
A Unified Model Checking Approach with

Projection Temporal Logic�

Zhenhua Duan and Cong Tian

Institute of Computing Theory and Technology, Xidian University,
Xi’an, 710071, P.R. China

{zhhduan,ctian}@mail.xidian.edu.cn

Abstract. This paper presents a unified model checking approach with
Projection Temporal Logic (PTL) based on Normal Form Graphs (NFGs).
To this end, a Modeling, Simulation and Verification Language (MSVL) is
defined based on PTL. Further, normal forms and NFGs for MSVL pro-
grams and Propositional PTL (PPTL) formulas are defined.The finiteness
for NFGs of MSVL programs is proved in details. Moreover, by modeling a
system with an MSVL program p, and specifying the desirable property of
the system with a PPTL formula φ, whether or not the system satisfies the
property (whether or not p → φ is valid) can equivalently be checked by
evaluating whether or not ¬(p → φ) ≡ p∧¬φ is unsatisfiable. Finally, the
satisfiability of a formula in the form of p ∧ ¬φ is checked by constructing
the NFG of p ∧ ¬φ, and then inspecting whether or not there exist paths
in the NFG.

1 Introduction

Verification and testing are basic techniques to validate systems [11,23,24] at the
present. Model checking is an automatic verification approach based on model
theory. To verify whether or not a system meets a property, the system is modeled
as a finite transition system or automaton M , and the property is specified by a
temporal logic formula p. Then a model checking procedure is employed to check
whether or not M |= p. The advantage of model checking is that the verification
can be done automatically. However, it suffers from the state explosion problem.
Also, it is less suitable for data intensive applications since the treatment of data
usually produces infinite state spaces [8]. Two successful model checking tools
are SPIN [7] and SMV [8].

The state explosion problem is typically caused by models growing expo-
nentially in the number of parallel components or data elements of an argument
system. This observation has led to a number of techniques for fighting this prob-
lem. The most rigorous approaches are compositional ones [12,17,18,19], trying
to avoid the problem in a divide and conquer fashion. Partial order methods

� This research is supported by the NSFC Grant No. 60433010, and Defense Pre-
Research Foundation of China, Grant No. 51315050105.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 167–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

168 Z. Duan and C. Tian

limit the size of the models representation by suppressing unnecessary inter-
leavings, which typically arise as a result of the serialization during the model
construction of concurrent systems [13,14,15,16].

The most significant improvement to model checking is made by Symbolic
Model Checking (SMC) [8,9,10] and Bounded Model Checking (BMC) [20]. In
SMC, sets of states are represented implicitly using boolean functions which
can be manipulated efficiently with Reduced Ordered Binary Decision Diagram
(ROBDD, or BDD for short) [21]. As a result, SMC allows a polynomial system
representation but may explode in the course of the model checking process.
The combination of SMC with BDDs pushed the barrier to systems with 1020

states and more [10]. However, the bottleneck of SMC methods is the amount of
memory that is required for storing and manipulating BDDs. Although numerous
techniques such as decomposition, abstraction, and various reductions have been
proposed through the years to overcome this problem, full verification of many
designs is still beyond the capacity of BDD based SMC.

The basic idea in BMC is to search for a counterexample in executions whose
length is bounded by some integer k [20]. If no bug is found then we increases
k until either a bug is found, the problem becomes intractable, or some pre-
known upper bound is reached. The BMC problem can be efficiently reduced
to a propositional satisfiability problem, and can therefore be solved by SAT
methods rather than BDDs. Experiments have shown that it can solve many
systems that cannot be solved by BDD-based techniques. However, BMC does
not solve the complexity problem of model checking since it still relies on an
exponential procedure and hence is limited in its capacity. BMC also has the
disadvantage of not being able to prove the absence of errors.

In this article, we present a unified model checking approach with Projection
Temporal Logic (PTL) based on Normal Form Graphs (NFGs) [5]. With this
method, a system is first modeled as P using a modeling, simulation and verifi-
cation language called MSVL which is a subset of PTL [2,25] and an extension of
Framed Tempura [6]. Thus, P is a non-deterministic program of MSVL and also
a formula of PTL. Second, a property of the system is specified by a formula φ of
Propositional PTL (PPTL) [2,5]. To check whether or not P satisfies φ amounts
to proving |= P → φ. It turns out equivalently to prove �|= P ∧ ¬φ. Thus, we
translate the model checking problem into a satisfiability problem in PPTL since
finite state programs in MSVL are equivalent to PPTL formulas (see Appendix
C). As a result, we have proved that PPTL is decidable and given a decision
procedure in [5]. With this procedure, a PPTL formula is satisfiable if and only
if there is a valid path in its NFG. Therefore, the problem of checking whether
or not P satisfies φ is eventually translated to the problem of checking whether
or not the NFG of P ∧¬φ contains a valid finite or infinite path. If not, the prop-
erty is verified otherwise a valid path of the NFG determines a counterexample.
Based on the above analysis, a model checking algorithm can be given as follows:
(1) modeling the system as program P in MSVL and specifying the property
of the system as a PPTL formula φ; (2) constructing the NFG of P ∧ ¬φ; (3)
checking the NFG to find out a counterexample if the NFG contains valid paths

A Unified Model Checking Approach with Projection Temporal Logic 169

otherwise output ’satisfied’ message. However, a further analysis tells us that a
more effective recursive algorithm can be given since we can transform P and
¬φ into their normal forms separately and the conjunction of P and ¬φ can be
reduced to the form in Pe ∧φe ∧ ε∨©(P ′ ∧¬φ′). Thus, the NFG of the original
formula P ∧ ¬φ can recursively be constructed.

Our method has some advantages. For instance, (1) the model and property
of a system can be written in the same logic; (2) the model checking algorithm
is relies on constructing the NFG of a PPTL formula; during the construction,
when a valid finite or infinite path has been constructed the algorithm immedi-
ately stops since we do not need to construct the whole NFG of the formula if we
do not expect to have all counterexamples; (3) the existing SAT procedure can
be reused to check the satisfaction of the state formulas with the present com-
ponents of a normal form; (4) the expressiveness of PPTL is more powerful than
Propositional Linear TL (PLTL) since we have proved that the expressiveness of
PPTL is equivalent to the full regular expression [22] but that of PLTL equals
star free regular expression [26,27]. However, in the worst case, our model check-
ing approach does not solve the complexity problem of model checking since it
still relies on an exponential procedure and hence is limited in its capacity.

This paper is organized as follows. In the following section, the syntax, se-
mantics and some logic laws of PTL are presented. In Section 3, the language
MSVL is formalized, the normal form and NFG of MSVL are defined, and finite-
ness for NFGs of MSVL is proved. Correspondingly, as a property specification
language, the syntax, semantics, normal form and NFGs of PPTL formulas are
briefly introduced in Section 4. In Section 5, the unified model checking approach
with PTL based NFGs is presented. Further, an example is given to show how
the model checking algorithm and the developed supporting tools work. Finally,
conclusions are drawn in Section 6.

2 Projection Temporal Logic

Our underlying logic is Projection Temporal Logic [3,2], it is an extension of
Interval Temporal Logic (ITL) [4]. Let Π be a countable set of propositions, and
V be a countable set of typed static and dynamic variables. B = {true, false}
represents the boolean domain and D denotes all the data we need. The terms
e and formulas p of the logic are given by the following grammar:

e ::= υ | ©e | -©e | beg(e) | end(e) | f(e1, ..., en)

p ::= π | e1 = e2 | P (e1, ..., en) | ¬p | p1 ∧ p2 | ∃x : p | ©p | (p1, ..., pm)prj p | p+

where π ∈ Π is a proposition, and υ a dynamic variable or a static variable.
In f(e1, . . . , en) and P (e1, . . . , en), f is a function and P is a predicate. It is
assumed that the types of the terms are compatible with those of the arguments
of f and P . A formula (term) is called a state formula (term) if it does not
contain any temporal operators (i.e. ©, -©, beg(.), end(.) and prj); otherwise
it is a temporal formula (term).

170 Z. Duan and C. Tian

A state s is a pair of assignments (Iv, Ip) where for each variable v ∈ V defines
s[v] = Iv[v], and for each proposition π ∈ Π defines s[π] = Ip[π]. Iv[v] is a value
in D or nil (undefined), whereas Ip[π] ∈ B. An interval σ = 〈s0, s1, . . . 〉 is a
non-empty (possibly infinite) sequence of states. The length of σ, denoted by
|σ|, is defined as ω if σ is infinite; otherwise it is the number of states in σ minus
one. To have a uniform notation for both finite and infinite intervals, we will
use extended integers as indices. That is, we consider the set N0 of non-negative
integers and ω, Nω = N0 ∪ {ω}, and extend the comparison operators, =, <,≤,
to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Moreover, we define
 as ≤ −{(ω, ω)}. With such a notation, σ(i..j) (0 ≤ i ≤ j ≤ |σ|) denotes the
sub-interval < si, ..., sj > and σ(k) (0 ≤ k ≤ |σ|) denotes < sk, ..., s|σ| >. The
concatenation of σ with another interval (or empty string) σ′ is denoted by σ ·σ′.
To define the semantics of the projection operator we need an auxiliary operator
for intervals. Let σ = 〈s0, s1, . . . 〉 be an interval and r1, . . . , rh be integers (h ≥ 1)
such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ|. The projection of σ onto r1, . . . , rh is the
interval (called projected interval), σ ↓ (r1, . . . , rh) = 〈st1 , st2 , . . . , stl

〉, where
t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. For example,

〈s0, s1, s2, s3, s4〉 ↓ (0, 0, 2, 2, 2, 3) = 〈s0, s2, s3〉
An interpretation for a PTL term or formula is a tuple I = (σ, i, k, j), where
σ = 〈s0, s1, . . . 〉 is an interval, i and k are non-negative integers, and j is an
integer or ω, such that i ≤ k ≤ j ≤ |σ|. We use (σ, i, k, j) to mean that a term
or formula is interpreted over a subinterval σ(i..j) with the current state being
sk. For every term e, the evaluation of e relative to interpretation I = (σ, i, k, j)
is defined as I[e], by induction on the structure of a term, where v is a variable
and e1, . . . , em are terms.

I[υ] = sk[υ] = Ik
v [υ] = Ii

v[υ], if υ is a static variable.
I[υ] = sk[υ] = Ik

v [υ], if υ is a dynamic variable.

I[f(e1, . . . , em)] =
{

f(I[e1], . . . , I[em]), if I[eh] �= nil for all h
nil, otherwise

I[©e] =
{

(σ, i, k + 1, j)[e], if k < j
nil, otherwise

I[-©e] =
{

(σ, i, k − 1, j)[e], if i < k
nil, otherwise

I[beg(e)] = (σ, i, i, j)[e]

I[end(e)] =
{

(σ, i, j, j)[e], if j �= ω
nil, otherwise

The satisfaction relation for formulas |= is inductively defined as follows.

1. I |= π if sk[π] = Ik
p [π] = true.

2. I |= P (e1, . . . , em) if P (I[e1], . . . , I[em]) = true and I[eh] �= nil, for all h.
3. I |= e = e′ if I[e] = I[e′].
4. I |= ¬p if I �|= p.
5. I |= p ∧ q if I |= p and I |= q.

A Unified Model Checking Approach with Projection Temporal Logic 171

6. I |= ©p if k < j and (σ, i, k + 1, j) |= p.
7. I |= ∃x : p if for some interval σ′ which has the same length as σ, (σ′, i, k, j)

|= p and the only difference between σ and σ′ can be in the values assigned
to variable x.

8. I |= (p1, . . . , pm) prj q if there exist integers k = r0 ≤ r1 ≤ . . . ≤ rm j
such that (σ, i, r0, r1) |= p1, (σ, rl−1, rl−1, rl) |= pl (for 1 < l ≤ m), and
(σ′, 0, 0, |σ′|) |= q for one of the following σ′:
(a) rm < j and σ′ =σ ↓ (r0, . . . , rm)·σ(rm+1..j)

(b) rm = j and σ′ =σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.
9. I |= p+ if there are k = r0 ≤ r1 ≤ ... ≤ rn−1 rn = j (n ≥ 1) such that

(σ, i, r0, r1) |= p and (σ, rl−1, rl−1, rl) |= p for all 1 < l ≤ n.

A formula p is satisfied by an interval σ, denoted by σ |= p, if (σ, 0, 0, |σ|) |=
p; a formula p is satisfiable if σ |= p for some σ. A formula p is valid, denoted
by |= p, if σ |= p for all σ. A formula p is lec-formula if (σ, k, k, j) |= p ⇔
(σ, i, k, j) |= p for any interpretation (σ, i, k, j).

The abbreviations true, false, ∧, → and ↔ are defined as usual. In particular,
true

def= P ∨ ¬P and false
def= P ∧ ¬P for any formula P . Also we have the

following derived formulas:

empty
def= ¬© true more

def= ¬empty

len(0) def= empty len(n) def= ©len(n − 1), n ≥ 1
skip

def= len(1)
⊙

P
def= empty ∨©P

P ; Q
def= (P, Q) prj empty �P

def= true ; P

�P
def= ¬�¬P p∗ def= empty ∨ p+

Some useful logic laws of PTL can be found in Appendix A and their proofs
can be found in [5,6].

3 Modeling, Simulation and Verification Language

The Language MSVL is a subset of Projection Temporal Logic with framing tech-
nique, and an extension of Framed Tempura [6]. It can be be used for the purpose
of modeling, simulation and verification of software and hardware systems.

3.1 Framing

Framing is concerned with the persistence of the values of variables from one
state to another. Intuitively, the framing operation on variable x, denoted by
frame(x), means that variable x always keeps its old value over an interval if
no assignment to x is encountered. For the definition of frame operator, a new
assignment called a positive immediate assignment is defined as

x ⇐ e
def= x = e ∧ px

172 Z. Duan and C. Tian

where px is an atomic proposition associated with state (dynamic) variable x,
and notice that px cannot be used for other purpose. To identify an occurrence
of an assignment to a variable, say x, we make use of a flag called the assignment
flag, denoted by a predicate af(x); it is true whenever an assignment of a value
to x is encountered, and false otherwise. The definition of the assignment flag
is af(x) def= px, for every variable x. There are state framing (lbf) and interval
framing (frame) operators. Intuitively, when a variable is framed at a state,
its value remains unchanged if no assignment is encountered at that state. A
variable is framed over an interval if it is framed at every state over the interval.

lbf(x) def= ¬af(x) → ∃b : (-©x = b ∧ x = b)
frame(x) def= �(more → ©lbf(x))

where b is a static variable.

3.2 The MSVL Language

The arithmetic expression e and boolean expression b of MSVL are inductively
defined as follows:

e ::= n | x | ©x | -©x | e0 op e1(op ::= + | − | ∗ | \ | mod)

b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x is a variable. The elementary statements in MSVL
are defined as follows.

Termination: empty
Assignment: x = e
P-I-Assignment: x ⇐ e
State Frame: lbf(x)
Interval Frame: frame(x)
Conjunction: p ∧ q
Selection: p ∨ q
Next: ©p
Always: �p

Conditional: if b then p else q
def= (b → p) ∧ (¬b → q)

Exists: ∃x : p
Projection: (p1, . . . , pm) prj p
Sequence: p ; q
While: while b do p

def= (p ∧ b)∗ ∧ �(empty → ¬b)
Parallel: p ‖ q

def= (p ∧ (q; true)) ∨ (q ∧ (p; true))
Await: await(b) def= (frame(x1) ∧ ... ∧ frame(xh)) ∧ �(empty ↔ b)

where xi ∈ Vb = {x | x appears in b}
where x denotes a variable, e stands for an arbitrary arithmetic expression, b a
boolean expression, and p1, . . . , pm, p and q stand for programs of MSVL. The

A Unified Model Checking Approach with Projection Temporal Logic 173

assignment x = e, positive immediate assignment x ⇐ e, empty, lbf(x), and
frame(x) are basic statements and the others are composite ones.

The assignment x = e means that the value of variable x is equal to the value
of expression e. Positive immediate assignment x ⇐ e indicates that the value
of x is equal to the value of e and the assignment flag for variable x, px, is true.
Statements of if b then p else q and while b do p are the same as that in the
conventional imperative languages. The next statement ©p means that p holds
at the next state while �p means that p holds at all the states over the whole
interval from now. p∧ q means that p and q are executed concurrently and share
all the variables during the mutual execution. p ∨ q means p or q are executed.
empty is the termination statement meaning that the current state is the final
state of the interval over which the program is executed. The sequence statement
p; q means that p is executed from the current state to its termination while q
will hold at the final state of p and be executed from that state. The existential
quantification ∃x : p intends to hide the variable x within the process p. lbx(x)
means the value of x in the current state equals to value of x in the previous
state if no assignment to x occurs, while frame(x) indicates that the value of
variable x always keeps its old value over an interval if no assignment to x is
encountered. Different from the conjunction statement, the parallel statement
allows both the processes to specify their own intervals. e.g., len(2)‖len(3) holds
but len(2) ∧ len(3) is obviously false. Projection can be thought of as a special
parallel computation which is executed on different time scales. The projection
(p1, . . . , pm) prj q means that q is executed in parallel with p1, . . . , pm over an
interval obtained by taking the endpoints of the intervals over which the p′is are
executed. In particular, the sequence of p′is and q may terminate at different
time points. Finally, await b does not change any variable, but waits until the
condition b becomes true, at which point it terminates.

Further, the following derived statements are useful in practice.

Multiple Selection: ORn
k=1

def= p1 ∨ p2 ∨ ... ∨ pn

Conditional: if b do p
def= if b do p else empty

When: when b do p
def= await(b); p

Guarded Command: b1 → p1�...�bn → pn
def= ORn

k=1(when bk do pk)
Repeat: repeat p until c

def= p; while ¬c do p

3.3 Normal Forms and NFGs of MSVL

Definition 1. A program q in MSVL is in normal form if

q
def=

l∨
i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj

where 0 ≤ l ≤ 1, t > 0, and l + t ≥ 1. For 1 ≤ j ≤ t, qfj is a general MSVS
program; whereas qei (i = 1) and qcj (1 ≤ j ≤ t) are true or all are state formulas
of the form:

(x1 = e1) ∧ ... ∧ (xl = el) ∧ ˙px1 ∧ ... ∧ ˙pxl

174 Z. Duan and C. Tian

where ek ∈ D(1 ≤ k ≤ l). �

Theorem 1. Any MSVL program q can be rewritten into its normal form.

Proof: The proof for transforming most of the statements in MSVL into normal
form can be found in [2,6]. The other statements of MSVL can be transformed
in a similar way. �

Modeling a system with an MSVL program (formula in PTL) p, according to
the normal form, we can construct a graph, namely normal form graph (NFG),
which explicitly illustrates the state space of the system. Actually, the NFG also
presents the models satisfying formula p [5]. For an MSVL program p, the NFG
of p is a directed graph, G = (CL(p), EL(p)), where CL(p) denotes the set of
nodes and EL(p) denotes the set of edges in the graph. In CL(p), each node is
specified by a program in MSVL, while in EL(p), each edge is a directed arc
labeled with a state formula pe from node q to node r and identified by a triple,
(q, pe, r). CL(p) and EL(p) of G can be inductively defined as in Definition 2.

Definition 2. For a program p, the set CL(p) of nodes and the set EL(p) of
edges connecting nodes in CL(p) are inductively defined as follows:

1. p ∈ CL(p);

2. For all q ∈ CL(p) \ {ε, false}, if q ≡
l∨

i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj , then

ε ∈ CL(p), (q, qei, ε) ∈ EL(p) for each i; qfj ∈ CL(p), (q, qcj , qfj) ∈ EL(p)
for all j;

The NFG of formula p is the directed graph G = (CL(p), EL(p)). �

Definition 2 implies an algorithm for constructing NFGs of MSVL programs. In
the NFG of a program p generated by Definition 2, the set CL(p) of nodes and
the set EL(p) of edges are inductively produced by repeatedly rewriting the new
created nodes into their normal forms. So one question we have to answer is
whether or not the rewriting process terminates. Fortunately, we can prove that,
for any MSVL program p, the number of nodes in CL(p) is finite. An outline of
the proof is given in Appendix C.

To precisely characterize the models satisfying the program (formula), that
is, the behaviors of the system, a finite label F needs further to be added in the
NFG as analyzed in [5].

Example 1. NFG of MSVL program frame(x) ∧ (x = 2 ∨ x = 3) ∧ if (x =
2) then len(2) else {len(3)} can be constructed as shown in Fig.1. �

4 Property Specification Language

Propositional PTL (PPTL) is employed as the property specification language
in our model checking approach.

A Unified Model Checking Approach with Projection Temporal Logic 175

frame(x) ∧ (x = 2 ∨ x = 3) ∧ if (x = 2) then len(2) else {len(3)}

x = 2

x = 2

x = 3

x = 3

x = 3

ε

frame(x) ∧ len(2)

frame(x) ∧ len(1)

frame(x) ∧ len(1)

Fig. 1. NFG of MSVL program frame(x) ∧ (x = 2 ∨ x = 3) ∧ if (x =
2) then len(2) else {len(3)}

4.1 Propositional Projection Temporal Logic

Let Prop be a countable set of atomic propositions. The formula p of PPTL is
given by the following grammar:

p ::= π | © p | ¬p | p1 ∨ p2 | (p1 , ..., pm) prj p | p+

where π ∈ Prop, p1 , ..., pm are all well-formed PPTL formulas. A formula is
called a state formula if it contains no temporal operators.

Following the definition of Kripke structure [1], we define a state s over Prop
to be a mapping from Prop to B = {true, false}, s : Prop −→ B. We will
use s[π] to denote the valuation of π at state s. Intervals, interpretation and
satisfaction relation can be defined in the same way as in the first order case.

4.2 Normal Form and NFGs of PPTL Formulas

Definition 3. A PPTL formula q is in normal form if

q
def=

l∨
i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj

where 0 ≤ l ≤ 1, t > 0, and l + t ≥ 1, qei (i = 1) and qcj (1 ≤ j ≤ t) are true or
state formulas of the form:

π̇1 ∧ ... ∧ ˙πm

where each π̇k ∈ Prop (1 ≤ k ≤ m) and π̇k denotes πk or ¬πk. Each qfj is a
general PPTL formula. �

Definition 4. In a normal form, if
t∨

j=1

qcj ≡ true and
∨
i�=j

(qci ∧ qcj) ≡ false,

then this normal form is called a complete normal form. �

The complete normal form plays an important role in transforming the negation
of a PPTL formula into its normal form. For example, if q has been written to
its complete normal form:

176 Z. Duan and C. Tian

q
def=

l∨
i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj

then we have,

¬q
def=

l∨
i=1

¬qei ∧ empty ∨
t∨

j=1

qcj ∧©¬qfj

Theorem 2. Any PPTL formula q can be rewritten into its normal form.
Proof: The proof can be found in [5]. �

A property of a system can be specified by a PPTL formula p. According to the
normal form, we can also construct the NFG of p, which explicitly illustrates the
models of the formula. The definition for NFGs of PPTL formulas is the same
as one defined for MSVL programs.

Theorem 3. For any PPTL formula p, CL(p), the set of nodes in the NFG of
p is finite.
Proof: The proof of the theorem can be found in [5]. �

To precisely characterize the models of PPTL formulas, finite labels F are added
in the NFGs to confine the finitely often occurrences of some nodes in paths of
an NFG as analyzed in [5].

Example 2. NFG of formula ¬(true;¬© q) ∨ p ∧©q is shown in Fig.2. �

v0 : ¬(true;¬© q) ∨ p ∧©q

v1 : q ∧ ¬(true;¬© q)
v2 : q

v3 : true

v0

v1 v2

v3

v4

true

q

p

qq

true

true v4 : ε

Fig. 2. NFG of formula ¬(true;¬© q) ∨ p ∧©q

5 Model Checking Approach with PTL Based on NFGs

5.1 Basic Approach

Modeling the system to be verified by an MSVL program p, and specifying the
desirable property of the system by a PPTL formula φ, to check whether or not
the system satisfies the property, we need to prove the validation of

p → φ

A Unified Model Checking Approach with Projection Temporal Logic 177

If p → φ valid, the system satisfies the property, otherwise the system violates
the property. Equivalently, we can check the satisfiability of

¬(p → φ) ≡ p ∧ ¬φ

If p ∧ ¬φ is unsatisfiable (p → φ is valid), the system satisfies the property,
otherwise the system fails to satisfy the property, and for each σ |= p ∧ ¬φ, σ
determines a counterexample that the system violates the property. Accordingly,
our model checking approach can be translated to the satisfiability of PTL for-
mulas of the form p ∧ ¬φ, where p is an MSVL program and φ is a formula in
PPTL. Since both model p and property φ are formulas in PTL, we call this
model checking a unified approach.

To check the satisfiability of PTL formula p ∧ ¬φ, we construct the NFG of
p ∧ ¬φ. As depicted in Fig.3, initially, we create the root node p ∧ ¬φ, then

p ∧ ¬φ

ε pfj ∧ ¬φfs

∨l
k=1 ¬φek ∧ empty ∨ ∨t

s=1 ¬φcs ∧©¬φfs

∨l
i=1

∨l
k=1 pei ∧ ¬φek ∧ empty ∨ ∨t

j=1

∨t
s=1 ¬φcs ∧ pcj ∧©(pfj ∧ ¬φfs)

∨l
i=1 pei ∧ empty ∨ ∨t

j=1 pcj ∧©pfj

p ¬φ

(p ∧ ¬φ, pcj ∧ ¬φcs, pfj ∧ ¬φfs) (p ∧ ¬φ, pei ∧ ¬φck, ε)

Root node

node nodeedge edge

Fig. 3. Constructing NFG of p ∧ ¬φ

we rewrite p and ¬φ into their normal forms respectively. By computing the
conjunction of normal forms of p and ¬φ, new nodes ε and pfj ∧¬φfs, and edges
(p∧¬φ, pei ∧¬φck, ε) from node p∧¬φ to ε, (p∧¬φ, pcj ∧¬φcs, pfj ∧¬φfs) from
p∧¬φ to pfj∧¬φfs are created. Further, by dealing with each new created nodes
pfj ∧¬φfs using the same methods as the root nodes p∧¬φ repeatedly, the NFG
of p ∧ ¬φ can be produced. Thus, it is apparent that each node in the NFG of
p∧¬φ is in the form of p′ ∧¬φ′, where p′ and φ′ are nodes in the NFGs of p and
¬φ respectively. Therefore, a recursive algorithm can be formalized in Pseudo
code as shown in algorithm NFG. In the algorithm, another function Nf(p) is
called to produce the normal form of a PPTL formula or an MSVL program p.
This function can be found in [5]. For the complexity of the algorithm, roughly
speaking, if |cl(p)| = O(n) and |cl(¬φ)| = O(m), at most, |cl(p∧¬φ)| = O(n×m).

178 Z. Duan and C. Tian

Function NFG(p ∧ ¬φ)
/* precondition: p is a program in MSVL, ¬φ is a formula in PPTL*/
/* postcondition: NFG(p ∧ ¬φ) computes NFG of p ∧ ¬φ, G = (CL(p ∧ ¬φ), EL(p ∧ ¬φ))*/
begin function

CL(p ∧ ¬φ) = {p ∧ ¬φ}; EL(p ∧ ¬φ) = ∅; mark [p ∧ ¬φ] = 0; AddE = AddN = 0;
while there exists r ∧ ¬ϕ ∈ CL(p ∧ ¬φ) \ {ε}, and mark [r ∧ ¬ϕ] ==0

do mark [r ∧ ¬ϕ] =1; /*marking r ∧ ¬ϕ is decomposed*/
Q =Nf(r)∧Nf(¬ϕ);
case

Q is
h∨

j=1

t∨

i=1
rej ∧ ¬ϕei ∧ empty: AddE=1; /*first part of NF needs added*/

Q is
t∨

k=1

n∨

l=1
rck ∧ ¬ϕcl ∧ ©(rfk ∧ ¬ϕfl) : AddN=1; /*second part of NF needs added*/

Q is
h∨

j=1

t∨

i=1
rej ∧ ¬ϕei ∧ empty∨

t∨

k=1

n∨

l=1
rck ∧ ¬ϕcl ∧ ©(rfk ∧ ¬ϕfl): AddE=AddN=1;

/*both parts of NF needs added*/
end case
if AddE == 1 then /*add first part of NF*/

CL(p ∧ ¬φ) = CL(p ∧ ¬φ) ∪ {ε};
EL(p ∧ ¬φ) = EL(p ∧ ¬φ) ∪

h⋃

j=1

t⋃

i=1
{(r ∧ ¬ϕ, rej ∧ ¬ϕei, ε)};

AddE=0;
if AddN == 1 then /*add second part of NF*/

for each rfk ∧ ¬ϕfl if rfk ∧ ¬ϕfl �∈ CL(p ∧ ¬φ)
mark [rfk ∧ ¬ϕfl]=0; /*rfk ∧ ¬ϕfl needs decomposed*/

CL(p ∧ ¬φ) = CL(p ∧ ¬φ) ∪
t⋃

k=1

n⋃

l=1
{rfk ∧ ¬ϕfl};

EL(p ∧ ¬φ) = EL(p ∧ ¬φ) ∪
t⋃

k=1

n⋃

l=1
{(r ∧ ¬ϕ, rck ∧ ¬ϕcl, rfk ∧ ¬ϕfl)};

AddN=0;
end while
return G;

end function

Further, for any node in the NFG of p ∧ ¬φ, finite label F is added in node
p′ ∧ ¬φ′ where if in the NFG of p, p′ is labeled with F , or in the NFG of
¬φ, ¬φ′ is labeled with F . In the NFG of formula q ≡ p ∧ ¬φ, a finite path,
Π = 〈q, qe, q1, q1e, ..., ε〉, is an alternate sequence of nodes and edges from the root
to ε node, while an infinite path, Π = 〈q, qe, q1, q1e, ...〉, is an infinite alternate
sequence of nodes and edges emanating from the root, where F occurs only
finitely often. Similar to the proof in [5], it can be proved that, the paths in the
NFG of q precisely characterize models of q. Thus, if there exist paths in the
NFG of q, q is satisfiable, otherwise unsatisfiable.

5.2 Model Checker

We have developed a model checking tool (prototype) based on our model check-
ing algorithm. Generally, the prototype can work in three modes: modeling, sim-
ulation and verification. With the modeling mode, given the MSVL program p
of a system, the state space of the system can implicitly be given as an NFG of
p. In the simulation mode, an execution path of the NFG of the system is output
according to minimal model semantics of MSVL [6]. Under the verification mode,
given a system model described by an MSVL program, and a property speci-
fied by a PPTL formula, it can automatically be checked whether the system

A Unified Model Checking Approach with Projection Temporal Logic 179

satisfies the property or not, and the counterexample can be given if the system
does not satisfy the property.

5.3 Example

As an example, consider the mutual exclusion problem of two processes competing
for a shared resource as analyzed in [20]. Pseudo code for this example can be given
as shown in Fig.4. We assume that the processes are executed in one time unit in

Fig. 4. Pseudo code for two processes A and B competing for a shared resource

an interleaving manner. The wait statement makes a process into sleep. When all
processes are asleep the scheduler tries to find a process satisfying waiting con-
dition and reactivates the corresponding process. If all of the waiting conditions
are false the system stalls. This mutual exclusion problem can be coded in MSVL
as follows. Notice that the underlined code can be ignored with the current part
since it is for the purpose of making a counterexample later on.

frame(Apc, Bpc, Ars, Brs) and
(Apc=0 and Ars=0 and Bpc=0 and Brs=0 and skip;
while(true){
(await(Bpc=0);
Apc=1 and Ars=1 and skip;
Apc=0 and Ars=0 and skip)
or
(Apc=1 and Ars=1 and Bpc=1 and Brs=1 and skip;
Apc=0 and Ars=0 and Bpc=0 and Brs=0 and skip)
or
(await(Apc=0);
Bpc=1 and Brs=1 and skip;
Bpc=0 and Brs=0 and skip) }).

where Ars=1 (Brs=1) means processes A (B) is in the shared resource, while
Ars=0 (Brs=0) means processes A (B) has released the shared resource. With
the modeling mode of MSVL, the state space of the mutual exclusion problem
can be created and presented as an NFG as shown in Fig.5. In the NFG, edge 0
indicates that neither process A nor B is in the shared resource; edge 1 (from 1 to
2) indicates that process A is in the shared resource and B is not; edge 2 (from 2 to
1) indicates that neither process A nor B is in the shared resource; edge 4 (from 1
to 3) indicates that process B is in the shared resource and A is not; edge 5 (from
3 to 1) indicates that neither process A nor B is in the shared resource.

180 Z. Duan and C. Tian

Fig. 5. NFG of the mutual exclusion problem

As a result, the property, “processes A and B will never be in the shared
resource in the same time”, should hold. That is, Ars and Brs will never be
assigned with 1 at the same time. By employing propositions p and q to denote
Ars = 1 and Brs = 1 respectively, this property can be specified by �(¬(p∧ q))
in PPTL. With the verification mode of MSVL, we add the following code

</define p:Ars=1; define q:Brs=1; always(∼(p and q))/>

to the beginning of the MSVL code for the mutual exclusion problem, then run
the code with model checker, an empty NFG with no edges is produced as shown
in Fig.6. This means that the formula is unsatisfiable, and the system satisfies
the property.

Fig. 6. Verification result

Suppose that, when A is in the shared resource, B is possible in the shared
resource. To model it, we add the code with underline to the previous MSVL code
of the system. Now we check whether or not the system satisfies �(¬(p∧q)), and
the resulting NFG is produced as shown in Fig.7. Obviously, there exist infinite
paths where node 1 and node 2 appear infinitely often. Thus, the property cannot
be satisfied.

As you can see, MSVL and PPTL can be used to verify properties of programs
in a similar way as kripke structures (or automata) and PLTL (or CTL) do.
However, the expressive power of PLTL and CTL is limited. They cannot express
regular properties such as “a property Q holds at even states ignoring odd ones

A Unified Model Checking Approach with Projection Temporal Logic 181

Fig. 7. Verification result

over an interval (or computation run) ” [7]. This type of property can be specified
and verified by PPTL. In the following, we further verify such a property of the
mutual exclusion problem.

The mutual exclusion problem has a special property: “neither A nor B is
in the shared resource, immediately after A or B released the shared resource;
and when A or B is in the shared resource, it releases the resource at the next
state”. Basically, this property is a regular property. It can be specified by,
¬p∧¬q∧ (©2¬p∧¬q∧ empty)∗ in PPTL. Thus, we can add </define p:Ars=1;
define q:Brs=1; ∼p and ∼q and (next(next(∼p and ∼q and empty)))# /> to
the beginning of the MSVL code for the mutual exclusion problem, then run the
code with model checker, an empty NFG with no edges is produced as shown in
Fig.8. Hence, the formula is unsatisfiable, and the system satisfies the property.

Fig. 8. Verification result

6 Conclusion

In this paper, we proposed a unified model checking approach with PTL based
on NFGs. A model checker has also been developed to support the proposed
method. This approach has an apparent advantage: model p and property φ of
a system are both described in the same logic framework PTL. This enables us
to translate the problem of checking whether or not p satisfies φ to the problem
of checking the satisfiability of p∧¬φ. In turn, this can be done by constructing
the NFG of p∧¬φ and checking whether or not there exist any finite or infinite
paths in the NFG. As you can see, NFG is a finite graph based structure. So we
can use graph theory to manipulate NFGs. Further, an NFG can be equivalently
transformed to a Büchi automaton [22]. Hence, automata theory can also be used
to manipulate NFGs. However, our approach, in worst case, does not reduce the

182 Z. Duan and C. Tian

complexity of the model checking problems although in many cases it works well
since we do not need to produce a whole NFG but just a finite or infinite path
as a counterexample.

To combat the space explosion problem, we will further investigate the possi-
bility of combinations of SMC or BMC techniques with our approach. In partic-
ular, BMC is a SAT based approach for searching a counterexample in a given
integer k steps. With this approach, the model M in the Kripke structure and
property φ in a PLTL formula of a system are translated to a propositional clas-
sic logic formula f . To check whether or not M |= φ is equivalently to check the
satisfiability of f . Thus, the SAT procedure can be used to solve the problem.
This idea can be used in our approach. However, we do not need to translate
the formulas into a classic propositional logic framework rather in their normal
forms and use SAT procedures in a stepwise way. This research is a challenge to
us in the near future. Also, the current version of the model checker is merely a
prototype and lots of efforts are needed to improve it. In addition, to examine
our method, several case studies with larger examples are also required.

Acknowledgement

We would like to thank Miss Xiao Xiao Yang, Miss Xia Guo and Miss Xiao Xing
Zhang for the useful discussion. In particular, Guo and Zhang’s effort to make
the verification example work with the prototype is very appreciated.

References

1. Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z.
Math. Logik Grund. Math. 9, 67–96 (1963)

2. Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for
Temporal Logic Programming. PhD thesis, University of Newcastle Upon Tyne
(May 1996)

3. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing
(2006)

4. Moszkowski, B.: Reasoning about digital circuits. Ph.D Thesis, Department of
Computer Science, Stanford University. TRSTAN-CS-83-970 (1983)

5. Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection
Temporal Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)

6. Duan, Z., Yang, X., Koutny, M.: Framed Temporal Logic Programming. Science
of Computer Programming 70, 31–61 (2008)

7. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineer-
ing 23(5), 279–295 (1997)

8. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. Information and Computation 98(2), 142–170
(1992)

9. Coudert, O., Madre, J.C.: A unified framework for the formal verification of sequen-
tial circuits. In: Proc. IEEE International Conference on Computer-Aided Design
(1990)

A Unified Model Checking Approach with Projection Temporal Logic 183

10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579. Springer, Heidelberg
(1999)

11. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

12. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. ASI, vol. F
13, pp. 123–144. Springer, Berlin (1985)

13. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991)

14. Godefroid, P., Wolper, P.: A partial approach to model checking. Information and
Computation 110(2), 305–326 (1994)

15. Esparza, J.: Model checking using net unfoldings. Science of Computer Program-
ming 23, 151–195 (1994)

16. Penczek, W., Gerth, R., Kuiper, R.: Partial order reductions preserving simulations
(submitted for publication, 1999)

17. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

18. Josko, B.: Verifying the correctness of AADL modules using model checking. In: de
Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430,
pp. 386–400. Springer, Heidelberg (1990)

19. Josko, B.: Modular Specification and Verification of Reactive Systems. PhD thesis,
Univ. Oldenburg, Fachbereich Informatik (April 1993)

20. Biere, A., Cimati, A., Clark, E.M., Strichman, O., Zhu, Y.: Bounded Model Check-
ing. Advances in Computers 58 (2003)

21. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C35(12), 1035–1044 (1986)

22. Tian, C., Duan, Z.: Propositional Projection Temporal Logic. In: Agrawal, M.,
Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 47–58. Springer,
Heidelberg (2008)

23. Liu, S., Wang, H.: An automated approach to specification animation for validation.
Journal of Systems and Software 80, 1271–1285 (2007)

24. Liu, S., Chen, Y.: A relation-based method combining functional and structural
testing for test case generation. Journal of Systems and Software 81, 234–248 (2008)

25. Duan, Z., Koutny, M.: A framed temporal logic programming language. Journal of
Computer Science and Technology 19, 333–344 (2004)

26. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: POPL 1980: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 163–173. ACM Press, New York (1980)

27. McNaughton, R., Papert, S.A.: Counter-Free Automata (M.I.T research mono-
graph no.65). The MIT Press, Cambridge (1971)

184 Z. Duan and C. Tian

Appendix A: Logic Laws of PTL

The following are some useful logic laws of PTL.

L1 �(P ∧ Q) ≡ �P ∧ �Q
L2 �(P ∨ Q) ≡ �P ∨ �Q
L3 ©(P ∨ Q) ≡ ©P ∨©Q
L4 ©(P ∧ Q) ≡ ©P ∧©Q
L5 R; (P ∨ Q) ≡ (R; P) ∨ (R; Q)
L6 (P ∨ Q); R ≡ (P ; R) ∨ (Q; R)
L7 �P ≡ P ∨©�P
L8 �P ≡ P ∧ ⊙

�P
L9 more ∧ ¬© P ≡ more ∧©¬P
L10 ¬⊙

P ≡ ©¬P
L11 ©(∃x : p) ≡ ∃x : ©p
L12 ©P ; Q ≡ ©(P ; Q)
L13 w ∧ (P ; Q) ≡ (w ∧ P) ; Q
L14 p+ ≡ p ∨ (p; p+)
L15 Q prj empty ≡ Q
L16 empty prj Q ≡ Q
L17 (P1, ...Pm) prj empty ≡ P1; ...; Pm

L18 (P, empty) prj Q ≡ (P ∧ �empty) prj Q
L19 (P1, ..., Pt, w ∧ empty, Pt+1, ..., Pm) prj Q ≡ (P1, ..., Pt, w ∧ Pt+1, ...,

Pm)prjQ
L20 (P1, ..., (Pi ∨ P ′

i), ..., Pm) prj Q ≡ ((P1, ..., Pi, ..., Pm) prj Q) ∨ ((P1, ...,
P ′

i , ..., Pm) prj Q)
L21 (P1, ..., Pm) prj (P ∨ Q) ≡ ((P1, ..., Pm) prj P) ∨ ((P1, ..., Pm) prj Q)
L22 (P1, ..., Pm) prj © Q ≡ (P1 ∧ more; (P2, ..., Pm) prj Q) ∨ (P1 ∧ empty;

(P2, ..., Pm) prj © Q)
L23 (©P1, ..., Pm) prj © Q ≡ ©(P1 ; (P2, ..., Pm) prj Q)
L24 (w ∧ P1, ..., Pm) prj Q ≡ w ∧ ((P1, ..., Pm) prj Q)
L25 (P1, ..., Pm) prj (w ∧ Q) ≡ w ∧ ((P1, ..., Pm) prj Q)

A Unified Model Checking Approach with Projection Temporal Logic 185

Appendix B: Logic Laws of MSVL

L26 while b do p ≡ if b then (p; while b do p) else empty
L27 while b do p ≡ if b then (p ∧ more; while b do p) else empty
L28 while b do p ≡ ((¬b ∧ empty) ∨ (b ∧ p ∧ more; while b do p))∨

b ∧ p ∧ �more
L29 while b do p ≡ ((¬b ∧ empty) ∨ (b ∧ p; while b do p)) ∨ b ∧ p ∧ �more
L30 frame(x) ≡ frame(x)||frame(x) ≡ frame(x); frame(x) ≡

frame(x) ∧ frame(x)
L31 frame(x) ∧ more ≡ ©(lbf(x) ∧ frame(x))
L32 frame(x) ∧ empty ≡ empty
L33 frame(x) ∧ (p ∨ q) ≡ frame(x) ∧ p ∨ frame(x) ∧ q
L34 frame(x) ∧ (p; q) ≡ frame(x) ∧ p; frame(x) ∧ q
L35 frame(x) ∧ (p||q) ≡ frame(x) ∧ p||frame(x) ∧ q

Appendix C: Finiteness of NFGs of MSVL Programs

Let D = {d1, ..., dn} be a finite set of data, V = {x1, ..., xm} a finite set of vari-
ables, and Prop a countable set of atomic propositions. To prove the finiteness
of NFGs of MSVL programs, we first prove that, for any MSVL program, it can
be equivalently expressed by a PPTL formula.

Theorem 4. Any program p in MSVL can be equivalently expressed by a for-
mula Φ(p) in PPTL.

Proof. The proof proceeds by induction on structures of programs in MSVL.
First of all, we assume that any boolean expression b can be evaluated to a
boolean value true or false, and an arithmetic expression e can be evaluated to a
value dk ∈ D. Therefore, a boolean expression b can be thought of as an atomic
proposition pb ∈ Prop. Further,

1. For empty, Φ(empty) def= empty;
2. For xi = e, we define xi = dj

def= pj
i ∈ Prop, where xi ∈ V and dj ∈ D. Thus,

Φ(xi = e) def= pk
i if e = dk ∈ D otherwise false

3. For xi ⇐ e, by the definition, xi ⇐ e ≡ xi = e ∧ pxi ,

Φ(xi ⇐ e) def= Φ(xi = e) ∧ pxi

4. For lbf(xi), by the definition, lbf(xi) ≡ ¬pxi → ∃dn ∈ D : (-©xi = dn ∧ xi =
dn), we have,

Φ(lbf(xi))
def= ¬pxi → pn

i

5. For frame(xi), by the definition, frame(xi) ≡ �(more → ©lbf(xi)), we
have,

Φ(frame(xi))
def= �(more → ©Φ(lbf(xi)))

186 Z. Duan and C. Tian

6. For p ∧ q, Φ(p ∧ q) def= Φ(p) ∧ Φ(q);
7. For p ∨ q, Φ(p ∨ q) def= Φ(p) ∨ Φ(q);
8. For ©p, Φ(©p) def= © Φ(p);
9. For �p, Φ(�p) def= �Φ(p);
10. For p; q, Φ(p; q) def= Φ(p); Φ(q);
11. For if b then p else q, by the definition, if b then p else q ≡ b ∧ p ∨ ¬b ∧ q,
we have,

Φ(if b then p else q) def= pb ∧ Φ(p) ∨ ¬pb ∧ Φ(q)

12. For (p1, ..., pm)prj q, Φ((p1, ..., pm)prj q) def= (Φ(p1), ..., Φ(pm))prj Φ(q);
13. For while b do p, by the definition, while b do p ≡ (p∧b)∗∧�(empty → ¬b),
we have,

Φ(while b do p) def= (Φ(p) ∧ Pb)∗ ∧ �(empty → ¬pb)

14. For p||q, by the definition, p||q ≡ p ∧ (q; true) ∨ q ∧ (p; true), we have,

Φ(p||q) def= Φ(p) ∧ (Φ(q); true) ∨ Φ(q) ∧ (Φ(p); true)

15. For await(b), by the definition, await(b) ≡ (frame(x1)∧ ...∧ frame(xh))∧
�(empty ↔ b),

Φ(await(b)) def= (Φ(frame(x1)) ∧ ... ∧ Φ(frame(xh))) ∧ �(empty ↔ pb)

16. For ∃x : q, since q can be rewritten into its normal form, q
def=

l∨
i=1

qei ∧

empty ∨
t∨

j=1

qcj ∧©qfj , we have,

Φ(∃x : q) def= Φ(∃x : (
l∨

i=1

qei ∧ empty ∨
t∨

j=1

qcj ∧©qfj))

≡ Φ(
l∨

i=1

(∃x : qei) ∧ empty ∨
t∨

j=1

(∃x : qcj) ∧©(∃x : qfj))

≡
l∨

i=1

Φ(∃x : qei) ∧ empty ∨
t∨

j=1

Φ(∃x : qcj) ∧©Φ(∃x : qfj)

≡
l∨

i=1

n∨
k=1

qei[dk/x] ∧ empty ∨
t∨

j=1

n∨
k=1

qcj[dk/x] ∧©Φ(∃x : qfj)

Thus, for any MSVL program, it can be equivalently expressed by a PPTL
formula. �

Notice that in the above proof of 16, we can use Φ(∃xip) recursively so that a
PPTL formula can be obtained. A question one may ask is that this transforma-
tion process can terminate? The answer is ‘yes’ since a simple inductive proof
on the structure of p can be made to achieve the conclusion. We omit the details
here. In [5], we have proved the finiteness of NFGs of PPTL formulas. Hence,
the conclusion also holds for MSVL programs since any MSVL program can be
equivalently expressed by a PPTL formula.

	A Unified Model Checking Approach with Projection Temporal Logic
	Introduction
	Projection Temporal Logic
	Modeling, Simulation and Verification Language
	Framing
	The MSVL Language
	Normal Forms and NFGs of MSVL

	Property Specification Language
	Propositional Projection Temporal Logic
	Normal Form and NFGs of PPTL Formulas

	Model Checking Approach with PTL Based on NFGs
	Basic Approach
	Model Checker
	Example

	Conclusion
	References
	Appendix A: Logic Laws of PTL
	Appendix B: Logic Laws of MSVL
	Appendix C: Finiteness of NFGs of MSVL Programs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

