reached. Before we turn to more
detail, let us introduce the main data structure.

Definition 8. Let Π be a partition of Q that saturates F , L ⊆ Q be the set
of live states, sol : L → CΣ(Q) be such that sol(q) is a sign of life of q for
every q ∈ L, f : L → A \ {0}, and r : (Π \ {∅, Q \ L}) → Q a representative
mapping. Then (Π, sol, f, r) is a stage if

(i) ≡ is a refinement of ≡Π;
(ii) sol(q) = � for every q ∈ F ; and

(iii) for every q ∈ L we have (ϕ, sol(p)[q]) = f(q) · (ϕ, sol(p)[p]) where p = r([q]).

The stage is stable if additionally

(iv) ≡Π is a congruence of (Q, δ); and
(v) for every q ∈ L, σ ∈ Σn, and C ∈ Cn(Q) such that δσ(C[q]) ∈ L

f(q)−1 · cσ(C[q]) · f(δσ(C[q])) = cσ(C[p]) · f(δσ(C[p]))

where p = r([q]).

Minimizing Deterministic Weighted Tree Automata 365

In a stage, we have a partition, signs of life, and two new components. The
mapping r assigns to each nonempty block (apart from the block of dead states)
of the partition a representative and the mapping f assigns to each live state
the scaling factor to the representative of its block [see Condition (iii)]. A stable
stage additionally requires ≡Π to be a congruence of (Q, δ) and Condition (v),
which is of paramount importance in the implementation (as a wta) of a stable
stage. Let us show how to derive a deterministic and total wta recognizing ϕ
from a stable stage.

Definition 9 (cf. [3, Definition 4]). Let S = (Π, sol, f, r) be a stable stage and
D the set of dead states. The wta MS = (Π \ {∅}, Σ,A, δ′, c′, ν′) is constructed
as follows: for every σ ∈ Σk and q1, . . . , qk ∈ Q let

– δ′σ([q1], . . . , [qk]) = [δσ(q1, . . . , qk)];
– c′σ([q1], . . . , [qk]) = 1 if δσ(q1, . . . , qk) ∈ D and otherwise

c′σ([q1], . . . , [qk]) =
k∏

i=1

f(qi)−1 · cσ(q1, . . . , qk) · f(δσ(q1, . . . , qk))

– ν′B = νr(B) for every B ∈ Π \ {∅, D} and if D ∈ Π \ {∅}, then ν′D = 0.

The construction of MS can be implemented to run in time O(rm). However,
some remarks are required here. First, δ′ is well-defined because ≡Π is a con-
gruence on (Q, δ). Second, let us consider the definition of c′. Suppose that
p1, . . . , pk, q1, . . . , qk ∈ Q such that pi ≡Π qi for every i ∈ [1, k]. By the con-
gruence property and Condition (i) of Definition 8, the case distinction is well-
defined. We show that

k∏
i=1

f(pi)−1 · cσ(p1, . . . , pk) · f(δσ(p1, . . . , pk))

=
k∏

i=2

f(pi)−1 · cσ(r([p1]), p2, . . . , pk) · f(δσ(r([p1]), p2, . . . , pk))

= . . .

= cσ(r([p1]), . . . , r([pk])) · f(δσ(r([p1]), . . . , r([pk])))
= cσ(r([q1]), . . . , r([qk])) · f(δσ(r([q1]), . . . , r([qk])))
= . . .

=
k∏

i=2

f(qi)−1 · cσ(r([q1]), q2, . . . , qk) · f(δσ(r([q1]), q2, . . . , qk))

=
k∏

i=1

f(qi)−1 · cσ(q1, . . . , qk) · f(δσ(q1, . . . , qk))

by repeated application of Condition (v) of Definition 8, which proves the well-
definedness of c′. It is obvious that MS has index(≡Π) many states. We should
finally show that MS recognizes ϕ.

366 A. Maletti

Theorem 10. Let S = (Π, sol, f, r) be a stable stage and MS = (Q′, Σ,A,
δ′, c′, ν′). Then MS is a minimal deterministic and total wta recognizing ϕ.

Proof. Let us first show that MS recognizes ϕ. From the classical minimization
construction it should be clear that δ(t) ∈ δ′(t) for every t ∈ TΣ. We prove the
statement c(t) = c′(t) ·f(δ(t))−1 by induction on t. Let t = σ(t1, . . . , tk) for some
σ ∈ Σk and t1, . . . , tk ∈ TΣ . By definition

c(t) = cσ(δ(t1), . . . , δ(tk)) ·
k∏

i=1

c(ti) = cσ(δ(t1), . . . , δ(tk)) ·
k∏

i=1

(
c′(ti) ·f(δ(ti))−1

)
where the last equality is by induction hypothesis. We finish the proof of the
auxiliary statement using the definition of c′ and δ(ti) ∈ δ′(ti)

c(t) = c′σ(δ′(t1), . . . , δ′(tk))·
k∏

i=1

c′(ti)·f(δσ(δ(t1), . . . , δ(tk)))−1 = c′(t)·f(δ(t))−1 .

We now continue for every t ∈ TΣ with a case distinction. Let q = δ(t).
If q /∈ F , then (ϕ, t) = 0 and (ϕMS , t) = 0 because ν′[q] = 0 (recall that Π
saturates F). If q ∈ F , then

(ϕMS , t) = c′(t) · ν′[q] = c(t) · f(q) · νr([q]) = c(t) · νq = (ϕ, t)

by Conditions (ii) and (iii) of Definition 8 since sol(r([q])) = �. Thus, we proved
that MS recognizes ϕ. By Lemma 5 and [3, Theorem 3], index(≡) is the number
of states of a minimal deterministic and total wta recognizing ϕ. The wta MS

has index(≡Π) states and by Condition (i) of Definition 8, ≡ is a refinement
of ≡Π , hence index(≡Π) ≤ index(≡). Consequently, ≡Π coincides with ≡ and
MS is a minimal deterministic and total wta recognizing ϕ. �

Note that the above theorem also shows that (Π, sol, f, r) can only be a stable
stage if ≡Π coincides with ≡. Since we already have a suitable initial partition
that saturates F along with suitable signs of life, our next step is to determine
the scaling factors (see Definition 2). To this end, we employ Algorithm 2, which
is given a partition and computes the scaling factor for each element relative to
a chosen representative of its block. If it cannot compute such a scaling factor
(which only happens when the sign of life of the representative is not a sign
of life of the considered state), then it splits the state from its current block.
The algorithm completely ignores the block of dead states. This can be done
because the block of dead states will never be split (since p ≡ q whenever both
p and q are dead). The idea of our minimization algorithm is to refine the initial
partition returned by Algorithm 1 until we reach ≡. Algorithm 2 completes a
suitable partition to a stage.

Lemma 11. Given signs of life of Algorithm 1 and a partition Π such that ≡
is a refinement of ≡Π , Algorithm 2 can be implemented to run in time O(rn3)
and returns a stage (Π ′, sol, f, r) such that ≡Π′ is a refinement of ≡Π .

Minimizing Deterministic Weighted Tree Automata 367

Algorithm 2. Complete(M, Π, sol, D): Compute scaling factors.

Require: deterministic and total wta M = (Q, Σ, A, δ, c, ν), set D of dead states, sign
of life sol(q) for every q ∈ Q \ D, and a partition Π such that ≡ is a refinement
of ≡Π

f ← ∅ // map of scaling factors
2. r ← ∅ // map of representatives

Π ← Π \ {D} // remove block of dead states
4. Π ′ ← {D} // output partition containing block of dead states

while Π
= ∅ and Π
= {∅} do
6. let P ∈ Π and p ∈ P // select new block and representative

P ′ ← {q ∈ P | δ(sol(p)[q]) ∈ F} // collect states that share sign of life sol(p)
8. f ← f ∪ {(q, c(sol(p)[q]) · c(sol(p)[p])−1) | q ∈ P′} // add scaling factors

r ← r ∪ {(P ′, p)} // add representative for P ′

10. Π ′ ← Π ′ ∪ {P ′} // block P ′ is processed
Π ← (Π \ {P}) ∪ {P \ P ′} // remove old block and add new block P \ P ′

12. end while
return (Π ′, sol, f, r)

Proof. We defer correctness for the moment. The loop in lines 5–12 can be
executed at most n times as each time at least one state is processed. Evaluating
the sign of life takes at most O(rn) since the size of any sign of life is at most rn.
Thus, lines 7-8 execute in O(rn2) and the whole algorithm runs in time O(rn3).
Now, let us consider correctness. It should be clear that Condition (ii) holds
and Condition (iii) holds because it is enforced in line 8. It remains to check
Condition (i). Clearly, ≡Π′ is a refinement of ≡Π and by assumption ≡ is a
refinement of ≡Π . Let p, q ∈ Q such that p ≡ q. Consequently, p ≡Π q. Let p′ ∈ Q
be such that p ≡Π p′ (cf. the selection in line 6). Then δ(sol(p′)[p]) ∈ F if and
only if δ(sol(p′)[q]) ∈ F because (ϕ, sol(p′)[p]) �= 0 if and only if (ϕ, sol(p′)[q]) �= 0
by p ≡ q. This yields that independently of the selection of the representative in
line 6, p and q cannot be split in line 7, and hence p ≡Π′ q. �

Note that Π ′ saturates F whenever Π does because ≡Π′ is a refinement of ≡Π .
As in the unweighted case [10], we use a partition refinement algorithm to com-
pute the Myhill-Nerode relation. To this end, we start with the initial par-
tition computed by Algorithm 1 and complete it to a stage with the help of
Algorithm 2. Then we refine according to Conditions (iv) and (v) of Defini-
tion 8. For this to work, variants of these conditions should also be fulfilled
by ≡. We already proved in Proposition 3 that ≡ is a congruence of (Q, δ) as
in the classical unweighted case. Second, the weights of transitions from equiva-
lent states leading to live states must obey a certain compatibility requirement,
which we show in the next proposition.

Proposition 12. For every σ ∈ Σk, C ∈ Ck(Q), and p, q ∈ Q such that p ≡ q
and δσ(C[p]) is live, we have a−1

p,q ·cσ(C[p]) ·ap′,q′ = cσ(C[q]) where p′ = δσ(C[p])
and q′ = δσ(C[q]).

Proof. Since p′ is live, there exists a context C′ ∈ CΣ(Q) such that δ(C′[p′]) ∈ F .
Consider the context C′′ = C′[σ(C)]. Since p ≡ q, and thus p ≡′ q by Lemma 4,

368 A. Maletti

it follows that (ϕ,C′′[p]) = ap,q · (ϕ,C′′[q]). In addition, p′ ≡ q′ because ≡ is a
congruence. Now we compute as follows:

cσ(C[p]) · (ϕ,C′[p′]) = (ϕ,C′′[p]) = ap,q · (ϕ,C′′[q])

= ap,q · cσ(C[q]) · (ϕ,C′[q′]) = ap,q · cσ(C[q]) · a−1
p′,q′ · (ϕ,C′[p′]) .

Since (ϕ,C′[p′]) �= 0 because δ(C′[p′]) ∈ F , we obtain the statement by cancelling
(ϕ,C′[p′]). �

In the classical unweighted case, only the congruence property is used to refine.
The additional constraint basically restricts the weights on the transitions whereas
the congruence property only restricts the presence/absence of transitions. Alto-
gether, the previous proposition suggests the following refinement step.

Definition 13. Let (Π, sol, f, r) be a stage and D be the set of dead states. Then
the refinement Refine(M,Π, sol, f, r,D) is defined to be the partition Π ′ such
that for every p, q ∈ Q we have p ≡Π′ q if and only if p ≡Π q and for every
σ ∈ Σk and C ∈ Ck(Q)

(i) δσ(C[p]) ≡Π δσ(C[q]); and
(ii) f(p)−1 · cσ(C[p]) · f(δσ(C[p])) = f(q)−1 · cσ(C[q]) · f(δσ(C[q])), if δσ(C[p])

is live.

The following lemma shows that Refine refines in the desired manner. In par-
ticular, whenever ≡ is a refinement of ≡Π , then ≡ is also a refinement of ≡Π′ .
Thus, we only refine to the level of ≡ and never beyond. This simple property
follows in a straightforward manner from Definition 13 and Proposition 12.

Lemma 14. Let (Π, sol, f, r) be a stage and D the set of dead states.
Refine(M,Π, sol, f, r,D) can be implemented to run in time O(rmn2). More-
over, the resulting partition Π ′ is such that ≡Π′ is a refinement of ≡Π, and if
≡ is a refinement of ≡Π, then ≡ is a refinement of ≡Π′ .

Again note that whenever Π saturates F , then also Π ′ saturates F simply be-
cause ≡Π′ is a refinement of ≡Π . We are now ready to state the main minimiza-
tion algorithm.

Algorithm 3. Minimization of deterministic wta
Require: deterministic and total wta M = (Q, Σ, A, δ, c, ν) without useless states

(Π ′, sol, D) ← ComputeSoL(M) // see Algorithm 1; complexity: O(rm)
2. repeat

(Π, sol, f, r) ← Complete(M, Π′, sol, D) // see Algorithm 2; complexity: O(rn3)
4. Π ′ ← Refine(M, Π, sol, f, r, D) // see Definition 13; complexity: O(rmn2)

until Π ′ = Π
6. return M(Π,sol,f,r) // see Definition 9; complexity O(rm)

Minimizing Deterministic Weighted Tree Automata 369

Theorem 15. A minimal deterministic and total wta M ′ recognizing ϕ can be
obtained in time O(rmn4).

Proof. The loop in lines 2–5 in Algorithm 3 can be entered at most n times, which
immediately yields the required time bound using Lemmata 7, 11, and 14. The
initial partition Π ′ in line 1 saturates F and so does every subsequent parti-
tion. Moreover, by Lemmata 11 and 14, ≡ is a refinement of every subsequent
≡Π and ≡Π′ because ≡ is a refinement of ≡Π′ in line 1 by Lemma 7. Con-
sequently, every Π is a stage by Lemma 11, and if Π = Π ′ in line 5, then
(Π, sol, f, r) is a stable stage. By Theorem 10, the wta returned in line 6 is a
minimal deterministic and total wta recognizing ϕ. �

5 A Small Example

Let us discuss the example of [22] (with one minor modification), which presents
a simplistic wta for simple English sentences. It penalizes long sentences by de-
creasing their score. The score will be a real number and we will use (IR,+, ·, 0, 1)
as the underlying field. Our ranked alphabet is

Σ = {σ,Alice,Bob, loves, hates, ugly, nice,mean}

of which σ is binary and all other symbols have rank 0. We abbreviate the
multi-letter symbols by their first letter (e.g., Alice by just A). As states we
have Q = {NN,VB,ADJ,VP,NP, S,⊥} of which only S is final (with νS = 1).
Transitions and transition weights are given as follows:

δσ(NN,VP) = S δσ(NP,VP) = S δσ(VB,NN) = VP δσ(VB,NP) = VP
cσ(NN,VP) = 0.5 cσ(NP,VP) = 0.5 cσ(VB,NN) = 0.5 cσ(VB,NP) = 0.5

δσ(ADJ,NN) = NP δσ(ADJ,NP) = NP
cσ(ADJ,NN) = 0.5 cσ(ADJ,NP) = 0.5

and

δA() = NN δB() = NN δl() = VB δh() = VB δu() = ADJ δn() = ADJ δm() = ADJ
cA() = 0.5 cB() = 0.5 cl() = 0.5 ch() = 0.5 cu() = 0.33 cn() = 0.33 cm() = 0.33 .

For all remaining combinations (x, y) we set δσ(x, y) = ⊥ and cσ(x, y) = 1.
Now, we completely specified our deterministic and total input wta M , which
has no useless states.

Next, we compute signs of life according to Algorithm 1. It may re-
turn (Π ′, sol, {⊥}) where Π ′ = {{S}, {VP,NP,NN}, {ADJ,VB}, {⊥}} and the
signs of life are

sol(S) = � sol(NP) = σ(�,VP) sol(ADJ) = σ(σ(�,NN),VP)
sol(VP) = σ(NN,�) sol(NN) = σ(�,VP) sol(VB) = σ(NN, σ(�,NN)) .

370 A. Maletti

Next, we call Complete(M,Π ′, sol, {⊥}), which may return the stage
(Π, sol, f, r) where

– Π = {{S}, {VP}, {NP,NN}, {ADJ}, {VB}, {⊥}};
– f(x) = 1 for all live states x; and
– r({NP,NN}) = NP and r({x}) = x for all other live states x.

Finally, we refine this partition, but NP and NN will not be split. Thus, we
construct the deterministic and total wta M(Π,sol,f,r) = (Π,Σ, IR, δ′, c′, ν′) with
the final state {S} (with ν′{S} = 1). Transitions and transition weights are given
as follows (we drop the parentheses from the singleton sets):

δ′A() = {NN,NP} δB() = {NN,NP} δ′l() = VB δh() = VB δ′u() = ADJ
c′A() = 0.5 c′B() = 0.5 c′l() = 0.5 c′h() = 0.5 c′u() = 0.33

δ′n() = ADJ δ′m() = ADJ
c′n() = 0.33 c′m() = 0.33

and

δ′σ({NN,NP},VP) = S δ′σ(VB, {NN,NP}) = VP δ′σ(ADJ, {NN,NP}) = {NN,NP}
c′σ({NN,NP},VP) = 0.5 c′σ(VB, {NN,NP}) = 0.5 c′σ(ADJ, {NN,NP}) = 0.5 .

For all remaining combinations (x, y) we have δ′σ(x, y) = {⊥} and c′σ(x, y) = 1.
Note that a different minimal deterministic wta was obtained in [22]; note that
this different wta cannot be obtained by our algorithm (since all transitions not
involving NP and NN are essentially kept).

6 Conclusion and Open Problems

We presented the first polynomial-time minimization algorithm for determin-
istic weighted tree automata over semifields. If we suppose that the semifield
operations can be performed in constant time, then our algorithm runs in
time O(rmn4). In fact, our algorithm works equally well for wta with final states
(i.e., νq ∈ {0, 1} for every q ∈ Q) because it then returns a minimal equivalent
wta with final states. This contrasts the situation encountered with the pushing
strategy of [25,12], which needs final weights in general.

Finally, let us mention some open problems. Can a Hopcroft-like strat-
egy [18] improve the presented algorithm? A more detailed complexity analysis
should be conducted to obtain a tighter bound on the time complexity of the
algorithm. Can minimization be performed in a similar manner as presented
in [25,12] for deterministic weighted string automata? This might lead to an al-
gorithm that outperforms our algorithm. Finally, the theoretical foundations for
minimization of (even nondeterministic) weighted tree automata over fields have
been laid in [9,7], but to the author’s knowledge a polynomial-time minimization
algorithm is still missing.

Minimizing Deterministic Weighted Tree Automata 371

References

1. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst — a general
and efficient weighted finite-state transducer library. In: Holub, J., Žďárek, J. (eds.)
CIAA 2007. LNCS, vol. 4783, pp. 11–23. Springer, Heidelberg (2007)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inform. and
Comput. 75(2), 87–106 (1987)

3. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Ésik,
Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 146–158. Springer, Heidelberg
(2003)

4. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree
series. Acta Cybernet 16(4), 509–544 (2004)

5. Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische
Universität Dresden (2005)

6. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
J. Autom. Lang. Combin. 8(3), 417–463 (2003)

7. Bozapalidis, S.: Effective construction of the syntactic algebra of a recognizable
series on trees. Acta Inform. 28(4), 351–363 (1991)

8. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Sys-
tems 32(1), 1–33 (1999)

9. Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series.
Theoret. Comput. Sci. 27(1–2), 211–215 (1983)

10. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata—techniques and applications (2007),
http://tata.gforge.inria.fr/

11. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Au-
tom. Lang. Combin. 12(3), 332–354 (2007)

12. Eisner, J.: Simpler and more general minimization for weighted finite-state au-
tomata. In: Human Language Technology Conf. of the North American Chapter
of the Association for Computational Linguistics, pp. 64–71 (2003)

13. Frishert, M., Cleophas, L.G., Watson, B.W.: Fire station: An environment for
manipulating finite automata and regular expression views. In: Domaratzki, M.,
Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 125–133.
Springer, Heidelberg (2005)

14. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
15. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, ch.1,

vol. 3, pp. 1–68. Springer, Heidelberg (1997)
16. Graehl, J.: Carmel finite-state toolkit. ISI/USC (1997),

http://www.isi.edu/licensed-sw/carmel

17. Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 268–280. Springer, Heidelberg (2006)

18. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196. Academic Press, London
(1971)

19. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

20. Kuich, W.: Formal power series over trees. In: Proc. 3rd Int. Conf. Developments
in Language Theory, pp. 61–101. Aristotle University of Thessaloniki (1998)

http://tata.gforge.inria.fr/
http://www.isi.edu/licensed-sw/carmel

372 A. Maletti

21. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theo-
retical Computer Science. An EATCS Series, vol. 5. Springer, Heidelberg (1986)

22. Maletti, A.: Learning deterministically recognizable tree series — revisited. In:
Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 218–235.
Springer, Heidelberg (2007)

23. May, J., Knight, K.: A better n-best list: Practical determinization of weighted
finite tree automata. In: Proc. North American Chapter of the Association for
Computational Linguistics, pp. 351–358 (2006)

24. May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: H. Ibarra, O.,
Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg
(2006)

25. Mohri, M.: Minimization algorithms for sequential transducers. Theoret. Comput.
Sci. 234(1–2), 177–201 (2000)

26. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3),
424–437 (1990)

Lower Bounds for Generalized Quantum

Finite Automata

Mark Mercer

Département d’Informatique,
Université de Sherbrooke, QC, Canada

Abstract. We obtain several lower bounds on the language recogni-
tion power of Nayak’s generalized quantum finite automata (GQFA) [12].
Techniques for proving lower bounds on Kondacs and Watrous’ one-way
quantum finite automata (KWQFA) were introduced by Ambainis and
Freivalds [2], and were expanded in a series of papers. We show that many
of these techniques can be adapted to prove lower bounds for GQFAs.
Our results imply that the class of languages recognized by GQFAs is
not closed under union. Furthermore, we show that there are languages
which can be recognized by GQFAs with probability p > 1/2, but not
with p > 2/3.

Quantum finite automata (QFA) are online, space-bounded models of quantum
computation. Similar to randomized finite automata [16] where the state is a ran-
dom variable over a finite set, the state of a QFA is a quantum superposition of
finite dimension. The machine processes strings w ∈ Σ∗ by applying a sequence
of state transformations specified by the sequence of letters in w, and the output
of the machine is determined by a measurement of the machine state. A central
problem is to characterize the language recognition power of QFAs.

Most quantized versions of classical computation devices (such as quantum
circuits [17]) are at least as powerful as their classical counterparts. It is not
clear that this should be the case for quantum finite automata. Typically, the
execution of classical computation on a quantum device is performed by convert-
ing classical computation into reversible computation using standard techniques
such as in [5]. The most general definitions of QFAs [8] are equal in language
recognition power to deterministic finite automata. However, such definitions re-
quire a nonconstant sized (but not directly accessible) memory for bookkeeping.
This in some sense violates the spirit of the definition of a finite machine.

For this reason, most QFA research has been focused on the case where the
transformations are limited to various combinations of unitary transformations
and projective measurements on a finite dimensional state. In this case, the class
of languages recognized by these QFAs is a strict subset of the regular languages.
It is important to note that, despite this limit on language recognition power,
there is a sense in which QFAs can be more powerful than their deterministic
counterparts. In particular, there are languages which can be recognized by QFAs
using exponentially fewer states than the smallest deterministic or randomized
finite automaton [2,6].

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 373–384, 2008.
© Springer-Verlag Berlin Heidelberg 2008

374 M. Mercer

The simplest type of QFA is the measure-once QFA (MOQFA) model of Moore
and Crutchfield [11]. These QFAs are limited to recognizing those languages
whose minimal automaton is such that each letter induces a permutation on
the states. Two types of generalizations of the MOQFA model have been con-
sidered. In the first type, the machine is allowed to halt before reading the
entire input word. This corresponds to Kondacs and Watrous’ one-way QFAs
(KWQFAs) [10]. The second type allows state transformations to include the ap-
plication of quantum measurements, which generates some classical randomness
in the system. This corresponds to Ambainis et. al’s Latvian QFAs (LQFAs) [1].

Nayak [12] investigated a model called generalized QFAs (GQFAs), which
generalize both KWQFAs and LQFAs. This paper introduced new entropy-based
techniques which were used to show that GQFAs cannot recognize the language
Σ∗a. These techniques have since been used to obtain lower bounds on quantum
random access codes [12] and quantum communication complexity [13]. However,
no further lower bounds have been shown for GQFAs.

In a series of papers [2,7,4,3], a number lower bounds on the power of KWQFA
were shown. These results identify limits on the computational advantage of
KWQFAs over MOQFAs. The main tool used in these results was a technical
lemma which is used to decompose the state space of a KWQFA into two sub-
spaces (called the ergodic and transient subspaces) in which the state transitions
have specific behaviors. In this paper, we show that this lemma, and many of
the same results, can be adapted to the case of GQFA. The framework of our
proof follows the basic outline of [2], however we must overcome a number of
technical hurdles which arise from allowing classical randomness in the state.

Following [4], we can use the lemma to show that a certain property of the
minimal automaton for L implies that L is not recognizable by a GQFA. We use
this result to show that the class of languages recognized by this model is not
closed under union. Furthermore, we show the existence of languages which can
be recognized by GQFA with probability p = 2/3 but not p > 2/3. These results
highlight the key similarities and differences between KWQFA and GQFA.

The paper is organized as follows. In Section 1 we give definitions and basic
properties of GQFA and we review the necessary background. In Section 2 we
prove the main technical lemma and in Section 3 we apply this lemma to prove
the remaining results. We conclude with a brief discussion of open problems and
future work.

1 Introduction

Let us review some concepts from quantum mechanics. See e.g. [14] for more
details on the mathematics of quantum computation. We use the notation |ψ〉
to denote vectors in Cn, and we denote by 〈ψ| the dual of |ψ〉.

Let Q be a finite set with |Q| = n, and let {|q〉}q∈Q be an orthonormal basis
for Cn. Then a superposition over Q is a vector |ψ〉 =

∑
q αq|q〉 which satisfies

〈ψ|ψ〉 =
∑

q |αq|2 = 1. We say αq is the amplitude with which |ψ〉 is in state q.
The state space of a QFA will be a superposition over a finite set Q.

Lower Bounds for Generalized Quantum Finite Automata 375

We consider two types of operations on superpositions. First, a unitary trans-
formation U is a linear operator on Cn such that the conjugate transpose U † of
U satisfies U †U = UU † = I. Unitary operators are exactly those which preserve
the inner product, thus unitary matrices map superpositions to superpositions.
The second type of operation is projective measurements. Such measurements
are specified by a set M = {Pi} of orthonormal projectors on Cn satisfying∑

i Pi = I. The outcome of is the measurement M on state |ψ〉 is the random
variable which takes the value i with probability ‖Pi|ψ〉‖2. If the outcome of the
measurement is i, the state is transformed to |ψ′〉 = Pi|ψ〉/‖Pi|ψ〉‖. Note that
measurement induces a probabilistic transformation on the state. Measurements
describe the interface by which we obtain observations from a quantum sys-
tem, but they also model decoherence, the process by which a quantum system
becomes a probabilistic system through interaction with the environment (c.f.
Chapter 8 of [14]).

A generalized QFA (GQFA) [12] is given by a tuple of the form:

M = (Σ,Q, q0, {Ua}a∈Γ , {Ma}a∈Γ , Qacc, Qrej).

The set Σ is the input alphabet. The working alphabet will be Γ = Σ∪{¢, $}.
The set Q is finite set of state indices with q0 ∈ Q, Qacc, Qrej ⊆ Q. On input
w ∈ Σ∗, M will process the letters of the string ¢w$ from left to right. The ¢
and $ characters are present to allow for pre- and post- processing of the state.
The sets {Ua}a∈Γ and {Ma}a∈Γ are collections of unitary transformations and
projective measurements.

The state of the machine is expressed as a superposition overQ, and the initial
state is |q0〉. When a letter a ∈ Γ is read, a state transformation is made in the
manner we describe below. After each letter is read, the machine may decide to
halt and accept the input, to halt and reject the input, or to continue processing
the string. The set Q is partitioned into three parts: an accepting set (Qacc), a
rejecting set (Qrej) and a nonhalting set (Qnon = Q −Qacc ∪Qrej). We define
Pacc =

∑
q∈Qacc

|q〉〈q| and we likewise define Prej and Pnon. Finally, we define
MH = {Pacc, Prej , Pnon}.

Suppose that after reading some input prefix the machine is in state |ψ〉. To
process a ∈ Γ , we first apply the unitary Ua, then the measurement Ma (recall
that this is a probabilistic transformation), then the measurement MH . If the
outcome of the measurement MH is acc or rej, then the machine halts and
accepts or rejects accordingly. Otherwise, the outcome of the MH was non and
the machine reads the next symbol in the string1.

The GQFA defined above will behave stochastically. We will be interested
in what languages can be recognized by this machine with bounded error. For
p > 1

2 we say that language L ⊆ Σ∗ is recognized by M with probability p if all

1 The original definition allowed � alternations of unitary operators and measurements
per letter. However, such alternations can be simulated by a single transformation
and measurement (Claim 1 of [1]) and so this change does not limit the class of
transformations allowed by GQFAs.

376 M. Mercer

words are correctly distinguished with probability at least p. We say that L is
recognized with bounded error if there is a p > 1

2 such that L is recognized with
probability p.

Here are some basic facts about GQFAs. For all p, the class of languages
recognized by GQFA with probability p is closed under complement, inverse
morphisms, and word quotient. We also make note of the relationship between
GQFAs and other QFA definitions. Firstly, in the case that each Ma is equal to
the trivial measurement {I} (i.e. so that MH is the only measurement applied
to the state), we obtain KWQFAs as a special case. Second, in the case that we
are promised that the machine does not halt until the entire input is read, then
we have the special case of Ambainis et al’s LQFAs. If both of these conditions
hold, we obtain MOQFAs.

In this paper we will see that many of the lower bounds for KWQFAs apply
also to GQFAs. It should be noted, however, that GQFA are strictly more pow-
erful than KWQFA. In [1] it was shown that any language L whose transition
monoid is a block group [15] can be recognized by an LQFA with probability
1 − ε for any ε > 0. This language class corresponds exactly to the boolean
closure of languages of the form L0a1L1 . . . akLk, where the ai’s are letters and
the Li’s are languages recognized by permutation automata. On the other hand,
KWQFA cannot recognize Σ∗aΣ∗bΣ∗ with probability more than 7/9 [2]. It was
moreover shown in [1] that LQFA cannot recognize the languages aΣ∗ or Σ∗a.
We will need these properties in order to prove our results.

Furthermore it is known that KWQFA, and hence GQFA, can recognize lan-
guages which cannot be recognized by LQFA. For example KWQFA can simulate
a certain type of reversible automaton where δ(q1, x) = δ(q2, x) = q2 is permit-
ted only when q2 is a sink. These machines, and the class of languages which
they recognize, were considered in [9]. Machines of this type can recognize aΣ∗,
so KWQFA can recognize languages which cannot be recognized by LQFA.

Finally, a few notes about density matrices. Recall that the state of a GQFA
after reading some input prefix is a random variable. In other words, the state is
taken from a probability distribution E = {(pj , |ψj〉)} of superpositions, where
|ψj〉 occurs with probability pj . Such systems are called mixed states. The mea-
surement statistics which can be obtained from transforming and measuring a
mixed state can be described succinctly in terms of density matrices. In our case
it will be sufficient to identify a mixed state with its density matrix.

The density matrix corresponding to E is ρ =
∑

j pj |ψj〉〈ψj |. Density matrices
are positive operators so their eigenvalues are nonnegative real. For a operator
M we denote by Tr(M) the trace, or the sum of the eigenvalues, of M . In the
case of density matrices we have Tr(ρ) = 1. Unitary operators U transform
density matrices according to the rule ρ �→ U †ρU . A measurement M = {Pi}
will transform the states by the rule ρ �→

∑
i PiρPi in the case that the outcome

is unknown, or by ρ �→ PiρPi/T r(Piρ) if the outcome is known to be i.
Density matrices are examples of normal matrices. The spectral decompo-

sition theorem states that every normal matrix can be decomposed as ρ =∑
i λi|φi〉〈φi|, where {|φi〉} is a set of orthonormal eigenvectors of ρ and λi

Lower Bounds for Generalized Quantum Finite Automata 377

is the eigenvalue corresponding to |φi〉. We say that the support of ρ, or supp(ρ),
is the space spanned by the nonzero eigenvectors of ρ.

2 Technical Results

Fix a GQFAM . We will be using density matrices weighted by a factor p ∈ [0, 1]
to describe the state of M on reading some prefix ¢w. Let Aa be the mapping
ρ �→

∑
i Pa,i UaρU

†
a Pa,i, and let A′

a = Pnon(Aaρ)Pnon. Furthermore for w =
w1 . . . wn ∈ Σ∗, we define A′

w = A′
wn

· · ·A′
w1

. Then A′
wρ is a scaled density

matrix such that Tr(A′
wρ) = pT r(ρ), where p is the probability of not halting

in the process of reading w while in state ρ. Let ρw = A′
¢w|q0〉〈q0|. Then Tr(ρw)

is the probability of not halting while processing ¢w, and the density matrix
describing the machine state in the case that it has not halted is ρw/T r(ρw).

We first state a technical lemma which gives an important characterization
of the behaviour of a GQFA machine. It is the counterpart to Lemma 1 of [2].
This, along with its extension (Lemma 2), will be instrumental in proving the
later results.

Lemma 1. For every w ∈ Σ∗ there exists a pair E1, E2 of orthonormal sub-
spaces of Cn such that Cn = E1 ⊕ E2 and for all weighted density matrices ρ
over Cn we have:

1. If supp(ρ) ⊆ E1, then supp(A′
wρ) ⊆ E1 and Tr(A′

wρ) = Tr(ρ).
2. If supp(ρ) ⊆ E2, then supp(A′

wρ) ⊆ E2 and limk→∞Tr((A′
w)kρ) = 0.

The E1 and E2 parts of the state are called the ergodic and transient parts.
Suppose M is in state ρ, and suppose that ρ satisfies supp(ρ) ⊆ E1. Then
Tr(A′

wρ) = Tr(ρ) would imply that M did not halt in the process of reading
w. Thus, M is behaving exactly as an LQFA. Suppose now that M is in state
ρ, then the fact limk→∞Tr((A′

w)kρ) = 0 implies that the probability that M
does not halt after reading wk tends to 0 as k → ∞. In general supp(ρ) will be
partially in E1 and partially in E2.

Proof: The proof proceeds as in [2]. We first show how to do this for the case
that |w| = 1, and then we sketch how to extend it to arbitrary length words.
Let w = a. We first construct the subspace E1 of Cn. E2 will be the orthogonal
complement of E1. Let

E1
1 = span({|ψ〉 : Tr(A′

a|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|)}).

Equivalently, E1
1 = span{|ψ〉 : supp(Aa(|ψ〉〈ψ|)) ⊆ Snon} where Snon is the

nonhalting subspace. We claim that supp(ρ) ∈ E1
1 implies that supp(Aa(ρ)) ∈

Snon. By linearity it is sufficient to show this for ρ = |ψ〉〈ψ|. Essentially, we need
to show that the condition of |ψ〉 satisfying Tr(A′|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|) is closed
under linear combinations. Suppose that |ψ〉 =

∑
j αj |ψj〉, with |ψj〉 satisfying

supp(Aa(|ψj〉〈ψj |)) ∈ Snon and
∑

j |αj |2 = 1. Then:

‖
∑

i

PhaltPa,iUa(
∑

j

αj |ψj〉)‖2 ≤
∑
i,j

‖αjPhaltPa,iUa|ψj〉‖2 = 0,

378 M. Mercer

and thus supp(Aa|ψ〉〈ψ|) ∈ Snon. Thus, for mixed states ρ we have supp(Aaρ) ∈
Snon if and only if supp(ρ) ∈ E1

1 . For general i > 2, let:

Ei
1 = span({|ψ〉 : supp(Aa|ψ〉〈ψ|) ∈ Ei−1

1 ∧ Tr(A′
a|ψ〉〈ψ|) = Tr(|ψ〉〈ψ|)}).

As before, for weighted density matrices ρ, we can interchange the condition
Tr(A′

aρ) = Tr(ρ) for supp(Aaρ) ⊆ Snon.
Observe that Ei

1 ⊆ Ei+1
1 for all i. Since the dimension of each of these spaces

is finite, there must be an i0 such that Ei0
1 = Ei0+j

1 for all j > 0. We define
E1 = Ei0

1 , and set E2 to be the orthogonal complement of E1.
It is clear that the first condition of the lemma is true for mixed states with

support in E1. For the second part, it will be sufficient to show the following
proposition, which implies that the probability with which the machine will halt
while reading aj is bounded by a constant.

Proposition 1. Let j ∈ {1, . . . , i0}. There is a constant δj > 0 such that for any
|ψ〉 ∈ Ej

2 there is an l ∈ {0, . . . , j− 1} such that Tr(PhaltAa(A′
a)l(|ψ〉〈ψ|)) ≥ δj.

Proof: We proceed by induction on j. Let H =
⊕ma

k=1 Cn. Let Pk : E1
2 → H

be the projector into the kth component of H, and let T1 : E1
2 → H be the

function T1|ψ〉 =
∑

k PkPhaltPa,kAa|ψ〉. Observe that ‖T1|ψ〉‖2 is the probability
of halting when a is read while the machine is in state |ψ〉〈ψ|. By the previous
discussion, Tr(A′

a|ψ〉〈ψ|) = 1 − ‖T1|ψ〉‖2. Define ‖T1‖ = min‖ |ψ〉‖=1‖T1|ψ〉‖.
Note that the minimum exists since the set of unit vectors in Cn is a compact
space. Also, let δ1 = ‖T1‖2. Then δ1 > 0, otherwise there would be a vector
|ψ〉 ∈ E1

2 such that supp(Aa|ψ〉〈ψ|) ∈ Snon, a contradiction.
Now assume that δj−1 has been found. We need to show that, for |ψ〉 ∈ Ej

2 ,
either a constant sized portion of |ψ〉 is sent into the halting subspace, or it
is mapped to a vector on which we can apply the inductive assumption. We
construct two functions Tj,halt, Tj,non : Ej

2 → H defined by:

Tj,halt|ψ〉 =
ma∑
k=1

PkPhaltPa,kAa|ψ〉,

Tj,non|ψ〉 =
ma∑
k=1

PkPEj−1
2
PnonPa,kAa|ψ〉.

Then the quantity ‖Tj,halt|ψ〉‖2 is the probability of halting while reading a,
and ‖Tj,non|ψ〉‖2 = Tr(PEj−1

2
A′

a|ψ〉〈ψ|). Note that for all vectors |ψ〉 ∈ Ej
2

we must have either ‖Tj,halt|ψ〉‖ �= 0 or ‖Tj,non|ψ〉‖ �= 0, otherwise |ψ〉 is in
Ej

1 , a contradiction. This implies that ‖Tj,non ⊕ Tj,halt‖ > 0. Note also that
‖Tj,non ⊕ Tj,halt‖ ≤ 1.

Define δj =δj−1
‖Tj,non⊕Tj,halt‖2

2ma
. Take any unit vector |〉ψ∈ Ej

2 . Then ‖(Tj,non⊕
Tj,halt)|ψ〉‖ ≥ ‖Tj,non ⊕ Tj,halt‖. Recall that the range of Tj,non ⊕ Tj,halt is⊕ma

k=1 Cn ⊕
⊕ma

k=1 Cn. In one of these subspaces, (Tj,non ⊕Tj,halt)|ψ〉 has size at
least 1√

2·ma
. If it is in one of the lastma subspaces, corresponding to Tj,halt part,

Lower Bounds for Generalized Quantum Finite Automata 379

then there is nothing further to prove. Otherwise, assume that this component
is in one of the subspaces corresponding to the Tj,non part. In particular, there
is a k such that |φ〉 = PnonPa,kAa|ψ〉 satisfies:

‖PEj−1
2

|φ〉‖2 ≥ 1
2 ·ma

.

We can split |φ〉 into |φ1〉+ |φ2〉, with |φi〉 ∈ Ej−1
i . By the inductive hypothesis,

there is an l < j − 1 such that Tr(PhaltAa(A′
a)l(|φ2〉〈φ2|)) ≥ δj−1Tr(|φ2〉〈φ2|).

Furthermore, the first condition of the lemma implies that for every choice of
(k1, . . . , kl) ∈ [ma]l,

PhaltPa,kl
UaPa,kl−1Ua · · ·Pa,k1Ua|φ1〉 = 0.

This implies Tr(PhaltAa(A′
a)l(|φ1〉〈φ1|)) = 0 and Tr(PhaltAa(A′

a)l(|φ1〉〈φ2|)) =
Tr(PhaltAa(A′

a)l(|φ2〉〈φ1|)) = 0. Together, we obtain:

Tr(PhaltAa(A′
a)l|φ〉〈φ|)

= Tr(Phalt(A′
a)l(|φ1〉〈φ1| + |φ1〉〈φ2| + |φ2〉〈φ1| + |φ2〉〈φ2|))

= Tr(PhaltAa(A′
a)l(|φ1〉〈φ1|)) + Tr(PhaltAa(A′

a)l(|φ1〉〈φ2|))
+Tr(PhaltAa(A′

a)l(|φ2〉〈φ1|)) + Tr(PhaltAa(A′
a)l(|φ2〉〈φ2|))

= Tr(PhaltAa(A′
a)l(|φ2〉〈φ2|)) ≥ δj−1

‖Tj,non ⊕ Tj,halt‖2

2ma
.

This concludes the proof of the proposition. �

Proposition 2. Let Ua be the unitary transformation that is applied when a is
read. Then Ua = U1

a ⊕ U2
a , where U i

a acts unitarily on subspace Ei.

Proof: By the unitarity of Ua, it is sufficient to show that |ψ〉 ∈ E1 implies
Ua|ψ〉 ∈ E1. By definition of E1, |ψ〉 ∈ E1 implies that all of the vectors
Pa,iUa|ψ〉 are in E1. But Ua|ψ〉 =

∑
i Pa,iUa|ψ〉, and thus Ua|ψ〉 ∈ E1 since

E1 is a subspace. �

We are now ready to prove the second part of the lemma. We first show that
|ψ〉 ∈ E2 implies supp(Aa|ψ〉〈ψ|) ⊆ E2. Let |ψ′〉 = Ua|ψ〉. Then Aa|ψ〉〈ψ| =∑

i |ψi〉〈ψi|, where |ψi〉 = Pa,iUa|ψ〉. Split |ψi〉 into vectors |ψi,1〉 + |ψi,2〉, with
|ψi,1〉 ∈ E1 and |ψi,2〉 ∈ E2. We claim that either |ψi,1〉 or |ψi,2〉 are trivial
vectors. Suppose ‖|ψi,1〉‖ �= 0, and consider the intersection of the image of Pa,i

in the space spanned by |ψi,1〉 and |ψi,2〉. Now |ψi,1〉 implies that U−1
a |ψi,1〉 ∈ E1

and thus Pa,i|ψi,1〉 ∈ E1, which implies |ψi〉 ∈ E1.
Now since each |ψi〉 satisfies |ψi〉 ∈ E1 or |ψi〉 ∈ E2, then we are done since

the fact that the |ψi〉’s are orthonormal and sum to Ua|ψ〉 ∈ E2 implies that
|ψi〉 ∈ E2 for all i. Thus, |ψ〉 ∈ E2 implies span(Aa|ψ〉〈ψ|) ⊆ E2.

Now supposing supp(ρ) ∈ E2, we can repeatedly apply Proposition 1 to show
that Tr((A′

a)k(ρ)) → 0 as k → ∞. To apply the claim to a general mixed state,
we first use the spectral decomposition to show that the mixed state is equivalent
to an ensemble of at most n pure states.

380 M. Mercer

To construct E1 and E2 for w = w1 . . . wn, we define E0
1 = Snon and Ek

1

to be the set of all vectors |ψ〉 such that Tr(A′
wk mod n+1

|ψ〉〈ψ|) = 1 and supp
(A′

wk mod n+1
|ψ〉〈ψ|) ∈ Ek−1

1 , and we follow the proof as above. The proof of the
first part of the theorem and of the claim will generalize since the proof does
not make use of the fact that the transformation and measurement defining Ej

1

is the same as that of Ej+1
1 . Proposition 2 will apply to wi for all i. �

Lemma 2. Let M be an n-state GQFA over alphabet Σ, and let x, y ∈ Σ∗. Then
there exists a pair E1, E2 of orthonormal subspaces of Cn such that Cn = E1⊕E2

and for all weighted density matrices ρ over Cn we have:

1. If supp(ρ) ⊆ E1, then for all w ∈ (x∪y)∗, supp(A′
wρ) ⊆ E1, and Tr(A′

wρ) =
Tr(ρ).

2. If supp(ρ) ⊆ E2, then supp(A′
wρ) ⊆ E2 and for all ε > 0 there exists a word

w ∈ (x ∪ y)∗ such that Tr(A′
wρ) ≤ ε.

Proof: This is the counterpart of Lemma 2.3 of [4]. Let Ew
1 be the subspace con-

structed as in Lemma 1. Define E1 = ∩w∈(x∪y)∗E
w
1 , and let E2 be the orthogonal

complement of E1.
Suppose supp(ρ) ⊆ E2. If there is a w ∈ (x ∪ y)∗ such that supp(ρ) ⊆ Ew

2 ,
we can directly apply the argument from the previous lemma to show that
Tr((A′

w)jρ) → 0 as j → ∞. However such a w may not exist so a stronger
argument is necessary. As the application of an A′

w transformation can only
decrease the trace of ρ, for any ε there exists a t ∈ (x ∪ y)∗ such that for
all w ∈ (x ∪ y)∗, Tr(A′

tρ) − Tr(A′
tw) ≤ ε. For all i let ti be a such a string

for ε = 1
2i . Consider the sequence ρ1, ρ2, . . . defined by ρi = A′

ti
ρ. The set of

weighted density matrices form a compact, closed space with respect to the trace
metric, and so this sequence of must have a limit point ρ.

We claim that Tr(ρ) = 0. Suppose not. The support of ρ is in E2, so there
must be some word w ∈ (x ∪ y)∗ such that Tr(A′

wρ) < Tr(ρ). This contradicts
the assumption that ρ is a limit point. �

Finally we note a very simple fact that will allow us to extend impossibility
results for LQFA to GQFA:

Fact 1. Let M be a GQFA. Let E1 be the subspace defined as in Lemma 2,
and suppose that the state of the machine ρ on reading the ¢ character satisfies
supp(ρ) ∈ E1. Then there is an LQFA M ′ such that, for all w ∈ (x ∪ y)∗ the
state of M on reading w is isomorphic to the state of M ′ on reading w.

3 Applications

We now apply the results of the previous section to prove several fundamental
properties of GQFAs. The first result is a formal condition for recognizability by
GQFAs:

Lower Bounds for Generalized Quantum Finite Automata 381

Theorem 1. Let ML be the minimal automaton for L ⊆ Σ∗ and let F be the
accepting set. If there exists words x, y, z1, z2 ⊆ Σ∗ and states q0, q1, q2 such that
δ(q0, x) = q1, δ(q0, y) = q2, δ(q1, x) = δ(q1, y) = q1, δ(q2, x) = δ(q2, y) = q2,
δ(q1, z1) ∈ F , δ(q2, z1) /∈ F , δ(q1, z2) /∈ F , δ(q2, z2) ∈ F , then L cannot be
recognized by GQFA with probability p > 1

2 .

Fig. 1. The forbidden construction of Theorem 1

Proof: Suppose that L satisfies the conditions of the theorem, and suppose that
M recognizes L with probability p > 1

2 . By closure under left quotient, we can
assume that the state q0 in the forbidden construction is also the initial state of
the minimal automaton for L.

Let ρw = A′
¢w|q0〉〈q0|. The basic outline of the proof is that we will use

Lemma 2 to find two words w1 ∈ x(x ∪ y)∗, w2 ∈ y(x ∪ y)∗ such that ρw1 and
ρw2 have similar output behavior. We then analyze the acceptance probabilities
of the words w1z1, w1z2, w2z1, and w2z2 to arrive at a contradiction.

Let E1 and E2 be subspaces which meet the conditions of Lemma 2 with
respect to x and y. Note that if the support of ρ is in E1, M will not halt while
reading w ∈ (x ∪ y)∗, and in this case M can be simulated by an LQFA. Let
PEi be the projection onto subspace Ei. We claim that for all ε > 0 there exists
u, v ∈ (x ∪ y)∗ such that ‖Tr(PE1ρxu − PE1ρyv)‖t ≤ ε. Suppose to the contrary
that there exists ε > 0 such that ‖Tr(PE1ρxu − PE1ρyv)‖t > ε for all u, v. Then
there exists an LQFA which can recognize the language x(x∪ y)∗ with bounded
error, contradicting the fact that LQFA is closed under inverse morphisms and
cannot recognize aΣ∗ [1]. Let δ = p− 1

2 and let ε = δ
4 .

By Lemma 2, for all ε′ we can find u′ ∈ (x ∪ y)∗ such that Tr(PE2ρxuu′) <
ε′. Furthermore we can find v′ ∈ (x ∪ y)∗ such that Tr(PE2ρxuu′v′) < ε′ and
Tr(PE2ρyvu′v′) < ε′. Let w1 = xuu′v′ and w2 = yvu′v′, and let ε′ = δ

4 .
Let pi,acc (pi,rej) be the probability with which M accepts (rejects) while

reading wi. Furthermore let qij,acc (resp qij,rej) be the probability thatM accepts
if the state of the machine is ρw1 and the string zj$ is read. Since ‖ρw1 −ρw2‖t ≤
‖ρxu−ρyv‖t = δ

2 ≤ ε, q1j,acc (and likewise q1j,rej) can be different from q2j,acc by
a factor of at most δ

2 . As a consequence, one of the words w1z1, w1z2, w2z1, or
w2z2 must not be classified correctly. Suppose e.g. that w1z1, w1z2, and w2z1 are
classified correctly. Since q11,rej differs from q21,rej by a factor of at most δ

2 , the
fact that w1z1 is accepted and w2z1 is rejected implies that p2,rej > p1,rej + δ.
since q12,rej differs from q22,rej by at most a factor of δ

2 , will be rejected with
probability greater than 1 − p, a contradiction. The other cases are similar. �

382 M. Mercer

We now apply Theorem 1 to prove nonclosure under union.

Theorem 2. The class of languages recognized by GQFA with bounded error is
not closed under union.

Proof: Let A, B0, B1 be languages over Σ = {a, b} defined as follows. Let
A = {w : |w|a mod 2 = 0}, B0 = (aa)∗bΣ∗, and B1 = a(aa)∗bΣ∗. Finally, let
L1 = (A ∩ a∗) ∪ (A ∩B1), and let L2 = (A ∩ a∗) ∪ (A ∩B0). The union L1 ∪ L2

consists of the strings containing either no b’s or an odd number of a’s after the
first b.

In Theorem 3.2 of [4], the languages L1 and L2 were shown to be recognizable
by KWQFAs with probability of correctness 2/3, thus they can also be recognized
by GQFA with this probability of correctness. On the other hand, the minimal
automaton of L1 ∪ L2 contains the forbidden construction of Theorem 1. �

In [2] it was shown that there exists languages L and constants p > 1
2 such

that L can be recognized by KWQFA with bounded probability, but not with
probability p. Furthermore, it was demonstrated that certain properties of the
minimal automaton for L would imply that L is not recognized with probability
p. We will show that a similar situation holds for GQFAs.

Theorem 3. If the minimal DFA ML for L contains states q0, q1, q2, such that
for some words x, y, z1, z2 we have δ(q0, x) = δ(q1, x) = δ(q1, y) = q1, δ(q0, y) =
δ(q2, y) = δ(q2, x) = q2, δ(q2, z2) ∈ F , δ(q2, z1) /∈ F , then L cannot be recognized
by GQFA with probability p > 2

3 .

Fig. 2. The forbidden construction of Theorem 3

Proof: Suppose that the GQFA M recognizes L with probability p > 2/3. Since
q2 �= q3 and by closure under complement, there exists a word z3 such that
xz3 ∈ L and yz3 /∈ L. We can also assume by closure under left quotient that
q1 is the initial state. As in Lemma 2, split Cn into subspaces E1 and E2 with
respect to x and y.

For all ε, we can find w1 ∈ x(x∪y)∗ and w2 ∈ y(x∪y)∗ such that ‖ρw1−ρw2‖t ≤
ε, Tr(PE2ρw) < ε, Tr(PE2ρw) < ε. let pi be the probability that M rejects
while reading wi, and let pi3 be the probability of rejecting when M is in state
qi and reads z3. By setting ε, the difference between p13 and p23 can be made
arbitrarily small, so that p1 + p13 ≤ (1− p) < 1/3 and p2 + p23 ≥ p > 2/3 imply
that p2 − p1 > 1/3. Thus M rejects while reading w2 with probability greater

Lower Bounds for Generalized Quantum Finite Automata 383

than 1/3, contradicting the assumption that w2z2 is accepted with probability
greater than 2/3. �

Corollary 1. There is a language L which can be recognized by GQFAs with
probability p = 2/3, but not with p > 2/3.

To see this, note that the constructions for L1 and L2 in [4] achieve the optimal
probability of correctness.

4 Discussion

We have shown that several of the known lower proofs for KWQFA can be
adapted to the case of GQFA. In particular, we have shown that the class of
languages recognized by GQFA is not closed under union, and there exists lan-
guages which can be recognized by GQFA with probability p = 2/3 but not
p > 2/3. Both KWQFA and GQFA are permitted to halt before the end, and
the lack of robustness in these models seems to arise from this feature. By com-
parison, the classes of languages recognized by MOQFA and LQFA respectively
are closed under union, and any language recognized with probability p > 1/2
by these machines can be recognized with probability 1 − ε for any ε > 0.

We note here that not all of the KWQFA lower bound results hold for GQFA.
For example, it was shown that a∗b∗ can be recognized by KWQFA with proba-
bility p ≈ 0.68 but not p > 7/9, while this language can be recognized by GQFA
with probability 1 − ε for any ε > 0. Several other KWQFA lower bounds were
shown in [4,3], and we can clarify the relationship between the two models by
identifying which of these results extend to GQFAs. It is still not known whether
the class of languages recognized with bounded error by GQFA is strictly larger
than the class recognized by KWQFA. We conjecture that the language class is
indeed larger and that a proof would involve the fact that the probability with
which KWQFAs can recognize Σ∗a1Σ

∗ . . . akΣ
∗ tends to 1/2 as k → ∞.

References

1. Ambainis, A., Beaudry, M., Golovkins, M., Kikusts, A., Mercer, M., Thérien, D.:
Algebraic results on quantum automata. Theory of Computing Systems 38, 165–
188 (2006)

2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: 39th Annual Symposium on Foundations of Computer
Science, pp. 332–341 (1998)

3. Ambainis, A., Ķikusts, A.: Exact results for accepting probabilities of quantum
automata. Theoretical Computer Science 295(1–3), 3–25 (2003)

4. Ambainis, A., Ķikusts, A., Valdats, M.: On the class of languages recognizable by
1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

5. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
development 6, 525–532 (1973)

384 M. Mercer

6. Bertoni, A., Mereghetti, C., Palano, B.: Quantum computing: 1-way quantum
automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 1–20.
Springer, Heidelberg (2003)

7. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM Journal on Computing 31(5), 1456–1478 (2002)

8. Ciamarra, M.P.: Quantum reversibility and a new model of quantum automaton.
Fundamentals of Computation Theory 13, 376–379 (2001)

9. Golovkins, M., Pin, J.-É.: Varieties generated by certain models of reversible finite
automata. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp.
83–93. Springer, Heidelberg (2006)

10. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
38th Annual Symposium on Foundations of Computer Science, pp. 66–75. IEEE
Computer Society Press, Los Alamitos (1997)

11. Moore, C., Crutchfield, J.: Quantum automata and quantum grammars. Theoret-
ical Computer Science 237(1-2), 275–306 (2000)

12. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.
In: 40th Annual Symposium on Foundations of Computer Science, pp. 369–377
(1999)

13. Nayak, A., Salzman, J.: On communication over an entanglement-assisted quantum
channel. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on the
Theory of Computing, pp. 698–704 (2002)

14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, Cambridge (2000)

15. Pin, J.-É.: k BG=PG, a success story. In: Fountain, J. (ed.) NATO Advanced
Study Institute Semigroups, Formal Languages, and Groups, pp. 33–47. Kluwer
Academic Publishers, Dordrecht (1995)

16. Rabin, M.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)
17. Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of the 36th annual

Symposium on Foundations of Computer Science, pp. 352–361 (1993)

How Many Figure Sets Are Codes?

Ma�lgorzata Moczurad and W�lodzimierz Moczurad

Institute of Computer Science, Jagiellonian University,
Nawojki 11, 30-072 Kraków, Poland

{mmoczurad,wkm}@ii.uj.edu.pl

Abstract. Defect theorem, which provides a kind of dimension prop-
erty for words, does not hold for two-dimensional figures (labelled poly-
ominoes), except for some small sets. We thus turn to the analysis of
asymptotic density of figure codes. Interestingly, it can often be proved
to be 1, even in those cases where the defect theorem fails. Hence it re-
veals another weak dimension property which does hold for figures, i.e.,
non-codes are rare.

We show that the asymptotic densities of codes among the following
sets are all equal to 1: (ordinary) words, square figures and small sets
of dominoes, where small refers to cardinality ≤ 3. The latter is a bor-
derline case for the defect theorem and additionally exhibits interesting
properties at different alphabet sizes.

Keywords: Polyominoes, codes, asymptotic density.

1 Introduction

Counting polyominoes or figures of a given size is hard; e.g. no exact formula
or generating function is known for the sequence (pn) describing the number
of polyominoes of size n; cf. [14]. On the other hand, the problem is trivial
for words. Counting polyomino or figure codes is at least as hard as counting
polyominoes. Codicity is a “semantic” property that does not admit a simple
“syntactic” characterization. Hence powerful combinatoric tools, like e.g. gener-
ating functions, come to no rescue. The problem whether a given set of figures,
even polyominoes, is a code is undecidable in general, cf. [1]. Again, the problem
is easy for sets of words, cf. [2].

The defect theorem is one of the fundamental results of combinatorics on
words, providing a kind of dimension property of words (cf. Lothaire [7,8]).
Various authors have studied its variants and extensions to other structures,
including trees and two-dimensional figures, e.g. [4,5,6,9,10]. See Harju and
Karhumäki [3] for a comprehensive treatment of the field. In its classical version,
the defect theorem states that if X ⊆ A∗ is a finite non-code, i.e., there exists a
word in X∗ with two different X-factorizations, then there exists a code Y ⊆ A∗

such that X ⊆ Y ∗ and |Y | < |X |. More precisely, Y can be taken to be the free
hull of X (the smallest free submonoid of A∗ containing X). Whilst it has been
shown that the defect property can be extended to trees, the property is not
satisfied in many simple cases of plane figures.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 385–396, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 M. Moczurad and W. Moczurad

We will be computing asymptotic density in the following sense, cf. [12,15]:
Given a set of objects, choose those of size n and count those that have a desired
property. We are interested in the proportion of objects with the desired property
(codicity in our case) as n tends to infinity. The measure of size will be defined
separately for different classes of figures.

The main result of the paper is that for some classes of figures this proportion
tends to 1 as the size of the figures tends to infinity. This result may be inter-
preted probabilistically as follows: the probability that a randomly chosen set of
figures is a code approaches 1 when the figures are large. As a by-product, we ex-
hibit classes of codes that have density 1 among all codes. We also demonstrate a
non-obvious link between the alphabet size and the form of domino figure codes.

2 Definitions and Notations

Let A be a finite alphabet. We use the usual notation of A∗ to denote the free
monoid over A, and X∗ to denote the submonoid generated by X ⊆ A∗. A set
of words X ⊆ A∗ is a code, if X∗ is free over X , i.e., every word in X∗ has a
unique factorization over X .

A figure (or a brick) is a partial mapping x : ZZ2 → A, where the domain
of x is a polyomino, i.e., a finite and connected union of lattice points (or unit
squares) in IR2. In other words, it is a polyomino with the cells labelled with the
symbols of A. If |A| = 1, there is an obvious natural correspondence between
figures and polyominoes. The set of all figures over A is denoted by A��.

Given a set of figures X ⊆ A��, the set of all figures tilable with (translated
copies of) the elements of X is denoted by X��. Note that we do not allow
rotations of figures. X ⊆ A�� is a figure code, if every element of X�� admits
exactly one tiling with the elements of X .

The terms rectangles, squares and dominoes will refer to figures with respec-
tive domains. In particular, the domain of a domino is a 1×n or n× 1 rectangle
with n ≥ 1 (a vertical domino and a horizontal domino, respectively). Note that
since we actually consider all figures up to a translation, horizontal dominoes
can be identified with words.

To formalize the counting principle, let F be the set of objects and let A ⊆ F
be the set of objects having the desired property. The asymptotic density (or
asymptotic probability) µF (A) of A in F is defined as

µF (A) = lim
n→∞

|{X ∈ A : ‖X‖ = n}|
|{X ∈ F : ‖X‖ = n}| ,

where ‖X‖ denotes the size of X . The existence and value of µF (A) depend
on the choice of ‖ · ‖. If µF (A) exists, it is within [0, 1]. Note that µ is not a
probability in the classical sense since the enumerable additivity axiom does not
hold.

For the sake of clarity, in the sequel we assume a two-element alphabet A =
{a, b}. All results can be easily generalized to any |A| ≥ 2. Dominoes are the
only exception where we deal separately with two alphabet sizes, |A| = 2 and
|A| = 3. In all cases the results become trivial when |A| = 1.

How Many Figure Sets Are Codes? 387

3 Counting Square Figure Codes

We use the following size measure for sets of figures. Let Sk ⊂ P(A��) denote
the family of all sets containing k squares; SC

k ⊆ Sk will denote the family of
codes containing k squares. Define the size of a set X ∈ Sk as the size of the
largest square in X , i.e., ‖X‖ = max{lenx : x ∈ X}, where lenx denotes the
edge length of x.

We define the numbers Sk,=n, Sk,<n and Sk,≤n as follows:

– Sk,=n is the number of sets containing k squares, each of them of size n× n
– Sk,<n is the the number of sets containing k squares, each of them strictly

smaller than n× n
– Sk,≤n = |{X ∈ Sk : ‖X‖ = n}| is the number of sets containing k squares,

with the biggest one of size n× n.

Similarly, SC
k,=n, SC

k,<n and SC
k,≤n will denote the number of codes containing k

squares of respective sizes. All numbers defined above are assumed to be 1 when
k = 0.

Obviously S1,=n = 2n2
and for arbitrary n ≥ 1, k ≥ 0 we have Sk,=n =(

S1,=n

k

)
.

We are interested in finding the asymptotic density of k-element codes, i.e.,
the limit

µSk
(SC

k) = lim
n→∞

SC
k,≤n

Sk,≤n
= lim

n→∞
|{X ∈ SC

k : ‖X‖ = n}|
|{X ∈ Sk : ‖X‖ = n}| .

The following propositions, stating basic combinatorial properties of the Sk,...n

numbers, are easily proved. Proofs can be found in [11].

Proposition 1. For any k, n ≥ 1

Sk,<n =
n−1∑
i=0

Sk,≤i

Sk,≤n =
k∑

i=1

Si,=n · Sk−i,<n

These numbers can also be expressed non-recursively as:

Proposition 2. For any k, n ≥ 1

Sk,<n =
(∑n−1

i=0 S1,=i

k

)
Sk,≤n =

(∑n
i=0 S1,=i

k

)
−
(∑n−1

i=0 S1,=i

k

)

388 M. Moczurad and W. Moczurad

Proposition 3

∀k ≥ 1 ∃c = c(k) : Sk,<n <
c

2n
· 2kn2

∀k ≥ 1 ∃c = c(k) : Sk,≤n <

(
1
k!

+
c

2n

)
2kn2

Recall that SC
k,≤n is the number of codes containing k figures, with the biggest

one of size n × n. Any set containing k squares of fixed size is a code, hence
SC

k,≤n > Sk,=n. We can now compute the approximate proportion:

SC
k,≤n

Sk,≤n
>
Sk,=n

Sk,≤n

>
1
k!S1,=n(S1,=n − 1)...(S1,=n − (k − 1))

1
k!2

kn2 + c(k)
2n 2kn2

=
2n2

(2n2 − 1)...(2n2 − (k − 1))

2kn2 + c(k)·k!
2n 2kn2

=
(1 − 1

2n2)...(1 − k−1

2n2)

1 + c(k)·k!
2n

Since SC
k,≤n/Sk,≤n is bounded by 1, the limit is

µSk
(SC

k) = lim
n→∞

(1 − 1
2n2)...(1 − k−1

2n2)

1 + c(k)·k!
2n

= 1

We thus have:

Theorem 1. For any fixed k, the density of codes among sets containing k
squares, µSk

(SC
k), is equal to 1.

Note that the codes with squares of fixed size are enough to make the density of
codes equal to 1, implying that the density of sets of fixed-size squares among all
codes composed of squares is 1. This is not true in the one-dimensional case of
words; the density of fixed-length word codes is strictly less than 1, see Remark 1.

4 Counting Word Codes

We now consider ordinary word codes. Although they differ from figure codes in
that codicity testing is decidable, their probabilistic behaviour is similar in that
the density of codes is equal to 1.

By Wk ⊂ P(A∗) we denote the family of all sets containing k words; WC
k ⊆ Wk

is the family of codes containing k words. The size ‖X‖ of a set X ∈ Wk is the
length of the longest word in X .

How Many Figure Sets Are Codes? 389

Similarly to the figure case, Wk,=n, Wk,<n and Wk,≤n denote the number of
sets containing k words with respective lengths (all of length n, all shorter than
n, the longest one of length n) and WC

k,=n, WC
k,<n and WC

k,≤n denote the number
of codes containing k words with respective lengths.

Once again, we are interested in finding the asymptotic density of k-element
codes, i.e., the limit

µWk
(WC

k) = lim
n→∞

WC
k,≤n

Wk,≤n
= lim

n→∞
|{X ∈ WC

k : ‖X‖ = n}|
|{X ∈ Wk : ‖X‖ = n}| .

Clearly W1,=n = 2n and basic combinatorial properties follow those of the
Sk,...n numbers.

Proposition 4. For any k, n ≥ 1

Wk,<n =
n−1∑
i=0

Wk,≤i

Wk,≤n =
k∑

i=1

Wi,=n ·Wk−i,<n

Proposition 5. For any k, n ≥ 1

Wk,<n =
(∑n−1

i=0 W1,=i

k

)
Wk,≤n =

(∑n
i=0W1,=i

k

)
−
(∑n−1

i=0 W1,=i

k

)
Proposition 6

lim
n→∞

Wk,≤n

2kn
=

2k − 1
k!

Remark 1 As noted earlier, the density of fixed-length word codes is strictly less
than 1, hence different estimates have to be used. Note that for k, n ≥ 1

WC
k,=n

Wk,≤n
=

(
2n

k

)
(
2n+1 − 1

k

)
−
(
2n − 1
k

)
=

(1 − k−1
2n)...(1 − 1

2n)
(2 − k

2n)...(2 − 1
2n) − (1 − k

2n)...(1 − 1
2n)

−−−→n→∞
1

2k − 1
−−→
k→∞ 0

We now estimate WC
k,≤n, the number of codes containing k words, with the

longest one of length n.

390 M. Moczurad and W. Moczurad

Lemma 1
Wk,≤n −WC

k,≤n < kn ·Wk−1,≤n

Proof The number on the left-hand side is the number of all non-codes (with
given cardinality and size). This is less than e.g. the number of all non-prefix
sets. Every non-prefix set can be formed by taking one of the Wk−1,≤n-type sets
and adding a word that is a prefix of one of words already taken. There are
no more than (k − 1)(n − 1) ways of choosing the prefix, thus the number of
non-prefix sets is strictly less than kn ·Wk−1,≤n. �

Lemma 2

lim
n→∞

Wk,≤n −WC
k,≤n

2kn
= 0

The approximate proportion of codes among words can now be computed as

WC
k,≤n

Wk,≤n
=
Wk,≤n − (Wk,≤n −WC

k,≤n)
Wk,≤n

= 1 −
Wk,≤n −WC

k,≤n

2kn
· 2kn

Wk,≤n

Hence

lim
n→∞

WC
k,≤n

Wk,≤n
= 1 − 0 · k!

2k − 1
= 1

We have now proved

Theorem 2. For any fixed k, the density of codes among sets containing k
words, µWk

(WC
k), is equal to 1.

Note that the estimate used to prove Theorem 2 is based on prefix codes alone.
Consequently, the density of prefix codes among all word codes is equal to 1.

5 Counting Domino Figure Codes

Counting domino codes is harder than counting e.g. the squares, since there
seems to be no “easy” subclass like fixed-size squares. First, we will count two-
element (non-)codes, then we will consider three-domino codes with alphabet of
size 2 or 3. The latter case uses a corollary of the defect theorem which provides
additional bound for the number of non-codes.

By Dk ⊂ P(A��) we denote the family of all sets containing k dominoes;
DC

k ⊆ Dk is the family of codes containing k dominoes. The length of a 1×n or
n× 1 domino is defined to be n and the size ‖X‖ of a set X ∈ Dk is the length
of the longest domino in X .

Following the already established convention,Dk,=n, Dk,<n and Dk,≤n denote
numbers of sets containing k dominoes with respective lengths (all of length n, all

How Many Figure Sets Are Codes? 391

shorter than n, the longest one of length n) and DC
k,=n, DC

k,<n and DC
k,≤n denote

the number of codes containing k dominoes with respective lengths. Additionally,
NC superscript will be used to denote the respective numbers of non-codes.

We are obviously interested in finding the asymptotic density of k-element
codes, i.e., the limit

µDk
(DC

k) = lim
n→∞

DC
k,≤n

Dk,≤n
= lim

n→∞
|{X ∈ DC

k : ‖X‖ = n}|
|{X ∈ Dk : ‖X‖ = n}| .

In the present paper we deal with the case of k = 2 (simple) and k = 3. Note
that, as opposed to words and squares, there is no simple subclass of domino
codes of density 1. Hence, more specific enumerations have to be considered.

The following properties of the Dk,...n numbers are easily proved.

Proposition 7

D1,=n =

⎧⎨⎩
1, n = 0
2, n = 1
2 · 2n, n ≥ 2

Proposition 8. For any k, n ≥ 1

Dk,<n =
n−1∑
i=0

Dk,≤i

Dk,≤n =
k∑

i=1

Di,=n ·Dk−i,<n

Proposition 9. For any k, n ≥ 1

Dk,<n =
(∑n−1

i=0 D1,=i

k

)
Dk,≤n =

(∑n
i=0D1,=i

k

)
−
(∑n−1

i=0 D1,=i

k

)
By the above Propositions we immediately get

Corollary 1

Dk,<n =
(∑n−1

i=0 D1,=i

k

)
=
(
2n − 5
k

)
Dk,≤n = Dk,<n+1 −Dk,<n

=
(
2n+1 − 5

k

)
−
(
2n − 5
k

)
= Θ(2kn)

392 M. Moczurad and W. Moczurad

5.1 Figures Defect

Below we quote two specific formulations of the defect theorem for figures. Proofs
can be found in [13]. Note that the defect theorem does not hold for larger sets
of figures; this is summarized in the following table:

Figures/set size 2 3 ≥ 4
Squares + − −
Dominoes + + −
Rectangles + ? −
Unrestricted ? − −

Theorem 3. Let X = {k, l} ⊆ A�� be a non-code containing two rectangles.
Then there exists a common rectangular tiler for k, l, i.e., a rectangle t ∈ A��

such that k, l ∈ {t}��.

Corollary 2. Let X = {k, l} ∈ D2 be a non-code containing two dominoes.
Then (i) k and l have the same orientation, i.e., both are horizontal or both are
vertical, or (ii) k and l use just one label.

Note that in the former case the dominoes can be identified with words.

Theorem 4. Let X ∈ D3 ⊆ P(A��) be a non-code containing three dominoes.
Then there exists a code Y ∈ D1 ∪ D2 such that Y tiles the dominoes of X.

The following proposition is a consequence of a detailed case analysis that ap-
pears in the proof of the above theorem.

Proposition 10. Let X ∈ D3 ⊆ P(A��) be a non-code containing one vertical
and two horizontal dominoes. If X uses at least three labels, the vertical domino
uses just one label.

5.2 Codes in D2

Because of Corollary 2, the number of two-domino non-codes can be computed as

2WNC
2,≤n +m(n),

where m(n) is the number of “monochromatic” sets with one horizontal and one
vertical domino. The factor 2 appears because every non-code of the WNC

2,≤n type
can be mapped to two DNC

2,≤n non-codes, one with horizontal dominoes and one
with vertical ones.

Now m(n) is simply 2(1 + 2(n− 2)) = O(n), where (i) the outermost 2 corre-
sponds to the choice of one of two possible labels, (ii) the term 1 describes the
set with both dominoes of length n, (iii) n−2 corresponds to possible choices for
the shorter domino (length in 2...n− 1; note that the case of shorter domino of
length 1 is covered by the WNC term), (iv) there are two possible orientations
(horizontal longer or shorter), hence the inner factor 2.

How Many Figure Sets Are Codes? 393

Lemma 1, combined with the above, gives us

DNC
2,≤n = 2WNC

2,≤n +m(n)
< 2 · 2nW1,≤n +m(n)
< n2n+3 +m(n)
= O(n2n)

Using Corollary 1, we thus obtain

Proposition 11

lim
n→∞

DNC
2,≤n

D2,≤n
=
O(n2n)
Θ(22n)

= 0

Hence we have proved

Theorem 5. The density of codes among sets containing two dominoes,
µD2(DC

2), is equal to 1.

5.3 Codes in D3

We start with the observation that sets in D3 fall into two categories: (1) sets
containing three dominoes of the same orientation, i.e., three horizontal or three
vertical ones, (2) sets containing one vertical and two horizontal dominoes, or
vice-versa. Case (1) reduces to counting word codes; case (2) requires a detailed
analysis.

Lemma 3. Let X = {v, h1, h2} ∈ D3 contain a vertical domino v and two
horizontal dominoes, h1 and h2. Let a be the label of the topmost cell of v, i.e.,
v = (a...)T . If X is not a code, then X ′ = {a, h1, h2} ⊆ A∗ is not a code (in the
word sense).

Proof. Since X is not a code, there exists a minimal (in the sense of domain
inclusion) figure F with two different X-factorizations. We consider rows of the
figure defined as maximal horizontal words contained within its domain. Notice
that the X-factorizations define two different X ′-factorizations of the topmost
row of F . Hence X ′ is not a code. �

We now estimate from above the number of {a, h1, h2}-type non-codes. Without
loss of generality, we assume that lenh1 = n and lenh2 = l ≤ n. Consider the
following cases: (2.1) one of {a, hi}(i = 1, 2) is a non-code, (2.2) {h1, h2} is a
non-code, (2.3) all 2-subsets are codes.

Proposition 12. The number of {a, h1, h2}-type non-codes specified above is
O(p(n)2n), where p(n) is polynomial in n.

394 M. Moczurad and W. Moczurad

Proof. Case (2.1): Since {a, hi} is not a code, hi ∈ a∗ and the remaining choices
for hj , j �= i, are O(n2n).

Case (2.2): By the defect theorem there exists a common factor of h1 and h2,
i.e., h1 = wk1 and h2 = wk2 . Choices for w are O(2n), choices for k1 and k2 are
O(n2), giving O(n22n) in total.

Case (2.3): Obviously, there exists a word with two different factorizations over
{a, h1, h2}. Assume that h1 is non-overlapping. Thus, it is wholly covered by a
and h2, with parts of h2 possibly extending beyond h1. The number of choices
can now be estimated as

2l
∑
pl,pr

c(n− pl − pr),

where pl and pr signify lengths of those parts of h2 that cover the left and right
end of h1, respectively (thus pl and pr run over 0...n with pl + pr ≤ n); c(m) is
the number of choices for covering a subword of length m with a and h2. The
factor 2l is the number of choices for h2.

� �
n

��
pl

��
pr

� �
m

h2 . . . h2 / a . . . h2

h1

Substituting m for n − pl − pr we lose track of the position of the h2/h1

overlaps; thus we introduce a factor of n+ 1 and get

2l
∑
pl,pr

c(n− pl − pr) ≤ 2l
m=n∑
m=0

(n+ 1)c(m)

≤ 2l
m=n∑
m=0

(n+ 1)c(n)

= 2l(n+ 1)2c(n)
= 2l(n+ 1)2(1 + c′(n))
≤ 2l(n+ 1)2(1 + 2n−l+2 − 1)
= (n+ 1)22n+2

where c′(n) denotes the number of choices for covering a word of length n with
a and h2, with at least one occurrence of h2.

A similar estimation can be used if h1 does overlap itself. Note that cases
(2.1) and (2.2) are not disjoint, but their intersection is trivial.

Finally, note that the sum of numbers in (2.1), (2.2) and (2.3) isO(p(n)2n). �

How Many Figure Sets Are Codes? 395

Proposition 13

lim
n→∞

DNC
3,≤n

D3,≤n
=
O(p(n)22n)
Θ(23n)

= 0

Proof. By Lemma 1, the number of non-codes in case (1) is 2WNC
3,≤n =

O(p(n)22n). By Lemma 3, the number of non-codes in case (2) is bounded by the
number of {a, h1, h2}-type non-codes multiplied by 2n, the number of choices for
the vertical domino. By Proposition 12, this is again O(p(n)22n). Using Corol-
lary 1 we get the required limit. �

Finally we have arrived at

Theorem 6. The density of codes among sets containing three dominoes,
µD3(DC

3), is equal to 1.

5.4 Codes in D3 with |A| ≥ 3

This time we assume an alphabet of at least three letters. The estimates for
|A| = 2 can be used with base 3 replacing 2 throughout. However, it is interesting
to observe that we can make a better estimate for non-codes resulting from
case (2.3) of the previous section.

By Proposition 10, each {a, h1, h2}-type non-code gives rise to just one non-
code in D3. Thus their number is O(p(n)3n).

6 Conclusions

We obviously conjecture that the asymptotic density of domino codes is equal
to 1 for all cardinalities of the sets. In fact, we conjecture this is the case for all
non-trivial classes of figures, including the class of all figures.

References

1. Beauquier, D., Nivat, M.: A codicity undecidable problem in the plane. Theoret.
Comp. Sci. 303, 417–430 (2003)

2. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, London (1985)
3. Harju, T., Karhumäki, J.: Many aspects of the defect effect. Theoret. Comp.

Sci. 324, 35–54 (2004)
4. Karhumäki, J., Mantaci, S.: Defect Theorems for Trees. Fundam. Inform. 38, 119–

133 (1999)
5. Karhumäki, J., Maňuch, J.: Multiple factorizations of words and defect effect.

Theoret. Comp. Sci. 273, 81–97 (2002)
6. Karhumäki, J., Maňuch, J., Plandowski, W.: A defect theorem for bi-infinite words.

Theoret. Comp. Sci. 292, 237–243 (2003)

396 M. Moczurad and W. Moczurad

7. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

8. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

9. Mantaci, S., Restivo, A.: Codes and equations on trees. Theoret. Comp. Sci. 255,
483–509 (2001)

10. Maňuch, J.: Defect Effect of Bi-infinite Words in the Two-element Case. Discrete
Mathematics & Theoretical Computer Science 4, 273–290 (2001)

11. Moczurad, M., Moczurad, W.: Asymptotic density of brick and word codes. Ars
Combinatoria 83, 169–177 (2007)

12. Moczurad, M., Tyszkiewicz, J., Zaionc, M.: Statistical properties of simple types.
Math. Struct. in Comp. Science 10, 575–594 (2000)

13. Moczurad, W.: Defect theorem in the plane. Theoret. Informatics Appl. 41, 403–
409 (2007)

14. Wilf, H.: Generatingfunctionology. Academic Press, London (1994)
15. Yeats, K.: Asymptotic Density in Combined Number Systems. New York J.

Math. 8, 63–83 (2002)

On Alternating Phrase-Structure Grammars�

Etsuro Moriya1 and Friedrich Otto2

1 Advanced Research Institute for Science and Engineering and
Department of Mathematics, School of Education,

Waseda University, Shinjuku-ku, Tokyo, 169-8050, Japan
moriya@waseda.jp

2 Fachbereich Elektrotechnik/Informatik, Universität Kassel
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. We study several extensions of the notion of alternation
from context-free grammars to context-sensitive and arbitrary phrase-
structure grammars. Thereby new grammatical characterizations are
obtained for the class of languages that are accepted by alternating push-
down automata.

1 Introduction

Alternation is a powerful concept that was first introduced by Chandra and
Stockmeyer [2,3] for general Turing machines and then by Ladner, Lipton, and
Stockmeyer [9,10] for pushdown automata. Thereafter this notion has been stud-
ied for a variety of other devices. In particular, in [13] one of the authors intro-
duced the concept of alternating context-free grammars (ACFG for short) by
distinguishing between existential and universal variables (nonterminals) with
the aim of deriving a grammatical characterization for the class of languages
that are accepted by alternating pushdown automata (APDA for short).

As no such characterization was obtained in [13], further studies of the notion
of alternation for context-free grammars and pushdown automata followed (see,
e.g., [4,14,15,16]). Also Okhotin’s conjunctive grammars [18] can be interpreted
as a variant of ACFGs in which the effect of universal steps is localized. In [7]
the class of languages that are accepted by APDAs was finally characterized
through linear-erasing ACFGs. Further, inspired by the notion of context-free
grammar with states of Kasai [8], the state-alternating context-free grammar
(sACFG for short) was introduced in [14] by distinguishing between existential
and universal states. Thus, while in an ACFG the variable on the lefthand side of
a production determines whether this production is to be used in an existential
or a universal fashion, it is the states that make this distinction in an sACFG. For
each ACFG G, an sACFG G′ can be constructed such that G and G′ generate
the same language, but it is still open whether or not the converse is true. At

� Major parts of this work were done while Etsuro Moriya was visiting at the Fach-
bereich Elektrotechnik/Informatik, Universität Kassel.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 397–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

398 E. Moriya and F. Otto

least for linear context-free grammars, and therewith in particular for right-
linear (that is, regular) grammars, it has been shown that the two notions of
alternation have the same expressive power. Actually, both types of alternating
right-linear grammars just generate the regular languages. Further, it turned
out that sACFGs working in leftmost derivation mode generate exactly those
languages that are accepted by APDAs [14]. In this way another grammatical
characterization for this class of languages was obtained.

In [16] the authors studied a different way of defining the notion of alternation
for pushdown automata. Instead of distinguishing between existential and uni-
versal states as in [9,10], here the pushdown symbols are used for this purpose.
The stateless variant of this so-called stack-alternating pushdown automaton ac-
cepts exactly those languages that are generated by ACFGs in leftmost deriva-
tion mode [16]. However, in general stack-alternating pushdown automata are
equivalent in expressive power to the original variant of the APDA. It is known
that the class of languages these automata accept coincides with the determin-
istic time complexity class ETIME =

⋃
c>0 DTIME(cn) as well as with the alter-

nating space complexity class ALINSPACE, that is, the class of languages that
are accepted by alternating linear bounded automata (ALBA) [3,10]. As in the
classical (non-alternating) setting pushdown automata correspond to context-
free grammars and linear bounded automata correspond to context-sensitive
grammars, the above results raise the question about the expressive power of
alternating context-sensitive grammars.

In this paper we carry the notion of alternation over to general phrase struc-
ture and context-sensitive grammars. In fact, we consider both types of alter-
nation for grammars mentioned above. By distinguishing between existential
and universal variables we obtain the alternating phrase-structure grammars
(APSG) and the alternating context-sensitive grammars (ACSG). By considering
grammars with states, for which we distingush between existential and universal
states, we obtain the state-alternating phrase-structure grammars (sAPSG) and
the state-alternating context-sensitive grammars (sACSG). For state-alternating
grammars it is rather straightforward to define the notion of derivation. However,
for the other type of alternating grammars there are various different ways for
defining the corresponding derivation relation. We will consider two such defini-
tions, and we will prove that they are in fact equivalent in a weak sense, that is,
for a fixed alternating grammar the two definitions yield different languages, but
to each alternating grammar working with the one notion of derivation, there
is another grammar of the same type that is working with the other notion of
derivation, and that generates the same language. In addition, we will consider
two modes of derivation: leftmost derivations and unrestricted derivations.

Actually, it will turn out that for phrase-structure and for context-sensitive
grammars, the state-alternating variant is equivalent to the alternating vari-
ant. This equivalence is valid for both leftmost derivations and unrestricted
derivations. With respect to unrestricted derivations APSGs just give another
characterization for the class RE of recursively enumerable languages. However,
with respect to leftmost derivations, they have the same generative power as

On Alternating Phrase-Structure Grammars 399

sACFGs. This can be interpreted as the counterpart to the corresponding result
for non-alternating grammars, which states that in leftmost mode general phrase-
structure grammars can only generate context-free languages [12]. Our second
main result states that with respect to unrestricted derivations ACSGs generate
exactly those languages that are accepted by alternating linear bounded au-
tomata. As ALBAs and APDAs accept the same languages, we see that APSGs
(working in leftmost mode) and ACSGs (working in unrestricted mode) give
new grammatical characterizations for the class of languages that are accepted
by APDAs. Finally, when working in leftmost mode, ACSGs generate a subclass
of this class of languages. It remains open, however, whether this is a proper
subclass. These facts should be compared to the fact that no inclusion relation
is known between the class of languages generated by sACFGs (or ACFGs) in
leftmost mode and the class of languages generated by sACFGs (or ACFGs) in
unrestricted mode.

This paper is structured as follows. In Section 2 the basic definitions of al-
ternating and state-alternating grammars are given, and two different ways of
defining the notion of derivation for alternating grammars are considered. In
Section 3 we derive the announced results on the relationships between alternat-
ing grammars and state-alternating grammars. The main result of this section
states that, with respect to leftmost derivations, APSGs (and therewith sAPSGs)
have the same expressive power as sACFGs. Finally, Section 4 is devoted to the
study of the relationship between ACSGs on the one hand and alternating linear
bounded automata on the other hand. The paper closes with Section 5, where
some open problems are presented.

2 Two Types of Alternating Grammars

An alternating phrase-structure grammar is a grammar G = (V, U,Σ, P, S),
where V is a set of variables (or nonterminals), U ⊆ V is a set of universal
variables, while the variables in V � U are called existential, Σ is a set of ter-
minals, S is the start symbol, and P is a set of productions, where (, r) ∈ P
implies that 	, r ∈ (V ∪Σ)∗, and 	 contains at least one variable. If |	| ≤ |r| holds
for all productions (, r) ∈ P , then G is called an alternating context-sensitive
grammar, and if 	 ∈ V holds for all productions (, r) ∈ P , then G is called an
alternating context-free grammar. By APSG (ACSG, ACFG) we denote the class
of all alternating phrase-structure (context-sensitive, context-free) grammars.

It remains to specify the way in which derivations are performed by an al-
ternating grammar G. In particular, we must determine a way to distinguish
between existential and universal derivation steps. There are various options.

First of all we can use a specific nonterminal occurring in a sentential form α
to determine whether α itself is existential or universal. For example, we could
use the leftmost variable occurring in α for that, that is, if α = xAβ, where
x ∈ Σ∗, A ∈ V , and β ∈ (V ∪Σ)∗, then we call α an existential sentential form
if A ∈ V � U , and we call α a universal sentential form if A ∈ U . To apply
a derivation step to α, we nondeterministically choose a substring 	 of α that

400 E. Moriya and F. Otto

occurs as the left-hand side of one or more rules of P . Now if α is existential, then
one of these rules is chosen, and α = γ	δ is rewritten into γrδ, where (, r) ∈ P
is the rule chosen. If α is universal, then let (, r1), . . . , (, rm) be those rules of P
with left-hand side 	. Now all these productions are applied simultaneously, thus
giving a finite number of successor sentential forms γr1δ, . . . , γrmδ. In this way a
derivation is not a linear chain, but it has the form of a tree. A terminal word w
can be derived from G, if there exists a finite derivation tree in the above sense
such that the root is labelled with the start symbol S and all leaves are labelled
with w. Observe that in this way the rules themselves are neither existential
nor universal, but that it purely depends on the type of the leftmost variable
in the actual sentential form whether the next derivation step is existential or
universal. Below we will use the notation ⇒c

G to denote this derivation relation.
By Lc(G) we denote the language that is generated by G using this relation.

Alternatively, we can use a distinguished occurrence of a variable in the left-
hand side of a rule to declare that rule as being existential or universal. Of
course, this must be done in a consistent way, that is, for all rules with the same
left-hand side, the same variable occurrence must be chosen. Then for α = γ	δ,
if 	 is existential, then α is rewritten into γrδ, where (, r) ∈ P is one of the rules
with left-hand side 	, and if 	 is universal, then α is rewritten simultaneously
into γr1δ, . . . , γrmδ, where (, r1), . . . , (, rm) are all the rules in P with left-hand
side 	. Here we use the following convention: 	 is universal (or existential, resp.)
if the leftmost variable occurring in 	 is universal (or existential, resp.). We will
use the notation ⇒G to denote this derivation relation. By L(G) we denote the
language that is generated by G using this derivation relation.

The following example demonstrates that the derivation relations ⇒c
G and

⇒G will in general yield different languages.

Example 1. Let G = ({S,A,B}, {B}, {a, b, c}, P, S) with P = {S → AB,A→ a,
A → ab,B → c, B → bc}. Then with respect to ⇒c

G, G generates the language
Lc(G) = {ac, abc, abbc}, while with respect to ⇒G, we only obtain the language
L(G) = {abc}. The reason is the fact that with respect to ⇒c

G, the rules with
left-hand side B can be applied in existential fashion as long as the variable A
is still present in the actual sentential form.

However we have the following results [17].

Proposition 1. For each alternating phrase-structure grammar G, there exists
an alternating phrase-structure grammar G′ such that L(G′) = Lc(G).

Proposition 2. For each alternating phrase-structure grammar G, there exists
an alternating phrase-structure grammar G′ such that Lc(G′) = L(G).

These results also hold for the special case of alternating context-sensitive gram-
mars. Thus, we see that for context-sensitive as well as for general phrase-
structure grammars, both definitions of alternation yield the same expressive
power. Therefore we restrict our attention in the rest of this paper to alternat-
ing grammars for which the leftmost variable occurring in the lefthand side of a
production determines whether the production itself is existential or universal.

On Alternating Phrase-Structure Grammars 401

In addition to the unrestricted derivation mode, we are also interested in the
so-called leftmost derivation mode. A derivation step α = γ	δ ⇒G β, respectively
α = γ	δ ⇒G (γr1δ, . . . , γrmδ), is called leftmost if γ ∈ Σ∗, that is, this step
involves the leftmost variable occurrence in α. By Llm(G) we denote the language
consisting of all terminal words that G generates by leftmost derivations. It is
obvious that with respect to leftmost derivations the above two definitions of
the derivation process of an alternating grammar coincide, if in both definitions
the leftmost variable occurrence is chosen.

In [12] it is shown that the language Llm(G) is context-free if G = (V,Σ, S, P)
is a phrase-structure grammar such that each rule (→ r) ∈ P has the structure

	 = x0A1x1 · · ·xn−1Anxn → x0β1x1 · · ·xn−1βnxn = r

for some n ≥ 1, where x0, xi ∈ Σ∗, Ai ∈ V , and βi ∈ (V ∪Σ)∗ for all 1 ≤ i ≤ n
(see, e.g., [11], p. 198). To obtain a corresponding result, we restrict our attention
to alternating phrase-structure grammars G = (V, U,Σ, P, S) that satisfy the
following condition: each rule (→ r) ∈ P has the form 	 = xAα → xβ = r,
where x ∈ Σ∗, A ∈ V , and α, β ∈ (V ∪Σ)∗. It can be shown that this restriction
does not influence the expressive power of alternating phrase-structure grammars
as far as the unrestricted derivation mode is concerned. Obviously, this restriction
contains the above restriction as a special case, and it is satisfied by all grammars
for which the lefthand side of each production begins with a nonterminal.

We denote the class of languages generated by grammars of type X in leftmost
derivation mode by Llm(X), while L(X) is used to denote the class of languages
generated by these grammars in unrestricted derivation mode.

In [14] also the state-alternating context-free grammar (sACFG) was intro-
duced. Analogously, we define the state-alternating phrase-structure grammar as
an 8-tuple G = (Q,U, V,Σ, P, S, q0, F), where Q is a finite set of states, U ⊆ Q is
a set of universal states, while the states in Q�U are called existential states, V is
a finite set of variables, Σ is a set of terminals, S ∈ V is the start symbol, q0 ∈ Q
is the initial state, and F ⊆ Q is a set of final states. Finally, P is a finite set of
productions of the form (p,) → (q, r), where p, q ∈ Q, 	 ∈ (V ∪Σ)∗ ·V ·(V ∪Σ)∗,
and r ∈ (V ∪Σ)∗. The derivation relation ⇒∗

G is defined on the set Q× (V ∪Σ)∗

of extended sentential forms. Let p ∈ Q and α ∈ (V ∪Σ)∗. If p is an existential
state, that is, p ∈ Q � U , then (p, α) ⇒G (q, α1rα2), if α = α1	α2, and there
exists a production of the form (p,) → (q, r). If p is a universal state, α has the
factorization α = α1	α2, and (p,) → (qi, ri) (1 ≤ i ≤ k) are all the productions
with lefthand side (p,), then (p, α) ⇒G ((q1, α1r1α2), . . . , (qk, α1rkα2)), that is,
all these productions are applied in parallel to the chosen occurrence of the sub-
string 	, and following this step all these sentential forms are rewritten further,
independently of each other. In this way a derivation tree is obtained.

The language L(G) that is generated by G consists of all words w ∈ Σ∗ for
which there exists a derivation tree such that the root is labelled with (q0, S)
and all leaves are labelled with pairs of the form (p, w) with p ∈ F . Note that
the labels of different leaves may differ in their first components.

If |	| ≤ |r| holds for all productions (p,) → (q, r) of P , then G is called
a state-alternating context-sensitive grammar, and if 	 ∈ V for all productions

402 E. Moriya and F. Otto

(p,) → (q, r) of P , then G is a state-alternating context-free grammar. By
sACFG, sACSG, and sAPSG we denote the classes of state-alternating context-
free, context-sensitive, and general phrase-structure grammars, respectively. As
before we are interested in the expressive power of these grammars with respect
to the leftmost and the unrestricted derivation modes. It is known that the class
of languages Llm(sACFG) coincides with the class of languages that are accepted
by alternating pushdown automata ([14] Theorem 6.4).

3 Alternation Versus State-Alternation

First we consider the generative power of alternating grammars with respect to
the leftmost derivation mode. Recall that we require that each production of an
alternating grammar is of the form (xAα → xβ), where x ∈ Σ∗, A ∈ V , and
α, β ∈ (V ∪ Σ)∗. For state-alternating grammars, we require analogously that
each production is of the form ((p, xAα) → (q, xβ)), where p and q are states.

Lemma 1. Llm(ACSG) ⊆ Llm(sACSG).

Proof. Let G = (V, U,Σ, P, S) be an ACSG that satisfies the above condition.
We construct an sACSG G′ = (Q,Q∀, V,Σ, P ′, S, [?], {[?]}) satisfying Llm(G′) =
Llm(G) by taking Q := { [A] | A ∈ V } ∪ {[?]}, Q∀ := { [A] | A ∈ U }, and by
defining P ′ as follows:

([?], A) → ([A], A) for all A ∈ V,
([A], xAα) → ([?], xβ) for all (xAα→ xβ) ∈ P.

Let wAγ be a sentential form of G, where w ∈ Σ∗, A ∈ V , and γ ∈ (V ∪ Σ)∗.
Assume further that G contains the production (xAα→ xβ), and that w = w0x
and γ = αδ hold. Then with respect to G, we have the leftmost derivation
step wAγ = w0xAαδ ⇒G w0xβδ. From the definition above we see that G′ can
execute the leftmost derivation ([?], wAγ) ⇒G′ ([A], wAγ) = ([A], w0xAαδ) ⇒G′

([?], w0xβδ). Here the first step is existential, and the second step is existential if
and only if the above step of G is existential. Thus, it follows immediately that
the leftmost derivations mod G are in one-to-one correspondence to the leftmost
derivations mod G′. Thus, Llm(G′) = Llm(G). �

An analogous result holds for alternating phrase-structure grammars.

Lemma 2. Llm(APSG) ⊆ Llm(sAPSG).

However, for APSGs we even have the following result.

Lemma 3. Llm(APSG) ⊆ Llm(sACFG).

Proof. Let G = (V, U,Σ, P, S) be an APSG, let k := max{ |	| | (→ r) ∈ P },
and let Σ := { ā | a ∈ Σ } be a set of new variables that are in one-to-one
correspondence to Σ. By : (V ∪Σ)∗ → (V ∪Σ)∗ we denote the morphism that
is defined through A �→ A for all A ∈ V and a �→ ā for all a ∈ Σ. We define an

On Alternating Phrase-Structure Grammars 403

sACFG G′ := (Q′, U ′, V ′, Σ, P ′, S′, [ε], {[ε]}) as follows, where S′, $, and c| are
new variables, and V̂ := { yxα | x, y ∈ Σ∗, |yx| ≤ k, α ∈ (V ∪Σ)∗, |α| ≤ k }:

Q′ := { [yxα], [y#xα] | yxα ∈ V̂ },
U ′ := { [y#xα] | yxα ∈ V̂ , α ∈ U · (V ∪Σ)∗ },
V ′ := V ∪Σ ∪ {S′, $, c| }.

The set P ′ contains the following productions, where a ∈ Σ, X ∈ V , A ∈ V ∪Σ,
and α ∈ (V ∪Σ)∗:

(0) ([ε], S′) → ([ε], Sc|).
(1) (a) ([α], X) → ([αX], ε), (b) ([α], X) → ([αX], $) for all |α| < 2k.

(c) ([α], ā) → ([αa], ε), (d) ([α], ā) → ([αa], $) for all |α| < 2k.
(2) ([aα], A) → ([α], aA) for all |α| < 2k.
(3) ([y#xAα], $) → ([yx], β̄) for all yx ∈ Σ∗, |yx| ≤ k, if (xAα→ β) ∈ P .
(4) ([ε], ā) → ([ε], a).
(5) ([ε], c|) → ([ε], ε).
(6) ([yxα], $) → ([y#xα], $) for all yxα ∈ V̂ .

The states of G′ of the form [yxα] and [y#xα] are introduced to hold in-
formation on the portion xAα of a G-sentential form yxAαγ such that xAα
could be the lefthand side of a G-production. The first step of a G′-derivation is
([ε], S′) ⇒ ([ε], Sc|), and the c| -symbol will remain unchanged until the senten-
tial form contains this symbol as the only variable left.

Let xAα → xβ be a production in P , and consider a leftmost G-derivation
step zyxAαγ ⇒ zyxβγ, where zy ∈ Σ∗, |y| ≤ k − |x|, and γ ∈ (V ∪ Σ)∗.
Assume that in G′ we have already derived the sentential form ([yx], zAᾱγ̄c|).
Then we can execute the leftmost G′-derivation

([yx], zAᾱγ̄c|) ⇒ ([yxA], zᾱγ̄c|) ⇒∗ ([yxAα], z$γ̄c|)
⇒ ([y#xAα], z$γ̄c|) ⇒ ([yx], zβ̄γ̄c|).

Productions of type (1) choose nondeterministically either to further expand
the substring α of the current sentential form xαγ obtained so far as a candidate
for the lefthand side of a production to be applied to the sentential form or to
terminate this process.

Note that xAα is a universal (existential, resp.) string for G iff A ∈ U (A ∈
V � U , resp.) iff [y#xAα] is a universal (existential, resp.) state of G′ for all
y ∈ Σ∗ satisfying |y| ≤ k − |x|, and that by the definition of the productions of
group (3), exactly one production xAα→ β of G corresponds to the productions
of the form ([y#xAα], $) → ([yx], β̄) of G′. Thus, the above simulation of a G-
derivation step by G′ remains valid also if the G-derivation step is universal.

Next the derivation can proceed according to one of the following two cases.
Case 1 : If yxβγ = uvBδ with uv ∈ Σ∗, B ∈ V , and δ ∈ (V ∪ Σ)∗, then
there is a G′-derivation ([yx], zβ̄γ̄c|) ⇒∗ ([v], zuBδ̄c|) by using productions of
type (1), (2), and (4), which enables the application of a production for the next

404 E. Moriya and F. Otto

derivation step, whose lefthand side is of the form v′Bδ1 for some suffix v′ of v
and a prefix δ1 of δ.
Case 2 : If βγ is a terminal string, G′ can complete the derivation by using
productions of type (2) and (4) followed by production (5) to terminate the
derivation: ([yx], zβ̄γ̄c|) ⇒∗ ([ε], zyxβ̄γ̄c|) ⇒∗ ([ε], zyxβγc|) ⇒ ([ε], zyxβγ).

It is easily seen that G′ generates all the strings in Llm(G) with respect to the
leftmost derivation mode, and the converse inclusion can be proved similarly. �

Next we see that also the converse of Lemma 1 holds.

Lemma 4. Llm(sACSG) ⊆ Llm(ACSG).

Proof. Let G = (Q,U, V,Σ, P, q0, S, F) be an sACSG. We construct an ACSG
G′ = (V ′, U ′, Σ, P ′, [q0, S]) that generates the same language as G in leftmode
mode. Let Σ := { ā | a ∈ Σ } be a new set of variables in one-to-one correspon-
dence to Σ, and let : (V ∪ Σ)∗ → (V ∪ Σ)∗ be the corresponding morphism.
We choose

V ′ := { [q, A]e, [q, A] | q ∈ Q, A ∈ V ∪Σ } ∪ V ∪Σ,
U ′ := { [q, A] | q ∈ U, A ∈ V },

and we let P ′ consist of the following productions, where p, q ∈ Q, A,B ∈ V ,
a, b ∈ Σ, x, y ∈ Σ∗, and α, β ∈ (V ∪Σ)∗:

(1) [q, A]e → [q, A] for all q ∈ Q and all A ∈ V,
(2) x[p,A]ᾱ→ xy[q,B]eβ̄ for all ((p, xAα) → (q, xyBβ)) ∈ P,
(3) x[p,A]ᾱ→ x[q, ā]eȳ for all ((p, xAα) → (q, xay)) ∈ P,
(4) [q, ā]eb̄ → a[q, b̄]e for all a, b ∈ Σ,
(5) [q, ā]eB → a[q,B]e for all a ∈ Σ and all B ∈ V,
(6) [q, ā]e → a for all q ∈ F and all a ∈ Σ.

As G is a context-sensitive grammar, G′ is context-sensitive as well. Further, as
G does not contain any ε-rules, the productions of G′ of type (2) and (3) are in
one-to-one correspondence to the productions ofG. Actually, this correspondence
respects the type of the productions of being existential or universal.

The basic idea of the simulation of G by G′ is the following. The actual
state of G is combined with the leftmost variable in the current sentential
form. Thus, a sentential form (p, uxAαγ) of G, where p ∈ Q, u, x ∈ Σ∗,
A ∈ V , and α, γ ∈ (V ∪ Σ)∗, is encoded by the sentential form ux[p,A]eᾱγ̄
of G′. The production (p, xAα) → (q, xyBβ) then yields the leftmost derivation
step (p, uxAαγ) ⇒G (q, uxyBβγ). In G′ this is simulated by ux[p,A]eᾱγ̄ ⇒G′

ux[p,A]ᾱγ̄ ⇒G′ uxy[q,B]eβ̄γ̄. If a production of the form (p, xAα) → (q, xay)
is used, then we obtain the leftmost derivation step (p, uxAαγ) ⇒G (q, uxayγ),
which is simulated in G′ by ux[p,A]eᾱγ̄ ⇒G′ ux[p,A]ᾱγ̄ ⇒G′ ux[q, ā]eȳγ̄ ⇒∗

G′

uxayz[q,B]eδ, provided that γ = zBδ for some z ∈ Σ∗ and B ∈ V .
A successful leftmost derivation of G ends with a sentential form (q, w) for

some q ∈ F and w ∈ Σ+, where in the last step the last occurring variable is

On Alternating Phrase-Structure Grammars 405

replaced by a terminal string. In G′ the corresponding leftmost derivation will
yield a sentential form ux[q, ā]eȳb̄, where w = uxayb. However, using productions
of type (4) and (6) we can complete the corresponding leftmost derivation of G′

by ux[q, ā]eȳb̄⇒∗
G′ uxay[q, b̄]e ⇒G′ uxayb = w. It follows that Llm(G′) = Llm(G)

holds. �

Combining Lemmas 1 and 4 we obtain the following equivalence.

Theorem 1. Llm(ACSG) = Llm(sACSG).

The proof above can also be adapted to the case of alternating phrase-structure
grammars, which yields the following result.

Lemma 5. Llm(sAPSG) ⊆ Llm(APSG).

From Lemmas 3 and 5 and the facts that Llm(sACFG) ⊆ Llm(sAPSG) and that
Llm(sACFG) = L(APDA) [14] we obtain the following equivalence.

Theorem 2. Llm(APSG) = Llm(sAPSG) = Llm(sACFG) = L(APDA).

As Llm(ACSG) ⊆ Llm(APSG) holds, Theorem 1 and Theorem 2 yield the following
consequence.

Corollary 1. Llm(ACSG) = Llm(sACSG) ⊆ Llm(sACFG) = L(APDA).

Note that the grammar G′ in the proof of Lemma 3 is not context-sensitive. It
is still open whether the converse inclusion of Corollary 1 holds.

Now we turn to the unrestricted derivation mode. By using essentially the
same proof ideas the above results carry over to this derivation mode. Thus, we
have the following equalities, where RE denotes the class of recursively enumer-
able languages.

Corollary 2. (a) L(ACSG) = L(sACSG).
(b) L(APSG) = L(sAPSG) = RE.

4 ACSGs and Alternating Linear Bounded Automata

An alternating linear bounded automaton, ALBA for short,M is a linear bounded
automaton for which some of its states are distinguished as universal states. A
configuration of M is given through a string of the form c|uqav$, where q is the
current state, uav is the current tape inscription with a ∈ Γ , and u, v ∈ Γ ∗, and
the head of M is currently scanning the tape cell containing the distinguished
occurrence of the letter a. Here Γ is the tape alphabet of M , and the symbols c|
and $ are used as delimiters for the work space.

If state q is existential, then an applicable transition of M is chosen non-
deterministically, and M executes the corresponding transformation. If state q
is universal, then M applies all applicable transformation steps simultaneously,

406 E. Moriya and F. Otto

RE L(APSG) L(sAPSG)

ETIME

��

L(APDA) L(ALBA)

Llm(sACFG) L(ACSG) L(sACSG) Llm(APSG) Llm(sAPSG)

Llm(ACSG)

��

Llm(sACSG)

Llm(ACFG)

��

Llm(ε-free sACFG)

��

CFL

���������������

Fig. 1. Inclusion relations among language classes defined by various types of alternat-
ing grammars. An arrow denotes a proper inclusion, while a dotted arrow denotes an
inclusion that is not known to be proper.

which yields a finite number of successor configurations. In this way, a computa-
tion ofM can be seen as a tree the nodes of which are labelled by configurations.

The initial configuration for an input w ∈ Σ∗ has the form q0c|w$, where q0
is the initial state of M . The word w is accepted by M , if there exists a finite
computation tree ofM the root of which is labelled with the initial configuration
q0c|w$, and all leaves are labelled with accepting configurations, that is, with
configurations in which M is in an accepting state. By L(M) we denote the
language consisting of all words that are accepted by M .

It is known that L(ALBA) = L(APDA) [3,10]. The next lemma shows that
ACSGs are of sufficient expressive power to generate all languages that are ac-
cepted by ALBAs. It can be proved by an adaptation of the standard proof that
linear bounded automata only accept context-sensitive languages (see, e.g., [6]
Theorem 9.6). However, the proof must be modified in such a way that universal
steps of the ALBA considered are being simulated faithfully by universal steps
of the sACSG. The details can be found in [17].

Lemma 6. L(ALBA) ⊆ L(sACSG).

Also we have the converse of Lemma 6, which can also be proved by an appro-
priate modification of the standard construction of a linear bounded automaton
from a monotone grammar (see, e.g., [6]).

Lemma 7. L(sACSG) ⊆ L(ALBA).

Thus, we obtain the following theorem.

Theorem 3. L(sACSG) = L(ALBA).

On Alternating Phrase-Structure Grammars 407

By Corollary 2 (a) this yields the following consequence.

Corollary 3. L(ACSG) = L(sACSG) = L(ALBA) = L(APDA) = Llm(sACFG).

From Corollaries 1 and 3, the following inclusion follows.

Corollary 4. Llm(ACSG) ⊆ L(ACSG).

It remains to consider the converse of the above inclusion. By Corollary 3 this
is equivalent to the question of whether the inclusion Llm(sACFG) ⊆ Llm(ACSG)
holds. As each ε-free sACFG is context-sensitive, at least the following special
case holds.

Corollary 5. Llm(ε-free sACFG) ⊆ Llm(ACSG).

The diagram in Figure 1 depicts the inclusion relations among the classes of
languages we have discussed here.

5 Concluding Remarks

We have generalized the notion of alternation from context-free grammars to
general phrase-structure grammars. Our main result shows that with respect
to the leftmost derivation mode alternating phrase-structure grammars are just
as expressive as state-alternating context-free grammars, and that alternating
context-sensitive grammars working in the unrestricted derivation mode have
the same expressive power, too. In this way we have obtained new grammar-
based characterizations for the class of languages that are accepted by alternat-
ing pushdown automata. However, an important relation concerning alternating
context-sensitive grammars remains open.

Problem 1. Does Llm(ACSG) = L(ACSG) hold?

The corresponding problem is also still open for alternating context-free gram-
mars. In the light of our results this problem can be expressed as follows.

Problem 2. Does Llm(ACFG) = Llm(APSG) hold?

This can be seen as the counterpart for alternating grammars to Matthews’
result that in leftmost mode phrase-structure grammars only generate context-
free languages [12]. Another obvious problem is the following.

Problem 3. Is Llm(ACFG) contained in Llm(ACSG)?

Finally, there are other derivation modes like the leftish mode that we have
not considered in this paper. Also it remains to study alternating versions of
growing context-sensitive (that is, strictly monotone) grammars [1,5] and their
relationship to the shrinking alternating two-pushdown automaton studied by
the authors in [19].

Acknowledgement. The first author was supported in part by Waseda Uni-
versity Grant for Special Research Projects #2006B-073, which he gratefully ac-
knowledges. The authors thank Hartmut Messerschmidt from Universität Kassel
for fruitful discussions on the notions and results presented in this paper.

408 E. Moriya and F. Otto

References

1. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Information and Computation 141, 1–36 (1998)

2. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: Proc. 17th FOCS, pp. 98–108.
IEEE Computer Society Press, Los Alamitos (1976)

3. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the Asso-
ciation for Computing Machinery 28, 114–133 (1981)

4. Chen, Z.Z., Toda, S.: Grammatical characterizations of P and PSPACE. IEICIE
Transactions on Information and Systems E 73, 1540–1548 (1990)

5. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars
is polynomial. Journal of Computer and System Sciences 33, 456–472 (1986)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

7. Ibarra, O.H., Jiang, T., Wang, H.: A characterization of exponential-time languages
by alternating context-free grammars. Theoretical Computer Science 99, 301–313
(1992)

8. Kasai, T.: An infinite hierarchy between context-free and context-sensitive lan-
guages. Journal of Computer and Systems Sciences 4, 492–508 (1970)

9. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown automata. In:
Proc. 19th FOCS. IEEE Computer Society Press, Los Alamitos (1978)

10. Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack
automata. SIAM Journal on Computing 13, 135–155 (1984)

11. Mateescu, A., Salomaa, A.: Aspects of classical language theory. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages. Word, Language, Grammar,
vol. 1, pp. 175–251. Springer, Berlin (1997)

12. Matthews, G.: A note on symmetry in phrase structure grammars. Information
and Control 7, 360–365 (1964)

13. Moriya, E.: A grammatical characterization of alternating pushdown automata.
Theoretical Computer Science 67, 75–85 (1989)

14. Moriya, E., Hofbauer, D., Huber, M., Otto, F.: On state-alternating context-free
grammars. Theoretical Computer Science 337, 183–216 (2005)

15. Moriya, E., Nakayama, S.: Grammatical characterizations of alternating push-
down automata and linear bounded automata. Gakujutsu Kenkyu, Series of Math.,
vol. 45, pp. 13–24. School of Education, Waseda Univ. (1997) (in Japanese)

16. Moriya, E., Otto, F.: Two ways of introducing alternation into context-free gram-
mars and pushdown automata. IEICIE Transactions on Information and Systems E
90- D, 889–894 (2007)

17. Moriya, E., Otto, F.: On alternating non-context-free gammars. Kasseler Infor-
matik Schriften 2007, 6. Fachbereich Elektrotechnik/Informatik, Universität Kassel
(2007), https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:

34-2007110719587

18. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6, 519–535 (2001)

19. Otto, F., Moriya, E.: Shrinking alternating two-pushdown automata. IEICIE
Transactionns on Information and Systems E 87- D, 959–966 (2004)

https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007110719587
https://kobra.bibliothek.uni-kassel.de/handle/urn:nbn:de:hebis:34-2007110719587

A Two-Dimensional Taxonomy of Proper

Languages of Lexicalized FRR-Automata

Friedrich Otto1 and Martin Plátek2

1 Fachbereich Elektrotechnik/Informatik, Universität Kassel, D-34109 Kassel

otto@theory.informatik.uni-kassel.de
2 Charles University, Faculty of Mathematics and Physics,

Department of Computer Science, CZ-118 00 Praha 1
Martin.Platek@mff.cuni.cz

Abstract. We study proper languages of (strongly) lexicalized FRR-au-
tomata, which are a theoretical model for the analysis by reduction that is
used in structural analysis of (natural) languages. We obtain two variants
of a two-dimensional hierarchy of language classes based on two types of
constraints: (1) the number of rewrite operations per cycle, and (2) the
number of occurrences of auxiliary symbols (categories) in the sentences
(words) of the corresponding characteristic language. The former type
of constraints models non-local valences (dependencies), and the latter
type models the use of categories during syntactic disambiguation of the
sentence being analyzed.

1 Introduction

Automata with a restart operation were introduced originally to describe a
method of grammar-checking for the Czech language (see, e.g., [5]). These auto-
mata, which work in a fashion similar to the automata used in this paper, started
the investigation of restarting automata as a suitable tool for modeling the so-
called analysis by reduction. Analysis by reduction in general facilitates the de-
velopment and testing of categories for syntactic and semantic disambiguation of
sentences of natural languages. It is often used (implicitly) for developing formal
descriptions of natural languages based on the notion of dependency [6,7,14]. In
particular, the Functional Generative Description (FGD) for the Czech language
developed in Prague (see, e.g., [8]) is based on this method.

Analysis by reduction consists in stepwise simplifications (reductions) of a given
extended sentence (enriched by syntactical and semantical categories) until a cor-
rect simple sentence is obtained. Each simplification replaces a small part of the
sentence by an even shorter phrase. Here we formalize analysis by reduction by us-
ing deterministic restarting automata for proper languages. These automata work
on so-called characteristic languages, that is, on languages that include auxiliary
symbols (categories) in addition to the input symbols. The proper language is ob-
tained from a characteristic language by removing all auxiliary symbols from its
words (sentences). By requiring that the automata considered are lexicalized we

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 409–420, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

410 F. Otto and M. Plátek

restrict the lengths of the blocks of auxiliary symbols that are allowed on the tape
by a constant. This restriction is quite natural from a linguistic point of view, as
these blocks of auxiliary symbols model the meta-language categories from indi-
vidual linguistic layers with which an input string is being enriched when its dis-
ambiguated form is being produced (see, e.g., [8]). We use deterministic restarting
automata in order to ensure the correctness preserving property for the analysis. In
fact, we mainly consider strongly lexicalized restarting automata. This additional
restriction requires that all rewrite operations must be deletions. For example, this
type of automaton can be used for modelling the surface (syntactic) level(s) of the
Functional Generative Description.

We need a type of automaton that allows us to handle non-local dependencies
(valences). Therefore, we choose the freely rewriting restarting automaton, FRR-
automaton for short, from [10] as our basic model, since it can in general perform
an unlimited number of rewrite operations per cycle. However, here we use it in
a different way in order to obtain a suitable model for the analysis by reduction.
Instead of input (and characteristic) languages as in [10], which correspond to
the modelling of syntactic analysis, we consider the proper languages of these
automata. We use this model in order to study the combination of two types of
restrictions that influence the degree of complexity (of analysis by reduction).

The first type restricts the number of rewrite operations per cycle. In linguis-
tic terms this number measures the degree of non-local dependencies (valences)
in a sentence. The second type restricts the word-expansion factor, that is, the
number of auxiliary symbols that may appear concurrently on the tape while a
sentence from the characteristic language is being processed. In linguistic terms
this corresponds to the number of categories which may be used during a deter-
ministic analysis by reduction. It serves as a measure for the degree of ambiguity
(of a certain type) of individual sentences of the language considered. The latter
type of restriction was introduced in [12] (see also [11]) for the simpler type of
RRWW-automata. For a (formal) language L, the minimal word-expansion factor
for any lexicalized (deterministic) restarting automaton with proper language L
can also be seen as a measure for the degree of nondeterminism of L. From a
language-theoretic point of view this is quite natural, as the auxiliary symbols
inserted in an input sentence can be interpreted as information that is used to
single out a particular computation of an otherwise nondeterministic restarting
automaton. Corresponding notions have been investigated before for finite-state
automata and some other devices [2,3]. Our main results establish two variants
of a two-dimensional hierarchy of language classes based on the two types of
constraints mentioned above.

This paper is structured as follows. In Section 2 we define the deterministic
FRR-automaton, and we restate some basic results on this model. We will see in
particular that the class of proper languages of deterministic FRR-automata is
almost universal. In Section 3 we introduce (strongly) lexicalized FRR-automata,
and we define the two types of restrictions we are interested in. Then in Sec-
tion 4 we present the announced hierarchy results. The paper closes with a short
summary in Section 5.

A Two-Dimensional Taxonomy of Proper Languages 411

2 FRR-Automata

Here we describe in short the type of restarting automaton we will be dealing
with. It is a variant of a model that was introduced in [10].

A freely rewriting deterministic restarting automaton, det-FRR-automaton for
short, consists of a finite-state control, a flexible tape, and a read/write window
of a fixed size k ≥ 1. It is described as M = (Q,Σ, Γ, c, $, q0, k, δ). Here Q
denotes a finite set of (internal) states that contains the initial state q0, Σ is
a finite input alphabet, and Γ is a finite tape alphabet that contains Σ. The
elements of Γ �Σ are called auxiliary symbols. The additional symbols c, $ �∈ Γ
are used as markers for the left and the right end of the workspace, respectively.
They cannot be removed from the tape. The behaviour of M is described by a
transition function δ that associates transition steps to certain pairs of the form
(q, u) consisting of a state q and a possible content u of the read/write window.
There are four types of transition steps: move-right steps, rewrite steps, restart
steps, and accept steps. A move-right step simply shifts the read/write window
one position to the right and changes the internal state. A rewrite step causes
M to replace a non-empty prefix u of the content of the read/write window by
a shorter word v, thereby shortening the length of the tape, and to change the
state. Further, the read/write window is placed immediately to the right of the
string v. A restart step causesM to place its read/write window over the left end
of the tape, so that the first symbol it sees is the left sentinel c, and to reenter
the initial state q0. Finally, an accept step simply causes M to halt and accept.

Observe that the det-FRR-automaton is obtained from the FRR-automaton
studied in [10] by two essential restrictions: it is deterministic, while an FRR-
automaton is in general nondeterministic, and it only has length-reducing rewrite
steps, while an FRR-automaton has rewrite steps that are only required to be
weight-reducing with respect to some weight function.

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = λ (the empty word) and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$};
here q represents the current state, αβ is the current content of the tape, and it
is understood that the window contains the first k symbols of β or all of β when
|β| ≤ k. A restarting configuration is of the form q0cw$, where w ∈ Γ ∗.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration. The window is shifted along the tape by
move-right and rewrite operations until a restart operation is performed and
thus a new restarting configuration is reached. If no further restart operation
is performed, the computation necessarily finishes in a halting configuration –
such a phase is called a tail. It is required that in each cycle M performs at
least one rewrite step. As each rewrite step shortens the tape, we see that each
cycle reduces the length of the tape. We use the notation u �c

M v to denote a
cycle of M that begins with the restarting configuration q0cu$ and ends with
the restarting configuration q0cv$; the relation �c∗

M is the reflexive and transitive
closure of �c

M .
A word w ∈ Γ ∗ is accepted by M , if there is a computation which starts from

the restarting configuration q0cw$, and which ends with an application of an

412 F. Otto and M. Plátek

accept step. By LC(M) we denote the language consisting of all words accepted
by M . It is the characteristic language of M .

By PrΣ we denote the projection from Γ ∗ onto Σ∗, that is, PrΣ is the mor-
phism defined by a �→ a (a ∈ Σ) and A �→ λ (A ∈ Γ �Σ). If v := PrΣ(w), then
v is the Σ-projection of w, and w is an expanded version of v. For a language
L ⊆ Γ ∗, PrΣ(L) := {PrΣ(w) | w ∈ L }.

In recent papers (see, e.g., [13]) restarting automata were mainly used as
acceptors. The (input) language accepted by a restarting automatonM is the set
L(M) := LC(M)∩Σ∗. Here, motivated by linguistic considerations to model the
processing of sentences that are enriched by syntactic and semantic categories,
we are rather interested in the so-called proper language of M , which is the set
of words LP(M) := PrΣ(LC(M)). Hence, a word v ∈ Σ∗ belongs to LP(M) if
and only if there exists an expanded version u of v such that u ∈ LC(M).

For each type X of restarting automata, we use LC(X) and LP(X) to denote
the class of all characteristic languages and the class of all proper languages of
automata of this type. As a det-FRR-automaton can easily be simulated by a
two-tape Turing machine in quadratic time, we have the following result.

Proposition 1. If M is a deterministic FRR-automaton, then the membership
problems for the languages LC(M) and L(M) are solvable in quadratic time.

The deterministic RRWW-automaton (see, e.g., [13]) is essentially a det-FRR-
automaton that only performs a single rewrite step in each cycle. In [11] it
is shown that the class LP(det-RRWW) of proper languages of deterministic
RRWW-automata is ‘almost’ universal. Accordingly we have the following result
that is in stark contrast to Proposition 1.

Proposition 2. There exists a deterministic FRR-automaton M such that the
language LP(M) is non-recursive.

We close this section with two basic properties of det-FRR-automata that are
used repeatedly in proofs (see, e.g., [4] and [13]).

Proposition 3 (Correctness Preserving Property)
Each det-FRR-automaton M is correctness preserving, that is, if u ∈ LC(M)
and u �c∗

M v, then v ∈ LC(M), too.

Proposition 4 (Pumping Lemma)
For any det-FRR-automaton M , there exists a constant p such that the following
property holds. Assume that uxvyz �c

M ux′vy′z is a cycle of M , where u =
u1u2 · · ·un for some non-empty words u1, . . . , un and an integer n > p. Then
there exist r, s ∈ N+, 1 ≤ r < s ≤ n, such that

u1 · · ·ur−1(ur · · ·us−1)ius · · ·unxvyz �c
M u1 · · ·ur−1(ur · · ·us−1)ius · · ·unx

′vy′z

holds for all i ≥ 0, that is, ur · · ·us−1 is a ‘pumping factor’ in the above cycle.
Similarly, such a pumping factor can be found in any factorization of length
greater than p of v or z. Such a pumping factor can also be found in any factor-
ization of length greater than p of a word accepted in a tail computation.

A Two-Dimensional Taxonomy of Proper Languages 413

3 Strongly Lexicalized FRR-Automata

From Propositions 1 and 2 we know that proper languages of deterministic FRR-
automata are in general far more complex than the corresponding input and
characteristic languages. Therefore we restrict our attention to deterministic
FRR-automata for which the use of auxiliary symbols is restricted as in [11,12].

Definition 1. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a det-FRR-automaton.

(a) A word w ∈ Γ ∗ is not immediately rejected by M if, starting from the
restarting configuration q0cw$, M either performs a cycle of the form w �c

M z
for some word z ∈ Γ ∗, or M accepts w in a tail computation. By NIR(M)
we denote the set of all words that are not immediately rejected by M .

(b) The det-FRR-automaton M is called lexicalized if there exists a constant
j ∈ N+ such that, whenever v ∈ (Γ �Σ)∗ is a factor of a word w ∈ NIR(M),
then |v| ≤ j.

(c) M is called strongly lexicalized if it is lexicalized, and if each of its rewrite
operations just deletes some symbols.

Strong lexicalization is a technique that is used in dependency based formal
descriptions of natural languages [8]. If M is a lexicalized FRR-automaton, and
if w ∈ Γ ∗ is an extended version of an input word v = PrΣ(w) such that w is
not immediately rejected by M , then |w| ≤ (j + 1) · |v| + j for some constant
j > 0. Accordingly we have the following result.

Corollary 1. If M is a lexicalized FRR-automaton, then the proper language
LP(M) is context-sensitive.

In what follows we are mainly interested in (strongly) lexicalized FRR-automata
and their proper languages. By LRR (SLRR) we denote the class of (strongly)
lexicalized FRR-automata, and by t-LRR (t-SLRR) we denote the class of (strong-
ly) lexicalized FRR-automata which execute at most t rewrite steps in any cycle.
Recall from the definition that lexicalized FRR-automata are deterministic. We
now introduce a static complexity measure for LRR-automata.

Definition 2. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an LRR-automaton, and let
m ∈ N. The automaton M has word-expansion m, denoted by W(M) = m, if
each word from NIR(M) contains at most m occurrences of auxiliary symbols,
that is, if w ∈ Γ ∗ is not immediately rejected by M , then |PrΓ�Σ(w)| ≤ m.

We use the prefix W(m)- to denote classes of deterministic FRR-automata that
have word-expansion m. The following result is a generalization of a result for
lexicalized RRWW-automata given in [11,12].

Theorem 1. If M is a W(m)-LRR-automaton for some m ∈ N, then the mem-
bership problem for LP(M) is solvable deterministically in time O(nm+2).

As the 1-(S)LRR-automaton is essentially identical to the (strongly) lexicalized
RRWW-automaton considered in [11,12], we have the following results, where
the symbol ⊂ denotes the proper inclusion relation.

414 F. Otto and M. Plátek

Theorem 2. [11,12]
(a) DCFL ⊂ LP(W(0)-1-SLRR) �⊆ CFL.
(b) CFL ⊂ LP(1-SLRR).
(c) CFL �⊆

⋃
i≥0 LP(W(i)-1-LRR).

(d) LP(W(i)-1-(S)LRR) ⊂ LP(W(i+ 1)-1-(S)LRR) for all i ∈ N.
(e)
⋃

i≥0 LP(W(i)-1-(S)LRR) ⊂ LP(1-(S)LRR).

Further we obtain the following result from the proof of Corollary 2 of [10].

Theorem 3. LP(W(0)-t-(S)LRR) ⊂ LP(W(0)-(t+ 1)-(S)LRR) for all t ∈ N+.

The transition relation of a t-FRR-automaton M = (Q,Σ, Γ, c, $, q0, k, δ) can
be described more transparently through a finite sequence of so-called meta-
instructions of the form (E1, u1 → v1, E2, u2 → v2, E3, . . . , Ei, ui → vi, Ei+1),
where i ≤ t, E1, . . . , Ei+1 are regular expressions, and for each j = 1, . . . , i,
uj, vj ∈ Γ ∗ satisfying the condition k ≥ |uj | > |vj |. Here each rule uj → vj

(1 ≤ j ≤ i) embodies a rewrite step ofM that replaces the factor uj by vj . Start-
ing from a restarting configuration q0cw$, M can execute this meta-instruction
only if w admits a factorization of the form w = w1u1w2u2 · · ·wiuiwi+1 such
that cw1 ∈ L(E1), w2 ∈ L(E2), . . . , wi+1$ ∈ L(Ei+1), where L(El) denotes
the language described by the regular expression El. In this case the leftmost
of these factorizations is chosen, and q0cw$ is transformed into the restarting
configuration q0cw1v1w2v2 · · ·wiviwi+1$. In order to describe tails of accepting
computations of M (during which M cannot apply any rewrite operations at
all), we use meta-instructions of the form (c · E · $,Accept), which accepts the
sentences from the regular language L(E).

We will use meta-instructions for describing individual examples of t-LRR-
automata in the next section. Observe, however, that meta-instructions are
inherently nondeterministic. Therefore we will only use them to describe t-LRR-
automata in a more readable way. To obtain an exact definition of the automaton
presented, one needs to derive an explicit transition function.

4 Two-Dimensional Hierarchies

We study a number of example languages in order to establish a two-dimensional
hierarchy of classes of proper languages of (strongly) lexicalized FRR-automata.

Definition 3. Let Σ0 := {a, b}, let c, d be two additional letters, and let Lrp,
Ld(j), and Ldp(i, j) be the following languages, where wR denotes the reversal
of a word w:

(1) Lrp := {wwc | w ∈ Σ∗
0 },

(2) Ld(j) := { (wc)jdwR | w ∈ Σ∗
0 } for all j ∈ N+,

(3) Ldp(i, j) := (Lrp)i · {d} · Ld(j) for all i ≥ 1 and j ≥ 2.

For processing the language Ld(j) no auxiliary symbols are needed; however, at
least j rewrite steps per cycle are required.

A Two-Dimensional Taxonomy of Proper Languages 415

Proposition 5. For all j ∈ N+, Ld(j) ∈ LP(W(0)-j-SLRR), while for j > 1,
Ld(j) �∈ LP((j − 1)-LRR).

Proof. Let j ∈ N+, and let M (j)
d be the strongly lexicalized j-FRR-automaton

that is given by the following meta-instructions, where x ∈ Σ0:

(1) (c ·Σ∗
0 , xc→ c,Σ∗

0 , xc→ c,Σ∗
0 , . . . , xc→ c,Σ∗

0 , xcdx→ cd,Σ∗
0 · $),

(2) (c · cjd · $,Accept).

The automaton M (j)
d executes exactly j rewrite steps per cycle, it does not use

any auxiliary symbols, and it is easily seen that LP(M (j)
d) = L(M (j)

d) = Ld(j)
holds. Thus, it follows that Ld(j) ∈ LP(W(0)-j-SLRR).

Now let j > 1, and assume thatM is a (j − 1)-LRR-automaton on Γ such that
LP(M) = Ld(j). Let A(m,n, j) := ((ambm)nc)jd(bmam)n, where m,n ∈ N+ are
sufficiently large. Obviously, A(m,n, j) ∈ Ld(j). Hence, there exists an expanded
version w ∈ Γ ∗ of A(m,n, j) such that w ∈ LC(M). Assume that w is a shortest
expanded version of A(m,n, j) in LC(M). The computation of M on input w
is accepting, but based on the Pumping Lemma (Prop. 4) it is easily seen that
this computation cannot just consist of an accepting tail. Thus, it begins with a
cycle of the form w �c

M x. From the Correctness Preserving Property it follows
that x ∈ LC(M), which in turn implies that PrΣ(x) ∈ Ld(j). As all rewrite steps
of M are length-reducing, |x| < |w| follows. Thus, our choice of w ∈ LC(M)
as a shortest expanded version of A(m,n, j) implies that x is not an expanded
version of A(m,n, j). Since M executes at most j − 1 rewrite steps in the above
cycle, it follows that PrΣ(x) �∈ Ld(j). Hence, LP(M) �= Ld(j), which implies that
Ld(j) �∈ LP((j − 1)-LRR). �

In contrast to the situation for Ld(j), the language Li
rp := (Lrp)i only requires

two rewrite steps per cycle, but in that case it needs word expansion i.

Proposition 6. For all i ≥ 1, the following results hold:

(a) Li
rp ∈ LP(W(i)-2-SLRR).

(b) Li
rp �∈ LP(1-LRR).

(c) Li
rp �∈ LP(W(i− 1)-j-LRR) for any j ∈ N+.

Proof. (a) Let i ≥ 1, and let M be the 2-SLRR-automaton with input alphabet
Σ := Σ0 ∪ {c} and tape alphabet Γ := Σ ∪ {D} that is given through the
following meta-instructions, where x ∈ Σ0:

(0) (c · (Dc)i · $,Accept),
(1) (c, x→ λ,Σ∗

0 , Dx→ D,Σ∗
0 · c · (Σ∗

0 ·D ·Σ∗
0 · c)i−1 · $),

(2) (c ·Dc, x→ λ,Σ∗
0 , Dx→ D,Σ∗

0 · c · (Σ∗
0 ·D ·Σ∗

0 · c)i−2 · $),
.

(i− 1) (c · (Dc)i−2, x→ λ,Σ∗
0 , Dx→ D,Σ∗

0 · c ·Σ∗
0 ·D ·Σ∗

0 · c · $),
(i) (c · (Dc)i−1, x→ λ,Σ∗

0 , Dx→ D,Σ∗
0 · c · $).

Then LC(M) = {w1Dw1cw2Dw2c · · ·wiDwic | w1, w2, . . . , wi ∈ Σ∗
0 }, which

implies that LP(M) = Li
rp. Obviously, M has word expansion i. This proves

part (a).

416 F. Otto and M. Plátek

(b) We proceed as in the proof of the Proposition 5. Let i ≥ 1, and assume that
M is a 1-LRR-automaton on Γ such that LP(M) = Li

rp. Let B(m,n, i) denote
the string B(m,n, i) := ((ambm)2nc)i, where m,n ∈ N+ are sufficiently large.
Obviously, B(m,n, i) ∈ Li

rp. Hence, there exists an expanded version w ∈ Γ ∗ of
B(m,n, i) such that w ∈ LC(M). Assume that w is a shortest expanded version
of B(m,n, i) in LC(M). The computation of M on input w is accepting, but
based on the Pumping Lemma (Prop. 4) it is easily seen that this computation
cannot just consist of an accepting tail. Thus, it begins with a cycle of the form
w �c

M x, where |x| < |w|. From the Correctness Preserving Property we see
that x ∈ LC(M). Because of our choice of w as a shortest expanded version of
B(m,n, i) in LC(M), it follows that PrΣ(x) �= B(m,n, j). Recall, however, that
M only executes a single rewrite step in the above cycle. This implies that PrΣ(x)
cannot possibly be an element of Li

rp. Hence, we conclude that LP(M) �= Li
rp,

which yields that Li
rp �∈ LP(1-LRR).

(c) First we consider the case i = 1. Assume that j ≥ 2 is a minimal integer such
that there exists a j-LRR-automatonM ′ with word expansion 0 satisfying Lrp =
LP(M ′). As each word from the language Lrp contains just a single occurrence
of the symbol c as the very last letter, we can assume without loss of generality
that in each cycle of each accepting computation M ′ never executes more than
a single rewrite step with the symbol c in its read/write window.

Let x0 = (ambm)n, where n,m ∈ N+ are sufficiently large integers that depend
on the constant for M ′ from the Pumping Lemma, the size of the read/write
window of M ′, and the number of internal states of M ′. Then x0x0x0x0c ∈ Lrp.
Starting from the restarting configuration corresponding to x0x0x0x0c, M ′ will
execute an accepting computation, but clearly this computation cannot just
consist of an accepting tail because of the Pumping Lemma. Thus, M ′ executes
a cycle of the form x0x0x0x0c �c

M ′ v for some word v ∈ (Σ0 ∪ {c})∗.
Let us state some observations about this cycle. As M ′ is deterministic, and

as it executes at most j rewrite operations in the cycle above, we can conclude
from the Pumping Lemma that all these rewrite operations (with at most a single
exception) are applied while the read/write window is still inside the prefix cx0.
In fact, if there is a rewrite step which is not executed on this prefix, then it
must be applied to the very end of x0x0x0x0c (that is, with the symbol c already
inside the window). Recall that m and n are (very) large integers, which means
that M ′ will not execute any more rewrite operations before encountering the
symbol c once it has moved across a sufficiently large number of blocks of the
form ambm. It now follows that v �∈ Lrp, since in the above cycle the prefix cx0

and possibly the suffix x0c are changed, while the infix (the middle blocks) x0x0

of x0x0x0x0c remain unchanged. This contradicts the Correctness Preserving
Property for M ′. Hence, the language Lrp is not the proper language of any
j-LRR-automaton with word expansion 0.

Finally, assume that j ≥ 2, and that M ′ is a j-LRR-automaton with word
expansion i− 1 such that Li

rp = LP(M ′). Let w := (x0x0x0x0c)i. Then w ∈ Li
rp,

and hence, there exists an expanded version W of w such that W ∈ LC(M ′).
Thus, the computation ofM ′ on input W is accepting, and clearly it cannot just

A Two-Dimensional Taxonomy of Proper Languages 417

consist of an accepting tail. Hence, M ′ executes a cycle of the form W �c
M ′ W ′,

and W ′ ∈ LC(M ′) and |W ′| < |W | follow. Thus, we have w′ := PrΣ(W ′) ∈
LP(M ′) = Li

rp.
As M ′ has word expansion i − 1, we see that at least one factor of the form

x0x0x0x0c of w does not contain an occurrence of an auxiliary symbol in W .
Thus, the processing of this particular factor by M ′ starts without any auxiliary
symbols. Now to the processing of this factor the arguments from the proof for
i = 1 apply. Recall that we consider the proper language ofM ′, which means that
the ability of M ′ to rewrite up to j factors of this particular factor x0x0x0x0c
of W by shorter words possibly containing (up to) i− 1 occurrences of auxiliary
symbols does not interfere with the arguments from the proof for the case i = 1.
Thus, we obtain the same contradiction as above. This completes the proof of
part (c). �

By combining Proposition 5 and Proposition 6 we obtain the following results.

Proposition 7. For all i ≥ 1 and all j ≥ 2, the following results hold:

(a) Ldp(i, j) ∈ LP(W(i)-j-SLRR).
(b) Ldp(i, j) �∈ LP((j − 1)-LRR).
(c) Ldp(i, j) �∈ LP(W(i− 1)-m-LRR) for any m ∈ N+.

Thus, we have the following hierarchy results.

Theorem 4. For all X ∈ {LRR, SLRR}, for all i ≥ 0, and for all j ≥ 1, we
have the following proper inclusions:

(a) LP(W(i)-j-X) ⊂ LP(W(i+ 1)-j-X).
(b) LP(W(i)-j-X) ⊂ LP(W(i)-(j + 1)-X).
(c) LP(j-X) ⊂ LP((j + 1)-X).

Proof. The inclusions in (a) contain Theorem 2 (d) as the special case j = 1,
and the inclusions in (b) contain Theorem 3 as the special case i = 0. All other
results follow from Proposition 7. �

As 1-LRR-automata coincide with lexicalized RRWW-automata, we see from
[11] Propositions 3.2 and 3.3 that the class of proper languages of 1-LRR-auto-
mata is a proper subclass of the class of growing context-sensitive languages.
On the other hand, there exists a W(0)-2-SLRR-automaton M such that the
proper language of M coincides with the language Lrep := {wcw | w ∈ Σ∗

0 },
which is not growing context-sensitive (see, e.g., [1]). Thus, while all classes
LP(W(i)-1-(S)LRR) only consist of growing context-sensitive languages, we see
that each class LP(W(i)-j-(S)LRR), j ≥ 2, contains languages that are not
growing context-sensitive.

We also want to separate the classes of proper languages of (strongly) lexi-
calized FRR-automata with unbounded degree of word expansion or unbounded
number of rewrites per cycle from those with bounded degree of word expan-
sion or bounded number of rewrites per cycle, respectively. For that purpose we
consider the following example languages.

418 F. Otto and M. Plátek

Definition 4. Let Ld+ :=
⋃

j≥1 Ld(j) and Lrp+ :=
⋃

j≥1(Lrp)j.

From the proofs of Proposition 5 and 6 we obtain the following results.

Proposition 8. (a) Ld+ ∈ LP(W(0)-SLRR).
(b) Ld+ �∈ LP(j-LRR) for any j ∈ N+.

Proposition 9. (a) Lrp+ ∈ LP(2-SLRR).
(b) Lrp+ �∈ LP(W(i)-j-LRR) for any i ∈ N and j ∈ N+.

This yields the following proper inclusions, where the result in (a) contains The-
orem 2 (e) as the special case j = 1.

Corollary 2. For all X ∈ {LRR, SLRR},

(a)
⋃

i≥0 LP(W(i)-j-X) ⊂ LP(j-X) for all j ≥ 1.
(b)

⋃
j≥1 LP(j-X) ⊂ LP(X).

Finally, we want to separate the hierarchy of proper languages of strongly lex-
icalized FRR-automata from the corresponding hierarchy for lexicalized FRR-
automata. To this end we consider the example language

Lexpo := { ai0bai1b · · ·ain−1bain | n ≥ 0, i0, . . . , in ≥ 0, and
∃m ≥ 0 :

∑n
j=0 2j · ij = 2m } ∪ b∗,

for which we have the following result.

Proposition 10
Lexpo ∈ LP(W(0)-1-LRR), but Lexpo �∈ LP(j-SLRR) for any j ∈ N+.

Proof. Let Mexpo be the deterministic 1-FRR-automaton that is given through
the following meta-instructions:

(1) (c · a∗, aab→ ba,Σ∗
0 · $), (3) (c · a∗, a4 → baa, $),

(2) (c, b→ λ,Σ∗
0 · $), (4) (c · {λ, a, aa} · $,Accept).

In [11] it is shown that this automaton, which is actually a deterministic RRW-
automaton, accepts the language Lexpo. Thus, Lexpo ∈ LP(W(0)-1-LRR).

Assume now that there exists a strongly lexicalized j-FRR-automatonM with
input alphabet Σ0 := {a, b} and tape alphabet Γ such that Lexpo = LP(M)
holds, and let z := a2n ∈ Lexpo, where n is a large integer. Then there exists
an expanded version w ∈ Γ ∗ of z such that w ∈ LC(M). Assume that w is
a shortest expanded version of z in LC(M). The computation of M on input
w is accepting, and based on the Pumping Lemma (Prop. 4) it is easily seen
that it cannot just consist of an accepting tail. Thus, it begins with a cycle
of the form w �c

M w′ for some word w′ ∈ Γ ∗ satisfying |w′| < |w|. From the
Correctness Preserving Property it follows that w′ ∈ LC(M), which in turn
implies that PrΣ0(w′) ∈ Lexpo. However, w′ is not an expanded version of z due
to our assumption on w. Thus, PrΣ0(w′) = am for some integer m < 2n. In the

A Two-Dimensional Taxonomy of Proper Languages 419

above cycle M executes at most j rewrite (that is, delete) operations, and so we
see that m ≥ 2n − j · k, where k is the size of the read/write window of M . This
contradicts the fact that am must be a power of 2. It follows that Lexpo differs
from the language LP(M), which implies that Lexpo �∈

⋃
j≥1 LP(j-SLRR). �

Using the same proof idea it can be shown that the Church-Rosser language
Lexpo ∩ a+ = { a2n | n ≥ 0 } is not contained in LP(j-LRR) for any j ∈ N+,
which yields the following consequence.

Corollary 3. GCSL �⊂
⋃

j>0 LP(j-LRR).

GCSL �� CSL

CFL �� 1-X

��

�� 2-X �� . . . �� �
j>0 j-X

��

�
i≥0 W(i)-1-X

��

��
�

i≥0 W(i)-2-X

��

�� . . . ��
�

i≥0,j>0 W(i)-j-X

��

...

��

...

��

...

��

W(2)-1-X

��

�� W(2)-2-X

��

�� . . . �� �
j>0 W(2)-j-X

��

W(1)-1-X

��

�� W(1)-2-X

��

�� . . . �� �
j>0 W(1)-j-X

��

DCFL

��

�� W(0)-1-X

��

�� W(0)-2-X

��

�� . . . �� �
j>0 W(0)-j-X

��

Fig. 1. Inclusion relations between language classes defined by various types of lex-
icalized FRR-automata. Here X denotes either LRR or SLRR, a node labeled by an
automata type A denotes the class LP(A), and an arrow denotes a proper inclusion.

5 Conclusion

We have studied the classes of proper languages of (strongly) lexicalized restart-
ing automata with multiple rewrites. We have investigated the influence of two
parameters on the expressive power of these automata: the number of rewrites
per cycle, and the number of auxiliary symbols that may appear on the tape at
the same time. The resulting two-dimensional hierarchies are shown in Figure 1.
Language classes which are not connected (by an oriented path) in that dia-
gram are incomparable under inclusion. The only possible exception concerns
the inclusion CFL ⊂

⋃
i≥0,j>0 LP(W(i)-j-LRR), which remains currently open.

However, we conjecture that the language L+
pal = {w1w

R
1 · · ·wnw

R
n | n ≥ 1,

w1, . . . , wn ∈ Σ∗
0 }, which is context-free, is not the proper language of any

W(i)-j-LRR-automaton.

420 F. Otto and M. Plátek

Acknowledgement. Martin Plátek was supported by the program ‘Informa-
tion Society’ under project 1ET100300517. The authors also want to thank
Dana Pardubská from Comenius University, Bratislava, and Frantǐsek Mráz from
Charles University, Prague, for numerous discussions on the notions and results
of this paper.

References

1. Buntrock, G., Otto, F.: Growing context-sensitive languages and Church-Rosser
languages. Information and Computation 141, 1–36 (1998)

2. Goldstine, J., Kintala, C., Wotschke, D.: On measuring nondeterminism in regular
languages. Information and Computation 86, 179–194 (1990)

3. Goldstine, J., Leung, H., Wotschke, D.: Measuring nondeterminism in pushdown
automata. Journal of Computer and System Sciences 71, 440–466 (2005); An ex-
tended abstract appeared in Reischuk, R., Morvan, M. (eds.) STACS 1997, LNCS,
Vol. 1200, pp. 295–306. Springer, Heidelberg (1997)

4. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. Journal of Automata, Languages and Combinatorics 4, 287–311 (1999)

5. Kuboň, V., Plátek, M.: A grammar based aproach to a grammar checking of free
word order languages. In: COLING 1994, Kyoto, Japan, vol. II, pp. 906–910 (1994)

6. Kunze, J.: Abhängigkeitsgrammatik. Studia Grammatica XII. Akademie-Verlag,
Berlin (1975)

7. Lopatková, M., Plátek, M., Kuboň, V.: Modeling syntax of free word-order lan-
guages: Dependency analysis by reduction. In: Matoušek, V., Mautner, P., Pavelka,
T. (eds.) TSD 2005. LNCS (LNAI), vol. 3658, pp. 140–147. Springer, Heidelberg
(2005)

8. Lopatková, M., Plátek, M., Sgall, P.: Towards a formal model for functional gen-
erative description: Analysis by reduction and restarting automata. The Prague
Bulletin of Mathematical Linguistics 87, 7–26 (2007)

9. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Mass., Reading (1982)
10. Mráz, F., Otto, F., Plátek, M.: Free word order and restarting automata. In: Loos,

R., Fazekas, S.Z., Martin-Vide, C. (eds.) LATA 2007, Preproc., Research Group
on Math. Linguistics, Universitat Rovira i Virguli, Tarragona, pp. 425–436 (2007)

11. Mráz, F., Otto, F., Plátek, M.: The Degree of Word-Expansion of Lexicalized
RRWW-Automata – A New Measure for The Degree of Nondeterminism of
(Context-Free) Languages. Kasseler Informatikschriften (2007)

12. Mráz, F., Plátek, M., Otto, F.: A measure for the degree of nondeterminism of
context-free languages. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783,
pp. 192–202. Springer, Heidelberg (2007)

13. Otto, F.: Restarting automata. In: Ésik, Z., Martin-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications, Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Berlin (2006)

14. Sgall, P., Hajičová, E., Panevová, J.: The Meaning of the Sentence in Its Semantic
and Pragmatic Aspects. Reidel Publishing Company, Dordrecht (1986)

Minimalist Grammars with Unbounded

Scrambling and Nondiscriminating Barriers Are
NP-Hard�

Alexander Perekrestenko

Rovira i Virgili University
Research Group on Mathematical Linguistics

International PhD School in Formal Languages and Applications
Pl. Imperial Tarraco 1; 43005 Tarragona, Spain
alexander.perekrestenko@estudiants.urv.cat

http://www.grlmc.com

http://www.urv.cat

Abstract. Minimalist Grammars were proposed in [15] as a formaliza-
tion of the basic structure-building component of the Minimalism Pro-
gram, a syntactic framework introduced in [2] and [3]. In the present
paper we investigate the effects of extending this formalism with an un-
restricted scrambling operator together with nondiscriminating barriers.
We show that the recognition problem for the resulting formalism NP-
hard. The result presented here is a generalization of the result shown by
the author in [14] for Minimalist Grammars with unrestricted scrambling
and category-sensitive barriers.

1 Introduction

Minimalist Grammars (MGs) were proposed in [15] as a formal tool for model-
ing some fundamental structure-building operations of the Minimalist Program,
an approach adopted within the Chomskyan branch of syntactic theory [2,3].
Unrestricted Minimalist Grammars originally introduced in [15] belong to the
class of mildly context-sensitive grammar formalisms and are weakly equivalent
to linear context-free rewriting systems (LCFRS) which was shown in [10], [7]
and [11].

The generative power of MGs is crucially affected by the presence or absence
of so-called locality constraints (LCs). The two best investigated LCs in terms
of their effect on the weak generative capacity of MGs are the shortest-move
constraint (SMC) and the specifier island constraint (SPIC). The SMC pro-
hibits competitive movement of constituents, while the SPIC bars movement
from within constituents that have already moved. It was shown that adding
these LCs has a non-monotonic effect on the generative power of MGs so that
� This research work has been supported by the Russian Foundation for the Human-

ities as a part of the project “The typology of free word order languages” (grant
RGNF 06-04-00203a).

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 421–432, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.grlmc.com
http://www.urv.cat

422 A. Perekrestenko

the following inclusion results hold for the corresponding language classes (‘+’
and ‘−’ stand here for presence or absence of the mentioned LCs):1

• L(MGSMC+
SPIC+) ⊂ L(MGSMC+

SPIC−) = L(LCFRS),
• L(MGSMC−

SPIC+) = Type0.

In order to model some specific syntactic operations not incorporated into the
original version of MG, the formalism was extended with the operations of scram-
bling and (cyclic) adjunction in [5] and countercyclic adjunction in [13]. However,
the scrambling operator introduced in [5] was restricted by SMC which reduced
it to an operation similar to non-obligatory movement making the generalized
description of this syntactic phenomenon impossible. Formally, the SMC does
not make much sense for scrambling as an SMC-restricted scrambling can be
simulated by movement. What on the contrary is important for scrambling from
the linguistic point of view is barriers, i.e., constituents that prevent other con-
stituents from being displaced.

In [14] it was shown that extending MGs with unbounded scrambling and
barriers makes the recognition problem for the resulting formalism NP-hard.2 It
was proved using two category-sensitive barriers, i.e., barriers prohibiting scram-
bling of constituents with a given base category and not affecting scrambling of
other constituents. In this paper we prove a stronger result showing that even
nondiscriminating barriers blocking scrambling of any constituent are enough to
make the recognition problem for the scrambling-extended MG NP-hard.

2 MGs with Unbounded Scrambling and Barriers

Below we give a definition of the Minimalist Grammars with unbounded scram-
bling and nondiscriminating barriers which is closely based on the definition of
MG proposed in [6].

Definition 1 (MGscr
B0). A Minimalist Grammar with unbounded scrambling

and nondiscriminating barriers, MGscr
B0 , is a tuple G = 〈¬Syn , Syn, c,#, Lex , Ω〉,

such that3

• ¬Syn is a finite set of non-syntactic features partitioned into the sets of
phonetic (Phon) and semantic (Sem) features;

• Syn is a finite set of syntactic features disjoint from ¬Syn and partitioned
into the following sets:

− base (syntactic) categories, Base, partitioned into
the set of categories without barrier B = { x1, x2, . . . , xn} and
the set of categories with barrier B̄ = { x̄1, x̄2, . . . , x̄n},

1 The result on the proper inclusion of L(MGSMC+
SPIC+) into L(MGSMC+

SPIC−) can be found

in [12]. The Turing equivalence of MGSMC−
SPIC+ was proved in [9].

2 The term unbounded scrambling will further be used to denote scrambling that is
not restricted by SMC.

3 This particular use of ¬Syn and Syn in the definition is motivated by the tradition
to expressly separate syntactic and nonsyntactic features.

Minimalist Grammars with Unbounded Scrambling 423

− m(erge)-selectors M = { =x | x ∈ B },
− m(ove)-licensees E = { −x | x ∈ B },
− m(ove)-licensors R = { +x | x ∈ B },
− s(cramble)-licensees, S = { ∼x | x ∈ B }, and
− ‘#’, a special symbol;

• c is a distinguished element of Base, the completeness category;
• Lex is a lexicon, defined further on;
• Ω is the set of the structure-building operators ‘merge’, ‘move’ and ‘scramble’

specified later.

We will denote by Feat the union of the syntactic and non-syntactic features:
Feat = Syn ∪ ¬Syn.

Definition 2 (Expression). An expression over the set of features Feat, also
called a minimalist tree, is a five-tuple τ = 〈Nτ , �

∗
τ ,≺τ , <τ , labelτ〉, obeying the

following conditions:

• 〈Nτ , �
∗
τ ,≺τ 〉 is a finite binary ordered tree, where Nτ is a non-empty finite

set of nodes, �τ is the binary relation of immediate dominance on Nτ , �∗τ is
its reflexive transitive closure, and ≺τ is the binary relation of precedence
on Nτ ;

• <τ ⊆ Nτ ×Nτ is the asymmetric relation of immediate projection that holds
for any two sibling nodes, so that for each x ∈ Nτ which is not the root of τ
either x <τ sibling(x) or sibling(x) <τ x; in the case x <τ y, we say that x
immediately projects over y;

• label τ is a leaf-labeling function assigning to each leaf of 〈Nτ , �
∗
τ ,≺τ 〉 an

element from Syn∗ {#} Syn∗ Phon∗ Sem∗, where Syn, Phon, Sem and ‘#’
are the same as in the definition of MGscr

B0 .

We will denote by Exp(Feat) the set of all expressions over the features Feat.
Let τ = 〈Nτ , �

∗
τ ,≺τ , <τ , label τ 〉 ∈ Exp(Feat) be an expression.

Leaf z ∈ Nτ is the head of a given node x ∈ Nτ if either z and x are the same
node or x �+

τ z and for each y ∈ Nτ , such that x �+
τ y �∗τ z, the following holds:

y <τ siblingτ (y).4 Expression τ is said to be a head, or a simple expression, if Nτ

contains exactly one node. Otherwise τ is said to be a non-head, or a complex
expression. The head of a tree is the head of its root. The root of the tree τ is
denoted as rτ .

Expression corresponding to a given subtree φ of τ is referred to as a subex-
pression of τ . Such subexpression φ with root x ∈ Nτ is said to be a maxi-
mal projection in τ if either x is the root of τ (and, as a consequence, does
not have any siblings with respect to τ) or φ is a proper subexpression of τ
and siblingτ (x) <τ x. The set of all maximal projections of τ is denoted as
MaxProj (τ).

4 Analogously to the notation 	∗, we use the shorthand 	+ to denote the non-reflexive
transitive closure of the dominance relation.

424 A. Perekrestenko

Expression φ ∈ MaxProj (τ) over Feat is said to display feature f ∈ Feat if
its label is in α#fβ where α, β ∈ Feat∗; expression φ ∈ MaxProj (τ) is said to
contain feature f ∈ Feat if its label is in αfα′#ββ′ or in αα′#βfβ′ where
α, α′, β, β′ ∈ Feat∗.

Expression τ is complete if its head label is in Syn∗{#}{c}S?Phon∗Sem∗ and
the labels of all of its leaves are in Syn∗{#}S?Phon∗Sem∗.5

Maximal projection τ is licensed for scrambling (to x) if the head label of τ
displays feature ∼x for some x ∈ B or x̄ ∈ B̄.

Subexpression φ ∈ MaxProj (τ) is barred for scrambling to τ if there exists
a χ ∈ MaxProj (τ) such that φ ∈ MaxProj (χ), rφ �= rχ, rχ �= rτ and the label
of χ contains feature x̄ ∈ B̄. The head of the subtree χ will be called a barrier.
Sometimes we will use the word barrier to refer to a full projection whose head
is a barrier.

Subexpression φ ∈ MaxProj (τ) is said to be a candidate for scrambling to ex-
pression τ if τ is a maximal projection, for some x ∈ B (or x̄ ∈ B̄) the head label
of τ displays category x (or x̄), the subexpression φ is licensed for scrambling
to x and it is not barred for scrambling to τ . For a given maximal projection τ ,
the set of all candidates for scrambling to τ will be denoted as ScrS(τ).

For two expressions φ, χ ∈ Exp(Feat), [< φ, χ] (respectively, [> φ, χ]) denotes
the complex expression ψ = 〈Nψ , �∗ψ,≺ψ, <ψ, labelψ〉 ∈ Exp(Feat) with rψ �ψ rφ,
rψ �ψ rχ, rφ ≺ψ rχ, and rφ <ψ rχ (respectively, rχ <ψ rφ).

The phonetic yield of the (complex) expression τ , YPhon(τ), is defined as the
concatenation of the Phon string of the leaf labels in the order in which they
appear in the tree τ .

The lexicon of MGscr
B0 , Lex, is a finite set of simple expressions over Feat ,

each of which is of the form φ=〈Nφ, �
∗
φ,≺φ, <φ, labelφ〉 with Nφ ={ε} and the

leaf-labeling function labelφ assigns to the only node of φ an element from
{#} M∗ R∗ Base (E ∪ S)? Phon∗ Sem∗ .

An expression thus defined directly translates into a binary tree whose leaves
are elements of the lexicon (lexical entries) and the nonleaf nodes are marked
with a symbol of the immediate projection relation (‘<’ or ‘>’).

The structure-building operators Ω of MGscr
B0 are defined below in terms of

their mapping type, domain and operation.

Operator merge

Type: partial mapping Exp(Feat) × Exp(Feat) → Exp(Feat).

Domain: for any φ, χ ∈ Exp(Feat), the tuple 〈φ, χ〉 is in Dom(merge) iff
for some x ∈ B the head label of φ displays m-selector =x and the head
label of χ displays category x or x̄.

Operation:

merge(φ, χ) =
{

[< φ′, χ′] | φ is simple
[> χ′, φ′] | φ is complex

5 Here it is not required that all scrambling licensees be eliminated. In this way the
optionality of scrambling is guaranteed.

Minimalist Grammars with Unbounded Scrambling 425

where φ′ and χ′ result from the corresponding φ and χ by swapping the
symbol with the feature immediately following it to the right.

Operator move

Type: partial mapping Exp(Feat) → Exp(Feat).

Domain: for any φ ∈ Exp(Feat), the expression φ is in Dom(move) iff for
some x ∈ B the head label of φ displays m-licensor +x and there is a unique
χ ∈ MaxProj (φ) displaying m-licensee −x.6

Operation: move(φ) = [> χ′, φ′], where φ′ and χ′ result from the corre-
sponding φ and χ by swapping the # symbol with the feature immedi-
ately following it to the right and replacing the subtree χ in φ with a
single empty node labeled ε.

Operator scramble

Type: partial mapping Exp(Feat) → 2Exp(Feat).

Domain: for any φ ∈ Exp(Feat), the expression φ is in Dom(scramble) iff
ScrS (φ) �= ∅.

For Φ ⊆ Exp(Feat), let S′(Φ) = { [> χ′, φ′] | φ ∈ Φ, φ ∈ Dom(scramble),
χ ∈ ScrS(φ), φ′ results from φ by replacing subtree χ by a single empty
node labeled ε, and χ′ results from χ by swapping the # symbol with the
feature immediately following it to the right }.
Let S0(Φ) = Φ and Sk+1(Φ) = Sk(Φ) ∪ S′(Sk(Φ)) for k ≥ 0, k ∈ IN .

Operation: scramble(φ) =
⋃

k∈IN Sk({φ}).

Let G = 〈¬Syn, Syn, c,#, Lex , Ω〉 be an MGscr
B0 . Let CL0(G) = Lex. For k > 0,

k ∈ IN , CLk(G) will be defined as follows:

CLk+1(G)=CLk(G) ∪ { merge(φ, χ) | φ, χ ∈ CLk(G), 〈φ, χ〉 ∈ Dom(merge) }∪
{ move(φ) | φ ∈ CLk(G), φ ∈ Dom(move) } ∪
{ scramble(φ) | φ ∈ CLk(G), φ ∈ Dom(scramble) }.

Let CL(G) =
⋃

k∈IN CLk(G). The tree language of G, MT scr
B0 (G), is defined in

the following way:

MT scr
B0 (G) = { τ | τ ∈ CL(G) and τ is complete }.

The string language of G, MLscr
B0 (G), is defined as the yields of its tree language:

MLscr
B0 (G) = { YPhon(τ) | τ ∈ MT scr

B0 (G) }.

6 The uniqueness of χ prohibiting the occurrence of two or more competing movement
candidates is the way the SMC is implemented for the move operator.

426 A. Perekrestenko

3 MGscr
B0 is NP-Hard

3.1 Preliminaries: NP-Hardness

A problem X is NP-hard if and only if an NP-complete problem N can be trans-
formed (“reduced”) to X in polynomial time in such a way that a (hypothetical)
polynomial-time algorithm solving X could also be used to solve N in polynomial
time.

Let L() be the word recognition problem for the language L. Let L, L1 and L2

be languages over an alphabet Σ∗ such that L = L1 ∪ L2 and L1 ∩ L2 = ∅. Let
p(w) be a polynomial-time computable function with domain Dom(p) = Σ∗ such
that for any w ∈ L it returns true if w ∈ L1 and false otherwise. (For a w /∈ L,
it can return either true or false.) We will need the following proposition:

Proposition 1. If L1() is NP-hard, then L() is also NP-hard.

3.2 The Idea of the Proof

The NP-hardness of the word recognition problem for MGscr
B0 will be proved

by constructing a grammar G ∈ MGscr
B0 that generates a language L = L1 ∪ L2,

L1 ∩ L2 = ∅, such that a known NP-complete problem can be reduced to L1()
in polynomial time, i.e., L1() is NP-hard, and the question whether a word
w ∈ L belongs to L1 or to L2 can be solved in deterministic polynomial time.
In the proof we will use the 3-Partition Problem which is known to be strongly
NP-complete:

Given a multiset of 3k natural numbers {n1, n2, . . . , n3k} and a constant m,
decide whether this multiset can be partitioned into k subsets consisting
each of three elements whose sum is m.

This problem can be described as a language

L3P = { axn1axn2 . . . axn3kbm | a, b, x ∈ Σ }

such that it consists of all the words for which 〈n1, n2, . . . , n3k,m〉 represents an
instance of the 3-Partition Problem as described above. The word recognition
for this language is NP-hard.7

3.3 Proving NP-Hardness

Let G = 〈¬Syn, Syn, s,#, Lex , Ω〉 be an MGscr
B where

• Phon = { a, b, c, d }, Sem = ∅, and
• Base = { a1, a2, a3, a′1, a′2, a′3, a′′1 , a′′2 , a′′3 , b, b′, b0, c1, c2, c3, c′1, c′2, c′3, c′′1 ,

c′′2 , c′′3 , d1, d2, d3, d′1, d′2, d′3, d′′1 , d′′2 , d′′3 , g, e, p, s, t̄, t̄′, u, u′, u′′, v, v′, w,
w′ }.

7 Without loss of generality we will only consider positive natural numbers and assume
k ≥ 1.

Minimalist Grammars with Unbounded Scrambling 427

The lexicon of the grammar, Lex , consists of the following entries:8

1. (a) # . =c′′3 . a′′3 . ∼s . a; # . =d′′3 . =b0. c′′3 . c;
. =c′′3 . =b . d′′3 . d; # . =e . =b . d′′3 . d; # . e;

(b) # . =c′′2 . a′′2 . ∼s . a; # . =d′′2 . =b0. c′′2 . c;
. =c′′2 . =b . d′′2 . d; # . =a′′3 . =b . d′′2 . d;

(c) # . =c′′1 . a′′1 . ∼s . a; # . =d′′1 . =b0. c′′1 . c;
. =c′′1 . =b . d′′1 . d; # . =a′′2 . =b . d′′1 . d;

(d) # . =u′′. w . −w; # . =a′′1 . u′′.−u′;
2. (a) # . =c3 . a3 . ∼s . a; # . =d3 . c3 . c;

. =c3 . =b′. d3 . d; # . =w. =b′. d3 . d;
(b) # . =c2 . a2 . ∼s . a; # . =d2 . c2 . c;

. =c2 . =b′. d2 . d; # . =a3 . =b′. d2 . d;
(c) # . =c1 . a1. ∼s . a; # . =d1 . c1 . c;

. =c1 . =b′. d1 . d; # . =a2 . =b′. d1 . d;
(d) # . = t . +v . w′.−w′; # . =u . t̄;

. =v . +u′. +w . u .−u; # . =a1 . v . −v;
3. (a) # . =c′3 . a′3 . ∼s . a; # . =d′3 . c′3 . c;

. =c′3 . =b . d′3 . d; # . =w′. =b . d′3 . d;
(b) # . =c′2 . a′2 . ∼s . a; # . =d′2 . c′2 . c;

. =c′2 . =b . d′2 . d; # . =a′3 . =b . d′2 . d;
(c) # . =c′1 . a′1 . ∼s . a; # . =d′1 . c′1 . c;

. =c′1 . =b . d′1 . d; # . =a′2 . =b . d′1 . d;
(d) # . = t′. +v′. w .−w; # . =u′. t̄′;

. =v′. +u. +w′. u′. −u′; # . =a′1 . v′. −v′;
4. # . =w. g; # . =w′. g;
5. # . =g . +u′. +w . s; # . =g . +u . +w′. s;
6. # . b . ∼c1 . b; # . b . ∼c2 . b; # . b . ∼c3 . b; # . b . ∼g . b;

. b′. ∼c′1 . b; # . b′. ∼c′2 . b; # . b′. ∼c′3 . b; # . b′. ∼g . b; # . b0. b

Proposition 2. The language L generated by the grammar G is a union of two
disjoint languages, L = L3p ∪ L′, L3p ∩ L′ = ∅, such that L3p consists of all the
words

a(bcd)n1a(bcd)n2 . . . a(bcd)n3kbm

with a, b, c, d ∈ Σ, where 〈n1, n2, . . . , n3k,m〉 is an instance of the 3-Partition
Problem, as described above, and there exists a polynomial-time computable func-
tion p(w) such that for any word w ∈ L it returns true if w ∈ L3p and false
otherwise; for w /∈ L it returns either true or false.

8 For better legibility we separate features with dots.

428 A. Perekrestenko

We will prove the proposition 2 by following the derivation of the language L
steps whose numbering corresponds to that of the lexical entries standing for
these derivation steps.9

Subwords in a(bcbd)+a(bcbd)+a(bcbd)+ or a(cbd)+a(cbd)+a(cbd)+ generated
at the step 1, 2 or 3 will be referred to as triples. The a(bcbd)+ or a(cbd)+ sub-
words of a triple generated during the (a), (b) or (c) substep of the corresponding
step will be called a-blocks .

The derivation starts at step 1.

Step 1. The derivation starts with the lexical entries in (1a) generating the
following (sub)tree:

<

a′′3 >

b0 <

c′′3 >

b <

d′′3 >

b0 <

c′′3 >

b <

d′′3 . . .

>

b0 <

c′′3 >

b <

d′′3 e

The yield of this tree is a(bcbd)+. Each b
located between a c and a d (the corre-
sponding base category is underlined) is
licensed for scrambling to c1, c2, c3 or g
to be introduced at a later point in the
derivation, as every such b has s-licensee
∼c1, ∼c2, ∼c3 or ∼g. The whole a′′3 -
headed subtree is licensed for scrambling
to s since its head a′′3 has s-licensee ∼s.
After this, subtrees headed by a′′2 and a′′1
are generated by the entries in (1b) and
(1c) respectively. The generation proceeds
in the same way as in the case of the a′′3 -
headed subtree; the b nodes are licensed
for scrambling to c1, c2, c3 or g, and the
a′′2 and a′′1 subtrees are themselves licensed
for scrambling to s.

Applying the lexical entries in (1d), the resulting a′′1 -headed tree merges to u′′

and the u′′-headed tree merges to w:

<

w <

u′′ <

a′′1 (b0c′′1bd
′′
1)+ <

a′′2 (b0c′′2bd′′2)+ <

a′′3 (b0c′′3bd′′3)+

The phonetic yield generated at this point
is a triple

a(bcbd)+a(bcbd)+(bcbd)+

The derivation continues further to the
step 2 or 4.

9 For legibility and in order to avoid cumbersome notation, we will only use base
category symbols in the illustrations below. In the grammar G, the lexical entries
are made in such a way that the phonetic symbol—if it is present—can be obtained
by stripping the base category symbol of its indices and bars.

Minimalist Grammars with Unbounded Scrambling 429

Step 2. First, subtrees headed by a3, a2 and a1 are generated by the entries
in (2a), (2b) and (2c) respectively, similarly to the previously performed step.
All of them are licensed for scrambling to s. The b′1, b′2 and b′3 nodes inside
these subtrees are licensed for scrambling to c′1, c′2, c′3 or g. Some of the b nodes
introduced at the previous step scramble to some of the c1, c2 and c3 nodes
introduced at the present step. The resulting a1-headed subtree merges to v:

<

v <

a1 (b c1b
′d1)+ <

a2 (b c2b
′d2)+ <

a3 (b c3b
′d3)+

. . .w. . .

If the previous step was 3, the only
b nodes that can scramble here are
those generated at that previous
step. This is because the v′-headed
subtree that contains these nodes
moved out of the barrier subtree t̄′
at the previous step, but prior to
this movement the subtrees contain-
ing the rest of the b (and b′) nodes
moved to the specifiers of u′ which is
itself located inside t̄′ (this will be-
come clear further on as the step 3
is similar to the step 2 modulo bars
on the base category symbols).

Further, the v-headed subtree merges to u, the u′-headed (or u′′-headed) subtree
generated at the previous step moves from within w to u and then w itself moves
to u. After that, the u-headed subtree merges to t̄:

<

t̄ >

. . .w . . .

>

u′ or u′′

<

u <

v . . .

Thus we get a v-headed tree where
only the b′ nodes generated at the
present step remain, and the rest
of the b and b′ nodes are contained
within the specifiers of u. This con-
figuration makes it possible to dis-
place the b′ nodes generated at the
present step beyound the barrier in
one go leaving the rest of the b and
b′ nodes inside the barrier.

Further, the t̄-headed subtree merges to w′ and the v-headed subtree moves
to w′:

>

<

v . . .

<

w′ <

t̄ >

. . . w . . .

>

u′ or u′′

<

u ε

As a consequence of this movement,
the b nodes generated at the present
step get displaced out of the barrier t̄
and become scrambling candidates,
while the rest of the b (and b′) nodes
remain within t̄.

After this step the derivation con-
tinues to the step 3 or 4.

430 A. Perekrestenko

Step 3. This derivation step is performed by the entries in (3). It is similar to the
step 2 with the only difference that instead of the categories with a bar of step 2,
the corresponding categories without bars are used here (e.g., b′ for b, etc), and
vice versa. It can only be preceded by step 2. After this step the derivation goes
further to the step 2 or 4.

Step 4. A subtree headed by g is generated by the entries in (4). The g head
merges w or w′ depending on which was the previous step. Some of the b′ or b
nodes introduced in the previously performed step scramble to g:

After step 1 or 2: >

b >

b >

. . .

>

b <

g

. . .w . . .

After step 3: >

b’ >

b’ >

. . .

>

b’ <

g

. . .w’ . . .

The derivation continues further to the step 5.

Step 5. A subtree headed by s is generated by one of the entries in (5) merging
the g-headed subtree generated in step 4. The s head triggers the movement of
w and u′ (or w′ and u respectively) getting the corresponding subtrees out of the
barrier t̄ (or t̄′). Further, (some of) the a-, a′- or a′′-headed subtrees generated
at previous steps scramble from these two subtrees to s in an arbitrary order:

>

<

a1, a
′
1, a

′′
1 ,

a2, a
′
2, a

′′
2 ,

a3, a
′
3 or a′′3

>

<

a1, a
′
1, a

′′
1 ,

a2, a
′
2, a

′′
2 ,

a3, a
′
3 or a′′3

>

. . .

>

<

a1, a
′
1, a

′′
1 ,

a2, a
′
2, a

′′
2 ,

a3, a
′
3 or a′′3

>

<

u′ (u)

>

<

w (w′)

<

s

g

In this way, the a-blocks
are ordered arbitrarily on
the left of the yield of the g-
headed subtree which itself
stores the “counter”. No
further b and b′ scrambling
is possible here because of
the lack of an appropriate
scrambling domain.

The language L generated by this grammar can be seen as the union of two
languages, L = L1 ∪ L2, such that L1 consists of all the words produced with all
b and b′ nodes having scrambled and each c and c′ head having accepted exactly

Minimalist Grammars with Unbounded Scrambling 431

one scrambling b or b′ node, and L2 contains the rest of the words. The language
L1 consists of all the words

a(bcd)n1 a(bcd)n2 . . . a(bcd)n3k bm

such that for all positive natural numbers k and m, the multiset {n1, n2, . . . , n3k}
can be partitioned into k multisets of cardinality 3, each of which sums to m.
This can be seen following the generation of the words of the language.

On the yield level,10 each a(b cbd)+a(b cbd)+a(b cbd)+ triple generated at
the step 2 or 3 receives the scrambling symbols b from the neighboring triple
on the right generated during the previous step and later “gives away” through
scrambling its symbols b located between c and d to the triple generated dur-
ing the next step. Barriers in combination with movement guarantee that the
symbols b generated during one step can only scramble to the triples generated
during the text step. The symbols b scrambling from the last generated triple
are stored as a “counter” at the step 4. After that, at the step 5, the a-blocks
move to the left of the counter and scramble arbitrarily.

In case all the b and b′ nodes have scrambled and each c1, c2, c3, c′1, c′2 and
c′3 head have received through scrambling exactly one b or b′, all the triples will
contain an equal number of bcd subwords while the number of these subwords
in different a-blocks of one and the same triple may vary. The “counter” will
consist of as many symbols b as there are bcd subwords in each triple.

Each word in L2 will contain at least one following subword in positions to
the left from the rightmost occurrence of d: bb (more than one b have scrambled
to the same c head), ac, dc (omission of scrambling to a particular c head), cb
(b has not scrambled), while no word in L1 will follow this pattern. This means
that L1 ∩ L2 = ∅, and there exists a polynomial-time computable function p(w)
such that for any w ∈ L, p(w) = true if w ∈ L1 and p(w) = false otherwise. For
a w /∈ L, it will return true or false .

The language L1 constitutes the unary encoding of the 3-Partition Problem
whereby we have proved the proposition 2 which together with the proposition 1
gives us the following result:

Proposition 3. The word recognition problem for MGscr
B0 is NP-hard.

4 Conclusions

In this paper we have proved that the fixed recognition problem for MGscr
B0 is

NP-hard, which means that the generalized description of scrambling is prob-
ably impossible in MG even if we operate with one single barrier blocking all
scrambling. This result shows that non-locality has similar consequences in the
case of MGs as it does for TAG-based formalisms [1,16]. A further step in this
research could be investigation of other properties of the proposed formalism
and determining more exactly the complexity of the recognition problem for it.
10 Here we write in squares those symbols b that have scrambled and the underlined

symbols are those that have not.

432 A. Perekrestenko

References

1. Champollion, L.: Lexicalized non-local MCTAG with dominance links is NP-
complete. In: Penn, G., Stabler, E. (eds.) Proceedings of Mathematics of Language
10. CSLI On-Line Publications UCLA (2007)

2. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
3. Chomsky, N.: Derivation by phase. In: Kenstowicz, M. (ed.) Ken Hale: A Life in

Language, pp. 1–52. MIT Press, Cambridge (2001)
4. de Groote, P., Morrill, G., Retoré, C. (eds.): LACL 2001. LNCS, vol. 2099. Springer,

Heidelberg (2001)
5. Frey, W., Gärtner, H.: On the treatment of scrambling and adjunction in Minimalist

Grammars. In: Jäger, G., Monachesi, P., Penn, G., Wintner, S. (eds.) Proceedings
of the 7th Conference on Formal Grammar, pp. 41–52 (2002)

6. Gärtner, H., Michaelis, J.: Some remarks on locality conditions and Minimalist
Grammars. In: Gärtner, H., Sauerland, U. (eds.) Interfaces + Recursion = Lan-
guage? Chomsky’s Minimalism and the View from Syntax and Semantics, pp. 161–
195. Walter de Gruyter, Berlin (2007)

7. Harkema, H.: A characterization of Minimalist languages. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer,
Heidelberg (2001)

8. Jäger, G., Monachesi, P., Penn, G., Wintner, S. (eds.): FG-MOL 2005: Proceedings
of the 10th conference on Formal Grammar and the 9th Meeting on Mathematics
of Language, Edinburgh, Scotland (2005)

9. Kobele, G., Michaelis, J.: Two type 0-variants of Minimalist Grammars. In: Jäger,
et al. (eds.) [8]

10. Michaelis, J.: Derivational Minimalism is mildly context-sensitive. In: Moortgat,
M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, pp. 179–198. Springer, Heidelberg
(2001)

11. Michaelis, J.: Transforming linear context-free rewriting systems into Minimalist
Grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

12. Michaelis, J.: An additional observation on strict derivational Minimalism. In:
Jäger, et al. (eds.) [8]

13. Michaelis, J., Gärtner, H.: A note on countercyclicity and Minimalist Grammars.
In: Jäger, G., Monachesi, P., Penn, G., Wintner, S. (eds.) Proceedings of the 8th
Conference on Formal Grammar, pp. 103–114 (2003)

14. Perekrestenko, A.: A note on the complexity of the recognition problem for the Min-
imalist Grammars with unbounded scrambling and barriers. In: Madrigal, V.D.,
de Ros Salamanca, F.E. (eds.) Actas del XXIII Congreso de la Sociedad Española
para el Procesamiento del Lenguaje Natural, Seville, Spain. Revista de la SEPLN,
vol. 39, pp. 27–34 (2007)

15. Stabler, E.: Derivational Minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

16. Søgaard, A., Lichte, T., Maier, W.: On the complexity of linguistically motivated
extensions of tree-adjoining grammar. In: RANLP 2007: Proceedings of the Con-
ference on Recent Advances in Natural Language Processing, Borovets, Bulgaria
(2007)

Sorting and Element Distinctness on One-Way

Turing Machines

Holger Petersen

Univ. Stuttgart, FMI
Universitätsstraße 38
D-70569 Stuttgart

petersen@informatik.uni-stuttgart.de

Abstract. For nondeterministic Turing machines with one work-tape
and one-way input a lower time bound Ω(m2�) on sorting m strings of
length � each is shown, which matches the upper bound. For the related
Element Distinctness Problem with input of the same format we prove
the upper bound O(m2) if � = O(m/ log m), showing this problem to be
easier than sorting. The bound O(m2) also holds for deterministic ma-
chines if � = c+log m with constant c. For this problem Szepietowski has
shown the bound Θ(m2 log m) on deterministic Turing machines without
input tape.

1 Introduction

Sorting is among the most widely studied tasks in computer science. Many al-
gorithms have been developed for computational models that treat the keys of
items to be sorted as atomic units. There are however interesting solutions like
radix-sort that access portions of the keys. The investigation of such algorithms
clearly requires a model that processes its input on a bit-level. The traditional
model in this field is the Turing machine. As discussed in Section 2, multi-tape
Turing machines are quite efficient at solving the sorting problem.

In the present work we consider the sorting problem for binary strings or
equivalently natural numbers in binary encoding. This is no severe restriction,
since pointers to data can be stored in the least significant digits. We denote
the problem of sorting m strings of length 	 by SORT(m,), where we assume
that m and 	 are related by some easily computable function. When considering
nondeterministic sorting procedures we require that within the given time bound
at least one computation writes the sorted input on a work-tape and all other
cells contain blanks. No terminating computation produces an incorrect output.

A decision problem which is closely connected to sorting is the Element Dis-
tinctness Problem (EDP). The EDP asks whether m elements given as strings
of 	 bits each are pairwise different. We denote this problem by EDP(m,). As
a language recognition problem EDP can be defined in the following way:

EDP(m,) = {x1#x2# · · ·#xm | xi ∈ {0, 1}�, xi �= xj for i �= j}.
Since on many computational models EDP can be efficiently reduced to sorting,
lower bounds on the decision problem EDP carry over to the sorting problem.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 433–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

434 H. Petersen

2 Previous Work

It is well-known that deterministic Turing machines with three work-tapes can
sort much faster than machines with one such tape. Using merge-sort and radix-
sort machines of the former type can solve SORT(m,) in time O(m(logm))
and O(m	2) resp. [Rei90, p. 152].

Radix-sort can be implemented on machines with two work-tapes by making
two passes over the sequence of strings when sorting according to a bit, but
for large 	 (e.g., 	 = m2) the resulting bound O(m	2) is worse than sorting
by selection. One of the factors 	 in this bound can be replaced by logm with
the help of a merge-sort strategy that first determines the final position of each
string by counting.

If the input-tape of a two-tape Turing machine is restricted to be read-only
we obtain the off-line Turing machine investigated in [Wie92] by Wiedermann.
He gave a nondeterministic solution running in time O(m3/2). A deterministic
algorithm for Turing machines with a separate two-way input-tape having the
same complexity was presented in [Pet08]. This bound cannot be improved in
general by the lower bound from [DMS91].

The most restricted model we mention here is the single-tape machine that
receives its input on the work-tape. For this model Wiedermann could show the
bound Θ(m	 log

(
m+2
−1

m

)
) in [Wie92], which is better than the naive quadratic

algorithm for small 	.
The investigation of the EDP on Turing machines with a single work-tape

was initiated by López-Ortiz [LO94]. He proved the lower bound Ω(m2 logm)
on the time necessary for a nondeterministic Turing machine without separate
input-tape to accept the EDP with m elements of 	 = k logm bits each for
k ≥ 2. There is a straight-forward deterministic solution in time O(m2 log2m)
and López-Ortiz conjectured that the latter bound was optimal. Szepietowski
[Sze96] showed that the lower bound Ω(m2 logm) also holds for elements of
size c + logm with constant c. In this case there is a matching upper bound.
The nondeterministic version of the conjecture of López-Ortiz was disproved in
[Pet02] with a solution of complexity O(m2(logm)3/2(log logm)1/2). An even
better algorithm in [BABP03] showed the lower bound to be tight in the case
of nondeterministic machines, while the deterministic version of the conjecture
turned out to be true.

In [Pet08] the EDP was solved by Turing machines with a single work-tape
and a separate two-way input-tape. For the EDP with m elements of size 	 =
O(m/ log2m) a nondeterministic solution of time complexity O(m3/2	1/2) was
presented, which is slightly faster than the sorting procedures mentioned above.

In the present work we investigate computational models between the ma-
chines discussed above, namely Turing machines with one work-tape and a sep-
arate one-way input-tape. Probabilistic Turing machines of this kind have been
investigated by Kalyanasundaram and Schnitger [KS92], who could show the
lower bound Ω(m2/ logm) on EDP with elements of size 2 logm. We prove here
that in the case of nondeterministic machines the EDP is easier than sorting by
showing an optimal lower bound on sorting and a faster algorithm for EDP.

Sorting and Element Distinctness on One-Way Turing Machines 435

3 Sorting with One Work-Tape and One-Way Input

First we outline the easy upper bound for nondeterministic machines.

Proposition 1. Sorting m binary strings of length 	 each (SORT(m,)) for
	 = O(m) can be done by a nondeterministic Turing machine with one-way
input in time O(m2).

Proof. The Turing machine guesses the correct position for each string, leaving
space for the remaining elements. This position can be reached in O(m) steps
per string, since this is the size of the input. Then in time O(m	2) the machine
can check that the strings are of the same length and appear in sorted order. By
the assumption 	 = O(m) the claimed bound follows. �

The next result shows that this bound is optimal for 	 ≥ 2 logm. Notice that
this is not a severe restriction, since 	 < logm is impossible for positive instances
of EDP.

Theorem 1. The problem SORT(m,) requires Ω(m2) steps on nondetermin-
istic Turing machines with one-way input if 	 ≥ 2 logm.

Proof. Let M be a Turing machine with q states solving SORT(m,) and of the
kind mentioned in the theorem. Let m be sufficiently large, divisible by 10 and
let n = m(+ 1) − 1.

The proof uses the concept of Kolmogorov Complexity, see [LV97] for def-
initions and references to other papers applying this technique. Let w be an
incompressible binary string of length (m/5) · (− logm). Form m/5 strings
w0, . . . , wm/5−1 of length 	 − logm each, such that w = w0 · · ·wm/5−1. Denote
by b(i) the binary encoding of i in logm bits (with leading 0’s if necessary).
Form the following input x for M :

b(0)w0#b(m− 1)w1# · · ·#b(m/10 − 1)wm/5−2 #

b(m−m/10)wm/5−1#b(m/10)0�# · · · #b(m−m/10 − 1)0�

The input is formed by concatenating binary encodings of small numbers
with portions of w having an even index and by concatenating encodings of
large numbers with portions having an odd index. These strings alternate. The
trailing elements consist of encodings of numbers of intermediate size followed
by zeroes.

Fix a terminating computation of minimum length of M on x. The length of
the computation can be bounded from above by n2 = m2	2, since otherwise the
lower boundΩ(m2) holds (and we already know that the upper bound isO(m2)
from Proposition 1). Therefore also the number of tape-squares used is bounded
by n2. We assign numbers to the work-tape squares eventually containing the
sorted strings starting with 0 (squares to the left of the sequence are assigned
negative numbers). If for i with 0 ≤ i ≤ m/10− 1 the position of the work-tape
head is between square −(m/5)	 and (2m/5)(+ 1) when some bit of b(i)w2i is
scanned by the input head we say that w2i is directly copied. Similarly w2i+1 is

436 H. Petersen

directly copied, if some bit of b(m− i)w2i+1 is scanned by the input head while
the work-tape head is between square (3m/5)(+ 1) and (6m/5)(+ 1). If for
at least half of the i both w2i and w2i+1 are directly copied, then M makes at
least (m/20)(m/5)(+ 1) ≥ (1/100)m2	 steps.

Now assume that for at least half of the i one of the strings w2i and w2i+1

is not directly copied. Then at least one fourth of the strings with even or odd
index is not directly copied. We just consider the former case, the other being
similar.

We will show that not both from square −(m/5)	 to 0 and from square
(m/5)(+ 1) to (2m/5)(+ 1) a short crossing sequence of M is possible. Let
c1 be a crossing sequence in the first interval and c2 be a a crossing sequence
in the second interval. In addition to the states of M the crossing sequences
include information about the position of the input head when the work-tape
head crosses the border.

The string w can be reconstructed from the following information:

– A formalized version of the decoding algorithm outlined below (O(1) bits).
– An encoding of machine M (O(1) bits).
– A self-delimiting binary encoding of m and 	 (O(log n) bits).
– The distance of c1 and c2 to the initial position of the work-tape head in

self-delimiting binary encoding (O(log n) bits).
– The length of c1 and c2 in self-delimiting binary encoding (O(log n) bits).
– The crossing sequences c1 and c2 including the positions of the input head

((|c1| + |c2|)(logn+ log q) bits).
– A sequence f of m/10 bits indicating those w2i which are directly copied.
– A binary string v consisting of all w2i (concatenated without separators)

which are directly copied and all w2i+1 (at most (7m/40) · (− logm) bits).

The above information can be extracted from a terminating computation
of M .

The reconstruction algorithm first sets up an input-string u for M by gen-
erating the address fields and markers, copying the w2i which are indicated by
f , all w2i+1, and filling the remaining positions with 0’s. It can do so by using
the encodings of m and 	 and the above information. Notice that u may not be
identical to the original input of M , but in the course of the simulation none of
the differing bits will be queried.

Then a blank segment of the work-tape between c1 and c2 is initialized. Now
the simulator checks whether the initial position of the work-tape head is to
the left of c1, between c1 and c2 or to the right of c2. In the first and last
case M is started in the state according to the first entry of the respective
crossing sequence and from its position. Otherwise M ’s head is placed inside the
segment. Now a simulation of M is started, storing each of the simulated steps
and the intermediate work-tape contents in order to backtrack when a branch
of the simulation fails. Whenever a new symbol of the input is read by M , the
simulator looks up the corresponding information in u.

If the work-tape head of M is about to cross the position of c1 or c2, then the
simulator checks that the number of input symbols read during the simulation and

Sorting and Element Distinctness on One-Way Turing Machines 437

the current state is consistent with the crossing sequence. If it isn’t, backtrack-
ing starts. Otherwise the simulation is resumed at the next entry of the crossing
sequence.

Eventually the simulation terminates, since there is at least one terminating
computation. Then the work-tape contains the missing strings of w, which can
be combined with u in order to recover w.

Now assume that |c1| + |c2| ≤ m/100. Then (|c1| + |c2|)(log n + log q) ≤
(m/50) logn for n sufficiently large and w has a description of size at most
(m/50 + 7m/40) · (− logm) + o(n) = 39m/200 · (− logm) + o(n). Thus w
can be compressed, contrary to our assumption. By choosing disjoint pairs of
positions for c1 and c2 we obtain the desired bound Ω(m2). �

The restriction to “large” 	 in Theorem 1 cannot be omitted, since for 	 ≤ logm
Wiedermann proved the upper bound O(m	2�(logm−	+1)) even for the weaker
model without any input-tape [Wie92, Theorem 1].

4 EDP with One Work-Tape and One-Way Input

Szepietowski [Sze96] investigated the problem of distinctness form short numbers
of size c+logm, where c is constant.He could prove that on adeterministic one-tape
Turing machine without separate input this problem has complexityΘ(m2 logm).
Here we show that the problem can be solved faster with an additional one-way
input-tape, thus separating the two computational models with a natural problem.

Theorem 2. The problem EDP(m, c + logm) with c constant can be accepted
by a deterministic Turing machine with one work-tape and a one-way input-tape
in time O(m2).

Proof. After recording the first element x1 on the work-tape the Turing machine
M solving the EDP allocates m/ logm buckets. Each bucket contains a unique
address of logm − log logm bits and an array of 2c · logm flags. The buckets
appear in increasing order of their addresses. All flags are initially false.

Element x1 is now shifted along the tape on a separate track and for every
flag passed its numerical value is decreased by one. This continues until the value
zero is reached and the corresponding flag is marked as true. The work-head is
then moved back to the first bucket.

For each remaining element xi machine M does the following. It repeatedly
reads one bit and shifts the prefix of xi read so far along the separate track until
the prefix matches a prefix of a bucket address. This continues until the first
logm− log logm bits of xi have been read. The following c+ log logm bits are
then copied onto the special track and are used as a binary counter in order to
locate the flag within the bucket belonging to xi. If the flag is already set M
rejects, otherwise it sets the flag.

Initializing the buckets and shifting x1 can be done in O(m logm) steps. Each
of the other elements requires O(m) steps, since a prefix of i bits is moved along
at most 2log m−log log m−i = m/(2i logm) buckets of size O(logm). Locating the
flag can be done in time O(logm log logm). �

438 H. Petersen

The following result shows that the same bound holds for longer strings if the
machines considered are nondeterministic. Note that the EDP is thus easier than
sorting on this model of computation.

Theorem 3. The problem EDP(m,) with 	 = O(m/ logm) can be accepted by
a nondeterministic Turing machine with one work-tape and a one-way input-tape
in time O(m2).

Proof. We describe a computation of a nondeterministic Turing machine M on
a positive instance of the problem respecting the time bound. In the case of an
instance that contains duplicates the computation can be aborted by maintaining
a counter.

FirstM marks offm/ logm blocks with space O(logm) each, for a total O(m)
space usage. In block i an upper bound ui of length 	 is guessed, such that the
number of elements from the input in the range from ui−1 + 1 to ui is logm (we
let u0 = −1). We call them the elements belonging to block i

In each blockM stores information for hash functions perfect for the elements
belonging to this block. The techniques of Fredman, Komlós, and Szemerédi
[FKS84] combined with the space efficient rehashing of Slot and van Emde Boas
[Sv88] allow an implementation in space O(logm) per block. More details can
be found in the proof of Theorem 1 of [Pet08]. Computations and access to the
information in the block can be done in poly-logarithmic time.

For each element encountered in the input the Turing machine M guesses the
correct block and verifies that it belongs to the block. ThenM computes the hash
function in time O(m) and finds the relevant information in time O(log2m) by
shifting counters along the tape. Thus time O(m) is sufficient for each element,
leading to the claimed bound. �

5 Conclusion and Open Problems

For Turing machines with one-way input the result of Theorem 1 shows the
straight-forward sorting algorithm to be optimal for nondeterministic machines.
We don’t have a deterministic algorithm that matches the lower bound and
possibly the lower bound can be improved for deterministic machines.

In the case of the EDP it seems reasonable to conjecture that the upper bound
from Theorem 3 is optimal.

Acknowledgments. The author is grateful to the referees for suggesting im-
provements of the presentation.

References

[BABP03] Ben-Amram, A.M., Berkman, O., Petersen, H.: Element distinctness on
one-tape Turing machines. Acta Informatica 40, 81–94 (2003)

[DMS91] Dietzfelbinger, M., Maass, W., Schnitger, G.: The complexity of matrix
transposition on one-tape off-line Turing machines. Theoretical Computer
Science 82, 113–129 (1991)

Sorting and Element Distinctness on One-Way Turing Machines 439

[FKS84] Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with
O(1) worst case access time. Journal of the Association for Computing
Machinery 31, 538–544 (1984)

[KS92] Kalyanasundaram, B., Schnitger, G.: Communication complexity and
lower bounds for sequential machines. In: Buchmann, J., Ganzinger, H.,
Paul, W.J. (eds.) Informatik – Eine Festschrift zum 60. Geburtstag von
Günter Hotz, Teubner, Stuttgart. Teubner-Texte zur Informatik, vol. 1,
pp. 253–268 (1992)

[LO94] López-Ortiz, A.: New lower bounds for element distinctness on a one-tape
Turing machine. Information Processing Letters 51, 311–314 (1994)

[LV97] Li, M., Vitányi, P. (eds.): An Introduction to Kolmogorov Complexity and
its Applications, 2nd edn. Graduate Texts in Computer Science. Springer,
Heidelberg (1997)

[Pet02] Petersen, H.: Bounds for the element distinctness problem on one-tape
Turing machines. Information Processing Letters 81, 75–79 (2002)

[Pet08] Petersen, H.: Element distinctness and sorting on one-tape off-line Turing
machines. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat,
P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 406–417.
Springer, Heidelberg (2008)

[Rei90] Reischuk, K.R.: Einführung in die Komplexitätstheorie. B. G. Teubner
(1990)

[Sv88] Slot, C., van Emde Boas, P.: The problem of space invariance for sequen-
tial machines. Information and Computation 77, 93–122 (1988)

[Sze96] Szepietowski, A.: The element distinctness problem on one-tape Turing
machines. Information Processing Letters 59, 203–206 (1996)

[Wie92] Wiedermann, J.: Optimal algorithms for sorting on single-tape Turing
machines. In: van Leeuwen, J. (ed.) Algorithms, Software, Architecture,
Proceedings of the IFIP 12th World Computer Congress, Madrid, Spain,
vol. I, pp. 306–314. Elsevier Science Publishers, Amsterdam (1992)

On Periodicity of Generalized Two-Dimensional

Words

Svetlana Puzynina�

Sobolev Institute of Mathematics,
pr. Koptyuga 4, Novosibirsk 630090, Russia

Novosibisk State University,
Pirogova street, 2, Novosibirsk 630090, Russia

puzynina@math.nsc.ru

Abstract. A generalized two-dimensional word is a function on Z2 with
finite number of values. The main problem we are interested in is peri-
odicity of two-dimensional words satisfying some local conditions. Let
A = (aij)

n
i,j=1 be an integer matrix. The function ϕ : Z2 → Zn is a

generalized centered function of radius r with the matrix A if
�

(y1, y2) :
0 < |x1 − y1| + |x2 − y2| ≤ r

ϕ(y1, y2) = ϕ(x1, x2)A

for every integers x1, x2. We prove that every bounded generalized cen-
tered function of radius r > 1 is periodic. For r = 1 periodicity depends
on spectrum of the matrix A. Similar results are obtained for the infinite
triangular and hexagonal grids.

1 Introduction

We consider some special types of two-dimensional words as functions on vertices
of the graphs of the infinite rectangular, triangular and hexagonal grids.

We begin with definitions for an arbitrary graph. Let G = (V,E) be a graph.
The distance between two vertices x and y, denoted by d(x,y), is the usual
graph metric. A ball Br(x) of radius r with the center at the vertex x is defined
in the following way:

Br(x) = {y ∈ V | d(x,y) ≤ r}.

Let A = (aij)n
i,j=1 be an integer matrix. A function ϕ : V → Zn is called

generalized centered of radius r with the matrix A if∑
y∈Br(x), y
=x

ϕ(y) = ϕ(x)A

for every x ∈ V .
� This work was supported in part by Russian Foundation of Basic Research (grant

07-01-00248) and by Russian Science Support Foundation.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 440–451, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Periodicity of Generalized Two-Dimensional Words 441

In fact, the notion of generalized centered function is a generalization of the
notion of perfect coloring and ordinary centered function. Let G be a graph,
A = (aij)n

i,j=1 be an integer nonnegative matrix, r be an integer, r ≥ 1. Consider
a coloring of vertices of the graph G into n colors and an arbitrary vertex x
of a color i. If the number of vertices of a color j (distinct from x) at distance
at most r from the vertex x does not depend on the vertex x and is equal to
aij , then the coloring is called perfect of radius r with the matrix A. A perfect
coloring into n colors with matrix A can be considered as generalized centered
function with the value area {e1, · · · , en}, where ei is a unit vector with 1 in its
i-th coordinate. The other name used for perfect colorings is equitable partitions.
This notion naturally arises in different fields of mathematics, such as algebraic
combinatorics, graph theory and coding theory. A function f : V (G) → Z is
called centered of radius r if the sum of its values in every ball of radius r is
equal to 0. An ordinary centered function can be considered as a generalized
centered function for n = 1, A = −1.

The notion of centered function was introduced as a generalization of the
notion of perfect code in the hypercube Hn [1]. The notion of perfect coloring
also generalizes the notion of perfect code and several other well-known codes,
such as Preparata code, completely regular code, uniformly packed code. Namely,
these codes can be interpreted as perfect colorings into two or more colors. This
means that generalized centered functions can be used as an instrument for
studying perfect colorings and different codes.

We prove, that every bounded generalized centered function of radius r > 1
on the infinite rectangular grid is periodic. For r = 1, A such that detA �=
0 generalized centered function with the matrix A is also periodic. If r = 1
and detA = 0, then there exist non-periodic and periodic generalized centered
functions. Similar results are obtained for the infinite triangular and hexagonal
grids. These results are obtained using method of R-prolongable words, which
was earlier used for obtaining some results about periodicity of perfect colorings
and ordinary centered functions [2], [6], [7]. In this paper we develop this method
of proving periodicity of words with local conditions.

Periodicity of two-dimensional words have been studied before. There exist
many methods of proving periodicity and many theorems about periodicity of
different types of words. The following hypothesis about connection of local
complexity and periodicity is known as Nivat’s conjecture [5]: if there exist a pair
(n,m) such that the complexity function pw(n,m) of a two-dimensional word w
satisfies the condition pw(n,m) ≤ mn, then w has at least a periodicity vector.
Weak forms of the conjecture for pw(n,m) ≤ mn/144 and for pw(n,m) ≤ mn/16
were proved by C. Epifanio, M. Koskas, F. Mignosi in [4] and by A. Quas, L.
Zamboni in [9], respectively. In [3] V. Berthe, L. Vuillon explore the notion of
minimal complexity for two-dimensional sequences, in particular, they give an
example of two-dimensional sequence of complexity pw(n,m) = mn + m, for
every (m,n), which is uniformly recurrent and which has no rational periodic
direction.

442 S. Puzynina

2 The Infinite Rectangular Grid

The graph of the infinite rectangular grid is 4-regular, its vertices are all possible
ordered pairs of integers. Two vertices x = (x1, x2) and y = (y1, y2) are adjacent
if |x1 − y1| + |x2 − y2| = 1.

Let ϕ be a function from Z2 to Zn, i. e. ϕ(x) is a vector of length n. Denote
i-th coordinate of the vector ϕ(x) by ϕi(x): ϕ(x) = (ϕ1(x), · · · , ϕn(x)). We
study M -bounded functions on Z2, i. e. ϕ : Z2 → Zn, such that |ϕi(x)| ≤M for
i = 1, · · · , n, whereM is a positive integer. These functions can be considered as
two-dimensional words over the finite alphabet of (2M +1)n vectors of length n.

A two-dimensional word ω is v-periodic (or v is a vector of periodicity of the
word ω) if ω(x + v) = ω(x) for all x ∈ Z2. A perfect coloring that is v1- and
v2-periodic for some noncollinear v1 and v2, is called periodic. It is easy to show
that we can take v1 = (p, p), v2 = (q,−q).

We say that a two-dimensional word ω is R-prolongable if for any x,y ∈ Z2 an
equality ω|BR(x) = ω|BR(y) implies ω|BR+1(x) = ω|BR+1(y). Notation ω|BR(x) =
ω|BR(y) means that ω(x + z) = ω(y + z) for |z| ≤ R.

Lemma 1. Let ω be a two-dimensional word on a finite alphabet. If ω is R-
prolongable for some R ≥ 0, then ω is periodic.

The proof of this lemma is simple and can be found in [2].

Example. Now we will give an example of generalized centered function of radius
1, where the matrix A is a degenerate matrix. Let v be its left eigenvector
corresponding to the eigenvalue λ = 0: Av = 0. In the further text we omit the
word ’left’ but always mean left eigenvectors.

The function θv : Z2 → Zn, given by the following formula:

θv(x1, x2) =

⎧⎪⎨⎪⎩
0, if x1 �= x2,

v, if x1 = x2 even,
−v, if x1 = x2 odd

is a non-periodic generalized centered function with the matrix A of radius 1.
Denote by χv

y a function, which is obtained from θv by translation by a vector
y: χv

y(x) = θv(x + y). Denote by χ∗vy a function, which is obtained from χv
y

by rotation by π/2: χ∗vy (x1, x2) = χv
y(−x2, x1). Functions χv

y and χ∗vy are called
rectangular alternating functions.

Notice that the sum of generalized centered functions is generalized centered
function with the same matrix.

Theorem 1. 1. Let ϕ : Z2 → Zn be a bounded generalized centered function of
radius r > 1. Then ϕ is periodic.

2. If ϕ is generalized centered function of radius 1 with a matrix A and detA �=
0, then ϕ is periodic. If detA = 0, then there exist non-periodic and periodic
generalized centered functions. A periodic function can be obtained from a non-
periodic one by adding rectangular alternating functions.

On Periodicity of Generalized Two-Dimensional Words 443

Proof. 1. The first part of this theorem is a generalization of results, obtained
in [2] and [8].

We need some notation to prove the theorem.
A sphere Sρ(x) of radius ρ with the center at the vertex x is defined in the

following way:
Sρ(x) = {y ∈ V | d(x,y) = ρ}.

Consider an arbitrary sphere Sρ(x). It consists of five sets of vertices: Sρ(x) =
5⋃

i=1

Si
ρ(x), where

S1
ρ(x) = {(x1, x2) + (j, j − ρ)|j = 1, 2, ..., ρ},
S2

ρ(x) = {(x1, x2) + (−j, j − ρ)|j = 1, 2, ..., ρ},
S3

ρ(x) = {(x1, x2) + (j, ρ− j)|j = 1, 2, ..., ρ},
S4

ρ(x) = {(x1, x2) + (−j, ρ− j)|j = 1, ..., ρ},
S5

ρ(x) = {(x1, x2)+(0,−ρ), (x1, x2)+(0, ρ), (x1, x2)+(ρ, 0), (x1, x2)+(−ρ, 0)}.
In Fig.1 one can see the ball B5(x) of radius 5, its boundary is marked by

bold. Vertices from each set Si
6(x) of the sphere S6(x) are marked by i.

�

(x1, x2)

1

1

1

1

1

2

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

5

5 5 �

(0,0)

�

�

a(1)

a(2)

a(3)

a(4)

a(5)

b(1)

b(2)

b(3)

b(4)

b(5)

b(6)

x

y

Fig. 1. The ball B5(x) of radius 5 Fig. 2. The illustration for the proof of
Theorem 1 for R = 5, r = 2

Due to Lemma 1 it is sufficient to prove that ϕ is R-prolongable for some
R > r. We will prove it for R > 2r2 + 5r + 1.

Consider two arbitrary balls BR(x) and BR(y) such that ϕ|BR(x) = ϕ|BR(y).
It suffices to prove that ϕ|SR+1(x) = ϕ|SR+1(y). Consider the function

ψ(t) = ϕ(x + t) − ϕ(y + t).

We have ψ|BR(0) = 0 by definition of the function ψ. To prove that ϕ is R-
prolongable it suffices to prove that ψ|SR+1(0) = 0.

First we will prove that ψ(x) = 0 for x ∈ S1
R+1. Denote a(i) = ψ(i, i−1−R),

i = 1, ..., R. Fig. 2 illustrates our reasoning for the case R = 5, r = 2.

444 S. Puzynina

By definition of generalized centered function we have ψ(j, j − 1 + r−R)A =
=

∑
(x, y) ∈ Br(j, j − 1 + r − R),

(x, y)
= (j, j − 1 + r − R)

ψ(x, y). It holds ψ|BR(0) = 0, so ψ(j, j − 1 + r−R) = 0, thus

we get
j+r∑
i=j

a(i) = 0, j = 1, ..., R − r. Therefore a(j + r + 1) = a(j) for every

1 ≤ j ≤ R− r − 1, i. e., the sequence a(i) is periodic with period (r + 1).
Suppose that there exists x ∈ S1

R+1 such that ψ(x) �= 0. This means that
there exists i : 1 ≤ i ≤ R such that a(i) �= 0. Denote a(i) = d. Therefore
a(i+ k(r + 1)) = d,

i+r+k(r+1)∑
j=i+1+k(r+1)

a(j) = −d (1)

for every 1 ≤ i+ k(r + 1) ≤ R − r.
Now we consider elements of the sphere SR+2(0), more precisely, the set

S1
R+2(0). Denote the values of the function ψ in the vertices of this set in the

following way: b(i) = ψ(i, i− 2 −R), i = 1, ..., R + 1 (see Fig. 3). Consider the
balls Br(vk), vk = (i + 1 + k(r + 1), i − 1 − R + r + k(r + 1)), where k ∈ Z,
1 ≤ i+ 1 + k(r+ 1) ≤ R− r+ 2. In the Fig. 3 one can see part of the ball BR(0)
of radius R = 17 and 5 balls Br(vk) of radius r = 2. Boundaries of balls are
marked by bold line.

�

��

�

�

�

�

�

x

y

v1

v2

v3

v4

v5

d

d

d

d

d

d

u1

u2

u3

Fig. 3. The illustration for the proof of Theorem 1: part of the ball BR(0) and balls
Br(vi), R = 17, r = 2. Black circles mark Br(v2)

�
SR+1(0), white circles mark

Br(v2)
�

SR+2(0).

On Periodicity of Generalized Two-Dimensional Words 445

Now we are going to apply the definition of generalized centered function to
the vertex vk. The ball Br(vk) consists of vertices with zero values in the ball
BR(0), vertices from Br(vk)

⋂
SR+1(0), which are marked by black circles in the

Fig. 3 (vertices with the values a(i+ 1 + k(r + 1)), ... , a(i+ r + k(r + 1))), and
vertices from Ak = Br(vk)

⋂
SR+2(0), which are marked by white circles in the

Fig. 3 (vertices with the values b(i+ 1 + k(r + 1)), ... , b(i+ r + 1 + k(r + 1))).
By definition of generalized centered function we have that ψ(vk)A =

∑
x ∈ Br(vk),

x
= vk

ψ(x).

Combining it with (1), we get

i+r+1+k(r+1)∑
j=i+1+k(r+1)

b(j) = d. (2)

The set S1
R+2(0) can be represented as a union of disjoint sets Ak and the set

D of vertices in S1
R+2(0) that do not belong to one of the sets Ak (boundary

effects):
S1

R+2(0) =
⋃
k

Ak ∪D, 1 ≤ i+ k(r + 1) ≤ R− r + 2.

In Fig. 3 the set D consists of 3 vertices u1, u2, u3. The number of elements in
the set D is not more than 2r: |D| ≤ 2r, denote

∑
x∈D

ψ(x) = c.

Let us calculate the sum of the values in the set S1
R+2(0):

∑
x∈S1

R+2(0)

ψ(x) =
R∑

j=1

b(j) =
∑

k

∑
x∈Ak

ψ(x) +
∑
x∈D

ψ(x) = kd + c.

Consider a nonzero coordinate of d = (d1, ..., dn), let it be l-th coordinate.
Without loss of generality dl ≥ 1. So, if we take k ≥ 2r + 1 (therefore, R ≥

(2r + 1)(r + 1) + 2r = 2r2 + 5r + 1), then the vector
R∑

j=1

bj is greater than 0 in

its l-th coordinate.

We have that
j+r∑
i=j

a(i) = 0, so there exists m such that a(m) = f = (f1, ..., fn)

and fl ≤ 0. Arguing as above we get that the l-th coordinate of the vector
R∑

j=1

b(j) is less than 0. A contradiction.

Thus a(i) = 0 for i = 1, ..., R.
So, we proved that ϕ|S1

R+1
= 0 . The proof is similar for the sets S2

R+1, S
3
R+1,

S4
R+1. Now, ψ(0,−R− 1) = 0 , because ψ is equal to 0 in all other vertices of

the ball Br(0, r −R− 1). Similarly for other elements of the set S5
R+1.

Thus, we have ϕ|SR+1(x) = ϕ|SR+1(y), therefore, ϕ is R-prolongable for R ≥
2r2 + 5r + 2. Now, by Lemma 1, ϕ is periodic. The first part of the theorem is
proved.

2. We will need the following auxiliary proposition.

446 S. Puzynina

Proposition 1. Let ϕ be a generalized centered function of radius 1 with a ma-
trix A. Then there exist R0, such that for R ≥ R0 the condition ϕ|BR(x) =
ϕ|BR(y) implies either

ϕ|S1
R+1(x) = ϕ|S1

R+1(y)

or
ϕ|S1

R+1(x) = (ϕ+ χv
(y1,y2−R−1))|S1

R+1(y),

where v is an eigenvector of A, corresponding to the eigenvalue 0: vA = 0.

Proof. Consider a function ψ(t) = ϕ(x + t)−ϕ(y + t). We have ψ|BR(0) = 0 by
definition of function ψ.

Consider the values of ψ on the set S1
R+1(0). Denote a(i) = ψ(i, i − 1 − R),

i = 1, ..., R. Fig. 2 illustrates our reasoning for R = 5. Denote a(1) = u, consider
a ball B1(1, 1 − R). The value of ψ in its center is 0, the sum of values of ψ in
this ball is equal to 0. So a(2) = −u. Considering sums of values of ψ in the
balls B1(j, j −R), we get a(j + 1) = −a(j) = (−1)ju.

Now we consider the values of ψ on the set S1
R+2(0). Denote b(i) = ψ(i, i −

2−R), i = 1, ..., R+1 (see Fig. 2). Denote b(1) = w, consider a ball B1(1,−R).
The value of ψ in its center is u, the sum of values of ψ in this ball is equal to
uA: b(1) + b(2) = a(1)A. So b(2) = uA−w. Considering sums of values of ψ in
the balls B1(j, j−1−R) (one of these balls is marked by bold line in Fig. 2), we
get b(j)+ b(j+ 1) = a(j)A for 1 ≤ j ≤ R, whence b(j+ 1) = (−1)j+1(juA−w).
The values b(j) are growing in modulus in nonzero coordinates of the vector uA.
The function ϕ is M -bounded, so ψ is 2M -bounded and if R > 4M + 1, then
uA = 0. If u = 0, then ψ|S1

R+1(0) = 0, i. e. ϕ|S1
R+1(x) = ϕ|S1

R+1(y). If uA = 0

and u �= 0, then u is an eigenvector of A, corresponding to the eigenvalue
λ = 0. In this case we have that ψ|S1

R+1(0) = χu
(0,−R−1)|S1

R+1(0), i. e. ϕ|S1
R+1(x) =

(ϕ+ χu
(y1,y2−R−1))|S1

R+1(y). The proposition is proved. �

Notice that χv
(y1,y2−R−1) in this lemma is bounded by 2M .

It is easy to obtain similar assertions for the values of ϕ on the sets Si
R+1(x)

and Si
R+1(y), i = 2, 3, 4.

Proposition 2. Let ϕ be a generalized centered function with the matrix A of
radius 1. If ϕ|BR(x) = ϕ|BR(y) and ϕ|Si

R+1(x) = ϕ|Si
R+1(y) for i = 1, 2, 3, 4, then

ϕ|S5
R+1(x) = ϕ|S5

R+1(y).

Proof. To prove that ϕ(x1−R−1, x2) = ϕ(y1−R−1, y2) it is sufficient to compare
the values of the function ϕ in the balls B1(x1 − R, x2) and B1(y1 − R, y2).
Similarly for other vertices of the sets S5

R+1(x) and S5
R+1(y). �

Now we proceed to proof of the theorem. If detA �= 0, then vA = 0 implies
v = 0. In this case Propositions 1 and 2 imply that ϕ is R-prolongable. By
Lemma 1 it is periodic.

Let ϕ be non-periodic, detA = 0. Consider the set of balls {BR(x,−x)|x ∈ Z},
where R > R0+1. Vertices of these balls lie in a region (z1, z2) : |z1+z2| ≤ R (see
Fig. 4). This set of balls is infinite, the alphabet is finite, so we have finite number

On Periodicity of Generalized Two-Dimensional Words 447

of subwords on BR, this number is less or equal |Σ||BR| = ((2M+1)n)(2R2+2R+1),
where Σ is the alphabet of values of ϕ, |BR| is the number of vertices in a ball.
This means that we have two balls BR(x,−x) and BR(y,−y), such that

ϕ|BR(x,−x) = ϕ|BR(y,−y)

and |x− y| ≤ (2M + 1)n(2R2+2R+1). To be definite, assume that x ≤ y. In Fig. 4
boundaries of these balls are marked by bold line.

�

�

(y,-y)

(x,-x)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Fig. 4. The illustration for the proof of Proposition 2: the region (z1, z2) : |z1 + z2| ≤
R and two balls BR(x, −x) and BR(y,−y). White circles mark S1

R+1(x, −x) and
S1

R+1(y, −y), black circles mark S1
R(x + 1, −x − 1) and S1

R(y + 1, −y − 1), squares
mark the sets S2

R+1(x, −x) and S2
R+1(y,−y).

Consider the sets S1
R+1(x,−x) and S1

R+1(y,−y). In Fig. 4 they are marked by
white circles. By Proposition 1 we have either

ϕ|S1
R+1(x,−x) = ϕ|S1

R+1(y,−y)

or
ϕ|S1

R+1(x,−x) = (ϕ+ χv
(y,−y−R−1))|S1

R+1(y,−y),

where v is such that vA = 0. In the first case we define ϕ′ = ϕ. In the second case
we subtract the function χv

(y,−y−R−1) from the function ϕ: ϕ′ = ϕ−χv
(y,−y−R−1).

Notice that if ϕ is M -bounded, then ϕ′ is 3M -bounded. Therefore,
ϕ′|S1

R+1(x,−x) = ϕ′|S1
R+1(y,−y).

448 S. Puzynina

We have that ϕ′|BR−1(x+1,−x−1) = ϕ′|BR−1(y+1,−y−1). Now consider the sets
S1

R(x + 1,−x − 1) and S1
R(y + 1,−y − 1). In Fig. 4 they are marked by black

circles. By Proposition 1 we have either

ϕ′|S1
R(x+1,−x−1) = ϕ′|S1

R(y+1,−y−1)

or
ϕ′|S1

R(x+1,−x−1) = (ϕ′ + χu
(y+1,−y−1−R))|S1

R(y+1,−y−1),

where u is such that uA = 0. In the first case we define ϕ′′ = ϕ′. In the
second case we subtract the function χu

(y+1,−y−1−R) from the function ϕ′: ϕ′′ =
ϕ′ − χu

(y+1,−y−1−R). Therefore, ϕ′′|S1
R(x+1,−x−1) = ϕ′′|S1

R(y+1,−y−1). Notice that
ϕ′′ is also 3M -bounded.

By Proposition 2 we obtain that

ϕ′′|BR(x+1,−x−1) = ϕ′′|BR(y+1,−y−1).

Arguing as above we proceed unit by unit adding rectangular alternating
functions if necessary and then obtain a function ϕ̃, which satisfies ϕ̃(z) = ϕ̃(z+
y−x) for z such that |z1+z2| ≤ R. Note that we should also use assertion that is
analogous to Proposition 1 for the set S3

R+1. The function ϕ̃ is also 3M -bounded
and it is (y − x)-periodic in the stipe |z1 + z2| ≤ R.

If (y − x) is even, then denote t = y − x, if (y − x) is odd, then denote
t = 2(y − x), t = (t,−t) (we double period, because it will be convenient for us
to deal with even period).

Now we are going to prove, that ϕ̃ is t-periodic. Remind that we have t-
periodicity in the region {z : |z2 + z1| ≤ R}.

First we will prove that ϕ̃ is t-periodic in the next diagonal {(s−R,−s+1)|s ∈
Z}. Suppose, by contradiction, that there exists q such that

ϕ̃(q −R,−q + 1) �= ϕ̃(q −R+ t,−q + 1 − t).

Denote w = ϕ̃(q −R,−q + 1) − ϕ̃(q −R+ t,−q + 1 − t).
The function ϕ̃ is t-periodic in the region |z1 + z2| ≤ R, so we have that

ϕ̃|BR(q,−q) = ϕ̃|BR(q+t,−q−t).

So by assertion that is analogous to Proposition 1 for the set S2
R+1 we have that

ϕ̃|S2
R+1(q,−q) = (ϕ̃+ χw

(q−R,−q+1))|S2
R+1(q+t,−q−t),

where w is such that wA = 0. In Fig. 4 the sets S2
R+1(q,−q) and S2

R+1(q +
t,−q − t) (for q = x, (y − x) even) are marked by squares. In particular, this
means that

w = ϕ̃((q + 2) −R,−(q + 2) + 1) − ϕ̃((q + 2) −R + t,−(q + 2) + 1 − t).

Now by induction we get that

w = ϕ̃((q + k) − R,−(q + k) + 1) − ϕ̃((q + k) −R+ t,−(q + k) + 1 − t)

On Periodicity of Generalized Two-Dimensional Words 449

for every even integer k. Using this equality for k = t, 2t, . . . ,mt we obtain

ϕ̃(q−R,−q+1) = ϕ̃(q+t−R,−q−t+1)+w = ϕ̃(q+2t−R,−q−2t+1)+2w = · · · =

= ϕ̃(q +mt−R,−q −mt+ 1) +mw.

This implies that ϕ̃ in not bounded. A contradiction.
Thus we obtain t-periodicity in extended region (in a stripe with additional

diagonal). Continuing this line of reasoning, we obtain t-periodicity for all Z2.
Therefore we obtained (t,−t)-periodic function ϕ̃ by adding rectangular alter-

nating functions χ and we did not use functions χ∗. (t, t)-periodicity can be orga-
nized for the function ϕ̃ in the same way by adding functions χ∗. Note that adding
functions χ∗ does not break (t,−t)-periodicity. The theorem is proved. �

Perfect coloring and centered function are partial cases of generalized centered
function, so Theorem 1 implies the results, obtained in [8] and [2]:

Corollary 1. Every perfect coloring of radius r ≥ 2 on the infinite rectangular
grid is periodic.

Corollary 2. Every centered function of radius r ≥ 1 on the infinite rectangular
grid is periodic.

3 The Infinite Triangular and Hexagonal Grids

In this section we consider periodicity of generalized centered functions on the
infinite triangular and hexagonal grids (see Fig. 5 and Fig. 6). All necessary
definitions can be given in the same way as for the infinite rectangular grid. The
sets of vertices of the infinite hexagonal and triangular grids we denote by H
and T correspondingly.

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
��

�
�
�
���

�
�
��

�
�
�
��

�� �� �� �� �� ���� �� �� �� �� ��

�� �� �� �� �� ���� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

Fig. 5. The infinite triangular grid Fig. 6. The infinite hexagonal grid

These graphs are dual. A function on vertices of a flat graph can be considered
as a function on faces of dual graph. The pictures illustrate functions on faces
of dual graphs.

450 S. Puzynina

Example. Let A be an integer matrix, such that λ = −2 is an eigenvalue of
A, v be corresponding eigenvector: vA = −2v. The example of non-periodic
generalized centered function with the matrix A on the infinite triangular grid
(on faces of hexagonal grid) is in Fig. 8. Denote this function by ϕ. If a function
ψ can be obtained from ϕ by translation and/or rotation by ±π/3, we say that
ψ is a triangular alternating function.

Theorem 2. 1. Let ϕ : T → Zn be a bounded generalized centered function of
radius r > 1. Then ϕ is periodic.

2. If ϕ is generalized centered function of radius 1 with a matrix A and λ = −2
is not an eigenvalue of the matrix A, then ϕ is periodic. If λ = −2 is eigenvalue
of A, then there exist non-periodic and periodic generalized centered functions
with the matrix A. A periodic function can be obtained from a non-periodic one
by adding triangular alternating functions.

Perfect coloring and centered function are partial cases of generalized centered
function, so Theorem 1 implies the following results (Corollary 4 was obtained
in [2]):

Corollary 3. Every perfect coloring of radius r ≥ 2 on the infinite triangular
grid is periodic.

Corollary 4. Every centered function of radius r ≥ 1 on the infinite triangular
grid is periodic.

Example. Let A be an integer matrix, such that λ = 1 is an eigenvalue of A2,
v be corresponding eigenvector: vA2 = v. Denote vA = u. The example of
non-periodic generalized centered function with the matrix A of radius 1 on the
infinite hexagonal grid (on faces on triangular grid) is in Fig. 7. Denote this
function by ϕ. If a function ψ can be obtained from ϕ by translation and/or
rotation by ±π/3, we say that ψ is a hexagonal alternating function of type 1.

Let A be an integer matrix, such that λ = 1 is an eigenvalue of (A+2E)2, v be
corresponding eigenvector: v(A+2E)2 = v. Denote v(A+2E) = u. The example
of non-periodic generalized centered function with the matrix A of radius 2 on
the infinite hexagonal grid is in Fig. 7. Denote this function by ϕ. If a function
ψ can be obtained from ϕ by translation and/or rotation by ±π/3, we say that
ψ is a hexagonal alternating function of type 2.

Theorem 3. 1. Let ϕ : H → Zn be a bounded generalized centered function of
radius r > 2. Then ϕ is periodic.

2. If ϕ is generalized centered function of radius 1 with a matrix A and λ = 1 is
not an eigenvalue of the matrix A2, then ϕ is periodic. If λ = 1 is an eigenvalue
of A2, then there exist non-periodic and periodic generalized centered functions
with the matrix A. A periodic function can be obtained from a non-periodic one
by adding hexagonal alternating functions of type 1.

3. If ϕ is generalized centered function of radius 2 with a matrix A and λ = 1
is not an eigenvalue of the matrix (A+ 2E)2, then ϕ is periodic. If λ = 1 is an
eigenvalue of (A + 2E)2, then there exist non-periodic and periodic generalized

On Periodicity of Generalized Two-Dimensional Words 451

centered functions with the matrix A. A periodic function can be obtained from
a non-periodic one by adding hexagonal alternating function of type 2.

Perfect coloring and centered function are partial cases of generalized centered
function, so Theorem 1 implies the following results (Corollary 6 was obtained
in [2]):

Corollary 5. Every perfect coloring of radius r ≥ 3 on the infinite hexagonal
grid is periodic.

Corollary 6. Every centered function of radius r ≥ 3 on the infinite hexagonal
grid is periodic.

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
���

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
��

�
�
�
��

�
�
�
���

�
�
��

�
�
�
��

-u -u -u

-v -v -v

u u u u

v v v v

0 0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0

0 0 0 0 0 0

�� �� �� �� �� ���� �� �� �� �� ��

�� �� �� �� �� ���� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

v v v v-v -v -v

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Fig. 7. An example of non-periodic gen-
eralized centered function on faces of the
infinite triangular grid

Fig. 8. An example of non-periodic gen-
eralized centered function on faces of the
infinite hexagonal grid

References

1. Avgustinovich, S.V., Vasil’eva, A.Y.: Reconstruction of centered function by its
values at two middle levels of the hypercube. Discrete analysis and operations re-
search 10(2), 3–16 (2003) (in Russian)

2. Puzynina, S.A., Avgustinovich, S.V.: On periodicity of two-dimensional words. Spe-
cial issue of Theoretical Computer Science (accepted)

3. Berthe, V., Vuillon, L.: Tilings and rotations: a two-dimensional generalization of
Sturmian sequences. Discrete Math. 223, 27–53 (2000)

4. Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bidimensional words.
Theoretical Computer Science 299(1-3), 123–150 (2003)

5. Nivat, M.: Invited talk at ICALP 1997 (1997)
6. Puzynina, S.A.: Periodicity of perfect colorings of the infinite rectangular grid. Dis-

crete analysis and operations research 11(1), 79–92 (2004)
7. Puzynina, S.A.: Perfect colorings of the infinite rectangular grid. Bayreuther Math-

ematischen Schriften, Heft 74, 317–331 (2005)
8. Puzynina, S.A.: Perfect colorings of radius r > 1 of the infinite rectangular grid.

Siberian Electronic Mathematical Reports (Submitted)
9. Quas, A., Zamboni, L.: Periodicity and local complexity. Theoretical Computer

Science 319(1-3), 229–240 (2004)

On the Analysis of “Simple” 2D Stochastic

Cellular Automata

Damien Regnault1, Nicolas Schabanel1,2, and Éric Thierry1,3

1 IXXI – LIP, Université de Lyon, École normale supérieure de Lyon, 46 allée d’Italie,
69364 Lyon Cedex 07, France

http://perso.ens-lyon.fr/{damien.regnault,eric.thierry}
2 CNRS, Centro de Modelamiento Matemático, Universidad de Chile, Blanco

Encalada 2120 Piso 7, Santiago de Chile, Chile
http://www.cmm.uchile.cl/∼schabanel

3 CNRS, Laboratoire d’Informatique Algorithmique: Fondements et Applications,
Université Paris 7, 75205 Paris Cedex 13

Abstract. We analyze the dynamics of a two-dimensional cellular au-
tomaton, 2D Minority, for the Moore neighborhood (eight neighbors per
cell) under fully asynchronous dynamics (where only one random cell up-
dates at each time step). Even if 2D Minority seems a simple rule, from
the experience of Ising models and Hopfield nets, it is known that mod-
els with negative feedback are hard to study. This automaton actually
presents a rich variety of behaviors, even more complex than what was
observed and analyzed in a previous work on 2D Minority for the von
Neumann neighborhood (four neighbors per cell) [1], including particles
and a wider range of stable configurations. Nevertheless our work sug-
gests that predicting the behavior of this automaton although difficult is
possible, opening the way to analyze the class of totalistic automata.

1 Introduction

Cellular automata are attractive models for complex systems in various fields,
like physics, biology or social sciences. Their relevance is supported by many
observations of natural phenomena which closely match the dynamics of some
cellular automaton, as illustrated by Fig. 1. An example of challenging issue
in biology is to predict the expression of genes in a set of cells which share
the same gene regulatory network. Cellular automata can be used to model
such systems [2,3]. For example consider the simple gene regulatory networks
where a gene exerts a feedback inhibition of its expression. The state of a cell is
whether it expresses this gene or not. Assuming that each cell starts expressing
the gene when less than half of its neighbors (including itself) express it, and
that otherwise it stops expressing it, leads to the Minority rule [4]. If cells are
assembled into a two-dimensional grid, it yields 2D Minority. Such a model is
of course an extreme simplification of any real phenomena but understanding
this ”simple” model is already an indispensable step towards the study of more
involved interaction networks. Surprisingly, it already exhibits an astonishingly
rich behavior which is investigated in this paper.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 452–463, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Analysis of “Simple” 2D Stochastic Cellular Automata 453

1.a – The pattern growth of the shell of the
widespread species Conus textile is gov-
erned by a mathematical function present-
ing similarities with the Rule 30 CA above.

1.b – 2D minority induced by a set of
cells expressing (in black) or not (in
white) a gene which tends to inhibit its
expression in neighboring cells.

Fig. 1. Cellular automata as models in biology

The 2D Minority automaton belongs to the class of threshold cellular au-
tomata which have been intensively studied under synchronous dynamics (at
each time step, all the cells update simultaneously) [5]. However models for nat-
ural phenomena rather update asynchronously. Empirical studies [6,7,8] have
shown how the behavior can change drastically when introducing asynchronism.
However only few mathematical analyses are available and they mainly concern
one-dimensional stochastic cellular automata [9,10,11,12]. Providing analyses of
2D rules remains a real challenge. For instance the mean-field approach does
not succeed in approximating tightly such stochastic dynamics [13]. Fig. 2 illus-
trates for three 2D cellular automata the differences between the synchronous
dynamics and the fully asynchronous dynamics where only one random cell up-
dates at each time step. Some related stochastic models like Ising models or
Hopfield nets have been studied under asynchronous dynamics (our model of
asynchronism corresponds to the limit when temperature goes to 0 in the Ising
model). These models are acknowledged to be harder to analyze when it comes
to two-dimensional topologies [14] or negative feedbacks [15].

For all these reasons 2D Minority under fully asynchronous dynamics turns
out to be an interesting and challenging candidate for mathematical analyses.
This paper focuses on the Moore neighborhood: at each time step, the fired cell
updates to the minority state among its eight closest neighbors and itself. It
carries on a work initiated in [1] where 2D Minority was analyzed for the von

Life a random Totalistic Minority

Synchronous
dynamics

Fully
asynchronous

dynamics

Fig. 2. Typical configurations observed during the evolution of some 2D cellular au-
tomata (Moore neighborhood). Similar stripes emerge in asynchronous regime even if
their synchronous behavior differ drastically.

454 D. Regnault, N. Schabanel, and É. Thierry

Neumann neighborhood (four neighbors instead of eight). One might have hoped
for minors adjustments to deal with the Moore neighborhood, however the results
do not come out so easily. Experiments discussed in Section 3 show that new
patterns (wider variety of striped patterns) and new phenomena occur (particle-
like behaviors). Several key ideas presented in [1] (energy, borders and regions)
apply, but their use requires some innovations. We show that the initial stage
of the dynamics is characterized by a fast energy drop (Theorem 3). We exhibit
borders that separate striped regions competing with one another and we manage
to prove how final stable (horizontally or vertically) stripes configurations are
reached almost surely from typical configurations occuring at the end of the
process. Furthermore, we prove that this convergence occurs in polynomial time
(Theorem 5). In the proof, we show that as the regions crumble, inflate or retract,
the overall structure admits a recursive description which persists over time. The
proofs of the study of such dynamical systems, know as complex systems, involve
unavoidable tedious case studies and one of the important contribution of this
paper is to set up a compact, possibly elegant, and thus safe framework to deal
with these enumerations of cases. Note that in the course of the paper, we present
an interesting characterization of the stable configurations for 2D Minority for
the Moore neighborhood (Theorem 2). As far as we know, it had only been
solved for the von Neumann neighborhood [5].

2 Definitions

We consider in this paper the 2D 2-states cellular automaton Minority under
fully asynchronous dynamics over finite configurations with periodic boundary
conditions. We are given two positive integers n and m, let N = nm. We denote
by T = Zn × Zm the set of cells and Q = {0, 1} the set of states (0 stands for
white and 1 for black in the figures). We consider the Moore neighborhood : two
cells (i, j) and (k, l) are neighbors if max(|i − k|n, |j − l|m) � 1 (where |i − j|p
denotes the distance in Zp). A n×m-configuration c is a function c : T → Q; cij
is the state of the cell (i, j) in configuration c.

We consider the fully asynchronous dynamics of 2D Minority. Time is discrete
and let ct denote the configuration at time t; c0 is the initial configuration. The
configuration at time t+1 is a random variable defined by the following process:
a cell (i, j) is selected uniformly at random in T and its state is updated to the
minority state in its neighborhood (we say that cell (i, j) fires at time t), all the
other cells remain in their current state: ct+1

ij = 1 if (ctij +cti−1,j +cti+1,j +cti,j−1 +
cti,j+1 + cti−1,j+1 + cti−1,j−1 + cti+1,j−1 + cti+1,j+1) � 4, and ct+1

ij = 0 otherwise;
and ct+1

kl = ctkl for all (k, l) �= (i, j). A cell is said active if its state would change
if fired.

A configuration c is stable if it remains unchanged under the dynamics, i.e., if
all its cells are inactive. We say that the random sequence (ct) converges almost
surely from an initial configuration c0 = c if the random variable T = min{t :
ct is stable} is finite with probability 1. We say that the convergence occurs in
polynomial time on expectation if E[T] � p(N) for some polynomial p.

On the Analysis of “Simple” 2D Stochastic Cellular Automata 455

initial config. step 1N step 5N step 10N step 20N step 30N step 50N

step 70N step 90N step 100N step 120N step 130N step 140N step 153N

Fig. 3. A typical execution of stochastic 2D Moore minority with N = 50 × 50 cells

3 Experiments

Typical behavior. Like other 2D automata (such as Game of Life [6])the asyn-
chronous behavior of 2D Minority differs radically from its synchronous dynam-
ics. In particular, [5] proved that the synchronous dynamics eventually leads to
stable configurations or cycles of two opposite configurations. The latter case is
the typical behavior in synchronous simulations where one can observe big flash-
ing islands (Fig. 2). On the contrary, as can be observed in Fig. 3, the states
of most of the cells are very stable over time in fully asynchronous regime and
present typically very rapidly striped patterns (horizontal or vertical) that tend
to extend and merge with each other until one gets over the others and covers
the whole configuration (when at least one of the dimensions n or m is even). A
goal of this paper is to explore how such stripes arise and end up covering the
whole configuration. Note also that such stripes arise as well in many other asyn-
chronous automata such as the totalistic cellular automata (see Section 1). Very
rarely a random initial configuration may converge to more exotic stable config-
urations. Fig. 6 gives some examples of more or less exotic stable configurations
under 2D minority dynamics.

Borders and Particles. Part of the richness of 2D Minority under fully asyn-
chronous behavior is due to some specific configurations where ”particles” can
be observed. Several patterns can be identified as particles although for now
we do not have a formal definition. We say that there is a border between two
diagonally neighboring cells if they are in the same state (more details in the
next section). Active cells are always located near the borders. When the borders

draw a pattern (where red spots indicate active cells), then, depending of
which of the two active cell fires the pattern will move in different directions:

forward or backward . Such patterns which ”move” along borders
can be called particles. In some configurations, the set of all the borders form
a network of ”rails” carrying several particules. These particules follow random
walks along the rails and vanish when they collide. Note that the dynamics is a

456 D. Regnault, N. Schabanel, and É. Thierry

lot more intricate than 2D random walks because the rails are modified by the
passage of the particules and if two rails become too close, a whole part of the
rail network collapses. Fig. 4 illustrates this kind of phenomena. Configurations
with particles and rails are rarely reached from a random initial configuration.
Nevertheless, we have to consider them when we study the convergence and these
phenomena are extremely difficult to analyze mathematically. Such a system of
particles is not observed in asynchronous 2D minority with von Neumann neigh-
borhood [1] or in related models like the ferromagnetic Ising model or Hopfield
networks with positive feedback.

4 Energy, Borders, Diamonds and Stable Configurations

4.1 Borders, Diamonds and Stripes

The following definitions allow to highlight the underlying structure of a config-
uration with respect to the dynamics. These tools turn out to be a key step to
prove the convergence.

If n and m are even, a set of cells R is said to be tiled with even horizontal
stripes (resp. odd horizontal, even and odd vertical stripes) if cij = i mod 2
(resp. i+ 1, j, j + 1 mod 2), for all cell (i, j) ∈ R. Note that cells whose whole
neighborhood is striped are inactive. We say that there is a border between two
diagonally neighboring cells (i, j) and (i + ε, j + η), with ε, η ∈ {−1, 1}, if they
are in the same state, i.e., if cij = ci+ε,j+η. If n and m are even, we say that a
cell (i, j) is even (resp. odd) if i+ j is even (resp. odd). We say that the border
between two cells is blue if the cells are even, and green otherwise; furthermore,
we say that there is a diamond over cell (i, j) if its state coincides with even
horizontal stripes, i.e., if cij = i mod 2; the diamond is blue if the cell is even
and green otherwise.

Proposition 1 (Borders are boundaries). The borders are the exact bound-
ary of regions tiled with stripes patterns (odd/even horizontal/vertical). More-
over, when n and m are even, the blue (resp. green) borders are the exact bound-
ary of the regions covered by the blue (resp. green) diamonds.

4.a – A sequence of updates in a
configuration starting with 4 parti-
cles where two of them move along
rails and ultimately vanish after col-
liding with each other

4.b – A sequence of updates where the rails can-
not sustain the pertubations due to the move-
ments of the particles: at some point, rails get to
close with each other, new active cells appear,
and part of the rail network collapses

Fig. 4. Some examples of the complex behavior of particles in a 20 × 20 configuration

On the Analysis of “Simple” 2D Stochastic Cellular Automata 457

Since cells whose neighborhood is striped are inactive, the only active cells in a
configuration may be found along the borders.

4.2 Energy

As in Ising model [14] or Hopfield networks [15], we define a natural global
parameter that one can consider to be the energy of the system since it counts
the number of interactions between neighboring cells in the same state. This
parameter will provide key insights on the evolution of the system.

The potential vij of cell (i, j) is the number of its neighboring cells in the
same state as itself minus 2.1 By definition, if vij � 1, then the cell is in the
minority state in its own neighborhood and is thus inactive (its state will not
change if fired); whereas, if vij � 2 then the cell is active and its state will change
if fired. Note that a configuration c is stable iff for all cell (i, j) ∈ T, vij � 1.
Let say that a subset of cells R is fat if for each cell (i, j) ∈ R, there exists a
square Q = {(i, j), (i + ε, j), (i + ε, j + η), (i, j + η)}, for some ε, η ∈ {1,−1},
such that Q ⊂ R. The energy ER of set R in a given configuration is defined as:
ER =

∑
(i,j)∈R vij . We denote by E the energy of the whole configuration c.

The next proposition shows that the energy is non-negative for almost every
subset of cells of a configuration. This means that there cannot be too many
cells with negative potential. This implies that the decrease of energy over time
(Proposition 3 and Theorem 3) is not due to the increase of the number of cells
with negative potential, but to the decrease of the potentials of the cells with
positive potential, which explains intuitively why the striped patterns which have
minimum energy (Proposition 4) arise naturally very rapidly.

Proposition 2 (Energy is non-negative). For any fat subset of cells R of
size q: 0 � ER � 6q.

The following easy fact will be very handy in order to prove the convergence of
the dynamics.

Fact 1. When an active cell (i, j) is fired, its new potential is vij := 4− vij and
the total energy varies by 8− 2vij. Note that if vij = 2, both remain unchanged.

Proposition 3 (Energy is non-increasing). Under fully asynchronous dy-
namics, the energy is a non-increasing function of time and decreases each time
a cell with potential � 3 fires.

Proposition 4 (Minimum energy configurations). The energy of a config-
uration c is 0 iff c is a striped configuration.

1 The offset −2 is convenient since its ensures that the minimum energy of a configu-
ration is 0 (see Proposition 2 below).

458 D. Regnault, N. Schabanel, and É. Thierry

H

H' H'

V

V'

V

V'

HH'

V'

V V'

H

V

H'

A

C

A'

C

A'

B'C

A A

B'

C

A'

B

B'

A'

A

a 16 × 32 stable configuration of type III
(the columns (in the underlying grid) of odd width regions

are highlighted in red)

an 11 × 22 stable configuration of type I

an 11 × 22 stable configuration of type II

H

H'

H'

V

V V'

H

V'

A'A'

D

A

D

D

A

D

a 7 × 24 stable configuration of type III
(odd height regions are highlighted in red)

Fig. 5. Examples of stable configurations illustrating most of the possibilities

4.3 Stable Configurations

As opposed to the von Neumann fully asynchronous dynamics in [1], stable
configurations under the Moore neighborhood exhibit rather complex structures
as shown on Fig. 6. Although there is a great variety of stable configurations,
a general structure can be extracted and they can be characterized thanks to
the borders. We first describe the stable configurations when n and m are even
and deduce from there the structure of the stable configurations in the general
case by doubling the odd dimension. Fig. 5 gives examples of each type of stable
configurations.

Theorem 2 (Stable configurations). When at least one of n and m is even,
there are exactly three types of stable configurations:

– Type I: the borders are parallel straight (diagonal) lines such that: two lines
of the same color are at (1-)distance � 2; if two lines blue and green are at
distance 1, there is no other line at distance � 4 from each of them; the num-
ber of lines of each color along each row (resp., column) of the configuration
has the same parity as m (resp., n).

– Type II: all the blue and green borders are all pairwise interlaced either hor-
izontally according to the pattern or vertically according to the pairs
of interlaced borders are at distance � 2 from each other; and the number
of interlaced pairs has the parity of n if interlaced horizontally, and of m
otherwise.

– Type III: the borders define a bicolor (horizontal/vertical stripes) underlying
toric grid s.t.:

• the segments of borders between two intersections are straight lines at
distance at least 2 from each other;

• two borders of the same color cannot intersect;
• the number of borders of each color crossed by every row (resp. column)

in the configuration has the same parity as m (resp. n);

On the Analysis of “Simple” 2D Stochastic Cellular Automata 459

E = 0 Low E Higher E Med E High E The four highest energy config. (E = N)

Fig. 6. Examples of stable configurations for 2D Minority at various levels of energy

• the borders of opposite colors intersect at the corners of the cells only,
and according to the following (possibly overlapping) patterns:

horizontal
stripes

horizontal
stripes

horizontal
stripes

horizontal
stripes

vertical
stripes

vertical
stripes

vertical
stripes

vertical
stripes

horizontal
stripes

horizontal
stripes

horizontal
stripes

horizontal
stripes

vertical
stripes

vertical
stripes

vertical
stripes

vertical
stripes

Crossings between green and blue bordersStraight (diagonal) blue or green borders

/ Region of where each column of cells has an even/odd height

and / (resp. and /) denote horizontally (resp. vertically) striped region of identical/opposite parity

 / Region of where each row of cells has an even/odd length

H H V'VH' V and denote borders of opposite colors

even

height

even

width

even

height

even

width
even

height

even

width

even

height

even

width

even

height

even width

even

height

odd width
odd

height

even width

SYM

ROT, 0/1

ROT, 0/1H

V

H'

V'

A'

H

V

H'

V'

Type

H

V

H'

V'

ROT,
SYM, 0/1

AType

H

V

H'

V'

BType

SYM, 0/1

ROT H

V

H'

V'

SYM, 0/1

B'Type

even number of turns (zero or more)
for each border

odd number of turns (one or more)
for each border

H

V

H

V'

H

V

H'

V

CType DType

ROT

SYM, 0/1

SYM, 0/1

...

Furthermore, no stable configuration can have both crossings of types C and
D and if a region has a crossing of type C (resp., D), all the crossings at
the same vertical (resp., horizontal) level in the underlying grid are of type
C (resp., D); moreover, the partity of the number of such horizontal (resp.,
vertical) levels of C-crossings (resp., D-) equals the parity of m (resp. n).

And any n×m-configuration of type I, II or III is a stable configuration.

Corollary 1. If n and m are odd, no stable configuration exists, and the dy-
namics never converges. If only one of n and m is odd, stable configurations of
type I, II, and III exist with the parity restrictions mentioned in Theorem 2.

Proposition 5 (Stable configurations energy). The energy of a stable con-
figuration c satisfies: 0 � E � N . The only configurations with minimum energy
(zero) are tiled with a striped 1 × 2-pattern. And the only stable configuration
with maximum energy N are of four types: either tiled with the 2× 4-pattern ,

or the 8 × 8-patterns , , or (see Fig. 6).

5 Analysis of the Convergence

In this section, we give our results on the existence and speed of the convergence
of the dynamics towards a stable configuration from an arbitrary initial configu-
ration. As opposed to the von Neuman dynamics where we were able to analyse
the whole convergence, because of the existence of particles following sophisti-
cated guided random walks (see Section 3), we are only able to describe the first
steps and the last steps of the convergence. These results rely on the study of the
energy function which is combined with an other parameter to obtain a variant.
This variant allows to reduce the study of the randomly evolving 2D shape to
an one dimensional random walk. The section ends with challenging conjectures
on the overall convergence of the process.

460 D. Regnault, N. Schabanel, and É. Thierry

5.1 Initial Energy Drop

According to experiments, the energy of a configuration drops very fast during
the first steps until it converges, most of the time to a striped configuration of
minimal energy. The following theorem provides a bound on the speed of this
initial energy drop.

Theorem 3. The energy of any configuration of size N is at most N + 2N/3
after O(N2) fully asynchronous minority updates on expectation.

5.2 The Last Steps of Convergence

From now on, we assume that n and m are even. As mentioned above, in most
of the experiments striped regions arise quickly, then they extend, compete with
each other, merge until only one covers the whole configuration. In this sec-
tion, we provide an analysis of the very last steps of the convergence to this
stable configuration: the case where there remains only one single horizontally
striped region within a vertically striped background, which we will call a stan-
dard configuration. We then show that the background ends up covering the
whole configuration in polynomial time on expectation as expected according to
the experiments (Fig. 3 when t � 100N). This involves studying the randomly
evolving shape defined by the horizontally striped regions.

Note that every configuration is completely determined by its set of diamonds.
When starting from a standard configuration, we show that the configuration
exhibits a recursive structure that is conserved over time. We then show by
studying a combination of the energy with the area of the random shape, that
the random shape of the set of diamonds tends to vanish. Interestingly enough,
we show that the horizontally striped region can flip the parity of its stripes but
cannot extend beyond its initial surrounding rectangle. Let us now start with
some definitions.

A blue rectangle (resp. green rectangle) is a rectangle such that its sides are
parallel to the diagonals and its corners are located at the centers of odd (resp.
even) cells. A blue or green rectangle is enclosing a set of diamonds D if all
the diamonds are contained in the rectangle, and it is surrounding D if it is
the smallest enclosing rectangle of that color for D. We say that a configuration
is standard if it consists in a finite set of diamonds of the same color forming
a rectangle (i.e., a set of diamonds of the same color whose borders match its
surrounding rectangle). Two diamonds are neighbors if they have a side in com-
mon (and are thus of the same color). A set D of diamonds is: connected if D
is connected for the neighborhood relationship; convex if for all ε ∈ {1,−1} and
for any pair of diamonds centered on cells (i, j) and (i + k, j + εk) in D, the
diamonds centered on cells (i+ 	, j + ε) for 0 � 	 � k belong to D; an island if
it is connected and convex.

Definition 1 (Valid configurations). A valid configuration (or valid dia-
monds set) is defined recursively by a tree structure of interlocked blue or green
rectangles where each subtree describes the diamond set enclosed within the cor-
responding rectangle. Precisely:

On the Analysis of “Simple” 2D Stochastic Cellular Automata 461

Fig. 7. To the left: valid combinations of valid configurations (the underlying cells
of the automaton are shown at the junction of the rectangles). To the right: a valid
configuration and its diamond set with a valid decomposition.

– A set of diamonds consisting of an island is a valid configuration.
– The composition of two valid diamonds sets D1 and D2 enclosed by two

rectangles R1 and R2 of the same color laying next to each other according
to the patterns given in Fig. 7, is valid.

– The juxtaposition of q valid diamonds sets D1, . . . , Dq enclosed in q rectan-
gles R1, . . . , Rq of alternating colors as shown in Fig. 7, is valid if at each
junction, either both a blue and a green diamonds are located at the corre-
sponding corners of the surrounding blue and green rectangles, or at least
one of the four borders of these rectangles is h-ready; we say that the north-
east border of an enclosing rectangle R of a valid configuration is h-ready
if, within the smallest rectangle R′ corresponding to the node enclosing all
the diamonds laying along this border in the construction tree of R, the dia-
monds are located as follows: no diamond may lay in R′ to the south-west of
the diamonds along the north-east border of R nor one row below (see Fig. 7)
(the definition extends naturally to NW, SW, and SE borders by rotation).

A configuration is valid if its corresponding set of diamonds is valid. Each
valid configuration is recursively described by a construction tree: a binary tree
where each leaf is an island and each internal node stands for a join operation
whose two edges pointing downwards are labeled by the two, blue or green, joint
rectangles enclosing the two valid diamond sets described by the left and right
subtrees.

Fig. 7 gives an example of a valid configuration starting with a blue island
composed with several line joins, followed by a simple join with another blue
island, and ending with a series of two heterogenous joins with the two islands
to its right. A valid configuration can be represented by several construction
trees. Rearranging construction trees according to certain rules is one of the
keys to the following results (like Theorem 4).

462 D. Regnault, N. Schabanel, and É. Thierry

The set of valid configurations is closed under the minority dynamics. In the
fully asynchronous dynamics, only one cell fires at each time step, thus only
one diamond is added or removed at each time step. Since there are horizontal
stripes inside an island, the cells which are not at the borders are not active. All
the deletions and additions of diamonds occur at the borders. A careful analysis
of the actives cells in valid configuration yields the following theorem.

Theorem 4 (Closure and Reachability). The set of valid configurations is
the set of all reachable configurations from standard configurations.

The energy function is not sufficiently precise to follow the evolution of the valid
configurations since it may remain constant for long period of time whereas the
configuration evolves towards a stable configuration. But combining it with the
area A of the configuration, defined as the number of its diamonds, yields a vari-
ant from which we will deduce a polynomial bound on the expected convergence
time.

Proposition 6. The energy of a valid configuration is equal to twice the number
of its blue and green borders minus twice the number of intersections of blue and
green borders. Thus, E � 8A.

The variant. Let Φ = A + E/4, for any given configuration. Let us denote by
E[∆Φ] the expected variation of Φ for this configuration after one fully asyn-
chronous minority update.

Proposition 7. For any valid configuration constructed from k islands with 	

joins: E[∆Φ] �
3	− 3k
N

.

Proof. (Sketch) The proof proceeds by induction on the construction tree of the
valid configuration. By following clockwise the borders of the island and counting
the active cells, we can show that the expected variation of Φ for a configuration
with only one island is at most − 3

N . If the configuration is obtained by joining two
valid configurations then whatever the join is, it can be checked that an active cell
in one of the two configurations remains active with the same characterization
in the joined configuration. A cell which is inactive in both configurations is
inactive in the joined configuration, except around the join where at most three
cells may have their activity changed. Then the expected variation of Φ is the
sum of the expected variation of the two configurations plus the effect of these
three cells which is in every case at most + 3

N . �

Theorem 5. Every valid configuration of area A converges to the background
configuration in finite time with probability 1. The expected convergence time is
O(AN), which is thus O(N2).

Proof. The construction of a valid configuration can be expressed as a binary
tree where the leaves are the islands and the internal nodes are the joins (an
heterogenous series is encoded as a series of two-by-two joins). Thus, 	 = k−1 if

On the Analysis of “Simple” 2D Stochastic Cellular Automata 463

the tree is not empty, and by Proposition 6 and 7, as long as the configuration
is not stable, E[∆Φ] � − 3

N . For the initial configuration Φ � 3A and the stable
configuration with vertical stripes is the only configuration where Φ = 0. Thus
it converges in finite time with probability 1 to this stable configuration and the
expected convergence time is O(AN) (see e.g. Lemma 5 in [9]). �

Conclusion. The behavior of 2D Minority with the Moore neighborhood under
fully asynchronous dynamics is surprisingly rich and difficult to analyze. The ap-
proach outlined in [1] for the von Neumann neighborhood is useful. The analysis
of the energy and of the competing regions requires however a very accurate com-
prehension of the combinatorics of the automaton, which turned out to be more
complex for the Moore neighborhood. A key to complete the analysis seems to
find the most appropriate definitions for particles and rails and explain precisely
how they evolve.

References

1. Regnault, D., Schabanel, N., Thierry, É.: Progresses in the analysis of stochastic 2D
cellular automata: a study of asynchronous 2D Minority. In: Kučera, L., Kučera,
A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 320–332. Springer, Heidelberg (2007)

2. Ermentrout, G.B., Edlestein-Keshet, L.: Cellular automata approaches to biological
modelling. Journal of Theoretical Biology 160, 97–133 (1993)

3. Silva, H.S., Martins, M.L.: A cellular automata model for cell differentiation. Phys-
ica A: Statistical Mechanics and its Applications 322, 555–566 (2003)

4. Demongeot, J., Aracena, J., Thuderoz, F., Baum, T.P., Cohen, O.: Genetic regula-
tion networks: circuits, regulons and attractors. C.R. Biologies 326, 171–188 (2003)

5. Goles, E., Martinez, S.: Neural and automata networks, dynamical behavior and
applications. Maths and Applications, vol. 58. Kluwer Academic Publishers, Dor-
drecht (1990)

6. Bersini,H.,Detours,V.:Asynchrony inducesstability incellularautomatabasedmod-
els. In: Proceedings of Artificial Life IV, pp. 382–387. MIT Press, Cambridge (1994)

7. Buvel, R., Ingerson, T.: Structure in asynchronous cellular automata. Physica D 1,
59–68 (1984)

8. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. BioSystems 51, 123–143 (1999)

9. Fatès, N., Morvan, M., Schabanel, N., Thierry, E.: Fully asynchronous behaviour
of double-quiescent elementary cellular automata. TCS 362, 1–16 (2006)

10. Fatès, N., Regnault, D., Schabanel, N., Thierry, E.: Asynchronous behaviour of
double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi,
M. (eds.) LATIN 2006. LNCS, vol. 3887. Springer, Heidelberg (2006)

11. Fukś, H.: Non-deterministic density classification with diffusive probabilistic cellu-
lar automata. Phys. Rev. E 66(2) (2002)

12. Fukś, H.: Probabilistic cellular automata with conserved quantities. Nonlinear-
ity 17(1), 159–173 (2004)

13. Balister, P., Bollobás, B., Kozma, R.: Large deviations for mean fields models of
probabilistic cellular automata. Random Struct. & Alg. 29, 399–415 (2006)

14. McCoy, B., Wu, T.T.: The Two-Dimensional Ising Model. Harvard University Press
(1974)

15. Rojas, R.: The Hopfield Model. In: Neural Networks: A Systematic Introduction,
ch. 13. Springer, Heidelberg (1996)

Polycyclic and Bicyclic Valence Automata

Elaine Render and Mark Kambites�

School of Mathematics, University of Manchester,
Manchester M13 9PL, England

E.Render@maths.manchester.ac.uk

Mark.Kambites@manchester.ac.uk

Abstract. We study the classes of languages defined by valence au-
tomata with rational target sets (or equivalently, regular valence gram-
mars with rational target sets), where the valence monoid is drawn from
the important class of polycyclic monoids. We show that for polycyclic
monoids of rank 2 or more, such automata accept exactly the context-
free languages. For the polycyclic monoid of rank 1 (that is, the bicyclic
monoid), they accept a class of languages strictly including the partially
blind one-counter languages. Key to the proofs is a description of the ra-
tional subsets of polycyclic and bicyclic monoids, other consequences of
which include the decidability of the rational subset membership prob-
lem for these monoids, and the closure of the class of rational subsets
under intersection and complement.

1 Introduction

Both mathematicians and computer scientists have found applications for finite
automata augmented with registers which store values from a given groupor monoid,
and are modified by multiplication. These automata, variously known as extended
finite automata, valence automata orM -automata, provide an algebraicmethod to
characterize important language classes such as the context-free, recursively enu-
merable and blind counter languages (see [6,8,10]). Their study provides insight
into computational problems in algebra (see, for example, [9]). These automata
are also closely related to regulated rewriting systems, and in particular the va-
lence grammars introduced by Paun [11]: the languages accepted byM -automata
are exactly the languages generated by regularM -valence grammars [5].

Traditionally, automata are considered in which the monoid registers are ini-
tialised to the identity element, and a word is accepted only if it can be read by a
successful computation which results in the register being returned to the iden-
tity. Several authors have observed that the power of these automata to describe
language classes may be increased by allowing a more general set of accepting
values in the register. Fernau and Stiebe [4] began the systematic study of the
resulting valence automata with target sets, along with the corresponding class
of regulated grammars. In particular they considered the natural restriction that
the target set be a rational subset of the register monoid.
� The research of the second author was supported by an RCUK Academic Fellowship.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 464–475, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Polycyclic and Bicyclic Valence Automata 465

Of particular interest, when considering semigroups and monoids in relation
to automata theory, is the class of polycyclic monoids. The polycyclic monoid
of rank n is the natural algebraic model of a pushdown store on an n-letter
alphabet. For M a polycyclic monoid of rank 2 or more, it is well-known that
M -automata are equivalent to pushdown automata, and hence accept exactly
the context-free languages. The polycyclic monoid of rank 1 is called the bicyclic
monoid and usually denoted B; we shall see below that B-automata accept
exactly the partially blind one-counter languages defined by Greibach [7].

One of the main objectives of this paper is to consider the class of languages
accepted by polycyclic monoid valence automata with rational target sets. It tran-
spires that, forM apolycyclicmonoidof rank2ormore, every languageacceptedby
anM -automaton with rational target set is context-free, and hence is accepted by
anM -automaton with target set {1}. In the rank 1 case the situation is rather dif-
ferent; a language accepted by aB-automaton with rational target set need not be
a partially blind one-counter language, but it is always a finite union of languages,
each of which is the concatenation of two partially blind one-counter languages.

A key element of the proofs is a simple but extremely useful characterisation
of the rational subsets of polycyclic monoids (Corollary 6 below). From this
we are easily able to derive a number of other consequences which may be of
independent interest. These include the facts that the rational subsets of a finitely
generated polycyclic monoid form a boolean algebra (with operations effectively
computable), and that membership is uniformly decidable for rational subsets
of polycyclic monoids.

2 Preliminaries

Firstly, we recall some basic ideas from formal language theory. Let Σ be a finite
alphabet. Then we denote by Σ∗ the set of all words over Σ and by ε the empty
word. Under the operation of concatenation and with the neutral element ε,
Σ∗ forms a free monoid. A finite automaton over Σ∗ is a finite directed graph
with each edge labelled with an element of Σ∗, and with a distinguished initial
vertex and a set of distinguished terminal vertices. A word w ∈ Σ∗ is accepted
by the automaton if there exists some path connecting the initial vertex with
some terminal vertex, the product of whose edge labels in order is w. The set
of all words accepted by the automaton is denoted L or for an automaton A
sometimes L(A), and is called the language accepted by A. A language accepted
by a finite automaton is called rational or regular.

More generally, if M is a monoid then a finite automaton over M is a finite
directed graph with each edge labelled with an element of M , and with a dis-
tinguished initial vertex and a set of distinguished terminal vertices. An element
m ∈M is accepted by the automaton if there exists some path connecting the ini-
tial vertex with some terminal vertex, the product in order of whose edge labels
is m. The subset accepted is the set of all elements accepted; a subset ofM which
is accepted by some finite automaton is called a rational subset. The rational sub-
sets ofM are exactly the homomorphic images in M of regular languages.

466 E. Render and M. Kambites

We now recall the definition of a finite valence automaton, or M -automaton.
Let M be a monoid with identity 1 and let Σ be an alphabet. An M -valence
automaton (or M -automaton for short) over Σ is a finite automaton over the
direct productM×Σ∗. We say that it accepts a word w ∈ Σ∗ if it accepts (1, w),
that is if there exists a path connecting the initial vertex to some terminal vertex
labelled (1, w).

Intuitively, we visualize an M -automaton as a finite automaton augmented
with a memory register which can store an element ofM ; the register is initialized
to the identity element, is modified by right multiplication by elements of M ,
and for a word to be accepted the element present in the memory register on
completion must be the identity element. We write F1(M) for the class of all
languages accepted by M -automata, or equivalently for the class of languages
generated by regular M -valence grammars [5]. More generally, an M -automaton
with (rational) target set is an M -valence automaton together with a (rational)
subset X ⊆ M . A word w ∈ Σ∗ is accepted by such an automaton if it accepts
(x,w) for some x ∈ X . We denote by FRat(M) the family of languages accepted
by M -automata with rational target sets. We recall the following result from [4].

Theorem 1 (Fernau and Stiebe). Let G be a group. Then FRat(G) = F1(G).

3 Automata, Transductions and Closure Properties

In this section we study the relationship between rational transductions and M -
automata with target sets. Consider a finite automaton over the direct product
Ω∗ × Σ∗. We call an automaton of this type a rational transducer from Ω to
Σ; it recognises a relation R ⊆ Ω∗ × Σ∗ called a rational transduction. The
image of a language L ⊆ Ω∗ under the relation R is the set of y ∈ Σ∗ such that
(x, y) ∈ R for some x ∈ L. We say that a language K is a rational transduc-
tion of a language L if K is the image of L under some rational transduction.
The following is a straightforward generalisation of a well-known observation
concerning M -automata (see for example [8, Proposition 2]); the proof, which
proceeds similarly, can be found in [12].

Proposition 1. Let X be a subset of a monoid M , and let L ⊆ Σ∗ be a regular
language. Then the following are equivalent:
(i) L is accepted by an M -automaton with target set X;

(ii) there exists a finite alphabet Ω and a morphism ω : Ω∗ →M such that L is
a rational transduction of Xω−1.

If M is finitely generated then the following condition is also equivalent to those
above.
(iii) for every finite choice of generators ω : Ω∗ → M for M , L is a rational

transduction of Xω−1.

In particular, Proposition 1 gives a characterisation in terms of rational sub-
sets and transductions of each class of languages accepted by M -automata with
rational target sets.

Polycyclic and Bicyclic Valence Automata 467

Proposition 2. Let M be a monoid and L ⊆ Σ∗ a language. Then the following
are equivalent.

(i) L ∈ FRat(M);
(ii) there exists a finite alphabet Ω, a morphism ω : Ω∗ → M and a rational

subset X ⊆M such that L is a rational transduction of Xω−1.

If M is finitely generated then the following condition is also equivalent to those
above.

(iii) there exists a rational subset X ⊆ M such that for every finite choice of
generators ω : Ω∗ →M for M , L is a rational transduction of Xω−1.

Recall that a rational cone (also known as a full trio) is a family of languages
closed under rational transduction, or equivalently under morphism, inverse mor-
phism, and intersection with regular languages [1, Section V.2]. Since rational
transductions are closed under composition [1, Theorem III.4.4] we have the
following immediate corollary.

Corollary 1. FRat(M) is a rational cone. In particular, it is closed under mor-
phism, inverse morphism, intersection with regular languages, and (since it con-
tains a non-empty language) union with regular languages.

Our next objective is to show that adjoining a zero to a monoid M makes no
difference to the families of languages accepted either by M -automata or by M -
automata with rational target sets. Recall that if M is a monoid, the result of
adjoining a zero to M is the monoid M0 with set of elements M ∪ {0} where 0
is a new symbol not in M , and multiplication is such that if s, t ∈M then st is
equal to the usual product st over M , and zero otherwise.

We begin with the M -automaton case, where the required result is a very
simple observation.

Proposition 3. Let M be a monoid. Then F1(M0) = F1(M).

Proof. That F1(M) ⊆ F1(M0) is immediate, so we need only prove the converse.
Suppose L ∈ F1(M0), and let A be an M0-automaton accepting L. Clearly any
path in A containing an edge with first label component 0 will itself have first
label component 0; thus, no accepting path in A can contain such an edge.
It follows that by removing all edges whose label has first component 0, we
obtain a new M0-automaton B accepting the language L. But now since M is
a submonoid of M0, B can be interpreted as an M -automaton accepting L, so
that L ∈ F1(M) as required. �

Next we establish the corresponding result for M -automata with rational target
sets, which is a little more involved.

Theorem 2. Let M be a monoid. Then FRat(M0) = FRat(M).

Proof. That FRat(M) ⊆ FRat(M0) is immediate. For the converse, suppose L ∈
FRat(M0). Then we may choose an M0-automaton A accepting L with rational
target set X ⊆M .

468 E. Render and M. Kambites

Let L0 be the language of words w ⊆ Σ∗ such that (0, w) labels a path from the
initial vertex to a terminal vertex. Let L1 be the set of words w such that (m,w)
labels a path from the initial vertex to a terminal vertex for some m ∈ X \ {0}.
Clearly either L = L0 ∪ L1 (in the case that 0 ∈ X) or L = L1 (if 0 /∈ X). We
claim that L0 is regular and L1 ∈ FRat(M). By Corollary 1 this will suffice to
complete the proof.

The argument to show that L1 ∈ FRat(M) is very similar to the proof of
Proposition 3. We construct from the M0-automaton A a new M -automaton B
by simply removing each edge with label of the form (0,m). The new automaton
B has target set X \ {0}. It is straightforward to show that B accepts exactly
the language L1.

It remains to show that L0 is regular. Let Q be the vertex set of the automaton
A, and let Q0 = {q0 | q ∈ Q} and Q1 = {q1 | q ∈ Q} be disjoint copies of Q. We
define from A a finite automaton C with

– vertex set Q0 ∪Q1;
– for each edge in A from p to q with label of the form (m,x)

• an edge from p0 to q0 labelled x and
• an edge from p1 to q1 labelled x;

– for each edge in A from p to q with label of the form (0, x)
• an edge from p0 to q1 labelled x and
• an edge from p1 to q1 labelled x;

– initial vertex q0 where q is the initial vertex of A; and
– terminal vertices q1 whenever q is a terminal vertex of A.

A simple argument (see [12]) shows thatC accepts exactly the languageL0. �

Combining Theorem 2 with the result of Fernau and Stiebe [4] mentioned above
(Theorem 1) gives us the following immediate corollary.

Corollary 2. Let G be a group. Then

FRat(G0) = FRat(G) = F1(G) = F1(G0).

4 Polycyclic Monoids

In this section we study the language classes F1(M) and FRat(M), where M is
drawn from the class of polycyclic monoids, which form the natural algebraic
models of pushdown stores. In the process, we obtain a number of results about
rational subsets of these monoids which may be of independent interest.

Let X be a set. Recall that the polycyclic monoid on X is the monoid P (X)
generated, under the operation of relational composition, by the partial bijections
of the form

px : X∗ → X∗, w �→ wx

and
qx : X∗x→ X∗, wx �→ w.

Polycyclic and Bicyclic Valence Automata 469

The monoid P (X) models a pushdown store on the alphabet X , with px and
qx corresponding to the operations of pushing x and popping x (where defined)
respectively, and composition to performing these operations in sequence. For a
more detailed introduction see [8].

Clearly for any x ∈ X , the composition pxqx is the identity map, while if
x, y ∈ X with x �= y then pxqy is the empty map which constitutes a zero
element in P (X). In the case |X | = 1, say X = {x}, P (X) is called the bicyclic
monoid, and denoted B. The partial bijections px and qx alone (which we shall
often denote just p and q) do not generate the empty map, and so the bicyclic
monoid has no zero; to avoid treating it as a special case we write P 0(X) for the
union of P (X) with the empty map; thus P 0(X) = P (X) if |X | ≥ 2 but P 0(X)
is isomorphic to B0 if |X | = 1.

Let PX = {px | x ∈ X}, QX = {qx | x ∈ X}, and z be a new symbol not in
PX ∪QX which will represent the zero element. Let ΣX = PX ∪QX ∪{z}. Then
there is an obvious morphism σ : Σ∗

X → P 0(X) and indeed P 0(X) admits the
monoid presentation

P 0(X) = 〈ΣX | pxqx = 1, pxqy = z,

zpx = zqx = pxz = qxz = zz = z for all x, y ∈ X, x �= y〉.

For |X | ≥ 2, a P (X)-automaton is equivalent to a pushdown automaton with
stack alphabet X , so that the language class F1(P (X)) is exactly the class of
context-free languages [6,8]. In the one-symbol case, a B-automaton is easily
seen to be equivalent to a partially blind one-counter automaton of the type in-
troduced and studied by Greibach [7], so that F1(B) is the class of partially blind
one-counter languages. Indeed more generally, F1(Bn) is the class of partially
blind n-counter languages; see [12] for a more detailed explanation.

We now turn our attention to the classes FRat(P (X)) of languages accepted by
polycyclic monoid automata with rational target sets. For |X | ≥ 2, it transpires
that every language accepted by a P (X)-automaton with rational target set
is accepted by a P (X)-automaton, and hence that FRat(P (X)) is the class of
context-free languages. In order to prove this, we shall need some results about
rational subsets of polycyclic monoids, which we establish using techniques from
string rewriting theory.

Recall that a monadic rewriting system Λ over an alphabet Σ is a subset of
Σ∗ × {Σ ∪ {ε}}. We normally write an element (w, x) ∈ Λ as w → x. Then we
write u ⇒ v if u = rws ∈ Σ∗ and v = rxs ∈ Σ∗ with w → x. Denote by ⇒∗

the transitive, reflexive closure of the relation ⇒. If u ⇒∗ v we say that u is an
ancestor of v under Λ and v is a descendant of u under Λ; we write LΛ for the
set of all descendants of words in L. It is well-known that if L is regular then LΛ
is again a regular language; if moreover the rewriting system Λ is finite, a finite
automaton recognising LΛ can be effectively computed from a finite automaton
recognising L. For more information on such systems see [2,3].

Theorem 3. Let X be a finite alphabet and R a rational subset of P 0(X). Then
there exists a regular language L ⊆ Q∗

XP
∗
X ∪ {z} such that Lσ = R. Moreover,

470 E. Render and M. Kambites

there is an algorithm which, given an automaton recognizing a regular language
G ⊆ Σ∗

X , constructs an automaton recognising a language L ⊆ Q∗
XP

∗
X ∪{z} with

Lσ = Gσ.

Proof. Since R is rational, there exists a regular language K ⊆ Σ∗
X such that

Kσ = R. We define a confluent monadic rewriting system Λ on Σ∗
X with the

following rules:

pxqx → ε, pxqy → z, zqx → z, pxz → z,

zpx → z, qxz → z, zz → z

for all x, y ∈ X with x �= y. Notice that the language of Λ-irreducible words is
exactly Q∗

XP
∗
X ∪ {z}. With this in mind, we define L = KΛ ∩ (Q∗

XP
∗
X ∪ {z}).

Certainly L is regular, and moreover an automaton for L can be effectively
computed from an automaton for K. Thus, it will suffice to show that Lσ = R.

By definition Lσ ⊆ (KΛ)σ, and since the rewriting rules are all relations
satisfied in P 0(X), (KΛ)σ ⊆ Kσ = R. Conversely, if s ∈ R then s = wσ for
some w ∈ K. Now the rules of Λ are all length-reducing, so w must clearly have
an irreducible descendant, say w′. But now w′ ∈ L and w′σ = wσ = s so that
s ∈ Lσ. Thus, Lσ = R as required. �

As a corollary, we obtain a corresponding result for bicyclic monoids.

Corollary 3. LetR be a rational subset of a bicyclic monoid B, and σ : {p, q}∗ →
B be the natural morphism. Then there exists a regular languageL ⊆ q∗p∗ such that
Lσ = R. Moreover, there is an algorithm which, given an automaton recognizing
a regular language G ⊆ {p, q}∗, constructs an automaton recognising a language
L ⊆ q∗p∗ with Lσ = Gσ.

Before proceeding to apply the theorem to polycyclic monoid automata with
target sets, we note some general consequences of Theorem 3 for rational subsets
of polycyclic monoids. Recall that a collection of subsets of a given base set is a
boolean algebra if it is closed under union, intersection and complement within
the base set.

Corollary 4. The rational subsets of any finitely generated polycyclic monoid
form a boolean algebra. Moreover, the operations of union, intersection and com-
plement are effectively computable.

Proof. The set of rational subsets of a monoid is always (effectively) closed under
union, as a simple consequence of non-determinism. Since intersection can be
described in terms of union and complement, it suffices to show that the rational
subsets of polycyclic monoids are closed (effectively) under complement. To this
end, suppose first that R is a rational subset of a finitely generated polycyclic
monoid P (X) with |X | ≥ 2. Then by Theorem 3, there is a regular language
L ⊆ (Q∗

XP
∗
X ∪ {z}) such that Lσ = R. Let K = (Q∗

XP
∗
X ∪ {z}) \ L. Then K is

regular and, since Q∗
XP

∗
X∪{z} contains a unique representative for every element

of P (X), it is readily verified that Kσ = P (X) \ (Lσ). Thus, P (X) \ (Lσ) is a
rational subset of P (X), as required.

Polycyclic and Bicyclic Valence Automata 471

For effective computation of complements, observe that given an automaton
recognizing a language R = Σ∗

X , we can by Theorem 3 construct an automaton
recognizing a regular language L ⊆ (Q∗

XP
∗
X ∪ {z}) with Lσ = Rσ. Clearly we

can then compute the complement K = (Q∗
XP

∗
X ∪{z})\L of L in (Q∗

XP
∗
X ∪{z}),

and since Kσ = P (X) \ (Lσ), this suffices.
In the case that |X | = 1, the statement can be proved in a similar way but

using Corollary 3 in place of Theorem 3. �

Recall that the rational subset membership problem for a monoid M is the al-
gorithmic problem of deciding, given a rational subset of M (specified using an
automaton over a fixed generating alphabet) and an element of M (specified as
a word over the same generating alphabet), whether the given element belongs
to the given subset. The decidability of this problem is well-known to be inde-
pendent of the chosen generating set [9, Corollary 3.4]. As another corollary, we
obtain the decidability of this problem for finitely generated polycyclic monoids.

Corollary 5. Finitely generated polycyclic monoids have decidable rational sub-
set membership problem.

Proof. Let |X | ≥ 2 [respectively, |X | = 1]. Suppose we are given a rational
subset R of P (X) (specified as an automaton over Σ∗

X [respectively {p, q}∗])
and an element w (specified as a word in the appropriate alphabet). Clearly, we
can compute {w} as a regular language. Now by Corollary 4 we can compute
a regular language K ⊆ Σ∗

X [respectively, {p, q}∗] such that Kσ = R ∩ {w}σ.
But wσ ∈ R if and only if R ∩ {wσ} is non-empty, that is, if and only if K is
non-empty. Since emptiness of regular languages is decidable, this completes the
proof. �

Corollary 6. Let R be a rational subset of P 0(X) and suppose that 0 /∈ R.
Then there exists an integer n and regular languages Q1, . . . , Qn ⊆ Q∗

X and
P1, . . . , Pn ⊆ P ∗

X such that

R =
n⋃

i=1

(QiPi) σ.

Proof. By Theorem 3, there is a regular language L ⊆ Q∗
XP

∗
X such that Lσ =

R. Let A be a finite automaton accepting L, with vertices numbered 1, . . . , n.
Suppose without loss of generality that the edges in A are labelled by single
letters from QX ∪PX . For each i let Qi be the set of all words in Q∗

X which label
paths from the initial vertex to vertex i. Similarly, let Pi be the set of all words
in P ∗

X which label words from vertex i to a terminal vertex.
Now if w ∈ QiPi then w = uv where u ∈ Q∗

X labels a path from the initial
vertex to vertex i, and v ∈ P ∗

X labels a path from vertex i to a terminal vertex.
Hence uv = w labels a path from the initial vertex to a terminal vertex, and so
w ∈ L. Conversely, if w ∈ L ⊆ Q∗

XP
∗
X then w admits a factorisation w = uv

where u ∈ Q∗
X and v ∈ P ∗

X . Since the edge labels in A are single letters, an
accepting path for w must consist of a path from the initial vertex to some

472 E. Render and M. Kambites

vertex i labelled u, followed by a path from i to a terminal vertex labelled v. It
follows that u ∈ Qi and v ∈ Pi, so that w ∈ QiPi. Thus we have

L =
n⋃

i=1

QiPi and so R = Lσ =

(
n⋃

i=1

QiPi

)
σ =

n⋃
i=1

(QiPi) σ

as required. �

For the next proposition, we shall need some notation. For a word q = qx1qx2 . . . qxn

∈ Q∗
X , we let q′ = pxn . . . px2px1 ∈ P ∗

X . Similarly for a word p = px1px2 . . . pxn ∈
Q∗

X , we let p′ = qxn . . . qx2qx1 ∈ Q∗
X . Note that p′′ = p and q′′ = q. Note also that

p′σ is the unique right inverse of pσ, and q′σ is the unique left inverse of qσ.

Proposition 4. Let u ∈ Σ∗
X , and let q ∈ Q∗

X and p ∈ P ∗
X . Then uσ = (qp)σ if

and only if there exists a factorisation u = u1u2 such that (q′u1)σ = 1 = (u2p
′)σ.

Proof. Suppose first that uσ = (qp)σ. Let Λ be the monadic rewriting system
defined in the proof of Theorem 3. Then u is reduced by Λ to qp. Notice that
the only rules in Λ which can be applied to words not representing zero remove
factors representing the identity; it follows easily that u admits a factorisation
u = u1u2 where u1σ = qσ and u2σ = pσ. Now we have

(q′u1)σ = (q′σ)(u1σ) = (q′σ)(qσ) = 1

and symmetrically (u2p
′)σ = 1 as required.

Conversely, qσ is the unique right inverse of q′σ, so if (q′u1)σ = (q′σ)(u1σ) = 1
then we must have u1σ = qσ. Similarly, if (u2p

′)σ = 1 then u2σ = pσ, and so
we deduce that uσ = (u1u2)σ = (qp)σ as required. �

We are now ready to prove our main theorem about M -automata with rational
target sets where M is a polycyclic monoid.

Theorem 4. Suppose L ∈ FRat(P 0(X)). Then L is a finite union of languages,
each of which is in F1(P 0(X)) or F1(P 0(X))2.

Proof. Let M = P 0(X) and let C be an M -automaton with rational target set
R accepting the language L. By Corollary 6 there exists an integer n and regular
languages Q1, . . . , Qn ⊆ Q∗

X and P1, . . . , Pn ⊆ P ∗
X such that

R = R0 ∪
n⋃

i=1

(QiPi)σ.

where either R0 = ∅ or R0 = {0} depending on whether 0 ∈ R. For 1 ≤ i ≤ n,
we let Ri = (QiPi)σ. It follows easily that we can write L = L0 ∪ L1 ∪ · · · ∪ Ln

where each Li is accepted by an M -automaton with target set Ri. Clearly it
suffices to show that each Li is a finite union of languages, each of which is the
concatenation of at most two languages in F1(M).

Polycyclic and Bicyclic Valence Automata 473

We begin with L0. Let Z = {u ∈ Σ∗
X | uσ = 0} and W = {w ∈ Σ∗

X | wσ = 1}.
It is easily seen (for example, by considering the rewriting system Λ from the
proof of Theorem 3) that u ∈ Z if and only if either u contains the letter z, or
u factorizes as u1pxu2qyu3 where x, y ∈ X , x �= y and u1, u2, u3 ∈ Σ∗

X are such
that u2 represents the identity, that is, such that u2 ∈W . Thus,

Z = Σ∗
X {z} Σ∗

X ∪
⋃

x,y∈X,x
=y

Σ∗
X {px} W {qy} Σ∗

X .

From this expression it is a routine matter to show that Z is a rational trans-
duction of W. By Proposition 1, L0 is a rational transduction of the language
Z. Since the class of rational transductions is closed under composition, it fol-
lows that L0 is a rational transduction of W, and hence by Proposition 1 that
L0 ∈ F1(M), as required.

We now turn our attention to the languages Li for i ≥ 1. Recall that Li is
accepted by an M -automaton with target set Ri = (QiPi)σ. Let

P ′
i = {(p′, ε) | p ∈ Pi} ⊆ Q∗

X ×Σ∗

and similarly
Q′

i = {(q′, ε) | q ∈ Qi} ⊆ P ∗
X ×Σ∗.

It is readily verified that P ′
i and Q′

i are rational subsets of Σ∗
X ×Σ∗; let AP and

AQ be finite automata accepting P ′
i and Q′

i respectively, and assume without
loss of generality that the first component of every edge label is either a single
letter in ΣX or the empty word ε.

By Proposition 1 there is a rational transduction ρ ⊆ Σ∗
X × Σ∗ such that

w ∈ Li if and only if (u,w) ∈ ρ for some u ∈ Σ∗
X such that uσ ∈ Ri. Let A be an

automaton recognizing ρ, again with the property that the first component of
every edge label is either a single letter in ΣX or the empty word ε. We construct
a new M -automaton B with

– vertex set the disjoint union of the state sets of AQ, A, and AP ;
– all the edges of AQ, A and AP ;
– initial vertex the initial vertex of AQ;
– terminal vertices the terminal vertices of AP ;
– an extra edge, labelled (ε, ε), from each terminal vertex of AQ to the initial

vertex of A; and
– an extra edge labelled (ε, ε), from each terminal vertex of A to the initial

vertex of AP .

It is immediate that B recognizes the relation

τ = Q′
iρP

′
i = {(q′xp′, w) | q ∈ Qi, p ∈ Pi, (x,w) ∈ ρ} ⊆ Σ∗

X ×Σ∗

and again has the property that the first component of every edge label is either
a single letter or the empty word.

Let Q be the vertex set of A, viewed as a subset of the vertex set of B. For
each vertex y ∈ Q, we let Ky be the language of all words w such that (u,w)

474 E. Render and M. Kambites

labels a path in B from the initial vertex of B to y for some u with uσ = 1. By
considering B as an transducer but with terminal vertex y, we see that Ky is a
rational transduction of the word problem of P (X), and hence by Proposition 1
lies in the class F1(P (X)).

Dually, we let Ly be the language of all words w such that (u,w) labels a
path in B from y to a terminal vertex for some u with uσ = 1. This time by
considering B as a transducer but with initial vertex y, we see that Ly is also
a rational transduction of the word problem of P (X), and hence also lies in
F1(P (X)).

We claim that
Li =

⋃
y∈Q

KyLy,

which will clearly suffice to complete the proof.
Suppose first that w ∈ Li. Then there exists a word u ∈ Σ∗

X such that uσ ∈ Ri

and that (u,w) ∈ ρ. Since Ri = (QiPi)σ we have uσ = (qp)σ for some q ∈ Qi and
p ∈ Pi. Note that (q′up′, w) ∈ τ is accepted by B. By Proposition 4, u admits a
factorization u = u1u2 such that (q′u1)σ = 1 and (u2p

′)σ = 1. Now in view of
our assumption on the edge labels of B, w must admit a factorization w = w1w2

such that B has a path from the initial vertex to some vertex y labelled (q′u1, w1)
and a path from y to a terminal vertex labelled (u2p

′, w2); moreover, the vertex
y can clearly be assumed to lie in Q. Since (q′u1)σ = 1 = (u2p

′)σ, it follows that
w1 ∈ Ky and w2 ∈ Ly so that w = w1w2 ∈ KyLy, as required.

Conversely, suppose y ∈ Q and that w = w1w2 where w1 ∈ Ky and w2 ∈ Ly.
Then B has a path from the initial vertex to vertex y labelled (u1, w1) and a path
from the vertex y to a terminal vertex labelled (u2, w2) for some u1 and u2 with
u1σ = u2σ = 1. Since y ∈ Q, it follows from the definition of B that u1 = q′v1
and u2 = v2p

′ for some q ∈ Qi and p ∈ Pi and v1 and v2 such that (v1v2, w) ∈ ρ.
But now (q′v1)σ = u1σ = 1 and (v2p′)σ = u2σ = 1, so by definition of q′ and
p′ we deduce that v1σ = qσ and v2σ = pσ. But then (v1v2)σ = (qp)σ ∈ Ri ⊆ R
and (v1v2, w) ∈ ρ, from which it follows that w ∈ Li as required.

Thus, we have written L as a finite union of languages Li where each Li either
lies in F1(M) (in the case i = 0) or is a finite union of concatenations of two
languages in F1(M). This completes the proof. �

In the case that |X | ≥ 2, we have P 0(X) = P (X) and F1(P (X)) is the class of
context-free languages, which is closed under both finite union and concatena-
tion. Hence, we obtain the following easy consequence.

Theorem 5. If |X | ≥ 2 then FRat(P (X)) is the class of context-free languages.

In the case |X | = 1, we have that P 0(X) is isomorphic to the bicyclic monoid
B = P (X) with a zero adjoined. Combining Theorem 4 with Proposition 3 and
Theorem 2 we thus obtain.

Corollary 7. Every language in FRat(B) is a finite union of languages, each of
which is in either F1(B) or F1(B)2.

Polycyclic and Bicyclic Valence Automata 475

Since the class F1(B) of partially blind one-counter languages is not closed under
concatenation, however, we cannot here conclude that FRat(B) = F1(B). Indeed,
the following result, a full proof of which can be found in [12], shows that this
is not the case.

Theorem 6. The language {aibiajbj | i, j ≥ 0} lies in FRat(B) but not in
F1(B).

It is possible, however, to describe concatenations of partially blind one-counter
languages using partially blind two-counter automata. Indeed more generally we
have the following simple proposition, a proof of which can again be found in
[12].

Proposition 5. Let M1 and M2 be monoids and L1 and L2 languages over the
same alphabet. If L1 ∈ F1(M1) and L2 ∈ F1(M2) then L1L2 ∈ F1(M1 ×M2).

Since classes of the form F1(M) are closed under union, Theorem 4 and Propo-
sition 5 combine to give the following inclusion.

Corollary 8. FRat(B) ⊆ F1(B2).

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbucher,
Stuttgart (1979)

2. Book, R.V., Jantzen, M., Wrathall, C.: Monadic Thue systems. Theoretical Com-
puter Science 19, 231–251 (1982)

3. Book, R.V., Otto, F.: String rewriting systems. Springer, New York (1993)
4. Fernau, H., Stiebe, R.: Valence grammars with target sets. In: Yu, S., Ito, M. (eds.)

Words, Semigroups and Transductions, pp. 129–140. World Scientific, Singapore
(2001)

5. Fernau, H., Stiebe, R.: Sequential grammars and automata with valences. Theo-
retical Computer Science 276, 377–405 (2002)

6. Gilman, R.H.: Formal languages and infinite groups. In: Geometric and Computa-
tional Perspectives on Infinite Groups, Minneapolis, MN and New Brunswick, NJ,
1994. DIMACS Series Discrete Mathematics and Theoretical Computer Science,
Providence R, vol. 25. American Mathematical Society (1996)

7. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7(3), 311–324 (1978)

8. Kambites, M.: Formal languages and groups as memory. Communications in Alge-
bra (to appear)

9. Kambites, M., Silva, P.V., Steinberg, B.: On the rational subset problem for groups.
J. Algebra 309(2), 622–639 (2007)

10. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Applied
Mathematics 108(3), 247–260 (2001)

11. Paun, G.: A new generative device: valence grammars. Rev. Roumaine Math. Pures
Appl. XXV(6), 911–924 (1980)

12. Render, E., Kambites, M.: Rational subsets of polycyclic monoids and valence
automata. arXiv:0710.3711v1 [math.RA]

Length Codes, Products of Languages and

Primality

Arto Salomaa1, Kai Salomaa2, and Sheng Yu3

1 Turku Centre for Computer Science, Joukahaisenkatu 3-5 B, 20520 Turku, Finland
asalomaa@utu.fi

2 School of Computing, Queen’s University, Kingston, Ontario, Canada K7L 3N6
ksalomaa@cs.queensu.ca

3 Department of Computer Science, University of Western Ontario, London, Ontario,
Canada N6A 5B7
syu@csd.uwo.ca

Abstract. We continue the investigation, [9,11,5,1,2], of representing a
language as a catenation of languages, each of which cannot be further
decomposed in a nontrivial fashion. We study such prime decompositions,
both finite and infinite ones. The notion of a length code, an extension of
the notion of a code leads to general results concerning decompositions
of star languages. Special emphasis is on the decomposition of regular
languages. Also some open problems are mentioned.

Keywords: Catenation of languages, language decomposition, prime
decomposition, length code, star language.

1 Introduction

Products or catenations of languages, viewed as subsets of the free monoid,
are needed in many applications. However, because of the noncommutativity,
many phenomena are not yet properly understood. For instance, although the
condition for the commutation of two words can be explicitly stated, the equation
L1L2 = L2L1 for languages presents various difficulties. (See [11,8] and their
references.)

This paper investigates products of languages where the individual factors L
cannot be decomposed further in a nontrivial way, that is, presented in the form
L = L1L2, where neither of the languages L1 and L2 consists of the empty word
alone. The initial work on such “prime decompositions”, [11,9], concentrated
mainly on finite languages. Then a prime decomposition can always be found,
although it is not necessarily unique. It is decidable whether or not a regular
language is prime but the complexity of this problem is not known.

Various cases were considered in [5] where a language has a prime decom-
position consisting of infinitely many factors but none with a finite number of
factors. This paper continues the investigation of such finitary and infinitary
prime decompositions. A generalization of the notion of a code, a length code,
will be a useful tool in this investigation. In this paper we are mainly concerned

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 476–486, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Length Codes, Products of Languages and Primality 477

with regular languages. As will be seen below, it makes a big difference whether
or not the prime factors of a regular language are also required to be regular.

There has been much work recently concerning orthogonal (unambiguous)
catenation. (See, for instance, [3].) Studies similar to those in this paper could
be carried out also with respect to orthogonal catenation, instead of ordinary
catenation.

A brief outline about the contents of this paper follows. The next section dis-
cusses various possibilities of defining a prime decomposition and presents ex-
amples of the different cases. More explicit comparisons are made in Section 3.
The notion of a length code is introduced and its basic properties are discussed
in Section 4, and its connection with prime decompositions of star languages
is shown. Techniques for obtaining prime decompositions, beyond those using
length codes, are presented in Section 5. In case of regular languages, the tech-
niques lead to nonregular factors. Possibilities of actually getting regular factors
are discussed in Section 6.

2 Different Types of Prime Factorizations

We assume that the reader is familiar with the basics of formal languages. When-
ever necessary, [10] may be consulted. As customary, we use small letters from
the beginning of the English alphabet a, b, c, d, possibly with indices, to denote
letters of our formal alphabet Σ. Words are usually denoted by small letters
from the end of the English alphabet. The empty word is denoted by ε. Follow-
ing the regular expression notation, we sometimes denote the union by “+” and
singleton sets {α} simply by α. Thus, ε+ ab stands for the set {ε} ∪ {ab}. The
following definition, [9], contains the basic notions of this paper.

Definition 1. A nonempty language L has a nontrivial decomposition if, for
some L1 �= {ε} and L2 �= {ε}, we have L = L1L2. A nonempty language L �=
{ε} having no nontrivial decomposition is prime. A language L has a prime
factorization (or a prime decomposition) if

L = L1 . . . Lm, m ≥ 1,

where each of the languages Li, 1 ≤ i ≤ m, is prime.

Observe that by a “prime factorization” without further specifications we mean
a finite factorization. Another definition is given below for infinitary prime fac-
torizations.

Products of subsets of the free monoid are not yet very well understood. One
can also visualize different ways of defining a “prime” language. For instance, in
[4] a language L is termed indecomposable if the equation L = L1L2 implies that
either L = L1 or L = L2. It is clear that if a language is prime in the sense of
Definition 1, then it is also indecomposable. On the other hand, languages φ and
{ε} are indecomposable but not prime. We do not know other indecomposable
languages that are not prime.

478 A. Salomaa, K. Salomaa, and S. Yu

It is obvious that every finite language has a prime factorization. It is not
necessarily unique, for instance,

(ε+ a2 + a3)(ε+ a3 + a4) = (ε+ a2)(ε+ a3 + a4 + a5),

where it is easy to verify that all four factors listed are indeed prime. A prefix-free
regular language has a unique prime factorization if it is additionally required
that the factors are regular prefix-free languages, [2,7], but infix-free regular
languages do not possess the analogous property, [6]. Decompositions of factorial
languages, that is, languages closed under the subword operation are investigated
in [1,4].

The notion of a strongly prime decomposable language was introduced in [5].
A language L is strongly prime decomposable if, for some integer t, any decom-
position of L contains at most t nontrivial factors. When L is strongly prime
decomposable, any way of iteratively decomposing L has to stop after a finite
number of steps, i.e., the refinement of any decomposition results in a prime
decomposition in a finite number of steps. In this case we say also that L has a
strong finitary prime decomposition.

The language Σ∗ possesses many nontrivial decompositions. Some of them are
prime factorizations, as shown in [5]. Indeed, consider any nonempty language
H ⊆ Σn, n ≥ 1. (Thus, possibly H = Σ.) Then

H∗ = (ε+H)(ε+H(H2)∗),

where both factors on the right side are prime.
It is also shown in [5] that the language

Hd = ε+ {ai1bi1ai2bi2 . . . aikbik |k ≥ 1, 1 ≤ i1 < i2 < . . . < ik}

does not have a prime factorization. (The language Hd is not context-free but its
complement is context-free.) This reflects the fact that Definition 1 requires the
prime factorization to be finitary. If this requirement is relaxed, we can write

Hd =
∞∏

i=1

(ε+ aibi),

where each factor is prime. Moreover, this infinitary prime factorization of Hd is
unique in the sense of Definition 2 given below. On the other hand, the language
H∗ considered above has many infinitary prime factorizations. For instance, any
infinite product of factors (ε + w), where w runs through all nonempty words
of H∗, constitutes such a factorization. Thus, the language H∗ possesses both a
prime factorization and (nondenumerably) many infinitary prime factorizations.

Some clarifying remarks are in order. When we consider infinite products∏∞
i=1 Li, where each Li is a language, we consider only finite words defined by

the product. Then we also assume that each Li contains the empty word. Indeed,
an infinite product of languages defines finite words only if all of these languages,
with at most finitely many exceptions, contain the empty word. In this case there

Length Codes, Products of Languages and Primality 479

is a language K and an integer m ≥ 1 such that the original product can be
written as ∞∏

i=1

Li = K

∞∏
i=m

Li,

where each language in the product on the right side contains the empty word.
If every language in the product

∏∞
i=1 Li contains the empty word, then each

word in the product belongs to a finite prefix of the product.
In the following definition we assume that each of the languages Li and Ki

properly contains the empty word.

Definition 2. A language L has a unique infinitary prime factorization if L =∏∞
i=1 Li, where each Li is prime and, whenever L =

∏∞
i=1Ki, where each Ki

is prime, then Li = Ki, for all i. If L is over a one-letter alphabet, it is only
required that the languages Ki are the languages Li in some order.

Since languages over one letter are commutative, the relaxation of uniqueness
given in the definition is very natural. It is not difficult to see that the infinitary
prime factorization given above for the language Hd is unique. A language can
have both a prime factorization in the sense of Definition 1 and an infinitary
prime factorization. For instance, as seen above, Σ∗ has a prime factorization
and also an infinitary prime factorization

Σ∗ =
∏
w

(ε+ w),

where w runs through all nonempty words over Σ.

3 Comparisons between Different Notions

We now summarize the many notions of prime factorizations discussed above.
Thus, a prime factorization (or decomposition) of a language can be

1. finitary,
2. unique finitary,
3. strong finitary,
4. infinitary,
5. unique infinitary.

Altogether this gives numerous possibilities for a language L: each of the
properties 1)-5) can be present or absent. Many combinations are excluded by
definition. For instance, if L has property 2) (resp. 5)), it surely possesses also
property 1) (resp. 4)). For most of the 32 subsets of the properties 1)-5), it is
easy to give an example of a language possessing each of the properties in that
subset but none of the others, or show that no such language exists. We now
present a few examples, some of them from [5].

The languages L1, L2, and L3 defined below are over the one-letter alphabet
{a}. Thus, for them uniqueness is up to the order of the factors.

480 A. Salomaa, K. Salomaa, and S. Yu

The language L1 consists of all words an such that every number 1 in the
binary representation of n occurs in an even position, counted from the right.
Hence, the six shortest words in L are

ε, a2, a8, a10, a32, a34.

The sets {ε, a22n+1}, n ≥ 0, constitute the collection of prime languages ap-
pearing in any decomposition of L1. This means that L1 has no finitary but a
unique infinitary prime factorization. These properties are also shared by the
language L2 defined as follows. It consists of all words ai such that the binary
representation of i is in the regular language

(00000 + 00001 + 00010 + 00100 + 01000)∗.

But now the factors in the prime factorization are of cardinality 5, instead of
the cardinality 2 in L1.

The language L3 consists of all words ai such that the binary representation
of i is in the regular language

(000 + 010 + 100 + 110 + 011 + 101 + 111)∗.

Then L3 has no finitary prime factorization but nondenumerably many infinitary
ones.

Clearly, the language Lib, 1 ≤ i ≤ 3 has no prime factorization at all in any
of our five senses.

We already noticed that Σ∗ has both a finitary and an infinitary prime factor-
ization, in fact, infinitely many of both. The following is a basic open question.

Open problem. Can a language have both a finitary prime factorization and a
unique infinitary one?

4 Length Codes

We now introduce a notion useful in considerations about prime factorizations
of finite languages. We believe that the notion is also important on its own right.

Definition 3. A language L is a length code if every equation

u1 . . . uk = v1 . . . vl, ui, vj ∈ L, 1 ≤ i ≤ k, 1 ≤ j ≤ l,

implies that k = l.

Clearly, every code (see [10]) is also a length code. The converse does not hold
true. For instance, the language {a, ab, ba} is not a code but it is a length code.
This can be seen as follows.

Consider an equation as in Definition 3. We may assume that

u1 = a, v1 = ab

Length Codes, Products of Languages and Primality 481

because, otherwise, the equation can be shortened or is not valid. Consequently,
u2 = ba, which implies that v2 = a (leads to a shortening) or v2 = ab (leads to
a loop). Therefore, the only possibility is the equation

(ab)ia = a(ba)i, i ≥ 0.

The notions of a code and a length code can be defined for morphisms as well.
Then one can also speak of a Parikh code. By definition, a morphism h : Σ∗ → ∆∗

is a code (resp. Parikh code, length code) if the equation h(x) = h(y) always
implies the equation x = y (resp. Ψ(x) = Ψ(y), |x| = |y|). (Here Ψ(x) denotes
the Parikh vector of x.) It follows that the set of codes is included in the set of
Parikh codes which, in turn, is included in the set of length codes. It is also easy
to see that both inclusions are proper.

Sets H ⊆ Σn considered in Section 2 are codes and, hence, also length codes.
We are now ready to generalize the prime decomposition of H∗ (considered
above) to concern all finite length codes.

Theorem 1. If L is finite and a length code, then L∗ has a prime decomposition
consisting of regular factors.

Proof. It follows by the assumption that the empty word is not in L. Clearly,

L∗ = (ε+ L)(ε+ L(L2)∗).

The first factor on the right side is finite and, hence, has a prime decomposition.
The second factor is itself prime. This follows because its decompositions must
have the form

ε+ L(L2)∗ = (ε+H1)(ε+H2), H1, H2 ⊆ L(L2)∗,

and, consequently, each word in H1∪H2 is a product of an odd number of words
in L. Since L is a length code, any catenation of a word in H1 and a word in
H2 is a product of an even number of words in L, which is impossible. Hence,
one of the sets H1 and H2 is empty and, consequently, the left side is prime.
This concludes the proof. Observe that, in the proof, the finiteness of L is not
required in showing that the language ε+ L(L2)∗ is prime. �

Languages over the unary alphabet of cardinality at least two are not length
codes. The language

K = {ab, aba, bab} (1)

constitutes a simple example over the binary alphabet. Indeed,

ababab = (ab)(ab)(ab) = (aba)(bab)

and, thus, the same word equals the product of both two and three words of K.
Observe that a language L is not a length code exactly in case, for some i and

j, i �= j, we have Li∩Lj �= ∅. For instance, K2∩K3 �= ∅. In general, the minimal
difference between i and j can be arbitrarily large. For any t ≥ 2, there is a finite

482 A. Salomaa, K. Salomaa, and S. Yu

language Ft that is not a length code but F i
t ∩ F j

t = ∅ wherever 1 ≤ |i− j| < t.
For instance, this holds for

Ft = {(ab)3t, aba, bab}.

We now consider the problem of how long words we have to test in order to
find out that a finite language F is a length code. We already noticed that there
is no upper bound, independent of F , for the minimal difference between the
number of factors i and j in two decompositions. On the other hand, there is an
upper bound for both i and j depending on F (in the sense made precise below).

By a proper suffix of a word w we mean a suffix of w different from w and
the empty word. By mF we denote the length of the longest word(s) in F , by
SF the set of all proper suffixes of the words in F , and sF the cardinality of SF .
(Thus, a suffix appearing in several words of F is counted only once.) Finally,
we denote cF = mF sF .

Theorem 2. Assume that F is a finite language (not containing ε) such that
the inequality F i ∩ F j �= ∅ holds for some i and j, i �= j. Then, for some i1 and
j1, i1 �= j1,

F i1 ∩ F j1 �= ∅, i1 ≤ 2cF , j1 ≤ 2cF .

Proof. By the assumption, we have

u1 · · ·ui = v1 · · · vj , i �= j, (∗)

where each of the u-words and v-words is in F . We assume that this equation
is minimal with respect to i and j, that is, there are no i′ and j′, i′ �= j′, i′ < i,
j′ < j, such that x1 · · ·xi′ = y1 · · · yj′ , where each of the x-words and y-words
is in F . To complete the proof we have to show that, under this minimality
assumption, neither one of the indices i and j exceeds 2cF .

If u1 = v1 then u2 · · ·ui = v2 · · · vj , which contradicts the minimality assump-
tion. Thus, one of the words is a proper prefix of the other, say, v1 = u1s1,
s1 �= ε. We say that the suffix s1 ∈ SF appears and that u1 and v1 are the
u-words and v-words so far listed. We now list u-words until we obtain the first
one, say uα, such that |u1 · · ·uα| > |v1|. Then we list v-words until we obtain
the first one, say vβ , such that |v1 · · · vβ | > |u1 · · ·uα|. Consequently,

v1 · · · vβ = u1 · · ·uαs2, s2 ∈ SF ,

and we say that the suffix s2 appears. The process is continued: list u-words
(respectively v-words) until the listed u-part exceeds in length the so far listed
v-part (respectively u-part). In this way we get also a sequence s1, s2, . . . of
appearing suffixes.

Assume now that one of original indices i and j exceeds 2cF . We will show
that this contradicts minimality.

When we have listed more than cF u-words or v-words, some suffix appears
at least twice. Similarly, when we have listed more than 2cF of them, some suffix
s′ appears at least three times. Consequently, there are indices

α1 < α2 < α3 and β1 < β2 < β3

Length Codes, Products of Languages and Primality 483

such that
u1 · · ·uαts

′ = v1 · · · vβt , 1 ≤ t ≤ 3.

This means that we can remove the factor uα1+1 · · ·uα2 from the left and the
factor vβ1+1 · · · vβ2 from the right side of the equation (∗). This contradicts
minimality, unless the number of factors is the same on both sides of the new
equation. (This happens if α2 − α1 − β2 + β1 = i − j.) In this case we either
remove also the factors uα2+1 · · ·uα3 and vβ2+1 · · · vβ3 , or else replace the former
two factors by the latter two factors and remove the latter two factors from their
original positions. In every case the new equation contradicts minimality and has
a different number of factors on its two sides. �

Theorem 2 gives an algorithm for deciding whether or not a given finite language
is a length code. It is an open problem to construct an efficient algorithm.

The argument is simpler and the upper bound smaller if there is no com-
parison between the number of factors on the two sides of the equation. By an
F-factorization of a word w we mean an equation w = u1 · · ·ui, where each of
the words on the right side is in F . The proof of the following result follows the
lines of the preceding proof.

Theorem 3. Assume that a finite language F not containing the empty word is
not a code. Then some word in F cF has two different F -factorizations.

In the sequel we will be quite much concerned with languages such as K∗. We
will see that K∗ possesses a prime decomposition of two factors but a technique
very different from the one in Theorem 1 is needed.

5 Techniques for Star Languages

We now consider some special techniques for obtaining prime decompositions for
star languages. It turns out that the resulting factors are sometimes “strange”
in comparison with the original language. We begin with the following simple
result.

Theorem 4. If a language L is prime then, for every nonempty word w ∈ L,
there is a word w′ ∈ L (resp. w′′ ∈ L) such that ww′ /∈ L (resp. w′′w /∈ L).

Proof. Assume the contrary: no such word w′ exists for a nonempty word w ∈ L.
This means thatww′ ∈ L, for all wordsw′ ∈ L. Consequently, (ε+w)L = L, which
shows that L is not prime. If no w′′ exists, we obtain similarly L(ε+ w) = L. �

The converse of Theorem 4 is not valid. For instance, the language

L = ε+ {ab2i+2a, ab2j+1a, ab2i+2a2b2j+1a|i, j ≥ 0}

satisfies the condition of Theorem 4. Indeed, for every nonempty w ∈ L, we have
w2 /∈ L. However, L is not prime because

L = (ε+ {ab2i+2a|i ≥ 0})(ε+ {ab2j+1a|j ≥ 0}).

484 A. Salomaa, K. Salomaa, and S. Yu

We will now establish a general result about prime decompositions of star
languages. The language K∗ considered above will have a prime decomposition
consisting of two languages.

Let F be a finite language not containing the empty word. We say that a word
x ∈ F is independent if no other word of F appears as a prefix of x, and x itself
is not a prefix of any other word of F . Clearly, if a longest (resp. shortest) word
in F has no proper prefix in F (resp. is not a proper prefix of any word in F),
then it is independent.

Theorem 5. If F is a finite language containing an independent word, then F ∗

has a prime decomposition consisting of two factors.

The proof is omitted due to the page limit.
The language K considered above contains the independent word bab. Thus,

K∗ has a prime decomposition into two factors.
It seems likely that Theorem 5 remains valid without the assumption con-

cerning the independent word. The simultaneous parsing of a word into 2α and
α words in F seems always to lead into a contradiction.

If we consider arbitrary (finite) prime decompositions, instead of ones with
only two factors, we obtain the result without the assumption concerning the
independent word.

Theorem 6. If F is finite, then the language F ∗ has a prime decomposition.

The proof is omitted due to the page limit.
We conjecture that every regular language has a prime decomposition. This

result was established in [5] for regular languages over a one-letter alphabet.
Theorem 6 constitutes a step for a possible proof in the general case. As such
our constructions do not work for arbitrary star languages because then the
length arguments fail.

6 On Regular Prime Decompositions of K∗ and Related
Languages

We consider, finally, possible prime decompositions of K∗ and related languages,
where K is as in (1). That is, we consider the star of a language that is not a
length code. It seems very likely that, althoughK∗ has a prime decomposition of
two factors, it still does not have any regular prime decomposition (i.e., one where
the factors are regular), not even an infinitary one. Thus, there would be regular
languages having a prime decomposition but having no prime decomposition
consisting of regular languages.

Any prime decomposition of K∗ is of the form

K∗ = (ε+H1)(ε+H2) . . . (ε+Hn),

where the languages Hi, 1 ≤ i ≤ n, are contained in K∗ and do not contain the
empty word. Moreover, at least one of them has to be infinite.

Length Codes, Products of Languages and Primality 485

The most immediate decompositions for star languages (also in use in Theo-
rem 1) are of the form

L∗ = (ε+ L+ . . . Lm−1)(ε+ Lm(Lm)∗), m ≥ 2.

However, the following result shows that no decomposition of this type can lead
to a prime decomposition of K∗.

Lemma 1. An infinite union

K1 = ε+
∞⋃

j=1

Kij , 1 ≤ i1 < i2 < . . . ,

is not prime, provided there is a bound B such that ij+1 − ij ≤ B, for all j ≥ 1.

Proof. Choose the smallest r such that ir ≥ 3B, and consider the word

w = (ab)ir = (ab)3B(ab)ν ,

where ν ≥ 0. Let w′ ∈ K1 be arbitrary. Clearly,

ww′ ∈ K3B+ν+is ,

for some is. (If w′ = ε, then is = 0.) Each of the B factors (ab)(ab)(ab) consti-
tuting the prefix of w can be parsed also (aba)(bab), which shows that

ww′ ∈ K3B+ν+is−µ, for all µ, 0 ≤ µ ≤ B.

By the assumption concerningB, there is a µ, 0 ≤ µ ≤ B, such that 3B+ν+is−µ
is one of the exponents ij . This shows that ww′ ∈ K1. Since w′ ∈ K1 was
arbitrary, we conclude that

(ε+ w)K1 = K1.

This shows that K1 is not prime. �

As regards regular languages, the result of Lemma 1 can be presented in the
following form.

Lemma 2. No regular language R ⊆ K∗, containing the empty word and infi-
nitely many powers of K, is prime.

Proof. Since R is regular, there is a bound B between the exponents of consecu-
tive powers of K in R, as in Lemma 1. In addition, R may contain “loose” words
that do not belong to any full power of K contained in R. The argument in the
proof of Lemma 1 remains valid, with K1 replaced by R. �

According to Lemma 2, in any regular prime decomposition of K∗, finitary or
infinitary, every factor contains only finitely many full powers of K.

Instead of K, we can start with any finite language L that is not a length
code. (Since L does not necessarily contain an independent word, we do not get
a prime decomposition of two factors but have to use Theorem 6.) We obtain,
thus, the following summarizing result.

486 A. Salomaa, K. Salomaa, and S. Yu

Theorem 7. If L is finite and a length code, then L∗ has a prime decomposi-
tion consisting of two regular factors. If L is finite but not a length code, then
in any regular prime decomposition of L∗, finitary or infinitary, every factor
contains only finitely many full powers of L. However, L∗ has a (finitary) prime
decomposition.

7 Conclusion

The notion of a length code is interesting and seems to be applicable in various
contexts. We hope to return to a further study of it. Some of the basic problems
concerning products and primality of languages are challenging. As we have seen,
one of such problems deals with the prime decompositions of regular languages.

References

1. Avgustinovich, S.V., Frid, A.: A unique decomposition theorem for factorial lan-
guages. Internat. J. Alg. Comp. 15, 149–160 (2005)

2. Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Linear-time prime decompositions
of regular prefix codes. Internat. J. Found. Comp. Sci. 14, 1019–1031 (2003)

3. Daley, M., Domaratzki, M., Salomaa, K.: On the operational orthogonality of lan-
guages. In: Proc. Workshop on Language Equations, vol. 44, pp. 43–53. TUCS
General Publications (2007)

4. Frid, A.: Commutation in binary factorial languages. In: Harju, T., Karhumäki, J.,
Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 193–204. Springer, Heidelberg
(2007)

5. Han, Y.-S., Salomaa, A., Salomaa, K., Wood, D., Yu, S.: Prime decompositions of
regular languages. Theor. Comp. Sci. 376, 60–69 (2007)

6. Han, Y.-S., Wang, Y., Wood, D.: Infix-free regular expressions and languages.
Internat. J. Found. Comp. Sci. (to appear)

7. Han, Y.-S., Wood, D.: The generalization of generalized automata: Expression
automata. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA
2004. LNCS, vol. 3317, pp. 156–166. Springer, Heidelberg (2005)

8. Kunc, M.: The power of commuting with finite sets of words. Theory Comput.
Syst. 40, 521–551 (2007)

9. Mateescu, A., Salomaa, A., Yu, S.: Factorizations of languages and commutativity
conditions. Acta Cybernetica 15, 339–351 (2002)

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, pp. 1–3.
Springer, Berlin (1997)

11. Salomaa, A., Yu, S.: On the decomposition of finite languages. Developments in
Language Theory. In: DLT 1999, pp. 22–31. World Scientific Publ.Co., Singapore
(2000)

An Efficient Algorithm for the Inclusion

Problem of a Subclass of DPDAs�

Ryo Yoshinaka

Hokkaido University
ry@ist.hokudai.ac.jp

Abstract. This paper presents an efficient algorithm solving the inclu-
sion problem of a new subclass of context-free languages. The languages
are accepted by the special kind of real-time deterministic pushdown au-
tomata, called strongly forward-deterministic pushdown automata, that
go to the same state and push the same sequence of stack symbols when-
ever transition is allowed on the same input symbol. Our algorithm can
be applied to efficient identification in the limit of that class from positive
data.

1 Introduction

Decidability and/or complexity of inclusion problems, which are generally harder
than equivalence problems or non-emptiness problems, is a fundamental issue in
formal language theory. While the inclusion of two regular languages is trivially
decidable, not many nontrivial classes of context-free languages are known to ad-
mit an inclusion checking algorithm and rather many negative results have been
obtained on this issue (cf. e.g. Asveld and Nijholt[1]). For instance, it is unde-
cidable even for simple deterministic context-free languages[2] or unambiguous
sequential linear languages[1]. On the other hand, Linna[5] has shown that inclu-
sion is decidable for languages that are accepted by final state and empty stack
by stack-uniform dpdas. Greibach and Friedman [4] have presented an algorithm
which decides whether L ⊆ L′ for an arbitrary context-free language L and the
language L′ accepted by final state and empty stack by a superdeterministic pda.
The language class defined by Greibach and Friedman is a superclass of the one
by Linna. While both algorithms run in time doubly exponential in the descrip-
tion size of the automata, some subclasses of them are known to admit a more
efficient inclusion checking algorithm. Wakatsuki and Tomita[8] have given an
inclusion checking algorithm for very simple languages. Based on their algorithm,
Yoshinaka [11] has presented an algorithm that decides the inclusion between an
arbitrary context-free language and a length-uniform simple language, which is
accepted by empty stack by a stateless stack-uniform dpda. Those algorithms
� This research was partially supported by a grant from the Global COE Program,

“Center for Next-Generation Information Technology based on Knowledge Discov-
ery and Knowledge Federation”, from the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

C. Mart́ın-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 487–498, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

488 R. Yoshinaka

run in single exponential time. Actually the latter work is motivated for using
the algorithm as a subroutine of an efficient algorithm learning a restricted kind
of length-uniform simple languages, called right-unique simple languages, from
positive data. A most standard strategy for identifying languages in the limit
from positive data is to output an automaton that accepts a minimal language
among automata consistent with the given data. For this purpose, an efficient
inclusion checking algorithm would be useful, if one gets a finite number of rea-
sonable consistent automata to be considered from the given data. Actually when
the inclusion checking algorithm for length-uniform simple languages is used as
a subroutine of the learning algorithm for right-unique simple languages [11], it
runs in polynomial time in the size of the data given to the learning algorithm.

Along this line, this paper introduces another subclass of stack-uniform dpdas,
called strongly forward-deterministic pdas (sfdpdas) and presents an algorithm
deciding the inclusion between a context-free language and the language accepted
by an sfdpda. Our algorithm is as efficient as the inclusion checking algorithm
for length-uniform simple languages. Although no polynomial-time upper bound
in the description size of the automata is given, it runs in polynomial time when
it is used as a subroutine of a reasonable learning algorithm for the class of sfd-

pdas. Therefore our algorithm provides a means for efficient learning of languages
accepted by sfdpdas. While the class of languages accepted by sfdpdas is in-
comparable with that of length-uniform simple languages, it contains very simple
languages, right-unique simple languages and languages accepted by Szilard strict
restricted one-counter automata, all of which are known to be efficiently identi-
fiable in the limit from positive data[9,10,11,7]. We however do not go into the
detail of learning in this paper; we concentrate on the inclusion problem. Apart
from learning, our algorithm runs in single exponential time, which gives an im-
provement to the result by Greibach and Friedman [4] for the special cases.

After preliminaries in Section 2, Section 3 gives a formal definition and some
important properties of sfdpdas, which are the target of this paper. Our al-
gorithm for the inclusion problem of sfdpdas is given in Section 4. Then we
conclude the paper with Section 5.

2 Preliminaries

Z and N denote the set of integers and the set of nonnegative integers, respec-
tively. ε is the empty sequence and ∅ is the empty set. |X | denotes the length
of the sequence X or the cardinality of the set X depending on the context. For
a set X , X∗ denotes the set of finite (possibly empty) sequences of elements of
X , X+ = X∗ − {ε}, Xk = { x ∈ X∗ | |x| = k } and P(X) denotes the power set
of the set X . For a sequence X of length at least k, Prefk(X) denotes the prefix
of X of length k.

This paper extends some relations and operations on sets to sequences of sets
as follows:

– x1 . . . xm ∈ X1 . . . Xm iff xi ∈ Xi for all i ∈ {1, . . . ,m},
– X1 . . . Xm ⊆ Y1 . . . Ym iff Xi ⊆ Yi for all i ∈ {1, . . . ,m},

An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs 489

– X1 . . . Xm ∩ Y1 . . . Ym denotes the sequence (X1 ∩ Y1) . . . (Xm ∩ Ym),
– X1 . . . Xm ∪ Y1 . . . Ym denotes the sequence (X1 ∪ Y1) . . . (Xm ∪ Ym).

Note that a sequence of sets cannot be identified with the Cartesian product of
the sets if some of the sets are empty.

A context-free grammar (cfg) is denoted by a quadruple G = 〈N,Σ, P, S〉,
where N is the finite set of nonterminal symbols, Σ is the finite set of terminal
symbols, P is the finite set of production rules and S ∈ N is the start symbol. A
production rule in P has the form A → β for some A ∈ N and β ∈ (N ∪ Σ)∗.
If A → β ∈ P , we write αAγ ⇒G αβγ for any α, γ ∈ (N ∪ Σ)∗. ⇒∗

G is the
reflexive and transitive closure of ⇒G. The subscript G of ⇒G is omitted if it is
understood from the context. The language L(G) defined by G is the set L(G,S),
where L(G,α) = {w ∈ Σ∗ | α ∗⇒ w } for α ∈ (N ∪ Σ)∗. The description size of
G is defined as ‖G‖ =

∑
A→α∈P (1 + |α|).

A pushdown automaton (pda) is denoted by M = 〈Q,Γ,Σ,∆, q0, Z0, F 〉
where Γ is the set of stack symbols, Q is the set of states, Σ is the set of input
symbols, ∆ is the set of transition rules, q0 ∈ Q is the initial state, Z0 ∈ Γ is
the initial stack and F ⊆ Q is the set of final states. Each transition rule in
∆ has the form 〈p,X〉 a−→ 〈q, ζ〉 for p, q ∈ Q, X ∈ Γ , a ∈ Σ ∪ {ε}, ζ ∈ Γ ∗.
If 〈p,X〉 a−→ 〈q, ζ〉 is a rule of M , we have 〈p,Xη〉 a−→

M
〈q, ζη〉 for any η ∈ Γ ∗.

If the automaton is clear from the context, we omit the subscript M . We also
write 〈p0, ζ0〉

a1...an−−−−→ 〈pn, ζn〉 if 〈pi−1, ζi−1〉
ai−→ 〈pi, ζi〉 for all i ∈ {1, . . . , n}.

There are several slightly different manners to define the language of a pda.
This paper defines it as L(M) = {w ∈ Σ∗ | 〈q0, Z0〉 w−→ 〈p, ε〉 with p ∈ F }
(accept by final state and empty stack). The description size of M is defined as
‖M‖ =

∑
〈p,X〉 a−→〈q,ζ〉∈∆

(4 + |ζ|).
A real-time deterministic pushdown automaton (real-time dpda) is a pda such

that whenever 〈p,X〉 a−→ 〈q1, ζ1〉 and 〈p,X〉 a−→ 〈q2, ζ2〉 are rules, it holds that
a �= ε, q1 = q2 and ζ1 = ζ2. Regarding ∆ as a partial function from Q × Γ × Σ
to Q × Γ ∗, we write ∆(p,X, a) = 〈q, ζ〉 when the real-time dpda has the rule
〈p,X〉 a−→ 〈q, ζ〉. We also write ∆(p,X, a) = ⊥ if there are no q, ζ such that
∆(p,X, a) = 〈q, ζ〉.

3 Strongly Forward-Deterministic Pushdown Automata

Definition 1. A stack-uniform dpda (sudpda) (Linna [5]) is a real-time dpda

such that if 〈p1, X1〉 a−→ 〈q1, ζ1〉 and 〈p2, X2〉 a−→ 〈q2, ζ2〉 are rules, then |ζ1| = |ζ2|
for any a ∈ Σ.

A strongly forward-deterministic pushdown automaton (sfdpda) is an sud-

pda such that if 〈p1, X1〉
a−→ 〈q1, ζ1〉 and 〈p2, X2〉

a−→ 〈q2, ζ2〉 are rules, then
q1 = q2 and ζ1 = ζ2 for any a ∈ Σ.

A simple dpda is a real-time dpda such that Q = F = {q0}.

490 R. Yoshinaka

superclass

subclass

superdeterministic pda

sudpda

simple sudpda sfdpda

simple sfdpda

very simple dpda

Szilard strict deterministic
restricted one-counter automata

Fig. 1. Related classes of dpdas to sfdpdas

Example 1. Let an sfdpda M consist of the following transition rules:

∆(q0, Z0, a) = ∆(q1, Z0, a) = 〈q1, Z0X〉, ∆(q0, Z0, b) = ∆(q2, Z0, b) = 〈q2, Z0Y 〉,
∆(q1, Z0, c) = ∆(q2, Z0, c) = 〈q1, ε〉, ∆(q1, Z0, d) = 〈q2, ε〉,

∆(q1, X, e) = ∆(q1, Y, e) = ∆(q2, Y, e) = 〈q1, ε〉,
∆(q2, X, f) = ∆(q1, Y, f) = ∆(q2, Y, f) = 〈q2, ε〉,

and F = {q1, q2}. We have

L(M) = { ancen | n ≥ 1 } ∪ { andfn | n ≥ 1 } ∪ { bncx | x ∈ {e, f}n, n ≥ 1 }.

Yoshinaka[11] presented an efficient algorithm that identifies simple sfdpdas
in the limit from positive data, which has a sub-algorithm that decides in-
clusion of simple sudpdas1. There are other subclasses of sudpdas known
to be polynomial-time identifiable in the limit from positive data: very simple
dpdas[9,10] and Szilard strict deterministic restricted one-counter automata[7].
The largest superclass of those classes that is known to admit an algorithm decid-
ing the inclusion problem is of superdeterministic pdas [4]. The relation between
the classes of languages defined by those automata are shown in Figure 1.2

The following definition plays a very important role throughout this paper.

Definition 2. Let Σ be the set of input symbols. A function � from Σ∗ to Z is
called a shape if

– �(xy) = �(x) + �(y) for all x, y ∈ Σ∗ (homomorphism),
– �(a) ≥ −1 for all a ∈ Σ.

For an sudpda M = 〈Q,Γ,Σ,∆, q0, Z0, F 〉, the shape of M denoted by �M is
the shape satisfying that

�M (a) = |ζ| − 1 if ∆(p,X, a) = 〈q, ζ〉.
1 In[11], simple sfdpdas and simple sudpdas are represented by the form of cfgs and

called right-unique simple grammars and length-uniform simple grammars, respec-
tively.

2 Not every sudpda is a superdeterministic pda, but any language accepted by an
sudpda is also accepted by some superdeterministic pda[3,4].

An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs 491

A function M mapping Σ∗ to N is defined as follows:

 M (x) =

{
0 if x = ε,

max{ 1 − �M (x′) | x′ is a proper prefix of x } if x ∈ Σ+.

Lemma 1. Let M be an sudpda. If 〈p, ζ〉 x−→ 〈q, η〉, then

(1) |ζ| ≥ M (x) and |η| = |ζ| + �M (x),
(2) 〈p,Pref�M (x)(ζ)〉

x−→ 〈q,Pref�M (x)+�M(x)(η)〉.

In particular for w ∈ L(M), �M (w) = −1 and M (w) = 1.

We say that a shape � is compatible with a language L if �(w) = −1 and (w) = 1
for all w ∈ L where is defined from � as M is defined from �M . Therefore, it is
necessary that �M is compatible with L for L ⊆ L(M).

Sfdpdas have the following strong property. When |x| = 1 in the following
lemma, it turns to the definition of an sfdpda.

Lemma 2 (strong forward determinacy). Let M be an sfdpda. For any
x ∈ Σ+, if 〈p1, ζ1〉

x−→ 〈q1, η1〉 and 〈p2, ζ2〉
x−→ 〈q2, η2〉 with |ζ1| = |ζ2| = M (x),

then we have q1 = q2 and η1 = η2.

4 Inclusion Problem

In this section, we present an algorithm for the inclusion problem of sfdpdas.
More precisely, our algorithm decides whether L(G) ⊆ L(M) for an sfdpda

M and an arbitrary cfg G. We note that the opposite relation, i.e., whether
L(M) ⊆ L(G), is undecidable by the standard result on cfgs. Our algorithm
consists of two parts. The first part decides the compatibility of �M with L(G).
Although the compatibility is no more than a necessary condition, the proce-
dure computes some values defined when �M is compatible with L(G) that are
necessary for the second part of the algorithm. In the second part, we check
whether M has enough rules for including L(G). Throughout this section, we fix
a cfg G = 〈N,Σ, P, S〉 and an sfdpda M = 〈Q,Γ,Σ,∆, q0, Z0, F 〉. Recall that
no sfdpda accepts the empty string ε. Thus if ε ∈ L(G), one can immediately
conclude that L(G) � L(M). Hence we may assume that G has no useless rules
or ε-rules without loss of generality.

4.1 Checking the Compatibility of the Shape3

Suppose that � is compatible with L(G). It is not hard to see that for every
A ∈ N , there are integers nA and mA such that �(y) = nA and (y) ≤ mA for
all y ∈ L(G,A). This fact entails that the following extensions �̃ and ̃ of � and
 , respectively, are well-defined.
3 One may regard Tozawa and Minamide’s algorithm for checking “shape-

balancedness” [6] as a special case of our compatibility checking.

492 R. Yoshinaka

Definition 3. Let � be a shape compatible with L(G). Functions �̃ from (N∪Σ)∗

to Z and ̃ from (N ∪ Σ)∗ to N are defined as follows:

�̃(α) = �(x) for x ∈ L(G,α), }

 ̃(α) = max{ (x) | x ∈ L(G,α) }.

In particular, we have �̃M (S) = −1 and ̃M (S) = 1 if �M is compatible with
L(G). The algorithm in Figure 2 decides whether �M is compatible with L(G)
by trying to compute �̃M (A) and ̃M (A) for all A ∈ N at Stage 1.

Lemma 3. The algorithm in Figure 2 goes into Stage 2 if and only if �M is
compatible with L(G). In this case, �̄(A) = �̃M (A) and ̄(A) = ̃M (A) hold for
all A ∈ N .

If �M is not compatible with L(G), it is immediately concluded that L(G) �
L(M).

4.2 Comparison Forest

Hereafter we assume that �M is compatible with L(G) and simply write � and
 for �̃M and ̃M , respectively. Our algorithm tries to find the corresponding
transition of M for each leftmost derivation of G. For this purpose, the algorithm
constructs a collection of trees, called the comparison forest F , which consists of
trees TA for all A ∈ N . TA is the prefix tree (trie) of the set {α | A → α ∈ P },
which represents leftmost derivations starting from A. To each node of TA, F
gives a label, which is related to the corresponding configurations of M . In other
words, the comparison forest is a function F whose domain is

dom(F) = { [A : α] | A → αβ ∈ P and α, β ∈ (N ∪ Σ)∗ }.

Each element of dom(F) is called a node. The node [A : ε] is the root node of
TA, and a node [A : α] is called a final node of TA if A → α ∈ P . The value
F([A : α]) is called the label of a node [A : α]. For simplicity we write F(A : α)
instead of F([A : α]). The node [A : α] concerns leftmost derivations of G of the
following form and the corresponding transition of M :

S
∗⇒
G

xAγ ⇒ xαβγ
∗⇒ xyβγ

〈q0, Z0〉 x−→
M

〈p, ζ〉 y−→ 〈q, η〉

⎫⎬⎭ (∗)

where y ∈ L(G,α). By Lemma 1 and Definition 3, here we must have

〈p,Pref�(A)(ζ)〉
y−→
M

〈q,Pref�(A)+�(α)(η)〉.

The basic idea behind our algorithm is to find the corresponding transition of
M to each derivation of G as in (∗) by putting 〈p,Pref�(A)(ζ)〉 on the label of
the root node of TA and putting 〈q,Pref�(A)+�(α)(η)〉 on the label of the node

An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs 493

Input: a cfg G = 〈N, Σ, P, S〉 and an sfdpda M = 〈Q,Γ, Σ, ∆, q0, Z0, F 〉;
Output: whether L(G) ⊆ L(M)?
Begin Algorithm
— Stage 1. Compatibility checking —
— Stage 1.1. Compute
̃M —
let
̄(a) :=
M (a) for all a ∈ Σ;
let
̄(A) be undefined for all A ∈ N ;
let every production rule in G be unmarked ;
while there remains an unmarked rule do
take some unmarked rule A → α ∈ P such that
̄(α) is defined,

where
̄(B1 . . . Bm) is defined to be
̄(B1) + · · · +
̄(Bm);
if
̄(A) is not defined yet then define
̄(A) :=
̄(α);
elseif
̄(A)
=
̄(α) then output “No” and halt;

fi
mark the rule A → α;
if
̄(S) is defined and
̄(S)
= −1 then output “No” and halt; fi

od
— Stage 1.2. Compute �̃M —
let �̄0(A) := 1 for all A ∈ N ∪ Σ;
for n = 0 to 2|N | do
let �̄n+1(a) := 1 for each a ∈ Σ;
let �̄n+1(A) := max{ −
̄(B1 . . . Bk−1) + �̄n(Bk) | A → B1 . . . Bm ∈ P , 1 ≤ k ≤ m }

for each A ∈ N ;
od
if �̄2|N|(S)
= 1 or �̄2|N|+1
= �̄2|N| then output “No” and halt; fi
let �̄ = �̄2|N|;
— Stage 2. Compute F —
define F(A : α) := ∅max{1,̄�(A)+�̄(α)} for all [A : α] ∈ dom(F);
define Start(S) := {〈q0, Z0〉};
until none of the following if-clauses is satisfied do
if Final(S)
⊆ F then output “No” and halt; fi
if there is [A : αa] ∈ dom(F) with a ∈ Σ such that

〈q, X〉 ∈ I1 or 〈q, X〉 ∈ I1 for F(A : α) = I1 . . . I�̄(A)+�̄(α) and ∆(q, X, a) = ⊥
then output “No” and halt;

fi
if there is [A : αB] ∈ dom(F) with B ∈ N such that

Pref �̄(B)(Bar(F(A : α)))
⊆ Start(B)
then redefine Start(B) := Start(B) ∪ Pref �̄(B)(Bar(F(A : α)));

fi
if there is [A : αB] ∈ dom(F) with B ∈ N ∪ Σ such that

F(A : αB)
= Trans(F(A : α), B)
then redefine F(A : αB) := Trans(F(A : α), B);

fi
od
output “Yes” and halt;

End Algorithm

Fig. 2. Algorithm for the inclusion problem of sfdpdas

494 R. Yoshinaka

[A : α] in a special format. Our actual algorithm defines the label F(A : α) of a
node [A : α] to be a sequence of sets such that

F(A : α) ∈
{
P(Q) if (A) + �(α) = 0,
P(Q× (Γ ∪ Γ))P(Γ ∪ Γ)�(A)+�(α)−1 otherwise,

where Γ = {X | X ∈ Γ }. Then necessary memory space for storing the label
of a node [A : α] is bounded by O((|Q| + (A) + �(α))|Γ |). The label of the
root node of TA is always an element of P(Q × Γ)P(Γ)�(A)−1 and occurrences
of elements of Γ on a node [A : α] are carried from the root node and represent
stack symbols that have not been popped by reading a string in L(G,α), while
elements of Γ represent stack symbols that are newly pushed on the stack by
reading a string in L(G,α).

At thebeginning, thealgorithm initializes thevalueF(A : α) to∅max{1,�(A)+�(α)}

for every [A : α] ∈ dom(F) other than F(S : ε) = {〈q0, Z0〉}. The algorithm
monotonically adds new elements to the labels on nodes so that the following state-
ments are satisfied:

I. for F(A : α) = I1 . . . I�(A)+�(α) and (A) + �(α) > 0,
i. 〈q,X〉 ∈ I1 with X ∈ Γ iff ∃x ∈ Σ∗, ∃y ∈ L(G,α) such that (∗) holds

where (y) + �(y) ≥ 1 and the first element of η is X .
ii. X ∈ Ik with k ≥ 2 and X ∈ Γ iff ∃x ∈ Σ∗, ∃y ∈ L(G,α) such that (∗)

holds where (y) + �(y) ≥ k and the k-th element of η is X .
iii. 〈q,X〉 ∈ I1 with X ∈ Γ iff ∃x ∈ Σ∗, ∃y ∈ L(G,α) such that (∗) holds

where (y) + �(y) = 0 and the first element of η is X .
iv. X ∈ Ik with k ≥ 2 and X ∈ Γ iff ∃x ∈ Σ∗, ∃y ∈ L(G,α) such that (∗)

holds where (y) + �(y) < k and the k-th element of η is X .
II. for F(A : α) ∈ P(Q) ((A) + �(α) = 0),

i. q ∈ F(A : α) iff ∃x ∈ Σ∗, ∃y ∈ L(G,α) such that (∗) holds and (A) +
�(α) = 0.

Example 2. Let G consist of the production rules

S → aAf | bAg, A → c | de

and M (simple sfdpda) consist of the transition rules

〈q0, Z0〉 a−→ 〈q0, Z0X〉, 〈q0, Z0〉 b−→ 〈q0, Z0Y 〉, 〈q0, Z0〉 c−→ 〈q0, ε〉,

〈q0, Z0〉 d−→ 〈q0, ε〉, 〈q0, X〉 e−→ 〈q0,W 〉, 〈q0, Y 〉 e−→ 〈q0,W 〉,

〈q0, X〉 f−→ 〈q0, ε〉, 〈q0, Y 〉 g−→ 〈q0, ε〉, 〈q0,W 〉 g−→ 〈q0, ε〉,

and F = {q0}. �M is compatible with L(G) and �̃M (S) = −1, �̃M (A) = −1,
 ̃M (S) = 1, ̃M (A) = 2. The algorithm constructs the forest as follows.

First the algorithm lets all the node labels be sequences of the empty sets
except for F(S : ε) = {〈q0, Z0〉}. By 〈q0, Z0〉 a−→

M
〈q0, Z0X〉, we let F(S : a) =

An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs 495

{〈q0, Z0〉}{X}. The edge going out from [S : a] labeled with A refers to the
tree TA. F(S : a) = {〈q0, Z0〉}{X} is copied to F(A : ε) with adding bars. By
〈q0, Z0X〉 c−→ 〈q0, X〉, we put {〈q0, X〉} into F(A : c), where X is carried down
from the label of the parent node [A : ε]. This stack symbol plays no role for
reading c. Similarly we get F(A : d) = {〈q0, X〉}. By 〈q0, X〉 e−→ 〈q0,W 〉, we put
{〈q0,W 〉} into F(A : de), where W is newly pushed on to the stack when de is
read. At this moment, we get the following trees:

TS : {〈q0, Z0〉}

{〈q0, Z0〉}{X}

∅

∅

∅∅

∅

∅

TA :
{〈q0, Z0〉}{X}

{〈q0, X〉} {〈q0, X〉}

{〈q0, W 〉}

a

A

f

b

A

g

c d

e

On the other hand, concerning the rule S → bAg, we get F(S : b) = {〈q0, Z0〉}{Y }.
Then copying this with adding bars to the root node of TA, we get F(A : ε) =
{〈q0, Z0〉}{X,Y }. Similarly 〈q0, Y 〉 is added to F(A : c) and F(A : d). Then we
get F(A : c) = F(A : d) = {〈q0, X〉, 〈q0, Y 〉}.

Recall that the node [A : c] is a final node of TA. 〈q0, X〉 ∈ F(A : c) means
that we have (∗) where q = q0 and the first element of η is X that is just carried
over from the second element of ζ due to the fact �(A) = −1. Therefore, we put
〈q0, X〉 to F(S : aA) because X occurs in the second element of F(S : a) =
{〈q0, Z0〉}{X}, while we do not put 〈q0, X〉 to F(S : bA).

On the other hand, the fact 〈q0,W 〉 ∈ F(A : de), where [A : de] is a final node,
means that there is y ∈ L(G,A) (actually y = de here) such that 〈q, ζ〉 y−→ 〈q0,W 〉
and M (y)+�M (y) = 1. Here W always appears on the stack after the automaton
successfully reads y ∈ L(G,A) independently of the starting configuration 〈q, ζ〉
of this computation (strong forward determinacy). Therefore, we put 〈q0,W 〉
into both F(S : aA) and F(S : bA). In this way, we get the following forest:

TS : {〈q0, Z0〉}

{〈q0, Z0〉}{X}

{〈q0, X〉, 〈q0, W 〉}

∅

{〈q0, Z0〉}{Y }

{〈q0, Y 〉, 〈q0, W 〉}

{q0}

TA :
{〈q0, Z0〉}{X, Y }

{〈q0, X〉, 〈q0, Y 〉} {〈q0, X〉, 〈q0, Y 〉}

{〈q0, W 〉}

a

A

f

b

A

g

c d

e

The fact that 〈q0,W 〉 ∈ F(S : aA) implies that there is x ∈ L(G, aA) such that

S ⇒
G

aAf
∗⇒ xf,

〈q0, Z0〉 x−→
M

〈q0,W 〉.

496 R. Yoshinaka

The node [S : aA] has a child node [S : aAf], however ∆(q0,W, f) = ⊥. The
algorithm concludes L(G) �⊆ L(M). In fact adef ∈ L(G) − L(M).

Now we give the definition of functions appearing in the algorithm.

– Start(A) = F(A : ε).
– Final(A) =

⋃
{F(A : α) | A → α ∈ P }.

– Bar(I) =

{
{ 〈q,X〉 | 〈q,X〉 ∈ I or 〈q,X〉 ∈ I } for I ∈ P(Q× (Γ ∪ Γ)),
{X | X ∈ I or X ∈ I } for I ∈ P(Γ ∪ Γ).

Bar(I1I2 . . . Im) = Bar(I1)Bar(I2) . . .Bar(Im).
– For a ∈ Σ, Trans(I1 . . . Im, a) =⎧⎪⎨⎪⎩

{q} if m = 1 and �(a) = −1,
({q} × I2)I3 . . . Im if m ≥ 2 and �(a) = −1,
{〈q,X0〉}{X1} . . . {X�(a)}I2 . . . Im if �(a) ≥ 0,

where ∆(p,X, a) = 〈q,X0 . . .X�(a)〉 for some p ∈ Q and X ∈ Γ .
– For A ∈ N , Trans(I1 . . . Im, A) =⎧⎪⎨⎪⎩

Final(A) if m + �(A) = 0,
(Final(A) × I�(A)+1)I�(A)+2 . . . Im if m + �(A) > (A) + �(A) = 0,
(!J ∪ ∅n !K)I�(A)+1 . . . Im otherwise, where

n = max{ 0, �(A) },
!J = (Q× Γ)Γ �(A)+�(A)−1 ∩ Final(A),
!K = Kn+1 . . .K�(A)+�(A) where for Final(A) = J1 . . . J�(A)+�(A),

Ki =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{ 〈q,X〉 | X ∈ I1−�(A) and 〈q,X〉 ∈ J1 }
∪ { 〈q,X〉 | X ∈ I1−�(A) and 〈q,X〉 ∈ J1 } if i = 1,

{X | X ∈ Ii−�(A) and X ∈ Ji }
∪ {X | X ∈ Ii−�(A) and X ∈ Ji } otherwise.

The termination of the algorithm is easily seen, because the algorithm monoton-
ically expands the sets constituting node labels and those sets have the upper
bound Q× (Γ ∪Γ), Γ ∪Γ or Q. Lemma 4 shows the soundness of the algorithm
and Lemma 5 shows the completeness.

Lemma 4. If the algorithm in Figure 2 outputs “ Yes”, then L(G) ⊆ L(M).

Proof. Let us write 〈q, ζη〉 ∈ I1 . . . Im if one of the following conditions holds:

– ζ = η = ε, q ∈ I1 and m = 1, or
– ζ = ε, η = Y1 . . . Ym, 〈q, Y1〉 ∈ I1 and Yi ∈ Ii for 2 ≤ i ≤ m, or
– ζ = X1 . . . Xk with k ≥ 1, η = Yk+1 . . . Ym, 〈q,X1〉 ∈ I1, Xi ∈ Ii for 2 ≤ i ≤ k

and Yi ∈ Ii for k < i ≤ m.

One can prove the following claim by induction on the number of derivation
steps of α

∗⇒ y. Applying this claim to w ∈ L(G,S), we get the desired property.

An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs 497

Suppose that the algorithm outputs “ Yes”. For any rule A → αβ ∈ P and y ∈
L(G,α), if 〈p, ζ1ζ2〉 ∈ Start(A) with |ζ1| = (y), then for some η1 ∈ Γ �(y)+�(y)

〈p, ζ1ζ2〉
y−→
M

〈q, η1ζ2〉 and 〈q, η1ζ2〉 ∈ F(A : α). �

Lemma 5. If L(G) ⊆ L(M), then the algorithm in Figure 2 outputs “ Yes”.

Proof. One can prove by induction on the number of steps of computation of the
algorithm that the “only if” directions of conditions I–II (3 pages before) always
hold if L(G) ⊆ L(M). This claim ensures that the algorithm never outputs
“No”. �

4.3 Time Complexity

We evaluate the efficiency of our algorithm with the parameter τG defined as

τG = max{ τ(G,A) | A ∈ N } where τ(G,A) = min{ |y| | y ∈ L(G,A) }.

It is easy to see that τG ≤ ρ
|N |
G where ρG is the length of a longest rule of G and

that τG cannot be polynomially bounded in ‖G‖. Nevertheless if an algorithm tak-
ing a cfg G as input runs in polynomial time in ‖G‖τG, it deserves to be called
efficient for some application. When from a finite language L one constructs a cfg

G whose all rules are useful for deriving some element of L, τG is not bigger than
the length of a longest string in L. For instance, Yoshinaka’s algorithm[11] for de-
ciding whether L(G) ⊆ L(M) for a cfg G and a simple sudpda M runs in poly-
nomial time in τG‖G‖‖M‖, and his learning algorithm using that algorithm as a
subroutine runs in polynomial time in the size of the given data.

Lemma 6. If �M is compatible with L(G), then −τG ≤ �̃M (A) < ‖G‖τG and
1 ≤ ̃M (A) ≤ ‖G‖2τG for every A ∈ N ∪ Σ. Moreover, Stage 1 of the algorithm
in Figure 2 decides the compatibility in O(‖M‖ + ‖G‖2) time.

Concerning the comparison forest, |dom(F)| ≤ ‖G‖, |F(A : α)| = max{1, ̃(A)+
�̃(α)} and each element of F(A : α) has the upper bound Q × (Γ ∪ Γ), Γ ∪ Γ
or Q. Since the labels are expanded monotonically, Stage 2 runs in polynomial
time in ‖G‖, |Q|, |Γ | and the maximums of ̃(A), �̃(A) for A ∈ N ∪Σ. Lemma 6
entails the following theorem.

Theorem 1. Let G be a cfg and M be an sfdpda. One can decide whether
L(G) ⊆ L(M) in time polynomial in ‖M‖, ‖G‖ and τG.

5 Concluding Remarks

This paper has presented an efficient algorithm that decides whether L(G) ⊆
L(M) for a cfg G and an sfdpda M . The algorithm resembles the author’s
algorithm for deciding whether L(G) ⊆ L(M) for a cfg G and a simple sudpda

M [11]. Both run in polynomial time in τG, ‖G‖ and ‖M‖. When comparing a pda

M ′ instead of a cfg G with M , (slight modifications of) those algorithms run
in single exponential time in ‖M ′‖ and ‖M‖. The comparison forests constructed

498 R. Yoshinaka

by those two algorithms have the same form and the difference is only the labels
on the forest. In fact for sudpdas, which form a common superclass of sfdpdas
and simple sudpdas, the basic idea still works with giving appropriate node
labels. However no inclusion checking algorithm for sudpdas is known to run in
single exponential time. Thus we now have two different kinds of restriction on
sudpdas that allow crucially more efficient algorithms for the inclusion problem.
On the other hand, if the language of a dpda is defined by accept by final state
(the stack may be nonempty), the inclusion problem for sudpdas turns to be
undecidable[3]. It is not yet clear if it is the case for sfdpdas too.

Our result is interesting not only from the point of view of computational
complexity theory but also from the view point of grammatical inference. Our
algorithm can be utilized for constructing an efficient algorithm learning sfd-

pdas from positive data as Yoshinaka’s learning algorithm for simple sfdpdas
has a subroutine that solves the inclusion problem.

References

1. Asveld, P.R.J., Nijholt, A.: The inclusion problem for some subclasses of context-
free languages. Theoretical Computer Science 230(1-2), 247–256 (2000)

2. Friedman, E.P.: The inclusion problem for simple languages. Theoretical Computer
Science 1(4), 297–316 (1976)

3. Friedman, E.P., Greibach, S.A.: Superdeterministic dpdas: The method for accept-
ing does affect decision problems. Journal of Computer and System Science 19(1),
79–117 (1979)

4. Greibach, S.A., Friedman, E.P.: Superdeterministic PDAs: A subcase with a decid-
able inclusion problem. Journal of the Association for Computing Machinery 27(4),
675–700 (1980)

5. Linna, M.: Two decidability results for deterministic pushdown automata. Journal
of Computer and System Science 18, 92–107 (1979)

6. Tozawa, A., Minamide, Y.: Complexity results on balanced context-free languages.
In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 346–360. Springer, Hei-
delberg (2007)

7. Wakatsuki, M., Teraguchi, K., Tomita, E.: Polynomial time identification of strict
deterministic restricted one-counter automata in some class from positive data.
In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp.
260–272. Springer, Heidelberg (2004)

8. Wakatsuki, M., Tomita, E.: A fast algorithm for checking the inclusion for very
simple deterministic pushdown automata. IEICE transactions on information and
systems E76-D(10), 1224–1233 (1993)

9. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 298, 179–206 (2003)

10. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 377(1–3), 282–283 (2003); Theoret. Com-
put. Sci. 298, 179–206 (2003)

11. Yoshinaka, R.: Polynomial-time identification of an extension of very simple gram-
mars from positive data. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T.,
Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 45–58. Springer, Hei-
delberg (2006)

Author Index

Alhazov, Artiom 28
Altenbernd, Jan-Henrik 40
Anderson, Terry 52
Arrighi, Pablo 64

Baumeister, Dorothea 76
Becker, Florent 101
Béchet, Denis 88
Bensch, Suna 113
Bojańczyk, Miko�laj 1
Bordihn, Henning 113, 125
Brijder, Robert 137

Cain, Alan J. 149
Capobianco, Silvio 160
Castiglione, Giusi 172
Champavère, Jérôme 184
Crespi Reghizzi, Stefano 196
Csuhaj-Varjú, Erzsébet 28

Dassow, Jürgen 209
Dikovsky, Alexander 88
Domaratzki, Michael 3

Foret, Annie 88

Garel, Emmanuelle 88
Gawrychowski, Pawe�l 221
Gilleron, Rémi 184
Giraud, Mathieu 232

Holzer, Markus 113, 125
Hông Phuong, Lê 240
Hoogeboom, Hendrik Jan 137

Kahramanoğulları, Ozan 250
Kallmeyer, Laura 263
Kambites, Mark 464
Kirchner, Claude 275
Kisielewicz, Andrzej 221
Kitaev, Sergey 287
Kĺıma, Ondřej 299
Klunder, Barbara 311
Kopetz, Radu 275

Korp, Martin 321
Krassovitskiy, Alexander 333
Kutrib, Martin 113

Lemay, Aurélien 184
Leupold, Peter 345

Maletti, Andreas 357
Mansour, Toufik 287
Mart́ın-Vide, Carlos 28
Mercer, Mark 373
Middeldorp, Aart 321
Moczurad, Ma�lgorzata 385
Moczurad, W�lodzimierz 385
Moreau, Pierre-Etienne 275
Moriya, Etsuro 397

Nesme, Vincent 64
Nguyên, Thi Minh Huyên 240
Niehren, Joachim 184

Oliver, Graham 149
Otto, Friedrich 397, 409

Parmentier, Yannick 263
Perekrestenko, Alexander 421
Petersen, Holger 433
Plátek, Martin 409
Polák, Libor 299
Puzynina, Svetlana 440

Rampersad, Narad 52
Regnault, Damien 452
Render, Elaine 464
Restivo, Antonio 172
Rogozhin, Yurii 28, 333
Rothe, Jörg 76
Roussanaly, Azim 240
Ruškuc, Nik 149

Salomaa, Arto 476
Salomaa, Kai 476
San Pietro, Pierluigi 196

500 Author Index

Santean, Nicolae 52
Schabanel, Nicolas 452
Sciortino, Marinella 172
Séébold, Patrice 287
Shallit, Jeffrey 52
Steinberg, Benjamin 6

Thierry, Éric 452
Thomas, Richard M. 149
Turaev, Sherzod 209

Verlan, Serghey 333

Vinh, Hô Tuóng 240

Volkov, Mikhail 11

Werner, Reinhard 64

Yoshinaka, Ryo 487

Yu, Sheng 476

	Title Page
	Preface
	Organization
	Table of Contents
	Tree-Walking Automata
	Introduction
	References

	Formal Language Tools for Template-Guided DNA Recombination
	References

	Subsequence Counting, Matrix Representations and a Theorem of Eilenberg
	Free Monoids, Algebras and Subsequences
	Eilenberg’s Theorem
	References

	Synchronizing Automata and the \v{C}ern\'{y} Conjecture
	History and Motivations
	Algorithms and Complexity
	The \v{C}ern\'{y} Conjecture
	References

	About Universal Hybrid Networks of Evolutionary Processors of Small Size
	Introduction
	Preliminaries
	Main Results
	Universality
	Computational Completeness

	Conclusions
	References

	On Bifix Systems and Generalizations
	Introduction
	Terminology
	Bifix Rewriting Systems and Extensions
	Tagged Infix Rewriting Systems
	Extending TIRSs by Removing Tags
	Extending TIRSs by Adding Tags
	Remarks on Further Extensions

	Comparison with Ground Tree Rewriting
	Conclusion
	References

	Finite Automata, Palindromes, Powers, and Patterns
	Introduction
	Notions and Notation
	Testing If an NFA Accepts at Least One Palindrome
	Testing If an NFA Accepts at Least One Non-palindrome
	Testing If an NFA Accepts a Word Matching a Pattern
	Testing If an NFA Accepts a Non-k-Power
	Automata Accepting Only Powers
	FinalRemarks
	References

	One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations
	AxiomaticsofQCA
	A Small Theory of Subsystems
	Block Structure
	Quantizations and Consequences
	References

	The Three-Color and Two-Color TantrixTM Rotation Puzzle Problems Are NP-Complete Via Parsimonious Reductions
	Introduction
	Definitions and Notation
	Results
	Parsimonious Reduction from SAT to 3-TRP
	Parsimonious Reduction from SAT to 2-TRP
	Unique and Infinite Variants of 3-TRP and 2-TRP

	Conclusions
	References

	Optional and Iterated Types for Pregroup Grammars
	Introduction
	Background
	Optional and Iterated Primitive Types
	Conclusion
	References

	Transformations and Preservation of Self-assembly Dynamics through Homotheties
	Introduction and Definitions
	The Model of Self-assembly

	Scaling While Preserving Dynamics
	An Example
	Formal Definitions

	Zooming and Self-assembly
	Zooming Sometimes Breaks Dynamics
	The Order Condition
	A Construction for the Order Case

	Conclusion
	References

	Deterministic Input-Reversal and Input-Revolving Finite Automata
	Introduction
	Definitions and Preliminaries
	Computational Capacity
	Comparing Modes
	Closure Properties
	Conclusions
	References

	Random Context in Regulated Rewriting \Versus Cooperating Distributed Grammar Systems
	Introduction
	Definitions and Preliminaries
	Simulation Results
	Conclusions
	References

	Extending the Overlap Graph for Gene Assembly in Ciliates
	Introduction
	Background: Gene Assembly in Ciliates
	Legal Strings with Markers
	Simple and General String Pointer Rules
	Extended Overlap Graph
	Simple Graph Rules
	Characterizing Successfulness
	Discussion
	References

	Automatic Presentations for Cancellative Semigroups
	Introduction
	Automatic Presentations
	Growth
	The Characterization
	References

	Induced Subshifts and Cellular Automata
	Introduction
	Background
	Induced Subshifts
	Induced Cellular Automata
	Conclusions
	References

	Hopcroft’s Algorithm and Cyclic Automata
	Introduction
	Minimization of Finite State Automata
	Hopcroft’s Algorithm
	Circular Words and Cyclic Automata
	Hopcroft’s Algorithm on Cyclic Automata
	Hopcroft’s Algorithm and Fibonacci Words
	References

	Efficient Inclusion Checking for Deterministic Tree Automata and DTDs
	Introduction
	Standard Tree Automata for Ranked Trees
	Stepwise Tree Automata for Binary Trees
	Factorized Tree Automata
	Automata for Unranked Trees and DTDs
	References

	Consensual Definition of Languages by Regular Sets
	Introduction
	First Definitions
	First Properties
	Consensual Languages Are in P
	FurtherResults
	Conclusion
	References

	k-Petri Net Controlled Grammars
	Introduction
	Preliminaries
	Grammars
	Petri Nets
	cf Petri Nets

	Petri Net Controlled Grammars
	Hierarchy Results
	Closure Properties
	References

	2-Synchronizing Words
	Introduction
	Computational Complexity
	Lower Bound
	References

	Not So Many Runs in Strings
	Introduction
	Definitions
	Asymptotic Behavior of the Number of Runs
	A Proof of Proposition 1 for Fixed Alphabets
	On the Number of Microruns
	Perspectives
	References

	A Hybrid Approach to Word Segmentation of Vietnamese Texts
	Introduction
	Lexicon Representation
	Vietnamese Lexicon
	Lexicon Representation

	Vietnamese Word Segmentation
	Segmentation Specification
	Word Segmentation
	Resolution of Ambiguities

	Experiments
	Corpus Constitution
	Results
	vnTokenizer

	Conclusion
	References

	On Linear Logic Planning and Concurrency
	Introduction
	Linear Logic Planning and Concurrency
	MELL in the Calculus of Structures
	Linear Logic Planning

	Independence and Causality in Plans
	Partial Order Plans with a Concurrency Semantics
	Planning and Concurrency
	Labelled Event Structure Semantics of Planning Problems

	Relation to Other Work
	Discussion
	References

	On the Relation between Multicomponent Tree Adjoining Grammars with Tree Tuples (TT-MCTAG) and Range Concatenation Grammars (RCG)
	Introduction
	Tree Adjoining Grammars (TAG)
	Range Concatenation Grammars (RCG)
	From TAG to RCG

	TT-MCTAG
	From k-TT-MCTAG to RCG
	Conclusion
	References

	Anti-pattern Matching Modulo
	Introduction
	Terms and Anti-patterns
	Associative Matching
	Matching Associative Patterns
	Matching Associative Patterns with Unit Elements

	Anti-pattern Matching Modulo
	From Anti-pattern Matching to Equational Problems
	A Specific Case: Matching \AU Anti-patterns
	A More Efficient Algorithm for \AU Anti-patterns Matching

	Anti-matching Modulo in Tom
	Conclusion
	References

	Counting Ordered Patterns in Words Generated by Morphisms
	Introduction
	Preliminaries
	Definitions and Notations
	Ordered Patterns

	Ordered Patterns with Gaps and Morphisms
	Inversions, Non-inversions, and Repetitions with Gaps of f^n
	Some Examples in the Binary Case

	A Particular Family of Morphisms
	Examples
	The Thue-Morse Morphism
	The Prouhet Morphisms
	The Arshon Morphisms
	Three Other Examples

	Ordered Patterns with No Gaps and Morphisms
	Rises, Descents, and Squares of f^n
	Some Examples

	References

	Literal Varieties of Languages Induced by Homomorphisms onto Nilpotent Groups
	Introduction
	Our Languages
	Classical Universal Algebra
	Literal Universal Algebra
	Abelian Groups
	Nilpotent Groups
	Automata
	References

	Characterization of Star-Connected Languages Using Finite Automata
	Preliminaries
	Flat Languages and Trace Languages
	Rational and Recognizable Languages
	Connected Words, Traces and Languages

	Star-Connected Expressions and Languages
	Automata Accepting Star-Connected Languages
	Concurrent Star Operation
	References

	Match-Bounds with Dependency Pairs for Proving Termination of Rewrite Systems
	Introduction
	Preliminaries
	DP-Bounds
	Forward Closures
	Raise-DP-Bounds
	Experiments
	Conclusion
	References

	Further Results on Insertion-Deletion Systems with One-Sided Contexts
	Introduction
	Prerequisites
	MainResults
	Complexity Measures
	Conclusions
	References

	On Regularity-Preservation by String-Rewriting Systems
	Introduction
	String-Rewriting Systems
	Uniformly Length-Bounded Systems
	Length-Bounded Relations
	Outlook
	References

	Minimizing Deterministic Weighted Tree Automata
	Introduction
	Preliminaries
	Myhill-Nerode Relation
	Minimization Algorithm
	ASmallExample
	Conclusion and Open Problems
	References

	Lower Bounds for Generalized Quantum Finite Automata
	Introduction
	Technical Results
	Applications
	Discussion
	References

	How Many Figure Sets Are Codes?
	Introduction
	Definitions and Notations
	Counting Square Figure Codes
	Counting Word Codes
	Counting Domino Figure Codes
	Figures Defect
	Codes in \cd_2
	Codes in \cd_3
	Codes in \cd_3 with $|A|\ge 3$

	Conclusions
	References

	On Alternating Phrase-Structure Grammars
	Introduction
	Two Types of Alternating Grammars
	Alternation Versus State-Alternation
	\ACSG s and Alternating Linear Bounded Automata
	Concluding Remarks
	References

	A Two-Dimensional Taxonomy of Proper Languages of Lexicalized FRR-Automata
	Introduction
	FRR-Automata
	Strongly Lexicalized FRR-Automata
	Two-Dimensional Hierarchies
	Conclusion
	References

	Minimalist Grammars with Unbounded Scrambling and Nondiscriminating Barriers Are NP-Hard
	Introduction
	MGs with Unbounded Scrambling and Barriers
	MG$^{scr}_{B0}$ is NP-Hard
	Preliminaries: NP-Hardness
	The Idea of the Proof
	Proving NP-Hardness

	Conclusions
	References

	Sorting and Element Distinctness on One-Way Turing Machines
	Introduction
	Previous Work
	Sorting with One Work-Tape and One-Way Input
	EDP with One Work-Tape and One-Way Input
	Conclusion and Open Problems
	References

	On Periodicity of Generalized Two-Dimensional Words
	Introduction
	The Infinite Rectangular Grid
	The Infinite Triangular and Hexagonal Grids
	References

	On the Analysis of “Simple” 2D Stochastic Cellular Automata
	Introduction
	Definitions
	Experiments
	Energy, Borders, Diamonds and Stable Configurations
	Borders, Diamonds and Stripes
	Energy
	Stable Configurations

	Analysis of the Convergence
	Initial Energy Drop
	The Last Steps of Convergence

	References

	Polycyclic and Bicyclic Valence Automata
	Introduction
	Preliminaries
	Automata, Transductions and Closure Properties
	Polycyclic Monoids
	References

	Length Codes, Products of Languages and Primality
	Introduction
	Different Types of Prime Factorizations
	Comparisons between Different Notions
	Length Codes
	Techniques for Star Languages
	On Regular Prime Decompositions of K^* and Related Languages
	Conclusion
	References

	An Efficient Algorithm for the Inclusion Problem of a Subclass of DPDAs
	Introduction
	Preliminaries
	Strongly Forward-Deterministic Pushdown Automata
	Inclusion Problem
	Checking the Compatibility of the Shape
	Comparison Forest
	Time Complexity

	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

