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Abstract. Effective temporal logic model checking algorithms exist that
exploit symmetries arising from parallel composition of multiple identical
components. These algorithms often employ a function rep from states
to representative states under the symmetries exploited. We adapt this
idea to the context of refinement checking for the process algebra CSP.
In so doing, we must cope with refinement-style specifications. The main
challenge, though, is the need for access to sufficient local information
about states to enable definition of a useful rep function, since compi-
lation of CSP processes to Labelled Transition Systems (LTSs) renders
state information a global property instead of a local one. Using a struc-
tured form of implementation transition system, we obtain an efficient
symmetry exploiting CSP refinement checking algorithm, generalise it in
two directions, and demonstrate all three variants on simple examples.

1 Introduction

Model checking suffers from the state explosion problem, which is the tendency
for state space to grow exponentially in size (number of states) as the size of
the model (system description in the modelling language) grows. A simple ex-
ample is the exponential state space growth that can occur when adding parallel
components.

A popular approach to combating the state explosion problem is to exploit
state space symmetries. This approach has received much attention in the con-
text of temporal logic state-based model checking ([1] contains a survey), but
little has been published in the context of refinement checking (“refinement-style
model checking”) for process algebras.

For temporal logic model checking, effective algorithms exist that exploit sym-
metries arising from parallel composition of multiple identical components. The
most common approach uses a function rep from states to representative states
and requires full symmetry of the model and the property. We adapt this idea for
Communicating Sequential Processes (CSP) [2,3] refinement checking. The main
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challenge, which may be considered a significant obstacle, is the need for local
information about states to enable use of a rep function; compiling CSP pro-
cesses to Labelled Transition Systems (LTSs) makes state information a global
property, not a local one.

By exploiting a richer notation than LTSs, namely ‘structured machines’ (al-
ready used internally by the FDR [4] refinement checker for other reasons), we
can define a suitable rep function. We obtain a refinement checking algorithm
that explores a reduced state space efficiently for fully symmetric systems that
have parallel components.

We generalise this algorithm in two directions. First we drop the requirement
for full symmetry. Second we allow a larger class of property specifications: in
the temporal logic model checking context, restricting to symmetric temporal
logic property formulae effectively requires that the future behaviour allowed by
the formula is always symmetric, regardless of what has happened in the past; in
contrast, our second generalisation only needs the specification process (corre-
sponding to a property formula) to express symmetric behaviour starting at the
initial state. We restrict attention to refinement in CSP’s traces model, which
allows one to check safety properties; the algorithms extend to other semantic
models.

An earlier paper [5] outlined some of our work aimed at efficient identification
of CSP process symmetries, and included an approach to exploit symmetries
when refinement checking. The exploitation approach in this paper is different.

Section 2 provides background regarding the process algebra CSP and refine-
ment checking between CSP processes. Section 3 defines CSP process symmetry.
Section 4 outlines the representative function approach to symmetry exploitation
for temporal logic model checking. Section 5 describes structured machines and
briefly describes some syntactic rules for identifying symmetries. Section 6 gives
our basic symmetry exploiting refinement checking algorithm and Section 7 ex-
tends it in the two directions mentioned above. Section 8 presents experimental
results and Section 9 concludes. An appendix contains correctness proofs.

2 CSP Language, Refinement, LTSs and Refinement
Checking

2.1 CSP and Refinement

Process algebras such as CSP [2,3] allow systems to be modelled as processes,
which may be atomic (for example CSP’s STOP process) or may be defined as
compositions of other, child, processes using available process operators.

CSP has a variety of process operators, including: interleaving (|||); generalised
parallel (‖X ) and alphabetised parallel (X ‖Y ), where processes must synchronise
on alphabet X or alphabet X ∩ Y ; internal choice (�) and external choice(�);
hiding (\X ); and renaming([[R]]), for relation R on events.

Refinement of a process Spec by a process Impl amounts to all behaviours (of
some kind, such as the finite traces) of Impl being behaviours of Spec. In the
traces semantic model, T, a behaviour is a finite trace the process can perform.
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Fig. 1. An LTS for Towers of Hanoi with 3 poles and 2 discs. Dashed arrows show a
(B C)-bisimulation relation, which can be ignored until Section 3.

2.2 Labelled Transition Systems

A widely used operational form for CSP processes is the Labelled Transition
System (LTS). An LTS is a tuple (S ,T , s0) where S is a set of states (sometimes
called nodes), T : S × Σ × S (for universal event set Σ) is a labelled transition
relation, and state s0 is the initial state. An LTS path 〈s0, e1, s1, . . . , en , sn〉 has
the trace 〈e1, . . . , en〉.

The LTS in Figure 1 represents the Towers of Hanoi puzzle with 3 poles and
2 discs. The initial state is shaded. Solid arrows depict the transition relation.
An event move.d.x.y represents movement of disc d from pole x to pole y, and
an event complete.x represents an announcement that all discs are on pole x.
Dashed arrows show a (B C)-bisimulation relation, explained in Section 3.

2.3 Refinement Checking

CSP refinement checking algorithms operate over transition systems TSpec and
TImpl of a specification process, Spec, and an implementation process, Impl . Each
transition system is a compiled form of the process and supports calculation of
the initial state and the set of transitions. Transition system TSpec is required to
be an LTS in normal form [3,6], which ensures that no two paths of TSpec with
the same trace end at different states.

The usual refinement checking algorithm [6] explores the product space of
(Spec state, Impl state) pairs such that a common trace can take the specification
and implementation to the respective states. Exploration starts at the initial
state pair and continues until a counterexample has been reached or all successors
of reached pairs have been found.
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Although it is usual to refer to these as ‘pairs’ (and we do so throughout), re-
finement checking algorithms generally record tuples of at least four values; they
explore a product space and record extra information as they go, as explained
below.

At each pair reached: (i) ‘compatibility’ of the implementation state with the
specification state is checked; (ii) all successor state pairs are added to the set
of pairs seen so far. The compatibility test depends on the semantic model used
for the check; for the traces model it simply checks that all events labelling out-
going transitions of the implementation state are among the labels on outgoing
transitions from the specificiation state.1

If an incompatible state pair is reached then a counterexample trace to this
pair is recovered by stepping through the implementation transition system back-
wards until its initial state is reached; this is possible since the identifier of a
parent pair is recorded with each newly reached state pair, plus an event from
the parent to this pair.

3 CSP Symmetry and Permutation Bisimulations

For process algebras, symmetry acts principally on events/actions; states (equiv-
alently, processes) correspond to particular sets of possible future behaviours.
Event permutations lift naturally to state (or process) permutations: through-
out the paper, the permutation of a process P by an event permutation σ, written
Pσ, is the functional renaming2 of P according to σ. So Pσ is the process that
can perform event xσ whenever P can perform an event x . Also, =T denotes
traces equivalence.

3.1 Algebraic and Denotational Permutation Symmetry

Perhaps the simplest definition of CSP symmetry is in the algebraic semantics.
Let σ be any permutation of events in some universal event set Σ, where we insist
that τσ = τ (i.e., that the special CSP event τ , denoting an internal action, is
unaffected by σ). Then we say that a process P is σ-symmetric in the traces
semantic model, T, when P =T Pσ.

Notice that we do not restrict σ to preserve channels: we allow permutations
that map, say, a.2 to b.44. However, we may anticipate that a common form of
event permutation will be the canonical lifting of a datatype permutation: for
example, if δ is a permutation of a datatype D and c is a CSP channel carrying
data of type D , then the canonical lifting of δ to an event permutation σ maps
events c.x to c.(xσ). When events have complex datatypes, the canonical lifting

1 Internal transitions, labelled by special event τ , are removed from the specification
transition system by normalising it, which ensures that no two specification states
are reachable by the same trace. Pair (u, v ′) is treated as a successor to (u, v) if v
has a τ transition to v ′. For details, see [3] or [6].

2 Injective functional renaming is defined on page 87 of [3]. Equivalently, we may write
Pσ as P [[σ]] using CSP’s relational renaming operator.
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applies the datatype permutation to all fields having that type. For succintness,
we will sometimes represent an event permutation σ by a datatype permuta-
tion, in which case σ is understood to be the canonical lifting of this datatype
permutation.

The equivalent denotational definition of CSP symmetry is also straightfor-
ward: process P is σ-symmetric in T if the set value that P denotes in T – the
set of finite traces of P – is itself symmetric according to σ, that is, if the set
of permuted elements of this set (where each element is permuted by σ lifted to
traces) is the set itself.

3.2 Operational Permutation Symmetry

Before defining LTS symmetries we remark that, as one would expect, permuta-
tion symmetries of LTSs imply the same symmetries of the processes they repre-
sent (though structurally asymmetric LTSs can represent symmetric processes).

Our definition of LTS symmetries uses the more general notion of permuta-
tion bisimulations, or pbisims for short, which were introduced in [5]. Permu-
tation bisimulation extends the classical notion of (strong) bisimulation [7,8].
For event permutation σ, a binary relation R over the nodes S of an LTS L is
a σ-bisimulation if R is a σ-simulation of L and R−1 is a σ−1-simulation of L.
Permutation simulation extends the classical notion of simulation: classical sim-
ulation requires that (1) if pRp′ ∧ p a→ q ∈ L, then ∃ p′ a→ q ′ ∈ L s.t. qRq ′;
and (2) ∀ p ∈ S , ∃ p′ ∈ S s.t. pRp′; instead, σ-simulation requires p′ aσ→ q ′ in the
consequent of the first condition.

We treat τ events the same way as visible events; when a = τ we require
that p′ τ→ q ′ (recall that our event permutations do not affect τ). A possible
generalisation is to consider the permutation analogue of weak bisimulation [8].
Our use of strong bisimulation admits fewer symmetries.

Two nodes are σ-bisimilar if there is a σ-bisimulation that relates them. Per-
mutation bisimilarity captures the equivalence of processes represented by LTS
nodes in the following sense: if node x is σ-bisimilar to node y, then the process
represented by y equals (in T ) the process represented by x (P , say) renamed
by σ (i.e., Pσ).

LTS symmetry can now be defined in terms of permutation bisimulation: for
permutation σ, an LTS L for a process P is σ-symmetric iff some σ-bisimulation
relates L’s initial state s0 to itself (i.e., s0 is σ-bisimilar to itself). The LTS of
Figure 1 is (B C)-symmetric as the (B C)-bisimulation shown relates the initial
node to itself.

3.3 Group Symmetry

The above definitions lift easily to group symmetry, as follows. Let G be a group
of event permutations. Then a process P , or LTS L, is G-symmetric if it is
σ-symmetric for each σ in G. (It is clearly sufficient to be σ-symmetric for each
of a set of generators of G.)
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4 Symmetry and Temporal Logic Model Checking

This section summarises the temporal logic model checking problem and out-
lines what may be called the “representative function” approach to symmetry
exploitation in that context, broadly following the presentation in [1].

A Kripke structure over a set AP of atomic propositions is a tuple M =
(S ,R,L,S0) where: (1) S is a non-empty finite set of states; (2) R ⊆ S × S is
a total transition relation; (3) L : S → 2AP is a mapping that labels each state
in S with the set of atomic propositions true in that state; and (4) S0 ⊆ S is a
set of initial states. Temporal logic model checking determines whether a given
Kripke structure M satisfies a given formula φ expressed in some temporal logic
(often CTL* or one of its sub-logics LTL or CTL); this is denoted M � φ and
amounts to φ holding in each initial state of M .

The representative function approach to symmetry exploitation is applicable
with symmetric formulae φ w.r.t. a group G of automorphisms of M (which are
state permutations that preserve the transition relation R). A symmetric CTL*
formula φ w.r.t. a group G of state permutations is one where, for every maximal
propositional subformula f in φ, f holds in a state s iff it holds in state λ(s) for
each λ in G. So, symmetric formulae are such that the validity of each maximal
propositional subformula is unaffected by permutations in G.

Further, this approach requires that M represents a parallel composition of
identical components and that each element of G permutes the values of state
variables according to a permutation of component indices.

The idea is to use a ‘representative’ function, usually called rep, chosen ac-
cording to a symmetry group G where φ is known to be symmetric w.r.t. G.
This function maps each state s of the Kripke structure to a representative state
rep(s) in the same G-orbit as s , where G-orbits are equivalence classes induced
by the relation “is related to by some permutation in G”. That is, the function
rep maps each state to a representative state to which it is related by some
permutation in G.

A quotient Kripke structure MG = (SG ,RG ,LG ,S 0
G) is generated where: SG =

{rep(s) | s ∈ S}, RG = {(rep(s), rep(s ′)) | (s , s ′) ∈ R}, LG(rep(s)) = L(rep(s)),
S 0
G = {rep(s) | s ∈ S0}. The quotient structure is then checked against the

original formula φ. It has been proved that M � φ iff MG � φ [9,10]. The quotient
check is up to n! times faster than the original, for n identical components, and
can consume significantly less memory.

5 Structured Machines and Their Symmetries

5.1 Structured Machines

A structured machine represents an LTS as an operator tree with a CSP process
operator at each non-leaf node and an LTS at each leaf. Alphabets are associ-
ated with child nodes as appropriate for the parent node’s CSP operator (i.e.,
according to the number of operand alphabets). Structured machines reflect an
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upper part of a process expression’s algebraic structure. They are called config-
urations in [3,6]. They can be much smaller than equivalent LTSs, being linear
in the number of component processes of a parallel composition; they can often
be operated on very efficiently.

The example in Figure 2 represents a process P = ‖ p : PEGS • [interface(p)]
POLE (p) for a datatype PEGS = {A, B, C} and alphabet- and process-valued
functions interface/1 and POLE/1. Their definitions are not shown, but LTSs
for the leaf processes POLE (A) etc. are depicted in the right-hand portion of
Figure 2. The initial node of each leaf LTS is shaded. The same process P is
represented explicitly by the LTS of Figure 1.

For simplicity, we consider only single-configuration processes, which has the
effect of allowing only a subset of CSP process operators outside recursive defini-
tions: parallel operators, hiding and renaming. In practice many processes have
this form.

A structured machine with a top level parallel operator has states in tuple
form – each component denotes the local state of a particular leaf LTS. Hence
the initial state of the 3-pole Towers of Hanoi structured machine in Figure 2 is
(0,0,0), since each leaf starts in its local state 0. (Alternatively, we could write
(1:0,2:0,3:0) but we omit the leaf identifiers.) Subsequent states of this machine
are reached by the leaves evolving according to their local states, synchronised
with each other on their respective interface alphabets. For example, initial state
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Fig. 2. A structured machine for Towers of Hanoi with 3 poles and 2 discs, with alpha-
betised parallel at the root. Dashed arrows show a (B C)-bisimulation on LTS nodes.
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(0,0,0) has a transition labelled move.1.A.B to state (1,0,1); leaf 2 represents
pole C and is not involved in this transition.

5.2 Structured Machine Symmetries

Symmetries of a structured machine can be represented conveniently using per-
mutation bisimulations between the nodes of its leaf LTSs, as demonstrated by
the (B C)-bisimulation in Figure 2. A single permutation bisimulation may re-
late nodes of a single leaf LTS, or nodes of different leaf LTSs. Permutation
bisimulations can often be found by exploiting the structure of CSP process ex-
pressions, as explained below. Operational and algebraic approaches to checking
symmetries and permutation bisimulations were discussed briefly in [5]. The al-
gebraic approach is well suited to efficient identification of structured machine
symmetries, so it is described here.

Table 1 expands the table in [5]. It gives a selection of rules that relate
trace symmetries of processes to those of sub-processes and alphabets. Due to
space limitations, Table 1 is incomplete and we omit our proofs of these results.
Throughout, σ is taken to be an event permutation. For an alphabet X (A, H or
A(i) in the table), Xσ denotes the set {xσ | x ∈ X }. In rules 9-13, σ permutes
indices in the set I and events according to the corresponding canonical lifting.

Rules 4 and 5 are alternative instances of rule 10 for two sub-processes: rule
4 is obtained when σ maps P to P and Q to Q , and rule 5 is obtained when σ
swaps P and Q ; rechristening P as P(1) and Q as P(2), the distinction is how σ
acts on the indices 1 and 2 in rule 10, i.e. on whether σ maps 1 to 1 and 2 to 2,

Table 1. Some exact (1 and 2) and sufficient (3-13) conditions for CSP process
symmetry

Proc (Proc)σ =T Proc Explanation of Proc

1 STOP True STOP has only empty trace

2 ?x : A→P(x) Aσ = A ∧ ∀ x ∈ A, P(xσ) =T P(x)σ Accept x in A, become P(x)

3 P � Q Pσ =T P ∧ Qσ =T Q External choice of P and Q

4 P ‖
A

Q Pσ =T P ∧ Qσ =T Q ∧ Aσ = A P and Q synchronised on A

5 P ‖
A

Q Pσ =T Q ∧ Qσ =T P ∧ Aσ = A P and Q synchronised on A

6 P ; Q Pσ =T P ∧ Qσ =T Q P then (on termination) Q

7 P \ H Pσ =T P ∧ Hσ = H P with events in H hidden

8 P [[R]] ∃ ρ • Pρ =T P ∧
∀ a ∈ α(P), aRb ⇒ (aρ)R(bσ−1) P renamed by event relation R

9 |||i∈I P(i) ∀ i ∈ I , P(iσ) =T P(i)σ Interleaving of all ‘P(i)’s

10 ‖
Ai∈I

P(i) ∀ i ∈ I , P(iσ) =T P(i)σ ∧ Aσ = A Generalised parallel of ‘P(i)’s

11 ‖i∈I (A(i), P(i)) ∀ i ∈ I , P(iσ) =T P(i)σ ∧ A(iσ) = A(i)σ ‘P(i)’s synchronised on ‘A(i)’s

12 �i∈I P(i) ∀ i ∈ I , P(iσ) =T P(i)σ External choice of ‘P(i)’s

13 �i∈I P(i) ∀ i ∈ I , P(iσ) =T P(i)σ Internal choice of ‘P(i)’s
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or swaps 1 and 2. Rule 3 is an instance of rule 12. In this way, specialised rules
can be derived easily from rules 9-13. Rule 8 uses ‘exact alphabet’ function α.

Rules 9-13 allow one to infer symmetries that are (liftings of) index permu-
tations. These rules can be generalised, replacing ∀ i ∈ I , P(iσ) =T P(i)σ by
∃ index permutation ρ • ∀ i ∈ I , P(iρ) =T P(i)σ, where ρ permutes indices and
σ permutes events.

Most of the rules are deliberately approximate. Informally, they only allow
‘easy’ symmetries to be identified – symmetries one would expect to hold ‘at
first glance’. This helps to make them simple and easy to implement. Reasoning
with such rules will generally miss some symmetries, but we expect they would
find most that arise in practice. Some approximation is necessary, as finding all
symmetries would in general be too computationally demanding.

One approach to cope with recursive definitions would be to calculate con-
ditions iteratively and terminate on reaching a fixed point. This would require
some supporting theory to argue termination and perhaps uniqueness of the
fixed point. We take the simpler approach of identifying symmetry of recursive
processes operationally [5], by examining transition systems (LTSs, in fact) that
represent them.

We have developed a prototype tool which implements extended versions of
these rules, for deciding whether any given processes Proc1 and Proc2 are mu-
tually permutation symmetric by a given event permutation σ, that is, whether
Proc1σ =T Proc2. (It is straightforward to extend the rules in this way.) By
choosing Proc1 = P(x ) and Proc2 = P(xσ), the extended rules can also be
used for checking permutation transparency conditions P(x )σ =T P(xσ). Such
conditions occur at lines 2 and 9-13 of Table 1.

The most significant rules for this paper are those for the replicated parallel
operators: rows 9-11 in the table. This is because structured machines with these
operators have effective state spaces with states being tuples of local states, one
per child machine. Sections 6 and 7 will define rep functions on such tuple states.

An alternative, promising approach to finding permutation transparencies
(and so symmetries) is to look for data independence (d.i.) [11] of a parametrized
process expression P(x ) in the type X , say, of its parameter. This is because d.i.
– a simple syntactic property – implies transparency with respect to all permuta-
tions of the type. It appears possible to liberalise the notion of data independence
to yield a syntactic characterisation of a large class of transparent processes: one
would remove conditions (notably banning of parallel composition indexed by
the d.i. type) designed to prevent d.i. processes ‘counting’ the datatype. Once
one has identified transparency syntactically – using standard d.i. or a liberalised
version – one could deduce symmetries using the rules above. This is motivated
further in [5], in particular for d.i. index sets.

The algebraic rules in Table 1 can be extended to yield a compiled represen-
tation of the process as a structured machine, plus permutation bisimulation
relations on the nodes of its leaf LTSs (not merely knowledge of whether the
process is symmetric). Such permutation bisimulations will justify the rep func-
tions defined in the next sections.
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6 Basic Symmetry Exploiting Algorithm

Recall that symmetry of a CTL* formula f w.r.t. group G means that f never
discriminates between mutually symmetric behaviours, regardless of the number
of steps already taken. The corresponding condition on a specification process
is that it is G-symmetric in each state (each process to which it can evolve
is G-symmetric); if this holds we say the specification process is universally
G-symmetric. A specification transition system (LTS or structured machine) is
universally G-symmetric if each of its states (LTS nodes or tuples of nodes) is
G-symmetric, implying universal G-symmetry of the represented process.

The product space for a specification Spec with states SSpec and an implemen-
tation Impl with states SImpl is the subspace of SSpec × SImpl reachable under
lock-step synchronisation on all visible events. This state space is explored during
a standard refinement check; each ‘state’ of the product space is really a state
pair (u, v), say, where u is a specification state and v is an implementation
state. A path through a transition system is an alternating sequence 〈s0, e1, s1,
. . . , en , sn〉 of states and events, starting and ending with states such that for
each 0 � i < n, there is a transition from si to si+1 labelled ei+1.

A twisted path through a Spec-Impl product space is a sequence 〈s0, e1, σ1, s1,
. . . , en , σn , sn〉 of (product) states, events and permutations, starting and ending
with states, with the following well formedness condition between successive
states: ∀ 0 � i < n, there is a product space transition labelled ei+1 from si
= (ui , vi) to pre-si+1 ≡ si+1σ

−1
i+1 = (ui+1σ

−1
i+1, vi+1σ

−1
i+1). Intuitively, non-trivial

permutations σ ‘twist’ the search away from paths the usual refinement checking
algorithm would follow.

Given a function repPair from state pairs to state pairs, a repPair -twisted
path is a twisted path 〈s0, e1, σ1, s1, . . . , en , σn , sn〉 such that ∀ 0 < i � n, si =
repPair(pre-si ), where pre-si ≡ siσ−1

i . (We let repPair return a permutation too,
which this definition ignores.)

6.1 TwistedCheck

The symmetry exploiting algorithms will be defined in terms of a curried func-
tion TwistedCheck (see Figure 3) parametrized by a function repPair . Ignoring
counterexample recovery for the moment, TwistedCheck(repPair) differs from
the usual refinement checking algorithm (Section 2.3) as follows: during explo-
ration, instead of recording a reached state pair (u, v), record (repu , repv ) where
(repu , repv , σ) = repPair(u, v). Note that TwistedCheck(repPair) does not need
Spec or Impl G-symmetry.

TwistedCheck(repPair) explores the Spec-Impl product space by following
repPair -twisted paths – each non-trivial permutation σ returned by repPair re-
directs the search to continue from (repnext_u,repnext_v) instead of from
(next_u,next_v). Each such σ is recorded for counterexample recovery.

A bad state pair, and a bad event from that pair, are a pair (u, v) and event
e where Impl state v has an outward transition labelled e but Spec state u does
not. We generalise the notion of bad event: a bad trace from a bad state pair
(u, v) is a trace t such that Impl state v can perform t but Spec state u cannot.
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TwistedCheck(repPair)(TSpec,TImpl)
1 Input: Normal Spec transition system TSpec with states SSpec
2 Impl structured machine TImpl with states SImpl
3 repPair: SSpec x SImpl -> SSpec x SImpl x G
4 Output: A repPair-twisted counterexample or ‘REFINES’
5
6 function recover2(state,vparent,e,π)
7 if defined(vparent) then
8 (u,v,vparent2,e2,σ) := Seen[vparent];
9 return recover2(v,vparent2,e2,σπ)^<eπ>;
10 else
11 return <>;
12 endif
13 end
14
15 Seen := {(init(TSpec),init(TImpl),undef,undef,1)}; Done := {};
16
17 while Seen - Done is not empty do
18 Choose some (u,v,vparent,event,π) from Seen-Done;
19 if v is compatible with u then
20 foreach transition (v,e_v,next_v) in TImpl do
21 e_u := e_v;
22 Let next_u be unique such that (u,e_u,next_u) ∈ TSpec;
23 (repnext_u,repnext_v,σ) := repPair(next_u,next_v);
24 Put (repnext_u,repnext_v,v,e_v,σ) in Seen if
25 no tuple in Seen has same first two values;
26 endfor
27 else
28 bad := an event possible for v but not for u;
29 print recover2(v,vparent,event,π)^bad; abort;
30 endif
31 Done := union(Done,(u,v,vparent,event,π));
32 endwhile
33
34 print ‘REFINES’;

Fig. 3. Twisted refinement checking algorithm for traces refinement. Underlining shows
the differences compared with the usual refinement checking algorithm.

A counterexample trace is a trace to a bad state pair, extended by a bad trace
from that pair. It is easy to see that the counterexample traces are exactly the
Impl traces that are not Spec traces.

Define recover(〈path〉) and recover2(〈repPair -twisted path〉) as follows:

recover(〈s0, e1, s1, . . . , en , sn〉) = 〈e1, . . . , en〉
recover2(〈s0, e1, σ1, s1, . . . , en , σn , sn〉) = 〈e1σ1σ2 . . . σn , . . . , enσn〉

So recover(p) is the trace of events along path p, and recover2 also yields a
trace. Let a repPair trace to state pair s be the result of applying recover2 to a
repPair -twisted path r to s .
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A repPair counterexample trace is then a repPair trace to a bad state pair,
extended by a bad trace from that pair. Examination of Figure 3 shows that on
reaching a bad pair (u, v) the line 19 condition fails and TwistedCheck(repPair)
effectively applies recover2 to a repPair -twisted path to (u, v), extends the result
by a bad event, and so obtains a repPair counterexample trace.

6.2 SymCheck1

Suppose a function rep maps each implementation state v to a representative
in the G-equivalence class of v , for some event permutation group G. Define
SymCheck1 to be TwistedCheck(repPair1) where repPair1 is defined in terms
of a function sortRep:

repPair1(u, v) = (u, rep(v), σ), some σ in G s.t. vσ = rep(v)
rep = sortRep

SymCheck1 explores the Spec-Impl product space by following repPair1-twisted
paths. Recall that universal G-symmetry of a specification transition system
TSpec means that each state u of TSpec is G-symmetric, i.e. each u is such
that uσ = u for all σ in G. So, for state u of TSpec and state v of TImpl ,
repPair1 maps state pair (u, v) to (u, rep(v), σ) [for some σ in G s.t. vσ = rep(v)]
= (uσ, vσ, σ) [using universal G-symmetry of TSpec and that vσ = rep(v)] =
(uσu,v , vσu,v , σu,v ) for σu,v = σ. The significance of this is that Theorem 2,
proved in the appendix, applies:

Theorem 2. Let G be a group of event permutations and suppose Spec and
Impl have G-symmetric transition systems TSpec and TImpl respectively. Suppose
function repPair maps each state pair (u, v) to (uσu,v , vσu,v , σu,v) for some σu,v

in G. Then Spec �T Impl has a counterexample trace t iff Spec �T Impl has a
repPair counterexample trace t.

So, SymCheck1 eventually finds a repPair counterexample trace exactly when
the refinement does not hold, and this will be a counterexample trace. If the
exploration order is breadth-first, the counterexample found will clearly have
minimal length.

6.3 Method sortrep

It remains to define a suitable function rep that maps each implementation state
v to some G-equivalent representative. Given a group G, an implementation
structured machine TImpl with n leaves and a state v = (v1, . . . , vn) of TImpl ,
we describe a method of calculating a representative rep(v) and a permutation σ
in G such that vσ = rep(v). This method and an alternative defined later both
rely on knowledge of the permutation bisimulations between the nodes of TImpl
and in particular the σ-bisimulations for σ in G. The method sortRep is fast
but, as discussed below, it needs all pbisims to have a simple form. Furthermore,
G must be a full symmetry group.
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Suppose process P is a parallel composition, by some parallel operator op,
of n > 1 processes P(id1), . . . ,P(idn ) represented by LTSs L(1), . . . ,L(n). Then
P can be represented by a structured machine S having a simple form if op
is interleaving, generalised parallel on some shared G-symmetric alphabet A,
or alphabetised parallel on G-transparent alphabets (so each process P(id) is
synchronised with the others on an alphabet A(id), where A(idσ) = A(id)σ for
each σ in G). In such cases, P is representable by structured machine S having
top level operator op and children L(1), . . . ,L(n). As stated earlier, Figure 2
gives an example for Towers of Hanoi with 3 poles and 2 discs.

A pbisim pσ that relates leaf nodes of a structured machine is a simple swap
pbisim for leaf indices i and j if pσ relates each i :m (shorthand for a node m
of LTS i) to j :m, each j :m to i :m and, for k �∈ {i , j}, each k :m to k :m. For
example, the (B C)-bisimulation depicted in Figure 2 is a simple swap pbisim
for leaves 2 and 3.

Consider arbitrary state v = (v1, . . . , vn) of such a structured machine S
having simple swap σ-bisimulation pi,j for i < j . Then applying pi,j to v has
the effect of swapping the values at indices i and j of v , and not changing other
values, to yield the state v ′ = (v1, . . . , vi−1, vj , vi+1, . . . , vj−1, vi , vj+1, . . . , vn).
By the generalised form of rule 9, 10, or 11 of Table 1 (depending on the operator
op), state v is σ-bisimilar to v ′ since each component of v is σ-bisimilar to a
component of v ′. In the case of Figure 2, each structured machine state (x , y, z ),
for some local states x , y and z of the respective leaf LTSs, is related by the
depicted pbisim to (x , z , y).

Suppose PBISIMS is a set of simple swap pbisims for a structured machine
having n leaves, and suppose SUB is a subset of {1, . . . ,n}. Then PBISIMS is a
full set of simple swap pbisims for SUB if for each i , j ∈ SUB there is a simple
swap pbisim pσ ∈ PBISIMS for i and j , with pσ a σ-bisimulation relation. Let
G be the group generated by such permutations σ. Then any permutation of
component states vi of v = (v1, . . . , vn) with indices in SUB yields a G-bisimilar
state because each such permutation is the composition of a sequence of transpo-
sitions, each of which maps to a G-bisimilar state. The method sortRep, for such
a set SUB , sorts the components of a state v = (v1, . . . , vn) that have indices
in SUB and leaves the others unchanged; the resulting state is G-bisimilar to v
due to the above reasoning.

There is scope for defining variants of this method that apply to more pro-
cesses. In particular, it would be straightforward to cope with structured ma-
chines whose pbisims correspond to multiple simultaneous index swaps – such
as (1 2)(5 6). One could still use a fast sort-based method: sort a subset of the
local state values (say, v1 and v2) and apply a corresponding permutation to the
other values (v5 and v6 in this example).

7 Extensions

Two extended algorithms are described. SymCheck2 uses a more general rep
function that applies to a larger class of implementation processes than does
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sortRep. SymCheck3 is more general still, requiring only G-symmetry of the
Spec transition system instead of universal G-symmetry.

7.1 SymCheck2

Define SymCheck2 to be TwistedCheck(repPair2), where repPair2 uses a more
general rep function:

repPair2(u, v) = (u, rep(v), σ), some σ in G s.t. vσ = rep(v)
rep = genRep

SymCheck2 explores the Spec-Impl product space by following repPair2-twisted
paths. Compared to SymCheck1, SymCheck2 uses genRep (defined below) in
place of sortRep. Similarly to SymCheck1, Theorem 2 justifies use of Sym-
Check2 to find counterexamples when the Spec transition system is universally
G-symmetric and the Impl transition system is G-symmetric. Both SymCheck1
and SymCheck2 require universal G-symmetry of Spec to ensure that Theorem 2
applies. The practical difference is that SymCheck2 is less restrictive than Sym-
Check1 about the form of the Impl transition system and its known permutation
bisimulations.

Method genRep. As already mentioned, this method is more general than
sortRep. It works with any set of Impl permutation bisimulations such that, for
each leaf index i , each pbisim p relates all nodes of LTS (i) to nodes of a distinct
LTS (j ), and each such LTS (j ) node is the image of some LTS (i) node by p,
where j depends on the pbisim (and could be the same as i). That is, we require
each pbisim p to be the union of bijections {p1, . . . , pn} with each pi having
domain the nodes of LTS (i) and range the nodes of some distinct LTS (j ). We
call such pbisims uniform. (Uniformity is a natural condition, indeed all pbisims
calculated using our extended Table 1 rules are uniform, and composition of
pbisims preserves uniformity.)

The method genRep calculates each state (v ′
1, . . . , v

′
n) to which v = (v1, . . . ,

vn) is related by some pbisim, using pre-calculated pbisims between nodes of the
LTSs. It chooses the lexicographically least.

We explain how to calculate a node v ′ = (v ′
1, . . . , v

′
n) to which v is related, as

determined by a particular σ-bisimulation p. The value v ′
j at position j of tuple

v ′ is determined as follows: find the leaf number, i , of the Impl leaf LTS such
that p relates LTS (i) nodes to LTS (j ) nodes, and set v ′

j to the node of LTS(j ) to
which node vi of LTS (i) is related by p. Now, v represents Pv1 ‖ . . . ‖ Pvn where
each Pvi is the process represented by node vi of LTS (i), and by construction
each Pvi is such that Pvi = Pv ′

j σ, for some distinct index j (by uniformity of
p). So, Pv1 ‖ . . . ‖ Pvn = Pv ′

1σ ‖ . . . ‖ Pv ′
nσ = (Pv ′

1 ‖ . . . ‖ Pv ′
n)σ and hence

Pv = Pv ′σ.
For improved efficiency, our implementation pre-calculates, for each pbisim,

the appropriate ordering of indices i to calculate the components of v ′ in left-
to-right order. It abandons calculation of v ′ when a component v ′

j is calculated
that makes the partial v ′ larger than the lex-least thus far.
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When using genRep, before exploration we transitively close the calculated
pbisims in the obvious sense. So it suffices to find just a generating set of pbisims
(i.e., pbisims for a generating set of permutations of G) using the rules in Table 1
or an extended table. Transitive closure is not used for sortRep since sortRep does
not generate all related nodes – even partially – and can in fact be determined
applicable given a small number of suitable generating pbisims.

7.2 SymCheck3

Define SymCheck3 to be TwistedCheck(repPair3) where:

repPair3(u, v) = (uσ, rep(v), σ), some σ in G s.t. vσ = rep(v)
rep = genRep

So SymCheck3 explores the Spec-Impl product space by following repPair3-
twisted paths. Theorem 2 applies directly to SymCheck3 when the Spec and
Impl transition systems are each G-symmetric. We drop the condition (which
was needed for SymCheck1 and SymCheck2) that the Spec transition system
TSpec is universally G-symmetric – this condition is not needed here because
repPair3 yields uσ in the first part of its result, exactly as needed for Theorem 2
to apply. Hence this algorithm is more general than SymCheck2; the price paid
for this extra generality is the need to calculate uσ, but this is straightforward
given pbisims for TSpec . Note that it would not be appropriate to use rep(u)
instead of uσ in the definition of repPair3, as these will be different in general.

8 Experimental Results

We present results obtained using a prototype tool written in Perl. The tool
compiles given Spec and Impl processes, checks particular symmetries of them
claimed by the user and in so doing finds corresponding pbisims. It then checks
applicability of, and runs, refinement checking algorithms requested by the user.
The results presented are for the usual refinement checking algorithm (called
Check here) and for algorithms SymCheck1, SymCheck2 and SymCheck3.

Specification processes were chosen that are refined by the implementations,
to show the full (product) state space sizes. Three classes of refinement check
are reported, distinguished by the choice of specification and implementation:

– Refinement of RUN(Events) by Towers of Hanoi models with 4 discs and 4-7
poles, where RUN(Events) can always perform any event;

– Refinement of RUN({| try, enter , leave |}), which can perform all events on
channels try, enter and leave, by Dijkstra mutual exclusion algorithm models
with 2-4 participants; and

– Refinement of SpecME by these Dijkstra models, where SpecME can perform
exactly the desired patterns of try.i , enter .i and leave.i events and is not
universally symmetric for any non-trivial permutation.
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Table 2. Experimental results for the usual refinement checking algorithm Check and
the three SymCheck algorithms

Algorithm Spec Impl States

Time (secs)

Exploration

Check

RU
N 

{| 
Ev

en
ts

 |}

hanoi4p4d 256 100% 3.34 0.20 - 3.58 100% - 0%
SymCheck1 hanoi4p4d 51 19.92% 3.34 0.20 - 0.73 20% 6 2%
SymCheck2 hanoi4p4d 51 19.92% 3.34 0.20 0.01 0.73 20% 6 2%

Check hanoi5p4d 625 100% 5.13 0.37 - 19.14 100% - 0%
SymCheck1 hanoi5p4d 52 8.32% 5.13 0.37 - 1.53 8% 24 -4%
SymCheck2 hanoi5p4d 52 8.32% 5.13 0.37 0.05 1.72 9% 24 8%

Check hanoi6p4d 1296 100% 7.38 0.78 - 82.29 100% - 0%
SymCheck1 hanoi6p4d 52 4.01% 7.38 0.78 - 3.11 4% 120 -6%
SymCheck2 hanoi6p4d 52 4.01% 7.38 0.78 0.56 4.20 5% 120 27%

Check hanoi7p4d 2401 100% 9.88 3.78 - 246.83 100% - 0%
SymCheck1 hanoi7p4d 52 2.17% 9.88 3.78 - 5.09 2% 720 -5%
SymCheck2 hanoi7p4d 52 2.17% 9.88 3.78 5.69 15.38 6% 720 188%

Check DijkstraME_2 445 100% 4.18 0.53 - 0.16 100% - 0%
SymCheck2 DijkstraME_2 224 50.34% 4.18 0.53 0.00 0.11 69% 2 37%

Check DijkstraME_3 19161 100% 22.66 2.65 - 11.77 100% - 0%
SymCheck2 DijkstraME_3 3269 17.06% 22.66 2.65 0.01 2.94 25% 6 46%

Check DijkstraME_4 1189379 100% 63.89 10.02 - 1103.00 100% - 0%
SymCheck2 DijkstraME_4 51571 4.34% 63.89 10.02 0.07 118.95 11% 24 149%

Check

Sp
ec

M
E

DijkstraME_2 445 100% 4.08 0.52 - 0.13 100% - 0%
SymCheck3 DijkstraME_2 224 50.34% 4.08 0.52 0.00 0.12 92% 2 83%

Check DijkstraME_3 19161 100% 22.77 2.66 - 8.82 100% - 0%
SymCheck3 DijkstraME_3 3269 17.06% 22.77 2.66 0.01 2.96 34% 6 97%

Check DijkstraME_4 1189379 100% 63.57 10.00 - 861.12 100% - 0%
SymCheck3 DijkstraME_4 51571 4.34% 63.57 10.00 0.07 133.88 16% 24 259%

Number of 
perm syms 

found

Overhead 
per state 
explored

Impl 
compilation 

+ sym 
checking

Impl super-
compilation

Impl pbisim 
transitive 
closure

RU
N 

({|
try

,e
nt

er
,le

av
e|

}

Table 2 shows the results obtained for the most efficient of the applicable sym-
metry exploiting algorithms. For each check, G is the full symmetry group on
pole indices (except pole A, where all discs start) or participant identifiers.

In each case the applicable SymCheck algorithms can be determined auto-
matically based on whether there is found to be a full set of simple swap pbisims
(in which case sortRep can be used) and whether the specification process LTS
is found to be universally G-symmetric (in which case SymCheck2 applies, and
so does SymCheck1 if sortRep can be used).

One column gives total time for compilation of the implementation process to
a structured machine plus checking of the claimed implementation symmetries.
Others give supercompilation time,3 and time for transitive closure of imple-
mentation transition system pbisims (i.e., for determining an implementation
transition system pbisim for each permutation in G, which is needed for genRep
and so for SymCheck2 and SymCheck3). Corresponding timings are omitted for
the specification as they are much smaller. Exploration times are reported.

Although the table does not show it, SymCheck3 has a larger overhead per
state explored than does SymCheck2. The table does however include evidence
that SymCheck2 has a larger overhead than SymCheck1.
3 Supercompilation [6] can reduce exploration times greatly, but is outside the scope

of this paper.



274 N. Moffat, M. Goldsmith, and B. Roscoe

The Towers of Hanoi models are very simple. Each has a structured machine
with a full set of simple swap pbisims for G. Also, the specification RUN(Events)
is universally G-symmetric. These properties are determined quickly by the tool
and hence SymCheck1 is found to apply. Compared with Check, there is a sub-
stantial reduction in the number of state pairs explored by SymCheck1 and in
exploration time. Although the compilation effort is larger, the extra costs are
evidently small compared to the benefits of exploring fewer state pairs.

The Dijkstra mutual exclusion models were chosen in part because their
structured machines (not shown) happen not to have simple swap pbisims for
the permutations in the corresponding group G. Accordingly, SymCheck1 does
not apply to these models. In contrast, SymCheck2 does apply when check-
ing refinement of RUN({| try, enter , leave |}), as this specification is univerally
G-symmetric. However, SymCheck2 does not apply with the just G-symmetric
specification SpecME; only SymCheck3 applies with this refinement property.

For the larger symmetry groups, algorithms SymCheck2 and SymCheck3 suf-
fer from the rapid increases in the size of G that result from increasing the
number of poles or participants; this is because both algorithms use genRep,
which needs a pbisim for each element of G. SymCheck1 is much less sensitive
to this because it uses sortRep, which only requires existence of a linear number
of (simple swap) pbisims. Furthermore, confirmation that these pbisims exist can
be performed efficiently by checking existence of two pbisims that correspond to
any transposition (x y) and any cycle on all elements of G except for x . This
method was used in our implementation of SymCheck1.

9 Conclusions

We have successfully adapted the representative function symmetry exploitation
approach from the temporal logic model checking context to CSP refinement
checking. The major obstacle was the need for access to sufficient local informa-
tion about state during refinement checking, which is provided by representing
the implementation process as a structured machine. We have also presented two
generalisations of the basic algorithm. All three algorithms have been presented
in a common style, in terms of a curried function TwistedCheck.

An option for future work is to characterise more precisely, in terms of pro-
cesses, when alternative SymCheck variants apply and perhaps develop methods
for transforming CSP models, or their transition systems, to make the more
efficient algorithms more widely applicable.

There are many other possible extensions, including: use of (a perhaps lib-
eralized notion of) data independence to increase the efficiency of symmetry
identification; development of variants of the sortRep function to cope efficiently
with wider classes of structured machines and permutation bisimulations over
them (and hence more implementation processes); extension to multiple repre-
sentatives; extension to virtual symmetries [12]; and use of computational group
theory to improve efficiency.
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It would also be interesting to investigate the temporal logic analogue of
(non-universal) G-symmetry and perhaps generalise the representative function
approach to symmetry exploitation for temporal logic model checking, effectively
removing the requirement that the specification is always symmetric.

The experimental results are encouraging. They illustrate that the refinement
checking algorithms presented can give significant savings in the number of state
pairs explored and in verification time. The former can be expected to lead to
corresponding reductions in memory usage, which is often the dominant factor
determining the sizes of problems that can be checked.
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Appendix: Theory

Lemma 1. Let G be a group of event permutations. Consider the product space
for particular Spec and Impl transition systems, with initial state pair s0 =
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(u0, v0). Suppose repPair is a function that maps each state pair (u, v) to (uσu,v ,
vσu,v , σu,v ), some σu,v in G. Then, for all traces t, there is a path p from s0
to state pair s = (u, v), with recover(p) = t iff there is a repPair-twisted path r
from s0 to sσ = (uσ, vσ), with recover2(r) = tσ, some σ in G.

Proof. Induction on length k of t.
Base case: k = 0, so t = 〈〉. There is exactly one path, p = 〈s0〉, starting at s0
and such that recover(p) = 〈〉. This path ends at (u, v) = (u0, v0) = s0. Also,
there is exactly one repPair -twisted path, r = 〈s0〉, starting at s0 and such that
recover2(r) = 〈〉. This repPair -twisted path ends at s0 = s01 so we may choose
σ = 1. Then recover2(r) = 〈〉 = 〈〉σ.

Inductive step: Suppose the lemma holds for all traces t of some length k . We
show it also holds for all t of length k + 1.
(⇒) Suppose p = p′�〈e〉 is a length-k+1 path from s0 to (u, v) and recover(p) =
t . Then p′ is a length-k path to some state pair (u ′, v ′) and there is a transition
(u ′, v ′) e→ (u, v). Clearly, recover(p) = recover(p′�〈e〉) = recover(p′)�〈e〉. So,
defining t ′ = recover(p′), we have t = t ′�〈e〉. By the induction hypothesis
applied to p′ and t ′, there is a repPair -twisted path r ′ from s0 to (u ′σ′, v ′σ′)
with recover2(r ′) = t ′σ′, some σ′ in G. Recall there is a transition (u ′, v ′) e→
(u, v), so there is a transition (u ′σ′, v ′σ′) eσ′

→ (uσ′, vσ′). Let ρ in G be such
that repPair(uσ′, vσ′) = (uσ′ρ, vσ′ρ, ρ).4 Then r = r ′�〈eσ′, ρ, (uσ′ρ, vσ′ρ)〉 is
a repPair -twisted path to (uσ′ρ, vσ′ρ) since r ′ is repPair -twisted and ends at

(u ′σ′, v ′σ′) and there is a transition (u ′σ′, v ′σ′) eσ′
→ (uσ′, vσ′) and repPair(uσ′,

vσ′) = (uσ′ρ, vσ′ρ, ρ). Putting σ = σ′ρ, we obtain that r is a repPair -twisted
path from s0 to sσ = (uσ, vσ), where σ = σ′ρ is in G since both σ′ and ρ are. It
remains to show that recover2(r) = tσ. We have recover2(r) = recover2(r ′�〈eσ′,
ρ, (uσ′ρ, vσ′ρ)〉) = (recover2(r ′)�〈eσ′〉)ρ = (t ′σ′�〈eσ′〉)ρ = (t ′�〈e〉)σ′ρ = tσ.
(⇐) Similar.

Theorem 1. Let G be a group of event permutations and suppose Spec and Impl
have transition systems TSpec and TImpl respectively. Suppose function repPair
maps each state pair (u, v) to (uσu,v , vσu,v , σu,v ) for some σu,v in G. Then
Spec �T Impl has a counterexample trace t iff ∃ σ ∈ G s.t. Spec �T Impl has a
repPair counterexample trace tσ.

Proof. (⇒) Let t be a counterexample trace of Spec �T Impl . Then t is a trace
of Impl . Let t1 be the longest prefix of t that is a trace of Spec and t2 be such
that t = t�

1 t2. Then there is a path p from initial state pair s0 to s = (u, v),
say, with recover(p) = t1 and t2 a bad trace from (u, v). By Lemma 1, there is
a repPair -twisted path r from s0 to sσ, some σ in G, with recover2(r) = t1σ.
But sσ = (uσ, vσ) is a bad state pair, and t2σ must be a bad trace from sσ
(since Impl state vσ is able to perform trace t2σ but Spec state uσ is not). So
recover2(r)�t2σ = t1σ�t2σ = (t1�t2)σ = tσ is a repPair counterexample trace,
for this σ in G.
4 Such a ρ is denoted σuσ′,vσ′ in the statement of the lemma.



A Representative Function Approach to Symmetry Exploitation 277

(⇐) Let t be a repPair counterexample trace of Spec �T Impl . Then t =
recover2(r)�t2 for some repPair -twisted path r from initial state pair s0 to
a bad state pair s = (u, v), such that t2 is a bad trace from (u, v). So Impl state
v can perform trace t2 but Spec state u cannot. Putting t1 = recover2(r), we
have t = t1�t2. By Lemma 1, there is a path p from s0 to sσ−1, some σ−1 in G,
with recover(p) = t1σ−1. Now sσ−1 = (uσ−1, vσ−1) must be a bad state pair
with t2σ−1 a bad trace from sσ−1, since Impl state vσ−1 can perform trace t2σ−1

but Spec state uσ−1 cannot. So p is a path from s0 to bad state pair sσ−1 and
recover(p)�t2σ−1 = t1σ−1�t2σ−1 = (t1�t2)σ−1 = tσ−1 is a counterexample
trace, for this σ−1 in G.

Theorem 2. Let G be a group of event permutations and suppose Spec and
Impl have G-symmetric transition systems TSpec and TImpl respectively. Suppose
function repPair maps each state pair (u, v) to (uσu,v , vσu,v , σu,v) for some σu,v
in G. Then Spec �T Impl has a counterexample trace t iff Spec �T Impl has a
repPair counterexample trace t.

Proof. By Theorem 1, Spec �T Impl has a counterexample trace t iff ∃ σ ∈ G
s.t. Spec �T Impl has a repPair counterexample trace tσ. Then use that, ∀ σ
in G, Spec �T Impl has a counterexample trace t iff it has a counterexample
trace tσ (which follows easily from G-symmetry of the Spec and Impl transition
systems).
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