Carlos Martin-Vide
Friedrich Otto
Henning Fernau (Eds.)

Language and
Automata Theory
and Applications

Second International Conference, LATA 2008
Tarragona, Spain, March 2008
Revised Papers

LNCS 5196

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5196

Carlos Martin-Vide Friedrich Otto
Henning Fernau (Eds.)

Language and
Automata Theory
and Applications

Second International Conference, LATA 2008
Tarragona, Spain, March 13-19, 2008
Revised Papers

@ Springer

Volume Editors

Carlos Martin-Vide

Rovira i Virgili University, Research Group on Mathematical Linguistics
Plaza Imperial Tarraco 1, 43005 Tarragona, Spain

E-mail: carlos.martin@urv.cat

Friedrich Otto

Universitiat Kassel, Fachbereich Elektrotechnik/Informatik
Wilhelmshoher Allee 73, 34121 Kassel, Germany

E-mail: otto@theory.informatik.uni-kassel.de

Henning Fernau

Universitit Trier, Fachbereich 4, Abteilung Informatik/Wirtschaftsinformatik
Campus II, Gebdude H, 54286 Trier, Germany

E-mail: fernau @uni-trier.de

Library of Congress Control Number: 2008936681

CR Subject Classification (1998): F4, 1.1, 1.5, F.1
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-88281-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-88281-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12524310 06/3180 543210

Preface

These proceedings contain most of the papers that were presented at the Second
International Conference on Language and Automata Theory and Applications
(LATA 2008), held in Tarragona, Spain, during March 13-19, 2008.

The scope of LATA is rather broad, including: words, languages and au-
tomata; grammars (Chomsky hierarchy, contextual, multidimensional, unifica-
tion, categorial, etc.); grammars and automata architectures; extended automata,;
combinatorics on words; language varieties and semigroups; algebraic language
theory; computability; computational, descriptional, and parameterized com-
plexity; decidability questions on words and languages; patterns and codes; sym-
bolic dynamics; regulated rewriting; trees, tree languages and tree machines;
term rewriting; graphs and graph transformation; power series; fuzzy and rough
languages; cellular automata; DNA and other models of bio-inspired comput-
ing; quantum, chemical and optical computing; biomolecular nanotechnology;
automata and logic; algorithms on automata and words; automata for sys-
tem analysis and program verification; automata, concurrency and Petri nets;
parsing; weighted machines; transducers; foundations of finite state technology;
grammatical inference and algorithmic learning; text retrieval, pattern match-
ing and pattern recognition; text algorithms; string and combinatorial issues in
computational biology and bioinformatics; mathematical evolutionary genomics;
language-based cryptography; data and image compression; circuits and net-
works; language-theoretic foundations of artificial intelligence and artificial life;
digital libraries; and document engineering.

LATA 2008 received 134 submissions. Each of them was reviewed by at least
three Program Committee members plus, in most cases, by additional external
referees. After a thorough and vivid evaluation phase the committee decided to
accept 40 papers (which means an acceptance rate of 29.85%). The conference
programme also included three invited talks and two invited tutorials. Part of
the success in the management of such a large number of submissions is due to
the facilities provided by the EasyChair conference management system.

After the conference, the authors of the accepted and of the invited papers
were asked to prepare revised versions of their papers (the former still satis-
fying the originally imposed 12-page limit). However, having post-proceedings
offers the advantage of incorporating comments both of the reviewers and of the
audience (received upon giving the talks). The present volume contains the 40
contributed papers plus extended abstracts of four of the invited papers.

June 2008
Carlos Martin-Vide
Friedrich Otto
Henning Fernau

Organization

LATA 2008 was hosted by the Research Group on Mathematical Linguistics
(GRLMC) at Rovira i Virgili University, Tarragona, Spain.

Program Committee

Jorge Almeida Porto, Portugal
Stefano Crespi-Reghizzi Milan, Italy
Erzsébet Csuhaj-Varju Budapest, Hungary
Carsten Damm Gottingen, Germany
Volker Diekert Stuttgart, Germany
Frank Drewes Umea, Sweden
Manfred Droste Leipzig, Germany
Zoltén Esik Tarragona, Spain
Henning Fernau Trier, Germany
Jorg Flum Freiburg, Germany
Rusins Freivalds Riga, Latvia
Christiane Frougny Paris, France

Max Garzon Memphis, USA
Tero Harju Turku, Finland
Lane Hemaspaandra Rochester, USA
Markus Holzer Miinchen, Germany
Hendrik Jan Hoogeboom Leiden, The Netherlands
Kevin Knight Marina del Rey, USA
Hans-Jorg Kreowski Bremen, Germany
Dietrich Kuske Leipzig, Germany
Thierry Lecroq Rouen, France
Carlos Martin-Vide (Chair) Tarragona, Spain
Victor Mitrana Tarragona, Spain
Mark-Jan Nederhof St. Andrews, UK
Mitsunori Ogihara Rochester, USA
Friedrich Otto Kassel, Germany
Jean-Eric Pin Paris, France

Kai Salomaa Kingston, Canada
Jacobo Toran Ulm, Germany
Alfonso Valencia Madrid, Spain
Hsu-Chun Yen Taipei, Taiwan

Sheng Yu London, Canada

VIII Organization

Organizing Committee

Madalina Barbaiani
Gemma Bel-Enguix
Carlos Cruz Reyes
Adrian Horia Dediu
Szilard Zsolt Fazekas
Mihai Ionescu

M. Dolores Jiménez-Lépez
Alexander Krassovitskiy

Guangwu Liu

Additional Referees

Said Abdeddaim
Giovanni Agosta
Cyril Allauzen
José J. Almeida
Dmitry Ananichev
Sergei V. Avgustinovich
Marie-Pierre Béal
Stefano Berardi
Achim Blumensath
Benedikt Bollig
Pierre Boullier
Luca Breveglieri
Robert Brijder
Alexander Burnstein
Olivier Carton
Giuseppa Castiglione
Julien Cervelle
Stephan Chalup
Jean-Marc
Champarnaud
Yijia Chen
Alessandra Cherubini
Maxime Crochemore
Elena Czeizler
Eugen Czeizler
Jiirgen Dassow
Michael Domaratzki
Andrew Duncan
Iréene Anne Durand
Mahmoud El-Sakka
Mario Florido

Remco Loos

Carlos Martin-Vide (Chair)
Zoltan-Pal Mecsei
Catalin-Tonut Tirnauca
Cristina Tirnduca

Bianca Truthe

Sherzod Turaev
Florentina-Lilica Voicu

Enrico Formenti

David de Frutos-Escrig

Yuan Gao

Paul Gastin

Zsolt Gazdag

Wouter Gelade

Jiirgen Giesl

Daniel Gildea

Stefan Goller

Erich Gradel

Hermann Gruber

Stefan Gulan

Peter Habermehl

Vesa Halava

Yo-Sub Han

Kevin G. Hare

Ulrich Hertrampf

Mika Hirvensalo

Dieter Hofbauer

Benjamin Hoffmann

Johanna Hogberg

Johanna Horg

Hans Hiittel

Oscar Ibarra

Lucian Ilie

Aravind K. Joshi

Tomi Karki

Oliver Keller

Bakhadyr Khoussainov

Renate
Klempien-Hinrichs

Stavros Konstantinidis
Walter Kosters
Manfred Kufleitner
Sabine Kuske
Martin Kutrib

Peep Kiingas
Arnaud Lefebvre
Hing Leung

Shiguo Lian

Markus Lohrey
Sylvain Lombardy
Michael Luttenberger
Alejandro Maass
Andreas Malcher
Andreas Maletti
Florin Manea
Wolfgang May
Ingmar Meinecke
Paul-André Mellies
Mark Mercer

Brink van der Merwe
Hartmut Messerschmidt
Antoine Meyer
Nelma Moreira

Rémi Morin

Peter Mosses

Moritz Miiller
Lorand Muzamel
Marius Nagy

Paliath Narendran
Andrew J. Neel

Frank Neven

Dirk Nowotka

Enno Ohlebusch
Satoshi Okawa,
Alexander Okhotin
Martin Otto

Michio Oyamaguchi
Edita Pelantova
Mati Pentus

Holger Petersen
Vinhthuy Phan
Erhard Plédereder
Natacha Portier
Matteo Pradella
Andreas P. Priesnitz
Mathieu Raffinot
George Rahonis
Antoine Rauzy
Wolfgang Reisig
Jacques Sakarovitch

Davide Sangiorgi
Pierluigi San Pietro
Nicolae Santean
Andrea Sattler-Klein
Gilles Schaeffer
Vincent Schmitt
Ilka Schnorr
Hinrich Schiitze
Stefan Schwoon
Helmut Seidl

Carla Selmi
Géraud Sénizergues
Pedro V. Silva
David Soloveichik
Jir{ Srba

Ludwig Staiger
Heiko Stamer

Ralf Stiebe
Wolfgang Thomas
Krisztian Tichler

Sponsoring Institutions

Organization IX

Caroline von Totth
Yoshihito Toyama
Ralf Treinen
Sandor Vagvolgyi
Stefano Varricchio
Gyorgy Vaszil
Kumar Neeraj Verma
Rudy van Vliet
Laurent Vuillon
Fabian Wagner
Shu Wang

John Watrous
Mark Weyer
Reinhard Winkler
Karsten Wolf
Thomas Worsch
Ryo Yoshinaka
Marc Zeitoun

Thanks are to be given to the sponsor of the conference, namely, Fundacié Caixa

Tarragona.

Table of Contents

Invited Papers

Tree-Walking Automatat

Mikotaj Bojanczyk

Formal Language Tools for Template-Guided DNA Recombination
Michael Domaratzki

Subsequence Counting, Matrix Representations and a Theorem of

Eilenberg

Benjamin Steinberg

Synchronizing Automata and the Cerny Conjecture
Mikhail Volkov

Contributed Papers

About Universal Hybrid Networks of Evolutionary Processors of Small
Sz o
Artiom Alhazov, Erzsébet Csuhaj-Varji, Carlos Martin-Vide, and

Yurii Rogozhin

On Bifix Systems and Generalizations
Jan-Henrik Altenbernd

Finite Automata, Palindromes, Powers, and Patterns

Terry Anderson, Narad Rampersad, Nicolae Santean, and
Jeffrey Shallit

One-Dimensional Quantum Cellular Automata over Finite, Unbounded
Configurationst
Pablo Arrighi, Vincent Nesme, and Reinhard Werner

The Three-Color and Two-Color Tantrix™ Rotation Puzzle Problems
Are NP-Complete Via Parsimonious Reductions
Dorothea Baumeister and Jorg Rothe

Optional and Iterated Types for Pregroup Grammars.................
Denis Béchet, Alexander Dikovsky, Annie Foret, and
Emmanuelle Garel

Transformations and Preservation of Self-assembly Dynamics through
Homotheties. o
Florent Becker

11

28

40

52

64

76

88

XII Table of Contents

Deterministic Input-Reversal and Input-Revolving Finite Automata 113
Suna Bensch, Henning Bordihn, Markus Holzer, and Martin Kutrib

Random Context in Regulated Rewriting Versus Cooperating
Distributed Grammar Systems. i i 125
Henning Bordihn and Markus Holzer

Extending the Overlap Graph for Gene Assembly in Ciliates........... 137
Robert Brijder and Hendrik Jan Hoogeboom

Automatic Presentations for Cancellative Semigroups................. 149
Alan J. Cain, Graham Oliver, Nik Ruskuc, and Richard M. Thomas

Induced Subshifts and Cellular Automata 160
Silvio Capobianco

Hopcroft’s Algorithm and Cyclic Automata 172
Giusi Castiglione, Antonio Restivo, and Marinella Sciortino

Efficient Inclusion Checking for Deterministic Tree Automata and

DS o 184
Jérome Champavere, Rémi Gilleron, Aurélien Lemay, and
Joachim Niehren

Consensual Definition of Languages by Regular Sets 196
Stefano Crespi Reghizzi and Pierluigi San Pietro

k-Petri Net Controlled Grammarsovutiinenninnennnnan . 209
Jirgen Dassow and Sherzod Turaev

2-Synchronizing Words 221
Pawet Gawrychowski and Andrzej Kisielewicz

Not So Many Runs in Strings........o i, 232
Mathiew Giraud

A Hybrid Approach to Word Segmentation of Vietnamese Texts 240
Lé Hong Phuong, Nguyén Thi Minh Huyén, Azim Roussanaly, and
Ho6 Tuong Vinh

On Linear Logic Planning and Concurrency 250
Ozan Kahramanogullar

On the Relation between Multicomponent Tree Adjoining Grammars
with Tree Tuples (TT-MCTAG) and Range Concatenation Grammars
(RCG) e 263

Laura Kallmeyer and Yannick Parmentier

Anti-pattern Matching Modulo i 275
Claude Kirchner, Radu Kopetz, and Pierre-Etienne Moreau

Table of Contents

Counting Ordered Patterns in Words Generated by Morphisms
Sergey Kitaev, Toufik Mansour, and Patrice Séébold

Literal Varieties of Languages Induced by Homomorphisms onto
Nilpotent Groupsui
Ondrej Klima and Libor Poldk

Characterization of Star-Connected Languages Using Finite
Automata
Barbara Klunder

Match-Bounds with Dependency Pairs for Proving Termination of
Rewrite SyStems
Martin Korp and Aart Middeldorp

Further Results on Insertion-Deletion Systems with One-Sided
(703 1117C> < 1=
Alexander Krassovitskiy, Yurii Rogozhin, and Serghey Verlan

On Regularity-Preservation by String-Rewriting Systems..............
Peter Leupold

Minimizing Deterministic Weighted Tree Automata
Andreas Maletti

Lower Bounds for Generalized Quantum Finite Automata
Mark Mercer

Malgorzata Moczurad and Wiodzimierz Moczurad

On Alternating Phrase-Structure Grammars
Etsuro Moriya and Friedrich Otto

A Two-Dimensional Taxonomy of Proper Languages of Lexicalized
FRR-Automata e
Friedrich Otto and Martin Pldtek

Minimalist Grammars with Unbounded Scrambling and
Nondiscriminating Barriers Are NP-Hard
Alexander Perekrestenko

Sorting and Element Distinctness on One-Way Turing Machines
Holger Petersen

On Periodicity of Generalized Two-Dimensional Words
Svetlana Puzynina

On the Analysis of “Simple” 2D Stochastic Cel/lular Automata.........
Damien Regnault, Nicolas Schabanel, and Eric Thierry

XIV Table of Contents

Polycyclic and Bicyclic Valence Automata........................... 464
FElaine Render and Mark Kambites

Length Codes, Products of Languages and Primality 476
Arto Salomaa, Kai Salomaa, and Sheng Yu

An Efficient Algorithm for the Inclusion Problem of a Subclass of
DP D AS . 487
Ryo Yoshinaka

Author Index 499

Tree-Walking Automata

Mikotaj Bojanczyk

Warsaw University

Abstract. A survey of tree-walking automata. The main focus is on how
the expressive power is changed by adding features such as pebbles or non-
determinism.

1 Introduction

A tree-walking automaton is a sequential device that can recognize properties
of trees. The control of the automaton is always located in a single node of the
tree; based on local properties of this node, the automaton chooses a new state
and moves to a neighboring node. Tree-walking automata have been introduced
already in a 1971 paper of Aho and Ullman [I]. The purpose of this talk is
to survey the different types of tree-walking automata, with a special focus on
expressive power.

A tree-walking automaton can be easily simulated by a branching bottom-
up tree automaton, therefore tree-walking automata recognize only regular tree
languages. However, the converse inclusion has been a notorious open prob-
lem for many yearaﬂ; only recently did [2] establish that tree-walking automata
are strictly less expressive than branching automata. Other fundamental prop-
erties have also been shown but recently: deterministic tree-walking automata
are closed under complement [I0], and recognize fewer languages than nonde-
terministic ones [3]. The proofs for the negative results—which show that tree-
walking automata cannot recognize something—require involved combinatorics,
and some algebra.

These are the main results on “bare” tree-walking automata. Things become
even more interesting with extensions of the model. The problem with tree-
walking automata, and also the reason why they are less expressive than branch-
ing automata, is that they easily get lost in a tree. One solution to this problem,
due to Engelfriet and Hoogeboom [7], is to allow the automaton to mark tree
nodes with pebbles.

There are several ways of adding pebbles to the automaton. One common
property in all the pebble models is the use of stack discipline—where only the
most recently placed pebble can be lifted—without which the model becomes
undecidable. But beyond the stack discipline, there are several design choices:
are the automata deterministic? does the head of the automaton need to be over
a pebble when it is lifted? how many pebbles are there? which pebbles does the

L' A footnote in the original paper [I] on tree-walking automata states that Michael
Rabin has shown that tree-walking automata do recognize all regular tree languages.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 12008.
© Springer-Verlag Berlin Heidelberg 2008

2 M. Bojanczyk

automaton see? For each of these choices, one gets an interesting and robust
class of languages; these classes have been investigated in [AGITISIOITOIT25]. In
all cases except one, the automata are weaker than branching automata, fur-
thermore adding pebbles increases the expressive power.

Tree-walking automata, but even more so pebble automata, have a close rela-
tionship with logic. For each variant of the automaton, there is an equivalent log-
ical description. For tree-walking automata and pebble automata with bounded
numbers of pebbles, the logics are restricted fragments of transitive closure first-
order logic (see [IT] and [8], respectively). Automata with invisible pebbles, a
form of pebble automata with an unbounded number of pebbles, capture all
regular tree languages [9], and therefore correspond to monadic second-order
logic. As far as logic is concerned, probably the most interesting class are the
automata of [5], which extend pebble automata with a form of negation: these
automata have the same expressive power as transitive closure first-order logic.
In particular, since the extended pebble automata are still weaker than branch-
ing automata, it follows that transitive closure first-order logic is weaker than
monadic second-order logic on trees (the two logics have the same expressive
power over words).

References

1. Aho, A.V., Ullman, J.D.: Translations on a context-free grammar. Information and
Control 19, 439-475 (1971)

2. Bojariczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. In: ACM Symposium on the Theory of Computing, pp. 234-243 (2005)

3. Bojaniczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized.
Theoretical Computer Science 350(2-3), 255-272 (2006)

4. Bojanczyk, M., Samuelides, M., Schwentick, T., Segoufin, L.: Expressive power
of pebble automata. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, 1. (eds.)
ICALP 2006. LNCS, vol. 4051, pp. 157-168. Springer, Heidelberg (2006)

5. ten Cate, B., Segoufin, L.: XPath, transitive closure logic, and nested tree walking
automata. In: Principles of Database Systems (2007)

6. Engelfriet, J., Hoogeboom, H., Van Best, J.: Trips on trees. Acta Cybernetica 14(1),
51-64 (1999)

7. Engelfriet, J., Hoogeboom, H.J.: Tree-walking pebble automata. In: Paum, G.,
Karhumaki, J., Maurer, H., Rozenberg, G. (eds.) Jewels Are Forever, Contributions
to Theoretical Computer Science in Honor of Arto Salomaa, pp. 72-83. Springer,
Heidelberg (1999)

8. Engelfriet, J., Hoogeboom, H.J.: Automata with nested pebbles capture first-order
logic with transitive closure. Logical Methods in Computer Science, 3(2:3) (2007)

9. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: XML transformation by tree-walking
transducers with invisible pebbles. In: Principles of Database Systems, pp. 63-72

2007

10. 1(\/[usc})1011, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-
walking automata. Information Processing Letters 99(1), 33-39 (2006)

11. Neven, F., Schwentick, T.: On the power of tree-walking automata. In: Welzl, E., Mon-
tanari, U., Rolim, J. (eds.) ICALP 2000. LNCS, vol. 1853. Springer, Heidelberg (2000)

12. Samuelides, M., Segoufin, L.: Complexity of pebble tree-walking automata. In:
Fundamentals of Computation Theory, pp. 458-469 (2007)

Formal Language Tools for Template-Guided
DNA Recombination

Michael Domaratzki

Department of Computer Science
University of Manitoba
Winnipeg, MB R3T 2N2 Canada
mdomarat@cs.umanitoba.ca

Certain stichotrichous ciliates, single-celled organisms with hair-like structures
called cilia, have a well-studied ability to rearrange their DNA during a form of
asexual reproduction called conjugation. Ciliates also demonstrate nuclear dual-
ism: each ciliate has both a micronucleus and a macronucleus. The unscrambling
of DNA during conjugation occurs when the scrambled version, contained in the
micronucleus, is rearranged in a precise way to produce an unscrambled equiv-
alent which forms the macronucleus.

The use of ciliates for natural computing has been one motivation for the
study of computational aspects of several different models for ciliate DNA re-
arrangement (see, e.g., Ehrenfeucht et al. [§] for description of one model of
DNA rearrangement in ciliates). If the mechanism by which ciliates rearrange
their DNA can be understood, then it is conceivable that this mechanism could
be modified to perform computation by rearrangement. For example, this line
of research has been examined for one model of ciliate DNA rearrangement by
Alhazov et al. [1], who have described a theoretical model for solving the Hamil-
tonian Path Problem using ciliate rearrangement.

Template-guided recombination (TGR) is one formal model for the rearrange-
ment which occurs in stichotrichous ciliates. The theoretical model, proposed by
Prescott et al. [I1] and refined by Angeleska et al. [2] has been the subject of
much research. Recent experimental evidence [I0] suggests that TGR is an ap-
propriate model of the rearrangement in stichotrichous ciliates. In the formal
model of TGR, the unscrambling action is controlled by a set of templates; the
experimental research suggests that existing genetic material forms these sets of
templates which guide the rearrangement process.

TGR is easily interpreted in formal language-theoretic terms, including both
an iterated and single-application variant. The iterated version gives a model
which is more accurate in biological terms, as it represents the effect of repeated
applications of the rearrangement process which is necessary for complete un-
scrambling. Much of the research on the computational aspects of TGR has fo-
cused on closure properties. Daley and McQuillan [4J56] have extensively studied
the closure properties of TGR. In some of the iterated cases, the closure proper-
ties given were not effective; McQuillan et al. [9] presented effective constructions
for these closure properties.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 3 2008.
© Springer-Verlag Berlin Heidelberg 2008

4 M. Domaratzki

In all of the above results, TGR is considered as an operation on words with
two operands. In this view of TGR as an inter-molecular operation, the operands
represent separate DNA strands which are recombined using a template. An-
other aspect of the computational examinations of TGR is the consideration of
unary (intra-molecular) operations, where the template acts on different regions
of a single strand of DNA. Daley et al. [3] have examined the closure proper-
ties of the intra-molecular TGR operation. Angeleska et al. [2] also provide re-
sults on intra-molecular TGR in terms of their modified biological definition for
TGR.

However, there is another approach to computational and language-theoretic
questions related to TGR. In particular, we have recently examined the concept
of equivalence for TGR [7]: given two sets of templates, do they define the same
rearrangement process? This question can be asked for both the inter- and intra-
molecular operations.

Results on equivalence provide tools for examining TGR as a model indepen-
dently of its computational ability, and give tools for determining what changes
should be made to the set of templates in order to affect the rearrangement
process. The characterization of equivalence in formal language-theoretic terms
yields decidability results for regular and context-free sets of trajectories.

Several questions related to equivalence remain open. In particular, we do not
know if the condition which characterizes equivalence for TGR also applies to
iterated TGR.

References

1. Alhazov, A., Petre, 1., Rogojin, V.: Solutions to computational problems through
gene assembly. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp.
36-45. Springer, Heidelberg (2008)

2. Angeleska, A., Jonoska, N., Saito, M., Landweber, L.: RNA-Guided DNA assembly.
Journal of Theoretical Biology 248, 706-720 (2007)

3. Daley, M., Domaratzki, M., Morris, A.: Intra-molecular template-guided recombi-
nation. International Journal of Foundations of Computer Science 18, 1177-1186
(2007)

4. Daley, M., McQuillan, I.: Template-guided DNA recombination. Theoretical Com-
puter Science 330, 237-250 (2005)

5. Daley, M., McQuillan, I.: On computational properties of template-guided DNA
recombination in ciliates. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS,
vol. 3892, pp. 27-37. Springer, Heidelberg (2006)

6. Daley, M., McQuillan, I.: Useful templates and iterated template-guided DNA re-
combination in ciliates. Theory of Computing Systems 39, 619-633 (2006)

7. Domaratzki, M.: Equivalence in template-guided recombination. Natural Comput-
ing (to appear, 2008)

8. Ehrenfeucht, A., Harju, T., Petre, 1., Prescott, D., Rozenberg, G.: Computation in
Living Cells: Gene Assembly in Ciliates. Springer, Heidelberg (2004)

9. McQuillan, I., Salomaa, K., Daley, M.: Iterated TGR languages: Membership prob-
lem and effective closure properties. In: Chen, D.Z., Lee, D.T. (eds.) COCOON
2006. LNCS, vol. 4112, pp. 94-103. Springer, Heidelberg (2006)

10.

11.

Formal Language Tools for Template-Guided DNA Recombination 5

Nowacki, M., Vijayan, V., Zhou, Y., Schotanus, K., Doak, T., Landweber, L.:
RNA-mediated epigenetic programming of a genome-rearrangement pathway. Na-
ture 451, 153-159 (2008)

Prescott, D., Ehrenfeucht, A., Rozenberg, G.: Template-guided recombination for
IES elimination and unscrambling of genes in stichotrichous ciliates. Journal of
Theoretical Biology 222, 323-330 (2003)

Subsequence Counting, Matrix Representations
and a Theorem of Eilenberg

Benjamin Steinberg*

School of Mathematics and Statistics
Carleton University
Ottawa, ON, Canada
bsteinbg@math.carleton.ca

Introduction

Recently, Almeida, Margolis, Volkov and I have applied matrix representation
theory [1] to give a simpler proof of results of Péladeau [4] and Weil [5] concern-
ing marked products with counter. Eilenberg’s theorem characterizing languages
recognized by p-groups [2] is a special case of these results. In these proceedings
I will give a simple proof of Eilenberg’s Theorem based on representation theory
that I came up with for a graduate course. The ideas are similar to those used
in [I], which I presented during the conference.

1 Free Monoids, Algebras and Subsequences

A good reference for the material in this section is [3]. Let A be a finite alphabet.
We use A* for the free monoid and write 1 for the empty string. Recall that a
language L C A* is recognized by a monoid M if there is a homomorphism
@: A* — M such that L = o~ 1p(L). A language is regular if and only if it can
be recognized by a finite monoid. Let p be a prime; then a finite p-group is a
group of order p”, some n > 0. Notice that the collection of finite p-groups is
closed under direct product, subgroups and homomorphic images. Hence the set
of languages recognized by a finite p-group is a Boolean algebra [2].

For words u,v € A* define (’;) to be the number of ways to choose |v| positions
in u that spell the word v, i.e. the number of occurrences of v as a subsequence
of u. More precisely, if v = a1 ---a,, then (7;) is the number of factorizations

u = vgaivi - - apv, with each v; € A*. For example (azzb) = 3. Notice that

(2.) = (), whence the notation. Also one has a sort of Pascal’s triangle rule:

(“Z) _ {(sz) () a=b

(u3) a#b.
The reader is referred to Lothaire [3, Sec. 6.3] for more on binomial coefficients.

* The author would like to acknowledge the support of an NSERC grant.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 6[10] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Subsequence Counting, Matrix Representations and a Theorem of Eilenberg 7

Let K be a field and A a finite alphabet. Then K(A) denotes the ring of
polynomials over K in non-commuting variables A, that is, the free algebra over
A. Elements of K (A) are of the form

f:ZCw"w (1)

with ¢, € K and all but finitely many ¢,, = 0. Multiplication is given by

Y eww Y dyw= Y (Z cudv> “w.

wEA* wEA* weEA* \uv=w

For instance, in K(z,y) one has (z + y)(z + 2y) = 22 + 2zy + yx + 2y%. We
identify K as a subring of K(A) via ¢+ c- 1.

If fe K(A)is as per [0l) and w € A*, we define (f, w) = cy; so (f,w) is the
coefficient of w in f. Define, for f € K(A),

vo(f) = min{|w| : (f,w) # 0}

where we take v(0) = oo. So, for instance, v(zy? + yz) = 2. One easily verifies
that v is a discrete valuation, that is:

v(fg) = v(f) +v(g)
o(f +g) = min{u(f),v(g)}-

Tt is immediate that I,,, = {f € K(A) : v(f) > m} is an ideal of K (A) for m > 1.

Define p: A* — K(A) by u(a) = 1+ a for a € A. That is p(1) = 1 and
wlar-+-an) = (L +a1) -+ (1 + ay). The map p is known as the Magnus trans-
form [3]. The classical binomial theorem admits the following generalization [3]
Prop. 6.3.6].

Proposition 1. Let u € A*. Then pu(u) = Z (u>v
vEA*

2 Eilenberg’s Theorem

Fix a prime p. Suppose that 0 <r < p and u € A*. Define
w
Liu;r) = {w € A* : <u) = r mod p}.

Eilenberg proved the following theorem [2].

Theorem 2 (Eilenberg). Let p be a prime. A regular language L C A* is
recognized by a finite p-group if and only if it belongs to the Boolean algebra
generated by languages of the form L[u;r] with u € A* and 0 <r < p.

8 B. Steinberg

Our goal is to use matrix representations to prove this theorem. From now on
K will be Z,. Set R = Z,(A) and, for m > 1, put R,,, = R/I, = Zp(A)/L;
R,, is a truncated polynomial algebra. Notice that R,, is finite since each coset
can be uniquely represented by a polynomial of degree at most m — 1. Define a
truncated Magnus transform p,,: A* — R,,, by composing p with the projection
R — R,,. We immediately obtain from Proposition [

fim () = |v|§<:m (Z) v+ L. 2)

Let Gy, = {f + I : (f,1) = 1}; evidently G,, is a submonoid of R,, containing
the image of pi,,. In fact it turns out to be a p-group.

Proposition 3. Let f € R be such that v(f) > 1. Then (1 + f)Pk = 1mod I,
whenever pF > m.

Proof. Since R has characteristic p, we have (1 + f)pk =1+ fpk 1 mod I,
since v(fP*) = pFu(f) > m. O

Corollary 4. The submonoid G, of R, is a finite p-group.

Proof. Since f has constant term 1, it follows v(f — 1) > 1. Applying Proposi-
tionBlto f =14 (f — 1), we have fpk +1I,, =1+ I, for p* > m. We conclude
G, 18 a p-group. ad

We may now deduce that L[u;r] is recognized by a p-group. Indeed, choose m >
|u|. Viewing j,, as a homomorphism ji,,,: A* — G, we have L[u;r] = p, 1 (T)
where T = {f + I, € Gy, : (f,u) = r}. It follows that g, i, (L[u;7]) = Liusr]
and so the p-group G,,, recognizes L[u;r]. We have thus proved:

Proposition 5. If m > |u|, then the finite p-group Gy, recognizes L|u;r].

In fact it is easy to see that any language recognized via p,, is a Boolean com-
bination of languages of the form L{u;r| with |u| < m.

Proposition 6. Suppose that i, i, (L) = L. Then L is in the Boolean algebra
o generated by languages of the form Lu;r] with |u| < m.

Proof. Tt suffices to show that if T C i, (A*), then p t(T) is in /. Since
puH(T) = User L ({f}), without loss of generality we may assume T = {f}.
But (@) immediately yields

2D = () Llv

|[v|<m

completing the proof. O

Subsequence Counting, Matrix Representations and a Theorem of Eilenberg 9

In light of Proposition[@ to complete the proof it suffices to show that any onto
homomorphism from A* to a finite p-group factors through p.,, for some m > 0.
Up until this point, the proof has been more or less the same as the one presented
in [2]. Eilenberg uses group algebras to complete the proof; we opt for matrix
representations.

Denote by GL(n,p) the group of n x n invertible matrices over Z,. A matrix
is called wunitriangular if it is upper triangular with diagonal entries all equal to
1; the subgroup of unitriangular n x n matrices is denoted UT (n, p). Notice that

|[UT (n,p)| = p(g) and hence UT'(n,p) is a p-group. In fact, since

GL(np) = [[6" — ") = o [— 1),
k=0 =1

it follows that UT(n,p) is a p-Sylow subgroup of GL(n,p) (using that p{p’ —1
for ¢ > 1). It is now easy to prove that every finite p-group is isomorphic to a
group of unitriangular matrices (I learned of this proof from Margolis).

Theorem 7. Let G be a finite p-group of order n = p*. Then G is isomorphic
to a subgroup of UT(n,p).

Proof. By Cayley’s Theorem, G is isomorphic to a subgroup of the symmet-
ric group S,,. But S, is isomorphic to the subgroup of GL(n,p) consisting of
the permutation matrices (zero-one matrices with a single one in each row and
column). Thus without loss of generality we may assume G is a subgroup of
GL(n,p). But then Sylow’s Theorem implies that some conjugate of G is con-
tained in UT(n, p), establishing the theorem. O

Denote by M (n,p) the ring of n x n matrices over Z,. Let N(n,p) be the ring of
n X n upper triangular matrices with all diagonal entries equal to 0 The following
fact is well known.

Lemma 8. The ring N(n,p) is nilpotent of index n, that is, N(n,p)™ = 0.

Proof. Suppose that AM ... A" € N(n,p). Then since these matrices are
upper triangular:

n 1 2 n
(A Aty = 3T ARAR AT B)
1< <ip <o <ip 1 <n

It follows that i = igy1 for some 1 < k < n and hence the right hand side of
@) is 0 as the diagonal entries of the A(™) are 0. O

From the lemma we deduce the desired property of the family {i, }.

Corollary 9. Let ¢: A* — G be an onto homomorphism with G a p-group of
order n = p*. Then there exists a unique homomorphism ¥ : p,(A*) — G such
that the diagram

« Hn *
A > fin (A7)

commutes.

10 B. Steinberg

Proof. Without loss of generality we may assume that G C UT(n,p). Define
a: A* — M(n,p) by a(a) = p(a) — I (where I is the identity matrix). We may
extend « uniquely to Z,(A) by setting

. (3 w> ~ Y cuatu)

weA*

Notice that a(Z,(A)) C N(n,p) since p(a) € U(n, p) implies p(a)—I € N(n,p).
Lemma [then yields I,, € kera. Thus there is an induced homomorphism
Y Zy(A)/ L, — M(n,p) given by ¢(f + I,) = a(f). Observe that

Ypn(a) =9I +a+In) =a(l+a) =TI +ala) =I+p(a) - 1=)

and so Yu, = . Uniqueness of ¥ is clear since all monoids in question are
generated by A. O

There’s not much else left to do to finish the proof of Eilenberg’s theorem.

Proof (Eilenberg’s Theorem). Proposition [l shows that the Boolean algebra gen-
erated by the languages L[u; 7] consists of languages recognized by p-groups. For
the converse, suppose L is recognized by a p-group G via a homomorphism
0: A* — G (so ¢ '¢(L) = L). Factor ¢ = ¥pu, as per Corollary[@ Then

L C oy pn(L) € pp ™Mb (L) = o (L) = L

and so L is a Boolean combination of the desired form by Proposition [0l This
completes the proof. O

References

1. Almeida, J., Margolis, S.W., Steinberg, B., Volkov, M.V.: Representation theory
of finite semigroups, semigroup radicals and formal language theory. Trans. Amer.
Math. Soc. (to appear)

2. Eilenberg, S.: Automata, languages, and machines. Vol. B. Academic Press, New
York (1976); Tilson, B.: Depth decomposition theorem, Complexity of semigroups
and morphisms. In: Pure and Applied Mathematics, Vol. 59 (1976)

3. Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge (1997)

4. Péladeau, P.: Sur le produit avec compteur modulo un nombre premier. RATRO
Inform. Théor. Appl. 26(6), 553-564 (1992)

5. Weil, P.: Closure of varieties of languages under products with counter. J. Comput.
System Sci. 45(3), 316-339 (1992)

Synchronizing Automata
and the Cerny Conjecture

Mikhail V. Volkov

Department of Mathematics and Mechanics,
Ural State University, 620083 Ekaterinburg, Russia
Mikhail.Volkov@usu.ru

Abstract. We survey several results and open problems related to syn-
chronizing automata. In particular, we discuss some recent advances to-
wards a solution of the Cerny conjecture.

1 History and Motivations

Let o7 = (Q, X, 6) be a deterministic finite automaton (DFA), where @) denotes
the state set, X' stands for the input alphabet, and 6 : Q@ x X — @ is the
transition function defining an action of the letters in X on . The action
extends in a unique way to an action @ x X* — @ of the free monoid X*
over Y; the latter action is still denoted by 6. The automaton .o/ is called
synchronizing if there exists a word w € X* whose action resets &7, that is
to leave the automaton in one particular state no matter which state in Q it
started at: 6(q,w) = 6(¢’,w) for all ¢,¢' € Q. Any word w with this property
is said to be a reset word for the automaton.
Fig.1 shows an example of a synchroniz-
ing automaton with 4 states. The reader can
easily verify that the word ab®ab3a resets the
automaton leaving it in the state 1. With
somewhat more effort one can also check that
ab3ab®a is the shortest reset word for this
automaton. The example in Fig.1 is due to
Cerny, a Slovak computer scientist, in whose
pioneering paper (M) the notion of a syn-
chronizing automaton explicitly appeared for
the first time. (Cerny called such automata
directable. The word synchronising in this Fig.1. A synchronizing automaton
context was probably introduced by
M)) Implicitly, however, this concept has
been around since the earliest days of automata theory. The very first synchro-
nizing automaton that we were able to trace back in the literature appeared in
Ashby’s classic book (m, pp.60-61). There Ashby presents a puzzle dealing
with taming two ghostly noises, Singing and Laughter, in a haunted mansion.
Each of the noises can be either on or off, and their behaviour depends on com-
binations of two possible actions, playing the organ or burning incense. Under

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 11{27] 2008.
© Springer-Verlag Berlin Heidelberg 2008

12 M.V. Volkov

a suitable encoding, this leads to the following automaton with 4 states and 4
input letters:

Fig. 2. Ashby’s “ghost taming” automaton

Here 00 encodes the state when both Singing and Laughter are silent, 01 stands
for the state when Singing is of but Laughter is on, etc. Similarly, a stands
for the transition that happens when neither the organ is played nor incense
is burned, b encodes the transition caused by organ-playing in the absence of
incense-burning, etc. The problem is to ensure silence, in other words, to bring
the automaton in Fig.[2to the state 00. Ashby only solves the problem under the
assumption that the automaton is in the state 11 and his suggested solution is
encoded by the word acb. However, it is easy to check that acb is in fact a reset
word for the automaton so applying the corresponding sequence of actions will
get the house quiet from any initial configuration. It is not clear whether or not
Ashby realized this nice feature of his automaton, and moreover, the fact that
Ashby’s automaton is synchronizing seems to be overlooked for many years.
Let us return to the genesis of the concept of synchronizing automata. In
,) this notion arose within the classic framework of Moore’s
“Gedanken-experiments” M) For Moore and his followers finite automata
served as a mathematical model of devices working in discrete mode, such as
computers or relay control systems. This leads to the following natural problem:
how can we restore control over such a device if we do not know its current
state but can observe outputs produced by the device under various actions?
Moore M) has shown that under certain conditions one can uniquely deter-
mine the state at which the automaton arrives after a suitable sequence of actions
(called an ezperiment). Moore’s experiments were adaptive, that is, each next
action was selected on the basis of the outputs caused by the previous actions.
sburg (@) considered more restricted experiments that he called uniform.
A uniform experimentEl is just a fixed sequence of actions, that is, a word over

L After (@, M), the name homing sequence has become standard for the notion.

Synchronizing Automata and the Cerny Conjecture 13

the input alphabet; thus, in Ginsburg’s experiments outputs were only used for
calculating the resulting state at the end of an experiment. From this, just one
further step was needed to come to the setting in which outputs were not used
at all. It should be noted that this setting is by no means artificial—there exist
many practical situations when it is technically impossible to observe output sig-
nals. (Think of a satellite which loops around the Moon and cannot be controlled
from the Earth while “behind” the Moon.)

It is not surprising that synchronizing automata were re-invented a number
of times. First of all, the notion was very natural by itself and fitted fairly well
in what was considered as the mainstream of automata theory in the 1960s.
Second, Cerny’s paper M) published in Slovak language remained unknown
in the English-speaking world for some time. As examples, we mention here

the report (Laemmel & Rudner, [1969) and the paper (Iﬂthkr_&imm@
) both rediscovering results from . The books
|H§nmg|, 11968&; [Kohavi, |_L9_Zd) also present some 1nf0rmat10n about synchromzmg
automata but do not refer to m, M) It seems that the situation begun
to change only in 1972 when the English translation of the book M, m)
appeared.

The original “Gedanken-experiments” motivation for studying synchronizing
automata is still of importance, and reset words are frequently applied in model-
based testing of reactive systemsE. Rather unexpectedly, an additional source of
problems related to synchronizing automata has come from robotics or, more pre-
cisely, from part handling problems in industrial automation such as part feeding,
fixturing, loading, assembly and packing. Within this framework, the concept of a
synchronizing automaton was again rediscovered in the mid-1980s by [Natarajan
m). We explain how abstract automata arise in part handling problems
by means of a simple illustrative example from dAnanmth&j@hmI |2_QQ4I

Suppose that a part of a certain device has the shape
shown in Fig. 3. Such parts arrive at manufacturing sites
in boxes and they need to be sorted and oriented before
assembly. For simplicity, assume that only four initial ori-
entations of the part shown in Fig. 3 are possible, namely,
the four shown in in Fig.[l

Fig. 3. A part

Fig. 4. Four possible orientations

Further, suppose that prior the assembly the part should take the “bump-left”
orientation (the second one in Fig H). Thus, one has to construct an orienter

2 See (IQth_La], l]_&&‘i; Mnm, 11399) as typical samples of technical contribu-

tions to the area and (Im, M) for a recent survey.

14 M.V. Volkov

which action will put the part in the prescribed position independently of its
initial orientation.

Of course, there are many ways to design such an orienter but practical consid-
erations favor methods which require little or no sensing, employ simple devices,
and are as robust as possible. For our particular case, these goals can be achieved
as follows. We put parts to be oriented on a conveyer belt which takes them to
the assembly point and let the stream of the parts encounter a series of passive
obstacles placed along the belt. We need two type of obstacles: high and low. A
high obstacle should be high enough in order that any part on the belt encoun-
ters this obstacle by its rightmost low angle (we assume that the belt is moving
from left to right). Being curried by the belt, the part then is forced to turn
90° clockwise. A low obstacle has the same effect whenever the part is in the
“bump-dow” orientation (the first one in Fig.Hl); otherwise it does not touch the
part which therefore passes by without changing the orientation.

low

HIGH, low

low low

Fig. 5. The action of the obstacles

The scheme in Fig. Bl summarizes how the aforementioned obstacles effect the
orientation of the part. The reader immediately recognizes the synchronizing
automaton from Fig. 1. Remembering that its shortest reset word is the word
ab’ab3a, we conclude that the series of obstacles

low-HIGH-HIGH-HIGH-low-HIGH-HIGH-HIGH-low

yields the desired sensor-free orienter.

Since the 1990s synchronizing automata usage in the area of robotic manipula-
tion has grown into a prolific research direction but it is fair to say that publica-
tions in this direction deal mostly with implementation technicalities. However,
amongst them there are papers of theoretical importance such as
11990; [Goldberg, [1993; IChen & Terardi, [1994).

Speculating about further possible applications of synchronizing automata,
one can think of biocomputing. Here we refer to recent experiments

dB.QIJ.enSQn_eJ;_al 2001, [ZLKE) in which DNA molecules have been used as both

hardware and software for finite automata of nanoscaling size. For instance,

9

Synchronizing Automata and the Cerny Conjecture 15

Benenson et al (I@Dj) produced a “soup of automata”, that is, a solution con-
taining 3 x 10'2? identical automata per pl. All these molecular automata can
work in parallel on different inputs, thus ending up in different and unpredictable
states. In contrast to an electronic computer, one cannot reset such a system by
just pressing a button; instead, in order to synchronously bring each automaton
to its “ready-to-restart” state, one should spice the soup with (sufficiently many
copies of) a DNA molecule whose nucleotide sequence encodes a reset word.
Clearly, from the viewpoint of applications, real or yet imaginary, algorithmic
and complexity issues are of crucial importance. We discuss them in Section 2.
Putting applications aside, mathematicians since the 1960s have intensively
studied synchronizing automata per se, as an interesting combinatorial object.
These studies are mainly motivated by the Cerny conjecture. Cerny M) con-
structed for each n > 1 a synchronizing automaton %, with n states which
shortest reset word has length (n — 1)? (the automaton in Fig. 1 is %}). Soon
after that he conjectured that those automata represent the worst possible case,
that is, every synchronizing automaton with n states can be reset by a word
of length (n — 1)%. By now this simply looking conjecture is arguably the most
longstanding open problem in the combinatorial theory of finite automata. We
will discuss the Cerny conjecture and some related partial results in Section 3.
Other mathematical motivations for studying synchronizing automata come

from semigroup theory (see \Ananichev & Volkov, |2£)Q_41) multiple-valued logic
and symbolic dynamics (see Mateescu & Salomaal, |_L9_9_Q The latter connection
is especially interesting in view of a recent breakthrough in the area—a (positive)
solution to the Road Coloring Problem found by [Trahtman (Im but it clearly
deserves a separate survey.

2 Algorithms and Complexity

It should be clear that not every DFA is synchronizing. Therefore, the very first
question that we should address is the following one: given an automaton < ,
how to determine whether or not < is synchronizing?

This question is in fact quite easy, and the most straightforward solution to
it can be achieved via the classic power automaton construction. Recall that the
power automaton P (<) of a given DFA o7 = (Q, X, ¢) has the collection P'(Q)
of the non-empty subsets of () as the state set and the natural extension of § to the
set P’(Q) x X as the transition function (still denoted by ¢). In other words, for P
being a non-empty subset of @ and a € X', one sets 6(P,a) = {6(p,a) | p € P}.
Fig.[d presents the power automaton for the DFA %, shown in Fig. 1.

Now it is obvious that a word w € X* is a reset word for the DFA & if and
only if w labels a path in P(&7) starting at @ and ending at a singleton. (For
instance, the bold path in Fig.[f represents the shortest reset word ab®ab3a of
the automaton %4.) Thus, the question of whether or not a given DFA & is
synchronizing reduces to the following reachability question in the underlying
digraph of the power automaton P(&/): is there a path from @ to a singleton?
The latter question can be easily answered by breadth-first search (see, e.g.,

\Corman et. al, 2001, Section 22.2).

16 M.V. Volkov

Fig. 6. The power automaton P(%4)

The described procedure is conceptually very simple but rather inefficient
because the power automaton P(«7) is exponentially larger than <. However,
the following criterion of synchronizability , m, Theorem 2) gives rise
to a polynomial algorithm.

Proposition 1. A DFA o = (Q, X, 6) is synchronizing if and only if for every
q,q" € Q there exists a word w € X* such that 6(q,w) = 6(¢’,w).

One can treat Proposition [0l as a reduction of the synchronizability problem to
a reachability problem in the subautomaton P2 (&) of P(<7) whose states are

1
2-element and 1-element subsets of (). Since the subautomaton has \Q|(\Q;| +1)

states, breadth-first search solves this problem in O(|Q|* - |¥|) time. This com-
plexity bound assumes that no reset word is explicitly calculated. If one requires
that, whenever & turns out to be synchronizing, a reset word is produced, then
the best of the known algorithms (which is due to , 1990, Theorem 6),
see also (Sandberg, [2005, Theorem 1.15)) has an implementation that consumes
O(|Q]* + |Q* - |X]) time and O(|Q[* + |Q| - |X|) working space, not counting
the space for the output which is O(|Q[?).

For a synchronizing automaton, the power automaton can be used to construct
shortest reset words which correspond to shortest paths from the whole state set
to a singleton. Of course, this requires exponential (of |@|) time in the worst
case. Nevertheless, there were attempts to implement this approach (see, e.g.,

[Rho et. al, 1993; Trahtman, 20064). One may hope that, as above, a suitable

calculation in the “polynomial” subautomaton P! («7) may yield a polynomial

Synchronizing Automata and the Cerny Conjecture 17

algorithm. However, it is not the case, and moreover, as we will see, it is very
unlikely that any reasonable algorithm may exist for finding shortest reset words
in general synchronizing automata. In the following discussion we assume the
reader’s acquaintance with some basics of computational complexity (such as
the definitions of the complexity classes NP, coNP and PSPACE) that can be
found, e.g., in (Garey & Johnson, [1979; [Papadimitriou, [1994).

Consider the following decision problems:

SHORT-RESET-WORD: Given a synchronizing automaton </ and a positive in-
teger £, is it true that </ has a reset word of length £ ¢

SHORTEST-RESET-WORD: Given a synchronizing automaton </ and a positive
integer £, is it true that the minimum length of a reset word for </ is equal
to £?

Clearly, SHORT-RESET-WORD belongs to the complexity class NP: one can
non-deterministically guess a word w € 2™ of length ¢ and then check if w is a
reset word for &/ in time /|Q|. [Eppstein (1990) has proved that
SHORT-RESET-WORD is NP-hard by a polynomial reduction from 3-SAT. Thus,
SHORT-RESET-WORD is NP-complete. Other proofs for the same result (all
via reductions from 3-SAT) have been suggested in (Goralcik & Koubek, 1995
Salomaal, 2003; [Samotij, [2 leﬂ From the proofs it follows easily that SHORTEST-
RESET-WORD is NP-hard,; recentlym M) has shown that the negation
of 3-SAT can be polynomially reduced to SHORTEST-RESET-WORD whence the
latter problem is also coNP-hard. As a corollary, SHORTEST-RESET-WORD can-
not belong to NP unless NP =coNP which is commonly considered to be very
unlikely. In other words, even non-deterministic algorithms cannot find the min-
imum length of a reset word for a given synchronizing automaton in polynomial
time.

On the other hand, the exhaustive search for reset words through all words
over X of length < ¢ can be performed in polynomial (in fact, linear) space since
one can reuse space. Thus, the problem SHORTEST-RESET-WORD belongs to the
complexity class PSPACE; the question of the precise location of this problem
with respect to the polynomial hierarchy still remains open. An upper bound
has been recently found by Martjugin (unpublished) who has shown that the
problem lies in the complexity class X2 N I12.

By a standard argument, the hardness of the decision problem SHORT-RESET-
WORD implies that its optimization version, in which one seeks a reset word of
minimum length for a given synchronizing automaton, is hard as well. This did
not exclude however that the optimization problem might admit a polynomial-
time approximation algorithm, and moreover, all existing proofs for NP-hardness
of SHORT-RESET-WORD were consistent with the conjecture that such an algo-
rithm exists. However, recently Berlinkov (unpublished) has shown (assuming
P # NP) that, for any given positive integer k, no polynomial algorithm can
find for each synchronizing automaton &/ a reset word whose length would be
bounded by k times the minimum length of reset words for 7. Thus, approxi-
mating the minimum length of reset words is hard.

18 M.V. Volkov

We mention that [Pixley et al (1992) suggested an heuristic algorithm for find-
ing short reset words in synchronizing automata that was reported to perform
rather satisfactory on a number of benchmarks from (@,); further algo-
rithms yielding short (though not necessarily shortest) reset words were imple-

mented by [Trahtman (2006a).

3 The Cerny Conjecture

In this section we discuss results and open problems related to the following
natural question: given a positive integer n, how long can be reset words for
synchronizing automata with n states?

First of all, we recall Cerny’s construction (M) For n > 1, let %, stand
for the DFA whose states are the residues modulo n and whose input letters a
and b act as follows:

6(0,a) =1, 6(m,a) =mfor 0 <m <n, 6(m,b) =m+1 (mod n).

Fig. 7. The automaton %,

Cerny (I@) has proved that %, is a synchronizing automaton and that its
shortest reset word is (ab™1)"~2a of length (n — 1)?. (This series of automata
was rediscovered many times, see, e.g., (Laemmel & Rudner, 1969; Fischler &
Tannenbaum, 1970; Eppstein, 1990).) Thus, if we define the Cerng function
C(n) as the maximum length of shortest reset words for synchronizing automa-
ta with n states, the above property of the series {%,}, n =2,3,..., yields the
inequality C(n) > (n—1)2. The Cerny conjecture is the claim that the equality
C(n) = (n — 1)? holds true.

In the literature, one often refers to ,) as the source of the Cerny
conjecture. In fact, the conjecture was not yet formulated in that paper. There
Cerny only observed that

(n—12*<Cm)<2"—n—1 (1)

and concluded the paper with the following remark:

Synchronizing Automata and the Cerny Conjecture 19

“The difference between the bounds increases rapidly and it is necessary
to sharpen them. One can expect an improvement mainly for the upper
bound.”

The conjecture in its present-day form was formulated a bit later, after the
expectation in the above quotation was confirmed by Starkd M) (Namely,
Starke improved the upper bound in (@) to 1 + "(”712)(”72), which was the
first polynomial upper bound for C(n).) Cerny explicitly stated the conjecture
C(n) = (n —1)? in his talk at the Bratislava Cybernetics Conference held in
1969; in print the conjecture first appeared in (Cerny et al, |191].|)

The best upper bound for the Cerny function C(n) achieved so far guarantees
that for every synchronizing automaton with n states there exists a reset word
of length "36_ ™. Such a reset word arises as the output of the following greedy
algorithm.

Algorithm 1.
input & = (Q,X,6) (a DFA)

initialization w < 1 (the empty word)
P—Q

while |P| > 1 find a word v € X* of minimum length with [6(P,v)| < |P|; if
none exists, return Failure
w — wu

P — §(P,v)

return w

If |Q] = n, then clearly the main loop of Algorithm 1 is executed at most
n — 1 times. In order to evaluate the length of the output word w, we estimate
the length of each word v produced by the main loop.

Consider a generic step at which |[P| = k > 1 and let v = a1 ---ay with
a; € X, i=1,...,0. Then it is easy to see that the sets

P =P, P, =06(P,a1), ..., Pp=06(P—1,a0-1)

are k-element subsets of Q. Furthermore, since |6(FPp,ar)| < |P|, there exist
two distinct states q¢,q; € Py such that 6(qr,ar) = 6(q),ar). Now define 2-
element subsets R; = {¢i,¢;} C P;, i = 1,...,¢, such that 6(¢;,a;) = qiy1,
6(q;,a;) = qjy, for i = 1,...,£ — 1. Then the condition that v is a word of
minimum length with [§(P,v)| < |P| implies that R; ¢ P; for 1 < j < i < (.
Altogether, we arrive at the following purely combinatorial problem:

Question 1. Let @ be an n-element set, Pi,..., P, a sequence of its k-element
subsets (k > 1) and Ry,..., R, a sequence of its 2-element subsets. Suppose
that R; C P, foreach i =1,...,¢ but R; ¢ P; for 1 < j <14 < (. How big the
number ¢ can be?

20 M.V. Volkov

Question Ml was solved by [Frankl (1982) who found the tight bound ¢ < ("h2).
Summing up these inequalities from k£ = n to k = 2, one arrives at the afore-
mentioned bound

C(n) < . (2)
6

In the literature the bound (Z) is usually attributed to Pin who explained the
above connection between Algorithm 3.1 and Question [and conjectured the
estimation ¢ < (""¥2) in his talk at the Colloquium on Graph Theory and
Combinatorics held in Marseille in 1981; Frankl learned Question [I] from that
talk. Accordingly, the usual reference for (@) is the paper (Pin, [1983) based on
the talk. The full story is however more complicated. Actually, the bound (2)) first
appeared in (Fischler & Tannenbaum, [1970) where it was deduced from a com-
binatorial conjecture equivalent to Pin’s one. [Fischler & Tannenbauml presented
their paper at the 11th FOCS conference but that time there was no Frankl
in the audience so that the conjecture remained unproved and the paper even-
tually got lost in limbo. The bound (Z]) then reoccurred in i
(@ @ but the argument justifying it in these papers was insufficient. Later
both () and Frankl’s solution to Question [l were independently rediscovered in
(Klyachko et al, [1987).

If one executes Algorithm 1 on the Cerny automaton %, (Fig.Blis quite help-
ful here), one sees that the algorithm returns the word ab*abab3a of length 10
which is not the shortest reset word for 44 . This reveals one of the main intrin-
sic difficulties of the synchronization problem: the standard optimality principle
does not apply here since it is not true that the optimal solution behaves op-
timally also in all intermediate steps. In our example, the optimal solution is
the word ab3ab®a but it cannot be found by the greedy algorithm because the
algorithm chooses v = b%a rather than v = b3a on the second execution of the
main loop.

Another difficulty behind the scene is that there are only very few examples of
extreme synchronizing automata, that is n-state synchronizing automata whose
shortest reset words have lengths (n — 1)2. In fact, the Cerny series €, n =
2,3,..., is the only known infinite series of extreme synchronizing automata.
Besides that, we know only a few isolated examples of such automata: up to
isomorphism and adding/removing non-essential letters, there are three extreme
automata with 3 states, three extreme automata with 4 states (see Fig.[]), one
extreme automaton with 5 states recently found by Roman, see Flg [and one
extreme automaton with 6 states found by [Kari (@ see Fig.[I0

Moreover, even synchronizing automata whose shortest reset words have
lengths close to the Cerny bound are very rare. For instance, we are not aware of
any 5-state synchronizing automaton whose shortest reset word has length 24,
nor of any 6-state synchronizing automaton whose shortest reset word has length
33 or 34 or 35, etc. As for regular constructions of “almost-extreme” automata,
we know just one series of n-state synchronizing automata with odd n > 5 such
that the minimum length of reset words for the n'* automaton in the series is

equal to (n — 1)(n — 2), see (Ananichev et al, 2007).

Synchronizing Automata and the Cerny Conjecture

Fig. 9. Roman’s automaton

21

22 M.V. Volkov

Fig. 10. Kari’s automaton

In general, “slowly” synchronizing automata turn out to be rather exceptional,
and this observation is supported also by probabilistic arguments. Indeed, if @
is an n-element set (with n large enough), then, on average, any product of
2n randomly chosen transformations of @) is known to be a constant map, see
(M7 @) Being retold in automata-theoretic terms, this fact implies that a
randomly chosen DFA with n states and a sufficiently large input alphabet tends
to be synchronizing, and moreover, the length of its shortest reset word does not
exceed 2n. This means, in particular, that there is no hope to find new examples
of “slowly” synchronizing automata, to say nothing of a counterexample to the
Cerny conjecture, via a random sampling experiment.

The Cerny conjecture has been confirmed for various classes of synchroniz-
ing automata satisfying some additional restrictions. We conclude with a (non-
complete) list of the most important results of this sort.

We begin with Eppstein’s result (@) in which restrictions are imposed on
the action of the letters on the state set. Consider the set {0,1,...,n — 1}
equipped with the natural cyclic order 0 < 1 < 2 < --- <n—1 <1 (here
k < ¢ means that ¢ immediately follows k). If 41,4s,...,4, are numbers in
{0,1,2,...,n — 1}, we call the sequence iy,ia,...,0y cyclic if, after removal
of possible adjacent duplicate numbers, it is a subsequence of a cyclic shift of
the sequence 0,1,2,...,n — 1. In a slightly more formal language, we may say
that i1,42,...,%,n is a cyclic sequence if there exists no more than one index
t € {1,...,m} such that i;y; < 4; where i,,11 is understood as i; and <
stands for the usual strict linear order on {0,1,2,...,n —1}. A transformation
a of the set {0,1,2,...,n—1} is said to be orientation preserving if the numbers
Oa, la, ..., (n — 1)a form a cyclic sequence. Now let &7 = (Q, X, 6) be a DFA
with n states. We say that & is orientable if its states can be indexed by
0,1,2,...,n—1 so that all the transformations §(L,a) : Q — @ induced by the
letters a € X are orientation preserving. For instance, Cerny’s automata %, ,
n =2,3,..., are orientable.

Eppstein’s interest in orientable automata (which he called monotonic) was
motivated by the robotics applications of synchronizing automata. Indeed, in the
problem of sensor-free orientation of polygonal parts one deals with solid bodies
whence only those transformations of polygons are physically meaningful that

Synchronizing Automata and the Cerny Conjecture 23

preserve relative location of the faces of these polygons. It was observed already
by Natarajan (1986) that in the “flat” case (when the polygonal parts do not
leave a certain plane, say, the surface of a conveyer belt) this physical requirement
leads precisely to orientation preserving transformations. In ,)
Theorem 2) it is proved that, in accordance with the Cerny conjecture, every
orientable synchronizing automaton with n states has a reset word of length
(n—1)2. An extension of this result to a larger class of synchronizing automata
whose letter actions mimic certain “spatial” transformations of solid polygons
was obtained by |Ananichev & Volkov (2004).

) has proved the Cerny conjecture for yet another natural class
of automata also containing the Cerny series: automata in which a letter acts
on the state set @) as a cyclic permutation of order |Q].

In Kari’s elegant paper (@) the restriction has been imposed on the un-
derlying digraphs of automata in question, namely, the Cerny’s conjecture has
been verified for synchronizing automata with Eulerian digraphs. Moreover, it
has been proved that if the underlying digraph of an n-state synchronizing au-
tomaton is Eulerian then there exists a reset word of length (n —2)(n —1) +1
, , Theorem 2). It is unknown whether or not this bound is tight.

Recall that the transition monoid of a DFA & = (Q, X, 6) is the monoid con-
sisting of all transformations 6(Ls, w) : @ — @ induced by the words w € X*.
Several authors have studied synchronization issues for automata whose tran-
sition monoids satisfy certain abstract properties. An important example of a
property of automata expressed in this language is aperiodicity. A monoid is
said to be aperiodic if all its subgroups are singletons; a DFA is called aperiodic
(or counter-free) if its transition monoid is aperiodic. Aperiodic automata play
a distinguished role in many aspects of formal language theory and its connec-
tions to logic, see the classic monograph by McNaughton & Papert <|19_Z].|) Thus,
studying synchronization within this important subclass of automata appears to
be well justified, especially if one takes into account that the problem of finding
short reset words is known to remain difficult when restricted to aperiodic au-
tomata. Indeed, inspecting the reductions from 3-SAT used in (M m)

GGQr_almk_&;Iﬁm_bgH 11995) or (Salomaal, [2003), one can observe that in each
case the construction results in an aperiodic automaton, and therefore, the ques-
tion of whether or not a given aperiodic automaton admits a reset word whose
length does not exceed a given positive integer is NP-complete.

Recently (@) has proved that every synchronizing aperiodic au-

tomaton with n states admits a reset word of length at most "(" D' Thus,
the Cerny conjecture holds true for synchronizing aperiodic automata. However,
the problem of establishing a precise bound for the minimum length of reset
words for synchronizing aperiodic automata with n states still remains open,
and moreover, we do not even have a reasonably justified conjecture for this
case. Denote by Ca(n) the minimum length of reset words for synchronizing
aperiodic automata with n states, that is, the restriction of the Cerny function

to the class of aperiodic automata. Then Trahtman’s result can be expressed by
n(n —1)

the inequality C'a(n) < . However, the only non-trivial lower bound for

24 M.V. Volkov

Ca(n), which has been established so far, is linear, namely, C4(n) > n+ LZJ -2

for n > 7. (This bound comes from Ananichev’s paper (2005).) One sees that
the gap between the two bounds is fairly large. We believe that the actual value
of C'4(n) is closer to the lower bound.

,2007) the results from (Trahtman, 2007) have been extended to
a larger class of automata and improved. In particular, it has been proved that
if the underlying digraph of an n-state aperiodic automaton is strongly con-
nected, then the automaton has a reset word of length L"(”6+1)J (Im7 m,
Corollary 1).

Another large class of finite monoids which is of importance for formal lan-
guage theory is known under the name DS and can be described as follows: a
finite monoid M belongs to DS if and only if for all z,y, 2,t € N the following
condition holds:

MaxM = MyM = MzM = MtM = MxyM implies MxyM = MztM.

(For the reader acquainted with some basics of semigroup theory, we recall an
equivalent but more standard description of DS: a finite monoid M belongs to
DS if and only if each regular D-class of M is a subsemigroup in M .) Recently
\Almeida. et_al (lZDDS have proved the Cerny conjecture for synchronizing autom-
ata with transition monoids in DS. Again, the problem of establishing a precise
bound for the minimum length of reset words for synchronizing automata in this
class still remains open.

References

Almeida, J., Margolis, S., Steinberg, B., Volkov, M.V.: Representation theory of finite
semigroups, semigroup radicals and formal language theory. Trans. Amer. Math.
Soc. (to appear, 2008), http://arxiv.org/abs/math/0702400v1

Ananichev, D.S.: The mortality threshold for partially monotonic automata. In: De
Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 112-121. Springer,
Heidelberg (2005)

Ananichev, D.S., Volkov, M.V.: Some results on Cerny type problems for transforma-
tion semigroups. In: Araujo, I., Branco, M., Fernandes, V.H., Gomes, G.M.S. (eds.)
Semigroups and Languages, pp. 23-42. World Scientific, Singapore (2004)

Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter of
deficiency 2. Theoret. Comput. Sci. 376(1-2), 30-41 (2007)

Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall, London (1956),
http://pcp.vub.ac.be/books/IntroCyb.pdf

Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Program-
mable and autonomous computing machine made of biomolecules. Nature 414(1),
430-434 (2001)

Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides
a computing machine with both data and fuel. Proc. National Acad. Sci. USA 100,
2191-2196 (2003)

http://arxiv.org/abs/math/0702400v1
http://pcp.vub.ac.be/books/IntroCyb.pdf

Synchronizing Automata and the Cerny Conjecture 25

Booth, T.L.: Sequential Machines and Automata Theory. J. Wiley & Sons, New York
(1967)

Boppana, V., Rajan, S.P., Takayama, K., Fujita, M.: Model checking based on sequen-
tial ATPG. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
418-430. Springer, Heidelberg (1999)

Cerny, J.: Pozndmka k homogénnym eksperimentom s koneénymi automatami.
Matematicko-fyzikalny Casopis Slovensk. Akad. Vied 14(3), 208-216 (1964) (in Slo-
vak)

Cerny, J., Pirické, A., Rosenauerové, B.: On directable automata. Kybernetika 7(4),
289-298 (1971)

Chen, Y.-B., lerardi, D.J.: The complexity of oblivious plans for orienting and distin-
guishing polygonal parts. Algorithmica 14, 367-397 (1995)

Cho, H., Jeong, S.-W., Somenzi, F., Pixley, C.: Synchronizing sequences and symbolic
traversal techniques in test generation. J. Electronic Testing 4, 19-31 (1993)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

Dubuc, L.: Sur le automates circulaires et la conjecture de Cerny. RAIRO Inform.
Theor. Appl. 32, 21-34 (1998) (in French)

Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500-510
(1990)

Fischler, M.A., Tannenbaum, M.: Synchronizing and representation problems for se-
quential machines with masked outputs. In: Proc. 11th Annual Symp. Foundations
Comput. Sci., pp. 97-103. IEEE, Los Alamitos (1970)

Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125-127
(1982)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-completeness. Freeman, San Francisco (1979)

Gill, A.: State-identification experiments in finite automata. Information and Con-
trol 4(2-3), 132-154 (1961)

Ginsburg, S.: On the length of the smallest uniform experiment which distinguishes
the terminal states of a machine. J. Assoc. Comput. Mach. 5, 266-280 (1958)

Goldberg, K.: Orienting polygonal parts without sensors. Algorithmica 10, 201-225
(1993)

Goralcik, P., Koubek, V.: Rank problems for composite transformations. Int. J. Algebra
and Computation 5, 309-316 (1995)

Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proc. 5th Annual
Symp. Switching Circuit Theory and Logical Design, pp. 95-110. IEEE, Los Alamitos
(1964)

Hennie, F.C.: Finite-state Models for Logical Machines. J. Wiley & Sons, New York
(1968)

Higgins, P.M.: The range order of a product of 7 transformations from a finite full
transformation semigroup. Semigroup Forum 37, 31-36 (1988)

Kari, J.: A counter example to a conjecture concerning synchronizing words in finite
automata. EATCS Bull. 73, 146 (2001)

Kari, J.: Synchronizing finite automata on FEulerian digraphs. Theoret. Comput.
Sci. 295, 223-232 (2003)

Klyachko, A.A., Rystsov, L.K., Spivak, M.A.: An extremal combinatorial problem as-
sociated with the bound of the length of a synchronizing word in an automaton.
Kibernetika 25(2), 16-20 (1987) (in Russian); English translation: Cybernetics and
Systems Analysis 23(2), 165-171

26 M.V. Volkov

Kohavi, Z.: Switching and Finite Automata Theory. McGraw-Hill, New York (1970)

Kohavi, Z., Winograd, J.: Bounds on the length of synchronizing sequences and the
order of information losslessness. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines
and Computations, pp. 197-206. Academic Press, New York (1971)

Kohavi, Z., Winograd, J.: Establishing certain bounds concerning finite automata. J.
Comput. Syst. Sci. 7(3), 288-299 (1973)

Laemmel, A.E., Rudner, B.: Study of the application of coding theory, Report PIBEP-
69-034, Polytechnic Inst. Brooklyn, Dept. Electrophysics, Farmingdale (1969)

Mateescu, A., Salomaa, A.: Many-valued truth functions, Cerny’s conjecture and road
coloring. EATCS Bull. 68, 134-150 (1999)

McNaughton, R., Papert, S.A.: Counter-free Automata. MIT Press, Cambridge (1971)

Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.E.,; Mc-
Carthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, vol. 34, pp.
129-153. Princeton University Press, Princeton (1956)

Natarajan, B.K.: An algorithmic approach to the automated design of parts orienters.
In: Proc. 27th Annual Symp. Foundations Comput. Sci., pp. 132-142. IEEE, Los
Alamitos (1986)

Natarajan, B.K.: Some paradigms for the automated design of parts feeders. Internat.
J. Robotics Research 8(6), 89-109 (1989)

Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

Pin, J.-E.: On two combinatorial problems arising from automata theory. Ann. Discrete
Math. 17, 535-548 (1983)

Pixley, C., Jeong, S.-W., Hachtel, G.D.: Exact calculation of synchronization sequences
based on binary decision diagrams. In: Proc. 29th Design Automation Conf., pp.
620-623. IEEE, Los Alamitos (1992)

Rho, J.-K., Somenzi, F., Pixley, C.: Minimum length synchronizing sequences of finite
state machine. In: Proc. 30th Design Automation Conf., pp. 463-468. ACM, New
York (1993)

Salomaa, A.: Composition sequences for functions over a finite domain. Theoret. Com-
put. Sci. 292, 263-281 (2003)

Samotij, W.: A note on the complexity of the problem of finding shortest synchronizing
words. In: Proc. AutoMathA 2007, Automata: from Mathematics to Applications,
Univ. Palermo (CD) (2007)

Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 5-33. Springer, Heidelberg (2005)

Starke, P.H.: Eine Bemerkung iiber homogene Experimente. Elektronische Informa-
tionverarbeitung und Kybernetik 2, 257-259 (1966) (in German)

Starke, P. H.: Abstrakte Automaten, Deutscher Verlag der Wissenschaften, Berlin
(1969) (in German); English translation: Abstract Automata, North-Holland, Ams-
terdam, American. Elsevier, New York (1972)

Trahtman, A.: An efficient algorithm finds noticeable trends and examples concern-
ing the Cerny conjecture. In: Kralovi¢, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 789-800. Springer, Heidelberg (2006)

Trahtman, A.: The Cerny conjecture for aperiodic automata. Discrete Math. Theoret.
Comp. Sci. 9(2), 3-10 (2007)

Trahtman, A.: The Road Coloring Problem. Israel J. Math. (to appear, 2008),
http://arxiv.org/abs/0709.0099

http://arxiv.org/abs/0709.0099

Synchronizing Automata and the Cerny Conjecture 27

Volkov, M.V.: Synchronizing automata preserving a chain of partial orders. In: Holub,
J., Zdérek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 27-37. Springer, Heidelberg
(2007)

Yang, S.: Logic Synthesis and Optimization Benchmarks User Guide Version 3.0, Mi-
croelectronics Center of North Carolina, Research Triangle Park, NC (1991)

About Universal Hybrid Networks of
Evolutionary Processors of Small Size*

Artiom Alhazov!?, Erzsébet Csuhaj-Varju*>?, Carlos Martin-Vide®,
and Yurii Rogozhin®-2

L Abo Akademi University, Department of Information Technologies,
Turku Center for Computer Science, FIN-20520 Turku, Finland
aalhazov@abo.fi
2 Academy of Sciences of Moldova,

Institute of Mathematics and Computer Science,
Academiei 5, MD-2028, Chiginau, Moldova
{artiom,rogozhin}@math.md
3 Computer and Automation Research Institute,
Hungarian Academy of Sciences,

Kende u. 13-17, 1111 Budapest, Hungary
csuhaj@sztaki.hu
4 E6tvos Lorand University,

Faculty of Informatics, Department of Algorithms and Their Applications,
Pazmény Péter sétdny 1/c, H-1117 Budapest, Hungary
® Rovira i Virgili University,

Research Group on Mathematical Linguistics,

P1. Imperial Tarraco 1, 43005 Tarragona, Spain
carlos.martin@urv.cat

Abstract. A hybrid network of evolutionary processors (an HNEP) is
a graph with a language processor, input and output filters associated to
each node. A language processor performs one type of point mutations
(insertion, deletion or substitution) on the words in that node. The fil-
ters are defined by certain variants of random-context conditions. In this
paper, we present a universal complete HNEP with 10 nodes simulat-
ing circular Post machines and show that every recursively enumerable
language can be generated by a complete HNEP with 10 nodes. Thus,
we positively answer the question posed in [B] about the possibility to
generate an arbitrary recursively enumerable language over an alphabet
V with a complete HNEP of a size smaller than 27 + 3 - card(V).

Keywords: Bio-inspired computing, Hybrid networks of evolutionary
processors, Small universal systems, Descriptional complexity, Circular
Post machines.

* The first author gratefully acknowledges the support by Academy of Finland, project
203667. The fourth author gratefully acknowledges the support of European Com-
mission, project MolCIP, MIF1-CT-2006-021666. The first and the fourth authors
acknowledge the Science and Technology Center in Ukraine, project 4032.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 28{39] 2008.
© Springer-Verlag Berlin Heidelberg 2008

About Universal Hybrid Networks of Evolutionary Processors of Small Size 29

1 Introduction

Networks of language processors are finite collections of rewriting systems (lan-
guage processors) organized in a communicating system [6]. The language proces-
sors are located at nodes of a virtual graph and operate over sets or multisets
of words. During the functioning of the network, they rewrite the correspond-
ing collections of words and then re-distribute the resulting strings according
to a communication protocol assigned to the system. The language determined
by the system is usually defined as the set of words which appear at some dis-
tinguished node in the course of the computation. One of the main questions
related to networks of language processors is how much extent their generative
power depends on the used operations and the size of the system. Particularly
important variants are those ones where the language processors are based on
elementary string manipulating rules, since these constructs give insight into the
limits of the power of the simplicity of basic language theoretic operations and
that of distributed architectures.

Networks of evolutionary processors (NEPs), introduced in [4], and also in-
spired by cell biology, are proper examples for these types of constructs. In this
case, each processor represents a cell performing point mutations of DNA and
controlling its passage inside and outside it through a filtering mechanism. The
language processor corresponds to the cell, the generated word to a DNA strand,
and operations insertion, deletion, or substitution of a symbol to the point mu-
tations. It is known that a computationally universal behaviour emerges as a
result of interaction of such simple components (see, for example [TI2]).

In the case of so-called hybrid networks of evolutionary processors (HNEPs),
each language processor performs only one of the above operations on a certain
position of the words in that node. The filters are defined by some variants
of random-context conditions. The concept was introduced in [9], and proved
computationally complete in [5], with 27 + 3 - card(V') nodes for alphabet V.

In this paper, we present a universal complete HNEP with 10 nodes and prove
that every recursively enumerable language can be generated by a complete NHEP
with the same number of nodes. Although these bounds are not shown sharp, we
significantly improve the previous result. The constructions demonstrate that
distributed architectures of very small size, with uniform structure and with
components based on very simple language theoretic operations are sufficient to
obtain computational completeness.

2 Preliminaries

We recall some notions we shall use throughout the paper. An alphabet is a
finite and nonempty set of symbols. The cardinality of a finite set A is written
as card(A). A sequence of symbols from an alphabet V is called a word over V.
The set of all words over V is denoted by V* and the empty word is denoted
by &; we use V't = V*\ {e}. The length of a word z is denoted by |z|, while
we denote the number of occurrences of a letter a in a word = by |z|,. For each
nonempty word z, alph(x) is the minimal alphabet W such that z € W*.

30 A. Alhazov et al.

In our constructions, HNEPs simulate type-0 grammars in Kuroda normal
form and Circular Post Machines.

A type-0 grammar in Kuroda normal form is a construct I' = (N, T, S, P),
where NN is the set of nonterminal symbols, 7" is the set of terminal symbols, N and
T are disjoint sets, S € N is the start symbol, and P is the set of rules of the forms
A— a, A— BC,A— ¢, AB — CD, where A,B,C,D € Nanda € T.
These grammars are known to generate all recursively enumerable languages.

Circular Post Machines (CPMs) were introduced in [7], where it was shown
that all introduced variants of CPMs are computationally complete, and more-
over, the same statement holds for CPMs with two symbols. In [8I3] several
universal CPMs of variant 0 (CPMO0) having small size were constructed, among
them in [3] a universal CPMO with 34 states and 2 symbols. In this article we
use the deterministic variant of CPMO0s.

A Clircular Post Machine is a quintuple (X,), qo, q, P) with a finite alphabet
X7 where 0 is the blank, a finite set of states), an initial state qg € @, a terminal
state qy € @), and a finite set of instructions of P with all instructions having
one of the forms px — q (erasing the symbol read), px — yq (overwriting and
moving to the right), p0 — yq0 (overwriting and creation of a blank), where
z,y € X and p,q € Q.

The storage of this machine is a circular tape, the read and write head move
only in one direction (to the right), and with the possibility to cut off a cell or
to create and insert a new cell with a blank.

In the following, we summarize the necessary notions concerning so-called evo-
lutionary operations, simple rewriting operations abstract local gene mutations.

For an alphabet V, we say that arule a — b, with a,b € VU{e} is a substitution
rule if both a and b are different from ¢; it is a deletion rule if a # ¢ and b = ¢;
and, it is an insertion rule if a = € and b # e. The set of all substitution,
deletion, and insertion rules over an alphabet V are denoted by Suby, Dely,
and Insy, respectively. Given such rules 7, p, o, and a word w € V*, we define
the following actions of o on w: If m =a — b € Suby, p =a — € € Dely, and
o=¢—a € Insy, then

= {0 e W

0= {0 see ®

i) ={ fis e 3)

{w}, otherwise

_ JH{v: w=av},
plw) = { {w}, otherwise ()
o (w) = {uav : Ju,v, € V*(w = uv)}, (5)
o (w) = {wa}, o'(w) = {aw}. (6)

Symbol « € {x,l,r} denotes the way of applying an insertion or a deletion
rule to a word, namely, at any position (a = *), in the left-hand end (a = 1), or

About Universal Hybrid Networks of Evolutionary Processors of Small Size 31

in the right-hand end (@ = r) of the word, respectively. Note that a substitution
rule can be applied at any position. For every rule o, action o € {*,l,7}, and
L C V*, we define the a—action of o on L by 0“(L) = ¢, o*(w). For a given
finite set of rules M, we define the a—action of M on a word w and on a language
L by M¥(w) =Uyep 0%(w) and M(L) =, M*(w), respectively.

Before turning to the notion of an evolutionary processor, we define the fil-
tering mechanism.

For disjoint subsets P, ' C V and a word w € V*, we define the predicate ¢
(¢®? in terminology of [5]) as ¢(w; P, F) = alph(w)NP # 0 A FNalph(w) = 0.
The construction of this predicate is based on random-context conditions defined
by the two sets P (permitting contexts) and F' (forbidding contexts). For every
language L C V* we define o(L, P, F) ={w € L | p(w; P, F)}.

An evolutionary processor over V is a b-tuple (M, PI, FI, PO, FO) where:

- Either M C Suby or M C Dely or M C Insy. The set M represents the
set of evolutionary rules of the processor. Note that every processor is dedicated
to only one type of the above evolutionary operations.

- PI,FI C V are the input permitting/forbidding contexts of the proces-
sor, while PO, FO C V are the output permitting/forbidding contexts of the
processor.

We denote the set of evolutionary processors over V by EPy .

Definition 1. A hybrid network of evolutionary processors (an HNEP, shortly)
is a T-tuple I' = (V,G, N, Cy, , 8,1i0), where the following conditions hold:

-V is an alphabet.

- G = (Xg, Eq) is an undirected graph with set of vertices X and set of
edges Eg. G is called the underlying graph of the network.

- N : Xg — EPy is a mapping which associates with each node x € X¢g the
evolutionary processor N(z) = (Mg, P1,, FI,, PO,, FO,).

-Cy: Xg — 2V is a mapping which identifies the initial configuration of
the network. It associates a finite set of words with each node of the graph G.

-a: Xg — {x1,r}; a(z) defines the action mode of the rules performed in
node x on the words occurring in that node.

-6 Xe — {(1),(2)} defines the type of the input/output filters of a node.
More precisely, for every node, x € X¢, we define the following filters: the input
filter is given as py(-) = @®@)(:; PI,, FI,), and the output filter is defined as
(1) = ?@ (-, PO,, FO,). That is, p,(w) (resp.t,) indicates whether or not the
word w can pass the input (resp. output) filter of x. More generally, p.(L) (resp.
T:(L)) is the set of words of L that can pass the input (resp. output) filter of x.

- 19 € X¢g s the output node of the HNEP.

We say that card(X¢q) is the size of I'. An HNEP is said to be a complete HNEP,
if its underlying graph is a complete graph.

A configuration of an HNEP I, as above, is a mapping C' : Xg — 2~
which associates a set of words with each node of the graph. A component C(x)
of a configuration C' is the set of words that can be found in the node x in this

32 A. Alhazov et al.

configuration, hence a configuration can be considered as the sets of words which
are present in the nodes of the network at a given moment. A configuration
can change either by an evolutionary step or by a communication step. When
it changes by an evolutionary step, then each component C(x) of the configura-
tion C' is changed in accordance with the set of evolutionary rules M, associated
with the node and the way of applying these rules a(x). Formally, the configu-
ration C” is obtained in one evolutionary step from the configuration C, written
as C = C', iff C'(z) = Mﬁ(m)(C(ac)) for all x € X¢.

When it changes by a communication step, then each language processor
N(z), where z € X, sends a copy of each of its words to every node processor
where the node is connected with x, provided that this word is able to pass the
output filter of z, and receives all the words which are sent by processors of nodes
connected with x, providing that these words are able to pass the input filter
of . Formally, we say that configuration C” is obtained in one communication
step from configuration C, written as C' = C’, iff C'(z) = (C(z) — 7(C(z))) U
Uz yrere (Ty(C(y) N p2(C(y))) for all z € Xe.

For an HNEP I', a computation in I" is a sequence of configurations Cj,
C1,Cy, ..., where Cj is the initial configuration of I', Co; = C;4+1 and Ca;41 -
Coiqo, for all ¢ > 0. If we use HNEPs as language generating devices, then
the generated language is the set of all words which appear in the output node
at some step of the computation. Formally, the language generated by I is

L(I) = Uy Cs (io)-

3 Main Results

3.1 Universality

Theorem 1. Any CPMO P with 2 symbols can be simulated by an HNEP P’
with 10 nodes.

Proof. Let us consider a CPMO0O P with two symbols, 0 and 1, and f states,
¢ €Q,ieI={1,2,...,f}, where g is the initial state and the only terminal
state is ¢y € Q. Suppose that P stops in the terminal state gy on every symbol,
i.e., there are two instructions ¢;0 — Halt and ¢y1 — Halt. (Notice, that it is
easy to transform any CPMO with n states into a CPMO with n + 1 states that
stops on every symbol in terminal state.)

So, we consider CPMO P with instructions of the forms ¢;z — ¢;, ¢z —
yq;, ¢:0 — yq;0, ¢f0 — Halt, gy1 — Halt, where ¢;,q; € Q, z,y € {0,1}. A
configuration w = zWgq; of CPMO P describes that P in state ¢; € @) considers
symbol x € {0,1} on the left-hand end of W € {0,1}*. Let I’ = I\ {f} and
x,y € {0,1}. In the following, we construct an HNEP P’ simulating P. Starting
with the initial configuration Wy of CPMO P in node 1 of HNEP P’, we simulate
every computation step performed by P with a sequence of computation steps
in P’. If the computation in P is finite, then the final configuration Wy of P will
be found at node 10 of P’, moreover, any string that can be found at node 10 is
a final configuration of P. In the case of an infinite computation in P, no string

About Universal Hybrid Networks of Evolutionary Processors of Small Size 33

will appear in node 10 of P’ and the computation in P’ will never stop. In the
Table 1 below a complete HNEP P’ = (V,G, N, Cy, «, 3,10) with 10 nodes is
described, where (for i€ I’y € X)

V=QUQUTUT USUS'URUR UXUX' UX"U{0} and

Q/ = {qz/'}v T= {ti7y}’ T = {t;,y}v S = {Si,y}7 S' = {S;,y}v
R={r;|iel'U{0}}, R ={r}, X ={0,1}, X' ={0",1"}, X" ={0",1"}.

G is a complete graph with 10 nodes, N, Cy, a, 8 are presented in the Table 1
and node 10 is the output node of HNEP P’. We explain how P’ simulates the
instructions of CPMO P. Due to the lack of space, we present only the necessary
details.

Instruction ¢;x — ¢;: 2Wyg; £, Wq;.

The simulation starts with Wg; in node 1 of P’. By performing evolution steps
on this string at node 1, we obtain zWg¢; RN W 12 {'Wq,, xW'q}},
where W € {0,1}* and W’ € {0,1,0’,1'}. In the following communication step,
only strings with ¢/ and 2’ can leave node 1. Notice that strings zW'q} do not
contain symbols ' on the left-hand end. It is easy to see that during the next
transformations it is not possible to delete z’ if it is not on the left-hand end of
the strings, so these strings will stay forever in node 8. Thus, we will not further
consider strings that contain symbols 2’ not in the correct position. String 2'W¢;
can enter nodes 2 or 3. Let us consider, for example, node 2 (the case for node
3 can be treated analogously). If the string enters node 2, then there exists
an instruction ¢;0 — ¢; in CPMO P and 2’ = 0, so 0'W¢; 2, 0'Wyg;. In
the following communication step, string 0'Wg¢; can enter only node 8, where
0'Wy; LN Wg;, and then the obtained string, Wg;, can enter only node 1. So,
we simulated instruction ¢;x — ¢; of P in a correct manner.

In the Table 1 below i,7 € I, z,y € X, o',y € X', 3" € X".

Table 1.
N, Cy, M PI,FI,PO,FO
a?/B
1, {11:q¢; —q} U PI =,
{Wo}, {1.2:2 - 2'} U FI=Q UX"UX U{qs},
%, (2) {1.3:y" -y} U PO = X',
{14:0— 0} FO=QUX" U{0}

2,0, {21:¢i —qj a0 —= ¢} U PI={q|q0— ¢}V
#,(2) {2.2:q¢i = tjy | 60 —yq;} U {q | 60 — yg;}U
{2.83:¢; — 554 | 40 — yq;0} U {qi | :0 — yq;0}U
{24:¢ = a5 | 40 — qr} {4} | ¢:0 — qr}
FI={1"},PO={0'},FO =Q'
3,0, {81:¢; —qjlal—q}U PI={q|ql—q}U
#(2) {32:q¢i = tjy |l —yq} U {q | il — yg;}U
{83:q¢i = qs | @il — g5} {4} | @il — qr}
FI={0},PO={1'},FO=Q

K

34 A. Alhazov et al.

Table 1. (continued)

N, Cy, M PI,FI,PO,FO
a?/B

4,0, {41:¢e— ro} PI=TuUS,FI=RUR,
T, (2) PO:{T()},FO:@

5,0, {5.1:tiy —tiq,, PI=T,

#,(2) 5.2:8iy — 81,]|2<i<f-1}UFI=T' US UR/,
{63:r; —ri,|0<i<f-2}U PO=R,

{54:t1,y —y} U FO=TUSU R
{56.5:51,y > y"}
6,0, {6.1:¢, —ti 1y, PI =T,

#,(2) 6.2:8;, —si_1y|2<i<f-2UFI=TUSUR,
{63:7] —>mip1|1<i<f-2}U PO=R,

{64:t), >y} U FO=T'US'UR

{65:51, —y"}
7,0, {71:r; — q, PI=RUR FI=Q'UTUT'U
*,(2) 7.2:r; > q|iel'} SuSs’ ,PO=X,FO=RUR
8,0, {81:2" —¢e} PI=X'FI=Q UTuUT'U
1,(2) SUS"URUR,PO=0,FO =X’
9,0, {9.1:e— 0} PI=X",FI=RUR UX' U{0},
1,(2) PO = {0},FO =10
10,0, 0 PI={q}, FI1 =V \{X U{aqs}},
%, (2) PO =0, FO = {qs}

Instruction ¢;x — yq; : *Wg¢; £, Wygq;.

HNEP P’ starts the simulation with 2WW¢; in node 1. Then, two evolution
steps follow, xW¢; RN W, 12 {'Wq,, aW'q,}, where W € {0,1}* and
W’ e {0,1,0’,1’}. Similarly to the previous case, we will consider only string of
the form a/TWg¢.. This string can enter nodes 2 or 3. Consider, for example, node 2

(the case for node 3 can be treated analogously). If the string enters node 2, then
;2.2

there is an instruction ¢;0 — yg; in CPMO0 P and 2’ = 0’. So, 0'W¢, == 0'Wt;,,,.
String 0'Wt; ,, can enter nodes 4 and 5. In the latter case the string will stay in node
5 forever, as it does not contain any symbol from R’. Suppose that the string en-
ters node 4. Then, an evolution step, 0'Wt; ,, 21 0'Wt; 1o, follows. Now, string
0'Wt; yro can successfully be communicated only to node 5. Then, in nodes 5 and
6, the string is involved in the following evolution steps: For ¢ € I,

5.1 5.3
OIWtjft’y/rt — OIWt_/j—(t—‘rl),yrt — O/Wt;_(t+1)7y7“2+1
6.1 6.3
OWE (1) 57041 = OWimrayyrien == OWiio 2 yresa:

The string enters in node 5 and 6 in circle, until the first index of ¢ or ¢’ will
be decreased to 1. At that moment in node 5 (node 6) index of r (r') will be
exactly j —1, and it becomes j by rule 5.3 (6.3), i.e. the same, as the first index

of t in string 0'Wt; ,ro before entering node 5. After that, 0'Wt; 7% 54, 0'Wyr’

or Wt} ,r; S o Wyr;. In the following communication step, string 0'Wyr’; or

About Universal Hybrid Networks of Evolutionary Processors of Small Size 35

0'Wyr; can enter only node 7, where the following evolution steps are performed:
0'Wyr; BN 0'Wyg;, 0'Wyr’ KEN 0'Wyg;. String 0'Wyg; is communicated to
node 8, and this is the only node the string is able to enter. At node 8, evolution

step 0'Wyg; LN Wygq; can be performed. Now, string Wyg; can enter only node
1. So, instruction ¢;x — yq; of P is correctly simulated.

Instruction ¢;0 — ygq;0: 0Wg¢; £, 0Wyg,.

The beginning of the simulation of instruction ¢;0 — yg;0 is the same as that
of instruction ¢;0 — yg;. The difference appears when rule 2.3 : ¢, — s;, is
applied in node 2 instead of rule 2.2 : ¢; — t;, and at the end of the circle
process in nodes 5 and 6, sy, or sy, becomes y” (rules 5.5 or 6.5) instead
of y (rules 5.4 or 6.4). Strings 0'Wy"r; or 0'Wy"r; can enter only node 7.

Then, either evolution step 0'Wy"r; AN 0'Wy"q; or evolution step 0'Wy"r’ 12
0'Wy"q; follows. String 0'Wy"q; can enter only node 8, where evolution step

0'Wy"q; 81, Wy"q; is performed. The new string, Wy"”¢;, can enter only node
9, where evolution step Wy"g; 21 owy” g; follows. Then string OWy”qj can

enter only node 1, where evolution steps 0Wy" q; L3, @quj 14 0Wyq; are
performed. Thus, instruction ¢;0 — ygq;0 of P is correctly simulated.

Instruction ¢,z — qr : Wy, N Waqy.

In nodes 2 or 3 we have rules ¢, — ¢y (rules 2.4 or 3.3) and string 2'Wy¢,
will be transformed to string 2’'Wgy. After that it enters node 8 and changes to
Wyqy. Now it enters node 10 as a result. So, CPMO P is correctly modeled. We
have demonstrated that the rules of P are simulated in P’. The proof that P’
simulates only P comes from the construction of the rules in P’, we leave the
details to the reader.

Corollary 1. There exists a universal HNEP with 10 nodes.

3.2 Computational Completeness

Theorem 2. Any recursively enumerable language can be generated by a com-
plete HNEP of size 10.

Proof. Let I' = (N, T, S, R) be a type-0 grammar in Kuroda normal form.

We construct a complete HNEP I'" = (V, G, N, Cy, «, 3,10) of size 10 that
simulates the derivations in I' by the so-called rotate-and-simulate method. The
rotate-and-simulate method means that the words found in the nodes are in-
volved into either the rotation of the leftmost symbol (the leftmost symbol of
the word is moved to the end of the word) or the simulation of a rule of R. To
guarantee the correct simulation, a marker symbol, #, is introduced for indicat-
ing the end of the simulated word under the rotation. Assume that the symbols
N UT U{#} are labeled in a one-to-one manner by 1,2,...,n. More precisely
let NUTU{#} =A={A1,A4s,.. . A}, I={1,2,....n}, ' ={1,2,...,n—1},
I"={2,3...,n}, I,={0,1,2,...,n}, I, ={0,1,2,...,n—1}, By={Bjo | j €
I}, # = A,, T' =T U4. The alphabet V of the network is defined as follows:

36 A. Alhazov et al.

V=AUuBUB UCUC'UDUD'UEUE"U{e'}, where
B={B;;|iel, je]o},B’:{BZ’-)j|i,j€I},C:{Ci\i€I}7
C'={Cl|iel'},D={D;|i€ly},D' ={D;|iel},
E={Ei;|i,jel},E'={E;;|i,jel}.

G is a complete graph with 10 nodes, N, Cy, «, 5 are presented in Table 2
below and node 10 is the output node of HNEP I".

A configuration of grammar I" is a word w € {N U T}*. Each configuration
w of I' corresponds to a configuration wB,, o and configurations w” A,,w'B; ¢ of
HNEP I, where A,, = #, w,w',w"” € (NUT)* and w = w' A;w".

The axiom S = Ay of I" corresponds to an initial word A;#, represented as
A1 B, 0 innode 1 of HNEP I"". Now we describe the how the rotation of a symbol
and the application of an arbitrary rule of grammar I" are simulated in I". As
above, due to the lack of space, we present only the necessary details.

Rotation
Let A; Ai, ... Aiy_, Biy 0 be found at node 1, and let w, w’,w” € A*. Then, by

evolution, AilAiz e Aik_lBik,O = Aileik,o i {C’ileik,o, Ailw’Citw”Bik’o}
follows. Notice that during the simulation symbols C; should be transformed to
¢’, and this symbol should be deleted from the left-hand end of the string (node
9). So, transformation of string A;, w'C;, w”B;, ¢ leads to a string that will stay
in node 9 forever; thus, in the sequel, we will not consider strings with C; not
in the leftmost position. In the following communication step, string C;, wB;, o
can enter only node 2. Then, in nodes 2 and 3 the string is involved in evolution
steps followed by communication as follows:

Ciy—twB;, ¢ 24 C! wBy, ¢ 23 cy

wBj, ;. (in node 2),

1—(t+1) —(t+1) 7

, ;31 ;3.2 .
Ci,_ywBj, ;= Ci _qinywB], ; == Ci, _41ywBi, ++1(in node 3).

The process continues in nodes 2 and 3 until index of C; or C/ will be decreased
to 1. In this case rule 2.3 : C; — ¢’ in node 2 or 3.3 : (| — ¢’ in node

3 will be applied and string &'wB; or e'wB;, ;, appears in node 4. Then,

st
4.1 .
/ ! /)
iy —— €wBi ; Do or evolution step
!/
501
!
k%1

in node 4, either evolution step &' wB

4.1 . .
e'wB;, iy — €wB;, ;Do is performed. Strings wB] , Dy or wB;, ;; Dy can

enter only node 5, where either evolution step ¢'wB! . Dy LN e'wE;, i, Do

. 5.2 .
or evolution step ¢'wB;, ;, Dy — e'wkE;, i, Do follows. String ' wFE;, ;, Do can

enter only node 6. Then, in nodes 6 and 7 the string is involved in evolution
steps followed by communication as follows:

6.1 6.2
/ o / / ’ ’
ewli, i, —+Dy — ¢ wEik,ilf(Hl)Dt —= € UJEz'k,ilf(tJrl)
cwk!

;T ;T2 .
it Dy == Wl i 11y Dy == €'wEy, i, _(141)Dey1 (in node 7).

Di,, (in node 6),

The process continues in nodes 6 and 7 until second index of E; ; or that of

Ezfj will be decreased to 1. In this case, rule 6.3 : E;, 1 — A;, in node 6 or

7.3: E; ; — A;, in node 7 will be applied and string e'wA;, D;, or e'wA;, D;,

K3
appears in node 8.

About Universal Hybrid Networks of Evolutionary Processors of Small Size 37

Notice, that rule 6.4: A,, — & can be applied. This case is discussed below.

The next evolution step, performed in node 8, can either be ¢'wA;, D;, 81,

8.2 . I
e'wA;, By, o or e'wA;, Dj —= e'wA;, Bj, o. In the following communication step,
string e’wA;, B;, 0 can enter node 9 or node 6.

1 Consider the last case (in this case A;; € T).
At nodes 6, 9 and 10 the following evolution and communication steps are

performed:
e Suppose that word wA;, B;, o does not contain nonterminal symbols

(except A,). Let wA; Bi, o = Apw'A; By, 0, where w = A,w'. So,
w'A; A;, is a result and it has appear in node 10. Notice, that if w =
w Apw” and w' # e, then word &'w’ A,,w" A;, B;, o leads to a word which
will stay in node 9 forever (if rule 6.4 was applied) or will leave node 9
as word w’' A, w"” A;, A;; and enter node 1, and will remain there forever.

So, we will consider the following evolution of the word e'wA;, B;, o =

6.5 6.4
5/Anw/Aik.Bi1,O: &JAnw/AikBil,O i 5/Anw/Aik.Ai1 — &J&leAikAil.

Further, string ’e’w’ A;, A;, appears in node 9, where symbols &’ will be
eliminated by rule 9.1 and, finally, word w’A;, A;, enters node 10. This
is a result.

In the case of applying only rule 6.5, the resulting word &’ A,,w’ A;, A;,
appears in node 9, where it becomes A,w'A;, A;,, leaves node 9, enters
node 1 and stays there forever.

e Suppose that word wA;, B;, o contains at least one nonterminal symbol
(except A,). In node 6 symbol B;, o is changed to A;,, after that the
resulting word appears in node 1, where it will stay forever, since the
output filter requires symbols from By.

2 Now consider the evolution of the word e'wA;, B;, ¢ in node 9. By applying

the corresponding rules, we obtain ’wA;, B, o 2N wA;, B;, 0. Then, string
wA;, By, o enters node 1 and the rotation of a symbol is over. If A;, € T,
then the string can enter node 6. This case was considered above.

Table 2.
N,a, 3,Co, M PI,FI,PO,FO
1,%,(2), {1.1:A; — C;|i€l, rotation} U PI ={A.,Bno},
{Aanyo} {1.2:141‘—?5/ |i€]l, Ai—>E}U FI:CUC/U{E/},
{1.3:Bj,0—>BS,0|Aj—>AS, j,SGI/}PO:BQ,FO:Q]
2,%,(2),0 {2.1:C; — C/_q, PI=2C,
2.2:Bjx — By | FI=C'"UB' U{},
iel’ jel kel u PO =C"U{Y,
{23:C1 — €'} FO=CUB
3,*,(2),@ {31 : C{ — Ui—1, Pl = Cl,
3.2: B;,k — Bj,k+1 | FI=CUBU {E/},
iel’, jel, kel u PO =CU{Y},
{33:C1 —¢'} FO=C"UB
4,7,(2),0 {4.1:e— Do} PI =B\ ByUB,

FI=CUC'UByU{Dy},
PO = {Do},FO =0

38 A. Alhazov et al.

Table 2. (continued)

N, «a, 3,Co, M PI,FI,PO,FO
5,*, (2),@ {51 : Bj,k g Ej,k, Pl = {Do},
5.2: B, — Ej|j kel rotation} U FI =0,
{53 . Bj,k — Es,t, PO = E,
5.4:B§-Y,€—>E3,t| FO=BUDB
Jik,s,t €T Aj AL — ASAL}

6, *, (2),@ {6.1 : Ej,k — E;',kfh PI=FEU {Bjy() | AJ‘ S T},
6.2:D; — Dj,,, FI=E UD UC,
63:Ej1—A;|lielyjel,kel’} U PO =D U{Y,
{6.4: A, =€} U FO=FUDuU
{65 : Bj,O — Aj | Aj S T} {Bjyo | Aj S T}

7,%,(2),0 {7.1: E;k — Fjr_1, PI=E FI=EUD,
7.2: D, — D1, PO=D,FO=E"UD’
7T3:E;, > Ajliel,jel,kel"}

8,*, (2),@ {81 . Dj — Bj,(), PI = D\{Do} UD/,
8.2:D9—>Bj,0|j€I}U FI:EUE/U{DQ},
{8.3: D; — By, PO =10,

8.4:D;- — Bst | Aj — AsAL, g,s,t €'y FO=DuUD'
9,0,(2),0 {9.1:& — ¢} PI = {<'},
FI =B\ BoU
B'uDuD,
PO =10,FO = {'}
10, %, (2),0 0 PI=T,FI=V\T,

PO=0,FO=T

Rule A; — e. Suppose that A;wBj o can be found at node 1 and let w, w’, w” €

. . 1.2 1.2
A*. Then, by evolution, either A;wB;o — ¢'wB,o or Aw'A;w"B;o —

A;w'e'w" Bjo. String e'wBj o or A;w’e'w” B; o can enter node 9 or node 6 (con-
sidered above). String A;w’e’w” B will stay in node 9 forever. So, we will
consider the transformation of only string ’wBjo. At node 9, evolution step

e'wBj o 24, wBj o follows. Now, string wBj o enters node 1. Thus, we correctly
simulated rule A; — ¢ of grammar I

Rule A; — Aj;. The evolution step performed at node 1 is wB; 13, wBj 0.
Since string wBj o now is in node 1, we simulated the rule A; — A; of grammar
I in a correct manner.

Rule A; — A A;. At the end of the simulation of the rotation of a symbol
in node 8 instead of applying rule D; — Bjo (D; — Bjo) rule D; — By,

(D — Bs:) will be applied. Then, at node 8 either evolution step &'wD; 23,
e'wBs or evolution step €’wD} 34, ¢'wBs is performed. Then, string 'wB; 4

can enter only node 4, where, by evolution, 'wB; ¢ 24 e'wBs ¢ Dy. The process
continues as above, in the case of simulating rotation, so, in several computa-
tion steps string wAsB: o will be obtained in node 9 which then successfully

About Universal Hybrid Networks of Evolutionary Processors of Small Size 39

is communicated to node 1. So, we correctly simulated rule A; — A A; of
grammar [
Rule A;A; — AgA;. In node 5 there are rules 6.3 : B; ; — E,; or 5.4 :
BZ’-)j — E; ;. As in the case of simulating rotation, above, we will obtain string
wAg By o in node 9.

We have demonstrated how the rotation of a symbol and the application of
rules of I" are simulated by I'’. By the constructions, the reader can easily verify
that I" and I’ generate the same language.

Corollary 2. The class of complete HNEPs with 10 nodes is computationally
complete.

4 Conclusions

We have presented a universal complete HNEP with 10 nodes and proved that
complete HNEPs with 10 nodes generate all recursively enumerable languages.
Thus, we positively answered question 1 from [5] and significantly improved the
results of that paper.

References

1. Alhazov, A., Martin-Vide, C., Rogozhin, Y.: On the number of nodes in universal
networks of evolutionary processors. Acta Informatica 43(5), 331-339 (2006)

2. Alhazov, A., Martin-Vide, C., Rogozhin, Y.: Networks of Evolutionary Processors
with Two Nodes Are Unpredictable. In: Pre-Proceedings of the 1st International
Conference on Language and Automata Theory and Applications, LATA 2007,
GRLMC report 35/07, Rovira i Virgili University, Tarragona, Spain, pp.521-528
(2007)

3. Alhazov, A., Kudlek, M., Rogozhin, Y.: Nine Universal Circular Post Machines.
Computer Science Journal of Moldova 10(3), 247-262 (2002)

4. Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.)
IWANN 2001. LNCS, vol. 2084. Springer, Heidelberg (2001)

5. Csuhaj-Varju, E., Martin-Vide, C., Mitrana, V.: Hybrid networks of evolutionary
processors are computationally complete. Acta Informatica 41(4-5), 257-272 (2005)

6. Csuhaj-Varjui, E., Salomaa, A.: Networks of Parallel Language Processors. In: Paun,
G., Salomaa, A. (eds.) New Trends in Formal Languages. Control, Cooperation, and
Combinatorics. LNCS, vol. 1218, pp. 299-318. Springer, Heidelberg (1997)

7. Kudlek, M., Rogozhin, Y.: Small Universal Circular Post Machines. Computer Sci-
ence Journal of Moldova 9(1), 34-52 (2001)

8. Kudlek, M., Rogozhin, Y.: New Small Universal Circular Post Machines. In:
Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 217-227. Springer, Heidelberg
(2001)

9. Martin-Vide, C., Mitrana, V., Perez-Jimenez, M., Sancho-Caparrini, F.: Hybrid net-
works of evolutionary processors. In: Canti-Paz, E., et al. (eds.) GECCO 2003.
LNCS, vol. 2723, pp. 401-412. Springer, Heidelberg (2003)

On Bifix Systems and Generalizations

Jan-Henrik Altenbernd

RWTH Aachen University

Abstract. Motivated by problems in infinite-state verification, we study
word rewriting systems that extend mixed prefix/suffix rewriting (short:
bifix rewriting). We introduce several types of infix rewriting where infix
replacements are subject to the condition that they have to occur next to
tag symbols within a given word. Bifix rewriting is covered by the case
where tags occur only as end markers. We show results on the reach-
ability relation (or: derivation relation) of such systems depending on
the possibility of removing or adding tags. Where possible we strengthen
decidability of the derivation relation to the condition that regularity
of sets is preserved, resp. that the derivation relation is even rational.
Finally, we compare our model to ground tree rewriting systems and
exhibit some differences.

1 Introduction

The algorithmic theory of prefix (respectively suffix) rewriting systems on finite
words has long been well established, and a number of decision problems over
such systems have been proven to be decidable. Such rewriting systems are a
general view of pushdown systems, where symbols are pushed onto and removed
from the top of a stack.

Biichi showed in [2] that the language derivable from a given word by prefix
rewriting is regular (and that a corresponding automaton can be computed).
In the theory of infinite-state system verification, the “saturation method” (for
the transformation of finite automata) has been applied for this purpose (see
e.g. [T4516]). Caucal [4] showed the stronger result that the derivation relation
induced by a prefix rewriting system is a rational relation.

The extension to combined prefix and suffix rewriting goes back to Biichi and
Hosken [3]. Karhumé&ki, Kunc, and Okhotin showed in [9] that when combining
prefix and suffix rewriting, the corresponding derivation relation is still rational,
and therefore preserves regularity of languages. They extended their work in [§]
to rewriting systems with a center marker, simulating two stacks communicating
with each other. They singled out a number of cases where universal computation
power could already be achieved with very limited communication.

In a more restricted framework, Bouajjani, Miiller-Olm and Touili studied
dynamic networks of pushdown systems in [I]. Here, a collection of pushdown
processes is treated as a word in which a special marker is used to separate
the processes. Rewriting of such words is restricted to performing pushdown
operations and to creating new processes, where the latter increases the number
of markers. It was shown that reachability in this setting is decidable.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 40 2008.
© Springer-Verlag Berlin Heidelberg 2008

On Bifix Systems and Generalizations 41

In the present paper, we develop a generalised framework of “tagged infix
rewriting” which extends some of the cases mentioned above. We clarify the sta-
tus of the word-to-word reachability relation (or derivation relation) for several
types of tagged infix rewriting. More precisely, we determine whether this rela-
tion is undecidable, or decidable, or even decidable in two stronger senses: that
the relation preserves effectively the regularity of a language, or that the deriva-
tion relation itself is rational. (By “effective” preservation of regular languages we
mean that from a presentation of L by a finite automaton and from the rewriting
system defining the relation R we obtain algorithmically a finite automaton for
the image of L under the derivation relation of R.) So the motivation (and con-
tribution) of the paper is twofold: first to push the frontier of decidability further
for reachability problems over rewriting systems, and secondly to differentiate
clearly between the three levels of decidability proofs mentioned above.

We define a generalisation of mixed prefix/suffix rewriting systems on words
by introducing special symbols (tags or markers) to mark positions in words
where rewriting can occur. Typically, a rewriting rule can transform a word
w = woFiwy - - #pw, into a word w = wiF# W] - #Fpw), with w; = w) for
all i except for some ip where wj is obtained from w;, by a prefix, suffix, or
complete rewriting rule U — V with regular sets U,V (to be applied to the
whole word u € U between two successive markers, replacing it by some v €
V). Thus, arbitrary words in finite sequences can be rewritten independently,
extending a case studied in [J]. The variants we consider in this paper deal with
the options that markers may be removed or added in the rewriting process. We
show that the derivation relation is rational in the basic case mentioned above,
where markers are always preserved, and that this fails in general for the other
cases. However, we still obtain decidability of the reachability problem in all
cases. For applications, our systems are close to models of concurrent processes
where states are presented by words between tags, state transitions by local
rewriting rules, and e. g. spawning of new processes by the insertion of tags.

The paper is structured as follows: In the subsequent section we summarise
technical preliminaries. SectionBlintroduces the basic models of bifix systems and
its extension tagged infix rewriting, and we show that one obtains different levels
of decidability of the derivation relation: We present cases where the derivation
relation is not rational but effectively preserves regularity of languages, and
where the latter condition fails but the word-to-word reachability problem is
still decidable. This refined analysis also exhibits a substantial difference between
the two cases of tag insertion and tag removal. The next section is devoted to a
comparison of bifix systems and ground tree rewriting systems (and the closely
related multi-stack systems).

2 Terminology

Automata and Languages. We use the standard terminology from automata
theory and formal language theory (see e.g. [7]). We present nondeterministic
finite automata (NFA) in the format A = (Q, X, qo, A, F'), where @ is a finite set

42 J.-H. Altenbernd

of states, X' is a finite alphabet, ¢o € @ is the initial state, F' C @ is the set of final
states, and A C Q x (Y U{e}) x Q is a finite set of transitions. We write A : p—q
to denote that there is a w-labelled path from state p to state ¢ in A. Reg(X)
denotes the class of all regular languages over X. We will refer to normalised
NFAs which have exactly one final state, and in which no incoming respectively
outgoing transitions are allowed for the initial respectively final state. A (finite)
transducer is an NFA A = (Q, I, qo, A, F), where I' C X* x X* is a finite set of
pairs of words over a finite alphabet .

Relations. Let X' be a finite alphabet. A relation R C X* x X* is recognisable if it
is a finite union of products of regular languages over X, that is, R = (J;_, L; x M;
for some n € IN and regular L;, M;; when using R as a rewriting system, we write
rules in the form L; — M;. R is rational if it is recognisable by a transducer,
i.e. an NFA with transitions labelled by finite subsets of X* x X*. We then write
R € Rat(XZ* x X*).

For relations R, S C X* x X*, we call Dom(R) = {u | Jv : (u,v) € R} the
domain of R, and Im(R) = {v | Ju : (u,v) € R} the image of R. For L C X*, we
call R(L) = {v | Ju € L : (u,v) € R} the set derivable from L according to R. We
define the concatenation of R and S as R-S = {(ux,vy) | (u,v) € RA(z,y) € S},
which we also shorten to RS, if no ambiguity arises, and their composition as
RoS ={(u,w)|Fv: (u,v) € RA (v,w) € S}.

We call T = {(w,w) | w € X*} the identity relation on X*. Note that I is
rational, but not recognisable. When considering iteration, we have to distinguish
two cases. Let R* =, R", where R = {(¢,¢)}, and R"*! = R R, and let
R® =, -, R™, where R = I, and R"+1) = R™ o R.

We recall some basic results about rational relations: Rat(X* x X*) is closed
under union, concatenation and the concatenation iteration *. Furthermore, if
R is a rational relation, then R(L) is regular for regular L, hence Dom(R) and
Im(R) are regular. Finally, if R is a rational relation, and S is a recognisable
relation, then RN S is rational.

Mized Prefix / Suffiz Rewrilting Systems. A mized prefiz/suffic rewriting system
is a tuple R = (X, R, S), where X is a finite alphabet, and R, S C Reg(X) x
Reg(X) are recognisable relations of rewriting rules. We write w = w' if

(w,w') € (RIUIS),i.e. R and S are used for prefix respectively suffix rewriting.
We denote the derivation relation ?(’B: (RIUIS)® by R®.

Proposition 1 ([9]). The derivation relation R® of a mized prefiz/suffiz re-
writing system R is rational.

3 Bifix Rewriting Systems and Extensions

As a first and minor extension of mixed prefix/suffix rewriting systems, we in-
troduce bifiz rewriting systems, which will serve as a basis for further extensions.
A bifix rewriting system is a tuple R = (X, R, S,T'), with X', R, S as in the case

On Bifix Systems and Generalizations 43

of mixed prefix/suffix rewriting systems, and where T' C Reg(X) x Reg(XY) is
also a recognisable relation. We write w = w' if (w,w') € (RIUISUT), that

is, R and S are used as before, and T is used to rewrite complete words. The
other notions carry over.
As a first result, it is easy to see that Proposition [Tl holds again:

Proposition 2. The derivation relation of a bifix rewriting system is rational.

Proof. We have to show that W = (RIUISUT)® is rational. For this, introduce
¢ X and consider U = #R U #T# and V = S#. Then #W# = (UI U
IVYON(#T*# x #X%4), that is, we use rewriting of complete words with T for
prefix rewriting, and we restrict the corresponding derivation relation to pairs of
words with # at the beginning and end only. Since U, V', and (#X*# x #X*#)
are recognisable, (UI U IV)® is rational by Proposition [l and it follows that
{(#u#, #v#) | (u,v) € W} is rational. Removing the symbols # preserves this
rationality, so W is rational.

3.1 Tagged Infix Rewriting Systems

Let X be a finite alphabet. We will use a finite set M of tags (or markers) with
M N X = to mark positions in a finite word where rewriting can occur. Given
Y and M, let Py pp:= MX*UX*M UMX*M denote the set of all words over
YU M that contain at least one marker from M, but only at the beginning
and/or end.

A tagged infiz rewriting system (TIRS) is a structure R = (X, M, R) with
disjoint finite alphabets X and M and a relation R C Ps; as X Px ps which is a
finite union of

prefiz rules of the form #U — #V (denoting #U x #V),
suffiz rules of the form U$ — V§, and (1)
bifix rules of the form #U$ — #V§,

where U,V € Reg(X) and #,$ € M. Note that when using R to rewrite a
word w over X U M, all tags in w are preserved, and none are added. We write
TUy —> vy if (u,v) € R and z,y € (¥ U M)*, and we denote ?(@ by R®.

As a first example, consider R = ({a,b, ¢}, {#}, R) with the following set R
of rules: ## — Facb# (bifix rule),
#a — #aa #aTch — b (prefix rules),
b# — bb# acb™# — a# (suffix rules).
Then RE({##)) = #aTcht# U #a*# U #b*#.
As a second example, note that the infinite grid can be generated with the
simple TIRS ({a, b}, {#}, {# — a#,# — #b}), starting with marker #:

H oo #b - b e
! 1 !

a# — a#b — aF#bb — ---
! 1 1

aa# — aa#b — aa#bb— - --
| 1 |

44 J.-H. Altenbernd

Since the monadic second-order logic (MSO) of the infinite grid is undecidable
(see e.g. [15]), we can immediately conclude the following.

Proposition 3. The MSO theory of graphs generated by TIRSs is undecidable.

It is well known that prefix (resp. suffix) and mixed prefix/suffix rewriting sys-
tems preserve regularity ([409]), that is, given such a system R and a regular
set L, the set derivable from L according to R is again regular. It has also been
shown that the derivation relation R® of such systems is rational. We show in
the following that these results carry over to tagged infix rewriting systems.

Theorem 1. The derivation relations of TIRSs are rational.

Proof. Let R = (¥, M, R) be a TIRS. We construct an NFA Ar = (Q, I, qo, 4,
{gs}) whose edges are labelled with rational relations (i.e. I" is a finite set of
rational relations), such that L(Ag) = R®. Since we know that every finite
concatenation of rational relations is again rational, every path in Az from ¢q
to gy is labelled with a rational relation.

It is important to note that markers are preserved in the derivation process.
Thus, the derivation relation is a concatenation of derivation relations of rewrit-
ing that occurs before the first marker (see (i) below), after the last marker (ii),
or between two markers (iii), which are basically mixed prefix/suffix rewriting
derivations.

We can therefore construct A as follows: For #,$ € M, let Ry = {(u,v) |
(u#, v#t) € R}, #R = {(u,v) | (#u,#v) € R}, and #Rg = {(u,v) | (F#u$, #0v8)
€ R}. We choose Q = {qo,qs} U {Sm,tm | m € M}, that is, we take one source
state s,, and one target state t,, for every marker m, and we set A to be the
following set of edges labelled with relations:

A= {(sm,{m} x {m},tm) |me M} U {(qo,1,qr)}

U {(g0, (TR)®, 5mm) | m € M} (i)
U{(tm, (mBI)®,qys) | m € M} (i)
U{(tm, (mRIUIR, Uy Ren)®, 500) | mym’ € M} . (iii)

We know that {m} x {m}, (IR)®, (,,RI)®, and I are rational, and by Propo-
sition 2] the same holds for (;, RI U IRy U Ry)®. O

We can immediately deduce that TIRSs effectively preserve regularity.

3.2 Extending TIRSs by Removing Tags

We consider an extension of TIRSs where removing tags is allowed, thereby
breaking up the preservation of markers. We will see that in this case some
effective reachability analysis is still possible.

A TIRS with tag-removing rules is a structure R = (X, M, R) with disjoint
finite alphabets X' and M as before and a relation R C Ps ar X (Ps o U X™)
containing rules of the basic form (1) and also rules of the forms #U — V|

On Bifix Systems and Generalizations 45

U$ — V, #U$ — #V, #US$ — VS§, and #U$ — V, where U,V € Reg(X)
and #,$ € M. We show that in this case the derivation relation is not rational
in general, but that regularity is still preserved (the latter result involving a
nontrivial saturation construction).

Proposition 4. Derivation relations of TIRSs with tag-removing rules are not
rational in general.

Proof. Consider R = ({a, b}, {#}, R), where R contains only the rules #a — b
and b# — a. Then Dom(R® N (#*a#* x {a})) = {#"a#™ | n > 0} is not
regular, and so R® is not rational.]

Before showing that such systems still preserve regularity, we need to introduce
some more terminology. We call an NFA A = (Q, X U M, qo, A, F') unravelled if
it satisfies the following conditions:

1. for every ¢ € Q: [{(¢,m,p) € A|m e M} - |{(p,m,q) € A|me M} =0;
that is, every state is the source or the target state of transitions labelled
with markers (or none of the above), but not both at the same time;

2. for every m € M and (¢,m,q') € A: {(q,a,7) € Alae XUMU{e}} =1
and |{(r,a,q¢') € A]a € X UMU/{e}}| =1; that is, every source state of a
marker transition has no other outgoing transitions, and every target state
of a marker transition has no other incoming transitions.

Lemma 1. For every NFA A over an alphabet XU M one can effectively con-
struct an unravelled NFA A’ with L(A) = L(A’).

Proof. Let A = (Q,X U M,qo, A, F) be an NFA. Construct A" = (Q', X U
M, g, A, F') with

- Q" ={0}tU{p a,9),(p,a,q) | (p,a,q) € A},

- F':={(p,a,q) | (p.a,q) € A,qe F}U{qy | q € F'}, and
— A= {(q,¢, (90,0, 9)) | (q0.a,q) € A}

{E(p,a 14),a, (p,a,q)) | (p,a,q) € A}

)

U{((pa,q),e,(q,b,7)) | (psa,q),(q,b,7) € A} .

Then L(A’") = L(A), and A’ is unravelled.

A state (p,a,q) in A’ symbolizes that p is the current state and (p, a,q) the
next transition to be taken in a run of A; (p,a, q) denotes that ¢ is the current
state and (p, a, ¢) is the last transition used in a run of A. After every such step,
a transition of the form ((p, a, q), &, (¢, b, 7)) allows us to guess the next transition
taken in a run of A (in this case (¢, b,7)). We omit the details of the correctness
proof due to space restrictions. a

The notion of unravelled NFA is important for the following theorem.

Theorem 2. TIRSs with tag-removing rTules effectively preserve regularity.

46 J.-H. Altenbernd

Proof. Let R = (X, M, R) be a TIRS with tag-removing rules, and let A =
(Q,X U M, qo, A, F) be an unravelled NFA with L(A) = L. We provide an
algorithm that constructs an NFA A’ from A such that L(A") = R®(L). For
this, we first extend an initial automaton Ay = (Qo, X U M, qo, Ao, F) with
Qo :=Q and 4p := A as follows.

We have to capture derivation at and between all possible combinations of
markers, possibly involving the deletion of markers. If, for instance, there is a
rule #U — #V in R, then it may be applied at different positions of the marker
in A, and we thus have to distinguish between these applications to avoid side
effects. Therefore, we add normalised NFAs for all (p,m, q), (p’,m’,¢’) € A with
m,m’ € M, taking disjoint copies for different applications of rules inside the
given automaton:

— for every prefix rule of the form mU — mV or mU — V in R, we add
Apav) = Qpav): X 8mav): Awav) {twev)}) with L(Apqv)) = V;
we set Qo := QoUQ (p,q,v) and Ay := AOUA(p)q,V and we add (g, €, 8(p,q,v))
(resp. (P, €, 5(p,q,v))) t0 Ao;

— for every suffix rule of the form Um’ — Vm’ or Um’ — V in R, we add
Apr g v) = Qg vis X5 810 v Appr g v {Epr g v1}) with LAy g v)) =
Vi we set Qo := Qo U Qpy g,v] and Ag 1= Ao U Ay v, and we add
(t[p',q’,V]vsvp/) (resp. (t[p’,q',V]agaq/)) to Ao;

— for every bifix rule of the form mUm’ — mVm/, mUm’ — mV, mUm’' —
Vm/,ormUm' —Vin R, weadd A g0 v) = @Qp,ap.a' V) 2 S(pap’.a V)
Apap V) {t(p,q,p’,q’,V)}) with L(A(p,q,p’,q”V)) = Vi we set Qo = Qo U
Qp.ap,q,v) and Ag := Ag U Ag, q00.q.v), and we add (g, €, 8(p,q,p,q,v)) In
the first two cases resp. (p, €, 5(p,q,p,¢’,v)) i the last two cases to Ap.

For the automaton 4, generated this way, we have L(Ag) = L(A).

For the sketch of the correctness proof later on, let @Q; denote the set of all
initial states of the NFAs added for suffix rules, and let @ denote the set of all
final states of the NFAs added for prefix and bifix rules.

After these preparatory steps, we now repeat the following saturation steps
until no more transitions can be added, starting with k£ = 0:

1. If there are (p,m,q) € A, r € Qo, a prefix rule of the form mU — mV or

mU — V in R, and a path Ay : ¢ — r for some v € U, then we add the
transition (t(,,q,v),€,7) to Ay to obtain Ay, and we set k :=k + 1.
The following illustrates this for rules mU; — mV; and mUs — V5 and
a path p = ¢ — r. The dotted lines denote the transitions added in the
preparatory steps, while the dashed lines show the e-transitions added in
the saturation steps.

€. ’5(qu1 t(pqvl € ’8(qu2 pqu)

p—>‘]~_/—*7“ p—>Q~_/—*7"
u € Uy u € Uy

On Bifix Systems and Generalizations 47

2. If there are (p',m’,q') € A, r € Qo, a suffix rule of the form Um/ — Vm/
or Um’ — V in R, and a path A, : r—p’ for some u € U, then we add the
transition (7, e, sy ¢, v]) to Ay to obtain Agy1, and we set k:=k + 1.

The following illustrates this for rules Usm’ — Vam' and Uym’ — V, and a

path r=p' Z—¢'.

g ‘/ >6p/7q/7‘/3] t[p/vq/ ’V3D £ g ‘/)61)’,11’,\/4] t[PUQUWD"f

ey —> q) — q
u e Us m’ uec Uy m/
3. If there are (p,m,q), (p',m’,¢') € A and a path Ay, : ¢ for some u € U
for a bifix rule of the form
(a) mUm' — mVm' or mUm’ — Vm’ in R, then we add the transition
(t(p,q,p',q’,V)agap/) to Ak;
(b) mUm' — mV or mUm’ — V in R, then we add the transition
(t(pagpt g V) €5 0) t0 A
we obtain Ay,1, and we set k :=k + 1.

The case of bifix rules of the form mUsm’ — mVsm/, mUgm’ — mV,
mUrm/ — Vem!, and mUgm’ — Vg is basically a combination of cases 1.
and 2. above.

Cp,q,p ' Vs) (tpap' g ,Vs> Qp’q’p) (Lpaw ’ql’vﬁ>

€
P—>q~fp—>q P—>q~—/—*p—>q
m u € Us m' m u € Ug m’
€ YCPQP Vo) (L', V7D gl,rép,q,p’yq’yvs) t(p,q,p’,q’,VgD\ €
P—>q~—/—‘p—>q P—>q~—/—’p—>q
u € Uy m’ u € Us m’

After saturating Ao this way, we set A’ := Ay, thereby obtaining the desired
automaton with L(A’) = R®(L). Since only finitely many transitions can be
added in the saturation steps, the algorithm terminates.

For the completeness of the algorithm, we can show by induction on n that
if z ?(”) w for some z € L(A), then there is a path A’ : gy — F. For the

soundness, we can show that if there is a path A’ : go — F, then w € R®(L(A)).
This follows directly from the more general claim
A ipLqwithpe QUQINGEQUQr = T ?@" wAAy:p-=q .

For p = qp and ¢ € F this yields the original claim. Note that we are using Q)
(states of the original automaton A) in the claim, not Q. We omit the proof
details due to space restrictions. a

48 J.-H. Altenbernd

3.3 Extending TIRSs by Adding Tags

We extend our basic model such that R allows rules of the forms #U — #V,
U# — V#, and #U$ — #V$, where U C X* and V C (XU M)* are regular
sets. This means that the right hand sides of rules may contain new tags, thereby
allowing tags to be added when rewriting words.

It turns out that regularity is not preserved with this extension, and thus
also the derivation relation is not rational in general. In view of Theorem [2]
this illustrates well that the two cases of removing and of adding tags behave
differently with respect to preservation of regularity.

Proposition 5. TIRSs with tag-adding rules do not preserve regularity.

Proof. Consider R = ({a},{#}, R), where R contains only the rule #a —
##a#. Then R®({#a#}) = {#"a#" | n > 0} is not regular. |

However, we still keep decidability of the word-to-word reachability problem.

Theorem 3. The word-to-word reachability problem for TIRSs with tag-adding
rules is decidable.

Proof. Let R = (X, M,R) be a TIRS with tag-adding rules, and let u,v €
(XU M)*. Let |w|p denote the number of markers of M in w. If |ula > |v|ar,
then clearly v is not reachable from u. Otherwise, a maximum of n := |v|pr —|u|as
rewriting steps that add tags will suffice to obtain v from wu, if at all possible.
Let Ry denote the set of rules of R that do not add tags, and let Ry = R\ Ryp.
Similarly, let Rop = (X, M, Ry) and Ry = (X, M, R1). Then we have to iterate
the following at most n times to decide whether v is reachable from u, starting
with ¢ =0 and Uy = {u}:

1. Set i := i+ 1, and compute U/ ::R—>® (U;—1) and U; = Ul);
0 1

2. If v € Uy, then v is reachable from wu, else if i = n, then v is not reachable
from wu.

With the algorithm of Theorem [2] we can compute an NFA recognizing U/ in

every step, starting from an unravelled NFA recognizing U,;_;. Then, since —
1

is rational, U; is also effectively regular. O

3.4 Remarks on Further Extensions

There are several natural ways how the basic model of TIRS may be extended
further. For instance, one may allow tag-removing and tag-adding rules at the
same time, or rules might be allowed to rename the tags that are involved in
a rewriting step. It is not difficult to see that these models allow to transfer
information across tags in either direction, which makes it possible to move
markers arbitrarily and thus to apply rewriting rules at any position within a
word. Therefore, these models are Turing powerful, and all interesting properties
over such systems are undecidable.

On Bifix Systems and Generalizations 49

Another interesting extension is to allow information transfer across tags
in only one direction, e.g. by allowing rules of the form u# — #v. In [§],
Karhumaéki et al. distinguished the cases of controlled or uncontrolled transfer.
In the controlled case, a connection of the u’s and v’s is allowed, that is, the word
to be removed to the left of the marker # can determine the word to be added
to the right of #. In the uncontrolled case, no such connection is allowed, that
is, the words to be removed and added are chosen independently. Karhumaki et
al. showed that the language derivable from a regular initial set L C X*#3*
is context-free in the case of uncontrolled transfer. For the controlled case how-
ever, they showed that even finite relations for the transfer suffice to obtain
computational universality.

4 Comparison with Ground Tree Rewriting

Ground tree rewriting systems (GTRSs) have been studied intensively in [11].
They allow to substitute subtrees of finite ranked trees by other finite trees
according to given rules. In this section we give a comparison with bifix rewriting
systems.

Ranked trees are finite ordered trees over some ranked alphabet A which
determines the labels and numbers of successors of nodes in a tree. T4 denotes
the set of all finite trees over a given ranked alphabet A. A GTRS is a structure
R = (A4, X R, ti,), where A is a ranked alphabet, X' is an alphabet to label
rewriting rules, R is a finite set of rewriting rules of the form s <% s, where
o€ XY and s,s" € Ty, and t;, € T4 is the initial tree.

Intuitively, a rule s <= s’ may be applied to a tree t € T4 if s is a proper
subtree of t. Applying the rule yields a tree that is obtained from ¢ by replacing
one occurrence of the subtree s by s’.

It is easy to realize the infinite IN x IN grid by a GTRS (using a tree of two
unary branches of lengths i, j to represent vertex (i, 7)). Hence the MSO theory
of a GTRS graph is in general undecidable. As shown in [I2], even the “universal
reachability problem” (“Does every path from v reach a vertex in a regular tree
set T'77) is undecidable. On the other hand, as also shown in [I2], the first-order
theory with reachability (short: FO(R) theory) of a GTRS graph is decidable. In
the FO(R) theory, the graph signature is extended by a symbol for the closure
E* of the edge relation E.

For bifix rewriting systems, the undecidability result on universal reachability
is easily transferred from GTRSs. The proof for GTRSs only uses trees with
two unary branches (for the representation of the left and right inscriptions of a
Turing tape); in bifix rewriting systems, one simply combines the two branches
into a single word with a separator between the left and right part.

It is remarkable that a converse simulation cannot work. This is clarified by
the following result:

Theorem 4. The FO(R) theory of a mized prefiz/suffiz rewriting system is in
general undecidable.

50 J.-H. Altenbernd

For the proof, we remark that for the bifix rewriting system with rules > — ¢
for both prefix and suffix rewriting, the transitive closure gives the infix relation.
As proved by Kuske [10], the first-order theory of X* with the infix relation is
undecidable.

This result shows that there is an essential difference between

— the “multiple stack” model that is inherent in ground tree rewriting (when
a collection of unary branches is used as a list of stacks, with leaves as the
top symbols of stacks), and

— the bifix rewriting model, where two stacks are easily simulated, but where
an internal information flow between the two sides is possible.

5 Conclusion

We have introduced a general form of “tagged” rewriting system which extends
the mixed prefix/suffix rewriting as studied in [Bl9], and where reachability (or
the derivation relation) is decidable. We studied systematically the effects of
removing and adding tags and showed that these cases are not dual. At the same
time, we exhibited examples which separate decidability proofs by preservation
of regularity, by rationality, or just by recursiveness of the derivation relation.

Many questions arise from these results in infinite-state system verification,
where the universe of words with the tagged infix rewriting relation is considered
as an infinite transition graph. For example, it should be investigated which
logics admit an algorithmic solution of the model-checking problem over tagged
infix rewriting graphs (see e.g. [I3]). Another field of study is the definition of
natural extended models where the derivation relation is no more rational, but
still decidable.

Acknowledgement. I thank Didier Caucal, Christof Loding, and Wolfgang
Thomas for their support and fruitful discussions, and anonymous reviewers for
their helpful remarks.

References

1. Bouajjani, A., Mueller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR, 2005.
LNCS, vol. 3653, pp. 473-487. Springer, Heidelberg (2005)

2. Biichi, R.: Regular canonical systems. Archiv fiir Mathematische Logik und Grund-
lagenforschung 6, 91-111 (1964)

3. Biichi, R., Hosken, W.H.: Canonical systems which produce periodic sets. Mathe-
matical Systems Theory 4(1), 81-90 (1970)

4. Caucal, D.: On the regular structure of prefix rewriting. In: Arnold, A. (ed.) CAAP
1990. LNCS, vol. 431, pp. 87-102. Springer, Heidelberg (1990)

5. Coquidé, J.-L., Dauchet, M., Gilleron, R., Vagvolgyi, S.: Bottom-up tree push-
down automata: classification and connection with rewrite systems. Theoretical
Computer Science 127, 69-98 (1994)

10.

11.

12.

13.

14.

15.

On Bifix Systems and Generalizations 51

Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. Technical Report TUM-10002, Techn. Univer-
sitdt Munchen, Institut fiir Informatik (2000)

Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading (2000)

. Karhumaki, J., Kunc, M., Okhotin, A.: Communication of two stacks and rewriting.

In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 468-479. Springer, Heidelberg (2006)

Karhumaki, J., Kunc, M., Okhotin, A.: Computing by commuting. Theoretical
Computer Science 356(1-2), 200-211 (2006)

Kuske, D.: Theories of orders on the set of words. Theoretical Informatics and
Applications 40, 53-74 (2006)

Loéding, C.: Infinite Graphs Generated by Tree Rewriting. Doctoral thesis, RWTH
Aachen University (2003)

Léding, C.: Reachability problems on regular ground tree rewriting graphs. Theory
of Computing Systems 39(2), 347-383 (2006)

Mayr, R.: Process rewrite systems. Information and Computation 156(1-2), 264
286 (2000)

Salomaa, K.: Deterministic tree pushdown automata and monadic tree rewriting
systems. Journal of Computer and System Sciences 37, 367-394 (1988)

Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B: Formal Models and Semantics, pp. 133-192.
Elsevier, Amsterdam (1990)

Finite Automata, Palindromes, Powers,
and Patterns

Terry Anderson, Narad Rampersad, Nicolae Santean*, and Jeffrey Shallit

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario N2L. 3G1, Canada
tanderson@uwaterloo.ca, nrampersad@cs.uwaterloo.ca
nsantean@iusb.edu, shallit@graceland.uwaterloo.ca

Abstract. Given a language L and a nondeterministic finite automaton
M, we consider whether we can determine efficiently (in the size of M) if
M accepts at least one word in L, or infinitely many words. Given that M
accepts at least one word in L, we consider how long the shortest word can
be. The languages L that we examine include the palindromes, the non-
palindromes, the k-powers, the non-k-powers, the powers, the non-powers
(also called primitive words), and words matching a general pattern.

1 Introduction

Let L € X* be a fixed language, and let M be a deterministic finite automaton
(DFA) or nondeterministic finite automaton (NFA) with input alphabet X. In
this paper we are interested in three questions:

1. Whether we can efficiently decide (in terms of the size of M) if L(M) contains
at least one element of L, that is, if L(M) N L # ;

2. Whether we can efficiently decide if L(M) contains infinitely many elements
of L, that is, if L(M) N L is infinite;

3. Given that L(M) contains at least one element of L, what is a good upper
bound on the shortest element of L(M) N L7

As an example, consider the case where X = {a}, L is the set of primes written
in unary, that is, {a’ : i is prime }, and M is a NFA with n states.

To answer questions (1) and (2), we first rewrite M in Chrobak normal form
[5]. Chrobak normal form consists of an NFA M’ with a “tail” of O(n?) states,
followed by a single nondeterministic choice to a set of disjoint cycles containing
at most n states. Computing this normal form can be achieved in O(n®) steps
by a result of Martinez [17].

Now we examine each of the cycles produced by this transformation. Each

* o C

cycle accepts a finite union of sets of the form (a’)*a®, where ¢ is the size of

* Author’s current address: Department of Computer and Information Sciences, Indi-
ana University South Bend, 1700 Mishawaka Ave., P.O. Box 7111, South Bend, IN
46634, USA.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 52{-63] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Finite Automata, Palindromes, Powers, and Patterns 53

the cycle and ¢ < n? + n; both ¢ and ¢ are given explicitly from M’. Now,
by Dirichlet’s theorem on primes in arithmetic progressions, ged(t,¢) = 1 for
at least one pair (¢, ¢) induced by M’ if and only if M accepts infinitely many
elements of L. This can be checked in O(n?) steps, and so we get a solution to
question (2) in polynomial time.

Question (1) requires a little more work. From our answer to question (2),
we may assume that ged(¢,¢) > 1 for all pairs (¢, ¢), for otherwise M accepts
infinitely many elements of L and hence at least one element. Each element in
such a set is of length kt + ¢ for some k > 0. Let d = gcd(t,c) > 2. Then
kt+c= (kt/d+c/d)d. If k > 1, this quantity is at least 2d and hence composite.
Thus it suffices to check the primality of ¢ and ¢ + ¢, both of which are at
most n? 4 2n. We can precompute the primes < n? + 2n in linear time using
a modification of the sieve of Eratosthenes [18], and check if any of them are
accepted. This gives a solution to question (1) in polynomial time.

On the other hand, answering question (3) essentially amounts to estimating
the size of the least prime in an arithmetic progression, an extremely difficult
question that is still not fully resolved [J], although it is known that there is a
polynomial upper bound.

Thus we see that asking these questions, even for relatively simple languages
L, can quickly take us to the limits of what is known in formal languages and
number theory.

In this paper we examine questions (1)-(3) in the case where M is an NFA
and L is either the set of palindromes, the set of k-powers, the set of powers, the
set of words matching a general pattern, or their complements.

In some of these cases, there is previous work. For example, Ito et al. [12]
studied several circumstances in which primitive words (non-powers) may appear
in regular languages. As a typical result in [12], we mention: “A DFA over an
alphabet of 2 or more letters accepts a primitive word iff it accepts one of length
< 3n—3, where n is the number of states of the DFA”. Horvath, Karhuméki and
Kleijn [II] addressed the decidability problem of whether a language accepted
by an NFA is palindromic (i.e., every element is a palindrome). They showed
that the language accepted by an NFA with n states is palindromic if and only
if all its words of length shorter than 3n are palindromes.

A preliminary version of the full version of this paper is available online [2].

2 Notions and Notation

Let X' be an alphabet, i.e., a nonempty, finite set of symbols (letters). By X* we
denote the set of all finite words over Y| and by ¢, the empty word. For w € X*,
we denote by w® the word obtained by reversing the order of symbols in w.
A palindrome is a word w such that w = w®. If L is a language over ¥, i.e.,
L C X* we say that L is palindromic if every word w € L is a palindrome.
Let & > 2 be an integer. A word y is a k-power if y can be written as y = x
for some non-empty word x. If y cannot be so written for any k& > 2, then y is
primitive. A 2-power is typically referred to as a square, and a 3-power as a cube.

k

54 T. Anderson et al.

Patterns are a generalization of powers. A pattern is a non-empty word p over
a pattern alphabet A. The letters of A are called variables. A pattern p matches
a word w € X* if there exists a non-erasing morphism h : A* — X* such that
h(p) = w. Thus, a word w is a k-power if it matches the pattern a*.

We define an NFA (or DFA) as the usual 5-tuple M = (Q, X, 0, qo, F'). The
size of M is the total number N of its states and transitions. When we want to
emphasize the components of M, we say M has n states and ¢ transitions, and
define N :=n +t.

We note that if M is an NFA or NFA-¢, we can remove all states that either
cannot be reached from the start state or cannot reach a final state (the latter
are called dead states) in linear time (in the number of states and transitions)
using depth-first search. We observe that L(M) #) if and only if any states
remain after this process, which can be tested in linear time. Similarly, if M
is a NFA, then L(M) is infinite if and only if the corresponding digraph has a
directed cycle. This can also be tested in linear time.

We will also need the following well-known results [10]:

Theorem 1. Let M be an NFA with n states. Then

(a) L(M) # 0 if and only if M accepts a word of length < n.
(b) L(M) is infinite if and only if M accepts a word of length £, n < { < 2n.

A language L is called slender if there is a constant C' such that, for all n > 0, the
number of words of length n in L is less than C. The following characterization
of slender regular languages has been independently rediscovered several times

in the past [T4U1241T9].

Theorem 2. Let L C X* be a regular language. Then L is slender if and only
if it can be written as a finite union of languages of the form uv*w, where
u, v, w e X*.

For further background on finite automata and regular languages we refer the
reader to Yu [26].

3 Testing If an NFA Accepts at Least One Palindrome

Over a unary alphabet, every string is a palindrome, so problems (1)-(3) become
trivial. Let us assume, then, that the alphabet X contains at least two letters.
Although the palindromes over such an alphabet are not regular, the language

L'={z e X* : zaf € L(M) or there exists a € ¥ such that zaz™ € L(M)}

is, in fact, regular, as often shown in a beginning course in formal languages [10,
p. 72, Exercise 3.4 (h)]. We can take advantage of this as follows:

Lemma 1. Let M be an NFA with n states and t transitions. Then there exists
an NFA M’ with n? + 1 states and < 2t* transitions such that L(M') = L.

Finite Automata, Palindromes, Powers, and Patterns 55

Corollary 1. Given an NFA M with n states and t transitions, we can deter-
mine if M accepts a palindrome in O(n? + t2) time.

Corollary 2. Given an NFA M, we can determine if L(M) contains infinitely
many palindromes in quadratic time.

Corollary 3. If an NFA M accepts at least one palindrome, it accepts a palin-
drome of length < 2n? — 1.

Rosaz [21] also gave a proof of this last corollary. The quadratic bound is tight,
up to a multiplicative constant, in the case of alphabets with at least two letters,
and even for DFAs:

Proposition 1. For infinitely many n there exists a DFA M, with n states over
a 2-letter alphabet such that the shortest palindrome accepted by M, is of length
>n?/2—3n+5.

4 Testing If an NFA Accepts at Least One
Non-palindrome

In this section we consider the problem of deciding if an NFA accepts at least
one non-palindrome. Equivalently, we consider the problem: Given an NFA M,
is L(M) palindromic?

Again, the problem is trivial for a unary alphabet, so we assume |X| > 2.
Horvath, Karhuméki, and Kleijn [II] proved that the question is recursively
solvable. In particular, they proved the following theorem:

Theorem 3. L(M) is palindromic if and only if {x € L(M) : |z| < 3n} is
palindromic, where n is the number of states of M.

For an NFA over an alphabet of at least 2 symbols, the 3n bound is easily seen
to be optimal; for a DFA, however, the bound of 3n can be improved to 3n — 3,
and this is optimal.

While a naive implementation of Theorem [B] would take exponential time, in
this section we show how to test palindromicity in polynomial time.

The main idea is to construct a “small” NFA M/, for some integer ¢t > 1,
where no word in L(M]) is a palindrome, and M/ accepts all non-palindromes
of length < ¢ (in addition to some other non-palindromes). We omit the details
of the construction (a similar construction appears in [25]).

Given an NFA M with n states, we now construct the cross-product with
M;j,., and obtain an NFA A that accepts L(M) N L(Mj},). By Theorem [3
L(A) = 0 if and only if L(M) is palindromic. We can determine if L(A) = 0 in
linear time. If M has n states and ¢ transitions, then A has O(n?) states and
O(tn) transitions. Hence we have proved the following theorem.

Theorem 4. Let M be an NFA with n states and t transitions. The algorithm
sketched above determines whether M accepts a palindromic language in O(n? +
tn) time.

56 T. Anderson et al.

In analogy with Corollary] and using a different construction than that of
Theorem [l we also have the following proposition.

Proposition 2. Given an NFA M with n states and t transitions, we can de-
termine in O(n? + t2) time if M accepts infinitely many non-palindromes.

5 Testing If an NFA Accepts a Word Matching a Pattern

In this section we consider the computational complexity of the decision problem:

NFA PATTERN ACCEPTANCE

INSTANCE: An NFA M over the alphabet X' and a pattern p over some
alphabet A.

QUESTION: Does there exist x € X* such that © € L(M) and «
matches p?

Since the pattern p is given as part of the input, this problem is actually
somewhat more general than the sort of problem formulated as Question 1 of
the introduction, where the language L was fixed.

The following result was proved by Restivo and Salemi [20] (a more detailed

proof appears in [4]).

Theorem 5 (Restivo and Salemi). Let L be a reqular language and let A be
an alphabet. The set Pa of all non-empty patterns p € A* such that p matches
a word in L is effectively regular.

Observe that Theorem [Blimplies the decidability of the NFA PATTERN AC-
CEPTANCE problem. It is possible to give a boolean matrix based proof of
Theorem [(see Zhang [27] for a study of this boolean matrix approach to au-
tomata theory) that provides an explicit description of an NFA accepting Pa,
but due to space constraints we omit this proof. However, the reader may per-
haps deduce the argument from the proof of the following algorithmic result,
which uses similar ideas.

Theorem 6. The NFA PATTERN ACCEPTANCE problem is PSPACE-
complete.

Proof (sketch). We first show that the problem is in PSPACE. By Savitch’s
theorem [23] it suffices to give an NPSPACE algorithm. Let M = (Q, X, §, qo, F),
where @ = {0,1,...,n — 1}. For a € X, let B, be the n X n boolean matrix
whose (i, 7) entry is 1 if j € §(4,a) and 0 otherwise. Let B denote the semigroup
generated by the B,’s. For w = wow; - -ws € X*, we write B,, to denote the
matrix product B, By, - - Bu,-

Let A be the set of letters occuring in p. We may suppose that A={1,2,...,k}.
First, non-deterministically guess k boolean matrices By, ..., Bix. Next, for each
i, verify that B; is in the semigroup B by non-deterministically guessing a word
w of length at most 27" such that B; = B,,. We guess w symbol-by-symbol and

Finite Automata, Palindromes, Powers, and Patterns 57

reuse space after perfoming each matrix multiplication while computing B,,.
Then, if p = pop1 - - - pr, compute the matrix product B = B, B,, --- B, and
accept if and only if B describes an accepting computation of M.

To show hardness we reduce from the following PSPACE-complete problem
[7, Problem AL6|]. We leave the details to the reader.

DFA INTERSECTION

INSTANCE: An integer k > 1 and k DFAs A;, A, ..., Ag, each over the
alphabet Y.

QUESTION: Does there exist x € X* such that x is accepted by each
A, 1<i < k? O

We may define various variations or special cases of the NFA PATTERN
ACCEPTANCE problem, such as: NFA ACCEPTS A k-POWER, NFA
ACCEPTS INFINITELY MANY k-POWERS, where each of these prob-
lems is defined in the obvious way. When k is part of the input (i.e., k is not
fixed), these problems can be shown to be PSPACE-complete by a variation on
the proof of Theorem [l However, if k is fixed, both of these problems can be
solved in polynomial time, as we now demonstrate.

Proposition 3. Let M be an NFA with n states and t transitions, and set N =
n+t, the size of M. For any fixed integer k > 2, there is an algorithm running
in O(n?k=1k) = O(N?*~1) time to determine if M accepts a k-power.

Proof (sketch). For a language L C X*, we define LY*F = {z € X¥* : 2F € L}. Tt
is well-known that if L is regular, then so is L'/*. We leave it to the reader to
verify that an NFA-e¢ M’ accepting L'/* can be constructed with n?~! 41 states
and at most ¢* distinct transitions. Testing whether or not L(M’) accepts a non-

empty word can be done in linear time, so the running time of our algorithm is
O(n2k—1tk). 0

Corollary 4. We can decide if an NFA M withn states and t transitions accepts
infinitely many k-powers in O(n**=1t*) time.

We may also consider the problems NFA ACCEPTS A > k-POWER and
NFA ACCEPTS INFINITELY MANY > k-POWERS, again defined
in the obvious way. Here, even for fixed k, these problems are both PSPACE-
complete. Setting k = 2 corresponds to the problems NFA ACCEPTS A
POWER and NFA ACCEPTS INFINITELY MANY POWERS, so we
see that both these problems are PSPACE-complete as well.

To show PSPACE-hardness for the “infinitely many” problems, we reduce
from the DFA INTERSECTION INFINITENESS problem, which is de-
fined similarly to the DFA INTERSECTION problem, except that we now
ask if there are infinitely many words x such that z is accepted by each A;. This
problem is easily seen to be PSPACE-complete as well.

58 T. Anderson et al.

6 Testing If an NFA Accepts a Non-k-Power

In the previous section we showed that it is computationally hard to test if an
NFA accepts a k-power (when k is not fixed). In this section we show how to
efficiently test if an NFA accepts a non-k-power. Again, we find it more congenial
to discuss the opposite problem, which is whether an NFA accepts nothing but
k-powers.

First, we need some classical results from combinatorics on words.

Theorem 7 (Lyndon and Schiitzenberger [15]). If x, y, and z are words
satisfying an equation x'y? = 2, where i,j,k > 2, then they are all powers of a

common word.

Theorem 8 (Lyndon and Schiitzenberger [15]). Let u and v be non-empty
words. If uv = vu, then there exists a word x and integers i,j > 1, such that
u=2x" and v =1a7. In other words, u and v are powers of a common word.

We include here the following combinatorial result, which, when applied to words
in a regular language, gives a sort of “pumping lemma” for powers in a regular
language.

Proposition 4. Let u, v, and w be words, v # €, and let f,g > 1 be integers,
f # g. If wwfw and ww9w are non-primitive, then uvv™w is non-primitive for all
integers m > 1. Further, if uvw and uwv?w are k-powers for some integer k > 2,
then v and uwv™w are k-powers for all integers n > 1.

The following result is an analogue of Theorem B from which we will derive an
efficient algorithm for testing if a finite automaton accepts only k-powers.

Theorem 9. Let L be accepted by an n-state NFA M and let k > 2 be an
mteger.

1. Bvery word in L is a k-power if and only if every word in the set {x € L :
|z| < 3n} is a k-power.

2. All but finitely many words in L are k-powers if and only if every word in
the set {x € L :n <|z| <3n} is a k-power.

Further, if M is a DFA over an alphabet of size > 2, then the bound 3n may be
replaced by 3n — 3.

Ito et al. [I2] proved a similar result for primitive words: namely, that if L
is accepted by an n-state DFA over an alphabet of two or more letters and
contains a primitive word, then it contains a primitive word of length < 3n — 3.
In other words, every word in L is a power if and only if every word in the set
{z € L:|z| <3n— 3} is a power.

The proof of Theorem [@ is similar to that of [I2, Proposition 7], albeit with
some additional complications. We shall give a complete proof in the full version
of this paper.

Finite Automata, Palindromes, Powers, and Patterns 59

The characterization due to Ito et al. [I2, Proposition 10] (see also Démosi,
Horvath, and Ito [6l Theorem 3]) of the regular languages consisting only of
powers, along with Theorem [implies that any such language is slender. A
simple application of the Myhill-Nerode Theorem gives the following weaker
result.

Proposition 5. Let L be a regular language and let k > 2 be an integer. If all
but finitely many words of L are k-powers, then L is slender. In particular, if L
is accepted by an n-state DFA and all words in L of length > £ are k-powers,
then for all r > £, the number of words in L of length r is at most n.

The following characterization is analogous to the characterization of palin-
dromic regular languages given in [I1, Theorem 8|, and follows from Propo-
sition Bl Theorem [and the (omitted) proof of Proposition [l

Theorem 10. Let L C X* be a regular language and let k > 2 be an integer.
The language L consists only of k-powers if and only if it can be written as
a finite union of languages of the form uwv*w, where u,v,w € X* satisfy the
following: there exists a primitive word x € X* and integers i,j > 0 such that
v=2" and wu = 27",

Next we apply Theorem [to deduce the following algorithmic result.

Theorem 11. Let k > 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if every word in L(M) is a k-power in
O(n® +tn?) time.

Proof (sketch). We create an NFA, M/, for » = 3n, such that no word in L(M))
is a k-power, and M/ accepts all non-k-powers of length < r (and perhaps some
other non-k-powers).

Note that we may assume that k < r. If £ > r, then no word of length < r is
a k-power. In this case, to obtain the desired answer it suffices to test if the set
{z € L(M) : |z| < r} is empty. However, this set is empty if and only if L(M)
is empty, and this is easily verified in linear time.

We now form a new NFA A as the cross product of M/ with M. From Theo-
rem [it follows that L(A) = @ iff every word in L(M) is a k-power. Again, we
can determine if L(A) = () in linear time.

We omit the details of the construction of M/, noting only that M/ can be
constructed to have at most O(r?) states and O(r?) transitions. After construct-
ing the cross-product, this gives a O(n® + tn?) bound on the time required to
determine if every word in L(M) is a k-power. O

Theorem [] suggests the following question: if M is an NFA with n states that
accepts at least one non-k-power, how long can the shortest non-k-power be?
Theorem [proves an upper bound of 3n. A lower bound of 2n — 1 for infinitely
many n follows easily from the obvious (n + 1)-state NFA accepting a™(a"+1)*,
where n is divisible by k. However, Ito et al. [12] gave a very interesting example
that improves this lower bound: if # = ((ab)"a)? and y = bawab, then z and zyx

60 T. Anderson et al.

are squares, but zyzyzr is not a power. Hence, the obvious (8n + 8)-state NFA
that accepts x(yx)* has the property that the shortest non-k-power accepted is
of length 20n + 18. We generalize this lower bound by defining x and y as follows:
let u = (ab)"a, v = u*, and y = v~ (zbau"tx) 2=, We leave it to the reader
to deduce the following result.

Proposition 6. Let k > 2 be fized. There exist infinitely many NFAs M with
the property that if M has r states, then the shortest non-k-power accepted is of
length (2 + ,," ,)r — O(1).

We may also apply part (2) of Theorem [d to obtain an algorithm to check if an
NFA accepts infinitely many non-k-powers.

Theorem 12. Let k > 2 be an integer. Given an NFA M with n states and t
transitions, it is possible to determine if all but finitely many words in L(M) are
k-powers in O(n3 + tn?) time.

7 Automata Accepting Only Powers

We now move from the problem of testing if an automaton accepts only k-powers
to that of testing if it accepts only powers (of any kind). Just as Theorem [0 was
the starting point for our algorithmic results in Section [@], the following theorem
of Tto et al. [T2] (stated here in a slightly stronger form than in the original) is
the starting point for our algorithmic results in this section.

Theorem 13. Let L be accepted by an n-state NFA M.

1. Every word in L is a power if and only if every word in the set {x € L :
|z| < 3n} is a power.

2. All but finitely many words in L are powers if and only if every word in the
set {x € L:n < |z| < 3n} is a power.

Further, if M is a DFA over an alphabet of size > 2, then the bound 3n may be
replaced by 3n — 3.

We next prove an analogue of Proposition Bl We need the following result, first
proved by Birget [3], and later, independently, in a weaker form, by Glaister and
Shallit []].

Theorem 14. Let L C X* be a regular language. Suppose there exists a set of
pairs S = {(x;,y;) € ¥ x X* : 1 < i < n} such that: (a) x;y; € L for 1 <i < n;
and (b) either x;y; ¢ L or xjy; ¢ L for 1 < i,j <mn, i # j. Then any NFA
accepting L has at least n states.

Proposition 7. Let M be an n-state NFA and let ¢ be a non-negative integer
such that every word in L(M) of length > £ is a power. For all v > £, the number
of words in L(M) of length r is at most Tn.

Finite Automata, Palindromes, Powers, and Patterns 61

Proof. We give the proof in full, as it illustrates an unusual and unexpected
combination of techniques from both the theory of non-deterministic state com-
plexity as well as the theory of combinatorics on words.

Let r > £ be an arbitrary integer. The proof consists of three steps.

Step 1. We consider the set A of words w in L(M) such that |w| = r and
w is a k-power for some k > 4. For each such w, write w = !, where z is
a primitive word, and define a pair (z2,2°"2). Let S4 denote the set of such
pairs. Consider two pairs in S4: (22,2972) and (y2,37~2). The word 22372 is
primitive by Theorem [1 and hence is not in L(M). The set S4 thus satifies the
conditions of Theorem [I4] Since L(M) is accepted by an n-state NFA, we must
have [Sa| < n and thus |4 < n.

Step 2. Next we consider the set B of cubes of length r in L(M). For each
such cube w = 23, we define a pair (z,2?). Let Sp denote the set of such pairs.
Consider two pairs in Sp: (z,22) and (y, ?). Suppose that zy? and yz? are both
in L(M). The word zy? is certainly not a cube; we claim that it cannot be a
square. Suppose it were. Then |z| and |y| are even, so we can write © = 12
and y = y1yo where |21] = |z2| = |y1] = |yo|. Now if 2y® = 212251929192 is
a square, then ziz2y1 = yoy1y2, and so y; = ys. Thus y is a square; write
y = z2. By Theorem [[l yx? = z2z? is primitive, contradicting our assumption
that yo? € L(M). It must be the case then that xy? is a k-power for some k > 4.
Thus, zy? = u* for some primitive v uniquely determined by and y. With each
pair of cubes 2% and y® such that both zy? and yz? are in L(M) we may therefore
associate a k-power u* € L(M), where k > 4. We have already established in
Step 1 that the number of such k-powers is at most n. It follows that by deleting
at most n pairs from the set Sp we obtain a set of pairs satisfying the conditions
of Theorem [[4 We must therefore have |Sg| < 2n and thus |B| < 2n.

Step 3. Finally we consider the set C' of squares of length r in L(M). For each
such square w = 22, we define a pair (z,z). Let S¢ denote the set of such pairs.
Consider two pairs in S¢: (z,2) and (y,y). Suppose that zy and yx are both in
L(M). The word zy is not a square and must therefore be a k-power for some
k > 3. We write 2y = u”* for some primitive u uniquely determined by 2 and y.
In Steps 1 and 2 we established that the number of k-powers of length r, k > 3,
is |A|+ |B| < 3n. It follows that by deleting at most 3n pairs from the set Sc we
obtain a set of pairs satisfying the conditions of Theorem [[4 We must therefore
have |S¢| < 4n and thus |C] < 4n.

Putting everything together, we see that there are |A| + |B| + |C| < 7n words
of length r in L(M), as required. O

The bound of 7n in Proposition[dis almost certainly not optimal. We now prove
the following algorithmic result.

Theorem 15. Given an NFA M with n states, it is possible to determine if

every word in L(M) is a power in O(n®) time.

Proof (sketch). Checking if a word is a power can be done in linear time using
the Knuth-Morris-Pratt algorithm [I3]. By Theorem and Proposition [1 it
suffices to enumerate the words in L(M) of lengths 1,2,...,3n, stopping if the

62 T. Anderson et al.

number of such words in any length exceeds 7n. If all these words are powers,
then every word is a power. Otherwise, if we find a non-power, or if the number
of words in any length exceeds 7n, then not every word is a power. By the work
of Mékinen [16] or Ackerman & Shallit [I], we can enumerate these words in
O(n®) time. O

Using part (2) of Theorem [[3 along with Proposition[d, one obtains the following
in a similar manner.

Theorem 16. Given an NFA M with n states, we can decide if all but finitely
many words in L(M) are non-powers in O(n®) time.

8 Final Remarks

In this paper we examined the complexity of checking various properties of reg-
ular languages, such as consisting only of palindromes, containing at least one
palindrome, consisting only of powers, or containing at least one power. In each
case, we were able to provide an efficient algorithm or show that the problem
is likely to be hard. Our results are summarized in the following table. We also
report some upper and lower bounds on the length of a shortest palindrome,
k-power, etc., accepted by an NFA; due to space constraints we must omit the
proofs of these bounds. Here M is an NFA with n states and ¢ transitions.

decide if decide if upper bound on worst-case
L L(M) N L=0 L(M) N L shortest element lower bound
infinite of L(M) N L known
palindromes Oo(n?+t*) Om*+1t?) m? —1 ”22 —3n+5
non-palindromes ~ O(n* +tn) O(n? +t%) 3n—1 3n—1
k-powers On**=1Fy om* =1t%) kn” 2(n*)
(k fixed)
k-powers PSPACE- PSPACE-
(k part of input) complete complete
non-k-powers O(n® +tn?) O(n® + tn?) 3n 2+ ,,",)n—0(1)
powers PSPACE- PSPACE- (n+1)n"*! e (Vnlogn)
complete complete
non-powers o(n®) o(n®) 3n on—2
References

1. Ackerman, M., Shallit, J.: Efficient enumeration of regular languages. In: Holub, J.,
Zdérek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 226-242. Springer, Heidelberg
(2007)

2. Anderson, T., Rampersad, N., Santean, N., Shallit, J.: Finite automata, palin-
dromes, patterns, and borders, http://www.arxiv.org/abs/0711.3183

http://www.arxiv.org/abs/0711.3183

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Finite Automata, Palindromes, Powers, and Patterns 63

Birget, J.-C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185-190 (1992)

Castiglione, G., Restivo, A., Salemi, S.: Patterns in words and languages. Disc.
Appl. Math. 144, 237-246 (2004)

Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149-158 (1986); Errata 302, 497-498 (2003)

Domosi, P., Horvath, G., Tto, M.: A small hierarchy of languages consisting of
non-primitive words. Publ. Math (Debrecen) 64, 261-267 (2004)

Garey, M., Johnson, D.: Computers and Intractability. Freeman, New York (1979)
Glaister, 1., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75-77 (1996)

Heath-Brown, D.R.: Zero-free regions for Dirichlet L-functions, and the least prime
in an arithmetic progression. Proc. Lond. Math. Soc. 64, 265-338 (1992)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

Horvath, S., Karhuméki, J., Kleijn, J.: Results concerning palindromicity. J. Inf.
Process. Cybern. EIK 23, 441-451 (1987)

Tto, M., Katsura, M., Shyr, H.J., Yu, S.S.: Automata accepting primitive words.
Semigroup Forum 37, 45-52 (1988)

Knuth, D., Morris Jr., J., Pratt, V.: Fast pattern matching in strings. SIAM J.
Computing 6, 323-350 (1977)

Kunze, M., Shyr, H.J., Thierrin, G.: h-bounded and semi-discrete languages. In-
formation and Control 51, 147-187 (1981)

Lyndon, R.C., Schiitzenberger, M.-P.: The equation a™ = b"c? in a free group.
Michigan Math. J. 9, 289-298 (1962)

Mékinen, E.: On lexicographic enumeration of regular and context-free languages.
Acta Cybernetica 13, 55-61 (1997)

Martinez, A.: Efficient computation of regular expressions from unary NFAs. In:
DCFS 2002, pp. 174-187 (2002)

Pritchard, P.: Linear prime-number sieves: a family tree. Sci. Comput. Program-
ming 9, 17-35 (1987)

Paun, G., Salomaa, A.: Thin and slender languages. Disc. Appl. Math. 61, 257-270
(1995)

Restivo, A., Salemi, S.: Words and patterns. In: Kuich, W., Rozenberg, G., Sa-
lomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 215-218. Springer, Heidelberg
(2002)

Rosaz, L.: Puzzle corner, #50. Bull. European Assoc. Theor. Comput. Sci. 76, 234
(February 2002); Solution 77, 261 (June 2002)

Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Berlin
(1997)

Savitch, W.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. System Sci. 4, 177-192 (1970)

Shallit, J.: Numeration systems, linear recurrences, and regular sets. Inform. Com-
put. 113, 331-347 (1994)

Shallit, J., Breitbart, Y.: Automaticity I: Properties of a measure of descriptional
complexity. J. Comput. System Sci. 53, 10-25 (1996)

Yu, S.: Regular languages. In: Handbook of Formal Languages, Ch. 2, pp. 41-110
(1997)

Zhang, G.-Q.: Automata, Boolean matrices, and ultimate periodicity. Inform. Com-
put. 152, 138-154 (1999)

One-Dimensional Quantum Cellular Automata
over Finite, Unbounded Configurations

Pablo Arrighi', Vincent Nesme?, and Reinhard Werner?

! Université de Grenoble, LIG, 46 Avenue Félix Viallet,
38031 Grenoble Cedex, France
2 Technische Universitét Braunschweig, IMAPH, Mendelssohnstr. 3, 38106
Braunschweig, Germany

Abstract. One-dimensional quantum cellular automata (QCA) consist
in a line of identical, finite dimensional quantum systems. These evolve
in discrete time steps according to a causal, shift-invariant unitary evo-
lution. By causal we mean that no instantaneous long-range communi-
cation can occur. In order to define these over a Hilbert space we must
restrict to a base of finite, yet unbounded configurations. We show that
QCA always admit a two-layered block representation, and hence the
inverse QCA is again a QCA. This is a striking result since the property
does not hold for classical one-dimensional cellular automata as defined
over such finite configurations. As an example we discuss a bijective cel-
lular automata which becomes non-causal as a QCA, in a rare case of
reversible computation which does not admit a straightforward quanti-
zation. We argue that a whole class of bijective cellular automata should
no longer be considered to be reversible in a physical sense. Note that
the same two-layered block representation result applies also over infinite
configurations, as was previously shown for one-dimensional systems in
the more elaborate formalism of operators algebras [13]. Here the proof is
simpler and self-contained, moreover we discuss a counterexample QCA
in higher dimensions.

One-dimensional cellular automata (CA) consist in a line of cells, each of which
may take one in a finite number of possible states. These evolve in discrete
time steps according to a causal, shift-invariant function. When defined over
infinite configurations, the inverse of a bijective CA is then itself a CA, and this
structural reversibility leads to a natural block decomposition of the CA. None
of this holds over finite, yet possibly unbounded, configurations.

Because CA are a physics-like model of computation it seems very natural
to study their quantum extensions. The flourishing research in quantum infor-
mation and quantum computer science provides us with appropriate context
for doing so, both in terms of the potential implementation and the theoretical
framework. Right from the very birth of the field with Feynman’s 1986 paper,
it was hoped that QCA may prove an important path to realistic implemen-
tations of quantum computers [8] — mainly because they eliminate the need
for an external, classical control and hence the principal source of decoherence.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 64 2008.
© Springer-Verlag Berlin Heidelberg 2008

One-Dimensional Quantum Cellular Automata 65

Other possible aims include providing models of distributed quantum computa-
tion, providing bridges between computer science notions and modern theoretical
physics, or anything like understanding the dynamics of some quantum physical
system in discrete spacetime, i.e. from an idealized viewpoint. Studying QCA
rather than quantum Turing machines for instance means we bother about the
spatial structure or the spatial parallelism of things [2], for the purpose of de-
scribing a quantum protocol, or to model a quantum physical phenomena [12].

One-dimensional quantum cellular automata (QCA) consist in a line of iden-
tical, finite dimensional quantum systems. These evolve in discrete time steps
according to a causal, shift-invariant unitary evolution. By causal we mean that
information cannot be transmitted faster than a fixed number of cells per time
step. Because the standard mathematical setting for quantum mechanics is the
theory of Hilbert spaces, we must exhibit and work with a countable basis for
our vectorial space. This is the reason why we only consider finite, unbounded
configurations. An elegant alternative to this restriction is to abandon Hilbert
spaces altogether and use the more abstract mathematical setting of C*-algebras
[4] — but here we want our proofs to be self-contained and accessible to the Com-
puter Science community. Our main result is that QCA can always be expressed
as two layers of an infinitely repeating unitary gate even over such finite con-
figurations. The existence of such a two-layered block representation implies of
course that the inverse QCA is again a QCA. Our proof method is mainly a
drastic simplification of that of the same theorem over infinite configurations,
adapted to finite unbounded configurations. Moreover in its present form the
theorem over infinite configurations is stated for n-dimensions [I3], which we
prove is incorrect by presenting a two-dimensional QCA which does not admit
a two-layered block representation.

It is a rather striking fact however that QCA admit the two-layered block
representation in spite of their being defined over finite, unbounded configura-
tions. For most purposes this saves us from complicated unitary tests such as
[6I711]. But more importantly notice how this is clearly not akin to the classical
case, where a CA may be bijective over such finite configurations, and yet not
structurally reversible. In order to clarify this situation we consider a perfectly
valid, bijective CA but whose inverse function is not a CA. It then turns out
that its quantum version is no longer valid, as it allows superluminal signalling.
Hence whilst we are used to think that any reversible computation admits a
trivial quantization, this turns out not to be the case in the realm of cellular
automata. Curiously the nonlocality of quantum states (entanglement) induces
more structure upon the cellular automata — so that its evolution may remain
causal as an operation (no superluminal signalling). Based upon these remarks
we prove that an important, well-studied class of bijective CA may be dismissed
as not physically reversible.

Outline. We provide a simple axiomatic presentation of QCA (Section [). We
reorganize a number of known mathematical results around the notion of sub-
systems in quantum theory (Section [2). Thanks to this small theory we prove
the reversibility /block structure theorem in an elementary manner (Section []).

66 P. Arrighi, V. Nesme, and R. Werner

In the discussion we show why the theorem does not hold as such in further
dimensions; we exhibit superluminal signalling in the XOR quantum automata,
and end with a general theorem discarding all injective, non surjective CA over
infinite configurations as unphysical (Section []).

Note that all proofs are omitted in this version of the paper, but all of them
are available in full the longer version of the paper [3].

1 Axiomatics of QCA

We will now introduce the basic definitions of one-dimensional QCA.

In what follows X will be a fixed finite set of symbols (i.e. ‘the alphabet’, de-
scribing the possible basic states each cell may take) and ¢ is a symbol such
that ¢ ¢ X, which will be known as ‘the quiescent symbol’, which represents an
empty cells. We write ¢ + X = {¢} U X for short.

Definition 1 (finite configurations).

A (finite) configuration ¢ over ¢ + X is a function ¢ : Z — q + X, with i —
c(i) = ¢;, such that there exists a (possibly empty) interval I verifying i € I =
¢ €q+ X andi ¢ I = c¢; =q. The set of all finite configurations over {q} U X
will be denoted Cy.

Whilst configurations hold the basic states of an entire line of cells, and hence
denote the possible basic states of the entire QCA, the global state of a QCA
may well turn out to be a superposition of these. The following definition works
because Cy is a countably infinite set.

Definition 2 (superpositions of configurations).

Let He, be the Hilbert space of configurations, defined as follows. To each finite
configuration ¢ is associated a unit vector |c), such that the family (\c))cecf is
an orthonormal basis of He,. A superposition of configurations is then a unit
vector in He, .

This space of QCA configurations is the same one as in [T6/GU7UT]. It is isomorphic
to the cyclic one considered in [I1], but fundamentally different from the finite,
bounded periodic space of [I5] and the infinite setting of [13].

Definition 3 (Unitarity).
A linear operator G : He, — He, is unitary if and only if {G|c) |c € Cy} is an
orthonormal basis of He, .

Definition 4 (Shift-invariance).

Consider the shift operation which takes configuration ¢ = ...¢;—1¢;Cit1 ... to
d=...c;_cici ... where for alli cj = ciy1. Let 0 : He, — He, be its linear
extension to superpositions of configurations. A linear operator G : He, — He,
is said to be shift invariant if and only if Go = oG.

One-Dimensional Quantum Cellular Automata 67

Definition 5 (Causality).
A linear operator G : He, — He, is said to be causal with radius ; if and only
if for any p, p’ two states over He,, and for any i € Z, we have

pliivr =p'liis1 = GpG'l; = Gp’GT\i. (1)

where we have written Alg for the matriz Trg(A), i.e. the partial trace obtained
from A once all of systems that are not in S have been traced out.

In the classical case, the definition would be that the letter to be read in some
given cell 7 at time ¢+ 1 depends only on the state of the cells 7 and i+ 1 at time
t. This seemingly restrictive definition of causality is known in the classical case
as a é—neighborhood cellular automaton. This is because the most natural way
to represent such an automaton is to shift the cells by é at each step, so that the
state of a cell depends on the state of the two cells under it, as shown in figure [Tl
This definition of causality is actually not so restrictive, since by grouping cells
into ‘supercells’ one can construct a é—neighborhood CA simulating the first one.
The same thing can easily be done for QCA, so that this definition of causality
is essentially done without loss of generality. Transposed to a quantum setting,
we get the above definition: to know the state of cell number i, we only need to
know the state of cells i and i + 1 before the evolution.

We are now set to give the formal definition of one-dimensional quantum
cellular automata.

Definition 6 (QCA).
A one-dimensional quantum cellular automaton (QCA) is an operator G : He, —
He, which is unitary, shift-invariant and causal.

This is clearly the natural axiomatic quantization of the notion of cellular au-
tomata. An almost equivalent definition in the litterature is phrased in terms
of homomorphism of a C*-algebra [I3]. On the other hand the definitions in
[TEL6IATTITRITIS] are not axiomatic, in the sense that they all make particular
assumptions about the form of the local action of GG, and G is then defined as a
composition of these actions. The present work justifies some of these assump-
tions [5] to some extent.

The next theorem provides us with another characterization of causality, more
helpful in the proofs. But more importantly it entails structural reversibility, i.e.
the fact that the inverse function of a QCA is also a QCA. This theorem works
for n-dimensional QCA as well as one. We are not aware of a rigorous proof of
this fact for n-dimensional QCA in the previous litterature.

Theorem 1 (Structural reversibility)
Let G be a unitary operator of He, and N a finite subset of ZZ. The four properties
are equivalent:

(i) For every states p and p’ over the finite configurations, if p|x = p'|n then
(GpGT) o = (GP'GT) o

(ii) For every operator A localized on cell 0, then GTAG is localized on the cells
m

68 P. Arrighi, V. Nesme, and R. Werner

(iii) For every states p and p' over the finite configurations, if pl—x = p'|—n
then (G'pG) |o = (GTp'G) |o.

(iv) For every operator A localized on cell 0, then GAGT is localized on the cells
m —

When G satisfies these properties, we say that G is causal at 0 with neighbourhood
N. Here —N take the opposite of each of the elements of N .

2 A Small Theory of Subsystems

The purpose of this section is to provide a series of mathematical results about
‘When can something be considered a subsystem in quantum theory?’. Let us
work towards making this sentence more precise. The ‘something’ will be an
matrix algebra (a C*-algebra over a finite-dimensional system):

Definition 7 (Algebras).

Consider A C M,,(C). We say that A is an algebra of M, (C) if and only if it is
closed under weighting by a scalar (.), addition (+), matriz multiplication (x),
adjoint (). Moreover for any S a subset of M, (C), we denote by curly S its
closure under the above-mentioned operations.

The key issue here is that the notion of subsystem is usually a base-dependent
one, i.e. one tends to say that A is a subsystem if A = M,(C) ® I, but this
depends on a particular choice of basis/tensor decomposition. Let us make the
definition base-independent, artificially at first.

Definition 8 (Subsystem algebras).

Consider A an algebra of M, (C). We say that A is a subsystem algebra of
M, (C) if and only if there exists p,q € N/pqg = n and U € M, (C)/UU =
UUT =1, such that UAUT = M,(C) ® 1,,.

We now work our way towards simple characterizations of subsystem algebras.

Definition 9 (Center algebras).
For A an algebra of M, (C), we noteCq ={A € A|VYBe ABA=AB}.Ca is
also an algebra of M, (C), which is called the center algebra of A.

Theorem 2 (Characterizing one subsystem)
Let A be an algebra of M, (C) and Co = {A € A|VB € ABA = AB} its center
algebra. Then A is a subsystem algebra if and only if C4 = CI,.

Next we give two simple conditions for some algebras A and B to be splitted as
a tensor product, namely commutation and generacy.

Theorem 3 (Characterizing several subsystems)

Let A and B be commuting algebras of M, (C) such that AB = M,, (C). Then
there exists a unitary matriz U such that, UAUT is M, (C) ® 1, and UBUT is
I, ® M, (C), with pqg = n.

One-Dimensional Quantum Cellular Automata 69

Often however we want to split some algebras A and B as a tensor product, not
over the union of the subsystems upon which they act, but over the intersection
of the subsystems upon which they act. The next definition and two lemmas will
place us in a position to do so.

Definition 10 (Restriction Algebras).

Consider A an algebra of M,(C) @ My(C) ® M,(C). For A an element of A,
we write A|y for the matriz Try2(A), i.e. the partial trace obtained from A once
systems 0 and 2 have been traced out. Similarly so we call A|y the restriction of
A to the middle subsystem, i.e. the algebra generated by { Tro2(A)| A € A}.

Indeed when we restrict our commuting algebras to the subsystem they have in
common, their restrictions still commute.

Lemma 1 (Restriction of commuting algebras).
Consider A an algebra of M,(C)® M,(C)®1, and B an algebra of I,, ® M,(C) ®
M,.(C). Suppose A and B commute. Then so do Al|; and B|;.

Moreover when we restrict our generating algebras to the subsystem they have
in common, theirs restrictions generate the subsystem.

Lemma 2 (Restriction of generating algebras).
Consider A an algebra of M,(C) ® My,(C)®1L, and B an algebra of I,, ® M,(C)®
M, (C). Suppose AB|1 = M,(C). Then we have that A|18|; = M,(C).

3 Block Structure

Now this is done we proceed to prove the structure theorem for QCA over finite,
unbounded configurations. This is a simplification of [I3]. The basic idea of the
proof is that in a cell at time ¢ we can separate what information will be sent
to the left at time ¢ + 1 and which information will be sent to the right at time
t+ 1. But first of all we shall need two lemmas. These are better understood by
referring to Figure [I1

Lemma 3. Let A be the image of the algebra of the cell 1 under the global
evolution G. It is localized upon cells 0 and 1, and we call A|y the restriction of
A to cell 1.

t+1

Fig. 1. Definitions of the algebras for the proof of the structure theorem

70 P. Arrighi, V. Nesme, and R. Werner

=
1=
i g
1=
=
1=
1=
g B

c
c
c
c
c
c
c
c

<
<
<
<
<
<
<
<

2.
2.
2.
a.
2.
2l
ol
B

Fig. 2. QCA with two-layered block representation (U, V). Each line represents a cell,
which is a quantum system. Each square represents a unitary U/V which gets applied
upon the quantum systems. Time flows upwards.

Let B be the image of the algebra of the cell 2 under the global evolution G. It is
localized upon cells 1 and 2, and we call B|; the restriction of B to cell 1.

There exists a unitary U acting upon cell 1 such that UA|qUT is of the form
M,(C) ®1, and UB|1UT is of the form I, @ M,(C), with pq = d.

Lemma 4. Let B be the image of the algebra of the cell 2 under the global
evolution G. It is localized upon cells 1 and 2, and we call B|y the restriction of
B to cell 1 and Bls the restriction of B to cell 2.

We have that B = Bl1 @ Bls.

Theorem 4 (Structure theorem)
Any QCA G is of the form described by Figures[2 and[3.

Note that this structure could be further simplified if we were to allow ancil-
lary cells [I]. Therefore we have shown that one-dimensional QCA over finite,
unbounded configurations admit a two-layered block representation. As we shall
see n-dimensional QCA do not admit such a two-layered block representation,

Fig. 3. Zooming into the two-layered block representation. The unitary interactions U
and V are alternated repeatedly as shown.

One-Dimensional Quantum Cellular Automata 71

contrary to what was stated in [I3]. Whilst the proof remains similar in spirit,
it has the advantage of being remarkably simpler and self-contained, phrased in
the standard setting of quantum theory, understandable without heavy prereq-
uisites in C*-algebras. The proof technique is rather different from that of [I5],
for whom G is essentially a finite-dimensional matrix and hence can necessarily
be approximated by a quantum circuit.

4 Quantizations and Consequences

The structure theorem for QCA departs in several important ways from the
classical situation, giving rise to a number of apparent paradoxes. We begin this
section by discussing some of these concerns in turns. Each of them is introduced
via an example, which we then use to derive further consequences or draw the
limits of the structure theorem. This will lead us to three original propositions.

Bijective CA and superluminal signalling. First of all, it is a well-known fact
that not all bijective CA are structurally reversible. The modified XOR CA is a
standard example of that.

Definition 11 (mXOR CA).

Let Cy be the set of finite configurations over the alphabet ¢ + X = {¢,0,1}.
For all z,y in ¢+ X Let 6(qx) = q, 6(xq) = x, and 6(xy) = © @ y otherwise.
We call F' : Cy — Cy the function mapping ¢ = ...¢i—1CiCit1... to cd =
. §(Ci,16i)5(CiCi+1) e

The mXOR CA is clearly shift-invariant, and causal in the sense that the state
of a cell at t + 1 only depends from its state and that of its right neighbour at
t. It is also bijective. Indeed for any ¢’ = ...qqcjc; ;... with ¢, the first non
quiescent cell, we have ¢, = ¢, cxp1 = ¢}, and thereon for I > k+1 we have either
1 = ¢ @ ¢ if ¢ # g, or once again ¢; 41 = ¢ otherwise, etc. In other words
the antecedent always exists (surjectivity) and is uniquely derived (injectivity)
from left till right. But the mXOR CA is not structurally reversible. Indeed for
some ¢’ = ...000000000. .. we cannot know whether the antecedent of this large
zone of zeroes is another large zone of zeroes or a large zone of ones — unless
we deduce this from the left border as was previously described...but the left
border may lie arbitrary far.

So classically there are bijective CA whose inverse is not a CA, and thus
who do not admit any n-layered block representation at all. Yet surely, just by
defining F' over Hc, by linear extension (e.g. F'(a.[...01...) +B.[...11...)) =
a.F|]...01..)4+p.F|...11...)) we ought to have a QCA, together with its block
representation, hence the apparent paradox.

In order to lift this concern let us look at the properties of this quantized F :
He, — He, . It is indeed unitary as a linear extension of a bijective function, and
it is shift-invariant for the same reason. Yet counter-intuitively it is non-causal.
Indeed consider configurations cx+ = 1/v/2.|...qq)(|00...00)%[11...11))|qq...).
We have Fex =1...¢q00...0)|£)|gq . ..), where we have used the usual notation

72 P. Arrighi, V. Nesme, and R. Werner

|+) = 1/4/2.(]0)%|1)). Let i be the position of this last non quiescent cell. Clearly
(Fey)|i = |£)(£] is not just a function of ¢|; ;41 = (]0¢){0q| + |1g)(1q|)/2, but
instead depends upon this global + phase. Another way to put it is that the
quantized XOR may be used to transmit information faster than light. Say the
first non quiescent cell is with Alice in Paris and the last non quiescent cell is
with Bob in New York. Just by applying a phase gate Z upon her cell Alice
can change cy into c_ at time ¢, leading to a perfectly measurable change from
|[+) to |—) for Bob. Again another way to say it is that operators localized upon
cell 1 are not taken to operators localized upon cells 0 and 1, as was the case
for QCA. For instance take I ® Z ® I localized upon cell 1. This is taken to
F(I® Z®I)F. But this operation is not localized upon cells 0 and 1, as it takes
|...qq00...0)|+)|qq...) to |...qq00...0)|—)|qq...), whatever the position i of
the varying |4). Note that because the effect is arbitrarily remote, this cannot
be reconciled with just a cell grouping. Notice also the curious asymmetry of the
scenario, which communicates towards the right.

Such a behaviour is clearly not acceptable. Although it seemed like a valid
QCA, F must bi discarded as non-physical. A phenomenon which seems causal
classically may turn out non-causal in its quantum extension. Clearly this is due
to the possibility of having entangled states, which allow for more 'non-local’
states, and hence strengthens the consequences of no-signalling. This is the deep
reason why QCA, even on finite configurations, do admit a block representation.
Now let us take a step back. If a CA is not structurally reversible, there is
no chance that its QCA will be. Moreover according the current state of mod-
ern physics, quantum mechanics is the theory for describing all closed systems.
Therefore we reach the following proposition, where the class B stands for the
class of bijective but not structurally reversible CA upon finite configurations is
known to coincide with the class of surjective but non injective CA upon infi-
nite configurations, well-known to be quivalent to the class of bijective CA upon
finite configurations but not upon infinite configuration.

Proposition 1 (Class B is not causally quantizable). The quantization of
a class B automata is not causal. It cannot be implemented by a series of finite
quantum systems, isolated from the outside world.

As far as CA are concerned this result removes much of the motivation of sev-
eral papers which focus upon class B, since they become illegal physically in
the formal sense above. As regards QCA the structure theorem also removes
much of the motivation of the papers [GI7/ITII], which contain unitary decision
procedures for possibly non-structurally reversible QCA.

Faster quantum signalling. Second, it is a well-known fact that there exists
some 1/2-neighbourhood, structurally reversible CA, whose inverse is also of
1/2-neighbourhood, and yet which do not admit a two-layered block represen-
tation unless the cells are grouped into supercells. The Toffoli CA is a good
example of that.

One-Dimensional Quantum Cellular Automata 73

>D§©@eoooc

X~~~

9010 0,000 0@

Fig. 4. The Toffoli CA

Definition 12 (Toffoli CA). Let Cy be the set of finite configurations over the
alphabet {00,01,01,11}, with 00 now taken as the quiescent symbol. For all ab
and cd taken in the alphabet let 6(abed) = (b@® a.c)e. We call F: C; — Cy the
function mapping ¢ = ...c¢;—1¢iCip1 ... to ¢ = ... 8(ci—1¢;)6(cicivr) This is
best described by Figure [

The Toffoli CA is clearly shift-invariant, and of 1/2-neighbourhood. Let us check
that its inverse is also of 1/2-neighbourhood. For instance say we seek to retrieve
(c,d). ¢ is easy of course. By shift-invariance retrieving d is like retrieving b. But
since we have a and c in cleartext we can easily substract a.c from b & a.c. Now
why does it not have a two-layered block representation without cell grouping?
Remember the toffoli gate is the controlled-controlled-NOT gate. Here b is NOTed
depending upon a and ¢, which pass through unchanged, same for d with the left
and right neighbouring subcells, etc. So actually the Toffoli CA is just two layers
of the toffoli gate, as we have shown in Figure[dl But we know that the toffoli gate
cannot be obtained from two bit gates in classical reversible electronics, hence
there cannot be a two-layered block representation without cell grouping.

So classically there exists some structurally reversible CA, of 1/2-neighbour-
hood, whose inverse is also of 1/2-neighbourhood, but do not admit a two-
layered block representation without cell grouping. Yet surely, just by defining
F over Hc, by linear extension we ought to have a QCA, together with its block
representation, and that construction does not need any cell grouping, hence
again the apparent paradox.

Again in order to lift this concern let us look at the properties of this quantized
F :He, — He,. It is indeed unitary and shift-invariant of course. This time it
is also causal, but counter-intuitively it turns out not to be of 1/2-neighbourhood.
Indeed from the formulation in terms of Toffoli gates as in Figure @ one can show
that the radius is 3/2 in a quantum mechanical setting. For instance one can check
that putting |+) in the a-subcell, |—) in the b-subcell, and either |0) or |1) in the
c-subcell of Fig.[lat time ¢ will yield either [4) or |—) in the a-subcell at time ¢+ 1.
Basically this arises because unlike in the classical case where the control bit always
emerges unchanges of a Toffoli gate, when a control bit is in a superposition (like
a in the example given) it may emerge from the Toffoli gate modified.

74 P. Arrighi, V. Nesme, and R. Werner

Once more let us take a step back. The Toffoli CA is yet another case where
exploiting quantum superpositions of configurations enables us to have informa-
tion flowing faster than in the classical setting, just like for the XOR CA. But
unlike the mXOR CA, the speed of information remains bounded in the Toffoli
CA, and so up to cell grouping it can still be considered a QCA. The Toffoli
CA is hence perfectly valid from a physical point of view, and causal, so long as
we are willing to reinterprete what the maximal speed of information should be.
Therefore we reach the following proposition.

Proposition 2 (Quantum information flows faster). Let F' : C; — Cy
be a CA and F : He, — He, the corresponding QCA, as obtained by linear
extension of F'. Information may flow faster in the the quantized version of F.

This result is certainly intriguing, and one may wonder whether it might contain
the seed of a novel development quantum information theory, as opposed to its
classical counterpart.

No-go for n-dimensions. Finally, it is again well-known that in two-dimensions
there exists some structurally reversible CA which do not admit a two-layered
block representation, even after a cell-grouping. The standard example is that

of Kari [10]:

Definition 13 (Kari CA). Let C; be the set of finite configurations over the
alphabet {0,1}°, with 0° is now taken as the quiescent symbol. So each cell is
made of 8 bits, one for each cardinal direction (North, North-FEast. ..) plus one
bit in the center. At each time step, the North bit of a cell undergoes a NOT
only if the cell lying North has center bit equal to 1, the North-Fast bit of a cell
undergoes a NOT' only if the cell lying North-Fast has center bit equal to 1, and
so on. Call F this CA.

The proof can easily be ported to the quantum case, as discussed in the longer ver-
sion of the paper [3]. Hence we have a counterexample to the higher-dimensional
case of the Theorem in [I3]. We reach the following proposition.

Proposition 3 (No-go for n-dimensions). There ezists some 2-dimensional
QCA which do not admit a two-layered block representation.

Acknowledgements

We would like to thank Jacques Mazoyer, Torsten Franz, Holger Vogts, Jarkko
Kari, Jérome Durand-Lose, Renan Fargetton, Philippe Jorrand for a number of
helpful conversations.

References

1. Arrighi, P.: An algebraic study of one-dimensional quantum cellular automata.
In: Krélovi¢, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 122-133.
Springer, Heidelberg (2006)

2. Arrighi, P., Fargetton, R.: Intrinsically universal one-dimensional quantum cellular
automata. In: DCM 2007 (2007)

10.

11.

12.

13.

14.

15.

16.

One-Dimensional Quantum Cellular Automata 75

. Arrighi, P., Nesme, V., Werner, R.: One-dimensional quantum cellular automata

over finite, unbounded configurations, longer version of this paper, arXiv:0711.3517
(2007)

. Bratteli, O., Robinson, D.: Operators algebras and quantum statistical mechanics

1. Springer, Heidelberg (1987)

. Cheung, D., Perez-Delgado, C.A.: Local Unitary Quantum Cellular Automata,

arXiv:/0709.0006

. Diirr, C., LéThanh, H., Santha, M.: A decision procedure for well formed quantum

cellular automata. Random Structures and Algorithms 11, 381-394 (1997)

. Diirr, C., Santha, M.: A decision procedure for unitary quantum linear cellular

automata. SIAM J. of Computing 31(4), 1076-1089 (2002)

. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507-531 (1986)
. Gijswijt, D.: Matrix algebras and semidefinite programming techniques for codes,

Ph.D. thesis, University of Amsterdam (2005)

Kari, J.: On the circuit depth of structurally reversible cellular automata. Fuda-
menta Informaticae 34, 1-15 (1999)

Meyer, D.: Unitarity in one dimensional nonlinear quantum cellular automata,
arXiv:quant-ph /9605023 (1995)

Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat.
Phys. 85, 551-574 (1996)

Schumacher, B., Werner, R.F.: Reversible quantum cellular automata, arXiv:quant-
ph/0405174

Shepherd, D.J., Franz, T., Werner, R.F.: Universally programmable quantum cel-
lular automata. Phys. Rev. Lett. 97, 020502 (2006)

van Dam, W.: A Universal Quantum Cellular Automaton. In: Proc. of Phys. Comp.
1996, New England Complex Systems Institute, pp. 323-331 (1996); InterJournal
manuscript 91(1996)

Watrous, J.: On one dimensional quantum cellular automata. In: Proc. of the 36th
IEEE Symposium on Foundations of Computer Science, pp. 528-537 (1995)

The Three-Color and Two-Color Tantrix™™ Rotation
Puzzle Problems Are NP-Complete Via Parsimonious
Reductions*

Dorothea Baumeister and Jorg Rothe

Institut fiir Informatik, Universitit Diisseldorf, 40225 Diisseldorf, Germany

Abstract. Holzer and Holzer [7]] proved that the Tantrix ™™ rotation puzzle prob-
lem with four colors is NP-complete, and they showed that the infinite variant of
this problem is undecidable. In this paper, we study the three-color and two-color
Tantrix™ rotation puzzle problems (3-TRP and 2-TRP) and their variants. Re-
stricting the number of allowed colors to three (respectively, to two) reduces the
set of available Tantrix™ tiles from 56 to 14 (respectively, to 8). We prove that
3-TRP and 2-TRP are NP-complete, which answers a question raised by Holzer
and Holzer in the affirmative. Since our reductions are parsimonious, it fol-
lows that the problems Unique-3-TRP and Unique-2-TRP are DP-complete under
randomized reductions. Finally, we prove that the infinite variants of 3-TRP and
2-TRP are undecidable.

1 Introduction

The puzzle game Tantrix ™, invented by Mike McManaway in 1991, is a domino-like
strategy game played with hexagonal tiles in the plane. Each tile contains three col-
ored lines in different patterns (see Figure [T)). We are here interested in the variant of
the Tantrix™ rotation puzzle game whose aim it is to match the line colors of the
joint edges for each pair of adjacent tiles, just by rotating the tiles around their axes
while their locations remain fixed. This paper continues the complexity-theoretic study
of such problems that was initiated by Holzer and Holzer [[7]. Other results on the
complexity of domino-like strategy games can be found, e.g., in Gridel’s work [6].
Tantrix™ puzzles have also been studied with regard to evolutionary computation [4]].

Holzer and Holzer [7] defined two decision problems associated with four-color
Tantrix™ rotation puzzles. The first problem’s instances are restricted to a finite num-
ber of tiles, and the second problem’s instances are allowed to have infinitely many
tiles. They proved that the finite variant of this problem is NP-complete and that the in-
finite problem variant is undecidable. The constructions in [[7]] use tiles with four colors,
just as the original Tantrix™ tile set. Holzer and Holzer posed the question of whether
the Tantrix™ rotation puzzle problem remains NP-complete if restricted to only three
colors, or if restricted to otherwise reduced tile sets.

* Full version: [2]]; see also Baumeister’s Master Thesis “Complexity of the Tantrix™ Rotation
Puzzle Problem,” Universitit Diisseldorf, September 2007. Supported in part by DFG grants
RO 1202/9-3 and RO 1202/11-1 and the Humboldt Foundation’s TransCoop program.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 76187] 2008.
(© Springer-Verlag Berlin Heidelberg 2008

The 3-TRP and 2-TRP Problems Are NP-Complete 77

Table 1. Overview of complexity and decidability results for &-TRP and its variants

k k-TRP is Parsimonious? Unique-k-TRP is Inf-k-TRP is

1 in P (trivial) in P (trivial) decidable (trivial)

2 NP-compl., Cor.[3 yes, Thm.[l =~ DP-<},,-compl., Cor.El undecidable, Thm.[3]
3 NP-compl., Cor.[yes, Thm.[l DP-<%,,-compl., Cor.El undecidable, Thm.[3]
4 NP-compl., see [7] yes, see DP-gfan-compl., see undecidable, see [7]]

In this paper, we answer this question in the affirmative for the three-color and the
two-color version of this problem. For 1 < k < 4, Table [Tl summarizes the results for
k-TRP, the k-color Tantrix '™ rotation puzzle problem, and its variants. (All problems
are formally defined in Section[])

Since the four-color Tantrix™ tile set contains the three-color Tantrix™ tile set,
our new complexity results for 3-TRP imply the previous results for 4-TRP (both its
NP-completeness [[7] and that satisfiability parsimoniously reduces to 4-TRP [1]]). In
contrast, the three-color Tantrix™ tile set does not contain the two-color Tantrix™
tile set (see Figure 2lin Section[2). Thus, 3-TRP does not straightforwardly inherit its
hardness results from those of 2-TRP, which is why both reductions, the one to 3-TRP
and the one to 2-TRP, have to be presented. Note that they each substantially differ—
both regarding the subpuzzles constructed and regarding the arguments showing that
the constructions are correct—from the previously known reductions [7/1]], and we will
explicitly illustrate the differences between our new and the original subpuzzles.

Since we provide parsimonious reductions from the satisfiability problem to 3-TRP
and to 2-TRP, our reductions preserve the uniqueness of the solution. Thus, the unique
variants of both 3-TRP and 2-TRP are DP-complete under polynomial-time random-
ized reductions, where DP is the class of differences of NP sets. We also prove that the
infinite variants of 3-TRP and 2-TRP are undecidable, via a circuit construction sim-
ilar to the one Holzer and Holzer [[7]] used to show that the infinite 4-TRP problem is
undecidable.

2 Definitions and Notation

Complexity-Theoretic Notions and Notation: We assume that the reader is familiar
with the standard notions of complexity theory, such as the complexity classes P (deter-
ministic polynomial time) and NP (nondeterministic polynomial time). DP denotes the
class of differences of any two NP sets [9]].

Let X* denote the set of strings over the alphabet £ = {0, 1}. Given any language L C
X*, ||L|| denotes the number of elements in L. We consider both decision problems and
function problems. The former are formalized as languages whose elements are those
strings in X* that encode the yes-instances of the problem at hand. Regarding the latter,
we focus on the counting problems related to sets in NP. The counting version #A of an
NP set A maps each instance x of A to the number of solutions of x. That is, counting
problems are functions from X* to N. As an example, the counting version #SAT of
SAT, the NP-complete satisfiability problem, asks how many satisfying assignments a
given boolean formula has. Solutions of NP sets can be viewed as accepting paths of

78 D. Baumeister and J. Rothe

SR A

(a) Sint (b) Brid (c) Chin (d) Rond
(e) red (f) yellow (g) blue (h) green

Fig. 1. Tantrix™ tile types and the encoding of Tantrix ™ line colors

NP machines. Valiant [10] defined the function class #P to contain the functions that
give the number of accepting paths of some NP machine. In particular, #SAT is in #P.

The complexity of two decision problems, A and B, will here be compared via the
polynomial-time many-one reducibility: A <b, B if there is a polynomial-time com-
putable function f such that for each x € £*, x € A if and only if f(x) € B. A set B
is said to be NP-complete if B is in NP and every NP set < P -reduces to B.

Many-one reductions do not always preserve the number of solutions. A reduction
that does preserve the number of solutions is said to be parsimonious. Formally, if A
and B are any two sets in NP, we say A parsimoniously reduces to B if there exists a
polynomial-time computable function f such that for each x € X*, #A(x) = #B(f(x)).

Valiant and Vazirani introduced the following type of randomized polynomial-
time many-one reducibility: A <h,, B if there exists a polynomial-time randomized al-
gorithm F and a polynomial p such that for each x € ¥, if x € A then F(x) € B with
probability at least 1/p(|x|), and if x € A then F(x) ¢ B with certainty. In particular,
they proved that the unique version of the satisfiability problem, Unique-SAT, is DP-
complete under randomized reductions.

Tile Sets, Color Sequences, and Orientations: The Tantrix ™ rotation puzzle consists
of four different kinds of hexagonal tiles, named Sint, Brid, Chin, and Rond. Each tile
has three lines colored differently, where the three colors of a tile are chosen among four
possible colors, see Figures[Ia)—(d). The original Tantrix™ colors are red, yellow, blue,
and green, which we encode here as shown in Figures[I(e)—(h). The combination of four
kinds of tiles having three out of four colors each gives a total of 56 different tiles.
Let C be the set that contains the four colors red, yellow, blue, and green. For
each i € {1,2,3,4}, let C; C C be some fixed subset of size i, and let 7; denote the
set of Tantrix™ tiles available when the line colors for each tile are restricted to C;.
For example, Ty is the original Tantrix™ tile set containing 56 tiles, and if C3 contains,
say, the three colors red, yellow, and blue, then tile set 73 contains the 14 tiles shown in

Figure I(b)}
@@Q@@@
QPO FDHEIID

0 4o <
B Pd oD
(a) Tantrix™ tile set 75 (b) Tantrix™ tile set T3

Fig. 2. Tantrix ™ tile sets 75 (for red and blue) and T; (for red, yellow, and blue)

The 3-TRP and 2-TRP Problems Are NP-Complete 79

For 73 and T, we require the three lines on each tile to have distinct colors, as in
the original Tantrix ™ tile set. For 7} and T», however, this is not possible, so we allow
the same color being used for more than one of the three lines of any tile. Note that we
care only about the sequence of colors on a tile, where we always use the clockwise
direction to represent color sequences. However, since different types of tiles can yield
the same color sequence, we will use just one such tile to represent the corresponding
color sequence. For example, if C, contains, say, the two colors red and blue, then the
color sequence red-red-blue-blue-blue-blue (which we abbreviate as rrbbbb) can be
represented by a Sint, a Brid, or a Rond each having one short red arc and two blue
additional lines, and we add only one such tile (say, the Rond) to the tile set 7>. That is,
though there is some freedom in choosing a particular set of tiles, to be specific we fix
the tile set 7> shown in Figure[2(a)] Thus, we have ||T;|| = 1, | T2|| = 8, ||T3]| = 14, and
II74|| = 56, regardless of which colors are chosen to be in C;, 1 <i < 4.

The six possible orientations for each tile in 7> and in T3, respectively, can be de-
scribed by permuting the color sequences cyclically, and we omit the repetitions of
color sequences (see the full version [2] for more details). For example, tile 77 from T»
has the same color sequence (namely, bbbbbb) in each of its six orientations. In Sec-
tion Bl we will consider the counting versions of Tantrix™ rotation puzzle problems
and will construct parsimonious reductions. When counting the solutions of Tantrix™
rotation puzzles, we will focus on color sequences only. That is, whenever some tile
(such as 77 from 7>) has distinct orientations with identical color sequences, we will
count this as just one solution (and disregard such repetitions). In this sense, our re-
duction in the proof of Theorem] (which is presented in the full version [2]]) will be
parsimonious.

Definition of the Problems: We now recall some useful notation that Holzer and
Holzer [7] introduced in order to formalize problems related to the Tantrix™ rota-
tion puzzle. The instances of such problems are Tantrix™ tiles firmly arranged in the
plane. To represent their positions, we use a two-dimensional hexagonal coordinate sys-
tem, see [7] and also [2]. Let T € {T1,T>, T3, T, } be some tile set as defined above. Let
o/ : 7? — T be a function mapping points in Z? to tiles in T, i.e., &7 (x) is the type of
the tile located at position x. Note that <7 is a partial function; throughout this paper
(except in Theorem[3and its proof), we restrict our problem instances to finitely many
given tiles, and the regions of Z? they cover may have holes (which is a difference to
the original Tantrix™ game).

Define shape(.</) to be the set of points x € Z> for which <7 (x) is defined. For any
two distinct points x = (a,b) and y = (c,d) in Z?, x and y are neighbors if and only
if(a=cand|b—d|=1)or (jJa—c|]=1andb=d)or (a—c=1andb—d=1) or
(a—c=—1and b—d = —1). For any two points x and y in shape(</), <7 (x) and <7 (y)
are said to be neighbors exactly if x and y are neighbors. For k chosen from {1,2,3,4},
define the following problem:

Name: k-Color Tantrix™ Rotation Puzzle (k-TRP, for short).

Instance: A finite shape function o7 : Z?> — T}, encoded as a string in X*.

Question: Is there a solution to the rotation puzzle defined by <7, i.e., does there exist
arotation of the given tiles in shape(.<7) such that the colors of the lines of any two
adjacent tiles match at their joint edge?

80 D. Baumeister and J. Rothe

Clearly, 1-TRP can be solved trivially, so 1-TRP is in P. On the other hand, Holzer
and Holzer [7] showed that 4-TRP is NP-complete and that the infinite variant of 4-TRP
is undecidable. Baumeister and Rothe [1]] investigated the counting and the unique vari-
ant of 4-TRP and, in particular, provided a parsimonious reduction from SAT to 4-TRP.
In this paper, we study the three-color and two-color versions of this problem, 3-TRP
and 2-TRP, and their counting, unique, and infinite variants.

Definition 1. A solution to a k-TRP instance .« specifies an orientation of each
tile in shape(</) such that the colors of the lines of any two adjacent tiles match
at their joint edge. Let SOLyrrp(/) denote the set of solutions of </. Define
the counting version of k-TRP to be the function #k-TRP mapping from X* to N
such that #k-TRP(</) = ||SOLy.trp()||. Define the unique version of k-TRP as
Unique-k-TRP = { & | #k-TRP(«7) = 1}.

The above problems are defined for the case of finite problem instances. The infinite
Tantrix™ rotation puzzle problem with k colors (Inf-k-TRP, for short) is defined ex-
actly as k-TRP, the only difference being that the shape function .<# is not required to be
finite and is represented by the encoding of a Turing machine computing .«7 : Z> — Tj.

3 Results

3.1 Parsimonious Reduction from SAT to 3-TRP

Theorem [I] below is the main result of this section. Notwithstanding that our proof
follows the general approach of Holzer and Holzer [7], our specific construction and
our proof of correctness will differ substantially from theirs. We will give a parsimo-
nious reduction from SAT to 3-TRP. Let Circuit, —-SAT denote the problem of decid-
ing, given a boolean circuit ¢ with AND and NOT gates only, whether or not there
is a satisfying truth assignment to the input variables of ¢. The NP-completeness of
Circuits ~-SAT was shown by Cook [3], and it is easy to see that SAT parsimoniously
reduces to Circuits -SAT (see, e.g., [I]).

Theorem 1. SAT parsimoniously reduces to 3-TRP.

It is enough to show that Circuits —-SAT parsimoniously reduces to 3-TRP. The
resulting 3-TRP instance simulates a boolean circuit with AND and NOT gates such
that the number of solutions of the rotation puzzle equals the number of satisfying truth
assignments to the variables of the circuit.

General remarks on our proof approach: The rotation puzzle to be constructed from
a given circuit consists of different subpuzzles each using only three colors. The color
green was employed by Holzer and Holzer [7] only to exclude certain rotations, so
we choose to eliminate this color in our three-color rotation puzzle. Thus, letting C3
contain the colors blue, red, and yellow, we have the tile set T3 = {11,,...,t14}, Where
the enumeration of tiles corresponds to Figure 2(b)} Furthermore, our construction will
be parsimonious, i.e., there will be a one-to-one correspondence between the solutions
of the given Circuit, —-SAT instance and the solutions of the resulting rotation puzzle
instance. Note that part of our work is already done, since some subpuzzles constructed

The 3-TRP and 2-TRP Problems Are NP-Complete 81

in [1]] use only three colors and they each have unique solutions. However, the remain-
ing subpuzzles have to be either modified substantially or to be constructed completely
differently, and the arguments of why our modified construction is correct differs con-
siderably from previous work [Z/1].

Since it is not so easy to exclude undesired rotations without having the color green
available, it is useful to first analyze the 14 tiles in 73. In the remainder of this proof,
when showing that our construction is correct, our arguments will often be based on
which substrings do or do not occur in the color sequences of certain tiles from 7.
(Note that the full version of this paper [2] has a table that shows which substrings of
the form uv, where u,v € C3, occur in the color sequence of #; in 73, and this table may
be looked up for convenience.)

Holzer and Holzer [[7] consider a boolean circuit ¢ on input variables x;,xs,...,x,
as a sequence (0,0, ..., 0,) of computation steps (or “instructions”), and we adopt
this approach here. For the ith instruction, o4, we have o; = x; if 1 <i < n, and if
n+ 1 <i<m then we have either o; = NOT() or o; = AND(j, k), where j < k < i.
Circuits are evaluated in the standard way. We will represent the truth value true by the
color blue and the truth value false by the color red in our rotation puzzle. A technical
difficulty in the construction results from the wire crossings that circuits can have. To
construct rotation puzzles from planar circuits, Holzer and Holzer use McColl’s planar
“cross-over” circuit with AND and NOT gates to simulate such wire crossings [8],
and in particular they employ Goldschlager’s log-space transformation from general to
planar circuits [3]. For the details of this transformation, we refer to [7].

Holzer and Holzer’s original subpuzzles [7] should be compared with those in our
construction. To illustrate the differences between our new and these original subpuz-
zles, modified or inserted tiles in our new subpuzzles presented in this section will
always be highlighted by having a grey background.

Wire subpuzzles: Wires of the circuit are simulated by the subpuzzles WIRE, MOVE,
and COPY. We present only the WIRE here; see [2] for MOVE and COPY.

A vertical wire is represented by a WIRE subpuzzle, which is shown in Figure[3 The
original WIRE subpuzzle from [7] does not contain green but it does not have a unique
solution, while the WIRE subpuzzle from [[1] ensures the uniqueness of the solution but
is using a tile with a green line. In the original WIRE subpuzzle, both tiles, a and b,
have two possible orientations for each input color. Inserting two new tiles at positions
x and y (see Figure 3) makes the solution unique. If the input color is blue, tile x must
contain one of the following color-sequence substrings for the edges joint with tiles b
and a: ry, rr, yy, or yr. If the input color is red, x must contain one of these substrings:
bb, yb, yy, or by. Tile #|, satisfies the conditions yy and ry for the input color blue, and
the conditions yb and yy for the input color red.

The solution must now be fixed with tile y. The possible color-sequence substrings
of y at the edges joint with @ and b are rr and ry for the input color blue, and yb and bb
for the input color red. Tile t13 has exactly one of these sequences for each input color.
Thus, the solution for this subpuzzle contains only three colors and is unique.

Gate subpuzzles: The boolean gates AND and NOT are represented by the AND and
NOT subpuzzles. Both the original four-color NOT subpuzzle from [7]] and the mod-
ified four-color NOT subpuzzle from [[I]] use tiles with green lines to exclude certain

82 D. Baumeister and J. Rothe

OUT (@UT
«gg» @ 020
,,,,, &
(a) In true (b) In falve (c) Scheme

Fig. 3. Three-color WIRE subpuzzle

rotations. Our three-color NOT subpuzzle is shown in Figure @ Tiles a, b, c, and d
from the original NOT subpuzzle [[7] remain unchanged. Tiles e, f, and g in this origi-
nal NOT subpuzzle ensure that the output color will be correct, since the joint edge of
e and b is always red. So for our new NOT subpuzzle in Figure @ we have to show that
the edge between tiles x and b is always red, and that we have unique solutions for both
input colors.

First, let the input color be blue and suppose for a contradiction that the joint edge
of tiles b and x were blue. Then the joint edge of tiles b and ¢ would be yellow. Since
x is a tile of type #13 and so does not contain the color-sequence substring bb, the edge
between tiles ¢ and x must be yellow. But then the edges of tile w joint with tiles ¢ and x
must both be blue. This is not possible, however, because w (which is of type #9) does
not contain the color-sequence substring bb. So if the input color is blue, the orientation
of tile b is fixed with yellow at the edge of b joint with tile y, and with red at the edges of
b joint with tiles ¢ and x. This already ensures that the output color will be red, because
tiles ¢ and d behave like a WIRE subpuzzle. Tile x does not contain the color-sequence
substring br, so the orientation of tile c is also fixed with blue at the joint edge of tiles
c and w. As a consequence, the joint edge of tiles w and d is yellow, and due to the fact
that the joint edge of tiles w and x is also yellow, the orientation of w and d is fixed
as well. Regarding tile a, the edge joint with tile y can be yellow or red, but tile x has
blue at the edge joint with tile y, so the joint edge of tiles y and a is yellow, and the
orientation of all tiles is fixed for the input color blue. The case of red being the input
color can be handled analogously.

The most complicated figure is the AND subpuzzle. The original four-color version
from [[7] uses four tiles with green lines and the modified four-color AND subpuzzle

(a) In: true (b) In: false (©) Scheme

Fig. 4. Three-color NOT subpuzzle

The 3-TRP and 2-TRP Problems Are NP-Complete 83

(e) Schem

Fig. 5. Three-color AND subpuzzle

from [1]] uses seven tiles with green lines. Figure[3shows our new AND subpuzzle using
only three colors and having unique solutions for all four possible combinations of input
colors. To analyze this subpuzzle, we subdivide it into a lower and an upper part. The
lower part ends with tile ¢ and has four possible solutions (one for each combination
of input colors), while the upper part, which begins with tile j, has only two possible
solutions (one for each possible output color). The lower part can again be subdivided
into three different parts.

The lower left part contains the tiles a, b, x, and A. If the input color to this part is blue
(see Figures[5(a)land [5(D)), the joint edge of tiles b and x is always red, and since tile x
(which is of type #11) does not contain the color-sequence substring rr, the orientation
of tiles a and x is fixed. The orientation of tiles b and 4 is also fixed, since & (which
is of type ;) does not contain the color-sequence substring by but the color-sequence
substring yy for the edges joint with tiles b and x. By similar arguments we obtain a
unique solution for these tiles if the left input color is red (see Figures and [3(d)).
The connecting edge to the rest of the subpuzzle is the joint edge between tiles b and c,
and tile b will have the same color at this edge as the left input color.

Tiles d, e, i, w, and y form the lower right part. If the input color to this part is blue
(see Figures[3(a) and [5(c)), the joint edge of tiles d and y must be yellow, since tile y
(which is of type f9) does not contain the color-sequence substrings rr nor ry for the
edges joint with tiles d and e. Thus the joint edge of tiles y and e must be yellow, since i
(which is of type f¢) does not contain the color-sequence substring bb for the edges joint
with tiles y and e. This implies that the tiles i and w also have a fixed orientation. If the

84 D. Baumeister and J. Rothe

input color to the lower right part is red (see Figures[5(b)and[5(d)), a unique solution is
obtained by similar arguments. The connection of the lower right part to the rest of the
subpuzzle is the edge between tiles w and g. If the right input color is blue, this edge
will also be blue, and if the right input color is red, this edge will be yellow.

The heart of the AND subpuzzle is its lower middle part, formed by the tiles ¢ and g.
The colors at the joint edge between tiles b and ¢ and at the joint edge between tiles
w and g determine the orientation of the tiles ¢ and g uniquely for all four possible
combinations of input colors. The output of this part is the color at the edge between ¢
and j. If both input colors are blue, this edge will also be blue, and otherwise this edge
will always be yellow.

The output of the whole AND subpuzzle will be red if the edge between ¢ and j
is yellow, and if this edge is blue then the output of the whole subpuzzle will also be
blue. If the input color for the upper part is blue (see Figure 5(a)), each of the tiles j,
k, I, m, and n has a vertical blue line. Note that since the colors red and yellow are
symmetrical in these tiles, we would have several possible solutions without tiles o, u,
and v. However, tile v (which is of type #9) contains neither rr nor ry for the edges
joint with tiles k£ and j, so the orientation of the tiles j through n is fixed, except that
tile n without tiles 0 and u# would still have two possible orientations. Tile u (which is
of type p) is fixed because of its color-sequence substring yy at the edges joint with /
and m, so due to tiles o and u the only color possible at the edge between n and o is
yellow, and we have a unique solution. If the input color for the upper part is yellow
(see Figures [Blb)—(d)), we obtain unique solutions by similar arguments. Hence, this
new AND subpuzzle uses only three colors and has unique solutions for each of the
four possible combinations of input colors.

Input and output subpuzzles: The input variables of the boolean circuit are repre-
sented by the subpuzzle BOOL. Our new three-color BOOL subpuzzle is presented in
Figure[f] and since it is completely different from the original four-color BOOL subpuz-
zle from [[7]], no tiles are marked here. The subpuzzle in Figure[6 has only two possible
solutions, one with the output color blue (if the corresponding variable is true), and one
with the output color red (if the corresponding variable is false). The original four-color
BOOL subpuzzle from [7] contains tiles with green lines to exclude certain rotations.
Our three-color BOOL subpuzzle does not contain any green lines, but it might not be
that obvious that there are only two possible solutions, one for each output color. The
proof can be found in the full version [2]].

ap
THD 020
It 66
)
(a) Out: true (b) Out: false (c) Scheme

Fig. 6. Three-color BOOL subpuzzle

The 3-TRP and 2-TRP Problems Are NP-Complete 85

{IN;

(a) TEST-true (b) Scheme

Fig.7. Three-color TEST subpuzzle

Finally, a subpuzzle is needed to check whether or not the circuit evaluates to frue.
This is achieved by the subpuzzle TEST-true shown in Figure[7(a)} It has only one valid
solution, namely that its input color is blue. Just like the subpuzzle BOOL, the original
four-color TEST-true subpuzzle from [[7], which was not modified in [1I, uses green
lines to exclude certain rotations. Again, since the new TEST-true subpuzzle is com-
pletely different from the original subpuzzle, no tiles are marked here. Our argument of
why this subpuzzle is correct can be found in the full version [2].

The shapes of the subpuzzles constructed above have changed slightly. However, by
Holzer and Holzer’s argument [7] about the minimal horizontal distance between two
wires and/or gates being at least four, unintended interactions between the subpuzzles
do not occur. This concludes the proof of Theorem/[Il a

Corollary 1. 3-TRP is NP-complete.

Since the tile set 73 is a subset of the tileset 7y, we have 3-TRP </, 4-TRP. Thus, the
hardness results for 3-TRP and its variants proven in this paper immediately are inher-
ited by 4-TRP and its variants, which provides an alternative proof of these hardness
results for 4-TRP and its variants established in [Z/T]]. In particular, Corollary 2l follows
from Theorem[I]and Corollary Il

Corollary 2 ([[7]). 4-TRP is NP-complete, via a parsimonious reduction from SAT.

3.2 Parsimonious Reduction from SAT to 2-TRP

In contrast to the above-mentioned fact that 3-TRP <%, 4-TRP holds trivially, the re-
duction 2-TRP <% 3-TRP (which we will show to hold due to both problems being
NP-complete, see Corollaries [Tl and [B)) is not immediatedly straightforward, since the
tile set 75 is not a subset of the tile set 73 (recall Figure 2]in Section[2)). In this section,
we study 2-TRP and its variants. Our main result here is Theorem 2 below the proof of
which can be found in the full version [2]].

Theorem 2. SAT parsimoniously reduces to 2-TRP.
Corollary 3. 2-TRP is NP-complete.

3.3 Unique and Infinite Variants of 3-TRP and 2-TRP

Parsimonious reductions preserve the number of solutions and, in particular, the unique-
ness of solutions. Thus, Theorems [I] and 2l imply Corollary @l below that also employs

86 D. Baumeister and J. Rothe

Valiant and Vazirani’s results on the DP-hardness of Unique-SAT under < P .-reductions
(which were defined in Section). The proof of Corollary [follows the lines of the
proof of [1, Theorem 6], which states the analogous result for Unique-4-TRP in place
of Unique-3-TRP and Unique-2-TRP.

Corollary 4

1. Unique-SAT parsimoniously reduces to Unique-3-TRP and Unique-2-TRP.
2. Unique-3-TRP and Unique-2-TRP are DP-complete under <%,,-reductions.

Holzer and Holzer proved that Inf-4-TRP, the infinite Tantrix™ rotation puzzle
problem with four colors, is undecidable, via a reduction from (the complement of) the
empty-word problem for Turing machines. The proof of Theorem [3] below, which can
be found in the full version [2]], uses essentially the same argument but is based on our
modified three-color and two-color constructions.

Theorem 3. Both Inf-2-TRP and Inf-3-TRP are undecidable.

4 Conclusions

This paper studied the three-color and two-color Tantrix™ rotation puzzle problems,
3-TRP and 2-TRP, and their unique and infinite variants. Our main contribution is
that both 3-TRP and 2-TRP are NP-complete via a parsimonious reduction from SAT,
which in particular solves a question raised by Holzer and Holzer [7]. Since restricting
the number of colors to three and two, respectively, drastically reduces the number of
Tantrix™ tiles available, our constructions as well as our correctness arguments sub-
stantially differ from those in [71]]. Table [[lin Section [Il shows that our results give a
complete picture of the complexity of k&-TRP, 1 < k < 4. An interesting question still
remaining open is whether the analogs of k-TRP without holes still are NP-complete.

Acknowledgments. We are grateful to Markus Holzer and Piotr Faliszewski for inspir-
ing discussions on Tantrix '™ rotation puzzles, and we thank Thomas Baumeister for
his help with writing a program for checking the correctness of our constructions and
for producing reasonably small figures. We thank the anonymous LATA 2008 referees
for helpful comments, and in particular the referee who let us know that he or she has
also written a program for verifying the correctness of our constructions.

References

1. Baumeister, D., Rothe, J.: Satisfiability parsimoniously reduces to the Tantrix™ rotation
puzzle problem. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 134-145. Springer, Heidelberg (2007)

2. Baumeister, D., Rothe, J.: The three-color and two-color Tantrix™ rotation puzzle problems
are NP-complete via parsimonious reductions. Technical Report ¢s.CC/0711.1827, ACM
Computing Research Repository (CoRR) (November 2007)

3. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd ACM
Symposium on Theory of Computing, pp. 151-158. ACM Press, New York (1971)

10.

11.

The 3-TRP and 2-TRP Problems Are NP-Complete 87

Downing, K.: Tantrix: A minute to learn, 100 (genetic algorithm) generations to master.
Genetic Programming and Evolvable Machines 6(4), 381-406 (2005)

Goldschlager, L.: The monotone and planar circuit value problems are log space complete
for P. SIGACT News 9(2), 25-29 (1977)

Gridel, E.: Domino games and complexity. SIAM Journal on Computing 19(5), 787-804
(1990)

Holzer, M., Holzer, W.: Tantrix™ rotation puzzles are intractable. Discrete Applied Mathe-
matics 144(3), 345-358 (2004)

McColl, W.: Planar crossovers. IEEE Transactions on Computers C-30(3), 223-225 (1981)
Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complex-
ity). Journal of Computer and System Sciences 28(2), 244-259 (1984)

Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8(2),
189-201 (1979)

Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical Computer
Science 47, 85-93 (1986)

Optional and Iterated Types for
Pregroup Grammars

Denis Béchet!, Alexander Dikovsky', Annie Foret?, and Emmanuelle Garel?

! LINA CNRS — UMR 6241 — Université de Nantes
2, rue de la Houssiniére — BP 92208
44322 Nantes Cedex 03 — France
Denis.Bechet@univ-nantes.fr,
Alexandre.DikovskyQuniv-nantes.fr
2 IRISA — Université de Rennes 1
Campus Universitaire de Beaulieu
Avenue du Général Leclerc
35042 Rennes Cedex — France
Annie.ForetQirisa.fr,
Emmanuelle.Garel@irisa.fr

Abstract. Pregroup grammars are a context-free grammar formalism
which may be used to describe the syntax of natural languages. However,
this formalism is not able to naturally define types corresponding to op-
tional and iterated arguments such as optional complements of verbs or
verbs’ adverbial modifiers. This paper introduces two constructions that
make up for this deficiency.

Keywords: Pregroups, Lambek Categorial Grammars, Categorial De-
pendency Grammar.

1 Introduction

Pregroup grammars (PG) [I] have been introduced as a simplification of Lam-
bek calculus [2]. They have been used to model fragments of syntax of several
natural languages: English [I], Italian [3], French [4], German [5lJ6], Japanese [7],
Persian [§], etc. PG are based on the idea that the sentences are derived from
words using only lexical rules. The syntactic properties of each word in the lexi-
con are defined as a finite set of its grammatical categories. These grammatical
categories are types of a free pregroup generated by a set of basic types together
with a partial order on the basic types. A sentence is correct with respect to a
PG if for each word of the sentence, one can find in the lexicon such a type that
the concatenation of the selected types can be proved in the pregroup calculus
to be inferior than or equal to a particular basic type s. The PG are weakly
equivalent to CF-grammars [9]. It doesn’t mean that they are suitable to define
the syntax of natural languages. In particular, any formalism desined for this

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 88100, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Optional and Iterated Types for Pregroup Grammars 89

purpose should naturally handle the optional and iterated constructions such
as noun modifiers, attributes and relative clauses or verb’s optional arguments,
adverbials or location, manner and other circumstantial clauses. All of them are
optional and their number is not bounded. Whereas the CF-grammars handle
such constructions rather naturally, they are problematic for the conventional
PG. Like the Lambek categorial grammars, the PG are resource sensitive. In
particular, in PG proofs, every simple type (except s) should be linked and re-
duced with exactly one dual type. So a PG cannot define a simple type that is
optional or linked to zero, one, or several duals. This effect can be simulated in
PG using complex types, however this simulation has serious disadvantages (see
a discussion below) .

In this paper, we propose a different solution to this problem adding new rules
to the PG calculus. As a result, we obtain a class of PG with simple optional and
iterated types, which express the optional and iterated constructions in the way
the dependency grammars do ([TOUTTIT2JT3]). We prove that the new calculus is
decidable.

2 Background

Definition 1 (Pregroup). A pregroup is a structure (P,<,-,1,7,1) such that
(P, <, 1) is a partially ordered monoi and l,r are two unary operations on P

that satisfy for all element x € P, wle <1<azt and za” <1< z"x.

Definition 2 (Free Pregroup). Let (P,<) be an ordered set of basic types,
P® = {pW) | p € Pji € Z} be the set of simple types and Tip<y = (P(Z))* =
{pgzl) . ~pgf") |0 <k <n,p; € P andi, € Z} be the set of types. The empty
sequence in T p <y is denoted by 1. For X andY € T(p <y, X <Y iff this relation
1s derivable in the following system where p,q € P, n,k € Z and X,Y,Z €
Tir<):

X<Y Y<Z

X <X (Id) (Cut)
X<z
Xy <z X<YZ
Xp(n)p(n+l)y <z (Ar) X < Yp(n+l)p(n)Z (Ar)
XpPy <z xX<vq®z
. (INDy) ., (INDg)
xWy <z X <yp®z

q <pifkiseven, andp < q if k is odd

! We briefly recall that a monoid is a structure < M, -,1 >, such that - is associative
and has a neutral element 1 (Vo € M : 1-2 = x-1 = x). A partially ordered monoid
is a monoid < M, -, 1 > with a partial order < that satisfies Va,b,c: a < b= c-a <
c-banda-c¢c<b-c.

90 D. Béchet et al.

This construction, proposed by Buskowski [9], defines a pregroup that extends
< on basic types P to T(p,SE’ﬁ.

The Cut Elimination. The cut rule in the Free Pregroup calculus can be
eliminated: every derivable inequality has a cut-free derivation.

Definition 3 (Pregroup Grammar). Let (P, <) be a finite partially ordered
set. A pregroup grammar based on (P, <) is a lezicalized] grammar G = (X, 1,)
such that s € Tp<). G assigns a type X to a string vi---v, of X* iff for
1 <id <n, 3X; € I(v;) such that Xy --- X;, < X in the free pregroup T(p <. The
language L(G) is the set of strings in X* that are assigned s by G.

Example 1. Let us see the following sentence taken from ”Un amour de Swann”
by M. Proust: Maintenant, tous les soirs, quand il [’avait ramenée chez elle, il
fallait qu’il entratf In Fig. 1 we show a proof of correctness of assignment of
types to its fragment. The primitive types used in this proof are: w3 and 73
= third person (subject) with 73 < 73, p = past participle, w = object, s =
sentence, s5 = subjunctive clause, with s5 < s, 0 = complete subjunctive clause,
7 = adverbial phrase. This grammar assigns s to the following sentence:

quand il I avait ramenée chez-elle il fallait qu’ il entrat
st 7r§sw“sl7r3 T3 Tsplg pgwﬁl A T3 ws'r'sol o sl5 T3 T3'Ss
Fig. 1.

In more details, this grammar assigns o to “qu’il entrat”, due to:

oc=00 <5 (4,) figured as:
- L
oskss = a(o)sé l)séo) <o (A1) qu’ il entrat
l T (0) (=D (0)_ (1) (0) (0) \“ .
OS5M3Ty S5 =085 M3 M3 'Sy S0 (INDy) osk m m'ss

Usl57rg7r3T35 = U(O)Séil)ﬂ'g(o)ﬂ'g(l)séo) <

3 Optional and Iterated Primitive Types

In Fig. 2, we present a more traditional analysis of the sentence in Example [TI
represented as a dependency tree.

2 Left and right adjoints are defined by (p™)! = p(m=Y (pm)r = p(+D) (xy)l =
Y!X"and (XY)" = Y"X". We write p for p®. We also iterate left and right adjoints
for every X € T(p <) : X0 = x, X+ — (Xx")™ and X("~D = (xH)"™),

3 < is only a preorder. Thus, in fact, the pregroup is the quotient of T(p,<) by the
equivalence relation X <Y & YV < X.

* A lexicalized grammar is a triple (X, I,s): X is a finite alphabet, I assigns a finite
set of categories (or types) to each ¢ € X, s is a category (or type) associated to
correct sentences.

5 [FR: Now, every evening when he took back her to her home, he ought to enter].

Optional and Iterated Types for Pregroup Grammars 91

claus-que
gob{ _ prepos—chez expletilaus-dobj pre

S PN
maintenant tous les soirs quand il |' avait ramenée chez elle il fallait qu' il entrét

Fig. 2.

We see that the verb fallait governs three consecutive circumstantial phrases:
Maintenant, tous les soirs and quand il I’avait ramenée chez elle. All the three
are optional and there might be some more dependent circumstantial phrases in
this sequence. We can also remark that the oblique object chez elle is optional
for the verb ramener.

A Dependency Grammar Appoach

In rule-based dependency grammars (cf. [I3]), as well as in the local environment
dependency grammars of Sleator and Temperly [12], such optional and iterated
constructions are defined using restricted regular expressions. In categorial de-
pendency grammars (CDG) [I4I15], which are a kind of categorial grammars with
dependency types as categories, these constructions are defined using rather tra-
ditional reduction rules. For instance, the left iterated types are defined by the
following two rules:

I'. ala*\o] F [a*\q]
QL [a*\o] F «

Several Pregroup Approaches

Below, we denote the optional types by a’ and the iterated types by a*. Let us
show how such types might be defined in the free pregroup. We see at least three
approaches, among which only the last one is considered below in full detail.

A Simulation with Compound Types. The first way to define the optional
types might be using the following definitions:

ar 2 T T
a’ Def T,2Y,7 y£7 2,7 227 $Z7
Here, the basic types zq«, x,7, y,» and z,» must not be used for any other
purpose. This simulation is not perfect because the duals of the optional type
T,y or of the iterated type x .y .y 2,20, 2}, are not simple but compound
types and that is problematic. In fact, we have to simulate a*, a” and a, such as
we can obtain the composition of a*, on the right with a” and on the left with
a'. We have an other simulation to do with a”, a” and a'.

92 D. Béchet et al.

A List-like Simulation. In order to simulate an iterated type [a/a*] a* F o we
can distinguish two types, one type a for a first use in a sequence and one type
a”a for next uses in a sequence of elements of type a (this encodes in fact one or
more iterations of a). To fully encode a*, we may add assignments b, whenever
ba* was intended. As in

John run fast yesterday
l

n n'"sa" a a"a
We have two assignments for run: in “John run”, run — n”s but in “John
run fast, yesterday”, “run” — n”sa!. Unfortunately, this approach increases
the number of types in the lexicon: if a type has k iterated simple types, the
simulation associates 2¥ types. The same problem occurs with a simulation of
an optional simple type using two types, one with the optional simple type and
the second without it.

Adding Rules to Pregroup Grammars. We propose another definition of
the optional and iterated types adding to the PG calculus new rules. Our purpose
is to ensure properties such as a < a?, a*a < a*,aa* <a*, 1< a?7 1 <a* (see
Corollary [).

Definition 4 (PG with Optional and Iterated Types). We add the fol-
lowing rules to a PG that define p° and p* for p a basic typdd:

Xy<z W X<vyz W
Xp?(2k+1)y < 7 (L) X < Yp?<2k)Z (R)
XpPy < 7 - X <yp®z -
Xp?<2k+1)y < 7 (- L) X < Yp?(zk)Z (- R)

Xy <z W X<YZ W
* — * —
Xp*(2k+1)y < 7 (L) X < Yp*<2k)Z (R)
Xp*(2k+l)p(2k:+1)y <7z X< Yp(Qk)p*<2k)Z
L(2hH1) (x—Cr) «(2K) (* — Cr)
Xp Yy <Z X<vp* Z
Xp(2k+1)p*(2k+1)y < 7 / X < Yp*(zk)p(gk)z /
(2h+1) (* - CL) «(2k) (* - CR)
Xp Yy<Z X<Yp Z

As desired, this system enjoys the following property and corollary.

Proposition 1. Let U; <1 for 0 <i<n and C; < a for1 <j <n. Then
UoClUl § a? and V]@]. S k S n: U()C1U102 cee U}ga*Uk+1 . CnUn S a*.

6 p? and p* are considered as incomparable (with respect to the PG order) basic
types: Rules (Az) and (Ag) are valid. (INDy) and (INDg) are useless (if p # ¢
then p’ £ ¢, p" £ ¢", p* £ q°, etc).

Optional and Iterated Types for Pregroup Grammars 93

Proof. Tt is easy to check that if X; <Y, for 1 <i<n,né& Nthen X;---X, <
Y} -+ Y,. Thus UpC1U; < a and using (? — Dg), we find UpC1U; < a”. Similarly,
we have UgChU,Cs -+ Ura*Up11CL U, < a---aa*a---a. Using (x — Cr) and
(x — CI/,%), we find UgC1U1Cy - - - Uga*Upyq - - - CLU, < a™.

Corollary 1 (Optional and Iterated Basic Types). For a, a basic type:

a*a < a*
a<a’ aa* < a*
1<d’ 1<a*

Theorem 2. This construction defines a pregroup that extends the free pregroup
based on (P, <).

Proof. The structure is a monoid. It is partially ordered (the Cut rule implies
transitivity) and moreover with a deduction of X; < Y; and a deduction of
X5 <Y5, we can build a deduction of X1 X5 < Y7Y5: the structure is a partially
ordered monoid. Finally [and r define the left and right adjoints: the proofs use
(Ar), (Ar), (Id).

Example 2. In Fig. 3, we show an analysis of the sentence of Proust in the
calculus. The primitive types used below are: w3 = third person (subject), po =
past participle, w = object, s = sentence, s; = subjunctive clause, ¢ = complete
subjunctive clause, d = determinant, p = restrictive adjective, 7 = adverbial
phrase.

p?" corresponds to a left optional restrictive adjective argument, A’ to a right
locative argument and 7 (or 7") to right (or left) iterated adverbial phrase
arguments.

maintenant tous les soirs quand il 1 avait ramenée chez-elle il fallait qu’ il entrat

T 2l r l
T pd d"pr rsl omg wgsw”a‘lw3 waT‘sp”Z powl X' N mg mgTrt st ol USLS 73 w3's5

Fig. 3.

Theorem 3 (The Cut Elimination). The cut rule can be eliminated in the
extended calculus: every deriwable inequality has a cut-free derivation.

Proof. The proof is given in Appendix A.

Corollary 2 (Decidability). The provability of an inequality in this system is
decidable

Proof. The provability of X <Y for the free pregroup based on (P, <) (without
iterated or optional basic type) is a direct consequence of the elimination of the
cut rule because the set of possible premises appearing in a cut-free deduction
of X <Y is finite. The proof is also correct with the addition of optional basic
types. However, for a free pregroup with iterated basic types, this argument in

94 D. Béchet et al.

not valid because (x—C7), (x—CRr), (*—C1%), (*—C%) introduce new occurrences
of basic types in a cut-free derivation. However, we can limit the number of uses
of these rules by the number of basic types in X and Y (this is a consequence
of the parity condition on the exponent of the iterated or optional simple type).
Thus, even if the search space is infinite, we can limit it to a finite subset.

4 Conclusion

This paper introduces in pregroups two new type constructors ? (option) and x*
(iteration) allowing to handle in a natural way the optional and iterated con-
structions such as optional noun modifiers and complements of verbs or their
circumstantials (adverbs, time or location clauses etc.). The extended sequent
calculus for pregroups formalising the two constructors has natural properties
and is decidable. The future work will concern the complexity of this calculus
(see [16]) and the development of a parser for this new class of PG.

References

1. Lambek, J.: Type grammars revisited. In: Lecomte, A., Lamarche, F., Perrier, G.
(eds.) LACL 1997. LNCS (LNAI), vol. 1582. Springer, Heidelberg (1999)

2. Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154-170 (1958)

3. Casadio, C., Lambek, J.: An algebraic analysis of clitic pronouns in italian. In: de
Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099.
Springer, Heidelberg (2001)

4. Bargelli, D., Lambek, J.: An algebraic approach to french sentence structure. In:
de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099.
Springer, Heidelberg (2001)

5. Lambek, J.: Type grammar meets german word order. Theoretical Linguistics 26,
19-30 (2000)

6. Lambek, J., Preller, A.: An algebraic approach to the german noun phrase. Lin-
guistic Analysis 31, 3-4 (2003)

7. Cardinal, K.: An algebraic study of Japanese grammar. Master’s thesis, McGill
University, Montreal (2002)

8. Sadrzadeh, M.: Pregroup analysis of persian sentences (2007)

9. Buszkowski, W.: Lambek grammars based on pregroups. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 95-109. Springer,
Heidelberg (2001)

10. Tesniere, L.: Eléments de syntaxe structurale. Librairie C. Klincksiek, Paris (1959)

11. Hays, D.: Dependency theory: A formalism and some observations. Language 40,
511-525 (1964)

12. Sleator, D.D., Temperly, D.: Parsing English with a Link Grammar. In: Proc.
IWPT 1993, pp. 277-291 (1993)

13. Kahane, S. (ed.): Les grammaires de dépendance, Paris, Hermes. Traitement au-
tomatique des langues, vol. 41(1) (2000)

14. Dikovsky, A.: Dependencies as categories. In: Kruiff, G.J., Duchier, D. (eds.) Proc.
of Workshop Recent Advances in Dependency Grammars, In conjunction with
COLING 2004, Geneva, Switzerland, August, 28th 2004, pp. 90-97 (2004)

15.

16.

17.

18.

Optional and Iterated Types for Pregroup Grammars 95

Dekhtyar, M., Dikovsky, A.: Categorial dependency grammars. In: Moortgat, M.,
Prince, V. (eds.) Proc. of Int. Conf. on Categorial Grammars, Montpellier (2004)
Béchet, D., Dikovsky, A., Foret, A., Garel, E.: Introduction of option and iteration
into pregroup grammars. In: Casadio, C., Lambek, J. (eds.) Computational Al-
gebric Approaches to Morphology and Syntax, Polimetrica, Monza (Milan), Italy
(2008)

Dosen, K.: Cut Elimination in Categories. Kluwer Academic publishers, Dordrecht
(1999)

Buszkowski, W.: Cut elimination for the lambek calculus of adjoints. In: Abrusci,
V., Casadio, C. (eds.) New Perspectives in Logic and Formal Linguisitics, Proceed-
ings Vth ROMA Workshop, Bulzoni Editore (2001)

Appendix A — Cut Elimination in S’ : Proof Details

This proof assumes lemmas detailed in the Appendix B. Take again the systems
precedently introduced and consider S the system without Cut and S’ the system
with the rule Cut Clearly a proof in S is also a proof in S’.

To show the converse, we proceed by in- R TR

. ’yl T Yr
duction on the'nurvnber of C1.1t aTld on t1.1e X<Y Y<Z
le/ngth of a derivation ~;, ending in Cut in Cut
S’ X<z

— If R; is the axiom rule, the last rule (cut) can be suppressed since R, has the same

conclusion as D. If R, is the axiom rule, the last rule (cut) can also be suppressed
since R; has the same conclusion as D. We now assume that neither R; nor R, is
the axiom rule.

— If R; is the Cut rule, the induction hypothesis applies to ;, this Cut can be

suppressed, in a proof «/, and the final Cut can be suppressed in this deduction.
If R, is the Cut rule, we proceed similarly.

We now assume that neither ~; or v, has a Cut rule.

— We consider the remaining possibilities

for R; (left part) and R, (right part): i Rr method

these cases are detailed below. Ap, ... — permute R; with Cut

- If R is a left rule, Agr — Cut and lemma (B1)

Y remains in the antecedent, INDr — Cutand IND.

we can easily permute R; with Cut . ?—Wr — Cut and lemma (B2)

- If R, is a right rule, ?—Dr — Cut and lemma (B3)

we apply a lemma or a rule on the right , _ Wgr — Cut and lemma (B4)

then Cut with the antecedent of R; *—Cgr — Cut and lemma (B5)
x —Cpk — Cut and lemma (B6)

— A typical case for a left rule is : [Ry =7 — W¢ |

96 D. Béchet et al.

X <Y X1"h <Y Ry 3 ~,
?7—-Wr Ry % A, Y <7
X = X, p'®y, <y y<Z — ut
ut Xivhn <2z
X<z ?7—-Wr

X1p7(2k+l)yl S 7

— A typical case for a right rule is : [Ry =7 — Wg |

X1 <Yz, Y1p?(2k) 7. <7
r(zm? ~Wr Ry by, X1 <Y1z, (lemmaB2)
Xi<vip'Zi=Y Y <2 — YiZ < 2
ut Cut
X<z X1 <7

The other cases are similar

Appendix B - Lemmas for Cut elimination in S’

(1) if Up" '™V < Z with p'™ < p™ and p,p’ are primitive not an iterated or
an optional type, then UV < Z
(1) if Up™tYp™ VY < Z with p an iterated or an optional type, then UV < Z
(17) if UPpapi1yp* PV < Z or Up*®* @ Py)V < Z
where Pag41) has the form p(2F+D p*(%H) pPFH then UV < Z

~ ~ o ~ o ~ e
ny times 0or locc. ng times
(2) if Up"®PV < Z then UV < Z (3) if Up" WV < Z then Up®PV < Z
(4) if Up* PPV < Z then UV < Z
(5) if Up* @MV < Z then Up®PPp*0Yy < 7
(6) if Up* @MV < Z then Up* P pHy < 7

Proof. These properties are shown for the system without Cut by induction on the
premise of the inequality, according to the last applied rule.
We show (1’) and (17) separately after.

— The axiom cases are gathered below, including those for (1) and (17).

(1), (1), (17) case Up™Vp' ™V = Z with p'™ < p™ or p = p is an iterated or an
optional type

Uuv <UV UV < UV
Ar A
then UV < Up"tHpMmy or nt1), (n
INDx Uv < Up()p(AV
UV < Upthy My (for p = p’ iterated or optional)

(1”7) Axiom case with p = ¢* let Z = UQ(%H)q*(%)V (first form) or Z =
Uq*(2k+2)
Q2k+1)V (second form)
where Q(2x+1) has the form q(ZkH) q*(2k+1) q(%H)
N IS N IS e

ni times ns no times

Optional and Iterated Types for Pregroup Grammars 97

We proceed by induction on ni,ns2, to show that in the first form of Z,
HZ=U q(2k+1) q*(2k+1) q(2k+1) q*(zk)v7 then UV < Z
N o TN e TN e S
ny times ns ng times
x for ng = 0;n1 =n2 =0, we get UV < Z = Uq*@®V | as conclusion of
rule x — Wgr on UV < UV

x for ng = 0;n1 +n2 >0,
UV <U q(2k+1) q*(2k)v

Uuv <0V S~ 7
AR ni+ng—1 A
UV < UgPtDgCRy (2k+1) _(2k+1) (2k) *(2k) >
< Wh then for UVSUg v/q q‘““q 1%
Uv < Uq(2k+1)q(2k)q*(2k)v ni+nz2 > 1: n1ma—1
*CRr *Cr
UV < Ug@+D g0y, Uv < U€(2k+1lq*(2k)v
~
ni+nz

x for ng = 1;n1 = ng = 0, it is shown above, applying Agr
* for ng = 1; n1 > 0 or na > 0, we start from above when nz =0

Uv < Uq(2k+1) q*(%)V

~ ~ -
" *Wr,
UV < U g@F+D) = Gk o= 2Ry
~ ~ -
ni AR
UV < U g3+ =GRt (k1) (20 0+ (2R wo then repeat these last
S two steps if na > 1.
ni
*CRr
Uv < Uq(2k+1) g CEHD (D) = (2R)
N~ ~ o
ny
The second form is similar.
, UV <UV
(2) case Up’ PV = Z then =Wk

UV <Up’®Py =7z

(3) case Up’®*MV = Z then ?—Dg

uv <oV
(4) case Up*)V = Z then *—Wr
UV <Up*CRvy =z

Up(2k)p*(2k)v < Up(2k)p*(2k)v
(5) case Up*®PV = Z then [* —Cr
Up(2k)p*(2k)v < Up!(2k)v —7

Up*(%)p(%)V < Up*(2k)p(2k)v
(6) case Up*RMV = Z then * — Ch
Up*CRpER Yy < p? Ry — 7

98

D. Béchet et al.

— If the last rule is a right rule, it is easy to permute the induction hypothesis with

this rule.

In all cases distinct from (1), if the last rule is a left rule distinct from A, it cannot
create the type p’®*) or p* %) involved in the lemma. We can then permute the
induction hypothesis with this rule. The same remark holds in all cases distinct

from (1), if the last rule is A, but does not create the type p° 7R or p*(F) involved
in the lemma.
In all cases distinct from (1), if the last rule is Ar, and it creates p’ F2R) op p*(2R)

let p’ = p” according to case (2)(3), or p’ = p* for (4)(5)(6) such that:

up MV =u'v' <z
Ar with Up'®H=up'™ or p/ ¥ y=p "ty
U/p/(n)p/(n+1)vl <7z

We then apply appropriate rules on U'V' < Z:

n = 2k) we show U’p?(ZkH)V' < Z, from (?—Wr)on U'V' < Z
n = 2k — 1) we show U’p?(zk_l)v’ < Z similarly

n = 2k) we show U’p(%)p?(%H)V’ < Z by Arg then (? — Dy)

n = 2k — 1) we show U’p7(2k_1) 2RV < Z by Ag then (? — Dyg)
n = 2k) we show U'p* V' < Z from (x — Wr) on U'V' < Z
n = 2k — 1) we show U'p *(@k+1)y < Z similarly

~in case(5), if (n = 2k) we show U'p <2k) *CR) DY < 7 by AL on U'V! < Z
we get : U'pPRpRktby < 7,

then by A, again : U’p(zk) «(2K) prGEED pCRD Y < 7 finally by « — Cp.

“in case(5), if (n = 2k — 1) we show U’'p* ¥~ p(k) *(Qk)V’ < Z, similarly : by
AL on U'V' < Z we get : U'p *(2k—1) *<2k)V’ < Z

then by Ay again : Up*(% 1) p2k= 1>?(2k) *(2k)V’ < Z, finally by * — CL.

~in case(6), if (n = 2k) we show U'p* (2R p(26) *<2k+1)V’ <Z,byALonU'V'<Z
we get : U'p* (0 pr @Dy < 7

then by Az again : U'p*®¥p p(2H) pBRHD Gy < 7 finally by % — C.

—in case(6), if (n = 2k — 1) we show U'p*¢~1 pr) (2'“)‘/’ < Z, similarly : by
AL on U'V' < Z we get : U'pF— 1)p(%)V' < Z,

then by Ay, again : U'p(?*~ 1> *(Zh=1))= (2k)) (2k>V’ < Z, finally by * — CJ.

In the inductive case for Lemma(l), we consider apphcatlons of the rule that can

—in case(2), if

, 1

NN
- . .

Lo T S S e S o)

R e e e s

interfere with p**1p'™ (in the other cases we can then permute the induction
hypothesis with this rule) :
Upy™v <z
e A case Ar

U p(n+1) /(’ﬂ>v U/ (n) (n+1)p/(’ﬂ>v <z

p™ < ("), if p = p’, the premise is the desired inequality, otherwise we apply
IND;,
e Ay case (second possibility) the premise is the desired inequality :

up "tV <z
< A,
Up(n+1)pl(n) V= Up(n+1)p/(n> p’("H)V’ <z

Upnthy' ™y < 7
e INDy, case if p'™ < p”™ IND,,
Up(n+1)p/(’n)v S A

Optional and Iterated Types for Pregroup Grammars 99

17 (m)

we have p(™ < p/™ < p

and apply the induction hypothesis on the premise
using p(™ < p ™.

Uq('”-"rl)p/(")v <z
e INDj case if p"th) < ¢+ INDy
Up(n+1)p/(’n)v S VA

we have ¢ < p™ < p'™ and apply the induction hypothesis on the premise
using ¢™ < p/™.

— Separate proof for (1’) and (1”7) . We proceed similarly, with all other cases of the
lemma already proved. The axiom cases are already shown. We consider below the
case of a left rule that interferes with the formula involved in the lemma (otherwise
we can permute induction and the rule):

. ?
e 7 — Wy case, we can write p = ¢°,

subcase n = 2k subcase n = 2k — 1
uvi®Mv <z v v <z
? - WL ? — WL
Uq?(2k+1)q?(2k)v S A Uq?(Zk)q?(Qk—l)V S 7

we then apply lemma B(2) on the premise.
e 7 — Dy, case, we can write p = ¢’,

subcase n = 2k subcase n = 2k — 1
Uq<2k+1)q?<2k)v <7z Uq?(%)q(zk_l)v <z
?— DL ?— DL
Uq7(2k+1)q7(2k)v S A Uq?(Zk)qu(Qk—l)V S 7

we then apply lemma B(3) on the premise then B(1) and get the result.
e rules ¥ — Wy,

Let Q2r41) has the form q(2k+1) q*(2k+1) q(2k+1)

A R

, where n3 < 1, and non

ny times ns no times

empty (if empty, we apply lemma (4))

we have
Ulq*(?k)v < 7 UQ(2k+1) _ U/q*(2k+1)’
* — WL ng = 0 we
UQ ki) OOV — B ¢+ COYy < 7 gy gD
~ ~ 4

ny times
then apply the induction on the premise, that has a similar form.
The case Uq*(2k+2)Q(2k+1)V < Z is similar.
e x — (', case, subcase n = 2k.

Let Q2r41) has the form q(2k+1) q*(2k+1) q(2k+1)
~ ~ . ~ . ~ 4

, where n3 < 1, and non

ny times ns no times

empty (if empty, we apply lemma (4))

UQ<2k+1)q(2k+1) q*(zk)v _ U/q*(2k+1)q(2k+1)q*(2k)v <z .
* —CL

UQ ki) FCOV = U qr D @Oy < 7

we have UQ2k41) = U'qrCHD g/ = U ¢+ +Y
N N 7
ni times

we then apply the induction on the premise, that has a similar form.

100 D. Béchet et al.

e x — (' case, subcase n = 2k — 1.
Let Q(2x—1) has the form q(%_l) q*(%il) q(%_l)

NN TN N IS
ny times ns ng times

(if empty, we apply lemma (4))

, where n3 < 1 and non empty

Uq (R oD @1y < 7
* —Cp

Uq*(Zk) Q(Qkfl)v _ Uq*(Qk) q*(2k—1)V/ < A

we have Qa_1yV = ¢* DV v/ = ¢y
N N 7
no times

we then apply the induction on the premise, that has a similar form.
e rules * — O}, can be treated similarly to x — Cf,

Transformations and Preservation of
Self-assembly Dynamics through Homotheties

Florent Becker

Laboratoire d’Informatique du Parallélislme
UMR 5668 CNRS, INRIA, Université Lyon 1, ENS Lyon
46 Allée d’Italie — 69364 Lyon Cedex 07 — France

Florent .Becker@ens-lyon.fr

Abstract. We introduce a new notion in self-assembly, that of trans-
forming the dynamics of assembly. This notion allows us to have trans-
formation of the plane computed within the assembly process. Then we
apply this notion to zooming. The possibility of zooming depends on the
order condition. This shows that this condition, which arose from engi-
neering concerns (how to design understandable tile systems) is indeed
an important condition of regularity for the assembly process.

1 Introduction and Definitions

Self-assembly, a concept introduced by Winfree in [6] and studied by Winfree,
Rothemund, Adelmann and others ([5],[I],[]) is a model of universal computa-
tion by DN A, and of other physical mechanism of accretion and crystallization.
This model, consists of a soup with floating Wang tiles with glue on their sides
which can stick to each other whenever there is enough glue.

It is a kind of dynamic version of Wang tiling with interesting properties
as well as a quite realistic model of some physical or biological construction
processes, which has been used experimentally in []. In particular, the scale at
which the assembled patterned are observable is an important parameter. It can
for example be linked to time-complexity[5].

In this article, we are interested in transforming self-assembled tilings by
changing the set of tiles. We want these transformations to preserve the dynam-
ics of the assembly, that is the different ways in which a shape can be assembled.
This allows us to say that the transformation has been computed by the tile-
set itself rather than computing the image of a shape by the transformation
and then finding a tile-set that assembles into that image. More precisely, we
are interested in homotheties (or zooming), which allows to change the scale of
assembly.

These homotheties have been used in the literature ([8],[7],...) as tools to
enhance the properties of the assemblies, making it robust to error and even
self-healing. Yet, their interaction with complex assembly processes were not
rigorously defined, as all the tilesets were deterministic. Our notion of homo-
theties has two uses. First, it is an algorithmic notion, allowing us to scale some

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 1014112, 2008.
© Springer-Verlag Berlin Heidelberg 2008

102 F. Becker

tilesets, and a framework for applying a geometrical transformation to a tileset.
But it is also natural enough to be used as a tool for comparison of tilesets: if
the “macrotiles” are observed rather than designed, they characterize the rela-
tionship between two tilesets operating in the same manner, but at a different
scale.

We first explain these notions on an example, then we define formally what is
a dynamics and what it means to scale it, which gives a formal framework for the
study of the assembly process itself and its properties such as speed, robustness
and so on. This formal definition leads to an impossibility result: the dynamics
of some self-assembling tiling can depend on its precise size, with locality effects
such as information coming from opposite sides of a tile. Though, we are able
to show that given Rothemund’s RC-condition [], or even the slightly more
generic order condition, tilesets can indeed be scaled, as these effect are then
impossible. This shows that this order condition represents an important measure
of regularity for the assembly process.

Our constructions, which can be extended to other transformations than ho-
motheties, allow to define a notion of computation which is much more repre-
sentative of what happens during the assembly.

1.1 The Model of Self-assembly

The model we study is based on Wang tiles, with some glue added to their sides.
The model of self assembly is the following : at a given time, a tile can be added
to a finite pattern if and only if its colors match these of its neighbors (like Wang
tiles), and if the total strength of the bounds linking the tile to the pattern is
more than a given parameter, called the temperature.

A Wang tile ¢ on an alphabet X is an element of X*. We will note them as
follows: t = (en (t), cs(t), ce(t), cw(t)).

We will use the usual direction functions on Z?: N(x,y) = (z,y+1),S(z,y) =
(x,y—1),E(z,y) = (z+1,y), W(z,y) = (x—1,y), and will note —S = N, —N =
S,—E =W,-W = E. Given T a set of Wang tiles, and p : Z> — T a pattern, we
will say that N(x,y) is the northern neighbor of (z,y), and that ¢y (p(x,y)) and
cs(p(N(z,y))) are adjacent colors (or sides), and similarly for other directions.
We use the usual notations for intervals to represent intervals of integers: [a, b] =
{a,...,b}, [a,b) ={a,...,b— 1}, and so on.

Let J be a set of Wang tiles. A finite pattern is a partial mapping from Z? to
J whose domain is finite and 4-connected. We call the domain of a pattern its
shape.

If a pattern is compatible with the colors on the edges of the tiles (that is
two adjacent edges always have the same color), we will say that it is a (finite)
configuration of J.

Definition 1. A self-assembly system is a 5-tuplet s = (X, g,T,t, seed) where

— XY is a finite alphabet, the set of colors;
— g: (X — N) is called the strength function; for ¢ € X, we will say that g(c)
is the strength of the glue (c, g(c))

Transformations and Preservation of Self-assembly Dynamics 103

— T is a set of Wang tiles on the alphabet X, the tile set;
— t € N is the temperature;
— seed € T 1is the seed.

For graphical representations, we use the following conventions (see figure [I):
each tile is represented by a square with symbols representing the glues on their
side. The number of symbols on a side corresponds to the strength of the glue.
The seed (marked by a star) will be the first finite pattern, which will initiate
the growth process. The steps of this growth pattern are called transitions. A
transition is the addition of a tile whose colors match those of a free slot in the
pattern and whose bond are stronger than the temperature.

Definition 2 (transition). Given a system s = (X, G, T,t, seed) and two con-
figurations ¢ and ¢, there is a transition between c¢ and ', which we will note
c—c if

shape(c') = shape(c) U {(zx, y*)}
A(wx,y*), § V(@,y) € shape(c), c(x,y) = ' (z,y)
Z{dE{N,S,E,W}|d(m*,y*)€shape(c)} g(cd(cl(m*v y*))) >t

The configurations ¢ such that there is a sequence of transitions from the initial
pattern ({(0,0) — seed}) to them are called productions.

Note that we will limit ourselves to self-assembly systems with a tempera-
ture of 2, as is the case in the literatureﬂ. Most of the time, when there is
no possible confusion, we use the terms tileset and system interchangeably,
and leave the alphabet and the temperature (2) unspecified when their val-
ues are obvious from the context. We call direction of a transition the set
{—=d|d(xx, y*) € c before the transition occurs.}

Definition 3. The dynamics of a self-assembled system is defined as the poset
of the production, where the order relation is the transitive closure of transitions.

Thus we have ¢ > ¢ (for ¢ and ¢ two configurations) if and only if ¢ is obtained
from ¢’ by adding one or several tiles according to the rules above.

Let us note that for any self-assembled system, its dynamics is an semi-lattice
(that is, two elements always have a lower bound), and that for any production
¢, the set { < ¢} is a lattice. The proof of these two facts is stated in [3].

This dynamics captures the way the assembly takes place, and allows us to
reason on the parallelism and synchronization phenomena which take place dur-
ing the assembly. The properties of the growth process are reflected by those of
the dynamics. For example, the speed of the growth in a given configuration is
the outgoing degree of the vertex corresponding to that configuration. Conflu-
ent branches represent parallelism, and so on. For a detailed reference on (semi)
lattices, see [2].

! Temperature 1 self-assembly is rather trivial, as it corresponds to assembling a Wang
tiling with a greedy algorithm and higher temperatures do not seem to be very
different from temperature 2.

104 F. Becker

A final production is a maximal element of the dynamics, that is a production
to which no tile can be added. Given a tileset T', we say that T assembles the
set Lp of all its final productions.

2 Scaling While Preserving Dynamics

2.1 An Example

When observing a tileset at larger scale, it is natural to consider each s X s
square as a single tile, and to look at their interactions. We will call these squares
macrotiles, and compare their interactions with those of the small scale tileset.
Before any formal definition, we give an example of scaling, which will help to
get the intuition of the kind of phenomenon we are going to capture.

In this section, we consider three tilesets. The first tileset, T, assembles a set
of shapes L. This set is the set of squares. The two other tilesets, F' and D
(for same Final productions and same Dynamics) both assemble another set of
shapes £/, which is a scaled version of £. We contrast F' and D as D has an
assembly process which is related to that of T, and not F'.

The dynamics of T. Our reference tileset T, taken from [9] assembles the set of
all squares. That is, from the configuration {(0,0) — seed}, T eventually reaches
a configuration whose shape is [0,n] x [0, n], where n is determined during the
assembly.

The assembly can be decomposed in two concurrent processes: the construc-
tion of the diagonal, and the filling of the square. The filling of the square is
conditioned by the construction of the diagonal: if the diagonal has been built

e
B

3K B LY
4]

3

L]
XX
K

T F
— —
2 y :“.‘k
TR
TN
e ¢ 9 9 9
.) P P
1™
¢ mx <
e B B B)

Fig. 1. The three tilesets T,F and D, and an example final production for each of them

Transformations and Preservation of Self-assembly Dynamics 105

up to the point (k, k), filling tiles can only be added in [0, k] x [0, k]. This con-
dition ensures that the shape we get when the diagonal process is stopped by a
stop tile and the filling process is completed is a square.

The dynamics of F. The tileset F' assembles the set of all squares of even size.
This set is exactly the image of L by an homothety of factor 2. The assembly
process is the following : in a first phase, a square is built as by 7', then another
of the same size n, then a n x 2n rectangle. Thus, the final shape is a 2n x 2n
rectangle. This assembly process is not at all related to the assembly process of
T and the fact that the final productions of F' are the images of those of T is
somewhat a “happy coincidence”.

The dynamics of D. The set of shapes assembled by D is also the set of all
squares of even size, but the way the assembly works resembles much more to T":
there is also a diagonal being built, and completed into a square. More precisely,
let us consider the set of all 2 x 2 patterns which appear in squares whose lower-
left corner is in {2k,2k'|k, k" € Z*}. We call these patterns macrotiles. Each of
these macrotiles can be identified to a tile of T, and the interactions between
these macrotiles “look like” the interactions between the corresponding tiles of T'.

If we take a (non-terminal) production p of T, and replace each tile with
the matching macrotile, the result is a (non-terminal) production pp of D. The
addition of a tile in p corresponds to the addition of the four tiles of the macrotile
in D, and the addition of a tile in p is possible if and only if it is possible to add
the tiles of the macrotile in pp.

We say that the dynamics of a tileset D is the s-scaling of that of T" whenever
one can find a set of macrotiles of size s such that the interactions between the
macrotiles of D correspond to the interactions between the tiles of T', and any
production of D can be cut in macrotiles.

2.2 Formal Definitions

We now define more formally the notion of scaling the assembly of a tileset T'.
In this section, T, U are two tilesets, and the question is : “is the dynamics of U
a scaling of that of T at scale s 7”7 We first define our transformations on shapes
then extend them to patterns and dynamics.

Definition 4. Let o be a shape. Then hs(o) is {(z,y)|(|x/s], ly/s]) € o}.

In order to be able to extend this definition to patterns, where each point is either
empty or contains a tile, we need to know what to do with this information. For
this, we will consider that s x s covered by tiles of U form “macrotiles”.

Definition 5 (s-macrotile, interpretation). A s-macrotile on U is a func-

tion [0, s[>— U. U, is the set of s-macrotiles on U. For a pattern p, the macrotile

at (sx, sy) in p is the function from [0, s[> to U defined by (i, j) +— p(xs+i,ys+j).
An interpretation i is a function from Ug to T.

106 F. Becker

Now that we have grouping functions we can map patterns onto patterns. is(p) is
the pattern p shrinked by a factor s, and reinterpreted in T (when this definition
makes sense).

Definition 6 (shrinking). Any pattern p on U such that there is a shape o C
72 such that shape(p) = hs(o) is said to be s-shrinkable.

Given an interpretation i, for a s-shrinkable pattern p, is(p) is the pattern on
T defined by:

— shape(is(p)) is the o from above,

— for all (x,y) € o, if m is the s-macrotile at (zs,ys) in p, then (is(p))(x,y) =
i(m).

— otherwise, (is(p))(x,y) is undefined.

D, v is the sublattice formed by the s-shrinkable productions of U.

Definition 7. Let Dy be the lattice of productions of U, and Dt be the lattice
of productions of T'. We say that the dynamics of U is the image of the dynamics
of T at scale s when

1. There is an interpretation i mapping the s-macrotiles of U to T, such that
15 15 an isomorphism between Dy and Dr.
2. for every production ¢ of U, there is a ¢ > ¢ which is s-shrinkable.

This definition formalizes the similarity we had between T and D in the example:
we could attribute to each 2-macro-tile of D a tile of T" such that this macro-
tile behaved like the associated tile. The second condition ensures that we do
not have out-of control cancerous growth patterns which just happen not to be
shrinkable, and thus are not seen by D, . Thus, as we can expect, we get the
following corollary:

Corollary 1. Let U and T be two tilesets, Ly and Ly the set of shapes they
assemble, if the dynamics of U is the image of the dynamics of T with the
interpretation i, then Ly = hg(L7)

Proof. Let p be a final production of T'. i !(p) is soundly defined since i is an
isomorphism between Dy and Dy, it is a final production of U, and its shape
satisfies shape (i t(p)) = hs(shape(p)).

Let p be a final production of U, p is shrinkable, and i4(p) is a final production
of T, and its shape satisfies shape(p) = hs(shape(is(p))). O

Our condition does not give a transition-to-transition matching between D7 and
Dy 7, but only a path-to-path matching. This is because the parallelism in U
can make several transitions from 7' take place at once.

Yet, it does allow us to link the transitions involved in both paths: to each
path p through the dynamics of U, we can associate another path p’ with the
same transitions, from which one can extract a sequence of shrinkable patterns
(px) such that the sequence (is5(p%)) is a valid path in the dynamics of T'. Let
T and U be two tile-sets, s be an integer and i be an interpretation function

Transformations and Preservation of Self-assembly Dynamics 107

of Us in T, such that the dynamics of U is the image of that of T' at scale s.
Let p = p(0)...p(n) be a path in the dynamics of T. There is a path p’ =
iz (p(0))...i7 (p(1))...is(p(n)) in the dynamics of U. This path is not unique,
and there are paths going from i 'p(0) to i;'(n) without going through all the
iz 1(p(k)), but as they have the same extremities as p’, they all have the same
transitions, but in a different order.

3 Zooming and Self-assembly

3.1 Zooming Sometimes Breaks Dynamics

Having defined a notion of preservation of dynamics, we would like to see if there
is a way to scale the dynamics of any tileset. The answer is that it is not possible
without some more conditions. What does it mean? It means that the notion
of locality which is used by these self-assembling tilings is very local, and thus
cannot be scaled. There is then an intrinsic scale in the process. By putting some
more conditions on how the assembly takes place, we can scale the dynamics.

To show that zooming (or scaling) necessarily breaks the dynamics of an
assembly, we use the fact that in our model, locality means simultaneity in
reactions. Thus, wherever we break locality, we will need synchronization, which
means putting tiles in advance. This is what breaks the dynamics.

Theorem 1. There is a tileset T such that there is no T's whose dynamics is
the tmage of that of T at scale s for s > 2.

Proof. Let T be the tileset of figure[2(a)] T behaves thus: if the seed is at (0,0),
then when the assembly stops, there are two integers [; and [_; such that there
are tiles in the following places:

—in {—1} x {0,...,l_1}; these tiles can each be either red or blue

[
l D Erea ﬁ I
il <«p il
3 C ;; ; 3
(a) The tiles (b) The
problematic
part of its
dynamics

Fig. 2. Our counter-example

108 F. Becker

—in {1} x {0,...,{1}, also in red or blue,

— in the subset S of {0} x {0,...,ho} defined by {(0,y)|oe(—1,y) = ow(1,v)}
(where hg = min(ly,1-1)).

— In {—2} x {0,...,l_1}, wherever the tile in the same row at x = —1 is red

— In {2} x {0,...,l1}, wherever the tile in the same row at z =1 is red.

In the final productions, there are tiles in the central column whenever there
are tiles at both x = 2 and x = —2 in the same row, or whenever there are
neither.

This property cannot be ensured at greater scale. To show this, we do a proof
ad absurdum by considering a system Ts which is a s-grouping of T'. Let us
consider the fragment of the dynamics of T" represented on ﬁgure in which
no tile can be added at (0, 1) or (0, 2). This guarantee is given if the dependencies
between tiles can be expressed by a poset.

Let ’ij be the antecedent of cij by is, since i, is an isomorphism, the ¢'ij
are in the same order as the cij. From ¢’21 and ¢/23, no tile can be added in the
central column. Thus, there can be no strength 2 glue on the marked edges in
¢’21 and ¢’23 (represented in bold).

It is also impossible on the marked regions of ¢/22, because then they would
have been added before either ¢’11 or ¢’12, and would be present in ¢’21 or ¢423.
As there are no strength 2 glues on the marked areas, no tile can be added in the
central column. This contradicts the fact that the dynamics of T is the image
of that of T". O

Here, T" was unscalable because the locality of the tiles could not be scaled:
sometimes, adding a macrotile to a configuration of T's would have involved two
concurrent processes, none of which would have got the whole information on
the macrotile to be added. So, in order to scale dynamics, we need a guarantee
that we will always be able to have all the information on the tile to be added
at one place.

3.2 The Order Condition

To avoid this problem, one can add the classical Row-Column condition [4], or an
extension, the order condition. This condition removes all effects such as shown
in the previous section, and allows us to scale the dynamics. It states that one
can associate, to each tile in a production, a direction which corresponds to the
way it has extended the production when it was added. Thus, as we know where
each tile will extend the productions, we can put the information on colors and
glues where it is needed, which allows us to scale the tiling.

Definition 8 (Order condition).. Let ¢ be a configuration. If there is a poset <.
on the shape of ¢ such that the shapes of the productions p < c are the ideals of <.,
then c is said to satisfy the order condition, and <. is its dependency order.

If all the productions of a tileset obey the order condition, we will say that it is
an ordered tileset. Intuitively this condition states that the dependencies between

Transformations and Preservation of Self-assembly Dynamics 109

the tiles can be presented as a poset, and that this poset depends only on the
production and not on its history. <. represents the dependencies between tiles
in ¢ as a tile can be attached to a production p in order to give ¢ if and only
if all of its predecessors according to <. have already been attached. With this
condition, the direction of each tile (as defined above) can be decided by looking
only at <. and not at the history of the assembly. The direction of a tile is
the opposite of the relative location of its predecessors for <.. For example, if
the predecessors of z are S(z) and W (z), the tile at z will have direction NE.
This condition is slightly more general than Rothemund’s RC' condition[4], as it
allows to build non-convex patterns. Yet, it is quite natural, and most if not all
tilesets in the literature obey this order condition.

A corollary of this condition is that there is never “too much glue” when
adding a tile: whenever a tile is added to a configuration, the sum of the glues
on its adjacent sides is exactly 2

3.3 A Construction for the Order Case

Given this order condition, we are able to construct a scaled image of a given
tile-set. We do this by cutting each of the tiles in s? pieces (where s is the scaling
factor), and putting new glues on the new edges.

Theorem 2.. LetT be an ordered-tileset, and s an integer. Then there exists a T's
whose dynamics is the image of that of T at scale s. Furthermore, T's is also ordered.

Proof. To each tile of T, one can associate, thanks to the order condition, a set
of directions in which the tile can extend the productions. For example, the set
of directions associated with a tile having a glue of strength 2 on its southern
edge and glues of strength 1 on the other edges is {N,SE, SW}.

For each tile ¢ and each direction d in which ¢ can extend productions, t¢ is
the tile ¢ with arrows on its edges showing that ¢ has been added in direction d.
These arrows indicate whether an edge is an input or output edge: for each edge
e, the arrow points into the tile (in direction —e) if the angle between e and d
is acute (either 0 or 45 degrees) , and out of the tile otherwise (in direction e).
A side with an arrow pointing into the tile is an input side, and a side with an
arrow pointing out of the tile is an output side. See figure B.3

We consider the tileset 77 whose color set is X x {N, S, E, W}, and whose tiles
are the tg4 for t € T with strength function sp. Clearly 7”7 has the same dynamics
as T, because of the order condition. We then build a tileset T having which is
a scaling of T”, and thus of T

T's is defined as Seed U Replicas.

Replicas is a set of pieces of tiles in T”. Each tile in 7" is cut into s2 squares of
size 1/s, and the internal edges are given new colors, each unique to the position
of the edge inside the tile and to the tile. The details of these glues are shown on
figure[3:3l Glues of strength 2 are only present once per edge, and are replaced by
equivalent force 1 glues elsewhere on the edge. By convention, they only appear
in the uppermost and leftmost parts of each macrotile.

110 F. Becker

Fig. 3. Top, adding the arrows to the tiles of T": the triangle is the direction of the tile;
bottom, cutting into pieces for Seed and Replicas; all internal edges are unique within
each macrotile and between macrotiles

Seed is a set of tile which gives a square of size s with on its edges, the color
of the edges of the seed of T

The interpretation ¢ that we use for this construction is simple: the macrotiles
which correspond to the definition of Replicas are mapped to the matching tile
of T. The macrotile corresponding to the definition of Seed is mapped to the
seed of T'. The other macrotiles are not actual.

Let us now look at the assembly of this tile set. Let us show that the dynamics
of T's is the image of that of T".

We use the notion of local production. A local production is a configuration
which appears when building an actual macrotile m. A local production for m
is a configuration included in the square [0, s)? which can be reached from the
empty square with the input colors for m on the sides adjacent to its input sides.

We need to show that if i5(c) < i5(c’) are productions of 77, then ¢ < ¢.
To show this, it is sufficient to show that if there is a transition between i4(c)
and i4(c’), then ¢ < ¢/. This is easily seen, one only needs to reproduce the
constructions of figure B3] which is always possible.

We add an element L at the bottom of Dy, and Dy, (that is, for all ¢ €
Dyiye > 1). We will say that L is shrinkable, and is(L) = L. We prove the
following lemma:

Lemma 1. For any shrinkable production d and any ¢ > d, there is a configu-
ration e of T’ such that:

— shape(e) is the smallest domain o C Z? such that hs(c) D shape(c))
— e >ig(d)

Transformations and Preservation of Self-assembly Dynamics 111

— For any square S = [xs, (x + 1)s[x[ys, (y + 1)s], ¢ restricted to S is a local
production of the macro-tile corresponding to e(x,y)
— and c verifies the order condition

Proof. For any d, we prove the lemma by induction on ¢. When ¢ = d, we take
e =1s(d).

Let ¢ > d, and 7 be a transition from ¢ to ¢’ where one adds a tile ¢ at
(sx+1i,sy+7),0 <1i,j < s. Let e be given by the induction hypothesis for c.

If (x,y) € shape(e), then e also verifies the lemma for ¢’. The condition on
the shapes is clearly true, and also that e > i4(d). Since ¢ is made of local
productions and obeys the order condition, ¢ can only be placed if it has its
neighbors on its input sides (because of the arrows on the sides). Thus, it can
only be added in accordance with the local productions, and cannot break the
order condition.

If (z,y) ¢ shape(e), then let t' € T be the tile corresponding to the macrotile
in which ¢ appears. Let ¢; and (if needed) t5 be the neighbors of ¢ on its input
sides, and the corresponding ¢}, t, € T. As t could be added next to t; and ta, ¢/
can be added between ¢} and t. Let ¢/ = eU{(z,y) — t'}. ¢ > i5(d), and it has
the smallest shape such that shape(c’) C hs(shape(e’)). t is a local production
of the macrotile corresponding to ¢/, and ¢’ has an order of dependency.

With this lemma, we get that if ¢ < ¢’ and ¢, ¢’ are shrinkable, then is(c) < i5(¢/),
as when c is shrinkable, i5(e) = c.

Let ¢ be a production of T's, then there is a corresponding production e of 7",
such that ¢ is made of local productions of e. Let (o, yo,t0) - - - (T, Yk, tx) be a
chain of transitions from L to e, and i be the smallest &k such that shape(c) N
(s, 5(w + DX (s, 5(0 + D) # sk, s(op + 1)[x [y, s(ye + D, i it ex-
ists. Then, as shape(c) N ([szk, s(xk + 1)[X[syr, s(yx + 1)[) is a local production
and its input neighbor(s) are complete, one can add a tile to ¢ in [sxy, s(zx +
1)[x[syk, s(yx + 1)[. So if ¢ is not shrinkable, there is a ¢/ > ¢ shrinkable.

So the dynamics of T's is the image of that of T".

4 Conclusion

We have defined a notion of transformation of a tile-set that allows us to com-
pute geometrical transformations of the plane within the tile-set, in parallel to
whatever construction the tile-set does. This notion allows to pinpoint which
aspects of locality a given transformation can break. We gave a demonstration
framework for these questions. The fact that in all generality, this notion is
not compatible with zooming can be interpreted as an acute sensibility of some
self-assembly processes with locality.

Looking at dynamics for making transformation gives a new kind of algorithms
on assemblies. Further investigation could lead to more uniform transformations
(less dependence on the tileset): if we accept to introduce some inaccuracy in
the tileset, then it is possible to have a set G of “growing tiles” such that for a
tileset T, the dynamics of G U T is the image of that of T' by an homothety.

112 F. Becker

This construction can also be seen as a framework for implementing other

geometrical transformations in self-assembly. The macrotiles construction is in
fact a kind of tensor products between two tilesets, one assembling a finite pat-
tern, and the other the image of the grid by a transformation. Whenever we
have these two elementsE, we can implement the transformation. This expands
in a very interesting manner the toolbox of the self-assemblist, allowing for new
decompositions of shapes to be built.

References

D

. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanes, P.M.,

Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In:
STOC 2002: Proceedings of the thiry-fourth annual ACM symposium on Theory
of computing, pp. 23-32 (2002)

. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-

versity Press, Cambridge (2002)

. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled

squares (extended abstract). In: STOC, pp. 459-468 (2000)

. Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-Assembly. PhD

thesis, University of Southern California (2001)

. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Ferretti, C.,

Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344-354. Springer,
Heidelberg (2005)

. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, Caltech (1998)
. Winfree, E.: Nanotechnology: Science and computation. In: Chen, J., Jonoska, N.,

Rozenberg, G. (eds.) Nanotechnology: Science and Computation, Natural Comput-
ing, Chapter Self-healing tilesets. Springer, Heidelberg (2006)

. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic

self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126—
144. Springer, Heidelberg (2003)

. Eric Rémila et Ivan Rapaport. Self-assemblying (classes of) shapes with a constant

number of tile. Technical report, LIP, ENS Lyon (2004)

2 The grid part is not trivial for more involved transformations.

Deterministic Input-Reversal and
Input-Revolving Finite Automata

Suna Bensch!, Henning Bordihn?, Markus Holzer?, and Martin Kutrib?

! Institut fiir Informatik, Universitit Potsdam,
August-Bebel-Strafle 89, 14482 Potsdam, Germany
aydin@cs.uni-potsdam.de
2 Institut fiir Informatik, Universitit Giessen,
Arndtstrale 2, 35392 Giessen, Germany
{bordihn,kutrib}@informatik.uni-giessen.de
3 Institut fiir Informatik, Technische Universitat Miinchen,
Boltzmannstrafie 3, 85748 Garching bei Miinchen, Germany
holzer@informatik.tu-muenchen.de

Abstract. Extended finite automata are finite state machines with the
additional ability to manipulate the remaining part of the input. We in-
vestigate three types of deterministic extended automata, namely
left-revolving, right-revolving, and input reversal finite automata. Con-
cerning their computational capacity it is shown that nondeterminism is
better than determinism, that is, for all three types of automata there is
a language accepted by the nondeterministic versions but not accepted
by any deterministic automaton of the same type. Concerning the clo-
sure properties most of the language families studied are not closed under
standard operations. In particular, we show that the family of languages
accepted by deterministic right-revolving finite automata is an anti-AFL
which is not closed under reversal and intersection.

1 Introduction

In automata theory various classes of automata mainly differ in the resources
of which they may make use during the computations. Typical resources are,
for example, storages such as pushdown tapes [5], stack tapes [], or Turing
tapes, nondeterminism [IT] or alternation [4]. For a more detailed discussion of
machines and languages from an automata theoretical point of view see [7]. The
investigations in [7] led to a rich theory of abstract families of automata, which is
the equivalent to the theory of abstract families of languages. For the definition
of an abstract family of languages (abbreviated AFL) we refer to [12].

In several recent papers, for example, see [II2I3], extended finite automata
have been considered. These models are (nondeterministic) finite state machines
which are enriched with the ability to apply a string operation on the part
of the input that has not been consumed yet. Extended finite automata are
inspired by the model of flip pushdown automata [I3] which can flip the contents
of their pushdown stores in certain configurations. The authors in [J] showed

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 113 2008.
© Springer-Verlag Berlin Heidelberg 2008

114 S. Bensch et al.

that k& 4+ 1 pushdown-flips are better than &, and established an interrelation
between the pushdown-flips and reversal operations on the unprocessed input
of a flip pushdown automaton. In [I], both pushdown and finite automata with
input reversal operations have been studied. Moreover, in [2J3] further formal
language string operations such as revolving and interchanging have been taken
into consideration.

All the forerunner papers investigate nondeterministic automata as the most
general case—except in [I0], where deterministic flip-pushdown automata were
considered. In the present paper, the additional resource of allowed input op-
erations is traded against the resource of nondeterminism. That is, a (single)
input operation remains permitted (its applicability depending on configura-
tions), but the automata are restricted to be deterministic. The input reversal,
left-revolving, and right-revolving operations will be allowed as prototypes of
operations on the unconsumed input string.

After providing the definitions and notation, the computational power of the
deterministic extended finite automata is investigated in Section 3. In particu-
lar, language families defined by those automata are related to the families of
the Chomsky hierarchy and other well-known classes. Section 4 is devoted to
compare the power of different input operations. In particular, the power of the
deterministic machines is compared with the power of the corresponding nonde-
terministic ones, proving strict inclusion results. Finally, closure and non-closure
properties of the families of deterministic extended finite automata languages
under standard language operations are investigated. It turns out that right-
revolving deterministic finite automata form a non-reversal and non-intersection
closed anti-AFL, what is surprising for a language class defined by a deter-
ministic automaton model. Although anti-AFLs are sometimes referred to an
“unfortunate family of languages” there is linguistical evidence that such lan-
guage families might be of crucial importance, since in [6] it was shown that the
family of natural languages is an anti-AFL. Hence the question for uncommon
automata models that induce anti-AFLs seem to be worth to consider.

2 Definitions and Preliminaries

We denote the powerset of a set S by 2°. The empty word is denoted by A,
the reversal of a word w by w’, and for the length of w we write |w|. For the
number of occurrences of a symbol a in w we use the notation |w|,. We use C
for inclusions and C for strict inclusions.

In the following we consider finite automata that can reverse or shift the
unread part of the input. We start with a uniform definition.

Definition 1. A (nondeterministic) extended finite automaton is a 6-tuple
A= (Q,X,6,A4,q0, F), where Q is a finite set of states, X is the input al-
phabet, § and A are mappings from Q x (X U{A}) to 29, where § is called the
transition function, and A is called the input operation function, qo € Q is the
wnitial state, and F C Q is the set of accepting states. Furthermore, A is said to
be \-free, if both & and A are mappings from Q x X to 29.

Deterministic Input-Reversal and Input-Revolving Finite Automata 115

[dfpfrafa] - [[fpfrmefa] - [y - [e[d]
Left revolving Right revolving Input reversal

Fig. 1. Input operations

The different operations on the input are formally distinguished by different
interpretations of the mapping A. To this end, we consider configurations of
extended finite automata to be tuples (¢, w), where ¢ € @ is the current state,
and w € X* is the yet unread part of the input. If a is in X U {A\} and w
in X*, then we write (¢, aw) k4 (p,w), if p is in 6(q,a). Those transitions are
referred to as ordinary transitions. An input operation is performed by applying
the mapping A (cf. Fig. [l). For a € YU{A\}, be X, w € X* and p in A(q, a),

1. a left-revolving transition is defined by (gq,a) Fa (p,a), (g, awd) 4 (p, baw),

2. a right-revolving transition is defined by (¢,aw) Fa (p,wa), if a € X, and
(q,bw) F4 (p,wb) and (¢, A\) Fa (p, A), otherwise, and

3. an input-reversal transition is defined by (q,aw) F4 (p,w®a).

The corresponding transitions are referred to as non-ordinary transitions. Note
that, for any operation, if p € A(gq, A), then (g, \) Fa (p, \).

Of particular interest are deterministic computations. A deterministic ex-
tended finite automaton is an extended finite automaton for which there is at
most one choice of action for any possible configuration. A deterministic extended
finite automaton A = (Q, X, 6, A, qo, F') with left-revolving, right-revolving, or
input-reversal transitions is called a deterministic left-revolving finite automa-
ton (Ir-DFA), right-revolving finite automaton (rr-DFA), or input-reversal fi-
nite automaton (ir-DFA), respectively. If the automata are nondeterministic,
then we use the notations Ir-NFA, rr-NFA, or ir-NFA, respectively. The re-
flexive transitive closure of 4 is denoted by F%. The subscript A will be
dropped whenever the meaning remains clear. The language accepted by A is
L(A) = {w e X* | (qo,w) F* (g,), for ¢ € F'}. Unless stated otherwise, we
denote the family of languages accepted by devices of type X by Z(X), where
X € {Ir-DFA, ir-DFA, rr-DFA, Ir-NFA, ir-NFA, Ir-NFA }.

In order to clarify our notation we give an example.

Ezample 2. The non-context-free language { w € {a,b,c}* | |w|, = |w|p = |w|c }
is accepted by the extended automaton A = (Q,{a,b,c},8, A, qo,{qo}), inter-
preted as either rr-DFA or Ir-DFA, where Q = {qo, ¢abs 9acs bes Qa> @b, Gc }, and:

1. 6(qo,a) = {qve} 8. 8(qan,a) = {a} 15. A(gy,a) ={q}
2. 6(qve, b) = {qc} 9. 6(qap,b) = {dqa} 16. A(gp, c) = {av}
3. 0(qves) = {av} 10. 6(qa,a) = {qo} 17. A(qe,a) = {qc}
4. 6(q0,b) = {qac} 11. 6(qs,b) = {qo} 18. A(ge,b) = {qc}
5. 6(qac;a) = {qc} 12. 6(ge,c) = {qo} 19. A(qap,c) = {qav}
6. 6(Qa€7c) = {QE} 13. A(Qﬂvb) = {qtl} 20. A(qamb) = {qac}
7. 6(q0,¢) = {qab} 14. A(qa,c) = {qa} 21. A(gbe,a) = {gpe}

116 S. Bensch et al.

From state qp, automaton A tries to read three different symbols consecutively.
It uses the transitions 1 to 12 to store the currently missing symbols in its finite
control in order to search for it. Being in a search state, all non-matching symbols
are shifted by the transitions 13 to 21. Thus, the input satisfies the property
|w|q = |w]p = Jw|. when the automaton reaches the accepting state.

It is straightforward to generalize the construction to an arbitrary number of
symbols. That is, for any ¢ > 2, the language

{wedfa,az,... 0} [|wla, = [wla, =+ = wla, }
is accepted by some rr-DFA and Ir-DFA. O

The situation is different for input-reversal finite automata. It is shown in [I]
that nondeterministic ir-NFA accept exactly the linear context-free languages.
So, clearly, ir-DFAs cannot accept non-context-free languages.

Ezample 3. The context-free language { wew® | w € {a,b}*} is accepted by the
ir-DFA A = ({q07 qa; qb, q:w qzu qf}7 {aa b, C}7 67 Av qo, {qf})a where

1. 6(qo,a) = {qa} 4. 6(qp.b) = {qo} 7. 6(qo.c) = {qr}
2. 6(qo,b) = {qv} 5. A(qa, N) = {q,}
3. 6(q,,a) ={qo} 6. Algp, A) = {q,}

From state go automaton A tries to read matching symbol pairs one symbol
from each end of the input. The transitions 1 and 2 allow A to store the currently
read input letter in the finite control in order to search for a corresponding
mate letter, which must be at the end of the input. Then with transitions 5
through 8 the symbol at the end of the input is brought to the left, and with
transitions 3 and 4 it is verified. Then the search process is repeated. Finally,
with transition 9 the sole symbol ¢ is read while A changes to the accepting state.
It is straightforward to modify the construction such that the nondeterministic
context-free language { ww’ | w € {a,b}*} is accepted some ir-DFA. Similarly,
the language {a"b™ | n > 1} is an ir-DFA language. O

The definition of deterministic extended finite automata allows A-transitions
of 6 as well as of A. They have been included for the sake of compatibility
and convenience, since often constructive proofs are much more readable if \-
transitions are used. In [3] it has been shown that A-transitions do not increase
the computational power of nondeterministic extended finite automata. The next
theorem proves the same statement for the deterministic case.

Theorem 4. For a deterministic extended finite automaton A of any type, one
can construct a A\-free deterministic extended finite automaton B of the same
type, such that L(A) = L(B).

Proof. Given a deterministic extended finite automaton A = (Q, X, 6, 4, qo, F)
we construct B = (Q, X, 8", A, qo, F') as follows. The non--transitions of B are
defined to be the non-A-transitions of A, that is, ¢’'(p,a) = 6(p,a) and A'(p,a) =

Deterministic Input-Reversal and Input-Revolving Finite Automata 117

A(p,a), for all p € Q, a € X. Next, we replace non-ordinary A-transitions of A
that appear on non-empty input. To this end, if A(p,\) is defined, then we set
A'(p,a) = A(p, A), for any a € X. After all non-ordinary A-transitions have
been removed, we replace ordinary A-transitions of A that appear on non-empty
input. As A is deterministic, we can assume without loss of generality that no
A-cycles appear, that is, for all states p there is a unique state p, such that
(p, A) F% (p,A) with ordinary transitions only and 6(p, A) is undefined. Note
that p = p holds if §(p,) is undefined. Now, for all p € @ and all a € X,
we set ¢’ (p,a) = 6(p,a) if 6(p,a) is defined and A'(p,a) = A(p,a) if A(p,a) is
defined. These transitions do not violate the determinism of B since, for any
a € X, neither 6(p,a) nor A(p,a) is defined if §(p, A) is defined. So far, B can
simulate A-transitions of A that appear on non-empty input. But there may
be A-transitions at the end of the computation when the whole input has been
consumed. In order to retain deterministic computations, we can overcome the
problem by adjusting the set of accepting states, since A-transitions at the end of
the computation can only change the finally reachable states. So, for any p € @,
let A, ={qe Q] (p,A)F’ (g,\)} be the set of all states that are reachable
from some state p with ordinary and non-ordinary A-transitions. Then we set
Fr=FU{peQ|A,NnF#0}. O

3 Computational Capacity

In this section we investigate the computational power of deterministic extended
finite automata. In particular, we compare the language families defined by those
automata to well-known language families. Clearly, every regular language is
accepted by any type of extended automaton in question. A straightforward
Turing machine simulation yields the following upper bounds.

Theorem 5

1. Every language accepted by a right- or left-revolving finite automaton belongs
to both complezity classes DTIME(n?) and DSPACE(n).

2. Every language accepted by an input-reversal finite automaton belongs to both
complezity classes DTIME(n) and DSPACE(n).

Obviously, unary languages accepted by extended finite automata are regular
since neither left- and right-revolving nor input-reversal moves change the re-
maining part of the input. Therefore, non-ordinary moves can be omitted.

Theorem 6. A unary language L is accepted by an extended finite automaton
if and only if L is regular.

An immediate consequence is that the inclusions of Theorem [B] are proper, since
the non-regular language { a”’ | n > 1} belongs to the intersection DTIME(n)N
DSPACE(n).

Once it is known that all regular languages are accepted by deterministic ex-
tended finite automata, there is a natural question for better lower bounds in

118 S. Bensch et al.

terms of known language families. A proper but still weak superclass of regular
languages is the family of languages accepted by deterministic one-turn push-
down automata. We denote this family DLIN. Though deterministic extended
finite automata accept rather complicated non-context-free languages, none of
the deterministic extended finite automata under consideration can accept all
languages from DLIN. Moreover, this will imply that nondeterminism is better
than determinism for the cases of left-revolving and input-reversal automata.

Lemma 7. Let L' = {wew® | w € {a,b}*}. The language L = L' UL'{b}{a,b}*
18 mot accepted by any Ir-DFA.

Proof. In contrast to the assertion assume that L is accepted by some lr-DFA
A=(Q, X, A, q F) with n states. According to Theorem [l we may assume A
to be A-free. The word wi = a®"ca®"b"a?" belongs to L. Due to the choice of n,
there is an accepting computation such that some state ¢ appears at least twice
while A reads a’s only, say

(q0,w1) B (g, w) BT (g, wi) B (g5, A),

where ¢ € Q, ¢y € F. Moreover, we can derive w} # w{, and A has consumed
at most n symbols a each while computing w} from w; and w{ from w}, that is,
|wy| — [w]| < n and |w)| — |w}| < n. We obtain w] = a*"~ I ca®b"a®"~I, for
some 0 < i+j < n, where A consumes i symbols and performs j revolving steps.
Similarly, we have w} = 2"~ =+mcg27pnq?" == for some 0 < £ +m < n.
We conclude that there is an accepting computation

(qo’ a2n—€+mca2nbna2n—m) ¥ (q’ a2n—€+m—i+jca2nbna2n—m—j) ¥ (qf’ A)

which implies £ = m.
Now we consider the word ws = a?"ca®" that belongs to L. Since A is deter-
ministic, the accepting computation on ws is

(q07w2) ¥ (q’ a2n—i+jca2n—j) * (q7a2n—i+j—£+mca2n—j—m) ¥ <q}’ /\)7
where q} € F. Moreover, we obtain the computation

(qo’ a2n7€+mca2n7m) ¥ <q’ a2n7€+m7i+jca2n7mfj) ¥ <q}’)\)

Since ¢ = m the input a?"ca®*~™ is accepted. But £ +m > 0 and ¢ = m imply

m > 0, a contradiction. O
Theorem 8. The families DLIN and £ (Ir--DFA) are incomparable.

Proof. Lemma [0 presents a deterministic one-turn pushdown automaton lan-
guage not belonging to £ (Ir-DFA). Example [shows that the non-context-free
language { w € {a,b}* | Jw|, = |w|p = |w|. } is accepted by an Ir-DFA. O

Theorem 9. The families DLIN and £ (rr-DFA) are incomparable.

Deterministic Input-Reversal and Input-Revolving Finite Automata 119

Proof. In [2] it is shown that the deterministic one-turn pushdown automaton
language { a™b" | n > 1} is not accepted by any rr-NFA. On the other hand, by
Example 2] the non-context-free language { w € {a,b}* | |w|, = |w|p = |w|. } is
accepted by an rr-DFA. O

It remains to investigate whether .Z(ir-DFA) is comparable with DLIN. It is
known that nondeterministic ir-NFAs characterize the linear context-free lan-
guages [I]. Therefore the question arises whether this relation remains true for
deterministic devices. The answer will be derived from the following lemma.

Lemma 10. The family £ (ir-DFA) is properly included in £ (Ir-DFA).

Proof. As ir-NFAs characterize the linear context-free languages [I] and Ir-DFAs
can accept non-context-free languages, it is only left to prove the inclusion.

Given some ir-DFA A = (Q, X, 6, A, qo, F') we construct an equivalent lr-DFA
A =(Q,X,8,4 q), F'). Basically, reversing the input means to read the input
from right to left instead of left to right, and wvice versa. The idea of the con-
struction is to remember the direction (where [indicates from left to right and r
from right to left), and to simulate right to left steps by reading a symbol which
previously has been fetched from the back by a left-revolving step. To this end,
it is convenient to store both the first and the last symbol of the remaining input
as parts of the state. Without loss of generality, we assume that A is A-free, and
construct A’ formally as follows.

Q' =(QuUQ) x (ZU{u)?x{l,r}, ¢ =(qouul),

where Q = {7 | ¢ € Q} is a disjoint copy of @, and u is a blank.
Forall g€ Q,a€ X,z € YU {u},y € X, and d € {l,r}, the transitions

6/((Q7uaxad)aa) = (Qaa7x7d)7
AI((Qayvuvd)vA) = (Q1yvu7d) and 6/((vauuad)7a) = (Q1yva7d)

are applied to store the first symbol as the second component of the state and
to fetch a symbol from the back and to store it as the third component of the
state, whenever at least one of these components is blank.

If 6(p,a) = ¢ is a transition of A, for p,q € @ and a € X, then we simulate it
for any x € X by

' ((p,a,2,1),A) = (q,u,2,1) and 8'((p, x,a,7), A) = (¢, 2,0,7).

If A reads the input from left to right or from right to left, then it applies the
transition 6(p, a) = ¢ to the first or the last input symbol, respectively. The left-
revolving automaton A’ has stored these symbols in the second and the third
components of its state, which subsequently get blank, and a new symbol is
fetched from the left or right end of the input, respectively.

If A(p,a) = ¢ is an input-reversal transition of A, for p,q € @ and a € X,
then we simulate it for any x € X by

8'((p,a,z,1),\) = (¢,a,z,7) and &'((p, x,a,7),\) = (¢,2,a,l).

These transitions change the first component of the state and [to r, or r to [.

120 S. Bensch et al.

A’ is deterministic since A is so. Moreover, computations of A are simulated
more or less directly until an input string of length 2 remains. In such a situation,
the input of A’ is already empty, since these symbols are always stored in the
state. In order to cope with the missing last transitions, we can adjust the set
of accepting states as follows. Let p € Q, z,y € X, and d € {l,r}. Then

(p,x,y,d) € F"if and only if (p,zy) H} (g7, A),

for some gy € F'. If the input of A is of length less than 2, then we adjust the
set of accepting states accordingly. O

Theorem 11. The families DLIN and £ (ir-DFA) are incomparable.

Proof. Lemma [0 shows that there is a language belonging to DLIN but not to
Z(Ir-DFA). By Lemma [T it does not belong to .Z (ir-DFA) either. On the other
hand, it is easy to see that the language { ww® | w € {a,b}*} is accepted by
some ir-DFA but does not belong to DLIN. a

So far, we have related the computational power of deterministic extended fi-
nite automata to the expressive power of well-known language families. It turns
out that all families in question properly include the regular languages and are
incomparable with DLIN. Together with Theorem [it follows that all families
are properly included in the deterministic context-sensitive languages. Together
with the results from [II2] we obtain that £ (ir-DFA) is properly included in
the family of linear context-free languages, whereas the families £ (Ir-DFA) and
Z(rr-DFA) are incomparable to the class of context-free languages.

4 Comparing Modes

This section is devoted to the comparison of the different input operations. As
mentioned before, we can separate nondeterministic classes from determinis-
tic classes. Summarizing the investigations in the literature and the previous
section, we have the proper inclusions .Z(ir-DFA) C £ (Ir-DFA) (Lemma [I0)
and Z(ir-NFA) C Z(Ir-NFA) from [3]. Furthermore, .Z(ir-NFA) is equal to
the family of linear context-free languages [I], whereas all deterministic families
are incomparable with DLIN which, in turn, is properly included in the linear
context-free languages. Thus we immediately obtain the following theorem.

Theorem 12
1. The family £ (ir-DFA) is properly included in £ (ir-NFA).
2.The family £ (Ie-DFA) is properly included in £ (Ir-NFA). O

For the sake of completeness we now present the remaining separation result. It
is a consequence of the different closure properties shown in the next section.

Theorem 13. The family £ (rr-DFA) is properly included in £ (rr-NFA).

Deterministic Input-Reversal and Input-Revolving Finite Automata 121

CSL

PR

CFL Z(I--NFA (rr-NFA)

O TR

DCFL LIN = Z(ir-NFA) Z(Ir-DFA) #(rr-DFA)

I

DLIN #(ir-DFA)

T~

REG

Fig. 2. Inclusion structure. All shown inclusions are strict and families that are not
linked by a path are pairwise incomparable. CSL denotes the family of context-sensitive,
CFL that of context-free, DCFL that of deterministic context-free, LIN that of linear
context-free languages, and REG that of regular languages.

Proof. Clearly, the family .Z(rr-NFA) is closed under union. In Lemma [I§ it is
shown that the deterministic family £ (rr-DFA) is not closed under union. 0O

We continue to compare the power of the different input operations among them-
selves. The complete picture is shown in Figure

Lemma 14. There is a language L € £ (rr-DFA) \ .Z(Ir-NFA).

Proof. We use L = {a®"bv | n > 0,v € {a,b}*,n + |v]a = 1+ |v|p} as wit-
ness language. Contrarily, assume that L is accepted by some Ir-NFA A =
(Q,X,6,4,qo, F) with n states. Due to [2] A is assumed to be A-free. We con-
sider the word w = a?"b*"a3™ which belongs to L. Due to the choice of n, there is
an accepting computation such that some state ¢ appears at least twice while A
reads a’s only, say

<q0’w) ¥ <q’ a2n7i+jb4na3n7j) }_+ <q’ a2n7i+j7€+mb4na3n7jfm) — (Qf7>\);

where ¢ € @, ¢f € F, and A consumes ¢ symbols and performs j revolving
steps until the first ¢ appears, and it consumes further ¢ symbols and performs
further m revolving steps until the second ¢ appears. Furthermore, i,7,¢,m <n
and £ 4+ m > 0. We conclude that there is an accepting computation

(qo’ a2n—€+mb4na3n—m) ¥ (q’ a2n—€+m—i+jb4na3n—m—j) ¥ (qf’ A),

which implies a??~¢+"p*q3" =™ ¢ [Therefore, m—/ is even and, thus, [4+m > 2
since £ +m > 0. On the other hand, since n+ ™, 4+ 3n —m = 4n — “4™ # 4n,
we have a?n—fTmping3n=m ¢ [, a contradiction.

It remains to be shown that L is accepted by some rr-DFA A’. Basically, A’
scans the leading a’s, whereby every second symbol a is revolved until the first b
appears. Subsequently, A" behaves as a known acceptor for the language {w €
{a, b} | |wla = [w]p }. 0

122 S. Bensch et al.

Corollary 15. There is a language L € Z(rr-DFA) \ .Z(ir-NFA).

Proof. The assertion follows by Lemma [[4 and .Z (ir-NFA) C .2 (Ir-NFA) shown
in [3]. |

Lemma 16. There is a language L € Z(ir-DFA) \ .Z (rr-NFA), hence we have
Z(Ir-DFA) \ Z(rr-NFA) # ().

Proof. ExampleBlrevealed that the language L = { a™b™ | n > 1} is accepted by
some ir-DFA, hence also by some Ir-DFA. On the other hand, it is shown in [2]
that L is not accepted by any rr-NFA. a

Lemma 17. There is a language L € £ (Ir-DFA) \ .Z(ir-NFA).

Proof. The witness language {w € {a,b,c}* | |w|l, = |w]y = |w|.} does not
belong to Z(ir-NFA) since it is not linear context free. But by Example [it is
accepted by some Ir-DFA. O

5 Closure Properties

We next discuss the closure properties of deterministic extended finite automata
languages. Due to the lack of space we only give two lemmata exemplarily here.
Further results are summarized in Table [11

Table 1. Closure properties of families of deterministic extended automata languages;
entry + means the the language family is closed under the corresponding operation, —
means that it is not closed, and 7 means that the answer is not known.

Operation
2() U N~ Nu R - ¥ hT' hy
Ir-DFA — — — ? — — — — —
m-DFA - - - - - - -
irr-DFA - — + + + - - + —

First, we show that .2 (Ir-DFA) and . (rr-DFA) are neither closed under com-
plementation nor under union, and then we proof that these families of languages
are not closed under reversal.

Lemma 18. The families £ (Ir-DFA) and £ (rr-DFA) are neither closed under
complementation nor under union.

Proof. Let L = {w € {a,b}* | |w|, = |w|p }. We show that its complement L
belongs neither to £ (Ir-DFA) nor £ (rr-DFA). Contrarily assume a deterministic
revolving finite automaton A accepts L, and consider an accepting computation
on input a”, for n large enough. In order to accept the input, A has to read every
symbol. So, it must not run into loops consisting of revolving transitions only.

Deterministic Input-Reversal and Input-Revolving Finite Automata 123

This implies that after an initial part with some ¢ > 0 ordinary transitions and
j > 0 revolving transitions, the computation becomes cyclic, where some k > 1
ordinary transitions and ¢ > 0 revolving transitions appear in a single loop. Let
n =1+ j+ c(k+¢), for some constant number ¢ which is large enough. For A
being a rr-DFA we obtain the accepting computation

(qo’anbnfk) . (qi’anfifjbnfkaj) |_+
(qi’an—i—j—k—ébn—kaj—&-ﬁ) }_—&- <qi7bn—kaj+c'£) |_+ (Qf7>\);

for some state ¢;. Due to the deterministic behavior, the computation on input
anfkfébnfkaf is

(qo’anfkfébnfkaé) o (qi’anfkféfifjbn*kaﬁw) t

(qi, b"Fa TG 1 (g,),

which is a contradiction, since a”*~*b"*a’ does not belong to L.

If A is a left-revolving finite automaton, we obtain a contradiction with the
inputs a'tekpr—kgitel ¢ [and qit(e-Dktlpn—kgitle=1)-L ¢ [,

Hence, both families are not closed under complementation. Almost the same
reasoning can be used to show that the language { w € {a,b}* | |w|q = |w|p } U
{a™ | n > 1} is not accepted by any rr-DFA and Ir-DFA. Hence, both families
are not closed under union either. O

Lemma 19. Both Z(Ir-DFA) and £ (rr-DFA) are not closed under reversal.

Proof. By Lemmal[l4] the language { a*"bv | n > 0,v € {a,b}*, n+|v|e = 1+|v|s}
does not belong to Z(Ir--NFA). On the other hand, its reversal is accepted by
some Ir-DFA A as follows. Automaton A starts to revolve a’s from the back
whereby every second a symbol is deleted (by a read transition). When the
first b appears, A behaves as a known acceptor for the language { w € {a,b}* |
|wle = |wlp }. So, Z(Ir--DFA) is not closed under reversal.

Now, let L be any language from .Z(rr-DFA) \ .Z(Ir-NFA). By Lemma [I4]
such languages exist. In contrast to the assertion assume £ (rr-DFA) were closed
under reversal. Then LF € £ (1r-DFA) and, trivially, L¥ is accepted by some
nondeterministic right-revolving finite automaton, too. By a result in [2] we
know, that if a language is accepted by a nondeterministic right-revolving finite
automaton, then its reversal is accepted by a nondeterministic left-revolving
finite automaton. We conclude L € Z(Ir-NFA), a contradiction. O

Finally, the closure of £ (ir-DFA) is trivial.
Lemma 20. The family £ (ir-DFA) is closed under reversal.

6 Conclusions

We have investigated left-revolving,- right-revolving and input reversal finite
automata. The main interest was on deterministic computations. For all mod-
els we have separated deterministic from nondeterministic automata and have

124 S. Bensch et al.

considered the relationships between the distinguished deterministic classes.
The inclusion relation between the language families considered are depicted in
Figure2l Concerning the closure properties of the investigated language families
we refer to Table [Il, where we summarize our results. It was shown that most
of the classes are not closed under standard language operations like union,
concatenation or Kleene closure. Although it is not known whether determinis-
tic left-revolving finite automata are closed under intersection with regular sets,
these automata might be of interest in the framework of mathematical linguistics,
since natural languages are an anti-AFL (see [6]). A model for natural languages
should include the three non-context-free languages L1 = {a"b"c™ | n > 1},
Ly ={a"b™c"d™ | n,m >1}, and Ly = {ww | w € {a,b}T }. We know that L,
and Lo can be accepted by deterministic left-revolving automata and that Lj
can be accepted if it is marked appropriately.

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Input reversals and iterated pushdown au-
tomata: A new characterization of Khabbaz geometric hierarchy of languages. In:
Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
102-113. Springer, Heidelberg (2004)

2. Bordihn, H., Holzer, M., Kutrib, M.: Revolving-input finite automata. In: De Fe-
lice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 168-179. Springer,
Heidelberg (2005)

3. Bordihn, H., Holzer, M., Kutrib, M.: Hybrid extended finite automata. In: H.
Ibarra, O., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 34-45. Springer,
Heidelberg (2006)

4. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the
ACM 28, 114-133 (1981)

5. Chomsky, N.: Formal Properties of Grammars.In: Handbook of Mathematic Psy-
chology, vol. 2, pp. 323-418. Wiley & Sons, New York (1962)

6. Culy, C.: Formal properties of natural language and linguistic theories. Linguistics
and Philosophy 19, 599-617 (1996)

7. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland, Amsterdam (1975)

8. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. Journal of
the ACM 14, 389418 (1967)

9. Holzer, M., Kutrib, M.: Flip-pushdown automata: k 4+ 1 pushdown reversals are
better than k. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 490-501. Springer, Heidelberg (2003)

10. Holzer, M., Kutrib, M.: Flip-pushdown automata: Nondeterminism is better than
determinism. In: Esik, Z., Fiilop, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 361-372.
Springer, Heidelberg (2003)

11. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3, 114-125 (1959)

12. Salomaa, A.: Formal Languages. Academic Press, London (1973)

13. Sarkar, P.: Pushdown automaton with the ability to flip its stack. Report TRO1-
081, Electronic Colloquium on Computational Complexity (ECCC) (2001)

Random Context in Regulated Rewriting Versus
Cooperating Distributed Grammar Systems

Henning Bordihn! and Markus Holzer?

! Institut fir Informatik, Universitit Giessen,
Arndtstrale 2, D-35392 Giessen, Germany
bordihn@informatik.uni-giessen.de
2 Institut fiir Informatik, Technische Universitat Miinchen,
Boltzmannstrafie 3, D-85748 Garching bei Miinchen, Germany
holzer@informatik.tu-muenchen.de

Abstract. It is well known that certain language families generated by
cooperating distributed (CD) grammar systems can be characterized in
terms of context-free random context grammars. In particular, the lan-
guage families generated by CD grammar systems working in the ¢- and
sf-modes of derivation obey a characterization in terms of ETOL sys-
tems, or equivalently by context-free disjoint forbidding random context
grammars, and of context-free random context grammars with appear-
ance checking, respectively. Now the question arises whether or not other
random context like language families can be characterized in terms of
CD grammar systems. We positively answer this question, proving that
there are derivation modes for CD grammar systems, namely the negated
versions of the aforementioned modes, which precisely characterize the
family of context-free disjoint forbidding random context languages and
that of languages generated by context-free random context grammars
without appearance checking. In passing we show that every language
generated by a context-free random context grammar without appear-
ance checking can also be generated by a context-free recurrent pro-
grammed grammar without appearance checking, and wvice versa.

1 Introduction

Random context is viewed as one of the prototype mechanisms in regulated
rewriting [8]. The basic idea is, like in matrix or programmed grammars, to
restrict the applicability of the rules in order to enhance the generative capacity
of the underlying grammars. In the case of context-free grammars this yields
languages families which are strict supersets of the family of all context-free
languages. Random context grammars have been introduced by van der Walt [20]
as string rewriting mechanisms, and are recently treated in the framework of
picture and tree grammars, e.g., see [9/I0]. In context-free random context string
grammars, every production consists of an ordinary context-free (core) rewriting
rule to which two sets of nonterminal symbols are associated, namely the sets
of permitting and forbidding random context. The core rule of a production is

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 125 2008.
© Springer-Verlag Berlin Heidelberg 2008

126 H. Bordihn and M. Holzer

applicable to a sentential form « only if all symbols from the permitting random
context and no symbols from the forbidding random context appear in «, more
precisely, in the context of the nonterminal to be replaced. One can distinguish
three natural cases:

1. Both permitting and forbidding random context can be used. Then it is known
that all recursively enumerable languages can be generated.

2. There is only permitting random context. Then still a strict superset of the
family of context-free languages is obtained, which is included in the family of
languages generated by context-free programmed (or, equivalently, context-
free matrix) grammars without appearance checking. Whether or not the
latter inclusion is strict is a longstanding open problem in regulated rewriting
(see Open problem 1.2.2 in [8]). Permitting random context grammars are
also referred to as random context grammars without appearance checking.

3. There is only forbidding random context. Again, a strict superset of the fam-
ily of context-free languages (even of all languages generated by extended
tabled context-free Lindenmayer systems, for short ETOL systems) is ob-
tained. Moreover, these grammars are less powerful than type-0 Chomsky
grammars. A precise characterization of the family of all ETOL languages is
obtained in terms of context-free disjoint forbidding random context gram-
mars, where in each production, the forbidding random context does not
contain any symbol occurring in the context-free core rule, neither on its
left-hand nor on its right-hand side [T8]22].

If erasing rules are prohibited, then one is led to subclasses, in most cases strict.
For a survey the reader may confer [§].

In the present paper, new characterizations of the families of context-free per-
mitting and disjoint forbidding random context grammars in terms of cooperating
distributed grammar systems will be given. Such systems have been introduced
in [B] as models of distributed problem solving, after a forerunner paper [I6] has
treated a similar device in order to generalize two-level substitution grammars to
a multi-level concept. Moreover they can be viewed as sequential counterparts of
ETOL systems [3]. Context-free cooperating distributed grammar systems consist
of a finite number of context-free grammars which jointly work on a common sen-
tential form in turns. In what follows, we will restrict ourselves to context-free
components without further mentioning. The conditions under which the gram-
mar components may start and stop rewriting are determined by the cooperation
protocol. For instance, the components may be required to perform, for some pos-
itive integer k, exactly, at least or at most k derivation steps. Besides these and the
free mode of derivation, where no constraints have to be obeyed, two “competence
based” cooperation protocols are treated as standard derivation modes:

1. In the t-mode a component, once started, has to remain active as long as it
can apply one of its rules to the sentential form (terminating mode);

2. in the sf-mode a component, once started, has to remain active as long as it is
able to rewrite every nonterminal occurring in the sentential form and, more-
over, it can only start on sentential forms like this (full competence mode).

The latter cooperation protocol has been used in [16].

Random Context in Regulated Rewriting Versus CD Grammar Systems 127

In subsequent papers, also hybrid cooperating distributed grammar systems
have been considered, where several of the standard modes are combined. Two
kinds of hybridization can be defined: the ezternal hybrid modes, where different
components can work according to distinet derivation modes [17], and internal hy-
brid modes, where all components rewrite according to one and the same deriva-
tion mode (of the system) but this mode is the Boolean combination of one or two
of the standard modes [I3II4]. Concerning the internal hybrid modes, only little
has been done with respect to the negation of the “competence based” modes.
In [4] the non-t-mode has been treated as one derivation mode in external hybrid
grammar systems, as otherwise the system could never derive a terminal string.
To the knowledge of the authors, the non-sf-mode has never been considered. In
the present paper, the focus is set on these negated modes, where the external hy-
bridization is circumvented by allowing derivations leading to a terminal string,
as exceptions to the non-¢ condition. It turns out, that the language families corre-
sponding to the non-t- and non-sf-modes are precisely the families of context-free
permitting and context-free disjoint forbidding random context languages.

In the literature, random context has also been used in order to add to the
power of ETOL systems, where a table is applicable only if the random con-
text constraint associated to the table is obeyed. It is unknown whether or not
any recursively enumerable language can be generated by some random context
ETOL system. A characterization of this language family is given in terms of re-
stricted context-free programmed grammars (with appearance checking), namely
by recurrent programmed grammars. Here it is required that if a rewriting rule
can be used according to the program of the grammar, then it may be used
arbitrarily often in consecutive steps. Clearly, the class of context-free recurrent
programmed grammars without appearance checking determines a subfamily of
the family of context-free programmed grammars without appearance checking.
The question of whether or not this inclusion is strict forms another open prob-
lem. In passing, we prove that this natural subfamily of the family of languages
generated by context-free programmed grammars without appearance checking
coincides with the family of context-free permitting random context grammars,
thus with the family of languages generated by cooperating distributed grammar
systems working in the non-t-mode of derivation. After all, the new characteriza-
tions of the regulated rewriting classes under consideration may shed new light
on some problems in the field which are longstandingly open.

2 Definitions and Preliminaries

We assume the reader to be familiar with the standard notions of formal language
theory as contained in [8]. In particular, for some alphabet V', let V* be the set of all
words over V, including the empty word A\. For a € V and w € V*,let |w|, denote
the number of occurrences of a in w. The cardinality of a set M is denoted by #M .

Further, the families of languages generated by context-free, context-sensitive,
general type-0 Chomsky grammars, and ETOL systems are denoted by £(CF),
L(CS), L(RE), and L(ETOL), respectively. We attach —X in our notation if

128 H. Bordihn and M. Holzer

erasing rules are not permitted. In what follows, we will consider two languages
to be equal if they differ at most by the empty word A.

A context-free random context grammar is a quadruple G = (N,T,P,S),
where N, T, and S € N are the set of nonterminals, the set of terminals, and
the start symbol, respectively. Moreover, P is a finite set of context-free ran-
dom context rules, i.e., triples of the form (A — «a,Q, R), where A — «a/ is a
context-free production and @, R C N are its permitting and forbidding ran-
dom context, respectively. For z,y € (N UT)* we write © = y if and only if
x = x1Axe, y = x100m9, all symbols of @ appear in z125, and no symbol of R
appears in zyxo. If either) and/or R is empty, then the corresponding context
check is omitted. The language generated by the random context grammar G
is defined as L(G) = {w € T* | S =* w}, where =* is the reflexive transitive
closure of =. The family of languages generated by context-free random context
grammars is denoted by L(RC, CF, ac). We replace CF by CF-) in that notation
if erasing rules are forbidden. If no appearance checking features are involved,
i.e., all forbidding random contexts are empty, then G is said to be a contezt-free
permitting random context grammar or equivalently context-free random context
grammar without appearance checking, and we are led to the language families
L(RC, CF) and £(RC, CF-\). It is known thaffl

L(CF) C L(RC, CF[-)]) € L(RC, CF[-A],ac) C L(RE),
and in particular L(RC, CF,ac) = L(RE) and that
L(ETOL) ¢ L(RC,CF-),ac) C L(CS),

see, e.g., [§]. If all permitting random contexts are empty, then G is called context-
free forbidding random context grammar; the corresponding families of languages
are denoted by L(fRC, CF) and L(fRC, CF-)). A production (A — «, 0, R) of a
context-free forbidding random context grammar is referred to as disjoint if the
intersection of R with the set {A} U{ B | |a|p > 0} of symbols occurring in its
core rule A — « is empty. A context-free forbidding random context grammar G
is called disjoint if all productions of G are disjoint. We denote the language
families generated by context-free disjoint forbidding random context grammars
with and without erasing rules by L(dfRC, CF) and L(dfRC, CF-)), respectively,
which are shown in [2I] to be identical with the family £(ETOL). We are led to
the following inclusion chain:

L(ETOL) = £(dfRC, CF[=\]) C L(RC, CF[-A]) C L(RC, CF[—A], ac).

The first strict inclusion follows from [§], the latter one from [II], see also [12].
The characterization of the family of ETOL languages in terms of context-free
disjoint forbidding random context grammars is given in [2I] and in [I8] using a
different approach.

1 Whenever we use bracket notations like these, the statement is true both in case of
ignoring the brackets and when neglecting the bracket contents.

Random Context in Regulated Rewriting Versus CD Grammar Systems 129

A context-free cooperating distributed grammar system (CD grammar system,
for short) with n components, n > 1, is a construct I' = (N, T, P, Ps, ..., P, S),
where each G; = (N, T, P;,S) is a context-free grammar. For 1 < i < n, P, is
called a component of I'. The domain of P;, in symbols dom(P;), is the set of
nonterminals which can be rewritten by some production in P;. Furthermore,
P, is said to be sentential form competent (sf-competent, for short) on a word
x € (NUT)* if, for any nonterminal A, |x|4 > 0 implies A € dom(F;); we write
P, =4 x in this case and P; g = otherwise.

For 1 < i < n, let =; be the usual yield relation of the context-free gram-
mar G; = (N,T,FP;,S), and =7 its reflexive and transitive closure. A t-mode
(sf-mode) derivation step of I" is defined by

x =!yiff z = y and there is no z with y =; 2,
and
x :>‘:f yiff v =7 2/ =, y and P, =g 2/ but P [~ y,

for some words x,z’, and y over NUT and 1 < i < n. Note that, consequently,
component P; is sf-competent on x and all intermediate sentential forms in
x =¥ 2, either. Therefore, if P; is applied in the ¢-mode, then it has to continue
rewriting until there is no nonterminal from dom(/F;) left in the sentential form.
In the sf-mode it is active until and unless there appears a nonterminal in
the sentential form which is not in dom(P;), that is, until and unless it is sf-
competent on the sentential forms.

The two negated derivation modes we will treat in the present paper shall
model the following intuition. In the non-t-mode, each component has to perform
an arbitrary number of derivations steps as long as at least one rule will remain
applicable to the sentential form, except when the derivation produces a terminal
word. That is the derivation process can be stopped whenever the sentential form
contains at least one nonterminal of the domain of the component (hence, it is
not a completed t-mode derivation) or the sentential form is terminal. In the
non-sf-mode, a component can start and stop rewriting, if and only if it is sf-
competent on the current sentential form (hence, it is not a completed sf-mode
derivation). Therefore, they are defined as follows:

x=!yiff z =7 y and there is a 2 with y = 2,
and _
e=Y yiffz =7y and P =y v,
for some words x and y over NUT and 1 <i < n.

Let f be some derivation mode, then the language generated by I" working in

the f-mode is the set

L(F):{UJET*‘S:w0=>{1w1:>{2..,:}{nwm:w7m20’
1<i;j<n,and1<j<m},

where :>Zf denotes the f-mode derivation relation of the ith component.

130 H. Bordihn and M. Holzer

For an overview about the generative capacity of CD grammar systems we
refer to [6] and [7]. CD grammar systems working in the ¢-mode have been in-
vestigated in [B], where it was shown that context-free [A-free] CD grammar
systems working in the ¢-mode precisely characterize the family £(ETOL) of
languages generated by ETOL systems, i.e., L(ETOL) = £(CD, CF[-)], ¢). More-
over, CD grammar systems working in the sf-mode have been investigated, for
example, in [II2]. In [16] the equalities £(P,CF[-)\],ac) = L(CD, CF[-A], sf)
have been shown. In other words, the family of languages generated by context-
free [A-free] CD grammar systems working in the sf-mode precisely characterize
the family £(P, CF[-)], ac) of languages generated by programmed context-free
[M\-free] grammars with appearance checking. The definition of a context-free
programmed grammar is briefly recalled in the next section. We note that it is
known that £(P, CF[-)\],ac) = L(RC, CF[-A],ac) and hence L(P, CF, ac) equals
the family of recursively enumerable languages, while £(P, CF-\, ac) is a proper
subset of the family of context-sensitive languages.

In order to clarify our definitions, we give two examples.

Ezample 1. Let I' be the CD grammar system I" = (N, T, Py, Ps, ..., P, S) with
nonterminals N = {S, A, B, A’, B}, terminals T = {a, b, ¢}, and the production
sets

P ={S— AB,A — A} Py={A"— A B — B’}
P, ={A— aA'b,B— B} P;={A— A B — B}
Py={A"— A'",B— B'c} Ps = {A — ab, B — c}.

It is easy to see that running I" in the non-t-mode results in the non-context-
free language L; = {a™b"c" | n > 1}. The only way to start the deriva-
tion is to use production set P leading to the sentential form AB. Then,
for all natural numbers n > 0, we find a”Ab"Bc" =}, a"trTAp T Ben =1
a"TTAYHL B T =l at T AP T B et b o T AR Be T or the termi-
nating derivation a”Ab"Bc" =% a"T1pnTie L This shows the stated claim.
Observe, that the rules of the form X — X, for X € {A, B, A’, B}, are needed
to enforce that the derivation is non-blocking in the sense of a non-t-mode
derivation.

When comparing the t-mode and the non-t-mode we find that in the first mode
the CD grammar system I" generates the empty set (). This fact is obvious, since
rules of the form X — X in production sets enforce that the derivation is not ter-
minating when X is already present in the sentential form or derived by the com-
ponent under consideration. Therefore, the termination cannot start from axiom S
since the only production set that can be applied on S'is P; and it contains the rules
S — AB and A — A, which immediately leads to a non-terminating derivation.

Let us turn to our second example.

Ezample 2. The language Lo = {a™b"c™ | n > 1} is also generated by the
CD grammar system I' = ({5, A, B, A", B'},{a,b}, Pi, Pa,..., Ps,S) with the
production sets

Random Context in Regulated Rewriting Versus CD Grammar Systems 131

P ={S—AB,A— A B — B} Py={A—AA - A B — B}
Py={A—aA'b, A — A B— B} Ps={A— A,B— B,B — B}
Ps={A"— A ,B— B'¢,B'— B} Ps={A —ab,B — ¢}

if it is driven in the non-sf-mode of derivation. In fact, the successful derivation
sequences are exactly those, which are already presented in the previous example
for the non-t-mode of derivation. Again, the recurrent rules X — X, for X €
{A, B, A’, B'} are of special interest. Here the purpose of these rules is to force
the component to remain competent on the sentential form.

Finally, let us mention that CD grammar system I" generates the empty set
when run in conventional sf-mode of derivation. Observe, that one can modify
the components Py, P, ..., Ps such that the CD grammar system generates Lo
when run in sf-mode. To this end, one has to erase the rules A — A and B — B
from P, rule A’ — A’ from P, rule B — B’ from Ps, rule A — A from Py, and
rule B — B from Ps. In this way one obtains nearly the CD grammar system
from the previous example (expect for the production set P).

3 Simulation Results

We consider context-free CD grammar systems working in the non-¢- and non-sf-
modes, showing equivalences to the context-free permitting and disjoint forbid-
ding random context grammars, respectively. First, the non-t-mode is treated. In
passing, another equivalence to a particular variant of programmed grammars,
namely that of recurrent programmed grammars, is proved.

Theorem 3. L(RC,CF[-)\]) C L(CD, CF[-A],).

Proof. Let G = (N, T, P, S) be a context-free random context grammar (without
appearance checking). With each random context production we associate a
unique label p;, 1 < j < #P. If (A — v, {B1, B, ..., By, },0) is the production
labeled pj, for 1 < j < #P, then we set

N'=NU{AJ)|Ae N,1<i<k;, and 1 <j<#P},

the union be disjoint, and construct a context-free CD grammar system I’ =
(N, T,P,Ps,...,P,,5S) equivalent to G as follows. For 1 < j < #P, the fol-
lowing components are introduced:

{A— A}). B — B},
{AI(’? - Az(;jﬂ)vBi—&-l — Biy} for 1l <i<kj,
(A%) U{B—B|BeN}.

The application of the production labeled p; can be successfully simulated if
and only if all components associated with it are applied in sequence as listed
in the construction. As I" works in the non-t-mode, this is possible if and only
if each symbol from the permitting context is present. Since I" is A-free if G is
S0, the proof is finished. O

132 H. Bordihn and M. Holzer

For the next theorem we need the definition of context-free programmed gram-
mars. A context-free programmed grammar (see, e.g., [§]) is a septuple G =
(N, T,P,S,A,0,¢), where N, T, P, and S, S € N, are as in the definition of
context-free random context grammars; A is a finite set of labels (for the produc-
tions in P), such that A can be interpreted as a function which outputs a produc-
tion when being given a label; o and ¢ are functions from /A into the set of subsets
of A. Usually, the productions are written in the form (r : A — a,o(r), (1)),
where r is the label of A — a. For (x,r1) and (y,72) in (NUT)* x A and A(ry) =
A — «, we write (z,71) = (y,r2) if and only if either © = z1Azs, y = z1029
and 7o € o(r1), or x = y and rule A — « is not applicable to z, and ro € ¢(r1).
In the latter case, the derivation step is done in appearance checking mode. The
set o(ry) is called success field and the set ¢(r1) failure field of r1. As usual, the
reflexive transitive closure of = is denoted by =*. The language generated by G
is defined as L(G) = {w € T* | (S,r1) =" (w,rz) for some ry,r3 € A}. The
family of languages generated by programmed grammars containing only
context-free core rules is denoted by L(P,CF,ac). We replace CF by CF-\ in
that notation if erasing rules are forbidden. When no appearance checking fea-
tures are involved, i.e., ¢(r) =) for each label r € A, we are led to the families
L(P,CF) and L(P,CF-)). Obviously, L(P,CF[-)\]) C L(P, CF[-A],ac). For the
relation between languages generated by context-free programmed grammars
and languages generated by context-free random context grammars the follow-
ing relations are well known, see, e.g., [8]: L(RC,CF[-\]) C L(P,CF[-)]) while
L(RC, CF[-A],ac) = L(P,CF[-A],ac). Whether the former inclusion is strict or
not is a long openstanding problem in regulated rewriting. Hence L£(P,CF,ac)
equals L(RE) and L(P,CF-\, ac) is a strict subset of L(CS).

A special variant of programmed grammars are recurrent programmed gram-
mars introduced in [22]. A context-free programmed grammar G is a context-free
recurrent programmed grammar if for every r € A of G, we have r € o(r), and
if ¢(r) # 0, then o(r) = ¢(r). The corresponding language families are de-
noted by L(RP,CF,ac) and L(RP,CF-)\ ac). When no appearance checking
features are involved, i.e., ¢(r) = @ for each label r € A, we omit ac in that
notation, again. Obviously, by definition £L(RP,CF[-)]) C L(P,CF[-}]) and
L(RP,CF[-)],ac) C L(P,CF[-A],ac). Moreover, in [I5] it was shown that

L(RC,CF[-)]) € L(RP,CF[-)\]) € L(RP, CF[-)], ac).
Note that the latter inclusion is a strict one. The following theorem shows how

CD grammar systems working in non-t-mode of derivation can be simulated by
recurrent programmed grammars without appearance checking.

Theorem 4. £(CD,CF[-)A],t) C L(RP, CF[-)]).

Proof. Assume the given CD grammar system I" has n components Py, Py .., Py,
with

P={A;1 —vi1,Ai2 = vio, ..., Aik, = Vik, s

Random Context in Regulated Rewriting Versus CD Grammar Systems 133

for 1 < i < n. Then we consider the recurrent programmed grammar which
possesses, for 1 < j < k; and 1 < i < n, the productions

([1,9]: Aij = 0igs {11 L< ki JU{cie | 1<L< K },0)

and
(Ci)j : Ai)j — Ai)j, {Ci’j} U { [i/,ﬂ ‘ 1 S i/ S n, 1 § Y4 § ki/ },@)

Therefore, any number of consecutive steps performed by any component of I’
can be mimicked, but a change from one component P; to another one can only
successfully be done if a production labeled c; ; has been applied, for some j,
testing the appearance of A; € dom(P;) in the current sentential form. Thus,
only non-t derivation steps can be simulated. In conclusion, the constructed
context-free recurrent programmed grammar is equivalent to I" and is \-free
if I" has no erasing productions. This completes the proof. a

Finally, we show how to simulate a context-free recurrent programmed grammar
without appearance checking by a context-free random context grammar, also
without appearance checking.

Theorem 5. L(RP,CF[-)]) € L(RC, CF[-A]).

Proof. For a context-free recurrent programmed grammar G= (N, T, P, S, A, o, ¢),
we construct the context-free random context grammar G' = (N', T, P’, S") with
N' = NU{Ap,,p,p | pe A}U{S}, the unions being disjoint, where P’ contains,
for any (p: A — v, o(p),0) in P, the following productions:

A~~~ o~
bS]
S|
~
N
]
. —
SRR
S—

After initiating a derivation according to G’ with the help of (S — Sp, 0, 0),
every application of a production from G is simulated by applying the corre-
sponding productions from G’ in the sequence they are listed above. Thus, every
derivation of G' can be mimicked by G'. Hence, L(G) C L(G’). On the other
hand, the grammar G’ can skip applying A, — v in those simulation cycles.
Then, symbols A, can be resolved whenever p’ is present in the sentential form,
completing a former simulation of applying the production of G labeled p. As
all productions are context-free this only yields words in L(G). If the label sym-
bol p, that is, the rightmost symbol in sentential forms ap, is erased before a
has become terminal, then no further simulation cycles can be performed and
the derivation is blocked. The fact that several occurrences of A can be replaced
if p is present does not violate the simulation as G is a context-free recurrent
programmed grammar. Therefore, L(G') C L(G).

If G is A-free, the only erasing productions of G’ are used exactly once for
deleting the rightmost symbol p in the sentential forms. By a standard technique

134 H. Bordihn and M. Holzer

L(RE) = L(RC, CF,ac) = £(CD, CF, sf)

— |
L(fRC, CF) L(CS)
|

L(RC, CF-, ac) = £(CD, CF-), f) L(RP, CF, ac)
L(fRC, CF-)) L(RP,CF-), ac) L(RC,CF) = £(RP,CF) = £(CD, CF, f)

L(RC, CF-A) = L(RP, CF-\) = £(CD, CF-\,7)

L(ETOL) = £(CD, CF[-A],#) = £(CD, CF[-A], sf)

\L

Fig. 1. Inclusion diagram—language families that are not linked by a path are not
necessarily pairwise incomparable

(CF)

in formal language theory the erasing productions can be eliminated from G’
without affecting the generated language (for example, by encoding the label
as a component of the rightmost nonterminal from G instead of as a distinct
symbol); the details are omitted here. O

Hence we have shown the following equalities.

Corollary 6. £(CD,CF[-)\],{) = L(RC,CF[-)\]) = L(RP,CF[-)\]). O
Next, we turn to the non-sf-mode in relation to forbidding random context.
Theorem 7. L£(CD,CF[-)], sf) = L(dAfRC, CF[-)]).

Proof. First we show £(CD,CF, sf) C L(dfRC,CF). Let I" be a CD grammar
system with n components Py, P, ..., P, and nonterminal set N. A production
A — ain P, for 1 <i < n, can only be used in a non-sf-mode derivation, if every
nonterminal occurring in « belongs to the domain of P;. Thus we can assume
without loss of generality that only rules with this property are present. Now,
an arbitrary number of derivation steps can be performed by any component
which is sf-competent whenever it starts rewriting the sentential form. This
can be tested with the help of the forbidding random context: With each rule
A — «a in P; we associate the random context production (A — a, 0, R) with
R = N \ dom(F;). By the explanation given above, the productions obtained
are disjoint. This verifies the equivalence of the constructed context-free disjoint
forbidding random context grammar and the CD grammar system I

For the converse inclusion, we argue as follows. Let a context-free disjoint
forbidding random context grammar G = (N, T, P,S) be given. For the con-
struction of a CD grammar system which is equivalent to G when working
in the non-sf-mode, with each disjoint forbidding random context production
(A — «,0, R), we associate a component {A — o} U{B — B| B € N\ R}.
As the forbidding random context production is disjoint, the set R does not
contain A nor any nonterminal occurring in «. Therefore, A — « is applicable
if and only if no symbols from R are present in the current sentential form.

Random Context in Regulated Rewriting Versus CD Grammar Systems 135

Note that, in both constructions, no new A-rules are introduced. Hence the inclu-
sions, and therefore also the equality, are also valid if Ad-rules are not permitted. O

Hence we have shown the following equalities.

Corollary 8. L£(CD,CF[-)], sf) = L(CD, CF[-)],t) = L(ETOL). O

4 Conclusions

We have investigated whether context-free random context like language families
can be characterized in terms of CD grammars systems. The inclusion relation
between the language families considered are depicted in Figure [l One of the
most interesting results obtained are the equivalence of context-free random
context grammars without appearance checking and of context-free recurrent
programmed grammars also without appearance checking, with respect to their
generative capacity.

Finally, it is worth mentioning, that also the language family £(RP, CF[-)], ac)
can be characterized in terms of ETOL random context grammars, namely

L(RC,E[P]TOL) = L(RC, E[P]TOL, ac) = L(RP, CF[-)], ac)

and L(ETOL) = L(fRC, E[P]TOL), where we refer to [22] for a definition of ETOL
random context grammars. Moreover, in, e.g., [AT3I19], also a characterization
of L(RP,CF[-)],ac) in terms of CD grammar systems is given.

References

1. Bordihn, H.: On the number of components in cooperating distributed grammar
systems. Theoretical Computer Science 330(2), 195-204 (2005)

2. Bordihn, H., Csuhaj-Varji, E.: On competence and completeness in CD grammar
systems. Acta Cybernetica 12, 347-360 (1996)

3. Bordihn, H., Csuhaj-Varjui, E., Dassow, J.: CD grammar systems versus L systems.
In: Pdun, G., Salomaa, A. (eds.) Grammatical Model of Multi-Agent Systems,
Gordon and Breach, pp. 18-32 (1999)

4. Bordihn, H., Holzer, M.: Grammar systems with negated conditions in their coop-
eration protocols. Journal of Universal Computer Science 6(12), 1165-1184 (2000)

5. Csuhaj-Varju, E., Dassow, J.: On cooperating/distributed grammar systems. Jour-
nal of Information Processing and Cybernetics (formerly: EIK) 26(1/2), 49-63
(1990)

6. Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, G.: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation, Grodon and Breach (1994)

7. Dassow, J., Paun, G., Rozenberg, G.: Grammar systems. In: Rozenberg, G., Sa-
lomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 155-213. Springer,
Heidelberg (1997)

8. Dassow, J., Paun, G.: Regulated Rewriting in Formal Language Theory. In: EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

136

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

H. Bordihn and M. Holzer

Ewert, S., van der Walt, A.P.J.: Generating pictures using random forbidding con-
text. International Journal of Pattern Recognition and Ariticial Intelligence 12(7),
939-950 (1998)

Ewert, S., van der Walt, A.P.J.: Generating pictures using random permitting con-
text. International Journal of Pattern Recognition and Ariticial Intelligence 13(3),
339-355 (1999)

Fernau, H.: Membership for 1-limited ETOL languages is not decidable. Journal of
Information Processing and Cybernetics (formerly: EIK) 30(4), 191-211 (1994)
Fernau, H.: A predicate for separating language classes. Bulletin of the European
Association for Theoretical Computer Science 56, 96-97 (1995)

Fernau, H., Freund, R., Holzer, M.: Hybrid modes in cooperating distributed gram-
mar systems: internal versus external hybridization. Theoretical Computer Sci-
ence 259(1-2), 405-426 (2001)

Fernau, H., Holzer, M., Freund, R.: Bounding resources in cooperating distributed
grammar systems. In: Bozapalidis, S. (ed.) Proceedings of the 3rd International
Conference Developments in Language Theory, Aristotle University of Thessa-
loniki, Thessalomiki, Greece, July 1997, pp. 261-272 (1997)

Fernau, H., Watjen, D.: Remarks on regulated limited ETOL systems and regulated
context-free grammars. Theoretical Computer Science 194, 35-55 (1998)
Meersman, R., Rozenberg, G.: Cooperating grammar systems. In: Winkowski, J.
(ed.) MFCS 1978. LNCS, vol. 64, pp. 364-374. Springer, Heidelberg (1978)
Mitrana, V.: Hybrid cooperating/distributed grammar systems. Computers and
Artificial Intelligence 12(1), 83-88 (1993)

Penttonen, M.: ETOL-grammars and N-grammars. Information Processing Let-
ters 4(1), 11-13 (1975)

ter Beek, M.H., Csuhaj-Varjui, E., Holzer, M., Vaszil, G.: On competence in CD
grammar systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004.
LNCS, vol. 3340, pp. 76-88. Springer, Heidelberg (2004)

van der Walt, A.P.J.: Random context languages. In: Freiman, C.V., Griffith, J.E.,
Rosenfeld, J.L. (eds.) Proceedings of the IFIP Congress 71, Ljubljana, Yugoslavia,
August 1971, vol. 1, pp. 66-68. North-Holland, Amsterdam (1971)

von Solms, S.H.: On TOL languages over terminals. Information Processing Let-
ters 3(3), 69-70 (1975)

von Solms, S.H.: Some notes on ETOL-languages. International Journal on Com-
puter Mathematics 5, 285-296 (1976)

Extending the Overlap Graph for Gene
Assembly in Ciliates™

Robert Brijder and Hendrik Jan Hoogeboom

Leiden Institute of Advanced Computer Science, Universiteit Leiden,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rbrijder@liacs.nl

Abstract. Gene assembly is an intricate biological process that has been
studied formally and modeled through string and graph rewriting sys-
tems. Recently, a restriction of the general (intramolecular) model, called
simple gene assembly, has been introduced. This restriction has subse-
quently been defined as a string rewriting system. We show that by
extending the notion of overlap graph it is possible to define a graph
rewriting system for two of the three types of rules that make up sim-
ple gene assembly. It turns out that this graph rewriting system is less
involved than its corresponding string rewriting system. Finally, we give
characterizations of the ‘power’ of both types of graph rewriting rules.
Because of the equivalence of these string and graph rewriting systems,
the given characterizations can be carried over to the string rewriting
system.

1 Introduction

Gene assembly is a highly involved process occurring in one-cellular organisms
called ciliates. Ciliates have two both functionally and physically different nuclei
called the micronucleus and the macronucleus. Gene assembly occurs during sex-
ual reproduction of ciliates, and transforms a micronucleus into a macronucleus.
This process is highly parallel and involves a lot of splicing and recombination
operations — this is true for the stichotrichs group of ciliates in particular. Dur-
ing gene assembly, each gene is transformed from its micronuclear form to its
macronuclear form.

Gene assembly has been extensively studied formally, see [6]. The process has
been modeled as either a string or a graph rewriting system [BI7]. Both sys-
tems are ‘almost equivalent’, and we refer to these as the general model. In [§]
a restriction of this general model has been proposed. While this model is less
powerful than the general model, it is powerful enough to allow each known
gene [] in its micronuclear form to be transformed into its macronuclear form.
Moreover this model is less involved and therefore called the simple model. The
simple model was first defined using signed permutations [8], and later proved

* This research was supported by the Netherlands Organization for Scientific Research
(NWO) project 635.100.006 ‘VIEWS’.

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 137 2008.
© Springer-Verlag Berlin Heidelberg 2008

138 R. Brijder and H.J. Hoogeboom

equivalent to a string rewriting system [3]. The graph rewriting system of the
general model is based an overlap graphs. This system is an abstraction from
the string rewriting system in the sense that certain local properties within the
strings are lost in the overlap graph. Therefore overlap graphs are not suited for
the simple gene assembly model. In this paper we show that by naturally ex-
tending the notion of overlap graph we can partially define simple gene assembly
as a graph rewriting system. These extended overlap graphs form an abstraction
of the string model, and is some way easier to deal with. This is illustrated by
characterizing the power of two of the three types of recombination operations
that make up simple gene assembly. While this characterization is based on ex-
tended overlap graphs, due to its equivalence, it can be carried over to the string
rewriting system for simple gene assembly.

2 Background: Gene Assembly in Ciliates

In this section we very briefly describe the process of gene assembly. For a de-
tailed account of this process we refer to [6]. Gene assembly occurs in a group
of one-cellular organisms called ciliates. A characterizing property of ciliates is
that they have two both functionally and physically different nuclei called the
micronucleus (MIC) and the macronucleus (MAC). All the genes occur in both
the MIC and the MAC, but in very different forms. For each gene however, one
can distinguish a number of segments M, ..., M,, called MDSs (macronuclear
destined segments), appearing in both the MIC and MAC form of that gene.
In the MAC form the MDSs appear as in Figure[Ik each two consecutive MDSs
overlap in the MAC gene. The gray areas in the figure where the MDSs overlap
are called pointers. Moreover, there are two sequences denoted by b and e, which
occur on My and M, respectively, that indicate the beginning and ending of
the gene. The sequences b and e are called markers. In the MIC form the MDSs
appear scrambled and inverted with non-coding segments, called IESs (internal
eliminated segments), in between. As an example, Figure 2 shows the MIC form
of the gene that encodes for the actin protein in a ciliate called sterkiella nova
(see [T0J4]). Notice that that the gene consists of nine segments, and that MDS
My occurs inverted, i.e. rotated 180 degrees, in the gene. The process of gene
assembly transforms the MIC into the MAC, thereby transforming each gene in
the MIC form to the MAC form. Hence, for each gene the MDSs are ‘sorted’ and
put in the right orientation (i.e., they do not occur inverted). This links gene
assembly to the well-known theory of sorting by reversal [2].

My Mg M

- A A~ A~
~ ~

M M1

sy

Fig. 1. The structure of a MAC gene consisting of kK MDSs

Extending the Overlap Graph for Gene Assembly in Ciliates 139

R

| 5

(o [T] Tw] [] o]

Fig. 2. The structure of the MIC gene encoding for the actin protein in sterkiella nova

It is postulated that there are three types of recombination operations that
cut-and-paste the DNA to transform the gene from the MIC form to the MAC
form. These operations are defined on pointers, so one can abstract from the
notion of MDSs by simply considering the MIC gene as a sequence of pointers
and markers, see Figure [3] corresponding to the gene in MIC form of Figure
The pointers are numbered according to the MDS they represent: the pointer
on the left (right, resp.) of MDS M; is denoted by ¢ (i + 1, resp.). Pointers or
markers that appear inverted are indicated by a bar: hence pointers 2 and 3
corresponding to MDS My appear inverted and are therefore denoted by 2 and
3 respectively. In the general model the markers are irrelevant, so in that case
only the sequence of pointers is used.

[3]_[al [a[TIs[[o[[7[[s] Tl [l Is[Io[Te[[s[[2[[o[[o[[s[[o]

Fig. 3. Sequence of pointers and markers representing the gene in MIC form

3 Legal Strings with Markers

For an arbitrary finite alphabet A, we let A = {a | a € A} with AN A = (). We
use the ‘bar operator’ to move from A to A and back from A to A. Hence, for
p € AUA, p=p. For a string u = x125 - - - x,, with 2; € A, the inverse of u is
the string © = z,Z,—1 - - - 1. We denote the empty string by A.

We fix £ > 2, and define the alphabet A = {2,3,...,x} and the alphabet
II = AU A. The elements of IT are called pointers. For p € II, we define ||p||
tobepif pe A, and pif p € A, i.e., ||p| is the ‘unbarred’ variant of p. A legal
string is a string w € IT* such that for each p € II that occurs in u, v contains
exactly two occurrences from {p, p}.

Let M = {b,e} with An{b,e} = 0. The elements of M are called markers. We
let == AU{b,e}, and let ¥ = = U =Z. We define the morphism rm : ¥* — IT*
as follows: rm(a) = a, for all @ € IT, and rm(m) = A, for all m € M U M. We
say that a string u € ¥* is an extended legal string if rm(u) is a legal string and
u has one occurrence from {b, b} and one occurrence from {e,é}. We fix m ¢ ¥
and define for each ¢ € M U M, ||¢| = m.

An extended legal string represents the sequence of pointers and markers of
a gene in MIC form. Hence, the extended legal string corresponding to Fig-
ure [l is 34456756789e326289. The legal string corresponding to this figure is
3445675678932289 (without the markers). Legal strings are considered in the
general model since markers are irrelevant there.

140 R. Brijder and H.J. Hoogeboom

The domain of a string u € ¥* is dom(u) = {||p|| | p occurs in u}. Note that
m € dom(v) for each extended legal string v. Let ¢ € dom(u) and let ¢; and
q2 be the two occurrences of u with [|q1|| = [lg2|| = ¢. Then q is positive in u if

exactly one of ¢; and g2 is in = (the other is therefore in =). Otherwise, ¢ is
negative in u.

Ezample 1. String u = 24b4é2 is an extended legal string since rm(u) = 2442 is
a legal string. The domain of u is dom(u) = {m, 2,4}. Now, m and 2 are positive
in u, and 4 is negative in wu.

Let u = z122 - - - x,, be an (extended) legal string with z; € = for 1 <i < n, and
let p € dom(u). The p-interval of u is the substring x; ;41 - - - 2; where ¢ and j
with ¢ < j are such that ||z;| = ||z;|| = p.

Next we consider graphs. A signed graph is a graph G = (V, E, o), where V
is a finite set of vertices, E C {{x,y} | =,y € V,z # y} is a set of (undirected)
edges, and o : V. — {+,—} is a signing, and for a vertex v € V, o(v) is the
sign of v. We say that v is negative in G if o(v) = —, and v is positive in G if
o(v) = +. A signed directed graph is a graph G = (V, E, o), where the set of
edges are directed E CV x V. For ¢ = (v1,v2) € E, we call v; and ve endpoints
of e. Also, e is an edge from vy to vs.

4 Simple and General String Pointer Rules

Gene Assembly has been modeled using three types of string rewriting rules
on legal strings. These types of rules correspond to the types of recombination
operations that perform gene assembly. We will recall the string rewriting rules
now — together they form the string pointer reduction system, see [56]. The string
pointer reduction system consists of three types of reduction rules operating on
legal strings. For all p, ¢ € I with ||p|| # ||¢||:

— the string negative rule for p is defined by snr,(u1ppus) = ujus,

— the string positive rule for p is defined by spr, (u1puzpus) = uitizus,

— the string double rule for p, q is defined by sdr,, ,(u1pusquspusqus) =
Uru4u3uU2us,

where uq,us, ..., us are arbitrary (possibly empty) strings over I1.

We now recall a restriction to the above defined model. The motivation for
this restricted model is that it is less involved but still general enough to allow
for the successful assembling of all known experimental obtained micronuclear
genes [4]. The restricted model, called simple gene assembly, is originally defined
on signed permutations, see [89]. In [3], the model is consequently defined (in
an equivalent way) as a string rewriting system — similar to the string pointer
reduction system described above for the general model. We recall it here. It
turns out that it is necessary to use extended legal strings adding symbols b and
e to legal strings.

The simple string pointer reduction system consists of three types of reduction
rules operating on extended legal strings. For all p, g € IT with ||p|| # ||q||:

Extending the Overlap Graph for Gene Assembly in Ciliates 141

— the string negative rule for p is defined by snr,(u1ppus) = uius as before,

— the simple string positive rule for p is defined by sspr,,(u1puzpus) = uitizus,
where |uz| =1, and

— the simple string double rule for p,q is defined by ssdr, ,(uipquepqus) =
U UU3,

where w1, ug, and ug are arbitrary (possibly empty) strings over ¥. Note that
the string negative rule is not changed, and that the simple version of the string
positive rule requires |ug| = 1, while the simple version of the string double rule
requires us = uq = A (in the string double rule definition).

Ezample 2. Let u = 524453626b3¢ be an extended legal string. Then within the
simple string pointer reduction system only snry and ssprg are applicable to
u. We have ssprg(u) = 5244532b3e. Within the string pointer reduction system
also spr; and sprs are applicable to u. We will use u (in addition to a extended
legal string v, which is defined later) as a running example.

A composition ¢ = p, --- p2 p1 of string pointer rules p; is a reduction of
(extended) legal string u, if ¢ is applicable to (i.e., defined on) u. A reduction
o of legal string w is successful if p(u) = A, and a reduction ¢ of extended legal
string u is successful if ¢(u) € {be, eb, b, be}. A successful reduction corresponds
to the transformation using recombination operations of a gene in MIC form to
MAC form. It turns out that not every extended legal string has a successful
reduction using only simple rules — take e.g. b234234e.

Ezample 3. In our running example, ¢ = SsSprg sspr, ssprj snry ssprg is a
successful reduction of w, since p(u) = be. All rules in ¢ are simple.

5 Extended Overlap Graph

The general string pointer reduction system has been made more abstract by
replacing legal strings by so-called overlap graphs, and replacing string rewriting
rules by graph rewriting rules. The obtained model is called the graph pointer
reduction system. Unfortunately, this model is not fully equivalent to the string
pointer reduction system since the string negative rule is not faithfully simulated.
Also, overlap graphs are not suited for a graph model for simple gene assembly.
We propose an extension to overlap graphs that allows one to faithfully model
the string negative rule and the simple string positive rule using graphs and
graph rewriting rules. First we recall the definition of overlap graph.

Definition 1. The overlap graph for (extended) legal string u is the signed
graph (V, E, o), where V' = dom(u) and for all p,q € dom(u), {p,q} € E iff
q € dom(p’) and p € dom(q’) where p’ (¢/, resp.) is the p-interval (¢g-interval) of
w. Finally, for p € dom(u), o(p) = + iff p is positive in w.

Ezample 4. Consider again extended legal string u = 524453626b3¢. Then the
overlap graph G, of u is given in Figure [

142 R. Brijder and H.J. Hoogeboom

m* 37 2+ 6"

4~ 5t

Fig. 4. The overlap graph of u from Example [l

We say that p,q € dom(u) overlap if there is an edge between p and ¢ in the
overlap graph of u. We now define the extended overlap graph.

Definition 2. The extended overlap graph for (extended) legal string w is the
signed directed graph (V, E, o), denoted by G,, where V' = dom(u) and for all
p,q € dom(u), there is an edge (¢,p) iff ¢ or ¢ occurs in the p-interval of w.
Finally, for p € dom(u), o(p) = + iff p is positive in w.

Notice first that between any two (different) vertices p and ¢ we can have the
following possibilities:

1. There is no edge between them. This corresponds to u = ujpuspusquaiqus
or u = ujquaqugpuspus for some (possibly empty) strings uq,...,us and
possibly inversions of the occurrences of p and ¢ in u.

2. There are exactly two edges between them, which are in opposite direction.
This corresponds to the case where p and ¢ overlap in .

3. There is exactly one edge between them. If there is an edge from p to ¢, then
this corresponds to the case where u = wujquapugpusqus for some (possibly
empty) strings w1, . .., us and possibly inversions of the occurrences of p and
q in u.

As usual, we represent two directed edges in opposite direction (corresponding
to case number two above) by one undirected edge. In the remaining we will
use this notation and consider the extended overlap graph as having two sets
of edges: undirected edges and directed edges. In general, we will call graphs
with a special vertex m and having both undirected edges and directed edges
simple marked graphs.

m* 37 2+ 6"

I\

4= ——=5*

Fig. 5. The extended overlap graph of u from Example

Extending the Overlap Graph for Gene Assembly in Ciliates 143

4+

AN

2+

3+

Fig. 6. The extended overlap graph of v from Example

Ezample 5. Consider again extended legal string u = 524453626b3¢. Then the
extended overlap graph G, of u is given in Figure [l Also, the extended overlap
graph of v = 42324&3b is given in Figure [El

The undirected graph obtained by removing the directed edges is denoted by
[G.]. This is the ‘classical’” overlap graph of u, cf. Figures @ and il On the other
hand, the directed graph obtained by removing the undirected edges is denoted
by [[G.]]. This graph represents the proper nesting of the p-intervals in the legal
string.

6 Simple Graph Rules

We will now define two types of rules for simple marked graphs . Each of
these rules transform simple marked graph of a certain form into another simple
marked graph. We will subsequently show that in case 7 is the extended overlap
graph of a legal string, then these rules faithfully simulate the effect of the snr
and sspr rules on the underlying legal string.

Definition 3. Let v be a simple marked graph. Let p be any vertex of v not
equal to m.

— The graph negative rule for p, denoted by gnr,,, is applicable to v if p is
negative, there is no undirected edge e with p as an endpoint, and there is
no directed edge from a vertex to p in . The result is the simple marked
graph gnr(7) obtained from 7 by removing vertex p and removing all edges
connected to p. The set of all graph negative rules is denoted by Gnr.

— The simple graph positive rule for p, denoted by sgpr,, is applicable if p is
positive, there is exactly one undirected edge e with p as an endpoint, and
there is no directed edge from a vertex to p in 7. The result is the simple
marked graph sgpr,,(v) obtained from 7 by removing vertex p, removing all
edges connected to p, and flipping the sign of the other vertex ¢ of e (i.e.
changing the sign of ¢ to + if it is — and to — if it is +). The set of all simple
graph positive rules is denoted by sGpr.

These rules are called simple graph pointer rules.

Remark 1. The sgpr rule is much simpler than the gpr for ‘classical’ overlap
graphs. One does not need to compute the ‘local complement’ of the set of
adjacent vertices. Obviously, this is because the simple rule allows only a single
pointer/marker in the p-interval. a

144 R. Brijder and H.J. Hoogeboom

37— 27

I\

4= ——=5*

Fig. 7. The simple marked graph sgpry(Gu)

Ezxample 6. Rules gnr, and sgpry are the only applicable rules on the simple
marked graph v = G,, of Figure[ll Simple marked graph sgprg(7) is depicted in
Figure[1

Similar as for strings, a composition ¢ = p,, --- p2 p1 of graph pointer rules p;
is a reduction of simple marked graph ~, if ¢ is applicable to (i.e., defined on) .
A reduction ¢ of v is successful if ¢(7) is the graph having only vertex m where
m is negative. For S C {Gnr,sGpr}, we say that v is successful in S if there is
a successful reduction of « using only graph pointer rules from S.

Ezxample 7. In our running example, p = sgpr; sgpr, Sgprs; gnr, sgpry is a
successful reduction of G,,.

We now show that these two types of rules faithfully simulate the string negative
rule and the simple string positive rule.

Lemma 1. Let u be a legal string and let p € II. Then snr), is applicable to u
iff gor | is applicable to Gy. In this case, Genr,(u) = 80T (Gu)-

Proof. We have snr), is applicable to u iff u = u1ppus for some strings u; and
ug iff ||p|| is negative in u and the ||p||-interval is empty iff ||p|| is negative in G,
and there is no undirected edge with ||p|| as endpoint and there is no directed
edge to ||p| iff gnr, is applicable to G,.

In this case, Gsnr,(u) is obtained from G, by removing vertex |p|| and the
edges connected to ||p||, hence Genr,(u) is equal to gnr), (Gu). O

Sn!'p
U ————— snrp(u)

Q\L Ql
81rp||

gu —_— gsnrp (u)

Fig. 8. A commutative diagram illustrating Lemma [I]

The previous lemma is illustrated as a commutative diagram in Figure [8l The
next lemma shows that a similar diagram can be made for the simple string
positive rule.

Extending the Overlap Graph for Gene Assembly in Ciliates 145

Lemma 2. Let u be a legal string and let p € II. Then sspr,, is applicable to u
iff sgpr |, is applicable to Gy. In this case, stp,p(u) = sgerpH(gu).

Proof. We have sspr,, is applicable to u iff u = uipuspus for some strings u,
w9, and ug with |us| = 1 iff ||p|| is positive in u (or equivalently in G,) and there
is exactly one undirected edge e with ||p|| as endpoint and there is no directed
edge with [|p[| as endpoint iff sgpr, is applicable to G,.

In this case, gssprp(u) is obtained from G, by removing vertex ||p||, removing
all edges connected to ||p||, and flipping the sign of the other vertex of e. Hence
Gsspr, (u) 15 equal to sgpr, (Gu)- O

Example 8. In our running example, one can easily verify that the extended
overlap graph of ssprg(u) = 5244532b3¢ is equal to graph sgprg(G,) given in

Figure [l
-
/ ¢_\
N
20— 4~

Fig. 9. The extended overlap graph of w = 5234234e

One may be wondering at this point why we have not defined the simple graph
double rule. To this aim, consider extended legal string w = 0234234e. Note
that ssdry 3 and ssdrz 4 are applicable to w, but ssdry 4 is not applicable to
w. However, this information is lost in G,, — applying the isomorphism that
interchanges vertices 2 and 3 in G, obtains us G, again, see Figure [0 Thus,
given only G,, it is impossible to deduce applicability of the simple graph double
rule.

To successfully define a simple graph double rule, one needs to retain informa-
tion on which pointers are next to each other, and therefore different concepts are
required. However, this concept would require that the linear representation of
the pointers in an extended legal string is retained. Hence, string representations
are more natural compared to graph representations.

The next lemma shows that simple marked graphs that are extended overlap
graphs are quite restricted in form. We will use this restriction in the next section.

Lemma 3. Let u be a legal string. Then [[G,]] is acyclic and transitively closed.

Proof. There is a (directed) edge from p to ¢ in [[G,]] iff the p-interval is com-
pletely contained in the g-interval of u. A nesting relation of intervals is acyclic
and transitive. O

Remark 2. We have seen that [G,] is the overlap graph of u. Not every graph
is an overlap graph — a characterization of which graphs are overlap graphs is
shown in [I]. Hence, both [[G,]] and [G,] are restricted in form compared to
graphs in general. a

146 R. Brijder and H.J. Hoogeboom
7 Characterizing Successfulness

In this section we characterize successfulness of simple marked graphs in S C
{Gur, sGpr}. First we consider the case S = {Gnr}.

Remark 3. In the general (not simple) model, which has different graph pointer
rules and is based on overlap graphs, successfulness in .S has been characterized
for those S which include the graph negative rules (note that these rules are
different from the graph negative rules defined here) — the cases where S does
not contain the graph negative rules remain open. a

Theorem 1. Let v be a simple marked graph. Then + is successful in {Gnr} iff
each vertex of v is negative, v has no undirected edges, and v is acyclic.

Proof. Since [[y]] =« is acyclic, there is a linear ordering (p1,p2, ..., ps) of the
vertices of v such that if there is an edge from p; to p;, then ¢ < j. The result
now follows by the definition of gnr. In this case, linear ordering (p1,p2,- -, Pn)

corresponds to a successful reduction ¢ = gnr,, .-+ gnr, gnr, of 7. O

Using Lemma [B] more can be said if v = G, for some legal string u.

Corollary 1. Lety = G, for some legal string u. Then v is successful in {Gnr}
iff each vertex of v is negative and vy has no undirected edges. In this case, since
there are no overlapping pointers, v is the transitive closure of a forest, where
edges in the forest are directed from children to their parents.

Next we turn to the case S = {Gnr, sGpr}.

Theorem 2. Let v be a simple marked graph. Then v is successful in {Gnr,
sGpr} iff the following conditions hold:

1. [7] is a (undirected) forest,

2. for each vertex v of vy, the degree of v in [y] is even iff v is negative in =y,
and

3. for each tree in the forest we can identify a root, where m is one such root,
such that the graph obtained by replacing each undirected edge e in v by a
directed edge from the child to the parent in the tree to which e belongs, is
acyclic.

Proof. Proof sketch. It can be verified that each of both statements hold iff there
is an linear ordering L = (p1,p2,...,pn) of the vertices of v such that p, = m,
and for each p; with ¢ € {1,...,n} the following holds:

1. if ¢ < n, then there is at most one undirected edge between p; and another
vertex p; with j > 1,

2. the number of undirected edges connected to p; is even iff p; is negative in
v, and

3. there is no directed edge from a vertex p; to p; with j > 4.

Extending the Overlap Graph for Gene Assembly in Ciliates 147

In this case, linear ordering L corresponds to a successful reduction ¢ of ~ in
{Gnr,sGpr} where the graph rules are applied in the order described by L and
the vertices corresponding to roots in forest [y] (except m) are used in gnr rules,
while the other vertices are used in sgpr rules. Hence ¢ = pp, . -+ Ppo Ppu
where p,,, is a gnr rule precisely when p; is a root. a

Example 9. Consider again extended legal string u of Example [with its ex-
tended overlap graph G, given in Figure Bl Notice that [G,] (see Figure) is a
forest, fulfilling condition 1) of Theorem[2l The forest consists of two trees, one of
which is the single vertex 4. Therefore, 4 is necessarily the root of the tree, and by
condition 3) m is the root of the other tree. All conditions of Theorem [2/hold, and
therefore G, is successful in {Gnr, sGpr}. According to the proof of Theorem [2]
(6,4,5,2,3,m), (4,6,5,2,3,m), and (4,5,6,2,3,m) are the linear orderings of
the vertices that correspond to successful reductions of G, in {Gnr, sGpr}. More-
over, in each case vertex 4 corresponds to the gnr, rule while the other pointers
correspond to sgpr rules. Thus, e.g., ¢ = sgpr; sgpr, sgpry gnr, sgpry is
a successful (graph) reduction of G,. By Lemma [this in turn corresponds
to a successful (string) reduction ¢’ of u — one can verify that we can take
¢/ = sSprs SSpr, SSpry snry ssprg.

The case S = {sGpr} is now an easy corollary.

Corollary 2. Let v be a simple marked graph. Then ~y is successful in {sGpr}
iff the all of the conditions of Theorem[d hold, and moreover [v] is a connected
graph. Or, equivalently, [y] is a (undirected) tree.

Note that for the case S = {sGpr}, condition 3) Theorem [2 can be stated more
succinctly (since we cannot choose any root): “the graph obtained by replacing
each undirected edge in v by a directed edge from the child to the parent in tree
[v] with root m is acyclic”.

Ezxample 10. Consider again extended legal string u of Example [§] with its ex-
tended overlap graph G, given in Figure Bl Then by Corollary 2 G, is not
successful in {sGpr}, since condition 1 is violated — [G,] is not a tree as it has
two connected components.

Reconsider now extended legal string v of Example[Bl with its extended overlap
graph G, given in Figure [l By Corollary @ G, is successful in {sGpr}. By the
proof of Theorem 2] (2,4, 3, m) is a linear ordering of the vertices corresponding
to a successful reduction ¢ = sgprs sgpr, sgpr, of G,. Moreover, by the proof
of Theorem [2 linear ordering (4,2,3,m) does not correspond to a successful
reduction of G, (or of v).

8 Discussion

We have shown that we can partially model simple gene assembly based on
a natural extension of the well-known concept of overlap graph. The model is
partial in the sense that the simple double string rule does not have graph rule

148 R. Brijder and H.J. Hoogeboom

counterpart. Within this partial model we characterize which micronuclear genes
can be successfully assembled using 1) only graph negative rules, 2) only simple
graph positive rules, and 3) both of these types of rules. These results carry over
to the corresponding simple string pointer rules.

What remains to be found is a graph rule counterpart of the simple double
string rule. However such a counterpart would require different concepts since
the overlap graph or any natural extension does not capture the requirement
that pointers p and ¢ (in the rule) are next to each other in the string.

References

1. Bouchet, A.: Circle graph obstructions. J. Comb. Theory, Ser. B 60(1), 107-144
(1994)

2. Brijder, R., Hoogeboom, H.J., Rozenberg, G.: Reducibility of gene patterns in cil-
iates using the breakpoint graph. Theoretical Computer Science 356, 26-45 (2006)

3. Brijder, R., Langille, M., Petre, I.: A string-based model for simple gene assembly.
In: Csuhaj-Varjd, E., Esik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 161-172.
Springer, Heidelberg (2007)

4. Cavalcanti, A.R.O., Clarke, T.H., Landweber, L.F.: MDS IES DB: a database
of macronuclear and micronuclear genes in spirotrichous ciliates. Nucleic Acids
Res. 33, D396-D398 (2005)

5. Ehrenfeucht, A., Harju, T., Petre, 1., Prescott, D.M., Rozenberg, G.: Formal sys-
tems for gene assembly in ciliates. Theoretical Computer Science 292, 199-219
(2003)

6. Ehrenfeucht, A., Harju, T., Petre, 1., Prescott, D.M., Rozenberg, G.: Computation
in Living Cells — Gene Assembly in Ciliates. Springer, Heidelberg (2004)

7. Ehrenfeucht, A., Petre, I., Prescott, D.M., Rozenberg, G.: String and graph reduc-
tion systems for gene assembly in ciliates. Mathematical Structures in Computer
Science 12, 113-134 (2002)

8. Harju, T., Petre, I., Rozenberg, G.: Modelling Simple Operations for Gene Assem-
bly. In: Nanotechnology: Science and Computation, pp. 361-373. Springer, Heidel-
berg (2006)

9. Langille, M., Petre, I.: Simple gene assembly is deterministic. Fundam. In-
form. 73(1-2), 179-190 (2006)

10. Prescott, D.M., DuBois, M.: Internal eliminated segments (IESs) of oxytrichidae.
J. Euk. Microbiol. 43, 432-441 (1996)

Automatic Presentations for Cancellative
Semigroups

Alan J. Cain', Graham Oliver?, Nik Rusgkuc', and Richard M. Thomas?

1 School of Mathematics and Statistics, University of St Andrews, North Haugh,
St Andrews, Fife KY16 9SS, United Kingdom
alanc@Omcs.st-andrews.ac.uk, nik@mcs.st-andrews.ac.uk
2 Department of Computer Science, University of Leicester, University Road,
Leicester, LE1 TRH, United Kingdom

G.0liver@mcs.le.ac.uk, rmt@mcs.le.ac.uk

Abstract. This paper studies FA-presentable structures and gives a
complete classification of the finitely generated FA-presentable cancella-
tive semigroups. We show that a finitely generated cancellative semigroup
is FA-presentable if and only if it is a subsemigroup of a virtually abelian
group.

1 Introduction

This paper is concerned with structures with automatic presentations. Recall
that a structure A is a tuple (A, Ry, ..., R,) where:

— Ais a set called the domain of A;
— for each ¢ with 1 <7 < n, there is an integer r; > 1 such that R; is a subset
of A"i; r; is called the arity of R;.

An obvious instance of a structure is a relational database. However, there are
many other natural examples; for instance, a semigroup is a structure (S, o),
where o has arity 3, and a group is a structure (G, o, e, ~1), where o has arity 3,
e has arity 1, and ~! has arity 2.

Khoussainov and Nerode introduced [12] the notion of FA-presentable struc-
tures (or structures with automatic presentations); see Definition Bl below. These
are interesting from a computer science perspective, in that they have some nice
algorithmic and logical properties (such as a decidable model checking problem).

One important field of research has been the attempt to classify classes of FA-
presentable structures. As any finite structure is FA-presentable, we are really
only interested in infinite structures here. In some cases this means that we have
no real examples (for example, any FA-presentable integral domain is finite [13]).
Essentially the only cases where we have a complete classification are those of:

— Boolean algebras [13];
— ordinals [5];
— finitely generated groups [17].

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 149 2008.
© Springer-Verlag Berlin Heidelberg 2008

150 A.J. Cain et al.

For a number of further results for FA-presentable groups, see [16]; for some
necessary conditions for trees and linear orders to be FA-presentable, see [14].

As far as groups are concerned, we also have the notion of an “automatic
group” in the sense of [6]. This has been generalized to semigroups (as in
[BIT8ITT]). The considerable success of the theory of automatic groups was an-
other motivation to have a general notion of FA-presentable structures; see also
[19/20]. We note that a structure admitting an automatic presentation is often
called an “automatic structure”; although we will avoid that term, the reader
should be aware of the terminological clash with the different notion of an au-
tomatic structure for a group or semigroup in the sense of [G3].

In this paper we will be particularly concerned with FA-presentable semi-
groups. When one moves from groups to semigroups, it appears that the prob-
lem becomes significantly more difficult. For example, if one has an undirected
graph I' with vertices V' and edges F, then we have a semigroup with elements
S =V U{e,0}, where we have the following products:

I ifu,v €V and {u,v} € E;
10 ifu,v eV and {u,v} ¢ E;

ue=-eu=u0=0u=0 for ue VU{e0}.

Moreover, if we form the semigroup S from the graph I" in this way, then §
is FA-presentable if and only if I" is FA-presentable. It is known [13] that the
isomorphism problem for FA-presentable graphs is X{-complete; hence the iso-
morphism problem for FA-presentable semigroups is also X'{-complete.

Given this, it seems sensible to restrict oneself to some naturally occurring
classes of semigroups. Given the classification of the FA-presentable finitely gen-
erated groups referred to above, a natural class to consider is that of the FA-
presentable finitely generated cancellative semigroups. In this paper we give a
complete classification of these structures:

Theorem 1. A finitely generated cancellative semigroup is FA-presentable if
and only if it embeds into a virtually abelian group.

We remark that there are many examples of non-cancellative finitely generated
FA-presentable semigroups. For example, it is easy to see that adjoining a zero
to a semigroup always preserves FA-presentability and destroys cancellativity. In
addition, all finite semigroups, whether cancellative or not, are FA-presentable.

2 Automatic Presentations

A semigroup is a set equipped with an associative binary operation o, although
the operation symbol is often suppressed, so that s ot is denoted st. We recall
the idea of a “convolution mapping” which we will need throughout this paper:

Definition 1. Let L be a regular language over a finite alphabet A. Define, for
n €N,
L" ={(wi,...,wy) :w; € L fori=1,...,n}.

Automatic Presentations for Cancellative Semigroups 151

Let $ be a new symbol not in A. The mapping conv : (A*)" — ((AU{$})™)* is
defined as follows. Suppose

Wy = W1,1W1,2 " Wiymy, W2 = W2 1W2,2 " W2 myy -+, Wy = Wp 1Wn,2" " Wnm,,
where w; ; € A. Then conv(ws, ..., wy,) is defined to be

(w11, w215+ Wn 1) (W12, W22, -+, Wn2) (W1 W2y - -+ Wim),s
where m = max{m; : i =1,...,n} and with w; ; = $ whenever j > m,.

Observe that the conv maps an n-tuple of words to a word of n-tuples. We then
have:

Definition 2. Let A be a finite alphabet, and let R C (A*)™ be a relation on
A*. Then R is said to be regular if

{conv(wi,...,wy) : (w1,...,w,) € R}
is a regular language over (AU {$})™.

Having done this, we can now define the concept of an “automatic presentation”
for a structure:

Definition 3. Let S = (S,R1,...,R,) be a relational structure. Let L be a
reqular language over a finite alphabet A, and let ¢ : L — S be a surjective
mapping. Then (L, $) is an automatic presentation for S if:

1. the relation L = {(w1,ws) € L? : ¢(w1) = ¢(w2)} is reqular, and
2. for each relation R; of arity r;, the relation

LRi = {(w17w27"‘7wri) eL™: (¢(w1)77¢<wn)) € RZ}

is reqular. A structure with an automatic presentation is said to be FA-
presentable.

As noted in Section [Tl a semigroup can be viewed as a relational structure with
the binary operation o becoming a ternary relation. The following definition
simply restates the preceding one in the special case where the structure is a
semigroup:

Definition 4. Let S be a semigroup. Let L be a reqular language over a finite
alphabet A, and let ¢ : L — S be a surjective mapping. Then (L,¢) is an
automatic presentation for S if the relations

Lo = {(w1,ws) € L? : p(w1) = d(w2)},
Lo = {(w1, w2, ws) € L3 : ¢p(wr)d(w2) = p(ws)}

are both regular.

152 A.J. Cain et al.

An interpretation of one structure inside another is, loosely speaking, a copy of
the former inside the latter. The following definition is restricted to an interpre-
tation of one semigroup inside another.

Definition 5. Let S and T be semigroups. Let n € N. An (n-dimensional) in-
terpretation of T in S consists of the following:

— a first-order formula ¥ (x1,...,x,), called the domain formula, which speci-
fied those n-tuples of elements of S used in the interpretation;

— a surjective map f : ¢¥(S™) — T, called the co-ordinate map (where 1¥(S™)
denotes the set of n-tuples of elements of S satisfying the formula v);

— a first-order formula 0—(x1,...,Tn;y1,---,Yn) that is satisfied by

(a17"'aan;b1a"'abn)

if and only if f(a1,...,an) = f(b1,...,by) in the semigroup T';
— a first-order formula 05(x1, ..., Tn; Y1, Yn; 21, - - -, 2n) that is satisfied by

(a1, . oyan;bry . bpyer, .o, en)
if and only if f(a1,...,an)f(b1,...,bn) = f(c1,...,¢n) in the semigroup T

The following result, although here stated only for semigroups, is true for struc-
tures generally:

Proposition 1 ([Il, Proposition 3.13]). Let S and T be semigroups. If S has
an automatic presentation and there is an interpretation of T in S, then T has
an automatic presentation.

The fact that a tuple of elements (a1, ..., a,) of a structure S satisfies a first-
order formula 6(x1,...,x,) is denoted S = (a1, ..., a,). We then have:

Proposition 2 ([12]). Let S be a structure with an automatic presentation. For

every first-order formula 0(x1, ..., x,) over the structure there is an automaton
which accepts (w1, ..., wy) if and only if S = 6(d(w1), ..., d(wy)).

(Proposition [is actually a consequence of Proposition 21)

As mentioned in Section[I] a classification of the finitely generated groups with
an automatic presentation was given in [I7]. For convenience, we state the result
here (along with some extra details from [I7] that we will need later). Recall
that a group G is said to be virtually abelian if it has an abelian subgroup A of
finite index. If G is finitely generated, then the subgroup A is finitely generated
as well. Using the fact that any finitely generated abelian group is the direct
sum of finitely many cyclic groups, we may assume that A is of the form Z" for
some n > 0.

Theorem 2 ([17]). A finitely generated group admits an automatic presenta-
tion if and only if it is virtually abelian. In particular, a group G with a subgroup

Automatic Presentations for Cancellative Semigroups 153

Z"™ of index € admits an automatic presentation (L,), where L is the language
of words

giconv (121, ..., Enzn),
where g; € {+,—}, z; i a natural number in reverse binary notation, g, ..., ge

are representatives of the cosets of Z™ in G, with ¢ : L — G being defined in the
natural way:

d(giconv(e121, ..., 6n2n)) = gi(€121, ..., Enzn).

3 Growth

In the proof of Theorem 2 above in [I7], one essential ingredient was the notion
of growth:

Definition 6. Let S be a semigroup generated by a finite set X . Define 6(s) to
be the length of the shortest product of elements of X that equals s, i.e.

6(s) =min{n e N:s=uwxy -z, for some x; € X}.
The growth function v : N — N of S is given by
() = |{s € 5+ 6(s) <}

If the function v is asymptotically bounded above by a polynomial function (that
is, if there exists a polynomial function and some N € N such that S(n) > v(n)
formn > N), then S is said to have polynomial growth.

Note that whether a semigroup has polynomial growth or not is independent of
the choice of finite generating set [8]. We now have the following result:

Theorem 3. Any finitely generated semigroup admitting an automatic presen-
tation has polynomial growth.

For a proof of the Theorem [for finitely generated groups, see [I7]; the proof
given there immediately generalizes to semigroups. We remark that polynomial
growth is dependent on the structures in question being semigroups: general alge-
bras admitting automatic presentations are only guaranteed to have exponential
growth [I2, Lemma 4.5].

4 The Characterization

Recall that a semigroup S has a group of left (respectively, right) quotients G if
S embeds into G' and every element of G is of the form t~1s (respectively, st~1)
for s,t € S. If a semigroup S has a group of left (respectively, right) quotients,
then this group is unique up to isomorphism. For further information on groups
of left and right quotients, see [4, Section 1.10].

The following result, due to Grigorchuk, generalizes the result of Gromov [9]
that a finitely generated group of polynomial growth is virtually nilpotent (i.e.
it has a nilpotent subgroup of finite index):

154 A.J. Cain et al.

Theorem 4 ([7]). A finitely generated cancellative semigroup has polynomial
growth if and only if it has a virtually nilpotent group of left quotients.

We then have the following immediate consequence of Theorems [and [

Corollary 1. Let S be a finitely generated cancellative semigroup that admits
an automatic presentation. Then the group of left quotients of S exists and is
virtually nilpotent.

Note that the groups of left and right quotients of subsemigroups of virtually
nilpotent groups coincide (see [I5] or [2, Sections 5.2-5.3]). We now have:

Proposition 3. Let S be a finitely generated cancellative semigroup that admits
an automatic presentation. Then the [necessarily virtually nilpotent| group of left
(and right) quotients of S admits an automatic presentation.

Proof. Let G be the group of left (and right) quotients of S. The strategy is to
show that G has a 2-dimensional interpretation in S.

— The domain formula is tautological: ¢(x1,x2) := x1 = 1. Thus all pairs of
elements of S are used.
— The co-ordinate map is f(z1,2z2) = xflxz. Since G is the group of left
quotients of S, the mapping f is surjective as required.
— The formula 6_ is given by
O—(x1,22;y1,Yy2) := (Fa,b)(x1a = x2b A y1a = yab),

since

f(1'1, xz) = f(ylva)
= (3a,b)(f(x1,2) = ab™" A f(y1,92) = ab™")
= (Ja,b)(ay ms = ab~ Ay ly = ab)
<= (da,b)(x1a = x2b A yra = yab).

— The formula 6, is given by

Oo (21, w25 Y1, Y25 21, 22) 1=
(3a, b, ¢, d)(cx1a = dysb A cxe = dyi A z9b = z1a),

since

f(@y,22) f(y1,y2) = f(21, 22)

3a,0)(f(x1,x2) f(y1,y2) = ab™ " A f(z1,22) = ab™?)

Ja,b) (w7 twoy; fya = ab Az zg = ab™h)

Ja,b,c,d) (¢ d = zay; P Ay e dys = ab T Az ey = ab Y

Ja, b, ¢,d)(cxe = dyr A dysb = cxia A 220 = z1a). m]

S5

We are now in a position to prove one direction of Theorem [Tk

Automatic Presentations for Cancellative Semigroups 155

Proposition 4. A finitely generated cancellative semigroup admitting an auto-
matic presentation embeds into a finitely generated virtually abelian group.

Proof. Let S be a finitely generated cancellative semigroup with an automatic
presentation. By Proposition Bl its group of left quotients G has an automatic
presentation. Since S is finitely generated, G is also. Theorem [2 then shows that
G is virtually abelian. O

The other direction is provided by:

Proposition 5. Fvery finitely generated subsemigroup of a virtually abelian
group admits an automatic presentation.

Proof. Let G be a virtually abelian group. Let Z™ be a finite-index abelian
subgroup of G. By replacing Z" by its core (the maximal normal subgroup of G
contained in Z") if necessary, we may assume that Z™ is normal in G. Let k be
the index of Z™ in G. Let A be a finite alphabet representing a subset of G, and
let S be the semigroup generated by this subset. Throughout this proof, denote
by w the element of S represented by the word w over an alphabet representing a
generating set. This notational distinction is necessary to avoid confusion when
there are several representatives for the same element.

Let B={a€ A:a€Z"} and let C = A — B. So B consists of all letters
in A representing elements of the abelian subgroup Z™ and C' consists of letters
representing elements of other cosets of Z".

Introduce a new alphabet D representing the set

{w:we CSk wezy.

Notice that since the set CS¥ is finite, so is D. Furthermore, the semigroup S is
generated by BU C U D. We next observe the following lemmas:

Lemma 1. FEvery element of the semigroup S is represented by a word over
BUCUD that contains at most k% — 1 letters from C.

Proof. Let s € S, and let w € (BUC U D))" with w = s. Then w is of the form
UOCIULC ** * Uy —1 o U (1)

where each w; lies in (BU D)* and each ¢; in C. The aim is to show that such a
word w can be transformed into one that still represents s € S but contains at
most k? — 1 letters from C

First stage. For any word w of the form () and for i = 0,...,m — 1, let 1, ()
be maximal such that ¢;11u;41 - -+ ¢y, and Cop (i) +1Upy (i) +1 * * * CrUim, lie in the
same coset of Z™ in G. It is clear that v, (i) is always defined and is not less
than 4. Notice that since there are k distinct cosets of Z™ in G, 1, (i) can take
at most k distinct values as i ranges from 0 to m — 1. Furthermore, for each i,
Cit1Uig1 " Cop (i) Uy, (i) 1iS in Z™ and so commutes with u;.

156 A.J. Cain et al.

Define a mapping @ : (BUC U D)™ — (BUC U D)™ as follows: for w of the
form (), ' (w) is defined to be

UpC1UIC2 * - - CiCip1Uj41 * ** wa(i)uww(i)uicww(i)+1 o Um—1CmUm,

where ¢ is minimal with v, (7) # 4, and '(w) = w if ¥, (i) = i for all 7. By the
remark at the end of the last paragraph, w = §/(w).

The mapping §: (BUCUD)T — (BUCUD)™ is defined by (w) = (8")?(w),
where p is minimal with (8")P(w) = (8')?T!(w). Again, w = B(w).

So f(w) is the word obtained from w by shifting each w; rightwards to one of
at most k distinct positions between the various letters ¢;. Thus f(w) has the
form () with at most k of the words u; being non-empty.

Second stage. Define a mapping 7' : (BUCUD)" — (BUCUD)T as follows: if
w € (BUCUD)Y has asubword v € CS¥ with v € Z", then choose the leftmost,
shortest such subword and replace it with the letter of D representing the same
element of S. (Such a letter exists by the definition of D.)

The mapping v : (BUCUD)" — (BUCUD)™ is defined by v(w) = (/)P (w),
where p is minimal with (7/)?(w) = (7/)?*!(w). Since each application of 4’ that
results in a different word decreases the number of letters from C' present, such
a p must exist. Observe that w = v(w) and that vy(w) cannot contain a subword
of k letters from C, for such a string must contain a subword representing an
element of Z".

Third stage. The final mapping ¢ : (BUC U D))" — (BUC U D)™ is given
by §(w) = (v8)P(w), where p is minimal with (v8)P(w) = (y8)P™!(w). Observe
that w = §(w). Now, 6(w) is of the form () with at most k words u; being
nonempty and does not contain k consecutive letters from C. So separated by
the k& nonempty words u; are strings of at most k& — 1 letters from C'. So the total
number of letters from C in §(w) is at most (k — 1) x (k+ 1) = k% — 1. 0

We now return to the proof of Proposition il Choose a set of representatives
91, -, g for the cosets of Z™ in G. Suppose BUD = {by,...,by}.
For ci,...,cm € C with 0 < m < k% — 1, define

. _ B g,
P.,..c,, = {uociuica - Up—1CmUp, : u; = by cobgt ;€ NU {0}}.

By Lemma [l and the fact that the elements b; commute, every element of S is
represented by an element in at least one of the sets P,, . That is,

S= UJ Poen (2)

ClyenrsCm €C
o<m<k?—1

By Theorem] the virtually abelian group G has an automatic presentation
(L, @), where L is the language of words

greonv(er 21, ..., En2n), (3)

Automatic Presentations for Cancellative Semigroups 157

where €; € {+,—} and z; is a natural number in reverse binary notation. (In
L, the coset representative g, functions simply as a symbol.) The aim is now
to show that the subset of L representing elements of S is regular. To do so, it
suffices to show that the set of words in L representing elements of P,,. is
regular, since (2)) is a finite union.

To this end, fix ¢1, ..., ¢y and write P for P,,,. Let z; ; € Z™ be such that
biCit1 Cm = Cit1° " Cmzij. Let ugciug - cpy € P with u; = by™" -+ bg ™.
Then

Cm

Qg5
UGCILUTL * * * Cop Uy, = C1 *** Cpy H H z; 57
i=0j=1
or, switching to additive notation and supposing ¢; -+ - ¢, = gn(2}, ..., 2)) and

Zij = (%ij1,---,%ijn) forall i, j:

m q
o / ’
UGCLUL -+ - U, = Gn(2], - - -, 2;,) @i i (Zig1s o5 Zijn)-
i=0 j=1

Therefore define 6(z1, ..., 2z,) to be

(3001, -+ @ma) (@01 2 0) A A (@ > 0)

m m
/\(Zl = Zi + Z Zai,jzi’ﬂ)

i=0 j=1

m m
/\(ZQ = Zé + Z Zai,jzi’j,g)

i=0 j=1

m m
/\(Zn = Z;z + Z Zai,jzi,j,n)>7

i=0 j=1
where a; j2; 1 is understood to be shorthand for

Qi+
~ ~ -
2,5,k times

By a special case of Theorem [the structure (Z,+) admits an automatic
presentation (M,), where M is the set of words ez, where € € {+,—} and z is
in reverse binary notation. Furthermore, it is clear that, in this presentation, the
relation > is regular. That is, (M,) is an automatic presentation for (Z, +, >).

The set of words in L representing elements of P is then

{gneonv(zr, ... 2) : (2o, 2) 01 0(z0))).

(Recall that gj, is the representative of the coset in which ¢; ---¢,, lies.) By
Proposition 2 this set is a regular subset of L.

158 A.J. Cain et al.

Union together the [finitely many] regular subsets of L obtained for the various
C1,...,Cm to see that the set Lg consisting of those words in L representing
elements of S is regular. So S admits the automatic presentation (Lg, ¢|rs). O

Propositions [l and @] together yield Theorem [II

Acknowledgements. The constructive comments of the referees were much
appreciated. Part of the work described in this paper was undertaken whilst
the fourth author was on study leave from the University of Leicester and the
support of the University in this regard is appreciated. The fourth author would
also like to thank Hilary Craig for all her help and encouragement.

References

1. Blumensath, A.: Automatic Structures (Diploma Thesis, RWTH Aachen) (1999)

2. Cain, A.J.: Presentations for Subsemigroups of Groups (Ph.D. thesis, University
of St Andrews) (2005)

3. Campbell, C.M., Robertson, E.F., Ruskuc, N., Thomas, R.M.: Automatic semi-
groups. Theoret. Comput. Sci. 250, 365-391 (2001)

4. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Mathematical
Surveys 7, vol. 1. American Mathematical Society (1961)

5. Delhommé, C.: Automaticité des ordinaux et des graphes homogenes. C. R. Math.
Acad. Sci. Paris 339, 5-10 (2004)

6. Epstein, D.B.A., Cannon, J.W., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston,
W.P.: Word Processing in Groups. Jones & Bartlett (1992)

7. Grigorchuk, R.I.: Semigroups with cancellations of degree growth. Mat. Zametki 43,
305-319, 428 (1988) (in Russian); Grigorchuk, R. I.: Cancellative semigroups of
power growth. Math. Notes 43, 175-183 (1988) (translation in)

8. Grigorchuk, R.I.: On growth in group theory. In: Proceedings of the International
Congress of Mathematicians, Kyoto 1990, vol. I, II, pp. 325-338. Math. Soc. Japan
(1991)

9. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes
Etudes Sci. Publ. Math. 53, 53-78 (1981)

10. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society
Monographs 12. Oxford University Press, Oxford (1995)

11. Hudson, J.F.P.: Regular rewrite systems and automatic structures. In: Almeida,
J., Gomes, G.M.S., Silva, P.V. (eds.) Semigroups, Automata and Languages, pp.
145-152. World Scientific, Singapore (1998)

12. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367-392. Springer, Heidelberg (1995)

13. Khoussainov, B., Nies, A., Rubin, S., Stephan, F.: Automatic structures: richness
and limitations. In: Proceedings of the 19th IEEE Symposium on Logic in Com-
puter Science, pp. 110-119. IEEE Computer Society, Los Alamitos (2004)

14. Khoussainov, B., Rubin, S., Stephan, F.: Automatic partial orders. In: Proceedings
of the 18th IEEE Symposium on Logic in Computer Science, pp. 168-177. IEEE
Computer Society, Los Alamitos (2003)

15. Neumann, B.H., Taylor, T.: Subsemigroups of nilpotent groups. Proc. Roy. Soc.
Ser. A 274, 1-4 (1963)

16.
17.

18.

19.

20.

Automatic Presentations for Cancellative Semigroups 159

Nies, A.: Describing groups. Bull. Symbolic Logic 13, 305-339 (2007)

Oliver, G.P., Thomas, R.M.: Automatic presentations for finitely generated groups.
In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 693-704.
Springer, Heidelberg (2005)

Otto, F., Sattler-Klein, A., Madlener, K.: Automatic monoids versus monoids with
finite convergent presentations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379,
pp. 32-46. Springer, Heidelberg (1998)

Pelecq, L.: Isomorphismes et automorphismes des graphes context-free,
équationnels et automatiques. PhD Thesis, Bordeaux 1 University (1997)
Sénizergues, G.: Definability in weak monadic second-order logic of some infinite
graphs. In: Compton, K., Pin, J.-E., Thomas, W. (eds.) Automata Theory: Infinite
Computations, Wadern, Germany. Dagstuhl Seminar, vol. 9202, p. 16 (1992)

Induced Subshifts and Cellular Automata

Silvio Capobianco

School of Computer Science, Reykjavik University, Reykjavik, Iceland
silvio@ru.is

Abstract. Given a shift subspace over a finitely generated group, we
define the subshift induced by it on a larger group. Then we do the same
with cellular automata and, while observing that the new automaton can
model a different abstract dynamics, we remark several properties that
are shared with the old one. After that, we simulate the old automaton
inside the new one, and discuss some consequences and restrictions.

Keywords: Dynamical system, shift subspace, cellular automaton.
Mathematics Subject Classification 2000: 37B15, 68Q80.

1 Introduction

Cellular automata (briefly, CA) are presentations of global dynamics in local
terms: the phase space is made of configurations on an underlying lattice struc-
ture, and the transition function is induced by a pointwise evolution rule, which
changes the state at a node of the grid by only considering finitely many neigh-
bouring nodes. Modern CA theory employs tools from group theory, symbolic
dynamics, and topology (cf. [2I4I6]). The lattice structure is provided by a Cay-
ley graph of a finitely generated group: the “frames” of this class generalize the
“classical” hypercubic ones, allowing more complicated grid geometries. Such
broadening, however, preserves the requirement for finite neighbourhoods, and
this fact allows the definition of global evolution laws in local terms. Moreover,
the phase space can be a subshift, leaving out some configurations, but allow-
ing translations of single elements and limits of sequences. While this can be
questionable when seeing CA as computation devices, we remark how the richer
framework simplifies dealing with simulations between CA.

In this paper, we examine how subshifts and CA on a given group define other
subshifts and CA on another group, the former being a subgroup of the latter. A
lemma about mutual inclusion between images of shift subspaces via global CA
functions, showing that it is preserved either way when switching between the
smaller group and the larger one, ensures that our definitions are well posed. We
then show how several properties are transferred from the old objects to the new
ones, some even either way as well; this is of interest, because the new dynamics is
usually richer than the old one. A simulation of the original automaton into the
induced one is then explicitly constructed. This extends to the case of arbitrary,
finitely generated groups the usual embedding of d-dimensional cellular automata
into (d + k)-dimensional ones; a consequence of this fact will be the collapse of

C. Martin-Vide, F. Otto, and H. Fernau (Eds.): LATA 2008, LNCS 5196, pp. 160 2008.
© Springer-Verlag Berlin Heidelberg 2008

Induced Subshifts and Cellular Automata 161

the hierarchy of cellular automata dynamics over free non-abelian groups. Some
remarks about sofic shifts are also made throughout the discussion.

2 Background

A dynamical system (briefly, d.s.) is a pair (X, F') where the phase space
X is compact and metrizable and the evolution function F' : X — X is
continuous. If Y C X is closed (equivalently, compact) and F(Y) C Y, then
(Y, F) is a subsystem of (X, F). A morphism from a d.s. (X, F) to a d.s.
(X', F’) is a continuous ¢ : X — X' such that ¥ o F' = F’ o ¢J; an embedding
is an injective morphism, a conjugacy a bijective morphism.

Let G be a group. We write H < G if H is a subgroup of G. If H < G
and xpy iff x7'y € H, then p is an equivalence relation over G, whose classes
are called the left cosets of H, one of them being H itself. If J is a set of
representatives of the left cosets of H (one representative per coset) then
(j, h) — jh is a bijection between J x H and G. A (right) action of G over
a set X is a collection ¢ = {¢y}gsec € XX such that ¢gn(z) = ¢p(¢y(z)) for
all g,h € G, z € X, and ¢1,(z) = = for all z € X. Observe that the ¢,’s are
invertible, with (¢g) ™" = ¢(,—1). When ¢ is clear from the context, ¢4(x) is often
written x9. Properties of functions (e.g., continuity) are extended to actions by
saying that ¢ has property P iff each ¢, has property P.

If G is a group and S C G, the subgroup generated by S is the set (S) of
all g € G such that

g= 8152 Sp (1)

for some n > 0, with s; € S or 5;1 € S for all i. S is a set of generators for G
if (S) = G; a group is finitely generated (briefly, f.g.) if it has a finite set of
generators (briefly, f.s.0.g.). The length of g € G with respect to S is the least
n > 0 such that () holds, and is indicated by ||g||s. The distance of g and h
w.r.t. S is the length d$ (g, h) of g~'h; the disk of center g and radius R w.r.t.
S'is D 4(g) ={h € G | d§(g,h) < R}. In all such writings, G and/or S will be
omitted if irrelevant or clear from the context; g, if equal to 1.

An alphabet is a finite set with two or more elements; all alphabets are given
the discrete topology. A configuration is a map ¢ € A where A is an alphabet
and G is a f.g. group. Observe that the product topology on A% is induced by any
of the distances dg defined by putting dg(c1,c2) = 277, r being the minimum
length w.r.t. S of a g € G s.t. c1(g) # c2(g). The natural action ¢ of G over
A% is defined as

(05 (c))(h) = c(gh) Yce A% Vg, h e G . (2)

Observe that ¢¢ is continuous. A closed subset X of A“ that is invariant by o
is called a shift subspace, or simply subshift. The restriction of ¢ to X is
again called the natural action of G over X and indicated by ¢“. From now on,
unless differently stated, we will write ¢9 for J?(C).

Let E C G, |E| < 0. A pattern on A with support E isamap p: E — A;
we write £ = suppp. A pattern p occurs in a configuration ¢ if there exists

162 S. Capobianco

g € G such that (¢Y)suppp = p; p is forbidden otherwise. Given a set F of
patterns, the set of all the conﬁgurations ¢ € A% for which all the patterns in F
are forbidden is indicated as Xf’G; A and/or G will be omitted if irrelevant or
clear from the context. It is well known [J6] that X is a subshift iff X = Xé’G
for some F; X is a shift of finite type if F can be chosen finite. A pattern p
is forbidden for X C A% if it is forbidden for all ¢ € X, i.e. (€9)|suppp 7 p for all
c€ X, g € G;if X is a subshift, this is the same as ¢|gupp, # p for all c € X.

A map F : AY — A% is uniformly locally definable (UL-definable) if there
exist N C G, |N] < 00, and f : AN — A such that

(F(e))(g) = f ((¢)w) 3)

for all ¢ € A%, g € G; in this case, we write I = F2C . Observe that any
UL-definable function F' is continuous and commutes with the natural action of
G on A%, Hedlund’s theorem [l[5] states that, if X C A% is a subshift and
F : X — A% is continuous and commutes with the natural action of G over
X, then F is the restriction to X of a UL-definable function. Moreover, remark
that, if X is a subshift and F' is UL-definable, then F'(X) is a subshift too: if X
is of finite type, we say that F(X) is a sofic shift.

A cellular automaton (CA) with alphabet A and tessellation group G is a
triple (X, N, f) where the support X C A“ is a subshift, the neighbourhood
index N C G is finite, and the local evolution function f : AN s A satisfies
F;"G(X) C X; the restriction F4 of F;"G to X is the global evolution func-
tion, and (X, Fx) is the associate dynamical system. Observe that (X, Fy)
is a subsystem of (A%, Ff’G). When speaking of bijectivity, finiteness of type,
ete. of A, we simply “confuse” it and either F4 or X. A is a presentation of
(X', F') if the latter and (X, F4) are conjugate. We call CA(A, G) the class of
d.s. having a presentation as CA with alphabet A and tessellation group G.

A pattern p is a Garden of Eden (briefly, GoE) for a CA A = (X, N, f) if
it is allowed for X and forbidden for F4(X). Any CA having a GoE pattern is
nonsurjective; compactness of X and continuity of F 4 ensure that the vice versa
holds as well [l[7]. A is preinjective if Fa(c1) # Fa(c2) for any two ¢1,c0 € X
such that {g € G | c1(9) # c2(g)} is finite and nonempty. If G is amenable
(cf. 2I3]; Z¢ is amenable for all d) and X = A%, then A is surjective iff it is
preinjective [2]; this can be false [2/4] if G is not amenable or X # A%,

3 Induced Subshifts

Let X = Xé’G. The idea of “induced subshift” that first comes to the mind is
Definition 1. Let X = X;i’G be a subshift, and let G < I'. The subshift induced
by X on AT is X' = X",

According to Definition [[, X’ is what we obtain instead of X by interpreting
F in the context provided by I instead of G. However, since different sets of
patterns can define identical subshifts, we must ensure that Definition [is well

Induced Subshifts and Cellular Automata 163

posed and X’ only depends on X rather than F, i.e., in_;G = Xf;;G must imply
X%F = X;i;F. This actually follows from

Lemma 1. Let A be an alphabet, and let G and I' be f.g. groups with G < I.
Fori = 1,2, let F; be a set of patterns on A with supports contained in G, let
N; be a finite nonempty subset of G, and let f; : ANi — A. Then

AG (yAG AG (AGY - AT (AT AT (AT
Ffl (Xfl) < Ff2 (sz) iff Ffl (X]‘H) < Ff2 (sz) :
Proof. Let J be a set of representatives of the left cosets of G in I' such that
1¢ = 1p € J. To simplify notation, we will write
_ A
X=Xz, Z=Xg", K =FC, & =F",
so that the thesis becomes

Fi(X1) C Fa(Xy) iff &1(Z1) C Po(Z,) .

For the “if” part, let ¢ € F1(X1), and let 21 € X5 satisfy Fj(x1) = c¢. Define
& € Al'by &1(jg) = x1(g) forall j € J, g€ G:thenforallj€ J, g€ G, pe F
(g{g)|suppp = (m€)|suppp 7é P,

hence & € =7. Put x = &1(&1): by hypothesis, there exists £ € =5 such that
®5(&2) = x, and by construction,

x(9) = 1) n) = A(@D)n) = clg) Vg€ G

Let 2o = (§2)|¢: then 22 € X5 by construction. But

F((@9)ne) = F2((E)ne) = x(9) = clg) Vg € G,

thus ¢ € FQ(XQ)

For the “only if” part, let x € ®1(Z1), and let & € = satisfy &1(&1) = x.
For each j € J, define 21, € A% as x1(g) = & (jg) for all g € G. It is
straightforward to check that z;; € Xy for all j € J: let ¢; = Fi(x1;). By
hypothesis, for all j € J there exists x2 ; € Xo such that Fi(x2 ;) = ¢;: define
& € A by &(jg) = w2;(g) for all j € J, g € G. Tt is straightforward to check
that & € Z5; but forall j € J, g € G

F2((EM) = (25)ine) = ¢5(9) = fi((@] i) = FUE)) = x(9)
thus x € $2(=7). O
Corollary 1. In the hypotheses of Lemma [,

1 XEC PROXES) i Xt C PRI (XD,
2. FROXe®) C Xm@ iff Fi T (Xe") € X2", and
9 Xz X aff X" C X!

164 S. Capobianco

Proof. Consider the neighbourhood index {1} and the local evolution function
f(lg — a) = a. Apply Lemmal[ll O

Corollary 2. Let A be an alphabet, let G and I" be f.g. groups with G < I, and
let F be a set of patterns on A with supports contained in G. If X’;_JG is sofic

then X?_—’F is sofic.

Proof. By hypothesis, Xé’G = F(Xé’,G) for some UL-definable function F' and
finite set of patterns F’. Apply points [and 2] of Corollary [I O

4 Induced Cellular Automata

After having found a way to construct subshifts on large groups from subshifts
of smaller groups, we work on doing the same with cellular automata.

Definition 2. Let A= (X, N, f) be a CA with alphabet A and tessellation group
G, and let I be a f.g. group such that G < I'. The CA induced by A on I" is the
cellular automaton

A= (X" N, f), (4)
where X' is the subshift induced by X on AT

Again, A’ is what we obtain by interpreting F, A/, and f in the context provided
by I' instead of G. Lemma [I] ensures that A’ is well defined.

In general, A’ is not conjugate to A: just consider the case I" finite, G proper,
F = (. However, some important properties—mnotably, surjectivity—are pre-
served in the passage from the original CA to the induced one; which is not
surprising, because intuitively F ;4 T s going to operate “slice by slice” on AT,
each “slice” being “shaped” as G. The next statement extends a result in [2]
from the case X = A% to the general case when X is an arbitrary subshift.

Theorem 1. Let A= (X, N, f) be a CA with alphabet A and tessellation group
G, let G ST, and let A’ be the CA induced by A on I.

1. A is surjective iff A’ is surjective.
2. A is preinjective iff A’ is preinjective.
3. A is injective iff A" is injective.

Proof. Let F satisfy X = Xé’G (and X' = X;i’r). Take J as in proof of Lemmalll

To prove the “if” part of point [Il suppose A has a GoE pattern p. By con-
tradiction, assume that there exists xy € X’ such that Fa/ (X)suppp = p- Let c
be the restriction of x to G. Then, since both A/ and supp p are subsets of G by
hypothesis,

(Fa()(@) = f (")) = F (X)) = (Fa 00)) (@) = p()

for every x € supp p: this is a contradiction.

Induced Subshifts and Cellular Automata 165

To prove the “only if” part of point [Il suppose A’ has a GoE pattern 7. By
hypothesis, there exists x € X’ such that X|sppr = 7. For all j € J define
cj € AY as

ci(g) = x(jg) Vg€ G,

and for all j € J such that jG Nsuppm # () define the pattern p; over G as
pj(z) =7(jx) Yo s.t. jo € suppw .

Observe that ¢; € X for all j, and that p; = (¢;)|jGnsupp~ When defined. But at
least one of the patterns p; must be a GoE for A: otherwise, for all j € J, either
JG Nsupp7 = (), or there would exist k; € X’ such that Fu(k;)|suppp, = pj- In
this case, however, k € AL defined by k(jg) = k;(g) for all j € J, g € G would
satisfy x € X’ and Fa(K)jsupp » = T, against 7 being a GoE for A’.

For the “if” part of point Bl suppose ¢1,c2 € X differ on all and only the
points of a finite nonempty U C G, but Fa(c1) = Fa(c). Forall j € J, g € G,
put x1(jg) = c1(g), and set x2(jg) as c2(g) if j = 1, c1(g) otherwise. Then x1
and x2 belong to X’ and differ precisely on U. Moreover, for every v € I, either
v € Gor YNNG =0, so either (Fa(xi))(7) = (Falei))(y) or (Fa(x1))(y) =
(Fa (x2))(7):

For the “only if” part of point 2l suppose A is preinjective. Let y1,x2 € X’
differ on all and only the points of a finite nonempty U’ C I'. For i € {1, 2},
v € I, let ¢; o be the restriction of x] to G: these are all in X, because a pattern
occurring in ¢; , also occurs in x;, and cannot belong to F. Let U, = {g € G |
c1~(g9) # c2(g)} : then |U,| < |U| for all v € I", plus U, # 0 for at least one ~.
For such v, there exists g € G such that (Fa(c1,4))(g) # (Fa(c2,))(g) : then by
construction (Fa/(x1))(vg) # (Fa(x2))(vg) as well.

The proof of point [is straightforward to see. For the “if” part, let ¢; # co,
Fu(c1) = Fa(ca), and consider x;(y) = ¢i(g) iff v = jg. For the “only if” part,
given x1 # X2, consider ¢; ;(g) = x:(jg), and observe that Fa(c1,;) # Fa(c2 ;)
for at least one j € J. O

Surjectivity and preinjectivity are always shared by A and A’, even when these
two properties are not equivalent. Moreover, even if A and A’ are non-conjugate,
there always exists an embedding of the former into the latter.

Lemma 2. Let A be an alphabet, and let G and I" be f.g. groups with G < I';
let A= (X,N,f) be a CA with alphabet A and tessellation group G, and let
A = (X" N, f) be the CA induced by A over I'. Let J be a set of representatives
of the left cosets of G in I, and let vy : AS — AT be defined by

(ti(e))(v) =clg) iff FjeJ:v=jg. (5)
Then vy is an embedding of A into A’, so that
Li(A) = (L (X), N, f) (6)

is a CA conjugate to A. In particular, CA(A,G) C CA(A,TI).

166 S. Capobianco

Proof. First, we observe that ¢y is injective and ¢;(X) C X’. In fact, if ¢1(g) #
c2(g), then (vy(c1))(jg) # (ts(c2))(jg) for all j € J. Moreover, should a pattern
p exist such that (t7(c))(yx) = p(z) for all z € suppp C G, by writing v = jg
and applying (B) we would find ¢(gx) = p(z) for all x € supp p, a contradiction.

Next, we show that ¢; is continuous. Let S be a f.s.o.g. for G, X a f.s.0.g. for
I'. Let R > 0, and let

Er={geG|3jeJ|jge D x}.

Since the writings v = jg are unique and DQ’E is finite, Er is finite too. Let
Er C Diig:if (c1)pe, = (c2)jpe,, then (us(c1))pr . = (tr(c2))pr -

Next, we show that ¢; is a morphism of d.s. For every ¢ € A%, v = jg € I,
xz € N we have yz € jG and (vy(c))(vz) = (vs(c))(jgz) = c(gx). Thus,

(Farown)(e) () = f(er(0)w) = () = (Fale))(g) = ((es o Fa)(e))(7) ,

so that Fu oty = vj0F4. Moreover, F 4/ (17(X)) = tj(Fa(X)) C ¢7(X) because
Fa(X)C X.

Finally, we observe that ¢;(X) is a subshift. In fact, if X = X]A}’G, then ¢;(X) =
Xé’d},, where

F' = {P € Alned29} | 4, 5y € J g € G,j1 # jo,p(jrg) # P(]ég)} - (M

Tt is straightforward that ¢;(X) C X;Lff_, Let x € Xé’d},: then ¢(g) = x(jg) is
well defined, and x = ¢;(c) by construction. Moreover, for every g € G, p € F,
and any j € G (¢?)suppp = (X?)suppp # P, so c € X and x € t5(X). o

Observe that, in the hypotheses of Lemma [we are not assuming 1y € J.
Hence, in general, Er Z D& B evenif S C Y. As a counterexample, let I" = 72,
G = {@0) | = € Z}, J—{(10)}U{(0y)\y62y#0} 5 ={@1,0)},
= {(1,0), (0, 1)}: then Ey = {(0,0), (~1,0), (=2,0)} £ D

Lemma [2 says that growing the tessellation group does not shrink the class
of presentable dynamics. This is also true for growing the alphabet, and holds
up to alphabet bijections and group isomorphisms. Before proving this fact, we
state a definition, on which these and other results will be based.

Definition 3. Let X be a set, A an alphabet, G a group, ¢ an action of G
over X. X is discernible on A by ¢ if there exists a continuous function 7 :
X — A such that, for any two distinct x1,x2 € X, there exists g € G such that

m(pg(21)) # (g (2))-

Observe, in Definition 3] the continuity requirement, which demands that 7(x) =
m(y) if z,y € X are “near enough”. We now state and prove the following result

from [1].

Theorem 2. Let A be an alphabet, G a f.g. group, (X, F) a d.s. The following
are equivalent:

Induced Subshifts and Cellular Automata 167

1. (X,F) e CA(A,G);
2. there exists a continuous action ¢ of G over X such that F' commutes with
¢ and X is discernible on A by ¢.

Proof. We start with supposing that A = (Y, N, f) is a presentation of (X, F).
Let 6 : X — Y be a conjugacy from (X, F) to (Y, F4); put

¢g=9_1005;09

for all g € G, and
m(x) = (0(x))(1c) -

Remark that ¢ = {¢4}sec is an action of G over X and that (8(x))(g9) =
(0(x))?(1¢) for all x and g. Continuity of ¢ and commutation with F' are straight-
forward to verify. If x1 # 2, then (0(x1))(g) # (0(x2))(g) for some g € G, thus

m(¢g(21)) = (05 (0(x1))) (L) # (o (0(22)))(16) = m(g(22)) -

For the reverse implication, let 7 as in Definition B then 7 : X — A% defined
by
(7(2))(g) = m(¢g(z))

is injective. Moreover, (7(e,(2))(h) = (61 (6y(2))) = (6 (x)) = (r(x))(gh)
for every v € X, g,h € G: thus, 70 ¢, :O'gGOT forall g € G, and X' = 7(X) is
invariant under o¢.

We now prove that 7 is continuous. Let lim, ey 2, = 2 in X: by continuity of =
and ¢, lim,en(7(2,))(g9) = (7(x))(g) in A for all G. Since A is discrete, for each
g € G there exists ny such that 7(dg(z,)) = 7(Pg(z)) for every n > ny. Hence,
for every finite £ C G, if n > np = maxgep ng, then 7(x,,) and 7(z) coincide on
E: this is the same as saying that lim,eyn 7(z,) = 7(z) in the product topology
of AC.

Since X and A are compact and Hausdorff, X’ is closed in A and a subshift,
while 7 is a homeomorphism between X and X’. Define F’ : X' — X’ by
F' =70 Fo7 ! then (X', F') is a d.s. and 7 is a conjugacy between (X, F)
and (X', F'). But for every g € G

pgor t=(T0g, 1) = (0'!?71 or)t=7"1o0",

thus
ofoF =70¢0For ' =70Fog,or ' =F 00§ ;

hence, F’ commutes with 0. By Hedlund’s theorem, there exist a finite N/ C G
and a map f': AN — A such that (F'(c)), = f'(c9|n) for all ¢ € X, g € G-
then (X', N7, f) is a presentation of (X, F') as a cellular automaton. O

Theorem [2 has two immediate consequences, the first one being Richardson’s
lemma [§: if (X,F) € CA(A,QG) is invertible and ¢ is as in Theorem [2] then
it is straightforward to check that F~! commutes with ¢, so that (X, F~!) €
CA(A,G). The second one is

168 S. Capobianco

Lemma 3. Let A and B be alphabets, and let G and I be f.g. groups.

1. If|A| < |B| then CA(A,G) C CA(B,G).
2. If G is isomorphic to I' then CA(A,G) = CA(A, I).

Proof. To prove point [Il let ¢ : A — B be injective. Let (X, F) € CA(A4,G),
and let ¢ satisfy point [2] of Theorem 2] 7 being the discerning map. Then X is
discernible over B by ¢, ¢ o m being the discerning map.

To prove point 2 let ¢» : G — I' be a group isomorphism. Let (X, F) €
CA(A, @) and let ¢ satisfy point 2] of Theorem 2l 7 being the discerning map.
Define ¢’ = {¢/ },er as

¢ = Py-1(y) -
It is straightforward to check that ¢’ is an action which commutes with F. Let
x1 # xo: if g € G is such that w(¢g(21)) # 7(dg(z2)), then 7T(¢;p(g)($1)) #
T(dy g (22)) as well. Thus ¢' satisfies condition 2 of Theorem [and (X, F) €
CA(A, I'). From the arbitrariness of (X, F') follows CA(A,G) € CA(A,I'): by
swapping the roles of G and I" and repeating the argument with ¢~! in place of
1) we obtain the reverse inclusion. ad

Lemma 2] and Lemma [3] together yield

Theorem 3. Let A, B be alphabets and G, I' be f.g. groups. If |A| < |B| and
G is isomorphic to a subgroup of I', then CA(A,G) C CA(B,T).

Proof. Let G = H < I'. Then CA(A,G) = CA(A,H) CCA(A, I') CCA(B,I).
O

Corollary 3. Let I, be the free group onn < oo generators. For every alphabet
A and every n > 1, CA(A,F,) = CA(A,Fs).

Proof. Follows from Theorem [l and the fact that Fo has a free subgroup on
infinitely many generators. g

Remark that it is not possible to replace ' (@) with the smaller set

Fr={pe AU | i gy € Jp(i) # p(a) | -

Indeed, for ¢;(X) to be of finite type, it would then suffice X being of finite type
and G being of finite index in I'. Instea