
Program Models for Compositional Verification�

Marieke Huisman1, Irem Aktug2, and Dilian Gurov2

1 INRIA Sophia Antipolis, France
2 Royal Institute of Technology, Stockholm, Sweden

Abstract. Compositional verification is crucial for guaranteeing the se-
curity of systems where new components can be loaded dynamically.
In earlier work, we developed a compositional verification principle for
control-flow properties of sequential control flow graphs with procedures.
This paper discusses how the principle can be generalised to richer pro-
gram models. We first present a generic program model, of which the
original program model is an instantiation, and explicate under what con-
ditions the compositional verification principle applies. We then present
two other example instantiations of the generic model: with exceptional
and with multi-threaded control flow, and show that for these particular
instantiations the conditions hold. The program models we present are
specifically tailored to our compositional verification principle; however,
they are sufficiently intuitive and standard to be useful on their own.
Tool support and practical application of the method are discussed.

1 Introduction

Compositional verification addresses the problem of proving the correctness of a
compound system based on properties of its components. Compositional verifica-
tion techniques allow one to guarantee that if the new applications satisfy certain
local requirements, the global security (policy) of the system is not violated. Such
techniques are crucial to ensure the security of any platform, where new appli-
cations can be installed dynamically. Typical application areas are e.g., mobile
computing, and dynamically reconfiguring distributed systems.

We are interested in both structural and behavioural control flow properties of
programs. A structural property is a property of the (finite) flow graph itself, such
as “every path from the entry of method m1 to a call instruction to method m2

passes a call instruction to method m3”. A behavioural property is a property of
the (infinite state) behaviour induced by the flow graph, such as“in any execution
of the program, method m1 calls method m2 at most once”.

In earlier work, we developed a compositional verification method for pro-
grams with procedures. Our method supports the following abstract compo-
sitional verification principle, where G1 and G2 are programs with procedures

� This work was funded in part by the IST programme of the EC, under the IST-FET-
2005-015905 MOBIUS project and under the IST-STREP-27004 S3MS project.

S. Liu, T. Maibaum, and K. Araki (Eds.): ICFEM 2008, LNCS 5256, pp. 147–166, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 M. Huisman, I. Aktug, and D. Gurov

(i.e., components), modelled as control flow graphs, and � denotes flow graph
composition:

G1 |= σ θIG1
(σ) � G2 |= φ

G1 � G2 |= φ
(1)

Informally, this rule says that to prove that the composition G1 � G2 satisfies
property φ, it is sufficient to find a “local” property σ of flow graph G1 (typi-
cally a still unavailable component) for which one can verify that: (i) σ indeed
holds for G1, and (ii) the local property ensures the global property. Task (i) is
deferred until component G1 becomes available. Task (ii) assumes knowledge of
the names of the provided and required methods of G1 (its so-called flow graph
interface IG1), and is achieved by constructing a maximal flow graph for the local
property, i.e., θIG1

(σ) and by showing that its composition with G2 satisfies φ. In
both tasks, the verifications can be performed algorithmically, using finite-state
and pushdown automata-based model checking, respectively.

A maximal flow graph w.r.t. a property σ is a flow graph that simulates all other
flow graphs satisfying property σ. This notion is based on the notion of maximal
model [9], but in addition takes the set of provided and required methods, i.e., the
flow graph interface, into account: a maximal flow graphonly simulates flowgraphs
with the same interface. Our technique requires the local requirement σ to be a
structural property, while the global requirement φ can be either a structural or a
behavioural property.This has the advantage that the approachworks for relatively
simple program models. All formulae are expressed in the fragment of the modal μ-
calculus [14]withboxes and greatest fixed-points only.Recently,we have developed
a translation from behavioural properties into structural ones [10]. This allows to
apply the compositional verificationprinciple also for local behavioural properties,
and thus to (indirectly) reuse the global guarantee as a local assumption for the
verification of a larger system. However, in this paper, we do not further discuss
this, and we simply assume all local properties to be structural.

We have shown soundness and completeness of the compositional verifica-
tion principle for a basic program model, only considering sequential control
flow. This paper discusses under what conditions the principle can be used with
finer, more complex program models. For this, we first present a generic pro-
gram model, and then explicate the conditions that have to be satisfied by each
concrete instantiation. To illustrate the approach, we present two concrete in-
stantiations, one extending the basic program model with exceptional control
flow and one with multi-threaded control flow. These finer program models are
especially tailored to satisfy the above-mentioned conditions, but are intuitive
enough to be useful on their own. In addition, we illustrate how extending the
program model allows to express (and verify) more complex program properties.

To support our compositional verification method we have developed a tool
set. Originally, this was tailored to the basic program model. The basic version of
the tool set has been used to demonstrate utility of the method on an industrial
smart card case study [11]. This paper contains an overview of the tool set and
describes how various parts of it are adapted to support the new instantiations.

Program Models for Compositional Verification 149

Related Work. The maximal model technique for compositional verification is
originally developed by Grumberg and Long [9] for the universal fragment of CTL,
and later generalised by Kupferman and Vardi [15] for ACTL*. We have adapted
the technique to the fragment of the modal μ-calculus with boxes and greatest
fixed-points [11]. Our original program model has been inspired by the one of
Besson et al. [2], who address the problem of verifying stack invariants of Java
programs. The model of Recursive State Machines, proposed by Alur et al. [1]
is also close to ours, while somewhat finer. However, the authors do not address
compositional verification of programs with recursion. Still other models exist for
capturing the control flow of applications in Java-like languages, see e.g., [18].
However, because of the specific requirements of our compositional verification
technique, we cannot directly reuse these models, and instead rely on our own.
Several tools exist for the (non-compositional) verification of behavioural program
properties. For example, Moped [13,7] and Alfred [20] encode the behaviour of a
program as a pushdown system, that is model checked. In particular, the jMoped
variation [23] translates Java bytecode to a pushdown system extended with a set
of variables, where instructions are directly mapped to transitions of the system.
Also closely related is the two-step extraction technique of Obdržálek [19], where
a control flow graph of the program is produced first, and the pushdown system is
then generated from this graph. However, neither of these translations addresses
multi-threading. Further, existing model checkers for multi-threaded Java (such
as Bogor1 and JavaPathFinder2) typically use an implicit program representation
that is close to the program itself. Then, abstraction is applied to make verification
feasible. In contrast, our programmodel directly abstracts the programbehaviour;
without this abstraction a maximal flow graph cannot be constructed.

Overview of the paper. Section 2 describes the generic framework for compo-
sitional verification, and shows how our original program model is an instance
of this. Sections 3 and 4 describe instantiations with exceptional control flow,
and with multi-threaded control flow. Finally, Section 5 draws conclusions and
discusses other possible instantiations.

2 A Framework for Compositional Verification

This section presents a method for compositional verification of control flow
properties based on a generic program model, identifies sufficient conditions for
soundness and completeness of the method, instantiates the generic model to the
basic model used in [11], and also outlines the tool set supporting this method.

2.1 Program Model

As the basis for our program model, we use a general notion of specification.
Both control flow graph structure and behaviour are defined in terms of such
specifications. For a detailed account of the basic definitions, we refer to [11].
1 See http://bogor.projects.cis.ksu.edu
2 See http://javapathfinder.sourceforge.net

150 M. Huisman, I. Aktug, and D. Gurov

Definition 1 (Specification). A model over a set of labels L and a set of
atomic propositions A is a structure M = (S, L,→, A, λ), where S is a set of
states, →⊆ S×L×S a labelled transition relation, and λ : S → P(A) a valuation
assigning to each state a set of atomic propositions. A specification S is a pair
(M, E), with M a model and E ⊆ S a set of entry states.

The reachable part of a specification S = (M, E) is defined by R(S) = (M′, E),
where M′ is obtained from M by deleting all states and transitions not reach-
able from E. The disjoint union of two specifications is defined by (M1, E1) �
(M2, E2) = (M1�M2, E1�E2), where M1�M2 = (S1�S2, L1∪L2, {ini(s)

a−→
ini(s′)|s a−→ s′ ∈ Mi}, A1∪A2, λ), where λ(ini(s)) = λi(s) and ini (for i ∈ {1, 2})
injects Si into S1�S2. The definition of simulation between specifications is stan-
dard. Notice that simulation is preserved by disjoint union.

S1 ≤ T1 ∧ S2 ≤ T2 ⇒ S1 � S2 ≤ T1 � T2 (2)

Let Meth be an infinite set of method names, and let Contr be a possibly in-
finite set of control values (disjoint from Meth) specific for each instantiation
of the model (in the program model with exceptions, for instance, it is a set of
exception names). Both sets should be disjoint from any reserved symbols. Ev-
ery control flow graph comes equipped with an interface, specifying the provided
and required methods, and the set of legal control values.

Definition 2 (Flow Graph Interface). A flow graph interface is a triple I =
(I+, I−, C), where I+, I− ⊆ Meth are finite sets of names of provided and
required methods, and C ⊆ Contr is a finite set of control values, respectively. We
say I is closed if I− ⊆ I+. The composition of two interfaces I1 = (I+

1 , I−1 , C1)
and I2 = (I+

2 , I−2 , C2) is defined by I1 ∪ I2 = (I+
1 ∪ I+

2 , I−1 ∪ I−2 , C1 ∪ C2).

The definition of control flow graph structure, or flow graphs for short, is also rel-
ativised on the notion of method specification, which is specific for each concrete
instantiation of the generic program model. We require a method specification
to be defined as an instance of the general notion of specification. Given such a
definition, one can formally define the notion of flow graph with interface.

Definition 3 (Flow Graph). Flow graphs G with interface I, written G : I,
are inductively defined by

– (Mm, Em) : ({m}, M, C) if (Mm, Em) is a method specification for m over
M and C,

– G1 � G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

A flow graph G : I is closed if its interface I is closed. We use ≤s to denote
structural simulation between flow graphs.

Basic Program Model. The compositional verification principle is originally de-
fined for an instance of the generic definition of flow graph, with Contr the empty
set. In this basic program model, method flow graphs are defined as follows.

Program Models for Compositional Verification 151

class Number {

}

 if (n == 0)
 public static boolean even(int n){

 return true;
 else
 return odd(n−1);
 }

 public static boolean odd(int n){
 if (n == 0)

 else
 return even(n−1);

 }

 return false;

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

evenodd

even, r reven, rr odd, odd,

Fig. 1. A simple Java class and its flow graph

Definition 4. (Method Specification) A flow graph for m ∈ Meth over a
set M ⊆ Meth is a finite model Mm = (Vm, Lm,→m, Am, λm), with Vm the set
of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and λm : Vm → P(Am), so
that m ∈ λm(v) for all v ∈ Vm (i.e., every node is tagged with its method name).
The nodes v ∈ Vm with r ∈ λm(v) are return points. A method specification for
m ∈ Meth over M is a pair (Mm, Em) s.t. Mm is a flow graph for m over M
and Em ⊆ Vm a non-empty set of entry points of m.

Thus, in this program model, a flow graph G : I is a model over I− ∪ {ε} and
I+ ∪ {r}.

Example 1. Figure 1 shows a simple Java class and the (simplified) flow graph
it induces in the basic program model. The flow graph consists of two method
specifications - one for method even and one for method odd. Entry nodes are
depicted as usual through edges without source.

2.2 Model Extraction

The tool set that we developed to support our compositional verification tech-
nique contains the Program Analyser (PA), that extracts flow graphs from Java
(bytecode) classes. One can always extract a flow graph that over-approximates
the actual behaviour as specified by the Java semantics; the precision of the over-
approximation depends on the precision of the static analysis used by PA. PA
is built on top of the Soot Java Optimization Framework [24]. Soot transforms
a bytecode program into Jimple basic blocks. Then, it makes a class hierarchy
analysis, producing a safe over-approximation of the application’s call graph.
For example, if the analysis cannot determine the receiver of a virtual method
call, a call edge is generated for every possible method implementation. Further,
Soot produces a control flow graph for each method, abstracting away all values.
PA transforms these, using information from the call graph, into flow graphs in
the format of the program model. Extending PA to the different instantiations
amounts to using additional information produced by Soot’s different analyses
when translating control flow graphs into flow graphs for the program model.

152 M. Huisman, I. Aktug, and D. Gurov

2.3 Flow Graph Behaviour

Next, we define the behaviour of flow graphs. Since the local guarantees must be
properties over the flow graph structure, we only have to define the behaviour
of closed flow graphs. The behaviour of a flow graph G, denoted b(G), should
also be defined as an instance of the general notion of specification. Also on
the behavioural level, we instantiate the definition of simulation ≤b: G1 ≤b G2 ⇔
b(G1) ≤ b(G2). For the compositional verification principle to apply for a concrete
program model, structural simulation should imply behavioural simulation:

G1 ≤s G2 ⇒ G1 ≤b G2 (3)

Basic Program Model The behaviour of the basic flow graphs (where Contr = ∅)
is defined as follows.

Definition 5. (Behaviour) Let G = (M, E) : (I+, I−) be a closed flow graph
such that M = (V, L,→, A, λ). The behaviour of G is described by the specifica-
tion b(G) = (Mb, Eb), where Mb = (Sb, Lb,→bs, Ab, λb), s.t. Sb = V × V ∗, that
is, states are configurations of control points and stacks, Lb = {m1 l m2 | l ∈
{call, ret}, m1, m2 ∈ I+} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v), and →bs is defined
as follows:

[transfer] (v, σ)
τ−→bs (v′, σ) if v

ε−→m v′, v |= ¬r

[call] (v1, σ)
m1 call m2−−−−−−→bs (v2, v

′
1 · σ) if m1, m2 ∈ I+, v1

m2−−→m1 v′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[return] (v2, v1 · σ)
m2 ret m1−−−−−−→bs (v1, σ) if m1, m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

The set of entry states Eb is defined by Eb = E×{ε}, where ε denotes the empty
sequence.

Example 2. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite-state behaviour. One example execution
of the program is represented by the following path from an initial to a final con-
figuration:

(v0, ε)
τ−→bs (v1, ε)

τ−→bs (v2, ε)
even call odd−−−−−−−→bs (v5, v3)

τ−→bs (v6, v3)
τ−→bs

(v7, v3)
odd call even−−−−−−−→bs (v0, v9 · v3)

τ−→bs (v1, v9 · v3)
τ−→bs

(v4, v9 · v3)
even ret odd−−−−−−−→bs (v9, v3)

odd ret even−−−−−−−→bs (v3, ε)

Basic flow graph behaviour can be viewed as the behaviour of a pushdown au-
tomaton (PDA). Thus, behavioural properties can be verified using PDA model
checking (see [5] for a survey of verification techniques for infinite-state systems).
Notice further that for basic flow graphs, structural simulation indeed implies
behavioural simulation (thus (3) holds), see [11].

Program Models for Compositional Verification 153

2.4 Properties over Flow Graphs

As property specification language, we use a fragment of the modal μ-calculus
[14] with boxes and greatest fixed-points only. A variety of useful safety prop-
erties of program control flow structure and behaviour are expressible in this
fragment, as illustrated in our earlier work [11]. Let L be a set of labels, A a set
of atomic propositions, and V a set of propositional variables.

Definition 6. (Logic) The formulae of our logic are inductively defined by:
φ ::= p | ¬p | X | φ1 ∧φ2 | φ1 ∨φ2 | [a] φ | νX.φ, where p ∈ A, a ∈ L and X ∈ V .

Satisfaction of the logic is defined in terms of the general notion of specification
in the standard way [14]. We use |=s and |=b to denote instantiation at the
structural and behavioural level, respectively: G |=s φ ⇔ G |= φ, and G |=b φ ⇔
b(G) |= φ.

Example 3. For the flow graph in the basic program model from Example 1, the
structural formula νX. [even] r∧ [odd] r∧ [ε] X expresses the property “on every
path from a program entry node, the first encountered call edge leads to a return
node”, in effect specifying that the program is tail-recursive. The behavioural
formula ¬even ∨ νX. [even call even] ff ∧ [τ] X expresses the property “in every
program execution that starts in method even, the first call is not to method
even itself”.

Due to the close correspondence between logical satisfaction and simulation, this
logic is particularly suited for our compositional verification technique: there ex-
ists a mapping χ from finite specifications to formulae, and a mapping (maximal
model construction) θ from formulae to finite specifications, such that for any
specifications S,S1 and finite S2 (see [11, Ths. 8, 15]):

S1 ≤ S2 ⇔ S1 |= χ(S2) and S |= φ ⇔ S ≤ θ(φ) (4)

2.5 Interface Characterisation

As mentioned above, our compositional verification technique is based on the
construction of maximal models. However, for a given flow graph property, the
maximal model does not necessarily correspond to a legal flow graph structure.
Still, if for an interface I we can formulate a characteristic formula that precisely
defines all legal flow structures with interface I, then we can use this formula
to constrain maximal models to legal flow graph structures. Concretely, if σI

is the characteristic formula for interface I, then the maximal flow graph for a
property σ is defined as the maximal model (over labels and atomic propositions
as induced by I) of the property σ∧σI . This describes a legal flow graph structure
with interface I, simulating all other flow graphs with interface I, satisfying σ.
Thus, for any instantiation of the general definition of flow graphs, to be able
to apply our compositional verification principle, we need to define a formula σI

that characterises all flow graphs with interface I, i.e.:

S |= σI ⇔ R(S) : I (5)

154 M. Huisman, I. Aktug, and D. Gurov

Basic Program Model. In the basic program model, flow graphs with interface I
are models over I−∪{ε} and I+∪{r} that can be characterised by the following
formula ([11, Th. 31]), essentially specifying that every state is labelled by a
unique method name that is preserved along edges:

σI =
∨

m∈I+ νX.Pm ∧ [I−, ε]X Pm = m ∧
∧

m′∈I+\{m} ¬m′

2.6 Compositional Verification

We can show that compositional verification principle (1) is sound and complete
for any instantiation of flow graphs, provided that: (i) the notions of method
specification and flow graph behaviour are defined as instances of the general
notion of specification, (ii) structural simulation implies behavioural simulation
(property (3)), and (iii) flow graphs with interface I can be characterised log-
ically (property (5)). Together with properties (2) and (4), these are sufficient
to prove soundness and completeness of the rule (see [11] for a detailed proof).
The compositional verification principle applies to the basic program model, as
shown in [11].

2.7 A Tool Set for Compositional Verification

In previous work [11], we implemented a tool set to support our compositional
verification method in the context of the basic program model presented in Sec-
tion 2.2. Figure 2 gives a general overview of its architecture.

For each component, we have as input either an implementation (in Java
bytecode), or a structural property restricting its possible implementations and
an interface specifying the provided and required methods. If we are given the
code of the implementation, we use the Program Analyser to extract a flow graph

Maximal
Model
Constructor

Flow Graphs

CWB

YES/NO

YES/NOStructural

Interface

Implementation

specification

Program
Analyser
(+ Inliner)

specification

Behavioural
PDA MC

Fig. 2. Tool Set for Compositional Verification

Program Models for Compositional Verification 155

(and if necessary, we use the Inliner to abstract the flow graph to public methods,
i.e., methods mentioned in the interface, only [11]). If we are given a structural
property, we construct a maximal flow graph as described in Section 2.5 using
the Maximal Model Constructor. Composition � of the the resulting flow graphs
basically amounts to a concatenation of the textual graph representations. The
tool set also implements translations of flow graphs into models which serve as
input for different model checkers. In order to check structural properties, we
exploit the fact that flow graphs can be viewed as finite Kripke structures, and
convert flow graphs to CCS models. Since structural properties are μ–calculus
formulae, the verification can then be done using standard model checking tools
such as the Concurrency Workbench (CWB) [6]. To verify that a composed
system respects a behavioural safety property, we view the behaviour of a flow
graph as an infinite state model generated by a Pushdown Automaton (PDA),
and apply PDA model checking. We are not aware of an efficient, off-the-shelf
model checker for (alternation–free) modal μ–calculus properties of PDAs. We
are currently developing one ourselves.

The extensions to the Program Analyser for handling exceptional and multi-
threaded control flow are described in the following sections. Extending the Max-
imal Model Constructor, Inliner and the translation into CCS and PDA models
is straightforward, and not discussed further.

The tool set has been evaluated on the PACAP case study [4], an electronic
purse developed for smart cards. In PACAP, a smart card may contain one purse
applet and several loyalty applets, which interact to exchange information. The
case study describes a potential “bad scenario” in terms of an illicit interaction
involving the purse applet and the loyalty applets, one of which is malicious.
Goal of the verification, presented in detail in [11], is to ensure the absence of
such illicit interactions for the given implementations of the purse and loyalties.

3 Instantiation: Exceptional Control Flow

As a first example of how the compositional verification principle can be instan-
tiated to richer program models, we present an instantiation with exceptions.
For this, we take Contr to be Excp, an infinite set of exception names, and we
define method specifications over M ⊆ Meth and E ⊆ Excp.

In a flow graph with exceptions, a control point may be tagged with an ex-
ception: the state is said to be exceptional if the current control point is tagged
with an exception (cf. having an exception at the top of the operand stack [16]).
Model extraction from actual bytecode models every instruction that might raise
an exception with several transfer edges, one leading to a normal and the oth-
ers leading to exceptional control points (for all possible exceptions). Explicit
throw statements are modelled as internal transfer edges that always lead to an
exceptional point. Catch statements are implicit: they are modelled as internal
transfer from an exceptional to a normal control point.

At behavioural level, the main difference with the basic model is that the
decision in which control point execution resumes after completion of a method

156 M. Huisman, I. Aktug, and D. Gurov

call is postponed to the time of return, depending on whether the method call
returns normally, or with an exception. Model extraction for a method that may
terminate with an exception produces multiple edges labelled with this method,
ending in control points tagged with exceptions, in addition to an edge that ends
in a normal control point. When a method is called, the set of all possible return
points (exceptional and normal) is pushed on the call stack (instead of a single
one), so that the appropriate control point can be selected upon return.

Below, we instantiate the compositional verification principle for flow graphs
with exceptions in such a way that conditions (i)-(iii) from Section 2.6 are met.
In particular, we define structure and behaviour appropriately. We also discuss
how model extraction is adapted, and we give typical example properties that
refer to the exceptional structure or behaviour of a flow graph.

3.1 Program Model with Exceptions

As mentioned above, we instantiate Contr with Excp. Interfaces of flow graphs
with exceptions are thus of the form (I+, I−, E), where E ⊆ Excp. We use IE to
extract the exception component from the interface.

Method specifications are very similar to method specifications in the basic
program model, except that we add exceptions as atomic propositions.

Definition 7. (Method Specification with Exceptions) A flow graph with
exceptions for m ∈ Meth over sets M ⊆ Meth and E ⊆ Excp is a finite
model Mm = (Vm, Lm,→m, Am, λm) with Vm the set of control nodes of m,
Lm = M ∪ {ε}, Am = {m, r} ∪ E, m ∈ λm(v) for all v ∈ Vm, and for all
e, e′ ∈ E, if {e, e′} ⊆ λm(v) then e = e′, i.e., each control point is tagged with at
most one exception. A method specification with exceptions for m ∈ Meth over
M and E is a specification (Mm, Em) s.t. Mm is a flow graph with exceptions
for m over M and E and Em ⊆ VM a non-empty set of entry points of m.

We use the following abbreviation: v |= E ⇔ ∃e ∈ E.v |= e. Method specifica-
tions with exceptions have to satisfy two wellformedness constraints: (1) entry
nodes are not exceptional: ∀v ∈ Em.v �|= IE ; and (2) all outgoing edges from
exceptional control points are internal transfer edges ending in a normal control
point: ∀v, v′ ∈ V, e ∈ IE , l ∈ Lm.v |= e ∧ v

l−→ v′ ⇒ l = ε ∧ v′ �|= IE . The second
constraint is not strictly necessary, but keeps the behaviour of flow graphs clean:
catching an exception always results in a normal state in the same method.
Throughout, we will assume all method specifications to be wellformed.

3.2 Extracting Flow Graphs with Exceptions from Java Classes

We extended the Program Analyser to handle exceptions. Explicit throw state-
ments give rise to internal transfer edges ending in an appropriately labelled
exceptional control point. All other instructions that might raise an exception
(such as accessing a reference, which can lead to a NullPointerException) are
modelled by a choice: the current control point has multiple outgoing edges la-
belled ε, one ending in a normal control point and all others ending in appropriate

Program Models for Compositional Verification 157

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

����
����
����
����
����
����

����
����
����
����
����
����

m1

m2

m3 m3

Exc2 Exc1

m6
m4

m6

Exc1

m3

m6

Exc1

m5

Exc1 Exc2

Exc1

m1

m6

finally { m6(); }

catch Exc1 { m5(); }

 }

 catch Exc1 { m4(); }

 try { m3(); }

try { m2();

m1();

m2
v1

v2 v3

v4

v5

v6

Fig. 3. Example extraction for a try-catch-finally statement

exceptional control points. To model method invocations, edges are labelled ei-
ther ε, modelling the case that the invocation instruction raises an exception, or
with the method name. At most one of the edges labelled with the method name
ends in a normal control point, modelling normal termination of the method, all
others lead to an exceptional control point, corresponding to exceptional returns
from the method. The exceptional control points are either tagged with an ex-
ception listed in the method’s throw clause, or with a runtime exception that
can be thrown (and not caught) in the method. The analysis which exceptions
might be returned by a method is transitive w.r.t. the call graph.

To illustrate how PA extracts a flow graph from a try-catch-finally block,
Figure 3 shows an example code fragment3 together with the corresponding
flow graph. We assume that Exc1 and Exc2 are the only exceptions; m1, m2 and
m3 and m6 can throw Exc1, while m3 can also throw Exc2. (For presentation
purposes, some nodes are named.) A try-catch is modelled by branches in the
control flow: each instruction in the try-block that could raise an exception has an
outgoing edge to an exceptional control point (e.g., the call to m2 in v1 can lead
to normal point v3, or to exception point v2). If the exception is handled by one
of the catch clauses, the only outgoing edge from this point leads to the control
flow of the corresponding clause. For example, in v2, the exception is caught
by the outer catch clause, leading to a call of m5. All edges that correspond to
normal termination of the try-catch (i.e., termination of the try-block, and
termination of all catch-clauses) lead to the same control point, where the flow
graph modelling the next instruction starts. If the try-catch block is followed
by a finally-clause, at each possible exit of the try-catch block (e.g., nodes
v4 and v5 in Figure 3), the graph extracted for the finally clause is inserted. In
case the try-catch block ended with an exception, the exception is saved until
the end nodes of the graph of the finally clause, thus the internal nodes of the
finally graph are not tagged with this exception. However if an end node of
the finally graph is normal, an edge is added to rethrow the exception. For
example, if the call to m6 in v5 ends normally in v6, then Exc2 is re-thrown.

3 For illustrative purposes, the extraction is described in terms of source code, however
the actual implementation works on bytecode.

158 M. Huisman, I. Aktug, and D. Gurov

The end node of a finally clause can thus be either normal, tagged with an
exception thrown in the finally block or with the exception inherited from the
try-catch block (in case no exception is thrown by the finally block itself).

In order to see the results of graph extraction on a realistic piece of software,
we analysed a simulation application built on top of the JavaSim library, a tool
for building discrete event process-based simulation4. We considered 140 types
of exceptions, checked as well as unchecked, all subtypes of class Exception. The
exceptional control flow graph includes 55 methods in 14 classes (approximately
640 lines of code), of which 7 classes belong to the JavaSim library. On a Pen-
tium4 2.2GHz computer with 512MB memory pool, the call graph construction
takes 3 minutes, and can be decreased substantially by instrumenting Soot to
prevent the analysis of Java API methods. It takes 1,5 seconds to create the
control flow graph, which contains 1450 nodes and 1466 edges.

3.3 Flow Graph Behaviour with Exceptions

Modelling the behaviour of flow graphs with exceptions requires a different use of
the call stack than in the basic program model. In that model, the return point
is determined and pushed on the call stack at the time the method is called.
But when modelling exceptional behaviour, it cannot be predicted at call time
whether termination will be normal or exceptional. Therefore, the call transition
pushes the set of all possible return points on the call stack, and the return
transition selects the appropriate one, i.e., with the matching exception (if any).
In addition, we introduce transition labels throwe and catche; this makes raising
and recovering from exceptions observable for specification purposes.

Definition 8 (Behaviour with Exceptions). Let G = (M, E) : I be a closed
flow graph with exceptions such that M = (V, L,→, A, λ). The behaviour of G is
described by the specification b(G) = (Mb, Eb), where Mb = (Sb, Lb,→be, Ab, λb)
s.t. Sb ∈ V × (P(V)\{∅})∗, i.e., states are pairs of control points and stacks of
non-empty sets of nodes, Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈ I+} ∪ {τ} ∪
{l e | l ∈ {throw, catch}, e ∈ IE}, Ab = A, λb((v, σ)) = λ(v) and →be is defined
as follows:

[transfer] (v, σ)
τ−→be (v′, σ) if m ∈ I+, v

ε−→m v′, v |= ¬r, v �|= IE , v′ �|= IE

[call] (v1, σ)
m1 call m2−−−−−−→be (v2, V · σ) if m1, m2 ∈ I+, v1 |= ¬r, v1 �|= IE , v2 |= m2,

v2 ∈ E, V = {v | v1
m2−−→m1 v}, V �= ∅

[return] (v2, V · σ)
m2 ret m1−−−−−−→be (v1, σ) if m1, m2 ∈ I+, v1 |= m1, v2 |= m2 ∧ r,

v1 ∈ V , ∀e ∈ IE .v1 |= e ⇔ v2 |= e

[throw] (v, σ)
throw e−−−−→be (v′, σ) if m ∈ I+, v

ε−→m v′, v |= ¬r, v′ |= e

[catch] (v, σ)
catch e−−−−→be (v′, σ) if m ∈ I+, v

ε−→m v′, v |= ¬r ∧ e

The set of initial states Eb is defined by Eb = E × {ε}.
4 Available via the JavaSim homepage: http://javasim.ncl.ac.uk.

Program Models for Compositional Verification 159

As for the basic model, the behaviour of a flow graph with exceptions is the
behaviour of a PDA, and hence PDA model checkers can again be used for veri-
fication of behavioural properties. Since there is a close correspondence between
flow graph structure and behaviour, structural simulation between flow graphs
with exceptions implies their behavioural simulation (thus property (3) holds).

Theorem 1. Let G1 and G2 be flow graphs with exceptions. If G1 ≤s G2 then
G1 ≤b G2.

Proof. Let R be a structural simulation between G1 and G2. Define relation Rb

by (where |σ| denotes the length of σ, and σ(i) the ith element in σ):

(v, σ)Rb(v′, σ′) ⇔ vRv′ ∧ |σ| = |σ′| ∧ ∀i < |σ|.∀w ∈ σ(i).∃w′ ∈ σ′(i).wRw′

It is easy to check that Rb is a behavioural simulation between G1 and G2. ��

3.4 Properties over Flow Graphs with Exceptions

Modelling exceptional control flow of flow graphs not only allows to better ap-
proximate their behaviour, it also allows to express and verify properties that
are related to exceptions (both at structural and at behavioural level). Typical
properties of a flow graph with exceptions G : I expressible in our logic are:

– Exception e ∈ IE is never thrown: νX.¬e ∧ [−] X (where [K]φ abbreviates∧
a∈K [a]φ and ’−’ stands for L). Notice that this property can be expressed

both at structural and at behavioural level (but with a slightly different
meaning: at the behavioural level, recursion is taken into account, thus cer-
tain control points might never be reachable).

– Exception e ∈ IE is always caught within the method where it is thrown:
νX.(¬e∨¬r)∧[−] X (again, this property can be expressed both at structural
and behavioural level).

– After exception e ∈ IE is thrown, the first method that can be called is the
(state-restoring) method n ∈ I+: νX.(¬e ∨ νY. [M \ {n}]ff ∧ [ε]Y) ∧ [−] X .

It is natural to handle exceptions locally. Hence, in a compositional verification
setting, global behavioural specifications would typically not mention throwing
and catching of exceptions; these labels can instead be relabelled into silent
τ -transitions.

The tool set has also been extended to translate control flow graphs with
exceptions into CCS models. This has been used to produce the CCS model
corresponding to the graph extracted for the simulation application described
at the end of Section 3.2. Then, we used the Concurrency Workbench to verify
various local properties of the application. For instance, we checked whether ex-
ceptions are caught locally, i.e., within the method. For the finalize() method
of JavaSim’s SimulationProcess class, shown in Figure 4, and a particular
exception e, the property finalize ⇒ νX.(¬(e ∧ r)) ∧ [−]X specifies that ex-
ceptions of type e are caught locally. The instructions in the finalize()method
that may raise an exception are the calls to the virtual method idle(), the static

160 M. Huisman, I. Aktug, and D. Gurov

public void finalize () {

if (!Terminated) {

Terminated = true; Passivated = true;

wakeuptime = SimulationProcess.Never;

if (!idle()) Scheduler.unschedule(this);

if (this == SimulationProcess.Current) {

try { Scheduler.schedule(); }

catch (SimulationException e) { } }

SimulationProcess.allProcesses.Remove(this); }}

Fig. 4. The finalize() method of JavaSim’s SimulationProcess class

methods unschedule(), schedule(), Remove() and accesses to the fields Never,
and Current. All but one of these instructions raise only the NullPointerEx-
ception: the call to method schedule() might raise NullPointerException
and SimulationException, an application-defined exception. Model checking
the property succeeded for all exceptions e except for NullPointerException,
showing that not all exceptions are caught locally.

3.5 Interface Characterisation of Flow Graphs with Exceptions

Given an interface for a flow graph with exceptions I, we can characterise the
flow graphs with this interface by the formula σI , essentially stating that any
initial control point is normal, and after a transition, either the control point is
normal again, or we are in an exceptional point, where all outgoing edges are
internal transfer edges, leading to a normal control point:

σI =
∨

m∈I+(νX.Pm ∧
∧

e∈IE ¬e∧
[I−, ε] (X ∨ (

∧
m∈I+ [m] ff ∧Pm ∧

∨
e∈IE Pe ∧ [ε]X)))

Pm = m ∧
∧

m′∈I+\{m} ¬m′ Pe = e ∧
∧

e′∈IE\{e} ¬e′

The following result tells us that σI indeed characterises all flow graphs with
exceptions with interface I, thus (5) holds.

Theorem 2. Let I be an interface for flow graphs with exceptions. For any
specification S = (M, E) over labels L = I− ∪ {ε} and atomic propositions
A = I+∪{r}∪E we have (where R denotes the reachable part of a specification,
as defined on page 150): S |=s σI if and only if R(S) : I.

Proof. Similar to the proof of Theorem 31 in [11]. ��

Because of this result and Theorem 1 the compositional verification principle (1)
also applies to flow graphs with exceptions.

4 Instantiation: Multi-threaded Control Flow

As a second example, we instantiate the generic program model with multi-
threaded control flow. In this case, the set of control values consists of lock and

Program Models for Compositional Verification 161

thread names, i.e., Contr = Lock×T id, where Lock and T id are infinite sets of
lock and thread names, respectively. Given an interface I, we use IL and IT to
extract the legal lock and thread names, respectively.

Our program model supports all basic thread constructs as provided by Java:
thread creation, monitors, a wait-notify mechanism, and the possibility to join a
thread (i.e., wait for its completion). The behaviour of this instantiation extends
the behaviour of the basic program model, by maintaining a configuration for
each thread. We assume that (the interleaving behaviours of) programs do not
contain data races and thus, by virtue of the Java Memory Model [17], we can
assume an interleaving semantics. Notice that the program model described in
this section can be easily combined with the program model described above
into a single program model with multi-threading and exceptions.

4.1 Program Model with Multi-threading

To define method specifications for multi-threaded programs, we introduce edge
labels that correspond to the instructions specific to multi-threading. Following
the Java semantics, the body of a method will be executed sequentially, possibly
starting new threads, interleaved with other threads. Let LM,L,T abbreviate the
set of labels M ∪ {ε} ∪ {c l | c ∈ {lock, unlock, wait, notify,notifyAll}, l ∈ L} ∪
{spawn t with m | t ∈ T , m ∈ M} ∪ {join t | t ∈ T}.
Definition 9. (Method Specification with Multi-threading) A flow graph
with multi-threaded control flow for m ∈ Meth over sets M ⊆ Meth, L ⊆ Lock
and T ⊆ T id is a finite model Mm = (Vm, LM,L,T ,→m, Am, λm) with Vm the
set of control nodes of m, Am = {m, r}, and m ∈ λm(v) for all v ∈ Vm. A
method specification with multi-threaded control flow for m ∈ Meth over M , L
and T is a specification (Mm, Em) with Mm a method graph with multi-threaded
control flow for m over M , L and T, and Em ⊆ Vm a non-empty set of entry
points of m.

4.2 Extracting Flow Graphs from Multi-threaded Java Classes

To extend the Program Analyser to multi-threaded classes, we generate edges
with appropriate labels for all (non-deprecated) Java primitives and native meth-
ods related to concurrency, with the exception of the timed wait and the interrupt
mechanism. For instance, calling the start (or fork) method on a thread ob-
ject, is modelled by an edge labelled spawn, while a call to join leads to an
edge labelled join. Special care is taken for calls to synchronized methods: they
are preceded and followed by edges labelled lock and unlock on the appropriate
object, i.e., the synchronisation is made explicit.

Special care has to be taken to ensure that the extracted sets of thread and lock
names are finite. For threads, a safe over-approximation is to use the declared
class name of the thread as thread name in the model. Using a more precise
analysis can help to distinguish different threads that are instances of the same
class. For locks, abstracting with the class name might under-approximate the
program behaviour. To overcome this problem, we require that the program has
only a finite number of lock objects with the same class name.

162 M. Huisman, I. Aktug, and D. Gurov

Table 1. Transition rules −→bm for multi-threaded behaviour

[exec.] (Σ, L, W)
(t,a)−−−→bm (Σ(t :=(v′, σ′)), L, W) if t �∈ W, Σ(t)

a−→bs (v′, σ′)

[coord.] (Σ, L, W)
(t,a)−−−→bm (Σ(t :=(v′, σ)), L′, W′) if Σ(t) = (v, σ),t �∈ W, v

a−→m v′,

m ∈ I+, (L, W)
(t,a)−−−→c (L′, W′)

[resume] (Σ, L, W)
(t, resume l)−−−−−−−→bm (Σ, L′, W′) if (t , n, tt) ∈ W(l), L′ = L(l:=(t , n)),

L(l) =⊥, W′ = W(l:=W(l)\(t , n, tt))

[thr.-ops.] (Σ, L, W)
(t,a)−−−→bm (Σ′(t :=((v′, σ)), L, W) if Σ(t) = (v, σ),t �∈ W,

v
a−→m v′ m ∈ I+, Σ

a−→t Σ′

4.3 Flow Graph Behaviour with Multi-threading

The behaviour specification follows closely the Java Specification [16]. Instead of
a single call stack, we maintain a map from thread identifiers to configurations
(i.e., control point and call stack). If a thread is not active, it maps to ⊥. Further,
the state space also contains a lock map and a wait map. The lock map returns
for each lock the identity of the thread holding the lock and the lock counter
(i.e., how many times the lock is held, necessary to correctly model the reentrant
locking behaviour of Java). The wait map returns for each lock the set of threads
that are waiting for it, the number of times the thread was holding the lock when
it started waiting, and a flag whether the thread has been notified. This ensures
that the thread resumes in the exact same state as when it issued a wait, thus
making sure a correct number of unlocks is necessary to release the lock. We
explicitly require that if a thread is waiting for a lock, its state is active.

We assume execution starts in a special thread called main, and that any closed
flow graph contains such a thread. Labels and atomic propositions are paired
with thread identifiers. Further, we introduce the atomic proposition haslock(t , l)
to hold in any state where thread t holds lock l.

Definition 10. (Behaviour with Multi-threading) Let G = (M, E) : I be
a closed multi-threaded flow graph such that M = (V, L,→, A, λ). The multi-
threaded behaviour of G is described by the specification b(G) = (Mb, Eb), where
Mb = (Sb, Lb,→bm, Ab, λb) is defined as follows:

– Sb = {s ∈ (IT → (V × V ∗)⊥) × (IL → (IT × N)⊥)×
(IL → P(IT × N × B)) | ∀l, t , n, b.(t , n, b) ∈ π3(s)(l) ⇒ π1(s)(t) �=⊥},

– Lb = T × ({m1 c m2 | c ∈ {call, ret}, m1, m2 ∈ I+} ∪ {τ}∪
{c l | c ∈ {lock, unlock, wait, notify, notifyAll, resume}, l ∈ IL}∪
{spawn t with m | t ∈ IT , m ∈ I+} ∪ {join t | t ∈ IT }),

– →bm is defined in Table 15 (using auxiliary rules −→c and −→t of Table 2) ,
– Ab = (T × A) ∪ {haslock(t , l) | t ∈ IT , l ∈ IL}, and
– λb(s) = {(t , p) | t ∈ IT ∧ π1(s)(t) �=⊥ ∧ p ∈ λ(π1(π1(s)(t)))}∪

{haslock(t , l) | π2(s)(l) �=⊥ ∧ π1(π2(s)(l)) = t}.
5 We abbreviate ∃n, b, l.(t , n, b) ∈ W(l) as t ∈ W. We use f(i:=x) to denote function

update. Further, Σ(i) = (v, σ) implicitly implies that Σ(i) �=⊥.

Program Models for Compositional Verification 163

Table 2. Auxiliary transition rules −→c and −→t

[lock] (L, W)
(t,lock l)
−−−−−→c (L′, W) if L(l) =⊥, L′ = L(l:=(t , 1))

[re-lock] (L, W)
(t,lock l)
−−−−−→c (L′, W) if L(l) = (t , n), L′ = L(l:=(t , n))

[unlock] (L, W)
(t,unlock l)
−−−−−−→c (L′, W) if L′ = L(l:= (L(l) =⊥ ∨ L(l) = (t , 1)

⊥:
(π1(L(l)), π2(L(l)) − 1))

)?

[wait] (L, W)
(t,wait l)
−−−−−→c (L′, W′) if L(l) = (t , n), L′ = L(l:=⊥),

W′ = W(l:=W(l) ∪ {(t , n, ff)})

[notify] (L, W)
(t,notify l)
−−−−−−→c (L, W′) if L(l) = (t , n),(t ′, n, ff) ∈ W(l),

W′ = W(l:=W(l)\{(t ′, n, ff)} ∪ {(t ′, n, tt)})

[notify-cont] (L, W)
(t,notify l)
−−−−−−→c (L, W) if L(l) = (t , n),∀t ′.(t ′, n, ff) �∈ W(l)

[notifyAll] (L, W)
(t,notifyAll l)
−−−−−−−→c (L, W′) if L(l) = (t , n),

W′ = W(l:={(t ′, n, tt) | (t ′, n, r) ∈ W(l)})

[spawn] Σ
spawn t

′ with m′

−−−−−−−−−→t Σ′ if Σ(t ′) =⊥, m′ ∈ I+, v′′ ∈ E, v′′ |= m′, Σ′ = Σ(t ′:=(v′′, ε))

[join] Σ
join t

′

−−−→t Σ if Σ(t ′) = (v′′, ε), v′′ |= r

The set of initial states Eb is defined as Eb = {(Σv
I , λl. ⊥, λl.∅) | v ∈ E} where

Σv
I (main) = (v, ε,⊥) and Σv

I (t) =⊥ for all t ∈ IT .

The transition rules should be understood as follows. Rule [exec.] lifts the stan-
dard rules for sequential flow graphs (−→bs, Def. 5) to the multi-threaded case.
Rule [coord.] models the coordination of threads via locks, i.e., (un)lock, wait,
and notify(All): the current thread changes control point if the lock and wait
map can be updated appropriately, as defined by the auxiliary transition rules
−→c (see [12] for more explanation). Rule [thr.-ops.] models creating and join-
ing a thread using the auxiliary transition rules −→t (see also [12]). Finally, rule
[resume] handles the case where an thread is waiting on an object, has been
notified, and now continues execution.

Also in the case of multi-threaded flow graphs, there is a direct correspondence
between flow graph structure and behaviour, and thus structural simulation im-
plies behavioural simulation.

Theorem 3. Let G1 and G2 be flow graphs with multi-threading. If G1 ≤s G2

then G1 ≤b G2.

Proof. Let R be a structural simulation between G1 and G2. Define

(Σ, L, W)Rb(Σ′, L′, W′) ⇔
(∀t ∈ T . if Σ(t) = (v, σ)

then Σ′(t) = (v′, σ′) ∧ vRv′ ∧ |σ| = |σ′| ∧ ∀i.i < |σ|.σ(i)Rσ′(i)
else Σ′(t) =⊥) ∧ L = L′ ∧ W = W′

It is easy to check that Rb is a behavioural simulation between G1 and G2. ��

164 M. Huisman, I. Aktug, and D. Gurov

4.4 Properties over Flow Graphs with Multi-threading

The instantiation of the generic flow graph model with multi-threaded control
flow allows us to express properties that are related to the multi-threaded char-
acter of the flow graph. Given a flow graph G : I with multi-threaded control
flow, typical (behavioural) properties expressible in our logic are:

– Method m ∈ I+ can only be called by thread t , if t has lock l:
νX.

∧
t ∈ IT (haslock(t , l)∨

∧
m′∈I+ [(t , m′ call m)] ff)∧ [−] X . If method m is

the only method accessing some data, this means that data is lock protected.
– Locks are acquired in a particular order, for example lock l2 can only be

acquired by a thread that already has lock l1: νX.
∧

t∈IT (haslock(t , l1) ∨
[(t , lock l2)] ff)] ∧ [−]X . This guarantees absence of deadlocks by synchroni-
sation (however, it does not guarantee absence of deadlocks, caused by the
wait-notify mechanism, or by joining a non-terminating thread).

– No more than n threads are created in an application. This is an important
resource property. Formally, this can be expressed as MaxThr (n), inductively
defined as follows:

MaxThr (1) = νX1.
∧

m∈I+,t∈IT [spawn t with m]ff ∧ [−]X1

MaxThr (k + 1) = νXk+1.
∧

m∈I+,t∈IT [spawn t with m]MaxThr (k) ∧ [−] Xk+1

4.5 Interface Characterisation of Flow Graphs with Multi-threading

Given an interface for a flow graph with multi-threaded control flow I, the flow
graphs with this interface can be characterised by the formula σI , where LM,L,T

is as defined on Page 161:

σI =
∨

m∈I+(νX.Pm ∧
[
LI−,IL,IT

]
X) Pm = m ∧

∧
m′∈I+\{m} ¬m

Theorem 4. Let I be an interface for multi-threaded flow graphs. For any
specification S = (M, E) over labels I− ∪ {ε} ∪LM,L,T and atomic propositions
A = I+ ∪ {r} we have : S |=s σI if and only if R(S) : I.

Proof. Similar to the proof of Theorem 31 in [11]. ��

Thus, the compositional verification principle (1) also applies to flow graphs with
multi-threading. However, applying the verification principle poses a problem to
model checking, since the verification problem resulting from the second premise,
θI(φ) � G2 |=b φ, is not decidable in general for the case of pushdown systems
with multiple stacks. This is a consequence of a basic undecidability result due to
Ramalingam [22], which is related to the undecidability of the problem of empti-
ness of intersection of context-free languages. Hence, every such model checking
algorithm must use an under- or over-approximation of the program behaviour.
Different approaches have been proposed, see e.g., [3,8,21]. It is future work to
study whether and how these solutions can be integrated into our framework.

Program Models for Compositional Verification 165

5 Conclusion

This paper discusses how a previously developed method for compositional ver-
ification of control-flow properties of sequential flow graphs with procedures can
be adapted to richer program models. We present a generic program model, of
which the original program model is an instantiation, and explicate the condi-
tions under which the compositional verification principle is sound and complete.
Two other example instantiations of this generic model are presented: with ex-
ceptional and with multi-threaded control flow. Also for these particular instan-
tiations, the compositional verification principle holds (noting, however, that in
the case of multi-threaded flow graphs we lose decidability due to a general un-
decidability result for pushdown systems with multiple stacks). The restrictions
on the instantiations required to ensure soundness and completeness of the prin-
ciple are not severe, and the resulting models are intuitive and standard – and
can thus be used for other analyses as well. It is future work to study other pos-
sibilities to enrich the program model, for example by adding data (from finite
domains), or access control information. We are currently adapting the tool set
to handle multi-threaded models.

References

1. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM TOPLAS 27, 786–818 (2005)

2. Besson, F., Jensen, T., Le Métayer, D., Thorn, T.: Model checking security prop-
erties of control flow graphs. J. of Computer Security 9(3), 217–250 (2001)

3. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. SIGPLAN Notes 38(1), 62–73 (2003)

4. Bretagne, E., El Marouani, A., Girard, P., Lanet, J.-L.: PACAP purse and loyalty
specification. Technical Report V 0.4, Gemplus (2000)

5. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra,
pp. 545–623. North-Holland, Amsterdam (2000)

6. Cleaveland, R., Parrow, J., Steffen, B.: A semantics based verification tool for finite
state systems. In: International Symposium on Protocol Specification, Testing and
Verification, pp. 287–302. North-Holland Publishing Co., Amsterdam (1990)

7. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-
tion and symbolic pushdown systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

8. Esparza, J., Podelski, A.: Efficient algorithms for pre* and post* on interprocedural
parallel flow graphs. In: Principles of programming languages (POPL 2000), pp.
1–11. ACM Press, New York (2000)

9. Grumberg, O., Long, D.: Model checking and modular verification. ACM
TOPLAS 16(3), 843–871 (1994)

10. Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. Technical Report TRITA-CSC-TCS 2007:3, KTH Royal Institute
of Technology, Stockholm (2007)

11. Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840–868 (2008)

166 M. Huisman, I. Aktug, and D. Gurov

12. Huisman, M., Aktug, I., Gurov, D.: Flow graph behaviour for multi-threaded ap-
plications (2007), ftp://ftp-sop.inria.fr/everest/Marieke.Huisman/mt.pdf

13. Kiefer, S., Schwoon, S., Suwimonteerabuth, D.:
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

14. Kozen, D.: Results on the propositional μ-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

15. Kupferman, O., Vardi, M.: An automata-theoretic approach to modular model
checking. ACM TOPLAS 22(1), 87–128 (2000)

16. Lindholm, T., Yellin, F.: The JavaTM Virtual Machine Specification, 2nd edn. Sun
Microsystems, Inc. (1999)

17. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Principles of Pro-
gramming Languages (2005)

18. Méndez, M., Navas, J., Hermenegildo, M.V.: An efficient, parametric fixpoint al-
gorithm for analysis of Java bytecode. In: Huisman, M., Spoto, F. (eds.) Bytecode
2007, pp. 51–66 (2007)

19. Obdržálek, J.: Model checking Java using pushdown systems. In: Proceedings of
FTfJP 2002, Malaga, Available as Technical Report NIII-R0204, Computing Sci-
ence Department, University of Nijmegen (June 2002)

20. Polansky, D.: Implementation of the model checker for pushdown systems and
alternation-free mu-calculus. Master’s thesis, FI MU Brno (2000)

21. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

22. Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM TOPLAS 22(2), 416–430 (2000)

23. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A Java bytecode checker
based on Moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 541–545. Springer, Heidelberg (2005)

24. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -
a Java Optimization Framework. In: CASCON 1999, pp. 125–135 (1999)

ftp://ftp-sop.inria.fr/everest/Marieke.Huisman/mt.pdf
http://www.informatik.uni-stuttgart.de/fmi/szs/tools/moped/

	Program Models for Compositional Verification
	Introduction
	A Framework for Compositional Verification
	Program Model
	Model Extraction
	Flow Graph Behaviour
	Properties over Flow Graphs
	Interface Characterisation
	Compositional Verification
	A Tool Set for Compositional Verification

	Instantiation: Exceptional Control Flow
	Program Model with Exceptions
	Extracting Flow Graphs with Exceptions from Java Classes
	Flow Graph Behaviour with Exceptions
	Properties over Flow Graphs with Exceptions
	Interface Characterisation of Flow Graphs with Exceptions

	Instantiation: Multi-threaded Control Flow
	Program Model with Multi-threading
	Extracting Flow Graphs from Multi-threaded Java Classes
	Flow Graph Behaviour with Multi-threading
	Properties over Flow Graphs with Multi-threading
	Interface Characterisation of Flow Graphs with Multi-threading

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

