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Models for the Claim Number Process

2.1 The Poisson Process

In this section we consider the most common claim number process: the Pois-
son process. It has very desirable theoretical properties. For example, one can
derive its finite-dimensional distributions explicitly. The Poisson process has a
long tradition in applied probability and stochastic process theory. In his 1903
thesis, Filip Lundberg already exploited it as a model for the claim number
process N . Later on in the 1930s, Harald Cramér, the famous Swedish statis-
tician and probabilist, extensively developed collective risk theory by using
the total claim amount process S with arrivals Ti which are generated by a
Poisson process. For historical reasons, but also since it has very attractive
mathematical properties, the Poisson process plays a central role in insurance
mathematics.

Below we will give a definition of the Poisson process, and for this purpose
we now introduce some notation. For any real-valued function f on [0,∞) we
write

f(s, t] = f(t) − f(s) , 0 ≤ s < t < ∞ .

Recall that an integer-valued random variable M is said to have a Poisson
distribution with parameter λ > 0 (M ∼ Pois(λ)) if it has distribution

P (M = k) = e−λ λk

k!
, k = 0, 1, . . . .

We say that the random variable M = 0 a.s. has a Pois(0) distribution. Now
we are ready to define the Poisson process.

Definition 2.1.1 (Poisson process)
A stochastic process N = (N(t))t≥0 is said to be a Poisson process if the
following conditions hold:

(1) The process starts at zero: N(0) = 0 a.s.
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8 2 Models for the Claim Number Process

(2) The process has independent increments: for any ti, i = 0, . . . , n, and
n ≥ 1 such that 0 = t0 < t1 < · · · < tn, the increments N(ti−1, ti],
i = 1, . . . , n, are mutually independent.

(3) There exists a non-decreasing right-continuous function μ : [0,∞) →
[0,∞) with μ(0) = 0 such that the increments N(s, t] for 0 < s < t < ∞
have a Poisson distribution Pois(μ(s, t]). We call μ the mean value func-
tion of N .

(4) With probability 1, the sample paths (N(t, ω))t≥0 of the process N are
right-continuous for t ≥ 0 and have limits from the left for t > 0. We say
that N has càdlàg (continue à droite, limites à gauche) sample paths.

We continue with some comments on this definition and some immediate
consequences.

We know that a Poisson random variable M has the rare property that

λ = EM = var(M) ,

i.e., it is determined only by its mean value (= variance) if the distribution is
specified as Poisson. The definition of the Poisson process essentially says that,
in order to determine the distribution of the Poisson process N , it suffices to
know its mean value function. The mean value function μ can be considered
as an inner clock or operational time of the counting process N . Depending
on the magnitude of μ(s, t] in the interval (s, t], s < t, it determines how large
the random increment N(s, t] is.

Since N(0) = 0 a.s. and μ(0) = 0,

N(t) = N(t) − N(0) = N(0, t] ∼ Pois(μ(0, t]) = Pois(μ(t)) .

We know that the distribution of a stochastic process (in the sense of
Kolmogorov’s consistency or existence theorem1) is determined by its finite-
dimensional distributions. The finite-dimensional distributions of a Poisson
process have a rather simple structure: for 0 = t0 < t1 < · · · < tn < ∞,

(N(t1), N(t2), . . . , N(tn)) =

(
N(t1), N(t1) + N(t1, t2], N(t1) + N(t1, t2] + N(t2, t3], . . . ,

n∑

i=1

N(ti−1, ti]
)
.

where any of the random variables on the right-hand side is Poisson dis-
tributed. The independent increment property makes it easy to work with the
finite-dimensional distributions of N : for any integers ki ≥ 0, i = 1, . . . , n,
1 Two stochastic processes on the real line have the same distribution in the sense

of Kolmogorov’s consistency theorem (cf. Rogers and Williams [126], p. 123, or
Billingsley [18], p. 510) if their finite-dimensional distributions coincide. Here one
considers the processes as random elements with values in the product space
R

[0,∞) of real-valued functions on [0,∞), equipped with the σ-field generated by
the cylinder sets of R

[0,∞).
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P (N(t1) = k1 , N(t2) = k1 + k2 , . . . , N(tn) = k1 + · · · + kn)

= P (N(t1) = k1 , N(t1, t2] = k2 , . . . , N(tn−1, tn] = kn)

= e−μ(t1)
(μ(t1))k1

k1!
e−μ(t1,t2]

(μ(t1, t2])k2

k2!
· · · e−μ(tn−1,tn] (μ(tn−1, tn])kn

kn!

= e−μ(tn) (μ(t1))k1

k1!
(μ(t1, t2])k2

k2!
· · · (μ(tn−1, tn])kn

kn!
.

The càdlàg property is nothing but a standardization property and of
purely mathematical interest which, among other things, ensures the measur-
ability property of the stochastic process N in certain function spaces.2 As
a matter of fact, it is possible to show that one can define a process N on
[0,∞) satisfying properties (1)-(3) of the Poisson process and having sample
paths which are left-continuous and have limits from the right.3 Later, in Sec-
tion 2.1.4, we will give a constructive definition of the Poisson process. That
version will automatically be càdlàg.

2.1.1 The Homogeneous Poisson Process, the Intensity Function,
the Cramér-Lundberg Model

The most popular Poisson process corresponds to the case of a linear mean
value function μ:

μ(t) = λ t , t ≥ 0 ,

for some λ > 0. A process with such a mean value function is said to be homo-
geneous, inhomogeneous otherwise. The quantity λ is the intensity or rate of
the homogeneous Poisson process. If λ = 1, N is called standard homogeneous
Poisson process.

More generally, we say that N has an intensity function or rate function
λ if μ is absolutely continuous, i.e., for any s < t the increment μ(s, t] has
representation

μ(s, t] =
∫ t

s

λ(y) dy , s < t ,

for some non-negative measurable function λ. A particular consequence is that
μ is a continuous function.

We mentioned that μ can be interpreted as operational time or inner clock
of the Poisson process. If N is homogeneous, time evolves linearly: μ(s, t] =
μ(s + h, t + h] for any h > 0 and 0 ≤ s < t < ∞. Intuitively, this means that

2 A suitable space is the Skorokhod space D of càdlàg functions on [0,∞); cf.
Billingsley [17].

3 See Chapter 2 in Sato [132].
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claims arrive roughly uniformly over time. We will see later, in Section 2.1.6,
that this intuition is supported by the so-called order statistics property of a
Poisson process. If N has non-constant intensity function λ time “slows down”
or “speeds up” according to the magnitude of λ(t). In Figure 2.1.2 we illustrate
this effect for different choices of λ. In an insurance context, non-constant λ
may refer to seasonal effects or trends. For example, in Denmark more car
accidents happen in winter than in summer due to bad weather conditions.
Trends can, for example, refer to an increasing frequency of (in particular,
large) claims over the last few years. Such an effect has been observed in
windstorm insurance in Europe and is sometimes mentioned in the context of
climate change. Table 3.2.18 contains the largest insurance losses occurring in
the period 1970-2007: it is obvious that the arrivals of the largest claim sizes
cluster towards the end of this time period. We also refer to Section 2.1.7 for
an illustration of seasonal and trend effects in a real-life claim arrival sequence.

A homogeneous Poisson process with intensity λ has

(1) càdlàg sample paths,
(2) starts at zero,
(3) has independent and stationary increments,
(4) N(t) is Pois(λt) distributed for every t > 0.

Stationarity of the increments refers to the fact that for any 0 ≤ s < t and
h > 0,

N(s, t] d= N(s + h, t + h] ∼ Pois(λ (t − s)) ,

i.e., the Poisson parameter of an increment only depends on the length of the
interval, not on its location.

A process on [0,∞) with properties (1)-(3) is called a Lévy process.4 The
homogeneous Poisson process is one of the prime examples of Lévy processes
with applications in various areas such as queuing theory, finance, insurance,
stochastic networks, to name a few. Another prime example of a Lévy process
is Brownian motion B. In contrast to the Poisson process, which is a pure jump
process, Brownian motion has continuous sample paths with probability 1 and
its increments B(s, t] are normally N(0, σ2 (t− s)) distributed for some σ > 0.
Brownian motion has a multitude of applications in physics and finance, but
also in insurance mathematics. Over the last 30 years, Brownian motion has
been used to model prices of speculative assets (share prices, foreign exchange
rates, composite stock indices, etc.).

Finance and insurance have been merging for many years. Among other
things, insurance companies invest in financial derivatives (options, futures,
etc.) which are commonly modeled by functions of Brownian motion such as
solutions to stochastic differential equations. If one wants to take into account
4 We refer to Chapter 10 for an introduction to the theory of general Lévy processes

and their relation with the Poisson process.
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Figure 2.1.2 One sample path of a Poisson process with intensity 0.5 (top left), 1
(top right) and 2 (bottom). The straight lines indicate the corresponding mean value
functions. For λ = 0.5 jumps occur less often than for the standard homogeneous
Poisson process, whereas they occur more often when λ = 2.

jump characteristics of real-life financial/insurance phenomena, the Poisson
process, or one of its many modifications, in combination with Brownian mo-
tion, offers the opportunity to model financial/insurance data more realisti-
cally. In this course, we follow the classical tradition of non-life insurance,
where Brownian motion plays a less prominent role. This is in contrast to
modern life insurance which deals with the inter-relationship of financial and
insurance products.5 For example, unit-linked life insurance can be regarded
as classical life insurance which is linked to a financial underlying such as a
composite stock index (DAX, S&P 500, Nikkei, CAC40, etc.). Depending on

5 For a recent treatment of modern life insurance mathematics, see Møller and
Steffensen [112].
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the performance of the underlying, the policyholder can gain an additional
bonus in excess of the cash amount which is guaranteed by the classical life
insurance contracts.

Now we introduce one of the models which will be most relevant through-
out this text.

Example 2.1.3 (The Cramér-Lundberg model)
The homogeneous Poisson process plays a major role in insurance mathemat-
ics. If we specify the claim number process as a homogeneous Poisson process,
the resulting model which combines claim sizes and claim arrivals is called
Cramér-Lundberg model:

• Claims happen at the arrival times 0 ≤ T1 ≤ T2 ≤ · · · of a homogeneous
Poisson process N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0.

• The ith claim arriving at time Ti causes the claim size Xi. The sequence
(Xi) constitutes an iid sequence of non-negative random variables.

• The sequences (Ti) and (Xi) are independent. In particular, N and (Xi)
are independent.

The total claim amount process S in the Cramér-Lundberg model is also called
a compound Poisson process.

The Cramér-Lundberg model is one of the most popular and useful models
in non-life insurance mathematics. Despite its simplicity it describes some of
the essential features of the total claim amount process which is observed in
reality.

We mention in passing that the total claim amount process S in the
Cramér-Lundberg setting is a process with independent and stationary in-
crements, starts at zero and has càdlàg sample paths. It is another important
example of a Lévy process. Try to show these properties! �

Comments

The reader who wants to learn about Lévy processes is referred to Sato’s
monograph [132] or the references given in Chapter 10. There we give a short
introduction to this class of processes and explain the close relationship with
general Poisson processes. For applications of Lévy processes in different ar-
eas, see the recent collection of papers edited by Barndorff-Nielsen et al. [12].
Rogers and Williams [126] can be recommended as an introduction to Brow-
nian motion, its properties and related topics such as stochastic differential
equations. For an elementary introduction, see Mikosch [107].

2.1.2 The Markov Property

Poisson processes constitute one particular class of Markov processes on [0,∞)
with state space N0 = {0, 1, . . .}. This is a simple consequence of the inde-
pendent increment property. It is left as an exercise to verify the Markov
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property, i.e., for any 0 = t0 < t1 < · · · < tn and non-decreasing natural
numbers ki ≥ 0, i = 1, . . . , n, n ≥ 2,

P (N(tn) = kn | N(t1) = k1 , . . . , N(tn−1) = kn−1)

= P (N(tn) = kn | N(tn−1) = kn−1) .

Markov process theory does not play a prominent role in this course,6 in
contrast to a course on modern life insurance mathematics, where Markov
models are fundamental.7 However, the intensity function of a Poisson process
N has a nice interpretation as the intensity function of the Markov process
N . Before we make this statement precise, recall that the quantities

pk,k+h(s, t) = P (N(t) = k + h | N(s) = k) = P (N(t) − N(s) = h) ,

0 ≤ s < t , k , h ∈ N0 ,

are called the transition probabilities of the Markov process N with state
space N0. Since a.e. path (N(t, ω))t≥0 increases (verify this), one only needs
to consider transitions of the Markov process N from k to k+h for h ≥ 0. The
transition probabilities are closely related to the intensities which are given
as the limits

λk,k+h(t) = lim
s↓0

pk,k+h(t, t + s)
s

,

provided they and their analogs from the left exist, are finite and coincide.
From the theory of stochastic processes, we know that the intensities and
the initial distribution of a Markov process determine the distribution of this
Markov process.8

Proposition 2.1.4 (Relation of the intensity function of the Poisson process
and its Markov intensities)
Consider a Poisson process N = (N(t))t≥0 which has a continuous intensity
function λ on [0,∞). Then, for k ≥ 0,

λk,k+h(t) =

{
λ(t) if h = 1 ,

0 if h > 1 .

In words, the intensity function λ(t) of the Poisson process N is nothing but
the intensity of the Markov process N for the transition from state k to state
k + 1. The proof of this result is left as an exercise.
6 It is, however, no contradiction to say that almost all stochastic models in this

course have a Markov structure. But we do not emphasize this property.
7 See for example Koller [87] and Møller and Steffensen [112].
8 We leave this statement as vague as it is. The interested reader is, for example,

referred to Resnick [123] or Rogers and Williams [126] for further reading on
Markov processes.
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The intensity function of a Markov process is a quantitative measure of
the likelihood that the Markov process N jumps in a small time interval. An
immediate consequence of Proposition 2.1.4 is that is it is very unlikely that
a Poisson process with continuous intensity function λ has jump sizes larger
than 1. Indeed, consider the probability that N has a jump greater than 1 in
the interval (t, t + s] for some t ≥ 0, s > 0:9

P (N(t, t + s] ≥ 2) = 1 − P (N(t, t + s] = 0) − P (N(t, t + s] = 1)

= 1 − e−μ(t,t+s] − μ(t, t + s] e−μ(t,t+s] . (2.1.1)

Since λ is continuous,

μ(t, t + s] =
∫ t+s

t

λ(y) dy = s λ(t) (1 + o(1)) → 0 , as s ↓ 0 .

Moreover, a Taylor expansion yields for x → 0 that e x = 1 + x + o(x). Thus
we may conclude from (2.1.1) that, as s ↓ 0,

P (N(t, t + s] ≥ 2) = o(μ(t, t + s]) = o(s) . (2.1.2)

It is easily seen that

P (N(t, t + s] = 1) = λ(t) s (1 + o(1)) . (2.1.3)

Relations (2.1.2) and (2.1.3) ensure that a Poisson process N with continuous
intensity function λ is very unlikely to have jump sizes larger than 1. Indeed,
we will see in Section 2.1.4 that N has only upward jumps of size 1 with
probability 1.

2.1.3 Relations Between the Homogeneous and the
Inhomogeneous Poisson Process

The homogeneous and the inhomogeneous Poisson processes are very closely
related: we will show in this section that a deterministic time change trans-
forms a homogeneous Poisson process into an inhomogeneous Poisson process,
and vice versa.

Let N be a Poisson process on [0,∞) with mean value function10 μ. We
start with a standard homogeneous Poisson process Ñ and define
9 Here and in what follows, we frequently use the o-notation. Recall that we write for

any real-valued function h, h(x) = o(1) as x → x0 ∈ [−∞,∞] if limx→x0 h(x) = 0
and we write h(x) = o(g(x)) as x → x0 if h(x) = g(x) o(1) for any real-valued
function g(x).

10 Recall that the mean value function of a Poisson process starts at zero, is non-
decreasing, right-continuous and finite on [0,∞). In particular, it is a càdlàg
function.
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N̂(t) = Ñ(μ(t)) , t ≥ 0 .

It is not difficult to see that N̂ is again a Poisson process on [0,∞). (Verify
this! Notice that the càdlàg property of μ is used to ensure the càdlàg property
of the sample paths N̂(t, ω).) Since

μ̂(t) = EN̂(t) = EÑ(μ(t)) = μ(t) , t ≥ 0 ,

and since the distribution of the Poisson process N̂ is determined by its mean
value function μ̂, it follows that N

d= N̂ , where d= refers to equality of the
finite-dimensional distributions of the two processes. Hence the processes N̂
and N are not distinguishable from a probabilistic point of view, in the sense
of Kolmogorov’s consistency theorem; see the remark on p. 8. Moreover, the
sample paths of N̂ are càdlàg as required in the definition of the Poisson
process.

Now assume that N has a continuous and increasing mean value function
μ. This property is satisfied if N has an a.e. positive intensity function λ. Then
the inverse μ−1 of μ exists. It is left as an exercise to show that the process
Ñ(t) = N(μ−1(t)) is a standard homogeneous Poisson process on [0,∞) if
limt→∞ μ(t) = ∞.11

We summarize our findings.

Proposition 2.1.5 (The Poisson process under change of time)
Let μ be the mean value function of a Poisson process N and Ñ be a standard
homogeneous Poisson process. Then the following statements hold:

(1) The process (Ñ(μ(t)))t≥0 is Poisson with mean value function μ.
(2) If μ is continuous, increasing and limt→∞ μ(t) = ∞ then (N(μ−1(t)))t≥0

is a standard homogeneous Poisson process.

This result, which immediately follows from the definition of a Poisson process,
allows one in most cases of practical interest to switch from an inhomogeneous
Poisson process to a homogeneous one by a simple time change. In particular,
it suggests a straightforward way of simulating sample paths of an inhomoge-
neous Poisson process N from the paths of a homogeneous Poisson process.
In an insurance context, one will usually be faced with inhomogeneous claim
arrival processes. The above theory allows one to make an “operational time
change” to a homogeneous model for which the theory is more accessible. See
also Section 2.1.7 for a real-life example.

11 If limt→∞ μ(t) = y0 < ∞ for some y0 > 0, μ−1 is defined on [0, y0) and Ñ(t) =
N(μ−1(t)) satisfies the properties of a standard homogeneous Poisson process
restricted to the interval [0, y0). In Section 2.1.8 it is explained that such a process
can be interpreted as a Poisson process on [0, y0).
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2.1.4 The Homogeneous Poisson Process as a Renewal Process

In this section we study the sequence of the arrival times 0 ≤ T1 ≤ T2 ≤ · · ·
of a homogeneous Poisson process with intensity λ > 0. It is our aim to find
a constructive way for determining the sequence of arrivals, which in turn
can be used as an alternative definition of the homogeneous Poisson process.
This characterization is useful for studying the path properties of the Poisson
process or for simulating sample paths.

We will show that any homogeneous Poisson process with intensity λ > 0
has representation

N(t) = #{i ≥ 1 : Ti ≤ t} , t ≥ 0 , (2.1.4)

where

Tn = W1 + · · · + Wn , n ≥ 1 , (2.1.5)

and (Wi) is an iid exponential Exp(λ) sequence. In what follows, it will be
convenient to write T0 = 0. Since the random walk (Tn) with non-negative
step sizes Wn is also referred to as renewal sequence, a process N with rep-
resentation (2.1.4)-(2.1.5) for a general iid sequence (Wi) is called a renewal
(counting) process. We will consider general renewal processes in Section 2.2.

Theorem 2.1.6 (The homogeneous Poisson process as a renewal process)

(1) The process N given by (2.1.4) and (2.1.5) with an iid exponential Exp(λ)
sequence (Wi) constitutes a homogeneous Poisson process with intensity
λ > 0.

(2) Let N be a homogeneous Poisson process with intensity λ and arrival
times 0 ≤ T1 ≤ T2 ≤ · · · . Then N has representation (2.1.4), and (Ti)
has representation (2.1.5) for an iid exponential Exp(λ) sequence (Wi).

Proof. (1) We start with a renewal sequence (Tn) as in (2.1.5) and set T0 =
0 for convenience. Recall the defining properties of a Poisson process from
Definition 2.1.1. The property N(0) = 0 a.s. follows since W1 > 0 a.s. By
construction, a path (N(t, ω))t≥0 assumes the value i in [Ti, Ti+1) and jumps
at Ti+1 to level i+1. Hence the sample paths are càdlàg; cf. p. 8 for a definition.

Next we verify that N(t) is Pois(λt) distributed. The crucial relationship
is given by

{N(t) = n} = {Tn ≤ t < Tn+1} , n ≥ 0 . (2.1.6)

Since Tn = W1 + · · ·+ Wn is the sum of n iid Exp(λ) random variables it is a
well-known property that Tn has a gamma Γ (n, λ) distribution12 for n ≥ 1:
12 You can easily verify that this is the distribution function of a Γ (n, λ) distribution

by taking the first derivative. The resulting probability density has the well-known
gamma form λ (λ x)n−1e −λ x/(n − 1)!. The Γ (n, λ) distribution for n ∈ N is also
known as the Erlang distribution with parameter (n, λ).
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P (Tn ≤ x) = 1 − e−λ x
n−1∑

k=0

(λ x)k

k!
, x ≥ 0 .

Hence

P (N(t) = n) = P (Tn ≤ t) − P (Tn+1 ≤ t) = e−λ t (λ t)n

n!
.

This proves the Poisson property of N(t).
Now we switch to the independent stationary increment property. We use

a direct “brute force” method to prove this property. A more elegant way
via point process techniques is indicated in Resnick [123], Proposition 4.8.1.
Since the case of arbitrarily many increments becomes more involved, we focus
on the case of two increments in order to illustrate the method. The general
case is analogous but requires some bookkeeping. We focus on the adjacent
increments N(t) = N(0, t] and N(t, t + h] for t, h > 0. We have to show that
for any k, l ∈ N0,

qk,k+l(t, t + h) = P (N(t) = k ,N(t, t + h] = l)

= P (N(t) = k)P (N(t, t + h] = l)

= P (N(t) = k)P (N(h) = l)

= e−λ (t+h) (λ t)k (λh)l

k! l!
. (2.1.7)

We start with the case l = 0, k ≥ 1; the case l = k = 0 being trivial. We make
use of the relation

{N(t) = k ,N(t, t + h] = l} = {N(t) = k ,N(t + h) = k + l} . (2.1.8)

Then, by (2.1.6) and (2.1.8) ,

qk,k+l(t, t + h) = P (Tk ≤ t < Tk+1 , Tk ≤ t + h < Tk+1)

= P (Tk ≤ t , t + h < Tk + Wk+1) .

Now we can use the facts that Tk is Γ (k, λ) distributed with density λk

xk−1 e−λ x /(k − 1)! and Wk+1 is Exp(λ) distributed with density λ e−λ x:

qk,k+l(t, t + h) =
∫ t

0

e−λ z λ (λ z)k−1

(k − 1)!

∫ ∞

t+h−z

λ e−λ x dx dz

=
∫ t

0

e−λ z λ (λ z)k−1

(k − 1)!
e−λ (t+h−z) dz

= e−λ (t+h) (λ t)k

k!
.
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For l ≥ 1 we use another conditioning argument and (2.1.6):

qk,k+l(t, t + h)

= P (Tk ≤ t < Tk+1 , Tk+l ≤ t + h < Tk+l+1)

= E[I{Tk≤t<Tk+1≤t+h}

P (Tk+l − Tk+1 ≤ t + h − Tk+1 < Tk+l+1 − Tk+1 | Tk , Tk+1)] .

Let N ′ be an independent copy of N , i.e., N ′ d= N . Appealing to (2.1.6) and
the independence of Tk+1 and (Tk+l − Tk+1, Tk+l+1 − Tk+1), we see that

qk,k+l(t, t + h)

= E[I{Tk≤t<Tk+1≤t+h} P (N ′(t + h − Tk+1) = l − 1 | Tk+1)]

=
∫ t

0

e−λ z λ (λ z)k−1

(k − 1)!

∫ t+h−z

t−z

λ e−λ x P (N(t + h − z − x) = l − 1) dx dz

=
∫ t

0

e−λ z λ (λ z)k−1

(k − 1)!

∫ t+h−z

t−z

λ e−λ x e−λ (t+h−z−x) (λ (t + h − z − x))l−1

(l − 1)!
dx dz

= e−λ (t+h)

∫ t

0

λ (λ z)k−1

(k − 1)!
dz

∫ h

0

λ (λ x)l−1

(l − 1)!
dx

= e−λ (t+h) (λ t)k

k!
(λh)l

l!
.

This is the desired relationship (2.1.7). Since

P (N(t, t + h] = l) =
∞∑

k=0

P (N(t) = k ,N(t, t + h] = l) ,

it also follows from (2.1.7) that

P (N(t) = k ,N(t, t + h] = l) = P (N(t) = k)P (N(h) = l) .

If you have enough patience prove the analog to (2.1.7) for finitely many
increments of N .
(2) Consider a homogeneous Poisson process with arrival times 0 ≤ T1 ≤ T2 ≤
· · · and intensity λ > 0. We need to show that there exist iid exponential
Exp(λ) random variables Wi such that Tn = W1 + · · · + Wn, i.e., we need to
show that, for any 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn, n ≥ 1,

P (T1 ≤ x1 , . . . , Tn ≤ xn)

= P (W1 ≤ x1 , . . . ,W1 + · · · + Wn ≤ xn)

=
∫ x1

w1=0

λ e−λ w1

∫ x2−w1

w2=0

λ e−λ w2 · · ·
∫ xn−w1−···−wn−1

wn=0

λ e−λ wn dwn · · · dw1.
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The verification of this relation is left as an exercise. Hint: It is useful to
exploit the relationship

{T1 ≤ x1 , . . . , Tn ≤ xn} = {N(x1) ≥ 1 , . . . , N(xn) ≥ n}

for 0 ≤ x1 ≤ · · · ≤ xn, n ≥ 1. �
An important consequence of Theorem 2.1.6 is that the inter-arrival times

Wi = Ti − Ti−1 , i ≥ 1 ,

of a homogeneous Poisson process with intensity λ are iid Exp(λ). In partic-
ular, Ti < Ti+1 a.s. for i ≥ 1, i.e., with probability 1 a homogeneous Poisson
process does not have jump sizes larger than 1. Since by the strong law of
large numbers Tn/n

a.s.→ EW1 = λ−1 > 0, we may also conclude that Tn grows
roughly like n/λ, and therefore there are no limit points in the sequence (Tn)
at any finite instant of time. This means that the values N(t) of a homoge-
neous Poisson process are finite on any finite time interval [0, t].

The Poisson process has many amazing properties. One of them is the
following phenomenon which runs in the literature under the name inspection
paradox.

Example 2.1.7 (The inspection paradox)
Assume that you study claims which arrive in the portfolio according to a
homogeneous Poisson process N with intensity λ. We have learned that the
inter-arrival times Wn = Tn − Tn−1, n ≥ 1, with T0 = 0, constitute an iid
Exp(λ) sequence. Observe the portfolio at a fixed instant of time t. The last
claim arrived at time TN(t) and the next claim will arrive at time TN(t)+1.
Three questions arise quite naturally:

(1) What is the distribution of B(t) = t− TN(t), i.e., the length of the period
(TN(t), t] since the last claim occurred?

(2) What is the distribution of F (t) = TN(t)+1−t, i.e., the length of the period
(t, TN(t)+1] until the next claim arrives?

(3) What can be said about the joint distribution of B(t) and F (t)?

The quantity B(t) is often referred to as backward recurrence time or age,
whereas F (t) is called forward recurrence time, excess life or residual life.

Intuitively, since t lies somewhere between two claim arrivals and since the
inter-arrival times are iid Exp(λ), we would perhaps expect that P (B(t) ≤
x1) < 1 − e−λ x1 , x1 < t, and P (F (t) ≤ x2) < 1 − e−λ x2 , x2 > 0. However,
these conjectures are not confirmed by calculation of the joint distribution
function of B(t) and F (t) for x1, x2 ≥ 0:

GB(t),F (t)(x1, x2) = P (B(t) ≤ x1 , F (t) ≤ x2) .

Since B(t) ≤ t a.s. we consider the cases x1 < t and x1 ≥ t separately. We
observe for x1 < t and x2 > 0,
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{B(t) ≤ x1} =
{
t − x1 ≤ TN(t) ≤ t

}
= {N(t − x1, t] ≥ 1} ,

{F (t) ≤ x2} =
{
t < TN(t)+1 ≤ t + x2

}
= {N(t, t + x2] ≥ 1} .

Hence, by the independent stationary increments of N ,

GB(t),F (t)(x1, x2) = P (N(t − x1, t] ≥ 1 , N(t, t + x2] ≥ 1)

= P (N(t − x1, t] ≥ 1) P (N(t, t + x2] ≥ 1)

=
(
1 − e−λ x1

) (
1 − e−λ x2

)
. (2.1.9)

An analogous calculation for x1 ≥ t, x2 ≥ 0 and (2.1.9) yield

GB(t),F (t)(x1, x2) =
[
(1 − e−λ x1) I[0,t)(x1) + I[t,∞)(x1)

] (
1 − e−λ x2

)
.

Hence B(t) and F (t) are independent, F (t) is Exp(λ) distributed and B(t)
has a truncated exponential distribution with a jump at t:

P (B(t) ≤ x1) = 1 − e−λ x1 , x1 < t , and P (B(t) = t) = e−λ t .

This means in particular that the forward recurrence time F (t) has the same
Exp(λ) distribution as the inter-arrival times Wi of the Poisson process N .
This property is closely related to the forgetfulness property of the exponential
distribution:

P (W1 > x + y | W1 > x) = P (W1 > y) , x , y ≥ 0 ,

(Verify the correctness of this relation.) and is also reflected in the independent
increment property of the Poisson process. It is interesting to observe that

lim
t→∞

P (B(t) ≤ x1) = 1 − e−λ x1 , x1 > 0 .

Thus, in an “asymptotic“ sense, both B(t) and F (t) become independent and
are exponentially distributed with parameter λ.

We will return to the forward and backward recurrence times of a general
renewal process, i.e., when Wi are not necessarily iid exponential random
variables, in Example 2.2.14. �

2.1.5 The Distribution of the Inter-Arrival Times

By virtue of Proposition 2.1.5, an inhomogeneous Poisson process N with
mean value function μ can be interpreted as a time changed standard homo-
geneous Poisson process Ñ :

(N(t))t≥0
d= (Ñ(μ(t)))t≥0 .

In particular, let (T̃i) be the arrival sequence of Ñ and μ be increasing and
continuous. Then the inverse μ−1 exists and
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N ′(t) = #{i ≥ 1 : T̃i ≤ μ(t)} = #{i ≥ 1 : μ−1(T̃i) ≤ t} , t ≥ 0 ,

is a representation of N in the sense of identity of the finite-dimensional
distributions, i.e., N

d= N ′. Therefore and by virtue of Theorem 2.1.6 the
arrival times of an inhomogeneous Poisson process with mean value function
μ have representation

Tn = μ−1(T̃n) , T̃n = W̃1 + · · · + W̃n , n ≥ 1 , W̃i iid Exp(1).
(2.1.10)

Proposition 2.1.8 (Joint distribution of arrival/inter-arrival times)
Assume N is a Poisson process on [0,∞) with a continuous a.e. positive in-
tensity function λ. Then the following statements hold.

(1) The vector of the arrival times (T1, . . . , Tn) has density

fT1,...,Tn
(x1, . . . , xn) = e−μ(xn)

n∏

i=1

λ(xi) I{0<x1<···<xn} . (2.1.11)

(2) The vector of inter-arrival times (W1, . . . ,Wn) = (T1, T2 − T1, . . . , Tn −
Tn−1) has density

fW1,...,Wn
(x1, . . . , xn) = e−μ(x1+···+xn)

n∏

i=1

λ(x1 + · · · + xi) , xi ≥ 0 .

(2.1.12)

Proof. Since the intensity function λ is a.e. positive and continuous, μ(t) =∫ t

0
λ(s) ds is increasing and μ−1 exists. Moreover, μ is differentiable, and

μ′(t) = λ(t). We make use of these two facts in what follows.
(1) We start with a standard homogeneous Poisson process. Then its arrivals
T̃n have representation T̃n = W̃1 + · · · + W̃n for an iid standard exponential
sequence (W̃i). The joint density of (T̃1, . . . , T̃n) is obtained from the joint
density of (W̃1, . . . , W̃n) via the transformation:

(y1, . . . , yn) S→ (y1, y1 + y2, . . . , y1 + · · · + yn) ,

(z1, . . . , zn) S−1

→ (z1, z2 − z1, . . . , zn − zn−1) .

Note that det(∂S(y)/∂y) = 1. Standard techniques for density transforma-
tions (cf. Billingsley [18], p. 229) yield for 0 < x1 < · · · < xn,

fT̃1,...,T̃n
(x1, . . . , xn) = f

W̃1,...,W̃n
(x1, x2 − x1, . . . , xn − xn−1)

= e−x1 e−(x2−x1) · · · e−(xn−xn−1) = e−xn .

Since μ−1 exists we conclude from (2.1.10) that for 0 < x1 < · · · < xn,
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P (T1 ≤ x1 , . . . , Tn ≤ xn) = P (μ−1(T̃1) ≤ x1 , . . . , μ−1(T̃n) ≤ xn)

= P (T̃1 ≤ μ(x1) , . . . , T̃n ≤ μ(xn))

=
∫ μ(x1)

0

· · ·
∫ μ(xn)

0

fT̃1 ,...,T̃n
(y1, . . . , yn) dyn · · · dy1

=
∫ μ(x1)

0

· · ·
∫ μ(xn)

0

e−yn I{y1<···<yn} dyn · · · dy1 .

Taking partial derivatives with respect to the variables x1, . . . , xn and noticing
that μ′(xi) = λ(xi), we obtain the desired density (2.1.11).
(2) Relation (2.1.12) follows by an application of the above transformations
S and S−1 from the density of (T1, . . . , Tn):

fW1,...,Wn
(w1, . . . , wn) = fT1,...,Tn

(w1, w1 + w2, . . . , w1 + · · · + wn) .

�
From (2.1.12) we may conclude that the joint density of W1, . . . ,Wn can be
written as the product of the densities of the Wi’s if and only if λ(·) ≡ λ
for some positive constant λ. This means that only in the case of a homo-
geneous Poisson process are the inter-arrival times W1, . . . ,Wn independent
(and identically distributed). This fact is another property which distinguishes
the homogeneous Poisson process within the class of all Poisson processes on
[0,∞).

2.1.6 The Order Statistics Property

In this section we study one of the most important properties of the Poisson
process which in a sense characterizes the Poisson process. It is the order
statistics property which it shares only with the mixed Poisson process to be
considered in Section 2.3. In order to formulate this property we first give a
well-known result on the distribution of the order statistics

X(1) ≤ · · · ≤ X(n)

of an iid sample X1, . . . , Xn.

Lemma 2.1.9 (Joint density of order statistics)
If the iid Xi’s have density f then the density of the vector (X(1), . . . , X(n))
is given by

fX(1),...,X(n)(x1, . . . , xn) = n!
n∏

i=1

f(xi) I{x1<···<xn} .

Remark 2.1.10 By construction of the order statistics, the support of the
vector (X(1) , . . . ,X(n)) is the set
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Cn = {(x1, . . . , xn) : x1 ≤ · · · ≤ xn} ⊂ R
n ,

and therefore the density fX(1),...,X(n) vanishes outside Cn. Since the existence
of a density of Xi implies that all elements of the iid sample X1, . . . , Xn are
different a.s., the ≤’s in the definition of Cn could be replaced by <’s. �

Proof. We start by recalling that the iid sample X1, . . . , Xn with common
density f has no ties. This means that the event

Ω̃ = {X(1) < · · · < X(n)} = {Xi �= Xj for 1 ≤ i < j ≤ n}

has probability 1. It is an immediate consequence of the fact that for i �= j,

P (Xi = Xj) = E[P (Xi = Xj | Xj)] =
∫

R

P (Xi = y) f(y) dy = 0 ,

since P (Xi = y) =
∫
{y} f(z) dz = 0. Then

1 − P (Ω̃) = P

⎛

⎝
⋃

1≤i<j≤n

{Xi = Xj}

⎞

⎠ ≤
∑

1≤i<j≤n

P (Xi = Xj) = 0 .

Now we turn to the proof of the statement of the lemma. Let Πn be the set
of the permutations π of {1, . . . , n}. Fix the values x1 < · · · < xn. Then

P
(
X(1) ≤ x1 , . . . ,X(n) ≤ xn

)
= P

(
⋃

π∈Πn

Aπ

)
, (2.1.13)

where

Aπ = {Xπ(i) = X(i) , i = 1 , . . . , n} ∩ Ω̃ ∩ {Xπ(1) ≤ x1 , . . . ,Xπ(n) ≤ xn} .

The identity (2.1.13) means that the ordered sample X(1) < · · · < X(n) could
have come from any of the ordered values Xπ(1) < · · · < Xπ(n), π ∈ Πn, where
we also make use of the fact that there are no ties in the sample. Since the
Aπ’s are disjoint,

P

(
⋃

π∈Πn

Aπ

)
=

∑

π∈Πn

P (Aπ) .

Moreover, since the Xi’s are iid,

P (Aπ) = P
(
(Xπ(1) , . . . ,Xπ(n)) ∈ Cn ∩ (−∞, x1] × · · · × (−∞, xn]

)

= P ((X1, . . . , Xn) ∈ Cn ∩ (−∞, x1] × · · · × (−∞, xn])

=
∫ x1

−∞
· · ·

∫ xn

−∞

n∏

i=1

f(yi) I{y1<···<yn} dyn · · · dy1 .
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Therefore and since there are n! elements in Πn,

P
(
X(1) ≤ x1 , . . . ,X(n) ≤ xn

)

=
∫ x1

−∞
· · ·

∫ xn

−∞
n!

n∏

i=1

f(yi) I{y1<···<yn} dyn · · · dy1 . (2.1.14)

By Remark 2.1.10 about the support of (X(1), . . . , X(n)) and by virtue of the
Radon-Nikodym theorem, we can read off the density of (X(1), . . . , X(n)) as
the integrand in (2.1.14). Indeed, the Radon-Nikodym theorem ensures that
the integrand is the a.e. unique probability density of (X(1) , . . . ,X(n)).13 �
We are now ready to formulate one of the main results of this course.

Theorem 2.1.11 (Order statistics property of the Poisson process)
Consider the Poisson process N = (N(t))t≥0 with continuous a.e. positive
intensity function λ and arrival times 0 < T1 < T2 < · · · a.s. Then the
conditional distribution of (T1, . . . , Tn) given {N(t) = n} is the distribution of
the ordered sample (X(1), . . . , X(n)) of an iid sample X1, . . . , Xn with common
density λ(x)/μ(t), 0 < x ≤ t:

(T1, . . . , Tn | N(t) = n) d= (X(1), . . . , X(n)) .

In other words, the left-hand vector has conditional density

fT1,...,Tn
(x1, . . . , xn | N(t) = n) =

n!
(μ(t))n

n∏

i=1

λ(xi) , (2.1.15)

0 < x1 < · · · < xn < t .

Proof. We show that the limit

lim
hi↓0 , i=1,...,n

P (T1 ∈ (x1, x1 + h1] , . . . , Tn ∈ (xn, xn + hn] | N(t) = n)
h1 · · ·hn

(2.1.16)

exists and is a continuous function of the xi’s. A similar argument (which
we omit) proves the analogous statement for the intervals (xi − hi, xi] with
the same limit function. The limit can be interpreted as a density for the
conditional probability distribution of (T1, . . . , Tn), given {N(t) = n}.
13 Relation (2.1.14) means that for all rectangles R = (−∞, x1]×· · ·×(−∞, xn] with

0 ≤ x1 < · · · < xn and for Xn = (X(1), . . . , X(n)), P (Xn ∈ R) =
∫

R
fXn(x) dx.

By the particular form of the support of Xn, the latter relation remains valid for
any rectangles in R

n. An extension argument (cf. Billingsley [18]) ensures that
the distribution of Xn is absolutely continuous with respect to Lebesgue measure
with a density which coincides with fXn on the rectangles. The Radon-Nikodym
theorem ensures the a.e. uniqueness of fXn .
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Figure 2.1.12 Five realizations of the arrival times Ti of a standard homogeneous
Poisson process conditioned to have 20 arrivals in [0, 1]. The arrivals in each row
can be interpreted as the ordered sample of an iid U(0, 1) sequence.

Since 0 < x1 < · · · < xn < t we can choose the hi’s so small that the
intervals (xi, xi +hi] ⊂ [0, t], i = 1, . . . , n, become disjoint. Then the following
identity is immediate:

{T1 ∈ (x1, x1 + h1] , . . . , Tn ∈ (xn, xn + hn] , N(t) = n}

= {N(0, x1] = 0 , N(x1, x1 + h1] = 1 , N(x1 + h1, x2] = 0 ,

N(x2, x2 + h2] = 1 , . . . , N(xn−1 + hn−1, xn] = 0 ,

N(xn, xn + hn] = 1 , N(xn + hn, t] = 0} .

Taking probabilities on both sides and exploiting the independent increments
of the Poisson process N , we obtain

P (T1 ∈ (x1, x1 + h1] , . . . , Tn ∈ (xn, xn + hn] , N(t) = n)

= P (N(0, x1] = 0) P (N(x1, x1 + h1] = 1) P (N(x1 + h1, x2] = 0)

P (N(x2, x2 + h2] = 1) · · ·P (N(xn−1 + hn−1, xn] = 0)

P (N(xn, xn + hn] = 1) P (N(xn + hn, t] = 0)
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= e−μ(x1)
[
μ(x1, x1 + h1] e−μ(x1,x1+h1]

]
e−μ(x1+h1,x2]

[
μ(x2, x2 + h2] e−μ(x2,x2+h2]

]
· · · e−μ(xn−1+hn−1,xn]

[
μ(xn, xn + hn] e−μ(xn,xn+hn]

]
e−μ(xn+hn,t]

= e−μ(t) μ(x1, x1 + h1] · · ·μ(xn, xn + hn] .

Dividing by P (N(t) = n) = e−μ(t)(μ(t))n/n! and h1 · · ·hn, we obtain the
scaled conditional probability

P (T1 ∈ (x1, x1 + h1] , . . . , Tn ∈ (xn, xn + hn] | N(t) = n)
h1 · · ·hn

=
n!

(μ(t))n

μ(x1, x1 + h1]
h1

· · · μ(xn, xn + hn]
hn

→ n!
(μ(t))n

λ(x1) · · ·λ(xn) , as hi ↓ 0, i = 1, . . . , n.

Keeping in mind (2.1.16), this is the desired relation (2.1.15). In the last step
we used the continuity of λ to show that μ′(xi) = λ(xi). �
Example 2.1.13 (Order statistics property of the homogeneous Poisson pro-
cess)
Consider a homogeneous Poisson process with intensity λ > 0. Then Theo-
rem 2.1.11 yields the joint conditional density of the arrival times Ti:

fT1,...,Tn
(x1, . . . , xn | N(t) = n) = n! t−n , 0 < x1 < · · · < xn < t .

A glance at Lemma 2.1.9 convinces one that this is the joint density of a
uniform ordered sample U(1) < · · · < U(n) of iid U(0, t) distributed U1, . . . , Un.
Thus, given there are n arrivals of a homogeneous Poisson process in the
interval [0, t], these arrivals constitute the points of a uniform ordered sample
in (0, t). In particular, this property is independent of the intensity λ! �

Example 2.1.14 (Symmetric function)
We consider a symmetric measurable function g on R

n, i.e., for any permuta-
tion π of {1, . . . , n} we have

g(x1, . . . , xn) = g(xπ(1), . . . , xπ(n)) .

Such functions include products and sums:

gs(x1, . . . , xn) =
n∑

i=1

xi , gp(x1, . . . , xn) =
n∏

i=1

xi .
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Under the conditions of Theorem 2.1.11 and with the same notation, we con-
clude that

(g(T1, . . . , Tn) | N(t) = n) d= g(X(1), . . . , X(n)) = g(X1, . . . , Xn) .

For example, for any measurable function f on R,
(

n∑

i=1

f(Ti)

∣∣∣∣∣ N(t) = n

)
d=

n∑

i=1

f(X(i)) =
n∑

i=1

f(Xi) .

�

Example 2.1.15 (Shot noise)
This kind of stochastic process was used early on to model an electric current.
Electrons arrive according to a homogeneous Poisson process N with rate
λ at times Ti. An arriving electron produces an electric current whose time
evolution of discharge is described as a deterministic function f with f(t) = 0
for t < 0. Shot noise describes the electric current at time t produced by all
electrons arrived by time t as a superposition:

S(t) =
N(t)∑

i=1

f(t − Ti) .

Typical choices for f are exponential functions f(t) = e−θ t I[0,∞)(t), θ > 0.
An extension of classical shot noise processes with various applications is the
process

S(t) =
N(t)∑

i=1

Xi f(t − Ti) , t ≥ 0 , (2.1.17)

where

• (Xi) is an iid sequence, independent of (Ti).
• f is a deterministic function with f(t) = 0 for t < 0.

For example, if we assume that the Xi’s are positive random variables, S(t) is
a generalization of the Cramér-Lundberg model, see Example 2.1.3. Indeed,
choose f = I[0,∞), then the shot noise process (2.1.17) is the total claim
amount in the Cramér-Lundberg model. In an insurance context, f can also
describe delay in claim settlement or some discount factor.

Delay in claim settlement is for example described by a function f satis-
fying

• f(t) = 0 for t < 0,
• f(t) is non-decreasing,
• limt→∞ f(t) = 1 .
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In contrast to the Cramér-Lundberg model, where the claim size Xi is paid off
at the time Ti when it occurs, a more general payoff function f(t) allows one
to delay the payment, and the speed at which this happens depends on the
growth of the function f . Delay in claim settlement is advantageous from the
point of view of the insurer. In the meantime the amount of money which was
not paid for covering the claim could be invested and would perhaps bring
some extra gain.

Suppose the amount Yi is invested at time Ti in a riskless asset (savings
account) with constant interest rate r > 0, (Yi) is an iid sequence of positive
random variables and the sequences (Yi) and (Ti) are independent. Contin-
uous compounding yields the amount exp{r(t − Ti)}Yi at time t > Ti. For
iid amounts Yi which are invested at the arrival times Ti of a homogeneous
Poisson process, the total value of all investments at time t is given by

S1(t) =
N(t)∑

i=1

e r (t−Ti) Yi , t ≥ 0 .

This is another shot noise process.
Alternatively, one may be interested in the present value of payments Yi

made at times Ti in the future. Then the present value with respect to the
time frame [0, t] is given as the discounted sum

S2(t) =
N(t)∑

i=1

e−r (t−Ti) Yi , t ≥ 0 .

A visualization of the sample paths of the processes S1 and S2 can be found
in Figure 2.1.17. �

The distributional properties of a shot noise process can be treated in the
framework of the following general result.

Proposition 2.1.16 Let (Xi) be an iid sequence, independent of the sequence
(Ti) of arrival times of a homogeneous Poisson process N with intensity λ.
Then for any measurable function g : R

2 → R the following identity in distri-
bution holds

S(t) =
N(t)∑

i=1

g(Ti ,Xi)
d=

N(t)∑

i=1

g(t Ui ,Xi) ,

where (Ui) is an iid U(0, 1) sequence, independent of (Xi) and (Ti).

Proof. A conditioning argument together with the order statistics property
of Theorem 2.1.11 yields that for x ∈ R,

P

⎛

⎝
N(t)∑

i=1

g(Ti,Xi) ≤ x

∣∣∣∣∣∣
N(t) = n

⎞

⎠ = P

(
n∑

i=1

g(t U(i),Xi) ≤ x

)
,



2.1 The Poisson Process 29

8006004002000

0
2

4
6

8

t

sh
ot

 n
oi

se

8006004002000
0

5
10

15
20

t

sh
ot

 n
oi

se

600 8004002000

0
2

4
6

8
10

12

t

sh
ot

 n
oi

se

8006004002000

0
20

40
60

80
10

0
12

0

t

sh
ot

 n
oi

se

Figure 2.1.17 Visualization of the paths of a shot noise process. Top: 80 paths
of the processes Yi e r (t−Ti), t ≥ Ti, where (Ti) are the point of a Poisson process
with intensity 0.1, (Yi) are iid standard exponential, r = −0.01 (left) and r =
0.001 (right). Bottom: The corresponding paths of the shot noise process S(t) =∑

Ti≤t Yi e r (t−Ti) presented as a superposition of the paths in the corresponding top
graphs. The graphs show nicely how the interest rate r influences the aggregated value
of future claims or payments Yi. We refer to Example 2.1.15 for a more detailed
description of these processes.
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where U1, . . . , Un is an iid U(0, 1) sample, independent of (Xi) and (Ti), and
U(1), . . . , U(n) is the corresponding ordered sample. By the iid property of (Xi)
and its independence of (Ui), we can permute the order of the Xi’s arbitrarily
without changing the distribution of

∑n
i=1 g(t U(i),Xi):

P

(
n∑

i=1

g(t U(i),Xi) ≤ x

)

= E

[
P

(
n∑

i=1

g(t U(i),Xi) ≤ x

∣∣∣∣∣ U1, . . . , Un

)]

= E

[
P

(
n∑

i=1

g(t U(i),Xπ(i)) ≤ x

∣∣∣∣∣ U1, . . . , Un

)]
, (2.1.18)

where π is any permutation of {1, . . . , n}. In particular, we can choose π such
that for given U1, . . . , Un, U(i) = Uπ(i) , i = 1, . . . , n.14 Then (2.1.18) turns
into

E

[
P

(
n∑

i=1

g(t Uπ(i),Xπ(i)) ≤ x

∣∣∣∣∣ U1, . . . , Un

)]

= E

[
P

(
n∑

i=1

g(t Ui,Xi) ≤ x

∣∣∣∣∣ U1, . . . , Un

)]

= P

(
n∑

i=1

g(t Ui,Xi) ≤ x

)
= P

⎛

⎝
N(t)∑

i=1

g(t Ui,Xi) ≤ x

∣∣∣∣∣∣
N(t) = n

⎞

⎠ .

Now it remains to take expectations:

P (S(t) ≤ x) = E[P (S(t) ≤ x | N(t))]

=
∞∑

n=0

P (N(t) = n) P

⎛

⎝
N(t)∑

i=1

g(Ti,Xi) ≤ x

∣∣∣∣∣∣
N(t) = n

⎞

⎠

14 We give an argument to make this step in the proof more transparent. Since (Ui)
and (Xi) are independent, it is possible to define ((Ui), (Xi)) on the product space
Ω1 ×Ω2 equipped with suitable σ-fields and probability measures, and such that
(Ui) lives on Ω1 and (Xi) on Ω2. While conditioning on u1 = U1(ω1), . . . , un =
Un(ω1), ω1 ∈ Ω1, choose the permutation π = π(ω1) of {1, . . . , n} with uπ(1,ω1) ≤
· · · ≤ uπ(n,ω1), and then with probability 1,

P ({ω2 : (X1(ω2), . . . , Xn(ω2)) ∈ A}) =

P ({ω2 : (Xπ(1,ω1)(ω2), . . . , Xπ(n,ω1)(ω2))} ∈ A | U1(ω1) = u1, . . . , Un(ω1) = un).
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=
∞∑

n=0

P (N(t) = n) P

⎛

⎝
N(t)∑

i=1

g(t Ui,Xi) ≤ x

∣∣∣∣∣∣
N(t) = n

⎞

⎠

= P

⎛

⎝
N(t)∑

i=1

g(t Ui,Xi) ≤ x

⎞

⎠ .

This proves the proposition. �
It is clear that Proposition 2.1.16 can be extended to the case when (Ti) is the
arrival sequence of an inhomogeneous Poisson process. The interested reader
is encouraged to go through the steps of the proof in this more general case.

Proposition 2.1.16 has a multitude of applications. We give one of them
and consider more in the exercises.

Example 2.1.18 (Continuation of the shot noise Example 2.1.15)
In Example 2.1.15 we considered the stochastically discounted random sums

S(t) =
N(t)∑

i=1

e−r (t−Ti) Xi . (2.1.19)

According to Proposition 2.1.16 , we have

S(t) d=
N(t)∑

i=1

e−r (t−tUi) Xi
d=

N(t)∑

i=1

e−r t Ui Xi , (2.1.20)

where (Xi), (Ui) and N are mutually independent. Here we also used the
fact that (1 − Ui) and (Ui) have the same distribution. The structure of the
random sum (2.1.19) is more complicated than the structure of the right-hand
expression in (2.1.20) since in the latter sum the summands are independent
of N(t) and iid. For example, it is an easy matter to calculate the mean and
variance of the expression on the right-hand side of (2.1.20) whereas it is a
rather tedious procedure if one starts with (2.1.19). For example, we calculate

ES(t) = E

⎛

⎝
N(t)∑

i=1

e−r t Ui Xi

⎞

⎠ = E

⎡

⎣E

⎛

⎝
N(t)∑

i=1

e−r t Ui Xi

∣∣∣∣∣∣
N(t)

⎞

⎠

⎤

⎦

= E
[
N(t)E

(
e−r t U1 X1

)]

= EN(t)Ee−r t U1 EX1 = λ r−1(1 − e−r t) EX1 .

Compare with the expectation in the Cramér-Lundberg model (r = 0):
ES(t) = λ tEX1. �
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Comments

The order statistics property of a Poisson process can be generalized to Poisson
processes with points in abstract spaces. We give an informal discussion of
these processes in Section 2.1.8. In Exercise 20 on p. 52 we indicate how the
“order statistics property” can be implemented, for example, in a Poisson
process with points in the unit cube of R

d.
In Parts III and IV of this text we continue the discussion of generalized

Poisson processes and their applications in a non-life insurance context. For
example, in Section 11.3 we study payment processes which describe the set-
tlement of claims arriving at the points of a homogeneous Poisson process
on the real line. The combined process of the claim arrivals and payments is
again a shot noise process.

2.1.7 A Discussion of the Arrival Times of the Danish Fire
Insurance Data 1980-1990

In this section we want to illustrate the theoretical results of the Poisson
process by means of the arrival process of a real-life data set: the Danish fire
insurance data in the period from January 1, 1980, until December 31, 1990.
The data were communicated to us by Mette Havning.15 There is a total of
n = 2 167 observations. Here we focus on the arrival process. In Section 3.2,
and in particular in Example 3.2.11, we study the corresponding claim sizes.

The arrival and the corresponding inter-arrival times are plotted in Fig-
ure 2.1.19. Together with the arrival times we show the straight line f(t) =
1.85 t. The value λ̂ = n/Tn = 1/1.85 is the maximum likelihood estimator of
λ under the hypothesis that the inter-arrival times Wi are iid Exp(λ).

In Table 2.1.21 we summarize some basic statistics of the inter-arrival
times for each year and for the whole period. Since the reciprocal of the
annual sample mean is an estimator of the intensity, the table gives one the
impression that there is a tendency for increasing intensity when time goes by.
This phenomenon is supported by the left graph in Figure 2.1.20 where the
annual mean inter-arrival times are visualized together with moving average
estimates of the intensity function λ(t). The estimate of the mean inter-arrival
time at t = i is defined as the moving average16

15 In this text we consider two different versions of the Danish fire insurance data.
Here we use the data which were reported by December 31, 1990. The claim sizes
are expressed in terms of 1985 prices. If a claim was not completely settled on
December 31, 1990, the size of this claim might possibly have changed after this
date. For this reason the second data set (covering the period 1980-2002) often
contains different reported sizes for claims incurred in 1980-1990.

16 Moving average estimates such as (2.1.21) are proposed in time series analysis in
order to estimate a deterministic trend which perturbs a stationary time series.
We refer to Brockwell and Davis [24] and Priestley [119] for some theory and

properties of the estimator (λ̂(i))−1 and related estimates. More sophisticated
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Figure 2.1.19 Left: The arrival times of the Danish fire insurance data 1980−1990.
The solid straight line has slope 1.85 which is estimated as the overall sample mean
of the inter-arrival times. Since the graph of (Tn) lies above the straight line an
inhomogeneous Poisson process is more appropriate for modeling the claim number
in this portfolio. Right: The corresponding inter-arrival times. There is a total of
n = 2 167 observations.
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Figure 2.1.20 Left, upper graph: The piecewise constant function represents the
annual expected inter-arrival time between 1980 and 1990. The length of each con-
stant piece is the claim number in the corresponding year. The annual estimates are
supplemented by a moving average estimate (λ̂(i))−1 defined in (2.1.21). Left, lower
graph: The reciprocals of the values of the upper graph which can be interpreted as
estimates of the Poisson intensity. There is a clear tendency for the intensity to in-
crease over the last years. Right: Boxplots for the annual samples of the inter-arrival
times (No 1-11) and the sample over 11 years (No 12).
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(λ̂(i))−1 = (2m + 1)−1

min(n,i+m)∑

j=max(1,i−m)

Wj for m = 50. (2.1.21)

The corresponding estimates for λ̂(i) can be interpreted as estimates of the in-
tensity function. There is a clear tendency for the intensity to increase over the
last years. This tendency can also be seen in the right graph of Figure 2.1.20.
Indeed, the boxplots17 of this figure indicate that the distribution of the inter-
arrival times of the claims is less spread towards the end of the 1980s and con-
centrated around the value 1 in contrast to 2 at the beginning of the 1980s.
Moreover, the annual claim number increases.

year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 all

sample size 166 170 181 153 163 207 238 226 210 235 218 2 167
min 0 0 0 0 0 0 0 0 0 0 0 0
1st quartile 1 1 0.75 1 1 1 0 0 0 0 0 1
median 2 2 1 2 1.5 1 1 1 1 1 1 1
mean 2.19 2.15 1.99 2.37 2.25 1.76 1.53 1.62 1.73 1.55 1.68 1.85

λ̂ =1/mean 0.46 0.46 0.50 0.42 0.44 0.57 0.65 0.62 0.58 0.64 0.59 0.54
3rd quartile 3 3 3 3 3 2 2 2 3 2 2 3
max 11 12 10 22 16 14 14 9 12 15 9 22

Table 2.1.21 Basic statistics for the Danish fire inter-arrival times data.

Since we have gained statistical evidence that the intensity function of
the Danish fire insurance data is not constant over 11 years, we assume in
Figure 2.1.22 that the arrivals are modeled by an inhomogeneous Poisson
process with continuous mean value function. We assume that the intensity is
constant for every year, but it may change from year to year. Hence the mean
value function μ(t) of the Poisson process is piecewise linear with possibly
different slopes in different years; see the top left graph in Figure 2.1.22. We
choose the estimated intensities presented in Table 2.1.21 and in the left graph
of Figure 2.1.20. We transform the arrivals Tn into μ(Tn). According to the
theory in Section 2.1.3, one can interpret the points μ(Tn) as arrivals of a
standard homogeneous Poisson process. This is nicely illustrated in the top
right graph of Figure 2.1.22, where the sequence (μ(Tn)) is plotted against
n. The graph is very close to a straight line, in contrast to the left graph in

estimators can be obtained by using kernel curve estimators in the regression
model Wi = (λ(i))−1 + εi for some smooth deterministic function λ and iid or
weakly dependent stationary noise (εi). We refer to Fan and Gijbels [49] and
Gasser et al. [53] for some standard theory of kernel curve estimation; see also
Müller and Stadtmüller [113].

17 The boxplot of a data set is a means to visualize the empirical distribution of
the data. The middle part of the plot (box) indicates the median x0.50, the 25%
and 75% quantiles (x0.25 and x0.75) of the data. The “whiskers” of the data are
the lines x0.50 ± 1.5 (x0.75 − x0.25). Values outside the whiskers (“outliers”) are
plotted as points.
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Figure 2.1.19, where one can clearly see the deviations of the arrivals Tn from
a straight line.

In the left middle graph we consider the histogram of the time changed ar-
rival times μ(Tn). According to the theory in Section 2.1.6, the arrival times of
a homogeneous Poisson can be interpreted as a uniform sample on any fixed
interval, conditionally on the claim number in this interval. The histogram
resembles the histogram of a uniform sample in contrast to the middle right
graph, where the histogram of the Danish fire arrival times is presented. How-
ever, the left histogram is not perfect either. This is due to the fact that the
data Tn are integers, hence the values μ(Tn) live on a particular discrete set.

The left bottom graph shows a moving average estimate of the intensity
function of the arrivals μ(Tn). Although the function is close to 1 the esti-
mates fluctuate wildly around 1. This is an indication that the process might
not be Poisson and that other models for the arrival process could be more
appropriate; see for example Section 2.2. The deviation of the distribution of
the inter-arrival time μ(Tn) − μ(Tn−1), which according to the theory should
be iid standard exponential, can also be seen in the right bottom graph in Fig-
ure 2.1.22, where a QQ-plot18 of these data against the standard exponential
distribution is shown. The QQ-plot curves down at the right. This is a clear
indication of a right tail of the underlying distribution which is heavier than
the tail of the exponential distribution. These observations raise the question
as to whether the Poisson process is a suitable model for the whole period of
11 years of claim arrivals.

A homogeneous Poisson process is a suitable model for the arrivals of the
Danish fire insurance data for shorter periods of time such as one year. This
is illustrated in Figure 2.1.23 for the 166 arrivals in the period January 1 -
December 31, 1980.

As a matter of fact, the data show a clear seasonal component. This can
be seen in Figure 2.1.24, where a histogram of all arrivals modulo 366 is given.
Hence one receives a distribution on the integers between 1 and 366. Notice
for example the peak around day 120 which corresponds to fires in April-May.
There is also more activity in summer than in early spring and late fall, and
one observes more fires in December and January with the exception of the
last week of the year.

2.1.8 An Informal Discussion of Transformed and Generalized
Poisson Processes

Consider a Poisson process N with claim arrival times Ti on [0,∞) and mean
value function μ, independent of the iid positive claim sizes Xi with distri-
bution function F . In this section we want to learn about a procedure which
allows one to merge the Poisson claim arrival times Ti and the iid claim sizes
Xi in one Poisson process with points in R

2.
18 The reader who is unfamiliar with QQ-plots is referred to Section 3.2.1.
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Figure 2.1.22 Top left: The estimated mean value function μ(t) of the Danish fire
insurance arrivals. The function is piecewise linear. The slopes are the estimated
intensities from Table 2.1.21. Top right: The transformed arrivals μ(Tn). Compare
with Figure 2.1.19. The histogram of the values μ(Tn) (middle left) resembles a
uniform density, whereas the histogram of the Tn’s shows clear deviations from it
(middle right). Bottom left: Moving average estimate of the intensity function cor-
responding to the transformed sequence (μ(Tn)). The estimates fluctuate around the
value 1. Bottom right: QQ-plot of the values μ(Tn) − μ(Tn−1) against the standard
exponential distribution. The plot curves down at the right end indicating that the
values come from a distribution with tails heavier than exponential.



2.1 The Poisson Process 37

3002001000

0
50

10
0

15
0

t

N
(t

)

x

de
ns

ity

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0 2 4 6 8 10

0
2

4
6

8
10

12

empirical quantiles

ex
po

ne
nt

ia
l q

ua
nt

ile
s

105100500

1.
5

2.
0

2.
5

3.
0

n

T
_n

/n

Figure 2.1.23 The Danish fire insurance arrivals from January 1, 1980, until De-
cember 31, 1980. The inter-arrival times have sample mean λ̂−1 = 2.19. Top left: The
renewal process N(t) generated by the arrivals (solid boldface curve). For compari-
son, one sample path of a homogeneous Poisson process with intensity λ = (2.19)−1

is drawn. Top right: The histogram of the inter-arrival times. For comparison, the
density of the Exp(λ) distribution is drawn. Bottom left: QQ-plot for the inter-
arrival sample against the quantiles of the Exp(λ) distribution. The fit of the data
by an exponential Exp(λ) is not unreasonable. However, the QQ-plot indicates a
clear difference to exponential inter-arrival times: the data come from an integer-
valued distribution. This deficiency could be overcome if one knew the exact claim
times. Bottom right: The ratio Tn/n as a function of time. The values cluster around

λ̂−1 = 2.19 which is indicated by the constant line. For a homogeneous Poisson pro-
cess, Tn/n

a.s.→ λ−1 by virtue of the strong law of large numbers. For an iid Exp(λ)

sample W1, . . . , Wn, λ̂ = n/Tn is the maximum likelihood estimator of λ. If one
accepts the hypothesis that the arrivals in 1980 come from a homogeneous Poisson
process with intensity λ = (2.19)−1, one would have an expected inter-arrival time
of 2.19, i.e., roughly every second day a claim occurs.
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Figure 2.1.24 Histogram of all arrival times of the Danish fire insurance claims
considered as a distribution on the integers between 1 and 366. The bars of the
histogram correspond to periods of 5 days. There is a clear indication of seasonality
in the data.

Define the counting process

M(a, b) = #{i ≥ 1 : Xi ≤ a , Ti ≤ b} =
N(b)∑

i=1

I(0,a](Xi) , a , b ≥ 0 .

We want to determine the distribution of M(a, b). For this reason, recall the
characteristic function19 of a Poisson random variable M ∼ Pois(γ):

Ee itM =
∞∑

n=0

e itn P (M = n) =
∞∑

n=0

e itn e−γ γn

n!
= e−γ (1−e it) , t ∈ R .

(2.1.22)

We know that the characteristic function of a random variable M determines
its distribution and vice versa. Therefore we calculate the characteristic func-
tion of M(a, b). A similar argument as the one leading to (2.1.22) yields

19 In what follows we work with characteristic functions because this notion is de-
fined for all distributions on R. Alternatively, we could replace the characteris-
tic functions by moment generating functions. However, the moment generating
function of a random variable is well-defined only if this random variable has
certain finite exponential moments. This would restrict the class of distributions
we consider.
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Ee itM(a,b) = E

⎡

⎣E exp

⎧
⎨

⎩i t

N(b)∑

j=1

I(0,a](Xj)

⎫
⎬

⎭

∣∣∣∣∣∣
N(b)

⎤

⎦

= E
[(

E exp
{
i t I(0,a](X1)

})N(b)
]

= E
([

1 − F (a) + F (a) e it
]N(b)

)

= e−μ(b) F (a) (1−e it) . (2.1.23)

We conclude from (2.1.22) and (2.1.23) that M(a, b) ∼ Pois(F (a)μ(b)). Using
similar characteristic function arguments, one can show that

• The increments

M((x, x + h] × (t, t + s])

= #{i ≥ 1 : (Xi, Ti) ∈ (x, x + h] × (t, t + s]} , x, t ≥ 0 , h, s > 0 ,

are Pois(F (x, x + h]μ(t, t + s]) distributed.
• For disjoint intervals Δi = (xi, xi + hi] × (ti, ti + si], i = 1, . . . , n, the

increments M(Δi), i = 1, . . . , n, are independent.

From measure theory, we know that the quantities F (x, x + h]μ(t, t + s] de-
termine the product measure γ = F ×μ on the Borel σ-field of [0,∞)2, where
F denotes the distribution function as well as the distribution of Xi and μ is
the measure generated by the values μ(a, b], 0 ≤ a < b < ∞. This is a conse-
quence of the extension theorem for measures; cf. Billingsley [18]. In the case
of a homogeneous Poisson process, μ = λ Leb, where Leb denotes Lebesgue
measure on [0,∞).

In analogy to the extension theorem for deterministic measures, one can
find an extension M of the random counting variables M(Δ), Δ = (x, x+h]×
(t, t + s], such that for any Borel set20 A ⊂ [0,∞)2,

M(A) = #{i ≥ 1 : (Xi, Ti) ∈ A} ∼ Pois(γ(A)) ,

and for disjoint Borel sets A1, . . . , An ⊂ [0,∞)2, M(A1), . . . ,M(An) are in-
dependent. We call γ = F × μ the mean measure of M , and M is called a
Poisson process or a Poisson random measure with mean measure γ, denoted
M ∼ PRM(γ). Notice that M is indeed a random counting measure on the
Borel σ-field of [0,∞)2.

The embedding of the claim arrival times and the claim sizes in a Poisson
process with two-dimensional points gives one a precise answer as to how many
claim sizes of a given magnitude occur in a fixed time interval. For example,
the number of claims exceeding a high threshold u, say, in the period (a, b] of
time is given by
20 For A with mean measure γ(A) = ∞, we write M(A) = ∞.
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Figure 2.1.25 1 000 points (Ti, Xi) of a two-dimensional Poisson process, where
(Ti) is the sequence of the the arrival times of a homogeneous Poisson process with
intensity 1 and (Xi) is a sequence of iid claim sizes, independent of (Ti). Left:
Standard exponential claim sizes. Right: Pareto distributed claim sizes with P (Xi >
x) = x−4, x ≥ 1. Notice the difference in scale of the claim sizes!

M((u,∞) × (a, b]) = #{i ≥ 1 : Xi > u , Ti ∈ (a, b]} .

This is a Pois((1−F (u))μ(a, b]) distributed random variable. It is independent
of the number of claims below the threshold u occurring in the same time
interval. Indeed, the sets (u,∞) × (a, b] and [0, u] × (a, b] are disjoint and
therefore M((u,∞) × (a, b]) and M([0, u] × (a, b]) are independent Poisson
distributed random variables.

In the previous sections21 we used various transformations of the arrival
times Ti of a Poisson process N on [0,∞) with mean measure ν, say, to derive
other Poisson processes on the interval [0,∞). The restriction of processes to
[0,∞) can be relaxed. Consider a measurable set E ⊂ R and equip E with
the σ-field E of the Borel sets. Then

N(A) = #{i ≥ 1 : Ti ∈ A} , A ∈ E ,

defines a random measure on the measurable space (E, E). Indeed, N(A) =
N(A,ω) depends on ω ∈ Ω and for fixed ω, N(·, ω) is a counting measure on
E . The set E is called the state space of the random measure N . It is again
called a Poisson random measure or Poisson process with mean measure ν
restricted to E since one can show that N(A) ∼ Pois(ν(A)) for A ∈ E , and
N(Ai), i = 1, . . . , n, are mutually independent for disjoint Ai ∈ E . The notion
of Poisson random measure is very general and can be extended to abstract
state spaces E. At the beginning of the section we considered a particular
21 See, for example, Section 2.1.3.



2.1 The Poisson Process 41

example in E = [0,∞)2. The Poisson processes we considered in the previous
sections are examples of Poisson processes with state space E = [0,∞).

One of the strengths of this general notion of Poisson process is the fact
that Poisson random measures remain Poisson random measures under mea-
surable transformations. Indeed, let ψ : E → Ẽ be such a transformation and
Ẽ be equipped with the σ-field Ẽ . Assume N is PRM(ν) on E with points Ti.
Then the points ψ(Ti) are in Ẽ and, for A ∈ Ẽ ,

Nψ(A) = #{i ≥ 1 : ψ(Ti) ∈ A} = #{i ≥ 1 : Ti ∈ ψ−1(A)} = N(ψ−1(A)) ,

where ψ−1(A) = {x ∈ E : ψ(x) ∈ A} denotes the inverse image of A
which belongs to E since ψ is measurable. Then we also have that Nψ(A) ∼
Pois(ν(ψ−1(A))) since ENψ(A) = EN(ψ−1(A)) = ν(ψ−1(A)). Moreover,
since disjointness of A1, . . . , An in Ẽ implies disjointness of ψ−1(A1) , . . . ,
ψ−1(An) in E , it follows that Nψ(A1), . . . , Nψ(An) are independent, by the
corresponding property of the PRM N . We conclude that Nψ ∼PRM(ν(ψ−1)).
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Figure 2.1.26 Sample paths of the Poisson processes with arrival times exp{Ti}
(bottom dashed curve), Ti (middle dashed curve) and log Ti (top solid curve). The
Ti’s are the arrival times of a standard homogeneous Poisson process. Time is on
logarithmic scale in order to visualize the three paths in one graph.

Example 2.1.27 (Measurable transformations of Poisson processes remain
Poisson processes)
(1) Let Ñ be a Poisson process on [0,∞) with mean value function μ̃ and
arrival times 0 < T1 < T2 < · · · . Consider the transformed process

N(t) = #{i ≥ 1 : 0 ≤ Ti − a ≤ t} , 0 ≤ t ≤ b − a ,
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for some interval [a, b] ⊂ [0,∞), where ψ(x) = x−a is clearly measurable. This
construction implies that N(A) = #{i ≥ 1 : ψ(Ti) ∈ A} = 0 for A ⊂ [0, b−a]c,
the complement of [0, b − a]. Therefore it suffices to consider N on the Borel
sets of [0, b − a]. This defines a Poisson process on [a, b] with mean value
function μ(t) = μ̃(t) − μ̃(a), t ∈ [a, b].
(2) Consider a standard homogeneous Poisson process on [0,∞) with arrival
times 0 < T1 < T2 < · · · . We transform the arrival times with the measurable
function ψ(x) = log x. Then the points (log Ti) constitute a Poisson process
N on R. The Poisson measure of the interval (a, b] for a < b is given by

N(a, b] = #{i ≥ 1 : log(Ti) ∈ (a, b]} = #{i ≥ 1 : Ti ∈ (e a, e b]} .

This is a Pois(e b − e a) distributed random variable, i.e., the mean measure
of the interval (a, b] is given by e b − e a.
Alternatively, transform the arrival times Ti by the exponential function. The
resulting Poisson process M is defined on [1,∞). The Poisson measure of the
interval (a, b] ⊂ [1,∞) is given by

M(a, b] = #{i ≥ 1 : e Ti ∈ (a, b]} = #{i ≥ 1 : Ti ∈ (log a, log b]} .

This is a Pois(log(b/a)) distributed random variable, i.e., the mean measure of
the interval (a, b] is given by log(b/a). Notice that this Poisson process has the
remarkable property that M(ca, cb] for any c ≥ 1 has the same Pois(log(b/a))
distribution as M(a, b]. In particular, the expected number of points exp{Ti}
falling into the interval (ca, cb] is independent of the value c ≥ 1. This is
somewhat counterintuitive since the length of the interval (ca, cb] can be ar-
bitrarily large. However, the larger the value c the higher the threshold ca
which prevents sufficiently many points exp{Ti} from falling into the interval
(ca, cb], and on average there are as many points in (ca, cb] as in (a, b]. �

Example 2.1.28 (Construction of transformed planar PRM)
Let (Ti) be the arrival sequence of a standard homogeneous Poisson process
on [0,∞), independent of the iid sequence (Xi) with common distribution
function F . Then the points (Ti,Xi) constitute a PRM(ν) N with state space
E = [0,∞) × R and mean measure ν = Leb × F ; see the discussion on p. 39.

After a measurable transformation ψ : R
2 → R

2 the points ψ(Ti,Xi)
constitute a PRM Nψ with state space Eψ = {ψ(t, x) : (t, x) ∈ E} and
mean measure νψ(A) = ν(ψ−1(A)) for any Borel set A ⊂ Eψ. We choose
ψ̃(t, x) = t−1/α (cos(2 π x), sin(2π x)) for some α �= 0, i.e., the PRM Nψ̃ has

points Yi = T
−1/α
i (cos(2 π Xi), sin(2π Xi)). In Figure 2.1.30 we visualize the

points Yi of the resulting PRM for different choices of α and distribution
functions F of X1.

Planar PRMs such as the ones described above are used, among others,
in spatial statistics (see Cressie [37]) in order to describe the distribution
of random configurations of points in the plane such as the distribution of
minerals, locations of highly polluted spots or trees in a forest. The particular
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PRM Nψ̃ and its modifications are major models in multivariate extreme
value theory. It describes the dependence of extremes in the plane and in
space. In particular, it is suitable for modeling clustering behavior of points
Yi far away from the origin. See Resnick [122] for the theoretical background
on multivariate extreme value theory and Mikosch [108] for a recent attempt
to use Nψ̃ for modeling multivariate financial time series. �

Example 2.1.29 (Modeling arrivals of Incurred But Not Reported (IBNR)
claims)
In a portfolio, the claims are not reported at their arrival times Ti, but with
a certain delay. This delay may be due to the fact that the policyholder is
not aware of the claim and only realizes it later (for example, a damage in
his/her house), or that the policyholder was injured in a car accident and did
not have the opportunity to call his agent immediately, or the policyholder’s
flat burnt down over Christmas, but the agent was on a skiing vacation in
Switzerland and could not receive the report about the fire, etc.

We consider a simple model for the reporting times of IBNR claims: the
arrival times Ti of the claims are modeled by a Poisson process N with mean
value function μ and the delays in reporting by an iid sequence (Vi) of positive
random variables with common distribution F . Then the sequence (Ti + Vi)
constitutes the reporting times of the claims to the insurance business. We
assume that (Vi) and (Ti) are independent. Then the points (Ti, Vi) constitute
a PRM(ν) with mean measure ν = μ × F . By time t, N(t) claims have
occurred, but only

NIBNR(t) =
N(t)∑

i=1

I[0,t](Ti + Vi) = #{i ≥ 1 : Ti + Vi ≤ t}

have been reported. The mapping ψ(t, v) = t + v is measurable. It transforms
the points (Ti, Vi) of the PRM(ν) into the points Ti + Vi of the PRM Nψ

with mean measure of a set A given by νψ(A) = ν(ψ−1(A)). In particular,
NIBNR(s) = Nψ([0, s]) is Pois(νψ([0, s])) distributed. We calculate the mean
value νψ([0, s]) in Example 7.3.9 below. There we further discuss this IBNR
model in the context of point processes. �

Comments

The Poisson process is one of the most important stochastic processes. For
the abstract understanding of this process one would have to consider it as
a point process, i.e., as a random counting measure. We have indicated in
Section 2.1.8 how one has to approach this problem. In Chapters 7 and 8 we
give a more advanced treatment of the theory of point processes. There we
focus on generalized Poisson processes or Poisson random measures and their
use in non-life insurance applications.
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Figure 2.1.30 Poisson random measures in the plane.

Top left: 2 000 points of a Poisson random measure with points (Ti, Xi), where
(Ti) is the arrival sequence of a standard homogeneous Poisson process on [0,∞),
independent of the iid sequence (Xi) with X1 ∼ U(0, 1). The PRM has mean measure
ν = Leb × Leb on [0,∞) × (0, 1).

After the measurable transformation ψ̃(t, x) = t−1/α (cos(2 π x), sin(2 π x)) for some

α �= 0 the resulting PRM Nψ̃ has points Yi = T
−1/α
i (cos(2 π Xi), sin(2 π Xi)).

Top right: The points of the process Nψ̃ for α = 5 and iid U(0, 1) uniform Xi’s. No-
tice that the spherical part (cos(2 π Xi), sin(2 π Xi)) of Yi is uniformly distributed on
the unit circle.

Bottom left: The points of the process Nψ̃ with α = −5 and iid U(0, 1) uniform Xi’s.

Bottom right: The points of the process Nψ̃ for α = 5 with iid Xi ∼ Pois(10).
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Figure 2.1.31 Incurred But Not Reported claims. We visualize one sample of a
standard homogeneous Poisson process with n arrivals Ti (top boldface graph) and
the corresponding claim number process for the delayed process with arrivals Ti +Vi,
where the Vi’s are iid Pareto distributed with distribution P (V1 > x) = x−2, x ≥ 1,
independent of (Ti). Top: n = 30 (left) and n = 50 (right). Bottom: n = 100 (left)
and n = 300 (right). As explained in Example 2.1.29, the sample paths of the claim
number processes differ from each other approximately by the constant value EV1.
For sufficiently large t, the difference is negligible compared to the expected claim
number.
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As a matter of fact, various other counting processes such as the renewal
process treated in Section 2.2 are approximated by suitable Poisson processes
in the sense of convergence in distribution. Therefore the Poisson process with
nice mathematical properties is also a good approximation to various real-life
counting processes such as the claim number process in an insurance portfolio.
In Chapter 9 we develop the theory of convergence in distribution of point
processes. The convergence to a Poisson process is of particular interest. We
show how these asymptotic relations can be used to determine the distribution
of extremely large claim sizes.

The treatment of general Poisson processes requires more sophisticated
tools and techniques from the theory of stochastic processes. For a gentle
introduction to point processes and generalized Poisson processes we refer
to Embrechts et al. [46], Chapter 5; for a rigorous treatment at a moderate
level, Resnick’s monograph [123] or Kingman’s book [85] are good references.
Resnick [122] is an advanced text on the Poisson process with applications to
extreme value theory. See also Daley and Vere-Jones [38] or Kallenberg [79]
for rigorous treatments of the general point process theory.

Exercises

Sections 2.1.1-2.1.2

(1) Let N = (N(t))t≥0 be a Poisson process with continuous intensity function
(λ(t))t≥0.
(a) Show that the intensities λn,n+k(t), n ≥ 0, k ≥ 1 and t > 0, of the Markov

process N with transition probabilities pn,n+k(s, t) exist, i.e.,

λn,n+k(t) = lim
h↓0

pn,n+k(t, t + h)

h
, n ≥ 0 , k ≥ 1 ,

and that they are given by

λn,n+k(t) =

{
λ(t) , k = 1 ,

0 , k ≥ 2 .
(2.1.24)

(b) What can you conclude from pn,n+k(t, t + h) for h small about the short
term jump behavior of the Markov process N?

(c) Show by counterexample that (2.1.24) is in general not valid if one gives up
the assumption of continuity of the intensity function λ(t).

(2) Let N = (N(t))t≥0 be a Poisson process with continuous intensity function
(λ(t))t≥0. By using the properties of N given in Definition 2.1.1, show that the
following properties hold:
(a) The sample paths of N are non-decreasing.
(b) The process N does not have a jump at zero with probability 1.
(c) For every fixed t, the process N does not have a jump at t with probability 1.

Does this mean that the sample paths do not have jumps?
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(3) Let N be a homogeneous Poisson process on [0,∞) with intensity λ > 0. Show
that for 0 < t1 < t < t2,

lim
h↓0

P (N(t1 − h , t − h] = 0 , N(t − h, t] = 1 , N(t, t2] = 0 | N(t − h , t] > 0)

= e −λ (t−t1) e −λ (t2−t) .

Give an intuitive interpretation of this property.
(4) Let N1, . . . , Nn be independent Poisson processes on [0,∞) defined on the same

probability space. Show that N1 + · · · + Nn is a Poisson process and determine
its mean value function.

This property extends the well-known property that the sum M1 + M2 of two
independent Poisson random variables M1 ∼ Pois(λ1) and M2 ∼ Pois(λ2) is
Pois(λ1 + λ2). We also mention that a converse to this result holds. Indeed,
suppose M = M1 + M2, M ∼ Pois(λ) for some λ > 0 and M1, M2 are inde-
pendent non-negative random variables. Then both M1 and M2 are necessarily
Poisson random variables. This phenomenon is referred to as Raikov’s theo-
rem; see Lukacs [97], Theorem 8.2.2. An analogous theorem can be shown for
so-called point processes which are counting processes on [0,∞), including the
Poisson process and the renewal process, see Chapter 7 for an introduction to
the theory of point processes. Indeed, if the Poisson process N has representa-

tion N
d
= N1 + N2 for independent point processes N1, N2, then N1 and N2 are

necessarily Poisson processes.
(5) Consider the total claim amount process S in the Cramér-Lundberg model.

(a) Show that the total claim amount S(s, t] in (s, t] for s < t, i.e., S(s, t] =
S(t)−S(s), has the same distribution as the total claim amount in [0, t−s],
i.e., S(t − s).

(b) Show that, for every 0 = t0 < t1 < · · · < tn and n ≥ 1, the random variables
S(t1), S(t1, t2] , . . . , S(tn−1, tn] are independent. Hint: Calculate the joint
characteristic function of the latter random variables.

(6) For a homogeneous Poisson process N on [0,∞) show that for 0 < s < t,

P (N(s) = k | N(t)) =

⎧
⎪⎨

⎪⎩

(
N(t)

k

) ( s

t

)k (
1 − s

t

)N(t)−k

if k ≤ N(t) ,

0 if k > N(t) .

Section 2.1.3

(7) Let Ñ be a standard homogeneous Poisson process on [0,∞) and N a Poisson
process on [0,∞) with mean value function μ.

(a) Show that N1 = (Ñ(μ(t)))t≥0 is a Poisson process on [0,∞) with mean
value function μ.

(b) Assume that the inverse μ−1 of μ exists, is continuous and limt→∞ μ(t) = ∞.

Show that Ñ1(t) = N(μ−1(t)) defines a standard homogeneous Poisson
process on [0,∞).

(c) Assume that the Poisson process N has an intensity function λ. Which
condition on λ ensures that μ−1(t) exists for t ≥ 0 ?

(d) Let f : [0,∞) → [0,∞) be a non-decreasing continuous function with f(0) =
0. Show that
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Nf (t) = N(f(t)) , t ≥ 0 ,

is again a Poisson process on [0,∞). Determine its mean value function.

Sections 2.1.4-2.1.5

(8) Recall from Theorem 2.1.6 that the homogeneous Poisson process Ñ with in-

tensity λ̃ > 0 can be written as a renewal process

Ñ(t) = #{i ≥ 1 : T̃i ≤ t} , t ≥ 0 ,

where T̃i = W̃1 + · · · + W̃i and (W̃n) is an iid Exp(λ̃) sequence.

Let N be a Poisson process with mean value function μ which has an a.e. positive
continuous intensity function λ. Let 0 ≤ T1 ≤ T2 ≤ · · · be the arrival times of
the process N .
(a) Show that the random variables

∫ Tn+1
Tn

λ(s) ds are iid exponentially dis-
tributed.

(b) Show that, with probability 1, no multiple claims can occur, i.e., at an
arrival time Ti of a claim, N(Ti)−N(Ti−) = 1 a.s. and P (N(Ti)−N(Ti−) >
1 for some i) = 0 .

(9) Consider a homogeneous Poisson process N with intensity λ > 0 and arrival
times Ti.
(a) Assume the renewal representation N(t) = #{i ≥ 1 : Ti ≤ t}, t ≥ 0, for N ,

i.e., T0 = 0, Wi = Ti −Ti−1 are iid Exp(λ) inter-arrival times. Calculate for
0 ≤ t1 < t2,

P (T1 ≤ t1) and P (T1 ≤ t1, T2 ≤ t2) . (2.1.25)

(b) Assume the properties of Definition 2.1.1 for N . Calculate for 0 ≤ t1 < t2,

P (N(t1) ≥ 1) and P (N(t1) ≥ 1 , N(t2) ≥ 2) . (2.1.26)

(c) Give reasons why you get the same probabilities in (2.1.25) and (2.1.26).
(10) Consider a homogeneous Poisson process on [0,∞) with arrival time sequence

(Ti) and set T0 = 0. The inter-arrival times are defined as Wi = Ti − Ti−1,
i ≥ 1.

(a) Show that T1 has the forgetfulness property, i.e., P (T1 > t + s | T1 > t) =
P (T1 > s), t, s ≥ 0.

(b) Another version of the forgetfulness property is as follows. Let Y ≥ 0 be
independent of T1 and Z be a random variable whose distribution is given
by

P (Z > z) = P (T1 > Y + z | T1 > Y ) , z ≥ 0 .

Then Z and T1 have the same distribution. Verify this.
(c) Show that the events {W1 < W2} and {min(W1, W2) > x} are independent.
(d) Determine the distribution of mn = min(T1, T2 − T1, . . . , Tn − Tn−1).

(11) Suppose you want to simulate sample paths of a Poisson process.
(a) How can you exploit the renewal representation to simulate paths of a ho-

mogeneous Poisson process?
(b) How can you use the renewal representation of a homogeneous Poisson N

to simulate paths of an inhomogeneous Poisson process?
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Sections 2.1.6

(12) Let U1, . . . , Un be an iid U(0, 1) sample with the corresponding order statistics

U(1) < · · · < U(n) a.s. Let (W̃i) be an iid sequence of Exp(λ) distributed

random variables and T̃n = W̃1 + · · · + W̃n the corresponding arrival times of
a homogeneous Poisson process with intensity λ.

(a) Show that the following identity in distribution holds for every fixed n ≥ 1:

(
U(1) , . . . , U(n)

) d
=

(
T̃1

T̃n+1

, . . . ,
T̃n

T̃n+1

)
. (2.1.27)

Hint: Calculate the densities of the vectors on both sides of (2.1.27). The
density of the vector

[(T̃1, . . . , T̃n)/T̃n+1, T̃n+1]

can be obtained from the known density of the vector (T̃1, . . . , T̃n+1).
(b) Why is the distribution of the right-hand vector in (2.1.27) independent

of λ?
(c) Let Ti be the arrivals of a Poisson process on [0,∞) with a.e. positive

intensity function λ and mean value function μ. Show that the following
identity in distribution holds for every fixed n ≥ 1:

(
U(1) , . . . , U(n)

) d
=

(
μ(T1)

μ(Tn+1)
, . . . ,

μ(Tn)

μ(Tn+1)

)
.

(13) Let W1, . . . , Wn be an iid Exp(λ) sample for some λ > 0. Show that the ordered
sample W(1) < · · · < W(n) has representation in distribution:

(
W(1) , . . . , W(n)

)

d
=

(
Wn

n
,
Wn

n
+

Wn−1

n − 1
, . . . ,

Wn

n
+

Wn−1

n − 1
+ · · · + W2

2
,

Wn

n
+

Wn−1

n − 1
+ · · · + W1

1

)
.

Hint: Use a density transformation starting with the joint density of W1, . . . , Wn

to determine the density of the right-hand expression.
(14) Consider the stochastically discounted total claim amount

S(t) =

N(t)∑

i=1

e −rTi Xi ,

where r > 0 is an interest rate, 0 < T1 < T2 < · · · are the claim arrival
times, defining the homogeneous Poisson process N(t) = #{i ≥ 1 : Ti ≤ t},
t ≥ 0, with intensity λ > 0, and (Xi) is an iid sequence of positive claim sizes,
independent of (Ti).

(a) Calculate the mean and the variance of S(t) by using the order statistics
property of the Poisson process N . Specify the mean and the variance in
the case when r = 0 (Cramér-Lundberg model).
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(b) Show that S(t) has the same distribution as

e−rt

N(t)∑

i=1

e rTi Xi .

(15) Suppose you want to simulate sample paths of a Poisson process on [0, T ] for
T > 0 and a given continuous intensity function λ, by using the order statistics
property.

(a) How should you proceed if you are interested in one path with exactly n
jumps in [0, T ]?

(b) How would you simulate several paths of a homogeneous Poisson process
with (possibly) different jump numbers in [0, T ]?

(c) How could you use the simulated paths of a homogeneous Poisson process
to obtain the paths of an inhomogeneous one with given intensity function?

(16) Let (Ti) be the arrival sequence of a standard homogeneous Poisson process N
and α ∈ (0, 1).

(a) Show that the infinite series

Xα =

∞∑

i=1

T
−1/α
i (2.1.28)

converges a.s. Hint: Use the strong law of large numbers for (Tn).
(b) Show that

XN(t) =

N(t)∑

i=1

T
−1/α
i

a.s.→ Xα as t → ∞.

Hint: Use Lemma 2.2.6.
(c) It follows from standard limit theory for sums of iid random variables (see

Feller [51], Theorem 1 in Chapter XVII.5) that for iid U(0, 1) random vari-
ables Ui,

n−1/α
n∑

i=1

U
−1/α
i

d→ Zα , (2.1.29)

where Zα is a positive random variable with an α-stable distribution deter-
mined by its Laplace-Stieltjes transform E exp{−s Zα} = exp{−c sα} for
some c > 0, all s ≥ 0. See p. 178 for some information about Laplace-

Stieltjes transforms. Show that Xα
d
= c′ Zα for some positive constant

c′ > 0.
Hints: (i) Apply the order statistics property of the homogeneous Poisson
process to XN(t) to conclude that

XN(t)
d
= t−1/α

N(t)∑

i=1

U
−1/α
i ,

where (Ui) is an iid U(0, 1) sequence, independent of N(t).
(ii) Prove that
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(N(t))−1/α

N(t)∑

i=1

U
−1/α
i

d→ Zα as t → ∞ .

Hint: Condition on N(t) and exploit (2.1.29).
(iii) Use the strong law of large numbers N(t)/t

a.s.→ 1 as t → ∞ (Theo-
rem 2.2.5) and the continuous mapping theorem to conclude the proof.

(d) Show that EXα = ∞.
(e) Let Z1, . . . , Zn be iid copies of the α-stable random variable Zα with La-

place-Stieltjes transform Ee −s Zα = e −c sα

, s ≥ 0, for some α ∈ (0, 1) and
c > 0. Show that for every n ≥ 1 the relation

Z1 + · · · + Zn
d
= n1/α Zα

holds. It is due to this “stability condition” that the distribution gained its
name.
Hint: Use the properties of Laplace-Stieltjes transforms (see p. 178) to show
this property.

(f) Consider Zα from (e) for some α ∈ (0, 1).
(i) Show the relation

Ee i t A Z
1/2
α = e −c |t|2α

, t ∈ R , (2.1.30)

where A ∼ N(0, 2) is independent of Zα. A random variable Y with charac-
teristic function given by the right-hand side of (2.1.30) and its distribution
are said to be symmetric 2α-stable.
(ii) Let Y1, . . . , Yn be iid copies of Y from (i). Show the stability relation

Y1 + · · · + Yn
d
= n1/(2α) Y .

(iii) Conclude that Y must have infinite variance. Hint: Suppose that Y has
finite variance and try to apply the central limit theorem.

The interested reader who wants to learn more about the exciting class of
stable distributions and stable processes is referred to Samorodnitsky and
Taqqu [131].

Section 2.1.8

(17) Let (N(t))t≥0 be a standard homogeneous Poisson process with claim arrival
times Ti.

(a) Show that the sequences of arrival times (
√

Ti) and (T 2
i ) define two Pois-

son processes N1 and N2, respectively, on [0,∞). Determine their mean
measures by calculating ENi(s, t] for any s < t, i = 1, 2.

(b) Let N3 and N4 be Poisson processes on [0,∞) with mean value functions

μ3(t) =
√

t and μ4(t) = t2 and arrival time sequences (T
(3)
i ) and (T

(4)
i ), re-

spectively. Show that the processes (N3(t
2))t≥0 and (N4(

√
t))t≥0 are Poisson

on [0,∞) and have the same distribution.
(c) Show that the process

N5(t) = #{i ≥ 1 : e Ti ≤ t + 1} , t ≥ 0 ,

is a Poisson process and determine its mean value function.



52 2 Models for the Claim Number Process

(d) Let N6 be a Poisson process on [0,∞) with mean value function μ6(t) =
log(1 + t). Show that N6 has the property that, for 1 ≤ s < t and a ≥ 1,
the distribution of N6(at − 1) − N6(as − 1) does not depend on a.

(18) Let (Ti) be the arrival times of a homogeneous Poisson process N on [0,∞)
with intensity λ > 0, independent of the iid claim size sequence (Xi) with
Xi > 0 and distribution function F .

(a) Show that for s < t and a < b the counting random variable

M((s, t] × (a, b]) = #{i ≥ 1 : Ti ∈ (s, t] , Xi ∈ (a, b]}

is Pois(λ (t − s)F (a, b]) distributed.
(b) Let Δi = (si, ti] × (ai, bi] for si < ti and ai < bi, i = 1, 2, be disjoint. Show

that M(Δ1) and M(Δ2) are independent.
(19) Consider the two-dimensional PRM Nψ̃ from Figure 2.1.30 with α > 0.

(a) Calculate the mean measure of the set A(r, S) = {x : |x| > r ,x/|x| ∈ S},
where r > 0 and S is any Borel subset of the unit circle.

(b) Show that ENψ̃(A(rt, S)) = t−α ENψ̃(A(r, S)) for any t > 0.

(c) Let Y = R (cos(2 π X) , sin(2 π X)), where P (R > x) = x−α, x ≥ 1, X is
uniformly distributed on (0, 1) and independent of R. Show that for r ≥ 1,

ENψ̃(A(r, S)) = P (Y ∈ A(r, S)) .

(20) Let (E, E , μ) be a measure space such that 0 < μ(E) < ∞ and τ be Pois(μ(E))
distributed. Assume that τ is independent of the iid sequence (Xi) with distri-
bution given by

FX1(A) = P (X1 ∈ A) = μ(A)/μ(E) , A ∈ E .

(a) Show that the counting process

N(A) =

τ∑

i=1

IA(Xi) , A ∈ E ,

is PRM(μ) on E. Hint: Calculate the joint characteristic function of the
random variables N(A1), . . . , N(Am) for any disjoint A1, . . . , Am ∈ E .

(b) Specify the construction of (a) in the case that E = [0, 1] equipped with the
Borel σ-field, when μ has an a.e. positive density λ. What is the relation
with the order statistics property of the Poisson process N?

(c) Specify the construction of (a) in the case that E = [0, 1]d equipped with
the Borel σ-field for some integer d ≥ 1 when μ = λ Leb for some constant
λ > 0. Propose how one could define an “order statistics property” for this
(homogeneous) Poisson process with points in E.

(21) Let τ be a Pois(1) random variable, independent of the iid sequence (Xi) with
common distribution function F and a positive density on (0,∞).

(a) Show that

N(t) =
τ∑

i=1

I(0,t](Xi) , t ≥ 0 ,

defines a Poisson process on [0,∞) in the sense of Definition 2.1.1.
(b) Determine the mean value function of N .
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(c) Find a function f : [0,∞) → [0,∞) such that the time changed process
(N(f(t)))t≥0 becomes a standard homogeneous Poisson process.

(22) For an iid sequence (Xi) with common continuous distribution function F
define the sequence of partial maxima Mn = max(X1, . . . , Xn), n ≥ 1. Define
L(1) = 1 and, for n ≥ 1,

L(n + 1) = inf{k > L(n) : Xk > XL(n)} .

The sequence (XL(n)) is called the record value sequence and (L(n)) is the se-
quence of the record times.

It is well-known that for an iid standard exponential sequence (Wi) with record

time sequence (L̃(n)), (WL̃(n)) constitute the arrivals of a standard homoge-

neous Poisson process on [0,∞); see Example 7.2.4.
(a) Let R(x) = − log F (x), where F = 1 − F and x ∈ (xl, xr), xl = inf{x :

F (x) > 0} and xr = sup{x : F (x) < 1}. Show that (XL(n))
d
= (R←(WL̃(n))),

where R←(t) = inf{x ∈ (xl, xr) : R(x) ≥ t} is the generalized inverse of R.
(b) Conclude from (a) that (XL(n)) is the arrival sequence of a Poisson process

on (xl, xr) with mean measure of (a, b] ⊂ (xl, xr) given by R(a, b].

2.2 The Renewal Process

2.2.1 Basic Properties

In Section 2.1.4 we learned that the homogeneous Poisson process is a partic-
ular renewal process. In this section we want to study this model. We start
with a formal definition.

Definition 2.2.1 (Renewal process)
Let (Wi) be an iid sequence of a.s. positive random variables. Then the random
walk

T0 = 0 , Tn = W1 + · · · + Wn , n ≥ 1 ,

is said to be a renewal sequence and the counting process

N(t) = #{i ≥ 1 : Ti ≤ t} t ≥ 0 ,

is the corresponding renewal (counting) process.

We also refer to (Tn) and (Wn) as the sequences of the arrival and inter-arrival
times of the renewal process N , respectively.

Example 2.2.2 (Homogeneous Poisson process)
It follows from Theorem 2.1.6 that a homogeneous Poisson process with
intensity λ is a renewal process with iid exponential Exp(λ) inter-arrival
times Wi. �
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Figure 2.2.3 One path of a renewal process (left graphs) and the corresponding
inter-arrival times (right graphs). Top: Standard homogeneous Poisson process with
iid standard exponential inter-arrival times. Bottom: The renewal process has iid
Pareto distributed inter-arrival times with P (Wi > x) = x−4, x ≥ 1. Both renewal
paths have 100 jumps. Notice the extreme lengths of some inter-arrival times in the
bottom graph; they are atypical for a homogeneous Poisson process.

A main motivation for introducing the renewal process is that the (homoge-
neous) Poisson process does not always describe claim arrivals in an adequate
way. There can be large gaps between arrivals of claims. For example, it is
unlikely that windstorm claims arrive according to a homogeneous Poisson
process. They happen now and then, sometimes with years in between. In
this case it is more natural to assume that the inter-arrival times have a dis-
tribution which allows for modeling these large time intervals. The log-normal
or the Pareto distributions would do this job since their tails are much heavier
than those of the exponential distribution; see Section 3.2.We have also seen
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Figure 2.2.4 Five paths of a renewal process with λ = 1 and n = 10i jumps,
i = 2, 3, 4, 5. The mean value function EN(t) = t is also indicated (solid straight
line). The approximation of N(t) by EN(t) for increasing t is nicely illustrated; on
a large time scale N(t) and EN(t) can hardly be distinguished.

in Section 2.1.7 that the Poisson process is not always a realistic model for
real-life claim arrivals, in particular if one considers long periods of time.

On the other hand, if we give up the hypothesis of a Poisson process we
lose most of the nice properties of this process which are closely related to the
exponential distribution of the Wi’s. For example, it is in general unknown
which distribution N(t) has and what the exact values of EN(t) or var(N(t))
are. We will, however, see that the renewal processes and the homogeneous
Poisson process have various asymptotic properties in common.

The first result of this kind is a strong law of large numbers for the renewal
counting process.
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Theorem 2.2.5 (Strong law of large numbers for the renewal process)
If the expectation EW1 = λ−1 of the inter-arrival times Wi is finite, N satis-
fies the strong law of large numbers:

lim
t→∞

N(t)
t

= λ a.s.

Proof. We need a simple auxiliary result.

Lemma 2.2.6 Let (Zn) be a sequence of random variables such that Zn
a.s.→ Z

as n → ∞ for some random variable Z, and let (M(t))t≥0 be a stochastic
process of integer-valued random variables such that M(t) a.s.→ ∞ as t → ∞. If
M and (Zn) are defined on the same probability space Ω, then

ZM(t) → Z a.s. as t → ∞.

Proof. Write

Ω1 = {ω ∈ Ω : M(t, ω) → ∞} and Ω2 = {ω ∈ Ω : Zn(ω) → Z(ω)} .

By assumption, P (Ω1) = P (Ω2) = 1, hence P (Ω1 ∩ Ω2) = 1 and therefore

P ({ω : ZM(t,ω)(ω) → Z(ω)}) ≥ P (Ω1 ∩ Ω2) = 1 .

This proves the lemma. �
Recall the following basic relation of a renewal process:

{N(t) = n} = {Tn ≤ t < Tn+1} , n ∈ N0 .

Then it is immediate that the following sandwich inequalities hold:

TN(t)

N(t)
≤ t

N(t)
≤

TN(t)+1

N(t) + 1
N(t) + 1

N(t)
. (2.2.31)

By the strong law of large numbers for the iid sequence (Wn) we have

n−1 Tn
a.s.→ λ−1 .

In particular, N(t) → ∞ a.s. as t → ∞. Now apply Lemma 2.2.6 with Zn =
Tn/n and M = N to obtain

TN(t)

N(t)
a.s.→ λ−1 . (2.2.32)

The statement of the theorem follows by a combination of (2.2.31) and
(2.2.32). �
In the case of a homogeneous Poisson process we know the exact value of
the expected renewal process: EN(t) = λ t. In the case of a general renewal
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process N the strong law of large numbers N(t)/t
a.s.→ λ = (EW1)−1 suggests

that the expectation EN(t) of the renewal process is approximately of the
order λ t. A lower bound for EN(t)/t is easily achieved. By an application of
Fatou’s lemma (see for example Williams [145])) and the strong law of large
numbers for N(t),

λ = E lim inf
t→∞

N(t)
t

≤ lim inf
t→∞

EN(t)
t

. (2.2.33)

This lower bound can be complemented by the corresponding upper one which
leads to the following standard result.

Theorem 2.2.7 (Elementary renewal theorem)
If the expectation EW1 = λ−1 of the inter-arrival times is finite, the following
relation holds:

lim
t→∞

EN(t)
t

= λ .

Proof. By virtue of (2.2.33) it remains to prove that

lim sup
t→∞

EN(t)
t

≤ λ . (2.2.34)

We use a truncation argument which we borrow from Resnick [123], p. 191.
Write for any b > 0,

W
(b)
i = min(Wi, b) , T

(b)
i = W

(b)
1 + · · · + W

(b)
i , i ≥ 1 .

Obviously, (T (b)
n ) is a renewal sequence and Tn ≥ T

(b)
n which implies Nb(t) ≥

N(t) for the corresponding renewal process

Nb(t) = #{i ≥ 1 : T
(b)
i ≤ t} , t ≥ 0 .

Hence

lim sup
t→∞

EN(t)
t

≤ lim sup
t→∞

ENb(t)
t

. (2.2.35)

We observe that, by definition of Nb,

T
(b)
Nb(t)

= W
(b)
1 + · · · + W

(b)
Nb(t)

≤ t .

The following result is due to the fact that Nb(t) + 1 is a so-called stopping
time22 with respect to the natural filtration generated by the sequence (W (b)

i ).
22 Let Fn = σ(W

(b)
i , i ≤ n) be the σ-field generated by W

(b)
1 , . . . , W

(b)
n . Then

(Fn) is the natural filtration generated by the sequence (W
(b)
n ). An integer-valued

random variable τ is a stopping time with respect to (Fn) if {τ = n} ∈ Fn.

If Eτ < ∞ Wald’s identity yields E
(∑τ

i=1 W
(b)
i

)
= Eτ EW

(b)
1 . Notice that

{Nb(t) = n} = {T (b)
n ≤ t < T

(b)
n+1}. Hence Nb(t) is not a stopping time. However,

the same argument shows that Nb(t) + 1 is a stopping time with respect to (Fn).
The interested reader is referred to Williams’s textbook [145] which gives a concise
introduction to discrete-time martingales, filtrations and stopping times.
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Figure 2.2.8 The ratio N(t)/t for a renewal process with n = 10i jumps, i =
2, 3, 4, 5, and λ = 1. The strong law of large numbers forces N(t)/t towards 1 for
large t.

Then the relation

E(T (b)
Nb(t)+1) = E(Nb(t) + 1)EW

(b)
1 (2.2.36)

holds by virtue of Wald’s identity. Combining (2.2.35)-(2.2.36), we conclude
that

lim sup
t→∞

EN(t)
t

≤ lim sup
t→∞

E(T (b)
Nb(t)+1)

t EW
(b)
1

≤ lim sup
t→∞

t + b

tEW
(b)
1

= (EW
(b)
1 )−1 .

Since by the monotone convergence theorem (see for example Williams [145]),
letting b ↑ ∞,

EW
(b)
1 = E(min(b,W1)) ↑ EW1 = λ−1 ,
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Figure 2.2.9 Visualization of the validity of the strong law of large numbers for
the arrivals of the Danish fire insurance data 1980 − 1990; see Section 2.1.7 for a
description of the data. Top left: The ratio N(t)/t for 1980 − 1984, where N(t) is
the claim number at day t in this period. The values cluster around the value 0.46
which is indicated by the constant line. Top right: The ratio N(t)/t for 1985− 1990,
where N(t) is the claim number at day t in this period. The values cluster around
the value 0.61 which is indicated by the constant line. Bottom: The ratio N(t)/t for
the whole period 1980−1990, where N(t) is the claim number at day t in this period.
The graph gives evidence about the fact that the strong law of large numbers does
not apply to N for the whole period. This is caused by an increase of the annual
intensity in 1985−1990 which can be observed in Figure 2.1.20. This fact makes the
assumption of iid inter-arrival times over the whole period of 11 years questionable.
We do, however, see in the top graphs that the strong law of large numbers works
satisfactorily in the two distinct periods.
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the desired relation (2.2.34) follows. This concludes the proof. �
For further reference we include a result about the asymptotic behavior of
var(N(t)). The proof can be found in Gut [65], Theorem 5.2.

Proposition 2.2.10 (The asymptotic behavior of the variance of the renewal
process)
Assume var(W1) < ∞. Then

lim
t→∞

var(N(t))
t

=
var(W1)
(EW1)3

.

Finally, we mention that N(t) satisfies the central limit theorem; see Em-
brechts et al. [46], Theorem 2.5.13, for a proof.

Theorem 2.2.11 (The central limit theorem for the renewal process)
Assume that var(W1) < ∞. Then the central limit theorem

(var(W1) (EW1)−3 t)−1/2 (N(t) − λ t) d→ Y ∼ N(0, 1) . (2.2.37)

holds as t → ∞.

By virtue of Proposition 2.2.10, the normalizing constants
√

var(W1)(EW1)−3t

in (2.2.37) can be replaced by the standard deviation
√

var(N(t)).

2.2.2 An Informal Discussion of Renewal Theory

Renewal processes model occurrences of events happening at random instants
of time, where the inter-arrival times are approximately iid. In the context of
non-life insurance these instants were interpreted as the arrival times of claims.
Renewal processes play a major role in applied probability. Complex stochastic
systems can often be described by one or several renewal processes as building
blocks. For example, the Internet can be understood as the superposition of
a huge number of ON/OFF processes. Each of these processes corresponds to
one “source” (computer) which communicates with other sources. ON refers
to an active period of the source, OFF to a period of silence. The ON/OFF
periods of each source constitute two sequences of iid positive random vari-
ables, both defining renewal processes.23 A renewal process is also defined by
the sequence of renewals (times of replacement) of a technical device or tool,
say the light bulbs in a lamp or the fuel in a nuclear power station. From these
elementary applications the process gained its name.

Because of their theoretical importance renewal processes are among the
best studied processes in applied probability theory. The object of main in-
terest in renewal theory is the renewal function24

23 The approach to tele-traffic via superpositions of ON/OFF processes became
popular in the 1990s; see Willinger et al. [146].

24 The addition of one unit to the mean EN(t) refers to the fact that T0 = 0 is often
considered as the first renewal time. This definition often leads to more elegant
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m(t) = EN(t) + 1 , t ≥ 0 .

It describes the average behavior of the renewal counting process. In the in-
surance context, this is the expected number of claim arrivals in a portfolio.
This number certainly plays an important role in the insurance business and
its theoretical understanding is therefore essential. The iid assumption of the
inter-arrival times is perhaps not the most realistic but is convenient for build-
ing up a theory.

The elementary renewal theorem (Theorem 2.2.7) is a simple but not very
precise result about the average behavior of renewals: m(t) = λ t (1 + o(1)) as
t → ∞, provided EW1 = λ−1 < ∞. Much more precise information is gained
by Blackwell’s renewal theorem. It says that for h > 0,

m(t, t + h] = EN(t, t + h] → λh , t → ∞ .

(For Blackwell’s renewal theorem and the further statements of this section we
assume that the inter-arrival times Wi have a density.) Thus, for sufficiently
large t, the expected number of renewals in the interval (t, t + h] becomes
independent of t and is proportional to the length of the interval. Since m is
a non-decreasing function on [0,∞) it defines a measure m (we use the same
symbol for convenience) on the Borel σ-field of [0,∞), the so-called renewal
measure.

A special calculus has been developed for integrals with respect to the re-
newal measure. In this context, the crucial condition on the integrands is called
direct Riemann integrability. Directly Riemann integrable functions on [0,∞)
constitute quite a sophisticated class of integrands; it includes Riemann inte-
grable functions on [0,∞) which have compact support (the function vanishes
outside a certain finite interval) or which are non-increasing and non-negative.
The key renewal theorem states that for a directly Riemann integrable func-
tion f ,

∫ t

0

f(t − s) dm(s) → λ

∫ ∞

0

f(s) ds . (2.2.38)

Under general conditions, it is equivalent to Blackwell’s renewal theorem
which, in a sense, is a special case of (2.2.38) for indicator functions f(x) =
I(0,h](x) with h > 0 and for t > h:

∫ t

0

f(t − s) dm(s) =
∫ t

t−h

I(0,h](t − s) dm(s) = m(t − h, t]

→ λ

∫ ∞

0

f(s) ds = λ h .

theoretical formulations. Alternatively, we have learned on p. 57 that the process
N(t) + 1 has the desirable theoretical property of a stopping time, which N(t)
does not have.
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An important part of renewal theory is devoted to the renewal equation.
It is a convolution equation of the form

U(t) = u(t) +
∫ t

0

U(t − y) dFT1(y) , (2.2.39)

where all functions are defined on [0,∞). The function U is unknown, u is a
known function and FT1 is the distribution function of the iid positive inter-
arrival times Wi = Ti−Ti−1. The main goal is to find a solution U to (2.2.39).
It is provided by the following general result which can be found in Resnick
[123], p. 202.

Theorem 2.2.12 (W. Smith’s key renewal theorem)

(1) If u is bounded on every finite interval then

U(t) =
∫ t

0

u(t − s) dm(s) , t ≥ 0 , (2.2.40)

is the unique solution of the renewal equation (2.2.39) in the class of all
functions on (0,∞) which are bounded on finite intervals. Here the right-
hand integral has to be interpreted as

∫
(−∞,t]

u(t − s) dm(s) with the con-
vention that m(s) = u(s) = 0 for s < 0.

(2) If, in addition, u is directly Riemann integrable, then

lim
t→∞

U(t) = λ

∫ ∞

0

u(s) ds .

Part (2) of the theorem is immediate from Blackwell’s renewal theorem.
The renewal function itself satisfies the renewal equation with u = I[0,∞).

From this fact the general equation (2.2.39) gained its name.

Example 2.2.13 (The renewal function satisfies the renewal equation)
Observe that for t ≥ 0,

m(t) = EN(t) + 1 = 1 + E

( ∞∑

n=1

I[0,t](Tn)

)
= 1 +

∞∑

n=1

P (Tn ≤ t)

= I[0,∞)(t) +
∞∑

n=1

∫ t

0

P (y + (Tn − T1) ≤ t) dFT1(y)

= I[0,∞)(t) +
∫ t

0

∞∑

n=1

P (Tn−1 ≤ t − y) dFT1(y)

= I[0,∞)(t) +
∫ t

0

m(t − y) dFT1(y) .

This is a renewal equation with U(t) = m(t) and u(t) = I[0,∞)(t). �
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The usefulness of the renewal equation is illustrated in the following example.

Example 2.2.14 (Recurrence times of a renewal process)
In our presentation we closely follow Section 3.5 in Resnick [123]. Consider a
renewal sequence (Tn) with T0 = 0 and Wn > 0 a.s. Recall that

{N(t) = n} = {Tn ≤ t < Tn+1} .

In particular, TN(t) ≤ t < TN(t)+1. For t ≥ 0, the quantities

F (t) = TN(t)+1 − t and B(t) = t − TN(t)

are the forward and backward recurrence times of the renewal process, respec-
tively. For obvious reasons, F (t) is also called the excess life or residual life,
i.e., it is the time until the next renewal, and B(t) is called the age process. In
an insurance context, F (t) is the time until the next claim arrives, and B(t)
is the time which has evolved since the last claim arrived.

It is our aim to show that the function P (B(t) ≤ x) for fixed 0 ≤ x < t
satisfies a renewal equation. It suffices to consider the values x < t since
B(t) ≤ t a.s., hence P (B(t) ≤ x) = 1 for x ≥ t. We start with the identity

P (B(t) ≤ x) = P (B(t) ≤ x , T1 ≤ t) + P (B(t) ≤ x , T1 > t) , x > 0 .

(2.2.41)

If T1 > t, no jump has occurred by time t, hence N(t) = 0 and therefore
B(t) = t. We conclude that

P (B(t) ≤ x , T1 > t) = (1 − FT1(t)) I[0,x](t) . (2.2.42)

For T1 ≤ t, we want to show the following result:

P (B(t) ≤ x , T1 ≤ t) =
∫ t

0

P (B(t − y) ≤ x) dFT1(y) . (2.2.43)

This means that, on the event {T1 ≤ t}, the process B “starts from scratch”
at T1. We make this precise by exploiting a “typical renewal argument”. First
observe that

P (B(t) ≤ x , T1 ≤ t) = P (t − TN(t) ≤ x ,N(t) ≥ 1)

=
∞∑

n=1

P (t − TN(t) ≤ x ,N(t) = n)

=
∞∑

n=1

P (t − Tn ≤ x , Tn ≤ t < Tn+1) .

We study the summands individually by conditioning on {T1 = y} for y ≤ t:
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P (t − Tn ≤ x , Tn ≤ t < Tn+1 | T1 = y)

= P

(
t −

[
y +

n∑

i=2

Wi

]
≤ x , y +

n∑

i=2

Wi ≤ t < y +
n+1∑

i=2

Wi

)

= P (t − y − Tn−1 ≤ x , Tn−1 ≤ t − y ≤ Tn)

= P
(
t − y − TN(t−y) ≤ x ,N(t − y) = n − 1

)
.

Hence we have

P (B(t) ≤ x , T1 ≤ t)

=
∞∑

n=0

∫ t

0

P
(
t − y − TN(t−y) ≤ x ,N(t − y) = n

)
dFT1(y)

=
∫ t

0

P (B(t − y) ≤ x) dFT1(y) ,

which is the desired relation (2.2.43). Combining (2.2.41)-(2.2.43), we arrive at

P (B(t) ≤ x) = (1 − FT1(t)) I[0,x](t) +
∫ t

0

P (B(t − y) ≤ x) dFT1(y) .

(2.2.44)

This is a renewal equation of the form (2.2.39) with u(t) = (1−FT1(t)) I[0,x](t),
and U(t) = P (B(t) ≤ x) is the unknown function.

A similar renewal equation can be given for P (F (t) > x):

P (F (t) > x) =
∫ t

0

P (F (t − y) > x) dFT1(y) + (1 − FT1(t + x)) .

(2.2.45)

We mentioned before, see (2.2.40), that the unique solution to the renewal
equation (2.2.44) is given by

U(t) = P (B(t) ≤ x) =
∫ t

0

(1 − FT1(t − y)) I[0,x](t − y) dm(y) .

(2.2.46)

Now consider a homogeneous Poisson process with intensity λ. In this case,
m(t) = EN(t) + 1 = λ t + 1, 1− FT1(x) = exp{−λx}. From (2.2.46) for x < t
and since B(t) ≤ t a.s. we obtain

P (B(t) ≤ x) = P (t − TN(t) ≤ x) =

{
1 − e−λ x if x < t ,

1 if x ≥ t .
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A similar argument yields for F (t),

P (F (t) ≤ x) = P (TN(t)+1 − t ≤ x) = 1 − e−λ x , x > 0 .

The latter result is counterintuitive in a sense since, on the one hand, the
inter-arrival times Wi are Exp(λ) distributed and, on the other hand, the
time TN(t)+1−t until the next renewal has the same distribution. This reflects
the forgetfulness property of the exponential distribution of the inter-arrival
times. We refer to Example 2.1.7 for further discussions and a derivation of
the distributions of B(t) and F (t) for the homogeneous Poisson process by
elementary means. �

Comments

Renewal theory constitutes an important part of applied probability theory.
Resnick [123] gives an entertaining introduction with various applications,
among others, to problems of insurance mathematics. The advanced text on
stochastic processes in insurance mathematics by Rolski et al. [127] makes
extensive use of renewal techniques. Gut’s book [65] is a collection of various
useful limit results related to renewal theory and stopped random walks.

The notion of direct Riemann integrability has been discussed in vari-
ous books; see Alsmeyer [2], p. 69, Asmussen [6], Feller [51], pp. 361-362, or
Resnick [123], Section 3.10.1.

Smith’s key renewal theorem will also be key to the asymptotic results on
the ruin probability in the Cramér-Lundberg model in Section 4.2.2.

Exercises

(1) Let (Ti) be a renewal sequence with T0 = 0, Tn = W1 + · · · + Wn, where (Wi)
is an iid sequence of non-negative random variables.
(a) Which assumption is needed to ensure that the renewal process N(t) =

#{i ≥ 1 : Ti ≤ t} has no jump sizes greater than 1 with positive probability?
(b) Can it happen that (Ti) has a limit point with positive probability? This

would mean that N(t) = ∞ at some finite time t.
(2) Let N be a homogeneous Poisson process on [0,∞) with intensity λ > 0.

(a) Show that N(t) satisfies the central limit theorem as t → ∞ i.e.,

N̂(t) =
N(t) − λ t√

λ t

d→ Y ∼ N(0, 1) ,

(i) by using characteristic functions,
(ii) by employing the known central limit theorem for the sequence ((N(n)−
λ n)/

√
λ n)n=1,2,..., and then by proving that

max
t∈(n,n+1]

(N(t) − N(n))/
√

n
P→ 0 .
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(b) Show that N satisfies the multivariate central limit theorem for any 0 <
s1 < · · · < sn as t → ∞:

(
√

λ t)−1 (N(s1 t) − s1 λ t , . . . , N(sn t) − sn λ t)
d→ Y ∼ N(0 ,Σ) ,

where the right-hand distribution is multivariate normal with mean vector
zero and covariance matrix Σ whose entries satisfy σi,j = min(si, sj), i, j =
1 , . . . , n.

(3) Let F (t) = TN(t)+1 − t be the forward recurrence time from Example 2.2.14.
(a) Show that the probability P (F (t) > x), considered as a function of t, for

x > 0 fixed satisfies the renewal equation (2.2.45).
(b) Solve (2.2.45) in the case of iid Exp(λ) inter-arrival times.

2.3 The Mixed Poisson Process

In Section 2.1.3 we learned that an inhomogeneous Poisson process N with
mean value function μ can be derived from a standard homogeneous Poisson
process Ñ by a deterministic time change. Indeed, the process

Ñ(μ(t)) , t ≥ 0 ,

has the same finite-dimensional distributions as N and is càdlàg, hence it is a
possible representation of the process N . In what follows, we will use a similar
construction by randomizing the mean value function.

Definition 2.3.1 (Mixed Poisson process)
Let Ñ be a standard homogeneous Poisson process and μ be the mean value
function of a Poisson process on [0,∞). Let θ > 0 a.s. be a (non-degenerate)
random variable independent of Ñ . Then the process

N(t) = Ñ(θ μ(t)) , t ≥ 0 ,

is said to be a mixed Poisson process with mixing variable θ.

Example 2.3.2 (The negative binomial process as mixed Poisson process)
One of the important representatives of mixed Poisson processes is obtained
by choosing μ(t) = t and θ gamma distributed. First recall that a Γ (γ, β)
distributed random variable θ has density

fθ(x) =
βγ

Γ (γ)
xγ−1 e−β x , x > 0 . (2.3.47)

Also recall that an integer-valued random variable Z is said to be negative
binomially distributed with parameter (p, v) if it has individual probabilities

P (Z = k) =
(

v + k − 1
k

)
pv (1 − p)k , k ∈ N0 , p ∈ (0, 1) , v > 0 .

Verify that N(t) is negative binomial with parameter (p, v) = (β/(t+β), γ). �
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Figure 2.3.3 Left: Ten sample paths of a standard homogeneous Poisson process.
Right: Ten sample paths of a mixed homogeneous Poisson process with μ(t) = t. The
mixing variable θ is standard exponentially distributed. The processes in the left and
right graphs have the same mean value function EN(t) = t.

In an insurance context, a mixed Poisson process is introduced as a claim
number process if one does not believe in one particular Poisson process as
claim arrival generating process. As a matter of fact, if we observed only one
sample path Ñ(θ(ω)μ(t), ω) of a mixed Poisson process, we would not be able
to distinguish between this kind of process and a Poisson process with mean
value function θ(ω)μ. However, if we had several such sample paths we should
see differences in the variation of the paths; see Figure 2.3.3 for an illustration
of this phenomenon.

A mixed Poisson process is a special Cox process where the mean value
function μ is a general random process with non-decreasing sample paths, in-
dependent of the underlying homogeneous Poisson process Ñ . Such processes
have proved useful, for example, in medical statistics where every sample path
represents the medical history of a particular patient which has his/her “own”
mean value function. We can think of such a function as “drawn” from a dis-
tribution of mean value functions. Similarly, we can think of θ representing
different factors of influence on an insurance portfolio. For example, think of
the claim number process of a portfolio of car insurance policies as a collection
of individual sample paths corresponding to the different insured persons. The
variable θ(ω) then represents properties such as the driving skill, the age, the
driving experience, the health state, etc., of the individual drivers.

In Figure 2.3.3 we see one striking difference between a mixed Poisson
process and a homogeneous Poisson process: the shape and magnitude of the
sample paths of the mixed Poisson process vary significantly. This property
cannot be explained by the mean value function
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EN(t) = EÑ(θ μ(t)) = E
(
E[Ñ(θ μ(t)) | θ]

)
= E[θ μ(t)] = Eθ μ(t) , t ≥ 0 .

Thus, if Eθ = 1, as in Figure 2.3.3, the mean values of the random variables
Ñ(μ(t)) and N(t) are the same. The differences between a mixed Poisson
and a Poisson process with the same mean value function can be seen in the
variances. First observe that the Poisson property implies

E(N(t) | θ) = θ μ(t) and var(N(t) | θ) = θ μ(t) . (2.3.48)

Next we give an auxiliary result whose proof is left as an exercise.

Lemma 2.3.4 Let A and B be random variables such that var(A) < ∞. Then

var(A) = E[var(A | B)] + var(E[A | B]) .

An application of this formula with A = N(t) = Ñ(θμ(t)) and B = θ together
with (2.3.48) yields

var(N(t)) = E[var(N(t) | θ)] + var(E[N(t) | θ])

= E[θ μ(t)] + var(θ μ(t))

= Eθ μ(t) + var(θ) (μ(t))2

= EN(t)
(

1 +
var(θ)

Eθ
μ(t)

)

> EN(t) ,

where we assumed that var(θ) < ∞ and μ(t) > 0. The property

var(N(t)) > EN(t) for any t > 0 with μ(t) > 0 (2.3.49)

is called over-dispersion. It is one of the major differences between a mixed
Poisson process and a Poisson process N , where EN(t) = var(N(t)).

We conclude by summarizing some of the important properties of the
mixed Poisson process; some of the proofs are left as exercises.

The mixed Poisson process inherits the following properties of the Poisson
process:

• It has the Markov property; see Section 2.1.2 for some explanation.
• It has the order statistics property: if the function μ has a continuous a.e.

positive intensity function λ and N has arrival times 0 < T1 < T2 < · · · ,
then for every t > 0,

(T1 , . . . , Tn | N(t) = n) d= (X(1) , . . . , X(n)) ,

where the right-hand side is the ordered sample of the iid random variables
X1, . . . , Xn with common density λ(x)/μ(t), 0 ≤ x ≤ t; cf. Theorem 2.1.11.



2.3 The Mixed Poisson Process 69

The order statistics property is remarkable insofar that it does not depend
on the mixing variable θ. In particular, for a mixed homogeneous Poisson
process the conditional distribution of (T1, . . . , TN(t)) given {N(t) = n} is the
distribution of the ordered sample of iid U(0, t) distributed random variables.

The mixed Poisson process loses some of the properties of the Poisson
process:

• It has dependent increments.
• In general, the distribution of N(t) is not Poisson.
• It is over-dispersed; see (2.3.49).

Comments

For an extensive treatment of mixed Poisson processes and their properties
we refer to the monograph by Grandell [61]. It can be shown that the mixed
Poisson process and the Poisson process are the only point processes on [0,∞)
which have the order statistics property; see Kallenberg [78]; cf. Grandell [61],
Theorem 6.6.

Exercises

(1) Consider the mixed Poisson process (N(t))t≥0 = (Ñ(θt))t≥0 with arrival times

Ti, where Ñ is a standard homogeneous Poisson process on [0,∞) and θ > 0 is

a non-degenerate mixing variable with var(θ) < ∞, independent of Ñ .
(a) Show that N does not have independent increments. (An easy way of doing

this would be to calculate the covariance of N(s, t] and N(x, y] for disjoint
intervals (s, t] and (x, y].)

(b) Show that N has the order statistics property, i.e., given N(t) = n,
(T1, . . . , Tn) has the same distribution as the ordered sample of the iid
U(0, t) distributed random variables U1, . . . , Un.

(c) Calculate P (N(t) = n) for n ∈ N0. Show that N(t) is not Poisson dis-
tributed.

(d) The negative binomial distribution on {0, 1, 2, . . .} has the individual prob-
abilities

pk =

(
v + k − 1

k

)
pv (1 − p)k , k ∈ N0 , p ∈ (0, 1) , v > 0 .

Consider the mixed Poisson process N with gamma distributed mixing vari-
able, i.e., θ has Γ (γ, β) density

fθ(x) =
βγ

Γ (γ)
xγ−1 e −β x , x > 0 .

Calculate the probabilities P (N(t) = k) and give some reason why the
process N is called negative binomial process.

(2) Give an algorithm for simulating the sample paths of an arbitrary mixed Poisson
process.
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(3) Prove Lemma 2.3.4.

(4) Let N(t) = Ñ(θ t), t ≥ 0, be mixed Poisson, where Ñ is a standard homogeneous
Poisson process, independent of the mixing variable θ.
(a) Show that N satisfies the strong law of large numbers with random limit θ:

N(t)

t
→ θ a.s.

(b) Show the following “central limit theorem”:

N(t) − θ t√
θ t

d→ Y ∼ N(0, 1) .

(c) Show that the “naive” central limit theorem does not hold by showing that

N(t) − EN(t)√
var(N(t))

a.s.→ θ − Eθ√
var(θ)

.

Here we assume that var(θ) < ∞.

(5) Let N(t) = Ñ(θ t), t ≥ 0, be mixed Poisson, where Ñ is a standard homogeneous
Poisson process, independent of the mixing variable θ > 0. Write Fθ for the
distribution function of θ and F θ = 1 − Fθ for its right tail. Show that the
following relations hold for integer n ≥ 1,

P (N(t) > n) = t

∫ ∞

0

(t x)n

n!
e −t x F θ(x) dx ,

P (θ ≤ x | N(t) = n) =

∫ x

0
yn e −y t dFθ(y)∫∞

0
yn e −y t dFθ(y)

,

E(θ | N(t) = n) =

∫∞
0

yn+1e −y t dFθ(y)∫∞
0

yn e −y t dFθ(y)
.




