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Abstract. Testing each component in isolation is not always feasible.
We consider FSM-based deterministic testing on an Implementation Un-
der Test (IUT) together with some other correctly implemented compo-
nents as its context. The behavior of the context needs to be taken into
account for generating test sequences. We employ model checking tools
to retrieve necessary information from the context specification so that a
test suite for the IUT integrated with its context can be generated. The
use of model checking tools frees us from the necessity of constructing
the global model of the IUT and its context, and thus helps avoid the
state explosion problem. In the current work, we consider the situations
when the context is an embedded system, i.e. it communicates and only
communicates with the IUT. In this setting, we present a method to de-
rive a complete test suite that can be used to check for trace pre-order
between the FSM representing the integrated implementation of the IUT
and its context and the synchronous product of the specification FSM of
the IUT and that of its context.

Keywords: finite state machines, conformance testing, context-based
testing, test sequences, distinguishing sequences.

1 Introduction

Given a final software product, we are interested in knowing whether it conforms
to what we expect. Conformance testing has been extensively studied and has
turned out to be an effective tool for us to gain enough confidence in the correct-
ness of our product implementation with respect to the expectations. It has two
main characteristics: (i) Different from a formal verification approach, here the
implementation (called implementation under test (IUT)) is treated as a black box
from which we can only infer its behavior by providing input to it and observing its
output. (ii) Instead of simple input/output pairs, the expected behavior in differ-
ent states is formally specified. This is because in most of the cases, the given IUT
is stateful in the sense that it reacts differently (e.g. by giving different outputs)
to the same input provided at different time of the execution.

There are various tools to describe the expected behavior in different states.
Suitable for different levels of abstractions, they range from formal specifica-
tion languages such as process algebras, to structural/operational modelling
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languages such as (input/output) labelled transition systems (LTSs) and Finite
State Machines (FSMs). Of course, when a specification is given in some high
level formal specification languages, we may still refer to its formal model.

Given a formal model S in terms of e.g. LTS or FSM, describing the expected
behavior of the IUT, we can imagine that the IUT behaves according to a certain
abstract machine M in the same format. In this setting, conformance testing
amounts to establishing the correspondence between S and M. There are several
relations proposed in the literature in this regard: the trace equivalence relation,
the ioco conformance relation [1], the quasi-equivalence relation [2], etc. In this
work, we consider trace pre-order �. S � M holds if any (input/output) trace
allowed by S are implemented, yet a trace not specified in S may or may not be
implemented. In a special case when the specifications of the IUT and its context
are both completely specified, our results may hold for trace equivalence.

There is usually an infinite number of traces in a given model of the desired be-
havior and the one representing the IUT, some of them with infinite lengths. The
ultimate goal for test generation is to find a sufficient and efficient set of finite input
sequences, i.e. a test suite, from a given model so that when these input sequences
are given to the IUT, we can, by comparing the actual output sequences with the
expected ones, draw a conclusion whether the trace pre-order holds between the
model of the expected behavior and the one representing the IUT.

This goal can be better achieved with the slow environment assumption well-
adopted in the literature, i.e., whenever an input reaches the system, the system
will always prompt the output for it and reach a stable state (i.e. there is no
more executable statement from that state) before the next input can reach the
system. In other words, each input is explicitly associated with one or more
outputs. In this setting, under the assumption that the given model and the one
representing the IUT share the same sets of inputs and outputs, we may be able
to identify a state in the model that represents the IUT by observing a sequence
of outputs in response to a special sequence of inputs. In protocol testing, people
used FSMs to represent the state changes with the paired input and output, and
have explored the characteristics of such special input sequences as expressed in
the notions of characterization set [3], Unique Input/Output sequence (UIO) [4],
distinguishing sequence [5]. With a characterization set, a set of UIO sequences,
or a distinguishing sequence, we can identify the states in the implementation
FSM with those in the specification FSM, based on which we can further verify
the correspondence of the transitions in the specification FSM with those in
the implementation FSM. This helps us establish an equivalence or pre-order
relation between the specification FSM and the implementation FSM.

One of the major drawbacks of FSM-based testing is that the specification
FSM, possibly derived from a specification given in a higher level of abstrac-
tion, suffers from the state explosion problem: it may have too large a state
space even if we only consider the control data. This is troublesome especially
when we consider testing more general software systems than communications
protocols. A promising solution to this problem is found in the compositional
testing approach: we can apply FSM-based testing techniques for unit testing,
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while leaving the correctness of the integrated system to formal verification. Of
course, this is a sound approach only if the considered equivalence or pre-order
relation is compositional, e.g., if the specifications representing components I1

and I2 are X-equivalent to their respective behavioral specifications S1 and S2,
then without performing integration testing or system testing, we know that the
integration of I1 and I2 is a correct implementation of the parallel composition
of S1 and S2 with respect to this X-equivalence. As we know, trace equivalence
and trace pre-order are compositional when I1 and I2 are sequentially executed
components represented by deterministic FSMs. The condition for ioco confor-
mance relation to be compositional is given in [6].

Along the compositional testing approach to applying FSM-based testing tech-
niques to unit testing, we may still encounter difficulties. One of them comes from
the fact that testing each component in isolation is not always feasible. There
are situations when we have to test a component together with some others.

As pointed out in [2], this can be the case when the IUT is an embedded
part of a complex system under test. As another example, suppose we want to
test a web-based composite service implementation I1. I1 makes use of another
component service I2 which is known to be correct. When testing I1 in isolation,
we have the difficulty in providing input and observing output all encapsulated
according to certain protocol such as SOAP. Testing I1 in isolation also invokes
the necessity of testing the interoperability between I1 and I2. A better solution
is to test I1 and I2 together where I2 is considered as the context of I1.

Following the framework presented in [2] on testing in context, we consider
the problem of FSM-based deterministic testing on (I, Ic) which is an IUT
implementation I together with a correct context implementation Ic. In our
current work, Ic is an embedded system, i.e. it does not communicate with any
component other than I. The communication port between I and Ic is not
controllable but observable. This means that the tester can neither provide input
to the IUT using this port nor stop an input from the context to the IUT. It
can, however, observe all the input from and all the output to the context. The
specification of I is given in terms of a 2-port FSM, one port for communicating
with its context and one for its input/output with the environment/tester. The
specification of Ic can be given in terms of either a specification language or a
structural modelling language. We present a method to generate a suitable test
suite that can be used to test (I, Ic). More precisely, we modify the well-known
W-method [3] to construct test sequences in order to establish trace pre-order
between the FSM representing (I, Ic) and the product of the specification FSM
of I and that of Ic. The ultimate goal of our work is to avoid generating the
operational model of the give specification of Ic (if a higher level specification is
provided) and constructing the global model of I and Ic. In order to do so, we
employ model checking tools to retrieve necessary information from the context
specification so that test sequences for (I, Ic) can be generated. In this way, we
avoid the notorious state explosion problem. Note that it is straightforward to
extend our work to a more general case where the embedded context consists of
a set of components, each having its own port to communicate with I.
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The rest of the paper is organized as follows. In Section 2 we give a brief
notational background introduction to FSM and FSM-based testing that will
be used later on. Our problem is explained in detail in Section 3, followed by a
guideline of a possible solution. How to use model checking tools to generate a
complete test suite is presented in Section 5. To better illustrate our method, we
give a running example in Section 6. At the end, we position our work among
other pieces of related work, and conclude ours with some final remarks.

2 Notational Background

In this section, we introduce the preliminary notations and terminologies on
n-port finite state machines and test sequence construction. They will be used
later in this paper.

2.1 n-Port Finite State Machines

As we mentioned in the Introduction, we assume that the specification S of the
IUT is given in terms of a 2-port FSM. A deterministic n-port Finite StateMachine
(also called finite state machine for short) is defined by a tuple (S, I, O, δ, λ, s0).

– S is a finite set of states where s0 ∈ S is its initial state.
– I =

⋃n
i=1 Ii, where Ii is the input alphabet of port i (i = 1, . . . , n).

Being abstract, these input symbols encapsulate the information of the com-
munication channels. Thus, without loss of generality, we can assume that
the input symbols at different ports are distinct, i.e. Ii ∩ Ij = ∅ for i �= j.

– O = Πn
i=1Oi where Oi is the output alphabet of port i (i = 1, . . . , n).

Each o ∈ O is a vector of outputs denoted by o = 〈o1, . . . , on〉 where oi ∈ Oi

for i = 1, . . . , n. We do not consider the order in which we observe output
oi and oj at different ports. When there is no output at a port i, we use a
special and distinct symbol − to denote it.

– δ is the transition function that maps S×I to S, and λ is the output function
that maps S × I to O.

The input and output symbols are abstract: The discussions on data types
and complicate data structures in the input and the output are not considered.

Note that λ and δ are partial functions. We will use δ(s, i) = null to denote
that there is no image of δ for the given state s of S and the given input i of
I. In this case, we also have λ(s, i) = null. Furthermore, we extend the input
of λ and δ from an input alphabet to a sequence of input alphabets with their
meanings obtained straightforwardly from the original ones.

A transition t is defined by a tuple (s1, s2, i/o) in which s1 is the starting state,
i is the input, s2 = δ(s1, i) is the ending state, and o = λ(s1, i) is the output.
The input/output i/o is called the label of t. We use T to denote the set of all
transitions in S.

Let ti be a transition for 1 ≤ i ≤ k. A path ρ = t1 t2 . . . tk is a finite sequence
of transitions such that for k ≥ 2, the ending state of ti is the starting state of
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ti+1 for all 1 ≤ i ≤ k−1. A state s ∈ S is reachable if there exists a path starting
from s0 and ending at s. We consider FSMs where all states are reachable.

An FSM is completely specified if functions λ and δ are total; otherwise, it is par-
tially specified. We consider that the given specification FSMs are partially spec-
ified. Results in our approach when a given specification is completely-specified
are discussed at the end. Note that if an FSM S is not completely specified, it is
possible to make S completely specified by adding transition (s, s, i/〈−, . . . ,−〉)
for each s ∈ S, i ∈ I such that (s, i) /∈ domain(δ). This, however, slightly changes
the meaning of the FSM and is not always acceptable.

Two states si and sj are equivalent if, for every input sequence σ, λ(si, σ) =
λ(sj , σ). If λ(si, σ) �= λ(sj , σ) then σ distinguishes between si and sj . An FSM
M is minimal if every state can be reached from the initial state of M and no
two states of M are equivalent. Since only deterministic FSMs are considered,
we can easily obtain a minimal FSM from any given FSM. In the following, we
assume that all given FSMs are minimal.

2.2 Distinguishing Sequence and Test Sequence Construction

Let ρ = (s1, s2, i1/o1)(s2, s3, i2/o2) . . . (sk, sk+1, ik/ok) (k ≥ 1) be a path in an
FSM. We will use is(ρ) to denote the input sequence i1 ◦ i2 ◦ . . . ik of ρ. Note that
for clarity, we use ◦ as a separator in a sequence of input, a sequence of output,
or a sequence of input/output pairs. A test sequence is an input sequence and
is typically obtained from a path of a given specification FSM. A test suite is a
finite set of finite test sequences. Usually, we assume that the IUT can always
be reset to its initial state from any state and thus a test suite refers to a set of
input sequences derived from paths that start from the initial state s0. In this
way, we can carry out the test with the test sequences in a test suite one by one.
For each input sequence σ in a test suite, we will use path(σ) to denote the path
that σ is derived from. We will also use out(σ) to denote the expected output
sequence which is actually λ(s0, σ).

Given an FSM S, we are interested in the so-called complete test suites w.r.t.
trace pre-order. That is, by applying its input sequences to the IUT and com-
paring the output sequences with the expected ones, we can distinguish any
implementation FSM M of the IUT if S �� M .

Since S and M are deterministic and minimal, this can be achieved by estab-
lishing correspondence between the states in S and those in M. Then, for each
transition t = (s1, s2, i/o) in S, we construct a test sequence to verify that there
exists a transition t′ = (r1, r2, i/o) in M which starts from a state corresponding
to s1, ends at a state corresponding to s2, and gives the same output o upon the
same input i.

The states in the implementation FSM can be identified via distinguishing
sequence, Unique Input/Output sequence (UIO), or characterization set. State
identification using UIOs is possible but it turns out to be hard and less practical
[7]. A characterization set is easier to find than a distinguishing sequence, yet a
test suite generated using a characterization set [3] is usually much longer than
that generated using a distinguishing sequence in terms of total length of the
test sequences [5, 8–10]. Here we consider using distinguishing sequence.
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A distinguishing sequence is an input sequence D with the following charac-
teristics: the output sequences produced by S in response to D in different states
of S are all different, i.e., for all si, sj ∈ S, if si �= sj then λ(si, D) �= λ(sj , D).

There are various methods proposed in the literature for generating test se-
quences in order to check if an IUT conforms to a given specification FSM. See
[11] for a survey on this topic. A basic idea of constructing a complete test suite
T w.r.t. trace pre-order with a given distinguishing sequence D can be described
as follows.

– For each state sk in specification FSM S, find a path ρk starting from s0

and ending at sk, and add a test sequence is(ρk) ◦D to T . If the IUT passes
test sequence is(ρk) ◦ D, i.e. its output sequence in response to this input
sequence is correct, then we say that the state of the IUT after applying
is(ρk) corresponds to sk. As we assume that the number of states in the
implementation FSM M is no more than that in S, set {is(ρk) ◦D | sk ∈ S}
actually helps us to establish a one-to-one correspondence between the states
in S and those in M.

– For each transition (s1, s2, i/o) in S, add test sequence is(ρ1) ◦ i ◦ D to T .
Since is(ρ1) ◦ D ∈ T , we know that the state of M after applying is(ρ1)
corresponds to s1. Thus, is(ρ1) ◦ i ◦ D helps us to check that there exists
a transition (r1, r2, i/o) in M where r1 and r2 correspond to s1 and s2

respectively: We can verify whether the state of M after applying is(ρ1) ◦ i
corresponds to s2 by applying D on it. This is because from the first step,
we have used the same distinguishing sequence D to identify all the states
in M. We say that transition t = (s1, s2, i/o) is verified in a test suite T if
there exists an input sequence σ such that σ ◦ D ∈ T , σ ◦ i ◦ D ∈ T and
path(σ) is a path in S from s0 to s1.

This is actually a variation of Chow’s W-method [3] in the case when (i) the
number of states in the implementation FSM is no more than that in the speci-
fication FSM; and (ii) a distinguishing sequence rather than a characterization
set is available. Thus, it is straightforward that a test suite such constructed is
complete with repect to trace pre-order.

In the following, we present an extension of this method for testing in context.

3 Problem Description

As noticed in [2], testing an IUT in isolation is quite different from testing it
within a context. First of all, if an IUT is tested within a context and passed a
test, we cannot draw any conclusion about the correctness of the IUT because
a fault in the IUT and a fault in its context may mask each other resulting in
an overall correct execution. Such a problem is out of the scope of our current
work. In the following, we consider that the context is correctly implemented,
with its behavior specified in C.

Recall that in our setting, the FSM for an IUT has two ports: one for communi-
cating with its context, called the context port; and the other for communicating
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with the rest part of its environment simulated by a tester, called environment
port. For clarity, we will use

– I and O as the IUT’s input and output at the environment port;
– X and Y as the IUT’s input and output at the context port.

The behavior of the IUT is thus given as S = 〈S, s0, I ∪ X, O ∪ Y, λs, δs〉.
We assume that the specification FSM S is free from internal-port-cycles. An

internal-port-cycle in an FSM is a path (s1, s2, i1/o1) (s2, s3, i2/o2) . . . (sk, sk+1,
ik/ok) (k ≥ 2) such that s1 = sk+1, and ij �∈ I for all 1 ≤ j ≤ k. An internal-
port-cycle represents a possibly infinite internal communications between the
IUT and its context, which is normally considered as a design error. How to
guarantee that the design specifications are free from such logical errors can be
carried out by formally verifying the correctness of the design specifications.

An input sequence generated from S cannot be served as an input sequence to
test the IUT in its context Ic, as we cannot control the IUT’s context port. To
take the context into consideration, a possible approach is to develop a testing
technique to check whether M conforms to S within context C w.r.t. trace pre-
order, instead of checking whether M conforms to S w.r.t. trace pre-order. That
is, we compare the model representing the actually behavior of (I, Ic) with the
one specifying its expected behavior. Just like we assume that the actual behavior
of the IUT can be described by an FSM for testing the IUT in isolation, we
assume that the actual behavior of (I, Ic) can be described by an FSM.

The model representing the expected behavior of (I, Ic) can be derived from
the specification of the IUT and that of the context. Suppose that the context
specification C is given as a 1-port FSM. Of course, if it is given in a specification
language with higher level of abstraction, we consider its equivalent FSM model.
Let

C = 〈C, c0, Ȳ , X̄, λc, δc〉
be the specification FSM of the context where X̄ = {x̄ | x ∈ X} and Ȳ =
{ȳ | y ∈ Y } are the output and input symbols of C to communicate with S: x̄
and ȳ are executed simultaneously with x and y respectively, representing the
communications between the IUT and its context. Here we have ignored those
actions internal to the context component.

Note that since we have the slow environment assumption, it makes no dif-
ference to use synchronous or asynchronous communication mode between the
IUT and its context. For simplicity, we consider synchronous communication.

Given S and C as the above defined 2-port and 1-port FSMs, the expected
behavior of (I, Ic) can be described as a synchronous product FSM S×C defined
on S and C as 〈S′, (s0, c0), I, ((O×Y )∪X)∗, λ, δ〉. It has only one port with the
tester/environment for input. A global state consists of a local state of S and a
local state of C. S′ ⊆ S×C is a set of global states reachable from (s0, c0) in the
sense that for any (s, c) ∈ S′, there exists an input sequence σ ∈ I∗ such that
δ((s0, c0), σ) = (s, c).

((O×Y )∪X)∗ is a set of outputs from the tester’s viewpoint. As we mentioned
in the Introduction, we assume that even though the input/output between the



An Approach to Testing with Embedded Context Using Model Checker 73

IUT and its context is not controllable, they are observable. Thus, corresponding
to each input from the environment, the tester will observe a sequence of outputs
which is composed of those outputs 〈o, y〉 of the transitions in S (〈o, y〉 ∈ O×Y )
and those input x from its context (x ∈ X).

A transition in S×C is derived from a path in S and a path in C. More precisely,
we have transition ((s1, c1), (s2, c2), i/o) in S ×C, and thus λ((s1, c1), i) = o and
δ((s1, c1), i) = (s2, c2), only if we have

λs(s1, i1 . . . ik) = o1 . . . ok, δs(s1, i1 . . . ik) = s2,

λc(c1, i
′
1 . . . i′h) = o′1 . . . o′h, δc(c1, i

′
1 . . . i′h) = c2;

for h, k ≥ 1 such that

k = h, i = i1, o = o1 ◦ i2 ◦ o2 . . . ◦ ik ◦ ok,

i′j = c(oj) for 1 ≤ j ≤ k, ij+1 = o′j for 1 ≤ j ≤ k − 1, o′k = −;

or

k = h + 1, i = i1, o = o1 ◦ i2 ◦ o2 . . . ◦ ik ◦ ok,

i′j = c(oj) for 1 ≤ j ≤ k − 1, ij+1 = o′j for 1 ≤ j ≤ k − 1,

ok = 〈∗,−〉 where * can be any output including -;

Otherwise, λ((s1, c1), i) = null and δ((s1, c1), i) = null. Here c(o) represents the
output of o at the context port. Note that in the following, when there is no
confusion, we will drop the subscripts of λ and δ.

Since there is no internal-port-cycle in S, the above defined product FSM
fully describes the expected behavior of the IUT with its context using the slow
environment feature. Furthermore, as we assume that S and C are minimal and
deterministic, the above defined synchronous product of them is also minimal
and deterministic.

Once we have a product FSM specification for the expected behavior of (I, Ic),
it is straightforward to generate a suitable test suite from this product FSM in
order to test whether trace pre-order holds between this specification and the
implementation FSM of (I, Ic).

This approach, however, requires that the FSM specification of Ic be available,
and the global model of (I, Ic) be calculated, which brings out the state explosion
problem. In the present work, we consider using model checker as an auxiliary
tool to retrieve necessary information from a context specification in order to
generate test sequences. We do not require that the product of S and C be
actually constructed. In particular, if the specification of the expected behavior
of Ic is given in a specification language of a higher level of abstraction, we do
not need to construct its operational model neither.

4 Test Generation with Context

To check whether a trace pre-order relation holds between S × C and the im-
plementation FSM of (I, Ic), according to what we introduced in Section 2, we
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need to generate a complete test suite to identify all the states in S × C us-
ing a distinguishing sequence, and verify all the transitions in S × C using the
same distinguishing sequence. Since the context implementation is known to be
correct, we actually only need to generate test sequences to verify some of the
transitions in S × C. Consequently, we can look for a distinguishing sequence
that is capable of distinguishing only a subset of states in S ×C. In this section,
we characterize such a subset of transitions and a subset of states.

Definition 1 (R covers T ). Let T be the set of transitions in S × C, and
R ⊆ T . R covers T if for any transition ((s1, c1), (s2, c2), i/o) ∈ T , there exists
a transition t = ((s1, c

′
1), (s2, c

′
2), i/o) in R where (s1, c1), (s2, c2), (s1, c

′
1), and

(s2, c
′
2) are states in S × C, i is an input of S × C and o is an output of S × C.

The transitions in S×C can be partitioned into different groups according to the
local states of S in their starting states, the local states of S in their ending state,
and their input/output pairs. The above definition actually requires that the
subset of transitions R contain at least one representative transition from each
of the partitions. The intuition behind is this: Since S and C are deterministic,
given two states s1 and s2 in S, an input i and an output o in S × C, there
exists exactly one path ρ in S from s1 to s2 with input/output sequence i1/o1 ◦
i2/o2 ◦ . . . ◦ ik/ok such that i = i1 and o = o1 ◦ i2 ◦ o2 ◦ . . . ◦ ik ◦ ok. According
to the definition of synchronous product, for any states c1, c2 in C, if transition
t = ((s1, c1), (s2, c2), i/o) ∈ T , then t is constructed from this path. Consider all
such transitions in one partition G(s1, s2, i, o). To check that each transition in
G(s1, s2, i, o) is correctly implemented, we only need to make sure that path ρ is
correctly implemented in the sense that there exists a path ρ′ in M which starts
from a state identified as s1, ends at a state verified as s2, and correctly gives
output o in responds to input i. Since the context is correct, this implies that
all transitions in partition G(s1, s2, i, o) are correctly implemented. While any
transition in G(s1, s2, i, o) can be used to generate a test sequence for the above
purpose, we require that the subset R of transitions contains one transition from
each partition G(s1, s2, i, o).

As we consider only transitions in such a subset of transitions R that covers
the total set of transitions in S × C, we only need a distinguishing sequence to
identify all the states appeared as the starting or ending states in the transitions
in R, denoted by states(R). In the following, we show that we can further
weaken this requirement: it is sufficient to have a distinguishing sequence that
can identify, among the states in states(R), all those with different local states
of S.

Definition 2 (distinguishing sequence on S over W). Let W be a subset
of reachable states in S × C. An input sequence D = i1 ◦ x̃1 ◦ i2 ◦ x̃2 . . . ◦ ik ◦ x̃k

for ij ∈ I, x̃j ∈ X∗ (1 ≤ j ≤ k) is a distinguishing sequence on S over W if

– For any state s, s′ ∈ S, s �= s′ implies λ(s, D) �= λ(s′, D).
– For any (s1, c1) ∈ W and for any h (1 ≤ h ≤ k), the input sequence of

X∗ obtained from λ((sh, ch), ih) by removing all output of Y is x̃h. Here for
2 ≤ h ≤ k, (sh, ch) = δ((s1, c1), i1 ◦ i2 . . . ◦ ih−1).
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The above definition can be viewed as an extension of the normal definition of
distinguishing sequence of an FSM: A distinguishing sequence of S over ∅ is ac-
tually the original definition of distinguishing sequence on S without considering
any context.

Note that we do not require an input sequence to distinguish all the states
in S × C, but a subset of states of interest expressed in W . This brings out two
benefits: i) an increased possibility of the existence of a distinguishing sequence;
ii) when there exist distinguishing sequences, a possibly shorter one which con-
tributes to the reduction of the cost for carrying out the test.

Now we show that in order to generate from S ×C a complete test suite w.r.t.
trace pre-order, it is sufficient to consider a subset R of transitions as long as R
covers its set T of transitions, and a distinguishing sequence on S over states(R).

Note that while previous work on this topic for testing in isolation requires
reliable reset, i.e. the IUT can be reset to its initial state at any time, here we
assume that the IUT can be reset to its initial state at any time and its context
will be reset at the same time.

Similar to previous work, we assume a bound on the number of states in the
implementation FSM of the IUT. When we test an IUT with a context, since the
input to the IUT from the context is not controllable, the description of the IUT
can be considered as a 1-port FSM from the tester’s viewpoint. As a consequence,
some of the states in a given 2-port FSM are not stable (so-called transient
states in [2]) in the sense that after an input from the tester/environment, the
IUT will never stay in any of those states waiting for the next input from the
tester/environment. For testing in context, we consider only stable states: When
we say that the number of states in the implementation FSM of the IUT is no
more than the number of states in the specification FSM of the IUT, we refer to
those states that appear to be the starting states of some transitions with input
at the environment port.

With the above assumptions, we present the following result:

Proposition 1. Let T be the set of transitions in S × C and R ⊆ T . Let T be
a test suite derived from S × C. If

– R covers T ,
– there exists an input sequence D such that D is a distinguishing sequence on

S over states(R), and ∀t = ((s1, c1), (s2, c2), i/o) ∈ R, there exists an input
sequence σ such that σ ◦D ∈ T , σ ◦ i◦D ∈ T , and path(σ) is a path in S×C
from (s0, c0) to (s1, c1),

then T of S × C is complete w.r.t. trace pre-order.

The proof of this result is omitted due to the lack of the space and will appear
in the full version of this work.

This proposition indicates that a desired test suite can be generated by finding
a transition set R and a distinguishing sequence D such that R covers T and
D is a distinguishing sequence over states(R). In the next section, we will show
how to find R and D with a model checker.
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5 Test Generation Using Model Checking Tools

Model checking tools such as SPIN [12], SMV [13], UPPAAL [14] are originally
designed to verify the correctness of design specifications. Recent years have
seen trends in applying model checking tools to assist the test generation pro-
cedures (see e.g. [2, 15–19]). When we use a model checker to verify a system
model against some required property, a counter-example will be returned if the
system model is not correct w.r.t. the property being checked. Making use of
this functionality of model checkers, we can characterize a desired test sequence
as a property. We use a model checker to verify the negation of this property,
called trap property, against a system specification. When this trap property is
violated, a counter-example returned by the model checker actually serves as a
desired test sequence. Following this line of research, we present here another ex-
ample of using model checkers to generate test sequences in conformance testing
with context.

To avoid constructing synchronous product of S and C, the specifications of
the IUT and its context are given to a model checker as a system specification.
The specification FSM of the IUT can be straightforwardly translated into any
formal specification language accepted model checking tools. For its context,
we do not restrict it to be given in a particular specification language or a
particular model, as long as it can be translated into a specification language
accepted by the adopted model checker. In the following, we use Spec to denote
the specification for the composition of the IUT and its context given in the
specification language of the chosen model checker.

We explain below how to make use of the specification FSM of an IUT and a
model checker (with Spec) to derive a test suite of the IUT and its context that
is complete with respect to trace pre-order.

5.1 Finding Transitions in R
As we explained in Section 4, we need to find a subset R of transitions in
S × C such that R covers T where T is the set of transitions in S × C. Since
the synchronous product FSM for the IUT and its context is not available, we
analyze S and derive R via a model checker. Fig. 1 shows an algorithm to use a
model checker to determine a transition set R such that R covers T .

A path ρ = (s1, s2, i1/o1) ◦ (s2, s3, i2/o2) ◦ . . . ◦ (sk, sk+1, ik/ok) in S is com-
posable if i1 ∈ I, ij ∈ X for 2 ≤ j ≤ k, and δ(sk+1, i) �= null for some i ∈ I.
According to the definition of synchronous product in Section 3, any transition
t = ((s, c), (s′, c′), i/o) ∈ T is constructed from some composable path. On the
other hand, not all composable paths in S can be used to define a transition in
S×C. Those that can be used to define a transition in S×C are called executable
paths. Recall that transitions of T in partition G(s, s′, i, o) share the same local
state s of the IUT in its starting state, the same local state s′ of the IUT in
its ending state, and the same input i and output o. Each executable path is
actually uniquely used to define all transitions in one of the partitions.

Now, as we want to derive a set R of transitions that contains at least one
(arbitrary) transition in each partition, we can use an executable path ρ in S to
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1: Input: S , Spec.
2: Output: a set V of pairs of transitions in S × C and input sequences in I∗, R.

3: Let Φ contains all composable paths in S ;
4: Let V = ∅;
5: for each path ρ in Φ do
6: define a formula φ to express the non-existence of a path in Spec which contains a

subpath which is equal to ρ when all its transitions from the context are ignored.
7: use model checker to verify formula φ in Spec;
8: if formula φ is violated then
9: add (t, σ) to V , where (i) t ∈ S × C is a transition derived by ρ and a path in

C defined by the counter-example returned from the model checker; and (ii)
σ is an input sequence in I∗ derived from the counter-example that defines a
path from (s0, c0) to the starting state of t;

10: end if
11: end for
12: Let R = {t | (t, σ) ∈ V };
13: return V and R;

Fig. 1. Algorithm 1. To find a transition set R

request the model checker to find an arbitrary transition of T that represents the
partition uniquely determined by ρ. This can be done as follows: Use temporal
logic formula to express such a property that there exists a subpath which is equal
to ρ when all its transitions from the context are ignored. Request the model
checker to verify the trap property, i.e. the negation of the above property. If ρ
is used to define a transition t in S × C, then the model checker will detect the
violation of the trap property, returning a path in Spec from which we can derive
a transition in the partition of ρ. Note that in addition to the transition in T ,
we also derive from the counter-example an input sequence in I∗ which defines
a path from (s0, c0) to the starting state of t. This input sequence will be used
later on to construct a test suite.

As statically we do not know which composable path is executable, we simply
ask the model checker to check all composable paths. If a composable path is
not executable, the model checker will prove the trap property. In this case, we
do not need to record any information.

Since S is finite and free from internal-port-cycles, the number of composable
paths in S is finite and the computation of Φ is in polynomial time. Consequently,
the time complexity of Algorithm 1 depends on that of the model checking
algorithms used by the model checker. See e.g. [13] for the discussions on the
complexity of model checking algorithms. In fact, optimization techniques of
model checking have been well studied in recent years to enhance its applicability.
Thus, the practicality of Algorithm 1 is endorsed.

According to Algorithm 1, we have the following result. Again, its proof is omit-
ted due to the lack of the space and will appear in the full version of this work.

Proposition 2. Let T be the set of transitions in S × C, and R the set of
transitions obtained from Algorithm 1. We have R covers T .
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5.2 Finding a Distinguishing Sequence

Algorithms for finding a distinguishing sequence of an FSM are well-discussed
in the literature. See [11] for a good survey on this topic. However, finding a
distinguishing sequence of an FSM in context is much more complicated. Due to
the fact that a distinguishing sequence on S over states(R) must be calculated
with both the specification of the IUT and that of its context, while synchronous
product FSM of them is not available, we will apply model checker again. In
[20], the authors presented an approach to generating a distinguishing sequence
of an EFSM with UPPAAL model checker [14]. Here, we adopt the idea of this
approach to generate a distinguishing sequence on S over states(R).

1: Input: Spec, R.
2: Output: a distinguishing sequence on S over states(R).

3: for each state (s, c) in states(R) do
4: create a variant of Spec with (s, c) as its initial state;
5: end for
6: create a monitor process to synchronize all variants in the sense that a variant can

only accept an input if all others accept the same input simultaneously;
7: define a formula φ to express the property that there does not exist an input se-

quence such that the corresponding output sequences produced by any two variants
with different local states of S as their initial states are all different;

8: request model checker to verify φ in Spec;
9: if model check detects a violation then

10: Let D be the input sequence derived from the counter-example returned by the
model checker;

11: return D;
12: else
13: return “There does not exist any distinguishing sequence on S over states(R)”;
14: end if

Fig. 2. Algorithm 2. To find a distinguishing sequence over states(R)

Fig. 2 shows an algorithm for this purpose. Initially, for each state (s, c) ∈
states(R), we create a variant of S with s as its initial state and a variant of
C with c as its initial state. Then by making use of a special monitor process,
we request all the processes that represent these variants of S to synchronize
all their actions on accepting input from both the environment port and the
context port so that they will always accept the same input at the same time.
For any two variants whose local states of S in their initial states are different,
if the output sequences produced upon a same input sequence are all different,
then the input sequence can be used as a desired distinguishing sequence D on
S over states(R).

As we know, not every FSM has a distinguishing sequence, In our setting, we
cannot guarantee either their existence. However, as distinguishing sequences
very often exist in real-life examples, the distinguishing sequences in our setting
also exist in many application examples.
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The problem of finding a distinguishing sequence is PSPACE-hard by itself
[11]. Algorithm 2 reduces the problem to an application of model checking tools.
This allows us to benefit from important features that they provide, such as the
efficient partial order reduction and OBDD, and thus, reduce the actual cost for
the computation.

Finally, with V and D, a test suite T is obtained: For each (t, σ) ∈ V , add
both σ ◦ D and σ ◦ i ◦ D to T , where i is the input of t.

6 An Application

In this section, we use Inter-library Loan System (ILS) as a running example
and we use SPIN [21] as a supporting model checker to show how to use the
proposed technique to generate a complete test suite w.r.t. trace pre-order for
testing in context.

SPIN targets the efficient verification of a system model against the required
properties on-the-fly. Here, the system model is described in Promela [21] and
the required system properties are often expressed in Linear Temporal Logic
(LTL) formulas. As a matter of fact, a design specification expressed in many
other specification languages such as FSM and EFSM can be easily translated
into a Promela model.

A simplified ILS consists of two components: a borrowing library and a lending
library. A user at the borrowing library can search a book in the lending library.
When a book is found, the user can choose either to purchase the book or to issue
a loan request. The lending library will always grant the purchase of the book;
however, the allowance of the loan of the book depends both on the availability
of the required book and on the length of the waiting list. There are three cases:
i) if the book is available, the loan request will be granted; ii) if the book is
unavailable but the waiting list is not full, the lending library will ask the user if
he/she wants to make a reservation; and iii) if the waiting list is full, the lending
library will tell the user that the book is unavailable.

Suppose that the borrowing library is the IUT and the lending library is its con-
text. The specification S of the IUT has two ports: portUser and portContext.
Port portUser represents the interface of the borrowing library with the environ-
ment/tester, and port portContext represents the interface of the borrowing li-
brary with its context, the lending library. The semantics of service primitives used
in ILS can be inferred by their symbolic representations. For example, searchBook
is an input primitives at portUser to represent a user’s action of searching a book;
loanAccptd is an input primitives at portContext to represent that a user’s request
of a book loan is accepted.

Fig. 3 and Fig. 4 give the specification FSM S of the borrowing library and the
Promela model of the lending library C, respectively. Suppose that the number
of available books is 3, and the length of the waiting list for a book reserva-
tion cannot exceed 3. Let T be the set of transitions in S × C, and R ⊆ T .
To find R such that R covers T and to find a distinguishing sequence over
states(R), we need to translate FSM S and the behavior of a user of the ILS
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into Promela processes. Thus, there are three processes in the Promela model
of ILS: User, Borrower and Lender, which represent the specifications of the
environment/tester, the borrowing library, and the lending library, respectively.
To establish the communication among these processes, there are four channels.

– fromUser: a channel through which Borrower receives inputs from User;
– ToUser: a channel through which Borrower sends outputs to User;
– fromLender: a channel through which Borrower receives inputs from

Lender;
– ToLender: a channel through which Borrower sends outputs to Lender;

searchBook/
<-, fwdSearch>

found/
<fwdFound, ->

notFound/
<fwdNotFound,->

searchBook/
<done,->loanReq/

<-, fwdReq>

loanAccptd/
<fwdLoanAccptd,->notAvail/

<fwdNotAvail,->

reservationQuery/
<fwdResQuery, ->

purchase/
<rejected, ->

no/<-, fwdNo>

yes/<-, fwdYes>

ackNo/
<fwdAckNo, ->

ackYes/
<fwdAckYes, ->

0s

1s

2s

3s

7s
4s8s

searchBook/
<done, ->

9s

purphase/
<-, fwdPurchase>

confirm/
<fwdConfirm,->

Fig. 3. Specification FSM of the borrowing library

Now we show how to find R. Let ρ = loanReq/〈−, fwdReq〉 ◦ notAvail/
〈fwdNotAvail,−〉. Clearly, ρ is a composable path in S. In order to use SPIN
to check whether ρ is executable, we need an LTL formula to express the negation
of the existence of a transition in S × C derived from ρ.

Since the sending actions are always executable, we focus on finding a path
to enable the receiving actions in ρ. Let the temporal logic variables be defined
as follows:

r = Borrower@s2

p = fromUser?[loanReq]

q = fromLender?[notAvail]

Here, r represents that process Borrower is in state s2; p represents that message
loanReq is received from channel fromUser; and q represents that message



An Approach to Testing with Embedded Context Using Model Checker 81

proctype Lender() {
bool book; /*initialization*/
int inStock =3; /*No. of available books*/
int waitingLst = 0;
int Max = 3; /*the maximum length of waiting list*/

if
:: book = true;
:: book = false;
fi;

ac0: /*label ac0 is associated with abstract state ac0*/
if
:: book == true → toLender ? fwdSearch

→ fromLender ! found;
:: book == false → toLender ? fwdSearch

→ fromLender ! notFound;
goto ac0;

fi;

ac1: /*label ac1 is associated with abstract state ac1*/
if
:: toLender ? fwdReq;
if
:: inStock > 0 → fromLender ! loanAccptd;

inStock–;
goto ac0;

:: inStock <= 0 and waitingLst >= Max
→ fromLender ! notAvail;
goto ac0;

:: inStock <= 0 and waitingLst < Max
→ fromLender ! reservationQuery;

fi;
:: toLender ? fwdPurchase → fromLender ! confirm;

goto ac0;
fi;

ac2: /*label ac2 is associated with abstract state ac2*/
if
:: toLender ? fwdYes → fromLender ! ackYes;

waitingLst++;
goto ac0;

:: toLender ? fwdNo → fromLender ! ackNo;
goto ac0;

fi;
}

Fig. 4. Promela model of the lending library
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notAvail is received from channel fromLender. Then the desired trap LTL
formula can be expressed as

φ =!(<> (rUp)Uq).

When verifying the ILS Promela model against φ, we obtain the following
result from the returned counter-example:

σ = searchBook ◦ loanReq ◦ searchBook ◦ loanReq ◦ searchBook ◦
loanReq ◦ searchBook ◦ loanReq ◦ yes ◦ searchBook ◦ loanReq ◦ yes ◦
searchBook ◦ loanReq ◦ yes ◦ searchBook

t = ((s2, c1,2), (s0, c0,4), loanReq/〈−, fwdReq〉 ◦ notAvail/〈fwdNotAvail,−〉),
where c0,4 and c1,2 are concrete states split from abstract state ac0 and ac1 in
the situation when inStock = 0 and waitingLst = 3, respectively.

This result actually describes a possible scenario of having a transition in S × C
derived from ρ when all the books in the lending library are checked out and the
waiting list is full.

As shown in [11], the role of distinguishing sequences can actually be replaced
by their prefixes, one for each state. This very often helps us achieve shorter test
sequences. The definition of a distinguishing sequence over W can be extended
to prefix distinguishing sequences Di (for state si) straightforwardly. Following
Algorithm 2, prefix distinguishing sequence Di over states(R) can be found with
SPIN. For example, we have D0 = searchBook and D2 = D4 = searchBook ◦
purchase. Thus, test sequences for t are σ ◦ D2 and σ ◦ loanReq ◦ D0.

7 Related Work

There are various types of applications of using a model checker to generate tests.
Ammann et al. combined model checking with mutation analysis to generate test
cases [22]: after a specification model is mutated by applying mutation operators,
a model checker generates counter-examples to distinguish the mutant models
from the original specification model, and thus test cases are derived. Gargantini
and Heitmeyer presented a technique to construct test sequences upon a special
class of so-called Software Cost Reduction requirements, by using a model checker
[23]. In order to save memory from a huge predefined test suite, Tretmans and
de Vries [24] used model checker SPIN to generate tests during testing for non-
deterministic stateful systems. How to generate test cases according to some
data flow test selection criteria is discussed in [25]. In [20], Goltz et al. used a
model checker to generate a shortest distinguishing sequence of an EFSM. In
terms of applying model checking tools for test generation, we have added one
more example along this line of research, particularly for testing in context.

Along the approaches of testing in context, there are several possible ways to
interpret the context of an IUT. Petrenko et al. considered the situation where
the IUT is an embedded component and its communication with the environ-
ment has to be carried out through its context. For this case, they presented
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a framework of testing an embedded component in context [2, 16]. In particu-
lar, the problems of test executability and fault propagation are addressed in
the presence of the context. In [15, 17–19], different approaches are discussed for
solving the problem of translating internal tests derived for an embedded com-
ponent into external observable tests of the entire system. Different from their
test architecture, our work is applicable to testing an IUT that is associated with
an embedded component.

8 Conclusion and Final Remarks

In this paper, we presented a method of deriving a complete test suite w.r.t.
trace pre-order for testing the IUT with an embedded context, and provided a
way of implementing this method by making use of model check tools.

As an initial piece of work on testing in context with model checkers, our
focus has been put on the general method. Further improvements can be made
in terms of the size of the constructed test suite. For example, it is possible to
reduce the size of the generated test suite by constructing a test tree similar to
the one introduced in [3]; We can adopt those model checkers that can always
find shortest counter-examples in terms of the lengths so that shorter test se-
quences can be derived. Apart from the optimization issue, there are many other
directions to extend our current work.

– It remains interesting to discuss our test generation technique in more general
situations where both the IUT and its context have communications with
the environment.

– IUT may be nondeterministic: we would like to study how to extend our
results to nondeterministic testing in context.

– When the IUT is completely specified, it is not always possible to achieve
trace equivalence due to the interoperability of the IUT and its context. We
would like to discuss the condition on S and C such that trace equivalence
can be achieved.

– We have used distinguishing sequence for state identification. At expense of
its convenience for testing, distinguishing sequence does not always exist.
Although the use of characterization set usually results in much bigger test
suites, a characterization set is more likely to exist in an FSM with context.
Therefore, we would like to study on how to use model checking tools to
generate characterization set in our setting.
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