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Abstract. Compositional verification is based on the idea that the cor-
rectness check of a complex system can be divided into smaller verifica-
tion tasks for its components. In this paper, we show how to decompose
a specification into components when either no such decomposition is
given, or when the given composition does not lend itself to an efficient
compositional verification. Our decomposition is the starting point for
an application of the L∗ learning algorithm, generating assumptions for
an assume-guarantee reasoning. We prove correctness of the decompo-
sition as well as present experimental results using the model checker
FDR2 as the teacher during learning.

1 Introduction

In formal system development verification ensures that the system meets the
requirements set out by the designers or customers. Most often model checking
is applied in the verification process to free the developer from manual proofs of
correctness. Despite enormous progress made in this area ever since the invention
of model checking [6], the problem of state explosion still hampers the verification
of large systems. A lot of research today is still devoted to developing techniques
which consequently allow model checking to scale to complex systems. Such
methods range from symbolic model checking with BDDs or SAT techniques via
symmetry or partial order reductions to various sorts of abstraction mechanisms.

One such technique – and the one we will be interested in here – is compo-
sitional verification [9]. Compositional verification takes a divide-and-conquer
approach to checking correctness: instead of verifying the system as a whole,
the system components are checked and the verification results are combined.
One specific approach to compositional verification is assume-guarantee (AG)
reasoning [13, 16, 19]. The verification of a system S = S1 || S2 with respect to
a property Prop is carried out in two steps: first, we show that S2 guarantees
Prop under an assumption A about its environment, and then S1 is shown to
guarantee this assumption. As a proof rule:

〈A〉 S2 〈Prop〉
〈true〉 S1 〈A〉

〈true〉 S1 || S2 〈Prop〉
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The drawback of this rule is the use of an assumption A which needs to be
found before verification can proceed. Recently, a new technique for automatic
generation of assumptions based on learning has been proposed [8]. This tech-
nique starts with a general assumption and uses a model checker as a teacher
to progressively make this assumption more precise until it either matches the
premises of the above proof rule or the property can be shown not to hold. The
efficiency of the learning algorithm (and thus of the AG reasoning) depends on
the actual decomposition of the system [7]; ideally the assumption A should
be much smaller than the component S1. Moreover, the technique relies on the
existence of a structuring of the system into parallel components.

In this paper we will be concerned with constructing decompositions in case
that (a) the system is not structured into parallel components, or (b) the ex-
isting structure does not lend itself to efficient assume-guarantee reasoning (e.g.
because the assumption A gets too large). The starting point for our technique
is a set of formal specifications written in CSP-OZ [11], a combination of the
process algebra CSP [15] and the state-based formalism Object-Z [25]. The se-
mantics of CSP-OZ are defined in terms of the semantic domain of CSP. Given
a CSP-OZ specification, we first construct its dependence graph containing con-
trol flow as well as data dependencies among specification elements (here, Z
schemas). The dependence graph construction follows a technique proposed in
[5] for slicing CSP-OZ specifications. The graph is next cut into (currently two)
parts. Roughly speaking, these two parts represent the two parallel components
of the system; a definition of valid cuts and an appropriate synchronisation of the
components has to ensure that the decomposition does not change the overall
semantics of the specification. We consequently prove correctness of the decom-
position. The cut determines the interface between components; by choosing a
small cut we can produce small assumptions for AG reasoning.

The components we obtain through this decomposition are the starting point
for the above sketched compositional verification, in which we use the technique
proposed in [8] to learn the assumption. The employed L∗ learning algorithm [1]
for regular languages requires a teacher to answer membership and equivalence
queries. In [8] the teacher is a model checker. As we are working in the semantic
domain of CSP, we use the CSP model checker FDR2 as teacher and are thereby
able to evaluate the effectiveness of the decomposition. It turns out that a compo-
sitional verification of our generated decomposition can outperform FDR2’s per-
formance during a non-compositional verification on the system as well as during
a compositional verification starting with the given decomposition of the system.
This is exemplified by a case study of a CSP-OZ specification of the Two-Phase-
Commit Protocol and its natural – as well as generated – decomposition.

2 Background and Example

The running example for this paper on which we illustrate our decomposition
as well as the verification is the Two-Phase-Commit Protocol (TPCP) [3]. We
specify this protocol in CSP-OZ, an integrated formalism combining CSP and
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Object-Z. While CSP is responsible for specifying the ordering of operations in
the two phases of the protocol, Object-Z takes on the role of fixing what the
operations themselves do.

The purpose of the protocol is to guarantee consistency of N local sites (or
pages) of a distributed database. Instructed by a coordinator process, the proto-
col results in either all pages committing their transaction or all pages aborting
it. As the name says the protocol works in two phases:

– Phase 1: Commit-request: The protocol starts with the coordinator process
informing all participating pages about a request to commit the current
transaction. Next, all pages execute the transaction and send a vote to the
coordinator dependent on whether the local transaction succeeded (YES )
or failed (NO). The coordinator collects the votes and decides to either
COMMIT in the case that all votes agree on YES , or to ABORT the trans-
action.

– Phase 2: Commit: The coordinator informs all pages about the decision.
All participating sites behave accordingly: an abort leads to an undo of the
transaction while a commit leads to complet ion. In any case, the sites output
the result and send an acknowledgement to the coordinator.

Let N be the number of pages participating in the protocol and let Votes and
Trans be the following two base types:

Votes == {YES ,NO}
Trans == {COMMIT ,ABORT}

The specification given below is the CSP-OZ class for the central coordinator.
Coord
method request , vote[x? : Votes], decide, inform[x ! : Trans], acknowledge

main
c
= �0<i≤N (request → Skip); �0<i≤N (vote → Skip);

decide → �0<i≤N (inform → Skip); �0<i≤N (acknowledge → Skip)

dec : Trans
votes : PVotes

Init

dec = ABORT
votes = ∅

request
Δ(votes)

votes ′ = ∅

acknowledge

vote
Δ(votes); vo? : Votes

votes ′ = votes ∪ {vo?}

inform
in! : Trans

in! = dec

decide
Δ(dec)

if (NO ∈ votes) then dec′ = ABORT else dec′ = COMMIT
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The first part of the class defines its interface, i.e. the methods/operations
(or channels in the CSP terminology) with their signatures. The next part is a
CSP process equation describing the ordering of operations of the coordinator.
Class Coord starts by sending a request to all N pages, accepts all the votes,
decides, and consequently informs all pages about the decision, and finally waits
for an acknowledge. This ordering is specified using the CSP operators for inter-
leaving (|||) – a special form of parallel composition – sequencing (; ), prefixing
of operations (→) and the empty terminating process Skip. The third part – the
Object-Z part – consists of a number of schemas specifying the class’ state space,
initialisation and the operations. The class has two variables: dec for holding the
final decision and a set of votes votes . The operations can or cannot modify
these variables (specified by the Δ-list) and input and output variables (marked
? and !, respectively) help to pass values between classes. For instance, operation
vote stores an input vo? in the variable votes . Input and output variables are
in general not restricted by the CSP part. Therefore, we refrain from denoting
them there.

Note that an empty schema describes an operation which leaves all variable
values unchanged. In the following we will leave out empty schemas. Both parts,
CSP as well as Object-Z, impose restrictions on the behaviour of the class which
need to be jointly obeyed.

The class Coord operates in parallel with several instantiations of the following
class Page.

Page
method request , execute, vote[x ! : Votes], inform[x? : Trans]
method undo, complete, result [b! : Trans], acknowledge

main
c
= request → execute → vote → inform → P

P
c
= undo → result → acknowledge → Skip

� complete → result → acknowledge → Skip

dec : Trans
stable : B

Init

dec = ABORT
stable

result
b! : Trans

b! = dec

execute
Δ(stable)

stable ′ ∈ {true, false}

undo
dec = ABORT

complete
dec = COMMIT

inform
Δ(dec)
in? : Trans

dec′ = in?

vote
vo! : Votes

stable ⇒ vo! = YES
¬stable ⇒ vo! = NO
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Here, we employ an additional CSP operator: the choice operator (�) for choos-
ing between alternatives. The choice between undo and complete is determined
by the Object-Z part: undo has a predicate dec = ABORT in its schema (which
works as a precondition), while commit can only be executed when dec equals
COMMIT .

The full system is specified as

System = Coord‖S (�0<i≤N Page)

with S = {request , vote, inform, acknowledge}. Here, we use a different CSP
parallel composition operator: ||S requires joint execution of the operations (or
events in CSP terminology) in S , i.e. Coord and Pages need to synchronize
on request , vote, inform and acknowledge. For the remainder of this paper, let
Pages = �0<i≤N Page. This completes the specification of the TPCP.

Next, we are interested in verifying a specific property of the Two-Phase-
Commit protocol, i.e. of System. The property is a safety property and states
that if at least one page votes NO , all pages will undo the transaction. Before
formally specifying this property, we first have to clarify the language we use for
writing properties. The formalism CSP-OZ has a joint semantics for CSP and
Object-Z parts, which is given in terms of CSP alone. CSP on the other hand
has a semantics given within the failures-divergences model. Here, we will solely
be interested in safety properties and move to the simpler domain of traces.
Traces represent the behaviour of a system in terms of the possible orderings of
its events. Thus the basis for our semantics is a set Events representing all valid
events of our system. This set consists of operation names together with values
for parameters. For our example, Events contains the events inform.ABORT ,
decide, vote.NO , etc. Given this set Events , the trace semantics of a system S
is a (prefix-closed) set of traces:

traces(S ) ⊆ 2Events∗

As with the systems, we also specify properties as sets of traces, namely simply
by giving all valid traces possessing a particular property. While we could also
use CSP-OZ for property specification, here we will stick to CSP for this purpose.
The following CSP specification presents our correctness property for the TPCP:

PROP = PC (N )
PC (0) = �0<i≤N complete → Skip

PC (j ) = vote.YES → PC (j − 1) � vote.NO → PU (j − 1)
PU (0) = �0<i≤N undo → Skip

PU (j ) = �
x :{YES ,NO} vote.x → PU (j − 1)

The process PC (j ) allows for j votes (and thus PROP for N votes) and - if
control flow has not left the process before - finally N events complete. As soon
as one vote is NO , PC processes switch to some process PU . PU (j ) also allows
for j votes (with any parameter value) but always terminates with undos. Thus
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as soon as we have one event vote.NO , the final events of PROP will be undo.
The question is now whether the traces of System (concerning the interesting
events vote, undo and complete, here extracted by hiding (\) all other events)
are contained in those of PROP , i.e.

traces(System\{request , execute, inform, decide, result , acknowledge})
⊆ traces(PROP)

This check for trace inclusion is a standard check for CSP specifications as one
of CSP’s refinement orderings is trace inclusion.

Definition 1. Let P ,Q be CSP processes. P is a trace refinement of Q, if
traces(P) ⊆ traces(Q). We write Q �T P. P is trace equivalent to Q, P =T Q,
if P �T Q and Q �T P.

This being standard for CSP, we can use the CSP model checker FDR2 [18] to
check it, using a technique proposed in [12] to translate a CSP-OZ specification
into CSP. As it turns out, FDR2 fails to carry out this check for more than 5
pages.

Next, we tried to use assume-guarantee reasoning to show the property. The
System specification is already structured using parallelism, with Coord being
S1 and all Pages S2. Thus we used the AG rule given in the introduction. This
rule has been proven correct and complete [21]. Rephrased in terms of CSP’s
traces refinement, the rule reads:

PROP �T A ||X S2

A �T S1

PROP �T S1 ||Y S2

(1)

Here, the sets X and Y are synchronisation sets defined by X = α(A) ∩ α(S2)
and Y = α(S1)∩α(S2) (intersection of alphabets). The assumption A represents
a restriction on S2’s environment which is necessary for S2 to guarantee PROP .
On the other hand, S1 needs to guarantee this restriction. For generating the
assumption we use the technique proposed in [8]. This method employs Angluin’s
L∗ algorithm for learning regular languages (a finite automaton) to generate
the assumption A. The algorithm needs to employ a teacher which can answer
membership as well as equivalence queries. The proposal of [8] was to use a
model checker to this end. We have a prototypical implementation of the L∗

algorithm which takes CSP processes as inputs, calls the CSP model checker
FDR2 whenever a teacher is required and ultimately either outputs ’true’ and
an assumption if PROP �T S1 ||Y S2 is true or ’false’, if not. Using the given
structure of System, the assume-guarantee reasoning unfortunately gives us no
gain at all. In the contrary, the run-times get worse and the check fails as soon
as we reach 5 pages (see the section on experimental results). The reason for
this is that the part which produces most of the complexity is Pages as it is
the interleaving of a large number of processes. The state space of Pages needs
to be constructed in both the verification of the complete system and in the
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AG verification. It would be preferable to have a decomposition of the system
which splits the process Pages such that the compositional verification never
needs to consider Pages in its entirety. Next, we will see how to construct such
a decomposition of the system.

3 Decomposition of a Specification

We aim to decompose a specification into two components allowing the applica-
tion of assume-guarantee reasoning. To find a suitable decomposition in this con-
text we need to analyse a specification’s dependence structure: the specification’s
elements (operations of a class) might depend on each other. The distribution of
dependent elements over both components is not desirable. However, if required,
it necessitates that an assumption describes the correlation between the differ-
ent operations. Thus we need to define what dependence means and we need to
ensure that the decomposition preserves the overall dependence structure of the
specification. To find a small assumption – and this is preferable – the number
of intersecting dependencies between the components should be small.

Fortunately, for CSP-OZ and in the context of program slicing [28], Brueckner
[4] developed a precise dependence analysis for CSP-OZ and defined a specifica-
tion’s Dependence Graph:

Definition 2. (Dependence Graph of a specification)
The Dependence Graph (DG) G = (N ,→DG) of a specification S is defined
over a set of nodes N = cf (N )∪ op(N ) and a set of edges →DG=→ ∪ ���. The
set cf (N ) corresponds to operators within the specification’s CSP part whereas
op(N ) corresponds to operations of the specification.1 For the set of edges, we
distinguish control flow edges (→) from program dependence edges (���).

The set of DG edges describes dependencies between different nodes of the DG
mostly following the principle of cause and effect – i.e. the edge’s source node
controls or influences execution of its target node. The DG comprises the Control
Flow Graph (CFG) and the Program Dependence Graph (PDG).

As the name says, the CFG covers dependencies with respect to the specifi-
cation’s control flow structure. This is mainly derived from its CSP part. As an
example: in class Page, request prefixes execute leading to a control flow edge
from request to execute.

Along with this, the PDG edges describe dependencies between different op-
erations of the specification such as data-, control-, synchronisation data- or
interference data dependencies. They refer to the set of state variables of the
class’ Object-Z part. An example of a data dependence is the edge from execute
to vote – the variable stable is modified within execute and referenced in vote,
i.e. stable ∈ mod(execute) ∩ ref (vote) where mod(op) and ref (op) denote the

1 For simplicity, instead of defining the DG with respect to predicate nodes, we use
operation nodes.
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sets of modified and referenced variables within an operation op, respectively.
A synchronisation data dependence exists between the events execute of both
classes since Page.execute has an output that Coord .execute uses as an input.
Note that PDG edges only connect operation nodes.

As a multiple occurrence of an Object-Z operation within the CSP part of
a specification is possible, we define the correlation between operation nodes of
the DG and operations of the specification:

Definition 3. (Labelling of DG nodes)
Let G = (N ,→DG) be the DG of a specification S and let Op be the set of all
operations of S . The labelling function l : op(N ) → Op maps an operation node
of the DG on its corresponding operation name within S . For O ⊆ Op, we define
l−1[O ] := {n ∈ op(N ) | l(op) ∈ O}.

In the following, we assume the alphabet of the CSP part and the set of Object-Z
operations to be equal. Thus, for the CSP part, Op is the set of events projected
on its names omitted from its parameters.

For a complete definition of a specification’s DG, see [4]. Figure 1 shows (a
slightly simplified version of2) the DG for System. We use different types of
arrows to illustrate control flow- (→) and program dependence-edges (���).

Fig. 1. Dependence Graph for System Fig. 2. Cut for l−1[{decide, vote}]

2 Here, we omit the additional start- and term-nodes for the parallel composition of
both classes. We do also not incorporate the intermediate seq-nodes within Coord
for the sequential composition of the interleavings. For an operation op, we use op[i ]
to depict its i-th execution within the corresponding CSP-interleaving. Page[i ] is an
arbitrary instance of Page.
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3.1 A Cut of a Dependence Graph

All dependencies between different specification elements are represented in the
specification’s DG. Thus to decompose a given specification S into two parts,
we start by defining a decomposition of the DG.

The basic idea is the definition of a cut C identifying the interface between
the parallel components which we define subsequently. Being a subset of the
DG’s operation nodes, a cut fragments the DG into two subgraphs representing
the two stages (phases) of the graph. The cut will then yield a decomposition of
the specification itself. In the context of assume-guarantee reasoning, we set the
following objectives:

– The overall semantics of S are preserved, i.e. the original specification is
trace equivalent to its decomposition, when both parts are combined via
parallel composition,

– the decomposition is efficient in the context of assume-guarantee reasoning,
i.e. a cut leads to a relatively small intersection between the components and
uniformly distributed operations.

In the remainder of the paper, we will not generally distinguish between con-
trol flow edges and program dependence edges. Next, we define the cut of a
specification’s dependence graph.

Definition 4
Let G = (N ,→) be a graph and N ′ ⊆ N . Then,

N ′↓:= {n ∈ N | ∃n ′ ∈ N ′ • n →∗ n ′} (all nodes reaching N ′),
N ′↑:= {n ∈ N | ∃n ′ ∈ N ′ • n ′ →∗ n} (all nodes reachable from N ′).

Definition 5. (Cut of the DG)
Let G = (N ,→DG) be the DG of a given specification. A cut C ⊆ op(N ) of G
is a subset of the operation nodes of N such that
a) C↓ ∪C↑= N ,
b) �c ∈ C↓ \C, c′ ∈ C↑ \C • c →DG c′ ∨ c′ →DG c,
c) ∀n1,n2 ∈ op(N ) • l(n1) = l(n2) ⇒ (n1 ∈ C ⇔ n2 ∈ C)

C is a subset of the DG’s operation nodes determining a split of the DG into
C↓ and C↑ and it is used to define the decomposition of a specification S into
S1 and S2. S1 and S2 are the parallel components of the decomposition with the
intersection of C↓ and C↑ defining the interface between S1 and S2.

Condition a) states that for any node n ∈ N , either the cut is reachable from
n or n is reachable from the cut. Therefore, no node will be left out. Condition
b) states that DG edges must not cross the cut. This condition ensures that
there are no dependencies from one component to another circumventing the
cut. Condition c) states that for operations with multiple occurrence within the
CSP part, either all or none of the corresponding DG nodes are contained in
the cut. This condition is required to ensure proper synchronisation between the
constructed parallel components.
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In the context of a cut C, we will call C↓ the precut and C↑ the postcut.
Next, we define a condition on the relation between C↓ and C↑ to restrict the
distribution of a DG:

Definition 6. (sequential cut)
Let G = (N ,→DG) be the DG of a given specification. A cut C sequentially
distributes G, iff C↑ ∩C↓= C. We call C a sequential cut.

The condition for the sequential distribution of a DG states that there are no
nodes leading to the cut which are also reachable from the cut. Thus, the DG
can be viewed in two stages, with a unique distribution of all nodes: a first stage
before the cut and a second stage starting from the cut, with the cut itself being
their intersection. In particular, a sequential cut requires that all cycles of the
DG are distributed over the resulting two subgraphs without intersecting with
the cut itself. All paths connecting both subgraphs must pass the cut.

Even though we consider a rather specific, simple class of dependence graphs
to illustrate our approach and the applicability of the assume-guarantee proof
rule, our approach is not restricted to sequential distributions: the definition of
a cut can as well be applied to circular dependence graphs. This will be part of
our future work.

For our example, based on two heuristics for the definition of a cut, the de-
composition of the DG with respect to the set C = l−1[{vote, decide}]3 is given
in Figure 2. These heuristics can informally be described as follows:4

– A cut should contain as few as possible nodes and its corresponding opera-
tions should modify as few as possible variables,

– A cut should be defined in the middle part of the DG.

Using the set C′ = {decide} would lead to a violation of the cut definition due
to the cut-crossing CFG edge from vote to inform on the right hand side of the
DG. Therefore, we additionally needed to add vote. {decide, vote} indeed defines
a sequential cut since neither there are cut-crossing edges nor nodes outside of
C assigned to the first and to the second stage. Condition c) holds as well since
all DG nodes assigned to the operation vote are contained in the cut.

3.2 Decomposition of a Specification

As a next step, we define the decomposition of a specification. This will be done
with respect to a sequential cut of its DG. Precut and postcut will be used
to define two components S1 and S2 with the following goal: S1 || S2 has the
same set of traces as S and is therefore – in our semantic domain – equivalent
to S . The decisive point in this definition is the synchronisation alphabet: we
need to guarantee correct values for the state variables in the second stage. These
variables might have been modified during the first stage. Synchronization should

3 In the following cut-examples, we will synonymously use S and l−1[S ].
4 A closer investigation of heuristics for selecting optimal cuts will form part of our

future work.
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thus lead to a passing of the current values. To ensure this, we use the set of cut
events as the synchronisation alphabet and identify all variables modified during
the first stage. These are then communicated to the second stage.

A CSP-OZ definition of a class S consists of the following elements:
S
I [interface definition]
main [CSP part]
State [OZ part: state schema]
Init [OZ part: initial state schema]
op [OZ part: operations]

For m ∈ Op, a method declaration has the form m[p1 : t1, . . . , pm : tm ]
with parameters pi of type ti . For the corresponding Object-Z operation, op.par
denotes its parameter declaration and op.pred its predicate part. Var denotes
the set of state variables of a class. For M ⊆ Op, let {| M |} := {m.i .o ∈
Events | m ∈ M }.

To define the decomposition, we first need to define a projection of a CSP
process to a subset of its events. This projection will then be used to decompose
the CSP part with respect to the precut and the postcut.

Definition 7. (Projection of CSP processes, [4])
Let P be the right-hand side of a CSP process definition and E ⊆ Events. The
projection of P on E, denoted by P |E , is inductively defined:

1. Skip|E := Skip and Stop|E := Stop,

2. (e → P)|E :=

{
P |E , e �∈ E
e → P |E , otherwise,

3. (P ◦ Q)|E := (P |E ) ◦ (Q |E ) for ◦ ∈ {; , |||, �,�},
4. (P ||S Q)|E := (P |E ) ||S∩E (Q |E ).

To determine the projection of a complete CSP part, Definition 7 has to be
applied to every CSP process definition. Next, we define the decomposition of S
with respect to a sequential cut:

Definition 8. (Decomposition with respect to a sequential Cut)
Let S be a specification and G = (N ,→DG) be its dependence graph. Let C be
a sequential cut and let M1 := l [C↓ ∩op(N )], M2 := l [C↑ ∩op(N )], MC :=
M1 ∩M2, Ei := {| Mi |}, EC := {| MC |}, V1 := Var(M1), V2 := Var(M2) and

VC = {x ∈ S .Var | ∃n ∈ MC,n ′ ∈ (M2 \ MC) • n →∗
DG n ′ ∧

x ∈ (mod(n) ∩ ref (n ′))}.
Given a set VC = {x1, . . . , xn} of types si , for m ∈ Op, let {xm1, . . . , xmk

} =
VC∩mod(m). We use a function f to define the interface extension of the class:

f (m[p1 : t1, . . . , pm : tm ] ={
m[p1 : t1, . . . , pm : tm , am1 :sm1 , . . . , amk

:smk
, bm1 :rm1 , . . . , bml

:rml
], m ∈ MC

m[p1 : t1, . . . , pm : tm ], otherwise
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The decomposition of S with respect to C into S1 and S2 is defined as5:
S1

I1 := f (I |M1)
main1 := main|E1 [extended by additional parameters]
State1 := State � V1

Init1 := Init � V1 (∗)
op1 :={

op, op ∈ M1 \ MC

[op.par , ami ! : smi , bmj ? : rmj | op.pred ∧ ∧k
i=1 ami ! = x ′

mi
], op ∈ MC

S2

I2 := f (I |M2)
main2 := main|E2 [extended by additional parameters]
State2 := State � V2

Init2 := Init � V2 (∗)
op2 :={

op, op ∈ M2 \ MC

[op.par , ami ? : smi , bmj ? : rmj |
∧k

i=1 x ′
mi

= ami ?], op ∈ MC

I |M depicts the restriction of the set of methods within the interface I onto M .
For the initial state schemas Initi , the definition is annotated with an asterisk:
the coarse idea is a projection of Init onto all predicates solely dealing with Vi .
Atomic predicates sharing variables local to S1 and S2 need to be restricted but
can not be left out. Here, we omit a detailed definition of Initi .

We take a closer look at the additional parameters for m ∈ MC. Firstly, VC

defines exactly the set of state variables from the first stage that influence the sec-
ond stage of the specification. Note that any such variable must be modified inside
some cut event since otherwise there would be cut-crossing edges in the DG. For
each xi ∈ VC ∩ mod(op), we use parameters ami : smi extending the type of op.
These parameters uncover the influence of the first component on the second one.
Secondly, Definition 5 allows for a cut containing two or more DG nodes with the
same labelling. Since parallel composition based on events does not distinguish
between these nodes, we need to ensure that in the decomposition, corresponding
instances of the event are synchronized. This is achieved by adding additional ad-
dress parameters bmj : rmj to the respective channels solely being restricted by the
CSP part. On the one hand, these parameters ensure that all previously allowed
synchronisations are still possible. On the other hand, synchronisation between
S1 and S2 is restricted to matching DG nodes. The number of address parameters
depends on the number of classes synchronizing on op whereas the type rmj de-
pends on the cardinal number of l−1[{op}]. We will exemplify this on our example
and refrain from giving a precise definition here.

For the Object-Z part, we extend any operation of the cut with corresponding
additional outputs (S1) and inputs (S2), respectively. Moreover, we eliminate the
remaining predicate part of the shared operations within S2.
5 State � V denotes the projection of State on a subset V of its state variables.
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3.3 Example Revisited

We apply the decomposition to our example. Based on our objective to de-
compose a specification into equally distributed components, we define sev-
eral sequential cuts and investigate each one. The verification results are given
in the next section. Here, we illustrate the decomposition for the set EC =
{vote, decide} as introduced in Section 3.1. We split E into

E1 = {request , execute, vote, decide} and
E2 = {vote, decide, inform, undo, complete, failure, result , acknowledge}.

The definition of a DG’s cut is not restricted to a single class. In fact, the DG is
defined with respect to the full specification possibly containing several classes.
Since System comprises two classes Coord and Page, both will be decomposed
into components Coord1,Coord2 and Page1,Page2, respectively. For the paral-
lel composition System1 ||EC System2, Systemi is defined as Coordi || Pagesi .
System1 can be viewed as the first and System2 as the second stage of the pro-
tocol. Control flow according to System is restored by the parallel composition.

According to Definition 8, the resulting specification slices are given below.
Since VC = {Coord .dec}, event decide is extended by one parameter for the com-
munication of Coord .dec. Also, event vote is extended by two additional param-
eters to ensure synchronisation for matching occurrences of vote. We explicitly
depict these parameters in the CSP part since they are restricted there. Based
on | l−1[{Coord .vote}] |=| l−1[{Pages .vote}] |= N , these parameters are of type
N = {1, . . . ,N }. To address specific instances of Page1 and Page2, we adopt
CSP-OZ’s concept of constant parameters, and use Pagesj = �0<i≤NPagej (i).

Coord1

method request , vote[p1? : N; p2? : N; x? : Votes], decide[a! : Trans]

main = �0<i≤N (request → Skip); �0<i≤N (vote?p1.i → Skip); decide → Skip

dec : Trans
votes : PVotes

Init

dec = ABORT
votes = ∅

request

votes ′ = ∅

vote
Δ(votes)
p1? : N; p2? : N; vo? : Votes

votes ′ = votes ∪ {vo?}

decide
Δ(dec); a! : Trans

a! = dec′

if (NO ∈ votes) then dec′ = ABORT else dec′ = COMMIT



118 B. Metzler, H. Wehrheim, and D. Wonisch

Page1(i : N)
method request , vote[p1? : N; p2? : N; x ! : Votes], execute

main = request → execute → vote.i?p2 → Skip

stable : B

Init

stable

vote
p1? : N; p2? : N; vo! : Votes

stable ⇒ vo! = YES
¬stable ⇒ vo! = NO

execute
Δ(stable)

stable ′ ∈ {true, false}

Coord2

method vote[p1? : N; p2? : N; x? : Votes], decide[a? : Trans]
method inform[x ! : Trans], acknowledge

main = �0<i≤N (vote?p1.i → Skip); decide → �0<i≤N (inform → Skip);
�0<i≤N (acknowledge → Skip)

dec : Trans
Init

dec = ABORT

inform
in! : Trans

in! = dec

decide
Δ(dec); a? : Trans

dec′ = a?

vote
p1? : N; p2? : N; vo? : Votes

Page2(i : N)
method vote[p1? : N; p2? : N; x ! : Votes], inform[x? : Trans], undo
method complete, result [b! : Trans], acknowledge

main = vote.i?p2 → inform → P
P = undo → result → acknowledge → Skip

� complete → result → acknowledge → Skip

dec : Trans
Init

dec = ABORT

inform
Δ(dec); in? : Trans

dec′ = in?

result
b! : Trans

b! = dec

undo
dec = ABORT

complete
dec = COMMIT

vote
p1? : N; p2? : N; vo! : Votes
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In [9], the motivation for introducing and specifying the TPCP is its particular
structure allowing for an appliance of the Communication-Closed-Layers law
(CCL) [10]. Our way of decomposing a specification is one particular way of
adopting the CCL.

3.4 Correctness of the Decomposition

We will now show that the full specification is trace equivalent to the composition
of both components constructed in Definition 8. As mentioned in Section 2, for
our main goal we want to apply the assume-guarantee rule 1 from Section 2 to
show PROP �T S . To show correctness of the decomposition we have to show

S =T S1 ||EC S2, (2)
i.e. our original specification is trace equivalent to the parallel composition of
the components. Then we can apply the given rule with respect to S :

PROP �T A ||X S2

A �T S1

PROP �T S

The following lemma will be applied to establish the overall correlation between
the specification and the decomposition:

Lemma 1
Let Pi ,Qi be CSP processes and Ai ,Bi their respective alphabets. Then,

(P1 A1||A2 P2) A1∪A2||B1∪B2 (Q1 B1||B2 Q2) =
(P1 A1||B1 Q1) A1∪B1||A2∪B2 (P2 A2||B2 Q2)

Proof
We use rule (2.5)

(P ||X∩Y Q) ||(X∪Y )∩Z R = P ||X∩(Y∪Z ) (Q ||Y∩Z R)

from [23], p. 57 and incrementally deduce the equation. �
Next, we state the main theorem of this paper: the decomposition of a specifi-
cation based on a sequential cut is trace equivalent to the original specification.

Theorem 1. (Correctness of the Decomposition)
Let S be a specification and G = (N ,→DG) be its DG. Let C be a sequential cut
and let S1 and S2 be the decomposition of S with respect to Definition 8. Then,
the following holds:

S =T S1 ||EC S2 (3)

Proof
In our semantic domain we are interested in traces(S ) ⊆ 2Events∗

. Based on the
CSP trace semantics for CSP-OZ we get traces(S ) := traces(main ||Events OZ ).
Thus, a trace of a CSP-OZ class is a trace within the parallel composition of
the specification’s CSP part and Object-Z part, respectively, synchronizing on
the set Events . We compositionally show (3) by dealing with the specification’s
CSP- and Object-Z part independently. If we can show
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main =T main1 ||EC main2, (4)
OZ =T OZ1 ||EC OZ2 for the set of traces of the CSP part, (5)

we can subsequently apply Lemma 1 with respect to A1 = A2 = E1, B1 = B2 =
E2 and deduce

traces(S )
= traces(main ||Events OZ ) (Def . of S )
= traces((main1 ||EC main2) ||Events (OZ1 ||EC OZ2)) ((4), (5))
= traces((main1 ||E1∩E2 main2) ||Events (OZ1 ||E1∩E2 OZ2)) (E1 ∩ E2 = EC)
= traces((main1 ||E1 OZ1) ||E1∩E2 (main2 ||E2 OZ2)) (Lemma 1)
= traces((main1 ||E1 OZ1) ||EC (main2 ||E2 OZ2)) (E1 ∩ E2 = EC)
= traces(S1 ||EC S2) (Def . of S1,S2)

Due to lack of space, we refrain from giving the complete proofs of (4) and
(5) but outline the ideas. The core idea for (4) is to assume that any trace
tr ∈ traces(main) has the following structure:

tr1 � trC � tr2
E1 EC E2

We then show that tr ∈ traces(main) if and only if tr1 � trC ∈ traces(main1)
and trC � tr2 ∈ traces(main2) holds. Here, we particularly use Condition c) of
Definition 5. However, if tr switches between different interleaving branches of
the CSP part, an event of E2 \ EC can be executed before an event of E1 \ EC

without violating the cut definition. To solve this problem, we apply Lemma 1
to restructure the trace and treat interleaving branches separately.

For the Object-Z part, OZ =T OZ1 ||EC OZ2 would be preferable. However,
this equivalence does in general not hold: if the CSP part does not determine
the ordering of events, a trace within traces(OZ ) may not correspond to the
paths of the DG. The cut is defined with respect to the DG, the decomposition
might access and output inconsistent values. Thus, tr ∈ traces(OZ ) does not
need to be an element of traces(OZ1 ||EC OZ2) and vice versa. Indeed, we show
the following, weaker property for the Object-Z part:

∀ tr � Op ∈ traces(main) � Op • tr ∈ traces(OZ ) ⇔ tr ∈ traces(OZ1 ||EC OZ2)
(6)

It states that OZ =T OZ1 ||EC OZ2 if the CSP part determines the ordering of
events within the trace. Since this will always be the case for a trace within a
CSP-OZ specification, it is sufficient to show (5). To do so, given tr ∈ traces(OZ ),
we need to construct tri traces(OZi) such that both synchronize on EC. For the
reverse direction, we have to construct an equivalent tr ∈ traces(OZ ) out of
tri ∈ traces(OZi).

The complete proof of (4) and (5) uses all the various dependencies of the
PDG. For instance, data dependencies ensure that in case a certain variable
is modified, it always refers to the correct variable values used in the modifica-
tion. Synchronization dependencies ensure that synchronized events are not split
between the two components. �



Decomposition for Compositional Verification 121

4 Implementation and Experimental Results

To evaluate our approach we implemented Angluin’s learning algorithm and the
framework of [8] for the CSP model checker FDR2 (Failure Divergence Refine-
ment) [18] to automatically verify a specification against a property based on the
assume-guarantee proof rule [29]. Using the CSP semantics of CSP-OZ developed
in [12], the specification is translated into the input language of FDR2.

The property we are aiming at can be described as follows: if at least one page
votes with NO , all pages will undo their transaction. The CSP specification for
PROP has already been given in Section 2. This property can now be checked
for trace refinement against the full specification (with events not occurring in
PROP hidden), i.e. using FDR2 syntax we check

assert PROP [T= SYSTEM \ {|request, execute, inform,
decide, result, acknowledge|}

We ran FDR2 on a Linux PC (Open SUSE 10.2) equipped with a 3 GHz Pentium
4 processor and 1 GB RAM. In Table 1, we give an overview of the computation
times and sizes of the generated state spaces for using FDR2 to check PROP

– directly calling FDR2 on System without using compositional reasoning,
– using L∗ and assume-guarantee reasoning based on the given decomposition

into Coord and Pages ,
– using L∗ and assume-guarantee reasoning based on our decomposition based

on three different sequential cuts:
1. Vot1‖Vot2 for the cut {vote},
2. Dec1‖Dec2 for the cut {decide, vote},
3. Inf1‖Inf2 for the cut {inform}.

We started with one instance of the component Page and incrementally increased
N – the value used is given in the third column. The fourth column displays the
verification time in seconds; column 5 and 6 indicate the size of the computed
state space for components 1 and 2, respectively. One asterisk symbolizes that the
machine ran out of memory due to exceeding its swap limit after approximately
90 minutes whereas two asterisks denote that there was no computation result
after more than four hours.

Apparently, if we use our decomposition and L∗, we are able to verify the prop-
erty for a higher N compared to verification of the original specification. Further-
more, we achieve much better runtime results. The best results are achieved for
the decomposition based on the cut {decide, vote}. Since the cut {decide, vote}
outperforms the cut {vote}, we can deduce that the smallest cut may not al-
ways achieve the best results. In particular, in our example, {vote} leads to
VC = {votes} – this variable is not represented in the corresponding set for
{decide, vote} since we are decomposing the specification at a point after which
votes will never be used again.

Despite this there is no significant difference between the verification times for
the different cuts we were looking at. The generated assumptions for N equals 2
for two of the cuts are depicted in Figure 3 (omitted from address parameters;



122 B. Metzler, H. Wehrheim, and D. Wonisch

Table 1. Experimental Results for FDR2

System L∗ N Time/sec States Comp.1 States Comp.2

Coord || Pages no 1 <1 Full System: 47
2 <1 Full System: 1116
3 <1 Full System: 26190
4 6 Full System: 623376
5 227 Full System: 14984838
6 (*) Full System: unknown

Coord || Pages yes 1 1 9 65
2 9 17 4353
3 35 24 287496
4 656 31 18974736
5 (*) 37 (**)

Vot1 || Vot2 yes 1 <1 17 12
2 1 288 53
3 3 4374 217
4 5 64800 893
5 21 949158 3673
6 302 13845168 15053
7 (*) (**) 61417

Dec1 || Dec2 yes 1 <1 23 11
2 1 324 50
3 2 4590 210
4 5 66096 878
5 19 956934 3642
6 236 13891824 14990
7 (*) (**) 61290

Inf1 || Inf2 yes 1 <1 29 8
2 1 432 77
3 2 6102 639
4 4 85536 5201
5 19 1197990 41799
6 275 16831152 333137
7 (*) (**) 2640759

Fig. 3. Final assumptions for PROP based on Cuts {decide, vote} and {inform}

0, 1 and 3, 4 are abstractions of YES ,NO and COMMIT ,ABORT , respectively).
Runtime behaviour is worst for the given decomposition. Here, the results suffer
from a larger generated assumption with more states and transitions.

5 Conclusion and Related Work

This paper presented an approach to compositional verification illustrated on
specifications written in the integrated formal method CSP-OZ. We decomposed
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a specification such that the resulting components can efficiently be used for
assume-guarantee reasoning. The decomposition is performed on the specifica-
tion’s dependence graph. We showed correctness of the approach. In the context
of automatically generating assumptions we illustrated the technique on an ex-
ample specification. Verification results are carried out using the CSP model
checker FDR2.

Related work. Assume-guarantee reasoning was first introduced by Chandy
and Misra [19] and Jones [17, 16]. Compositional verification for integrated for-
mal methods undergoes intensive research. For CSP‖B, a coupling of the B
method with CSP, Treharne and Schneider explored compositional proof tech-
niques [24] by also using FDR2 for verification of CSP processes.

The static analysis of a specification is the foundation for the decomposition
technique proposed in this paper. Brueckner [4] defined a CSP-OZ dependence
graph which we incorporated here. He used it to compute a specification slice
[26] with respect to a certain property. Our decomposition technique is more
closely related to the technique of program chopping [22] – we do not compute
full specification slices but rather chop the specification up to the point at which
the assumption holds.

Cobleigh et al. first used the L* algorithm in the context of automatic learn-
ing an assumption for compositional reasoning [8] in the domain of Labelled
Transition Systems. We implemented their framework in our context for FDR2.

Alur and Nam [20] do assume-guarantee based reasoning in the context of
symbolic model checking. They also use L∗ to automatically generate assump-
tions and decompose a given system. The decomposition is computed fully au-
tomatically in terms of hypergraph partitioning. In their semantic domain of
symbolic transition modules based on solely boolean variables, they do not deal
with control flow, synchronisation and dependence graphs.

Future work. This paper is intended to provide the basic concept for a de-
composition and automated verification technique for CSP-OZ. There are many
follow-up steps to be taken, some of which are described below.

The requirement that the dependence graph is sequential is quite strong.
To relax this restriction, we need to deal with circularity within the DG. The
technique proposed in this paper will thus be extended to specifications with a
recursive structure. In this case, we aim to reuse the decomposition technique by
defining two cuts determining the switch from the first to the second phase and
vice versa. This will lead to the application of a symmetric assume-guarantee
proof rule where two assumptions can be learned simultaneously [2].

Even though most of the steps within this framework can be performed au-
tomatically, such as the computation of the DG, the translation of a CSP-OZ
class to the input language of FDR2 and the assumption learning, the defini-
tion of a cut is currently done by hand. To find an optimal cut in the sense of
evenly distributed components we might use techniques presented in [14, 27] to
compare several possible decompositions in terms of a lattice of decomposition
slices. Other heuristics need to be defined and evaluated.
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Finally, we aim at evaluating the approach on a much bigger case study.

Acknowledgement. We thank Ramsay Taylor for fruitful discussions on the
topic and for correcting our English.
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