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Abstract. The bakery protocol is the first real solution of the mutual
exclusion problem. It does not assume any lower mutual exclusion pro-
tocols. The bakery protocol has been often used as a benchmark to
demonstrate that proposed verification methods and/or tools are pow-
erful enough. But, the true bakery protocol has been rarely used. We
have formally proved that the protocol satisfies the mutual exclusion
property. The proof is mechanized with CafeOBJ, an algebraic specifi-
cation language, in which state machines as well as data types can be
specified. Nonatomic reads and writes to shared variables are formalized
by representing an assignment to a shared variable with multiple atomic
transitions. Our formal model of the protocol has states in which a shared
variable is being modified. A read to the variable in such states obtains
an arbitrary value, which is represented as a CafeOBJ term.

Keywords: CafeOBJ, invariant property, mutual exclusion, observa-
tional transition system (OTS), verification.

1 Introduction

The mutual exclusion problem is one of the classic but still important problems
in computer science. The problem was originally raised and solved by Edsger
Dijkstra in 1965 [1]. Many solutions have been proposed since then. But, it took
nine years to solve the problem in the true sense of the word. The first real
solution is the bakery protocol proposed by Leslie Lamport in 1974 [2]. All mutual
exclusion protocols before the bakery protocol assume lower mutual exclusion
protocols. On the other hand, the bakery protocol does not.

The bakery protocol has been often used as a benchmark to demonstrate
that proposed verification methods and/or tools, among which are [3,4,5], are
powerful enough. But, the true bakery protocol has been rarely used. A simplified
version of the bakery protocol has been often used such that the simplified version
assumes that a read and a write to a shared variable are performed exclusively.

Lamport gives an informal proof [2] that the protocol satisfies some properties
and more rigorous proofs [6,7,8] that the protocol satisfies the mutual exclusion
property. The proofs do not assume any atomicity. But, they do not seem to
have been mechanized.
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We describe a fully formal and mechanized proof that the protocol satisfies
the mutual exclusion protocol. We have faithfully made an abstract model of the
protocol as much as the formal method used can. Our abstract model respects
nonatomic reads and writes to shared variables, namely that those reads and
writes can overlap. Nonatomic reads and writes to shared variables are formal-
ized by representing an assignment to a shared variable with multiple atomic
transitions. Our abstract model has states in which a shared variable is being
modified. A read to the variable in such states obtains an arbitrary value. Our
abstract model uses natural numbers, while the bakery protocol uses integers.
But, we do not think that this difference is major because sequences of bits
can be naturally interpreted as unsigned integers, or natural numbers. We have
formally proved that our abstract model satisfies the mutual exclusion property.

The formal method used is the OTS/CafeOBJ method [9,10]. Observational
transition systems (OTSs) are used as abstract models, CafeOBJ [11], an alge-
braic specification language, is used to specify OTSs and properties to verify, and
the CafeOBJ system is used as an interactive proof assistant. We also describe
some specification and verification techniques used in the case study, which can
be used for not only the OTS/CafeOBJ method but also other formal methods
based on algebraic specifications.

The rest of the paper is organized as follows. Section 2 describes the bakery
protocol. Sections 3 and 4 introduce CafeOBJ and OTSs, respectively. Section 5
describes how to model the bakery protocol as an OTS, which is specified in
CafeOBJ. Section 5 describes the verification. Section 7 discusses some issues on
specification and verification. Section 8 mentions some related work. Section 9
concludes the paper.

2 The Bakery Protocol

Many existing mutual exclusion protocols assume atomic instructions, which can
be considered lower mutual exclusion protocols. Some assume that read (or load)
and write (or store) instructions are atomic [1,12], which implies that a read and a
write to a shared variable are performed exclusively. Some assume more complex
atomic instructions such as test and set and fetch and store instructions [13,14].
Unlike those protocols, the bakery protocol does not assume any lower mutual
exclusion protocols.

The bakery protocol is an N -process mutual exclusion protocol. The N natural
numbers 1, . . . , N are used as the identifications of the N processes, respectively.
Fig. 1 shows the protocol in the ALGOL style for each process i. The type of each
variable used is integer. choosing [i] and number [i] are shared variables among
the N processes. While all processes read the variables, only the process i writes
them. j is a local variable to the process i.

The function maximum takes N integers and returns one of them, which is not
less than the others. The N arguments can be read in any order. (a, b) < (c, d)
equals a < c ∨ (a = b ∧ b < d).
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begin integer j;
L1: choosing [i] := 1;

number [i] := 1 + maximum(number [1], . . . ,number [N ]);
choosing [i] := 0;
for j = 1 step 1 until N do
begin

L2: if choosing [j] �= 0 then goto L2;
L3: if number [j] �= 0 and (number [j], j) < (number [i], i)

then goto L3;
end;

critical section;
number [i] := 0;
noncritical section;
goto L1;

end

Fig. 1. The bakery protocol in the ALGOL style

Initially, the process i is in the noncritical section, both choosing [i] and
number [i] are set to 0, and j is an arbitrary integer. We suppose that if the
process i enters the critical section, it eventually leaves there, and the process i
does not write both choosing [i] and number [i] in both the critical and noncritical
sections.

One of the desired properties the bakery protocol should satisfy is the mutual
exclusion property, which means that there exists at most one process in the
critical section at any given moment.

3 CafeOBJ

CafeOBJ is an algebraic specification language mainly based on order-sorted
algebras and hidden algebras. Data are specified in terms of the former and state
machines are specified in terms of the latter. CafeOBJ has two kinds of sorts:
visible and hidden sorts. Visible and hidden sorts denote carrier sets of order-
sorted algebras and hidden algebras, respectively. Elements of visible and hidden
sorts are data values and states of state machines, respectively.

There are two kinds of operators: conventional and behavioral operators. The
former are used as data constructors and functions on data, and the latter are
used for state machines. The former are also used to represent states of state
machines. The latter are classified into observations and actions. Observations
obtain data values that characterize states, and actions change states. A conven-
tional operator f , an observation o and an action a are declared as “op f :VL
-> S”, “bop o :H VL -> V ” and “bop a :H VL -> H”, respectively, where
VL is a list of visible sorts, S is a visible or hidden sort, V is a visible sort
and H is a hidden sort. Conventional operators with no arguments are called
constants. An operator can be given attributes such as assoc, comm and id: t,
which specify that the operator is associative and commutative, and a term t is
an identity of the operator.
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There are two kinds of equations: conventional and behavioral equations. Both
can have conditions. A conventional equation says that two data values are equal,
and a behavioral equation says that two states are equal in that any observation
returns a same data value in the two states and any sequence of actions preserves
it. A conventional equation and a behavioral equation are declared as “[c]eq lv
= rv [if c] .” and “[c]beq lh = rh [if c] .”, respectively, where lv and rv are
terms whose sorts are visible, lh and rh are terms whose sorts are hidden and c
is a term whose sort is Bool (see below).

Basic units of CafeOBJ specifications are modules. CafeOBJ provides built-in
modules. One of the most important built-in modules is BOOL in which proposi-
tional logic is specified. BOOL is automatically imported by almost every module
unless otherwise stated. In BOOL and its parent modules, declared are the visible
sort Bool denoting the set of Boolean values, the constants true and false of
Bool, and operators denoting some basic logical connectives. Among the opera-
tors are not_, _and_, _or_, _xor_, _implies_ and _iff_ denoting negation (¬),
conjunction (∧), disjunction (∨), exclusive disjunction (xor), implication (⇒)
and logical equivalence (⇔), respectively. An underscore _ indicates the place
where an argument is put such as “b1 and b2”. The operators _and_, _or_ and
_xor_ are given assoc and comm. The operator if_then_else_fi corresponding
to the if construct in programming languages is also declared. CafeOBJ uses the
Hsiang term rewriting system [15] as the decision procedure for propositional
logic, which is implemented in BOOL. CafeOBJ reduces any term denoting a
proposition that is always true (false) to true (false). More generally, a term
denoting a proposition reduces to an exclusively disjunctive normal form of the
proposition.

4 Observational Transition Systems (OTSs)

We suppose that there exists a universal state space and each data type used in
OTSs is provided. The state space is represented by a hidden sort H and data
types are represented by visible sorts such as Vo1.

An OTS S is 〈O, I, T 〉 such that

– O : A finite set of observers. Each observer is represented as an observa-
tion declared as “bop o :H Vo1 ...Vom -> Vo”. The equivalence relation
(s1 =S s2) between two states s1, s2 : H is defined as o(s1, x1, . . . , xm) =
o(s2, x1, . . . , xm) for all o ∈ O and all xi : Voi for i = 1, . . . , m. Observers
correspond to variables in the conventional definitions of transition systems.

– I : The set of initial states. An arbitrary initial state is represented by a con-
stant init declared as “op init : -> H”. Let Xi be a CafeOBJ variable of
Voi. The constant init is defined with a set of equations. For each observer o,
the definition has the equation “eq o(init, X1, . . . , Xm) = initVal .”, where
initVal is a term denoting a data value returned by the observer in an arbi-
trary initial state.

– T : A finite set of transitions. Each transition is represented as an ac-
tion declared as “bop t :H Vt1 ...Vtn -> H”. Each transition preserves
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the equivalence relation =S . Each transition t has the condition c-t. If
c-t(s, y1, . . . , yn) does not hold, then t(s, y1, . . . , yn) =S s for all s : H and all
yj for j = 1, . . . , n. Each transition t is defined with a set of equations. Let S
be a CafeOBJ variable of H and Yj be a CafeOBJ variable of Vtj . For each ob-
server o, the definition has the equation “ceq o(t(S, Y1, . . . , Yn), X1. . . . , Xm)
= newVal if c-t(S, Y1, . . . , Yn) .”, where newVal is a term denoting the
data value returned by the observer in the successor state t(S, Y1, . . . , Yn) if
the effective condition holds. If t does not change the value returned by o, we
may omit the condition and use a nonconditional equation. The definition has
one more equation “cbeq t(S, Y1, . . . , Yn) = S if not c-t(S, Y1, . . . , Yn) .”,
which says that the transition does not change states essentially if the effec-
tive condition does not hold.

Given an OTS S, a transition t ∈ T and two states s, s′ : H , if
t(s, b1, . . . , bn) =S s′ for some values b1 : Vt1, . . . , bn : Vtn, then we write s �t

S s′

and call s′ a t-successor state of s with respect to (wrt) S. t may be omitted
from s �t

S s′ and s′ may be called a successor state of s wrt S.
Given an OTS S, reachable states wrt S are inductively defined:

– Each s0 ∈ I is reachable wrt S.
– For each s, s′ : H such that s �S s′, if s is reachable wrt S, so is s′.

Let RS be the set of all reachable states wrt S.
Operators whose ranks (types) are H -> Bool are called state predicates.

Any state predicate p : H -> Bool is called invariant wrt S if p holds in all
reachable states wrt S, i.e. ∀s : RS . p(s).

5 Model and Specification of the Bakery Protocol

We describe the OTS SBakery modeling the bakery protocol, which is specified
in CafeOBJ.

5.1 Data Used

Five kinds of data are used in SBakery: (1) Boolean values, (2) natural numbers,
(3) pairs of natural numbers, (4) sets of natural numbers, and (5) labels.

The built-in module BOOL is used for Boolean values. As described in Sect. 3,
a Boolean term reduces to an exclusively disjunctive normal form. This is useful
because this can check if a given Boolean term is always true (or false). But, it
may take too much time for Boolean terms to reduce to their normal forms if the
terms have many disjunctions. In addition to _or_, BOOL has the declaration of
another operator _or-else_ for disjunction. The use of _or-else_, instead of
_or_, can prevent Boolean terms from fully reducing to their exclusive-or normal
forms and can save much time. The attributes assoc and comm are not given to
_or-else_ in BOOL. For convenience, those attributes are given to the operator.

The sort Nat represents the set of all natural numbers. The constant 0 and
the operator s denote zero and the successor function. We have the operators
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_=_, _<_ and max. The first two are the equivalence predicate and the less-than
predicate. The third one takes two natural number and returns one that is not
less than the other. The attribute comm is given to _=_.

We have the constant numOfProcs of Nat, which is the number of processes
participating in the protocol. numOfProcs corresponds to N in Fig. 1. The predi-
cate isPid checks if a given natural number p is used as a process identification,
namely that p is greater than 0 and less than or equal to N represented by
numOfProcs.

We also have the operator next. Given a natural number x, the term next(x)
denotes an arbitrary natural number. The operator is used to model an assign-
ment to a shared variable.

The sort NatPair represents the set of all pairs of natural numbers. The
operator <_,_> is the constructor of pairs of natural numbers. We have the
operators _=_ and _<_. < a,b > = < c,d > equals a = b and b = d, and < a,b
> < < c,d > equals a < c or (a = c and b < d). The attribute comm is given
to _=_.

The sort NatSet represents the set of all sets of natural numbers. Nat is
declared as a sub-sort of NatSet, which specifies that a natural number is the
singleton set that contains the number. The constant empty denotes the empty
set and the juxtaposition operator __ is the constructor of nonempty sets. The
attributes assoc, comm and id: empty are given to the juxtaposition operator.
We have the operators _\in_, del and empty?. The first checks if a given element
is in a given set, the second deletes a given element from a given set if any, and
the third checks if a given set is empty. We also have the operator mkSet, which
takes a natural number n and returns empty if n is zero and the term denoting
{1, . . . , n} if n is greater than zero.

Labels are used to indicate which parts of the protocol processes are going
to execute next. The sort Label represents the set of all labels. There are 17
labels, which are represented by the 17 constants l1, l2, . . . , l15, cs, and ncs.
We have the operator _=_, which is the equivalence predicate on labels. The
attribute comm is given to _=_.

5.2 Definition of Equivalence Predicate on Labels

The operator _=_ is defined with a set of equations. One equation is “eq (L
= L) = true .”, where L is a CafeOBJ variable of Label. Given two different
labels l1 and l2 such as cs and ncs, we want l1 = l2 to reduce to false. Given
one label l and a term x whose final value has not been determined, however, we
do not want l = x to reduce to either true or false because x may or may not
equal l. One way to define the operator to fulfill the requirement is to declare
the equation “eq (l1 = l2) = false .” for each pair l1, l2 of different labels.
But, we need to declare many such equations.

Another solution [16], which does not require to declare many equations, is
as follows. We use another sort RealLabel, which is declared as a sub-sort of
Label. The 17 constants l1, l2, . . . , l15, cs, and ncs are declared as those of
RealLabel. Then, all we have to do is to declare one more equation “eq (RL1
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= RL2) = (RL1 == RL2) .”, in addition to the equation “eq (L = L) = true
.”, where RL1 and RL2 are CafeOBJ variables of RealLabel, and the operator
_==_ is a built-in predicate. The built-in predicate returns true if given two terms
reduce to a same term and false otherwise. That is, it returns false even if
two terms may represent a same data value. This is why we cannot use _==_
naively as the equivalence predicate on data values for verification. RealLabel is
only used to declare the 17 constants. In other places in the specification, Label
is used.

5.3 Assignments to Shared Variables

Since the Bakery protocol does not assume atomic reads and writes to shared
variables, we cannot model an assignment (x := E;) to a shared variable as one
transition. The assignment is modeled as two or more transitions. The two or
more transitions model the following things:

– Zero or more transitions model the calculation of the expression E. If it is
not necessary to divide the calculation into multiple steps such that E is a
data value such as 0, no transitions are used.

– One transition models the situation that the assignment has started but not
finished.

– One transition models the situation that the assignment has finished.

Let beginWtX and endWtX be the last two transitions, and x be the observer
with which the value of the variable x is obtained. One of the equations defining
beginWtX looks like

ceq x(beginWtX(S,I)) = anArbVal if c-beginWtX(S,I) .

and one of the equations defining endWtX looks like

ceq x(endWtX(S,I)) = theValOfX if c-endWtX(S,I) .

where S is a CafeOBJ variable of a hidden sort denoting the state space, I is a
CafeOBJ variable of a visible sort denoting process identifications, anArbVal is
a term denoting an arbitrary value of the visible sort, and theValOfX is a term
denoting the values obtained by calculating E. In calSBakery, anArbVal is an
arbitrary natural number, which is represented as a term next(v), where v is a
natural number.

When another process J than I tries to read the variable x in the state
beginWtX(S,I), which corresponds to a situation where a J’s read to x overlaps
an I’s write to x , the value obtained by J is arbitrary.

5.4 Choice of Arguments in an Arbitrary Order

The arguments of the maximum function can be read in any order. One way
to respect the arbitrary choice of arguments and calculate maximum(number [1],
. . . ,number [N ]) is as follows:
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1. Set temporary variables tmp and m to {1, . . . , N} and 0.
2. If tmp is empty, then the calculation is done and m contains the result;

otherwise go to 3.
3. Choose and delete an arbitrary number k from tmp, set m to max(m, k),

and go to 2.

Three transitions are used to model the calculation: setTmp, checkLC and
findMax. Let tmp and m be the observers with which the values of tmp and m
are obtained. Let step1, step2 and step3 denote the locations corresponding to
the three steps described above, respectively. Let step4 denotes the location to
which the process moves after finishing the calculation. Let pc be the observer
that returns the location where the process is.

Some of the equations defining setTmp look like

ceq pc(setTmp(S)) = step2 if c-setTmp(S) .
ceq tmp(setTmp(S)) = mkSet(numOfProcs) if c-setTmp(S) .
ceq m(setTmp(S)) = 0 if c-setTmp(S) .

some of the equations defining checkLC look like

ceq pc(checkLC(S)) = (if empty?(tmp(S)) then step4 else step3 fi)
if c-checkLC(S) .

eq tmp(checkLC(S)) = tmp(S) .
eq m(checkLC(S)) = m(S) .

and some of the equations defining findMax look like

ceq pc(findMax(S,K)) = step2 if c-findMax(S,K) .
ceq tmp(findMax(S,K)) = del(tmp(S),K) if c-findMax(S,K) .
ceq m(findMax(S,K)) = max(m(S),K) if c-findMax(S,K) .

where S is a CafeOBJ variable of a hidden sort denoting the state space, K
is a CafeOBJ variable of Nat, c-setTmp(S) is pc(S) = step1, c-checkLC(S)
is pc(S) = step2, and c-findMax(S,K) is pc(S) = step3 and K \in tmp(S).
The transition findMax arbitrarily chooses a natural number K that is in tmp(S).

5.5 Observers and Transitions

Seven observers are used, which are declared as follows:

bop pc : Sys Nat -> Label bop choosing : Sys Nat -> Nat
bop number : Sys Nat -> Nat bop j : Sys Nat -> Nat
bop tmp : Sys Nat -> NatSet bop m : Sys Nat -> Nat
bop rand : Sys -> Nat

pc returns the location where a given process is in a given state. choosing,
number and j correspond to the variables found in the bakery protocol. tmp and
m are used to model the calculation of maximum(number [1], . . . ,number [N ]).
rand returns an arbitrary natural number, which is used to model assignments
to shared variables.
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l1: beginWtCh1 −→ L1: choosing [i] := 1;
l2: endWtCh1

l3: setTmp −→ number [i] := 1 + maximum(number [1], . . . , number [N ]);
14: checkLC1
15: findMax
16: beginWtNum1
17: endWtNum1

18: beginWtCh2 −→ choosing [i] := 0;
19: endWtCh2

110: setJ −→ for j = 1 step 1 until N do
111: checkLC2 begin
112: checkCh L2: if choosing [j] �= 0 then goto L2;
113: checkNum L3: if number [j] �=0 and (number [j], j)< (number [i], i)

then goto L3;
end;

cs: execCS −→ critical section;

l14: beginWtNum2 −→ number [i] := 0;
l15: endWtNum2

ncs: execNCS −→ nonciritcal section;

ncs: tryCS −→ goto L1;

Fig. 2. Correspondence between transitions and the protocol

18 transitions are used, which are declared as follows:

bop beginWtCh1 : Sys Nat -> Sys bop endWtCh1 : Sys Nat -> Sys
bop setTmp : Sys Nat -> Sys bop checkLC1 : Sys Nat -> Sys
bop findMax : Sys Nat Nat -> Sys
bop beginWtNum1 : Sys Nat -> Sys bop endWtNum1 : Sys Nat -> Sys
bop beginWtCh2 : Sys Nat -> Sys bop endWtCh2 : Sys Nat -> Sys
bop setJ : Sys Nat -> Sys bop checkLC2 : Sys Nat -> Sys
bop checkCh : Sys Nat -> Sys bop checkNum : Sys Nat -> Sys
bop execCS : Sys Nat -> Sys
bop beginWtNum2 : Sys Nat -> Sys bop endWtNum2 : Sys Nat -> Sys
bop execNCS : Sys Nat -> Sys bop tryCS : Sys Nat -> Sys

Figure 2 shows the correspondence between the 18 transitions and the bakery
protocol in the ALGOL style. The first 16 labels represented by the 16 constants
l1, l2, . . . , l15 and cs correspond to the first 16 transitions, respectively. The
label ncs correspond to both execNCS and tryCS.
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-- setTmp

eq c-setTmp(S,I) = (pc(S,I) = l3) .

ceq pc(setTmp(S,I),J)

= (if I = J then l4 else pc(S,J) fi) if c-setTmp(S,I) .

eq choosing(setTmp(S,I),J) = choosing(S,J) .

eq number(setTmp(S,I),J) = number(S,J) .

eq j(setTmp(S,I),J) = j(S,J) .

ceq tmp(setTmp(S,I),J)

= (if I = J then mkSet(numOfProcs) else tmp(S,J) fi)

if c-setTmp(S,I) .

ceq m(setTmp(S,I),J)

= (if I = J then 0 else m(S,J) fi) if c-setTmp(S,I) .

eq rand(setTmp(S,I)) = rand(S) .

bceq setTmp(S,I) = S if not c-setTmp(S,I) .

-- checkLC1

eq c-checkLC1(S,I) = (pc(S,I) = l4) .

ceq pc(checkLC1(S,I),J)

= (if I = J then (if empty?(tmp(S,I)) then l6 else l5 fi)

else pc(S,J) fi) if c-checkLC1(S,I) .

eq choosing(checkLC1(S,I),J) = choosing(S,J) .

eq number(checkLC1(S,I),J) = number(S,J) .

eq j(checkLC1(S,I),J) = j(S,J) .

eq tmp(checkLC1(S,I),J) = tmp(S,J) .

eq m(checkLC1(S,I),J) = m(S,J) .

eq rand(checkLC1(S,I)) = rand(S) .

bceq checkLC1(S,I) = S if not c-checkLC1(S,I) .

-- findMax

eq c-findMax(S,I,K) = (pc(S,I) = l5 and K \in tmp(S,I)) .

ceq pc(findMax(S,I,K),J)

= (if I = J then l4 else pc(S,J) fi) if c-findMax(S,I,K) .

eq choosing(findMax(S,I,K),J) = choosing(S,J) .

eq number(findMax(S,I,K),J) = number(S,J) .

eq j(findMax(S,I,K),J) = j(S,J) .

ceq tmp(findMax(S,I,K),J)

= (if I = J then del(tmp(S,I),K) else tmp(S,J) fi)

if c-findMax(S,I,K) .

ceq m(findMax(S,I,K),J)

= (if I = J then max(m(S,I),number(S,K)) else m(S,J) fi)

if c-findMax(S,I,K) .

eq rand(findMax(S,I,K)) = rand(S) .

bceq findMax(S,I,K) = S if not c-findMax(S,I,K) .

Fig. 3. Definitions of transitions (1)

setTmp, checkLC1 and findMax correspond to maximum(number [1], . . . ,
number [N ]). beginWtNum1 and endWtNum1 correspond to the assignment of the
value obtained by incrementing the result of the calculation to number [i].
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-- beginWtNum1

eq c-beginWtNum1(S,I) = (pc(S,I) = l6) .

ceq pc(beginWtNum1(S,I),J)

= (if I = J then l7 else pc(S,J) fi) if c-beginWtNum1(S,I) .

eq choosing(beginWtNum1(S,I),J) = choosing(S,J) .

ceq number(beginWtNum1(S,I),J)

= (if I = J then rand(S) else number(S,J) fi) if c-beginWtNum1(S,I) .

eq j(beginWtNum1(S,I),J) = j(S,J) .

eq tmp(beginWtNum1(S,I),J) = tmp(S,J) .

eq m(beginWtNum1(S,I),J) = m(S,J) .

ceq rand(beginWtNum1(S,I)) = next(rand(S)) if c-beginWtNum1(S,I) .

bceq beginWtNum1(S,I) = S if not c-beginWtNum1(S,I) .

-- endWtNum1

eq c-endWtNum1(S,I) = (pc(S,I) = l7) .

ceq pc(endWtNum1(S,I),J)

= (if I = J then l8 else pc(S,J) fi) if c-endWtNum1(S,I) .

eq choosing(endWtNum1(S,I),J) = choosing(S,J) .

ceq number(endWtNum1(S,I),J)

= (if I = J then s(m(S,I)) else number(S,J) fi) if c-endWtNum1(S,I) .

eq j(endWtNum1(S,I),J) = j(S,J) .

eq tmp(endWtNum1(S,I),J) = tmp(S,J) .

eq m(endWtNum1(S,I),J) = m(S,J) .

eq rand(endWtNum1(S,I)) = rand(S) .

bceq endWtNum1(S,I) = S if not c-endWtNum1(S,I) .

Fig. 4. Definitions of transitions (2)

setJ corresponds to the assignment of 1 to the process i’s local variable j.
checkLC2 corresponds to the loop termination check. checkCh and checkNum
correspond to the first and second conditional statements in the inner loop of
the protocol, respectively.

5.6 Definitions of Transitions

We cannot show all equations defining the 18 transitions due to the space limita-
tion. We show the equations defining setTmp, checkLC1, findMax, beginWtNum1
and endWtNum1 in Fig. 3 and Fig. 4. Lines starting with “--” are comments.

6 Verification Based on the Specification

We describe the mechanized proof that SBakery satisfies the mutual exclusion
property based on the specification of SBakery. The proof is conducted by writing
proof socres in CafeOBJ and executing them with the CafeOBJ system. Proof
scores are proofs or proof plans written in an algebraic specification language
such as CafeOBJ.
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6.1 Formalization of the Mutual Exclusion Property

The mutual exclusion property can be stated as there is at most one process
in the critical section at any given moment. This can be rephrased as if there
are processes in the critical section, then they are identical. The property is
formalized as follows:

eq inv1(S,P,Q) = (isPid(P) and isPid(Q) and
pc(S,P) = cs and pc(S,Q) = cs implies P = Q) .

Since SBakery does not explicitly disallow processes whose identifications are not
in {1, . . . , N} to participate in the protocol, we need to have isPid(P) and
isPid(Q) as part of the premises.

What to do is to prove inv1(S,P,Q) for all reachable states S and all natural
numbers P and Q. The proof is done by induction on the structure of the reachable
state space. Then, we declare the constant istep1 of Bool, which is defined as
“eq istep1 = inv1(s,p,q) implies inv1(s’,p,q) .”, where s is a constant
of Sys denoting an arbitrary state, s’ is a constant of Sys denoting an arbitrary
successor state of s, and p and q are constants of Nat denoting arbitrary natural
numbers. We suppose that the importation of a module, say ISTEP, makes those
operators, equations and constants available.

6.2 Lemmas of the Verification

The verification needs to prove that 12 more state predicates are invariant wrt
SBakery. The 12 state predicates are shown in Table 1. The predicates inWS2,
inWS&CS, inCM and inZS are defined as follows:

Predicate Definition

inWS1(L) L = l8 or-else L = l9 or-else L = l10

inWS2(L) L = l11 or-else L = l12 or-else L = l13

inWS(L) inWS1(L) or-else inWS2(L)

inWS&CS(L) inWS(L) or-else L = cs or-else L = l14

inCM(L) L = l4 or-else L = l5 or-else L = l6 or-else L = l7

inZS(L) L = ncs or-else L = l1 or-else L = l2 or-else L = l3

or-else L = l4 or-else L = l5 or-else L = l6

Instead of _or_, _or-else_ is used to prevent Boolean terms from fully reducing
to their exclusive-or normal forms.

6.3 Proof Score of inv1

Let us take a close look at the protocol to check which transitions preserve inv1
and which do not seem. In the induction case for a transition that does not seem
to preserve inv1, we may need lemmas.

All transitions except for checkLC2 preserve inv1. This is because they change
pc(s,p) for some process identification p to a value that is different from cs or do
not change the value returned by any observer. In the former, the change makes
the premise of inv1 false, namely making inv1 true. In the latter, inv1 is clearly
preserved. We still need to prove the induction case for each transition. But, such
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Table 1. The lemmas used in the verification

Lemma Definition

inv2(S,P,J) (isPid(P) and inWS2(pc(S,P)) and 0 < J and J < j(S,P)

and inWS&CS(pc(S,J)) and not(J = P))

implies < number(S,P),P > < < number(S,J),J >

inv3(S,P,J) (isPid(P) and pc(S,P) = cs and 0 < J and J < s(numOfProcs)

and inWS&CS(pc(S,J)) and not(J = P))

implies < number(S,P),P > < < number(S,J),J >

inv4(S,P) inWS&CS(pc(S,P)) implies 0 < number(S,P)

inv5(S,P,Q) (isPid(P) and isPid(Q) and inCM(pc(S,Q))

and (inWS2(pc(S,P)) or-else pc(S,P) = cs)

and not(P \in tmp(S,Q)) and Q < j(S,P) and not(P = Q))

implies (number(S,P) = m(S,Q) or number(S,P) < m(S,Q))

inv6(S,P) (pc(S,P) = l6 or-else pc(S,P) = l7) implies empty?(tmp(S,P))

inv7(S,P) inWS2(pc(S,P))

implies (j(S,P) = s(numOfProcs) or-else j(S,P) < s(numOfProcs))

inv8(S,P) pc(S,P) = cs implies j(S,P) = s(numOfProcs)

inv9(S,P) (isPid(P) and isPid(j(S,P)) and inCM(pc(S,j(S,P)))

and pc(S,P) = l13 and not(P \in tmp(S,j(S,P))) and not(P = j(S,P))

and (number(S,j(S,P)) = 0 or-else

not(< number(S,j(S,P)),j(S,P) > < < number(S,P),P >)))

implies (number(S,P) = m(S,j(S,P)) or number(S,P) < m(S,j(S,P)))

inv10(S,P) (inCM(pc(S,j(S,P))) and pc(S,P) = l12 and choosing(S,j(S,P)) = 0)

implies (number(S,P) = m(S,j(S,P)) or number(S,P) < m(S,j(S,P)))

inv11(S,P) (inCM(pc(S,P)) or-else pc(S,P) = l3)

implies not(choosing(S,P) = 0)

inv12(S,P) inZS(pc(S,P)) implies number(S,P) = 0

inv13(S,P) (pc(S,P) = l12 or-else pc(S,P) = l13)

implies j(S,P) < s(numOfProcs)

a thought experiment makes it clear that only case splitting can discharge the
induction case for all transitions except for checkLC2 but we may also need
lemmas for checkLC2.

Let us consider the following proof passage (a fragment of a proof score):

open ISTEP
-- arbitrary values
op i : -> Nat .

-- assumptions
-- eq c-checkLC2(s,i) = true .
eq pc(s,i) = l11 .
--
eq p = i .
eq (q = i) = false .
eq j(s,i) = s(numOfProcs) .
eq pc(s,q) = cs .

-- successor state
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eq s’ = checkLC2(s,i) .
-- check
red istep1 .

close

The command open makes a temporary module in which a given module (ISTEP
in this case) is imported, and the command close destroys such a module. The
constant i is used to denote an arbitrary natural number. The constant s is
used to denote an arbitrary state in which the first five equations hold. The
last equation says that s’ is an arbitrary checkLC2-successor state of s. The
command red reduces a given term.

Since pc(s’,p) equals cs, pc(s’,q) equals cs and p does not equal q, if p and
q are used as process identifications and s is reachable, then inv1 is not invariant
wrt SBakery. We need to conjecture lemmas to discharge the proof passage.

A close inspection of the bakery protocol allows us to conjecture the following
two statements: for all reachable states s, all process identifications p and all
natural numbers q,

1. If pc(s,p) is l1, l2 or l3, pc(s,q) is l8, . . . , cs or l14, q is not p, and q is
greater than 0 and less than j(s,p), then < number(s,p),p > is less than
< number(s,q),q >.

2. If pc(s,p) is cs, pc(s,q) is l8, . . . , cs or l14, q is not p, and q is greater
than 0 and less than s(numOfProcs), then < number(s,p),p > is less than
< number(s,q),q >.

Both statements roughly say that if it has been decided that p has high priority
over q when p is in the inner loop of the protocol, the situation lasts while p is
in the inner loop or in the critical section. They corresponds to inv2 and inv3
in Table 1, respectively.

Instead of istep1, we reduce inv2(s,p,q) and inv3(s,q,p) implies
istep1 in the proof passage, whose results is true. This is because if
both p and q are process identifications, inv2(s,p,q) and inv3(s,q,p) is
equivalent to < number[p],p > < < number[q],q > and < number[q],q > <
< number[q],q >, which reduces to false.

In the proof score of inv1, there is one more proof passage, which uses inv2
and inv3, to discharge the proof passage:

open ISTEP
op i : -> Nat .
eq pc(s,i) = l11 .
eq (p = i) = false .
eq q = i .
eq j(s,i) = s(numOfProcs) .
eq pc(s,p) = cs .
eq s’ = checkLC2(s,i) .
red inv2(s,q,p) and inv3(s,p,q) implies istep1 .

close

Comments are omitted. Any other proof passages do not use any lemmas.
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6.4 Proof Score of inv2

All transitions except for endWtNum1, setJ and checkNum preserve inv2. This
is because although they may change pc(s,p) for some process identification,
they do not change the truth value of inv2. setJ may change pc(s,p) for some
process identification to l11 from l10, but if it does, it sets j(s,p) to s(0),
which makes the premise of inv2 false and then makes inv2 true. We may need
lemmas in the induction case for endWtNum1 and checkNum.

Let us consider the following proof passage:

open ISTEP
-- arbitrary values
op i : -> Nat .

-- assumptions
-- eq c-endWtNum1(s,i) = true .
eq pc(s,i) = l7 .
--
eq (p = i) = false .
eq j = i .
eq number(s,p) < s(m(s,i)) = false .
eq (number(s,p) = s(m(s,i)) and p < i) = false .
eq 0 < p = true .
eq p < s(numOfProcs) = true .
eq (pc(s,p) = l11 or-else pc(s,p) = l12

or-else pc(s,p) = l13) = true .
eq 0 < i = true .
eq i < j(s,p) = true .
eq (j(s,p) = s(numOfProcs) or-else j(s,p) = numOfProcs

or-else j(s,p) < numOfProcs) = true .
eq i < s(numOfProcs) = true .
eq tmp(s,i) = empty .

-- successor state
eq s’ = endWtNum1(s,i) .

-- check
red istep2 .

close

CafeOBJ returns false for this proof passage. If inv2 is invariant wrt SBakery,
an arbitrary state s characterized by the first 13 equations must be unreachable.
We need to find lemmas to show that s is unreachable.

A close inspection of the bakery protocol allows us to conjecture the following
statement: for all reachable states s and all process identifications p, q,

1. If pc(s,p) is l1, l2, l3 or cs, pc(s,q) is l4, . . . , l7, q is not p, q is less than
j(s,p) and p is not in tmp(s,p), then number(s,p) is less than or equal to
m(s,q).

The statement roughly says that if it has been decided that p has high pri-
ority over q when p is in the inner loop of the protocol and q is calculating
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maximum(number [1], . . . ,number [N ]), the situation lasts while p is in the inner
loop or in the critical section and q is calculating the expression. The statement
corresponds to inv5 in Table 1.

inv5(s,p,j) reduces to false in the proof passage, which means that if
inv5 is invariant wrt SBakery, an arbitrary state s characterized by the first 13
equations in the proof passage is unreachable. Therefore, inv5 discharges the
proof passage.

In addition to inv5, the induction case where endWtNum1 is considered needs
inv6 and inv7 shown in Table 1. The induction case for checkNum needs inv4
shown in Table 1. The induction case where other transitions are considered does
not need any lemmas.

6.5 Other Proof Scores

All the other lemmas except for inv10 are proved by induction on the structure
of the reachable state space. A simple logical calculation deduces inv10 from
inv11, which is also done by writing a proof score. The proofs of some lemmas
also need lemmas, which are as follows: (1) inv3: inv2, inv6 inv5 and inv8;
(2) inv4: no lemmas; (3) inv5: inv8; (4) inv6: no lemmas; (5) inv7: inv13; (6)
inv8: no lemmas; (7) inv9:inv10 and inv12; (8) inv11: no lemmas; (9) inv12:
no lemmas; (10) inv13: inv7. The verification also needs several lemmas on
natural numbers.

7 Discussion

7.1 Choice of Arguments in an Arbitrary Order

We have described a way to formalize choice of arguments in an arbitrary order
in Subsect. 5.4. Another seemingly possible way to do so, which we first came up
with, is to use the operator choose declared and defined as follows:

op choose : NatSet -> Nat
eq choose(X S) = X .

where X and S are CafeOBJ variables of Nat and NatSet, respectively.
We thought that the equation successfully formalized an arbitrary choice of a

natural number X among the set of natural numbers in which the natural number
was. But, the equation makes all natural numbers identical. This is because since
the juxtaposition operator __ is associative and commutative, x y xs equals y
x xs where x and y are arbitrary natural numbers and xs is an arbitrary set
of natural numbers and then choose(x y xs) equals choose(y x xs), which
leads to the equivalence of x and y due to the equation.

7.2 Lemmas on Data

The verification also needs lemmas on natural numbers. There are at least two
ways to declare lemmas on data such as natural numbers in the OTS/CafeOBJ
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method. They can be declared as (1) standard (conditional) equations and (2)
Boolean terms. An example of the first solution is “eq (X < Y and Y < X) =
false .” and an example of the second solution is “eq natLem7(X,Y,Z) = (X
< Y and Y < Z implies X < Z) .”. Both lemmas are used in the verification.

Both solutions have pros and cons. The first solution’s good and bad points
are as follows:

Good points. Basically lemmas as standard equations can be used automat-
ically by reduction and users do not care about where lemmas should be
used.

But, there are some lemmas, which cannot be used automatically by re-
duction. An example is “eq X < Z = true if X < Y and Y < Z .”. This
is because the variable Y in the condition does not occur on the left-hand
side of the equation.

Bad points. Lemmas as standard equations may affect confluence and termi-
nating of specifications. We suppose that we use the lemma “eq X < Y and
Y < s(X) = false .”. If we also declare the lemma “eq Y < s(X) = (Y
= X or-else Y < X) .”, the specification becomes nonconfluent. The first
lemma should be modified as “eq X < Y and (Y = X or-else Y < X) =
false .”.

The second solution’s good and bad points are as follows:

Good points. Lemmas as Boolean terms do not affect confluence and termi-
nating of specifications.

Bad points. Lemmas as Boolean terms are not used automatically by reduc-
tion. Users need to care about where lemmas should be used.

Since lemmas should be used explicitly, however, the second solution al-
lows users to understand the reason why lemmas should be used and makes
proofs more traceable.

8 Related Work

The bakery protocol has been often used as a benchmark to demonstrate that
proposed verification methods and/or tools are powerful enough. Among such
methods and tools are [3,4,5].

Mori, et al. [3] proves with a resolution-based theorem prover implemented
on top of the CafeOBJ system that a simplified version of the protocol satisfies
the mutual exclusion property. They assume that N processes participate in
the protocol as we do. Their way to model the protocol is similar to ours. The
resolution-based theorem prover could be used to proves that SBakery satisfies
the mutual exclusion protocol.

Meseguer, et al. [4] proves with an abstraction method and the Maude LTL
model checker [17,18] that a simplified version of the protocol satisfies the mutual
exclusion property. They only consider that two processes participate in the
protocol. Their verification technique is based on rewriting like ours. But, their
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way to specify state machines is different from ours. Their method needs to fix
a concrete number, say 2, of processes participating in the protocol. Although
it is possible to represent nonatomic reads and writes in their method, it does
not seem clear to come up with a good abstraction when nonatomic reads and
writes are taken into account.

de Moura, et al. [5] proves with the SAL [19] implementation of k-induction
that a simplified version of the protocol satisfies the mutual exclusion property.
The implementation uses an SMT-based bounded model checker. They only
consider that two processes participate in the protocol. Their way to specify
state machines needs to fix a concrete number, say 2, of processes participating
in the protocol like the method used in [4]. It does not seem clear to model
nonatomic reads and writes because it does not seem clear to express arbitrary
values.

All the simplified versions of the protocol assume that a read and a write to
a shared variable are performed exclusively. The true bakery protocol has been
rarely used.

Lamport gives an informal proof that the bakery protocol satisfies some prop-
erties including the mutual exclusion one [2]. He also gives a more rigorous but
nonassertional proof that a variant of the bakery protocol satisfies the mutual
exclusion property [6]. The nonassertional proof does not assume any atomicity,
but uses as axioms some relations between reads and writes to shared variables.

He gives an assertional proof that the bakery protocol satisfies the mutual
exclusion protocol [7]. The proof does not assume any atomicity, either. In the
proof, Lamport introduced the predicate transformers win (the weakest invariant
operator) and sin (the strongest invariant operator), which generalize wlp (the
weakest liberal precondition operator) and sp (the strongest postcondition opera-
tor). Statements such as assignments that constitute the protocol are represented
by (nonatomic) operations, which basically consist of atomic operations. But, the
proof does not assume what atomic operations constitute the operation denoting
each statement of the protocol. The proof revealed the two hidden assumptions
that the assignment (number [i] := 1 + maximum(number [1], . . . ,number [N ]))
sets number [i] (1) positive and (2) greater than number [j], even if it is executed
while the value of number [k] is being changed, for k 
= i, j.

We assume some atomicity, namely that every transition is atomic. But,
we do not make an assumption that reads and writes to shared variables are
atomic. In our abstract model of the protocol, the assignment (number [i] :=
1 + maximum(number [1], . . . ,number [N ])) is represented by five transitions,
while it is represented by a nonatomic operation in the Lamport’s abstract
model. Our proof does not need the two hidden assumptions. This is because
our abstract model is more concrete than the Lamport’s abstract model. Neither
the Lamport’s assertional and nonassertional proofs do not seem to have been
mechanized, although they could be.

Lamport also uses multiple atomic transitions (or atomic operations) to repre-
sent a nonatomic assignment to a shared variable in [8]. He defines a nonatomic
assignment of a value v to a shared variable x by the two atomic assignments
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x :=? and x := v. When x equals ?, a read to x obtains an arbitrary value,
which needs to change the semantics of reads to shared variables. He proves that
the bakery protocol satisfies some safety and liveness properties with consider-
ation of nonatomic reads and writes. The proof does not need the two hidden
assumptions.

Our abstract model is similar to the Lamport’s one described in [8]. Our
abstract model is written in an algebraic specification language, however, while
his is written as a flowchart. The expressiveness of an algebraic specification
language allows us to represent an arbitrary natural number as a term. Therefore,
we do not need to change the semantics of reads to shared variables.

Another way to define a nonatomic assignment to a shared variable by mul-
tiple atomic transitions (or atomic operations) is given in [20]. A nonatomic
assignment of a value v to a shared variable x is represented as a nondetermin-
istic program fragment in which x is incremented (and decremented) arbitrarily
but finitely many times and finally x is set to v. This solution does not need to
change the semantics of reads to shared variables.

9 Conclusion

We have described a fully formal proof that the bakery protocol satisfies the
mutual exclusion protocol. The proof has been mechanized with CafeOBJ. The
CafeOBJ system has been used as an interactive proof assistant. Nonatomic
reads and writes to shared variables have been formalized by representing an
assignment to a shared variable with multiple atomic transitions. Our formal
model of the protocol has states in which a shared variable is being modified. A
read to the variable in such states obtains an arbitrary value, which is represented
as a CafeOBJ term.

One piece of our future work is to conduct the verification based on the
specification where integers are used instead of natural numbers. Another one
is to prove that the protocol satisfies other properties such as the lockout (or
starvation) freedom property, which is a liveness property.
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