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Abstract. Region-based memory management has been proposed as a viable
alternative to garbage collection for real-time applications and embedded soft-
ware. In our previous work we have developed a region type inference algorithm
that provides an automatic compile-time region-based memory management for
object-oriented paradigm. In this work we present a formal soundness proof of
the region type system that is the target of our region inference. More precisely,
we prove that the object-oriented programs accepted by our region type system
achieve region-based memory management in a safe way. That means, the re-
gions follow a stack-of-regions discipline and regions deallocation never create
dangling references in the store and on the program stack. Our contribution is to
provide a simple syntactic proof that is based on induction and follows the stan-
dard steps of a type safety proof. In contrast the previous safety proofs provided
for other region type systems employ quite elaborate techniques.

1 Introduction

Modern object-oriented programming languages provide a run-time system that auto-
matically reclaims memory using tracing garbage collection [24]. A correct garbage
collector can guarantee that the memory is not collecting too early, and also that all
memory is eventually reclaimed if the program terminates. However the space and time
requirements of garbage-collected programs are very difficult to estimate in practice.
Therefore many different solutions have been proposed for real-time applications and
embedded software running on resource-limited platforms. These solutions either com-
pletely omit the use of garbage collectors (e.g. JavaCard platform), or use real-time
garbage collectors [1], or use region-based memory management (e.g. Real-Time Spec-
ification for Java (RTSJ) [3]).

Region-based memory management systems allocate each new object into a
program-specified region, with the entire set of objects in each region deallocated si-
multaneously when the region is deleted. Various studies have shown that region-based
memory management can provide memory management with good real-time perfor-
mance. Individual object deallocation is accurate but time unpredictable, while region
deletion presents a better temporal behavior, at the cost of some space overhead. Data
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locality may also improve when related objects are placed together in the same region.
Classifying objects into regions based on their lifetimes may deliver better memory
utilization if regions are deleted in a timely manner.

The first safe region-based memory system was introduced by Tofte and
Talpin [22,23] for a functional language. Using a region type inference system, they
have provided an automatic static region-based memory management for Standard ML.
More precisely, their compiler can group heap allocations into regions and it can stat-
ically determine the program points where it is safe to deallocate the regions. Later,
several projects have investigated the use of region-based memory management for C-
like languages (e.g. Cyclone [13]) and object-oriented languages [9,5]. These projects
provide region type checkers and require programmers to annotate their programs with
region declarations. The type checkers then use these declarations to verify that well-
typed programs safely use the region-based memory.

In our previous work [8], we have developed the first automatic region type in-
ference system for object-oriented paradigm. Our compiler automatically augments
unannotated object-oriented programs with regions type declarations and inserts region
allocation/deallocation instructions that achieve a safe memory management. In this
paper we provide the safety proof of our region type system that is the target of our
previous region inference algorithm.

Bottom (oldest region)

r2

r4

r3

Top (youngest region)

r1

possible dangling reference

non−dangling reference 

r0

Fig. 1. Lexically-Scoped Regions

In our work, we use lexically-
scoped regions such that the
memory is organised as a stack
of regions, as illustrated in Fig. 1.
Regions are memory blocks that
are allocated and deallocated by
the construct letreg r in e,
where the region r can only be
used to allocate objects in the
program e. The older regions
(with longer lifetime) are allo-
cated at the bottom of the stack
while the younger regions (with
shorter lifetime) are at the top.
The region lifetime relations are
expressed using a transitive out-
live relation, denoted by �. Thus,
we can define the lifetime constraints r0�r1∧r1�r2∧r2�r3∧r3�r4 on the regions
of Fig. 1. Region lifetime constraints (as shown in Fig. 2) are of two main forms r1�r2

and r1=r2. The constraint r1�r2 indicates that the lifetime of region r1 is not shorter
than that of r2, while the constraint r1=r2 denotes that r1 and r2 must be the same re-
gion. The equality can be expressed as an outlive relation such that r1=r2 iff r1�r2 and
r2�r1.

Dangling references are a safety issue for region-based memory management. Fig. 1
shows two kinds of references: non-dangling references and possible dangling refer-
ences. Non-dangling references originate from objects placed in a younger region and
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point to objects placed either in an older region or inside the same region. Possible dan-
gling references occur when objects placed in an older region point to objects placed in
a younger region. They turn into dangling references when the younger region is deal-
located. Using a dangling reference to access memory is unsafe because the accessed
memory may have been recycled to store other objects. There are two approaches to
eliminating this problem. The first approach allows the program to create dangling ref-
erences, but uses an effect-based region type system to ensure that the program never
accesses memory through a dangling reference [22,23,9,13]. The second approach uses
a region type system to prevent the program from creating dangling references at all
[5]. Our work has adopted the second approach.

Contributions. The main contribution of this paper is the soundness proof of our re-
gion type system for object-oriented paradigm. We prove that our region type system
guarantees that well-typed programs use lexically-scoped regions and never create dan-
gling references in the store and on the program stack. We provide a simple syntactic
proof based on induction (rather than a more elaborate co-induction machinery), that
follows the standard steps of a type safety proof [25]. Our small-step dynamic seman-
tics decomposes high-level expression letreg r in e into three intermediate opera-
tions: allocation of region r on the stack, evaluation of program e, and deallocation of
region r. The difficulty is to prove that after deallocation of region r, the store, the pro-
gram stack and the remaining code do not contain any reference to region r and to the
objects stored in region r. To prove that region deallocation is safe, we use the region
constraints of our type system and a syntactic condition that we imposed to restrict the
valid intermediate code. However our syntactic restriction does not restrict high-level
source code, it only defines the correct intermediate code to which high-level code can
be evaluated.

Related Work. In the original effect-based region type system, Tofte and
Talpin [23,21,2] and later Christiansen and Velschow [9], in their region calculus for
object-oriented languages make use of co-induction to prove the soundness. Their proof
requires co-induction partly because they prove two properties at the same time: type
soundness and translation soundness. The latter property guarantees that there exists
a semantic relation between source program and its region-annotated counterpart. Our
safety theorems are only focused on the problem of type soundness, thus are simpler
to prove. A co-inductive definition is required in their proof also because they use a
big-step semantics where certain information is lost when deleting a region from the
store, as discussed in [15,7]. Our system uses a small-step operational semantics in-
strumented with regions which makes the consistency definition and the proof easier.
Calcagno [6] uses a stratified operational semantics to avoid co-induction in the proof
of safety properties of a simple version of Tofte and Talpin’s region calculus, while
Helsen et al. [15,14] introduces a special constant for defunct regions in their big-step
semantics which makes the soundness proof simpler. A similar proof with ours is the
safety proof of Niss [19], that in addition to a simple functional language handles an
imperative calculus, and like our proof avoids explicit co-induction by using store typ-
ing. Cyclone [13] also has an effect system used for a soundness proof and does not
use co-induction. Elsman [12] refines Tofte and Talpin’s region type system in order to
forbid the dangling references and proves by induction the safety for a small functional
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language. There are many differences between his proof and ours. His proof is based
on a small-step contextual semantics [17], while in our proof we explicitly model the
heap as a stack of regions and we use a consistency relation between the static and
dynamic semantics. In addition Elsman uses a syntax-directed containment relation to
express the regions of the program values and also to force the stack discipline for re-
gions’allocation and deallocation. In our case the region requirements and the order
among regions are expressed by the region constraints of the type system. However we
also impose a syntactic condition to restrict the valid intermediate (non-source) pro-
grams. Boudol [4] refines Tofte and Talpin’s region calculus to a flow-sensitive effect-
based region type system, that explicitly records the deallocations effects. He provides
a simple proof for a functional language by means of a subject reduction property up
to simulation. Although his simulation is half-bisimulation, his proof does not employ
co-induction. In contrast our region type system is a flow-insensitive calculus. However
our syntactic restriction on intermediate code has a similar role as the flow-sensitive
deallocation effect. Our type system is similar to SafeJava’s type system of Boyapati et
al. [5], but in addition we support the region subtyping principle [13]. However SafeJava
does not provide a formal proof for its region type system.

Outline. The paper is organized as follows. Section 2 introduces the syntax of our re-
gion calculus. Section 3 presents our region type system, while Section 4 defines the
dynamic semantics of our region calculus. Section 5 extends the static semantics to in-
termediate expressions, while Section 6 presents the soundness theorems. A brief con-
clusion is given. The technical report [11] contains the details of our inductive proofs.

2 Region Calculus

Our region calculus is designed by annotating with regions a Java-like object-oriented
language, named Core-Java [10]. The full syntax of the region-annotated Core-Java
language is given in Fig. 2. Core-Java is designed in the same minimalist spirit as the
pure functional calculus Featherweight Java [16]. Despite its expression-oriented syn-
tax, Core-Java supports imperative features.

Each class definition is parameterized with one or more regions to form a region
type. For instance, a region type cn〈r1, ..., rn〉 is a class name cn annotated with region
parameters r1...rn. Parameterization allows us to obtain a region-polymorphic type for
each class whose fields can be allocated in different regions. The first region parameter
r1 is special: it refers to the region in which the instance object of this class is allocated.
The fields of the objects, if any, are allocated in the other regions r2...rn which should
outlive the region of the object. This is expressed by the constraint

∧n
i=2(ri � r1), which

captures the property that the regions of the fields (in r2...rn) should have lifetimes no
shorter than the lifetime of the region (namely r1) of the object that refers to them. This
condition, called no-dangling requirement, prevents dangling references completely, as
it guarantees that each object never references another object in a younger region. In
general the class invariant, ϕ, of a class consists of the no-dangling requirement for
the region type of the current class, the no-dangling requirements for the fields’ region
types, and the class invariant of the parent class We do not require region parameters
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t ::= cn〈r+〉 | prim〈〉 | ⊥ (region types)
prim ::= int | boolean | void
ϕ ::= r1 � r2 | r1 = r2 | true | ϕ1 ∧ ϕ2 (region constraints)
P ::= def∗ (region annotated program)
def ::= class cn1〈r+〉 extends cn2〈r+〉 where ϕ

{(t f)∗ meth∗} (region annotated class declaration)
meth ::= t mn〈r∗〉((t v)∗) where ϕ {e} (region annotated method)
e ::= null | k | v | v.f | v = e | v.f = e (region annotated expression)

| e1 ; e2 | {(t v) e} | new cn〈r+〉(v∗)
| v.mn〈r∗〉(v∗) | if v then e1 else e2 | while v e
| letreg r in e (region declaration)
cn ∈ class names r ∈ region variable names
mn ∈ method names k ∈ integer or boolean constants
f ∈ field names v ∈ variable names

Fig. 2. The Syntax of Region-Annotated Core-Java

for primitive types, since primitive values can be copied and stored directly on the stack
or they are part of an object. In order to keep the same notation, we use prim〈〉 to denote
a region annotated primitive type. Although null values are of object type, they are
regarded as primitive values. The type of a null value is denoted by ⊥.

[RegSub]

ϕ=(x1�x̂1) ∧
Vn

i=2(xi=x̂i)

�cn〈x1..n〉<:cn〈x̂1..n〉, ϕ

[SubClass]

class cn〈r1..n〉 extends cn′〈r1..m〉.. ∈ P′

n≥m≥p � cn′〈x1..m〉<:cn′′〈x′
1..p〉, ϕ

� cn〈x1..n〉<:cn′′〈x′
1..p〉, ϕ

[Null]

� ⊥<:cn〈x1..n〉, true

Fig. 3. Region Subtyping Rules

The region subtyping principle al-
lows an object from a region with
longer lifetime to be assigned to a lo-
cation where a region with a shorter
lifetime is expected. This principle
is illustrated by the subtyping rule
[RegSub] of Fig. 3. This rule relies on
the fact that once an object is allocated
in a particular region, it stays within
the same region and never migrates to
another region. This property allows
us to apply covariant subtyping to the
region of the current object. However,
the object fields are mutable (in gen-
eral) and must therefore use invariant
subtyping to ensure the soundness of
subsumption. The other two rules, [SubClass] and [Null] from Fig. 3 denote the class
subtyping and the fact that a null value can be assigned to any object, respectively.

Every method is decorated with zero or more region parameters; these parameters
capture the regions used by each method’s parameters (including this) and result. For
simplicity, no other externally defined regions are made available for a method. Thus,
all regions used in a method either are mapped to these region parameters or are lo-
calised by letreg in the method body. Each method also has a method precondition, ϕ
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expressed as a region lifetime constraint that is consistent with the operations performed
in the method body. The method precondition also contains the class invariants of its
parameters including the receiver and its result. The instance methods of a subclass can
override the instance methods of the superclass.

Consider the Pair class in Fig. 4. As there are two fields in this class, a distinct
region is introduced for each of them, r2 for fst field and r3 for snd field. The Pair
object is placed in the region r1. To ensure that every Pair instance satisfies the no-
dangling requirement, the region lifetime constraint r2�r1∧r3�r1 is added to the
class invariant.

class Pair〈r1,r2,r3〉 extends Object〈r1〉
where r2�r1 ∧ r3�r1 {
Object〈r2〉 fst;
Object〈r3〉 snd;

void setSnd〈r1,r2,r3,r4〉(Object〈r4〉 o)
where r4�r3∧r2�r1∧r3�r1
{snd=o;}

void swap〈r1,r2,r3〉() where r2=r3∧r2�r1
{ Object〈r2〉 tmp=fst;fst=snd;snd=tmp}

Pair〈r5,r6,r7〉 exalloc〈r1,r2,r3,r5,r6,r7〉()
where r7�r5∧r6�r5∧r2�r1∧r3�r1

{letreg r in {
Pair〈r7,r7,r7〉 p4;
Pair〈r,r,r〉 p3;
Pair〈r5,r6,r7〉 p2;
Pair〈r,r,r〉 p1;
p4 = new Pair〈r7,r7,r7〉(null,null);
p3 = new Pair〈r,r,r〉(p4,null);
p2 = new Pair〈r5,r6,r7〉(null,p4);
p1 = new Pair〈r,r,r〉(p2,null);
p1.setSnd〈r,r,r,r〉(p3); p2} }

}

Fig. 4. Region-Annotated Core-Java Program

Consider the setSnd,
swap, and exalloc

methods of the Pair

class. A set of distinct
region parameters are in-
troduced for the methods’
parameters, and the re-
sults, as shown in Fig. 4.
The receiver regions
are taken from the class
definition. Moreover, the
methods’ region lifetime
constraints are based on
the possible operations of
the respective methods.
For example, due to an
assignment operation
and region subtyping,
we have r4�r3 for
setSnd, while r2=r3

is present due to the
swapping operation on
the receiver object in the
swap method. Though
the swap method’s region
constraint is exclusively
on the regions of the

current object, we associate the constraint with the method. In this way, only those
objects that might call the method are required to satisfy this constraint. The class
invariants of methods’ parameters (including the receiver and their result) are also
added to the methods’ region constraints. The exalloc method’s body introduces
a local region r using letreg. Since the p1 and p3 objects do not escape from the
exalloc method’s body, they are stored in the local region r. The p2 and p4 objects
escape through the method result, therefore they are stored in the method result’s
regions r5 and r7, respectively.
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[RC−PROG]
WFClasses(P)

P = def1 .. defn
FieldsOnce(defi) i = 1..n

MethodsOnce(defi) i = 1..n
P � InheritanceOK(defi) i = 1..n

P �def defi i = 1..n

� P

[RC−CLASS]
def = class cn〈r1..n〉extends c〈r1..m〉

where ϕ {field1..p meth1..q}
r1 
∈ Sp

i=1 reg(fieldi)
ϕ⇒ri � r1 i = 2..n R = {r1, . . . , rn}

P; {this : cn〈r1..n〉}; R; ϕ �meth methi i = 1..q
P; R; ϕ �field fieldi i = 1..p

P �def def

[RC−METH]
Γ ′ = Γ + (vj : tj)j:1..p R′ = R ∪ {r1, . . . , rm}

ϕ′ = ϕ ∧ ϕ0 P; R′; ϕ′ �type tj , j = 0..p
P; Γ ′; R′; ϕ′ � e : t′0 P; R′; ϕ′ � t′0 <: t0

P; Γ ; R; ϕ �meth t0 mn〈r1..m〉((tj vj)j:1..p)where ϕ0 {e}

[RC−EB]
P; R; ϕ �type t′

Γ ′ = Γ + (v : t′)
P; Γ ′; R; ϕ � e : t

P; Γ ; R; ϕ � {(t′ v) e} : t

[RC−VAR]
(v : t) ∈ Γ

P; Γ ; R; ϕ � v : t

[RC−NEW]
P; R; ϕ �type cn〈r1..n〉 fieldlist(cn〈r1..n〉) = (ti fi)i:1..p

(vi : t′i) ∈ Γ P; R; ϕ � t′i <: ti i = 1..p

P; Γ ; R; ϕ � new cn〈r1..n〉(v1, .., vp) : cn〈r1..n〉
[RC−INVOKE]

(v0 : cn〈a+〉) ∈ Γ P; R; ϕ �type cn〈a+〉
(t mn〈a+r′+〉((ti vi)i:1..n)where ϕ0 {e}) ∈ cn〈a+〉

(v′
i : t′i)i:1..n ∈ Γ a′+∈R ρ = [r′+ →a′+]
ϕ⇒ρ ϕ0 P; R; ϕ � t′i<:ρ ti i = 1..n

P; Γ ; R; ϕ � v0.mn〈a+a′+〉(v′
1..v

′
n) : ρ t

[RC−LETR]
a = fresh()

ϕ′ = ϕ ∧ V
r′∈R(r′�a)

P; Γ ; R∪{a}; ϕ′ � [r →a]e : t
reg(t) ⊆ R

P; Γ ; R; ϕ � letreg r in e : t

ρt, ρϕ, ρe region substitution on a type, a constraint, and an expression
fresh() returns one or more new/unused region names

Fig. 5. Region Type Checking Rules

3 Region Type System: Static Semantics

Our region type system guarantees that region-annotated Core-Java programs never cre-
ate dangling references. To avoid variable name duplication, we assume that the local
variables of the blocks and the arguments of the functions are uniquely renamed in a
preprocessing phase. A part of region type checking rules are depicted in Fig. 5, with
some auxiliary rules in Fig. 6 (a complete description of region type system is given
in [11]). Judgments of the following forms are employed:

– � P denoting that a program P is well-typed.
– P �def def denoting that a class declaration def is well-formed.
– P;Γ ;R;ϕ �meth meth denoting that a method meth is well-defined with respect to the

program P, the type environment Γ , the set of live regions R, and the region con-
straint ϕ.

– P;Γ ;R;ϕ�e:t denoting that an expression e is well-typed with respect to the program
P, the type environment Γ , the set of live regions R, and the region constraint ϕ.
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– P; R; ϕ �type t denoting that a type t is well-formed, namely, the regions of the type t
are from the set of the live regions R, and the invariant of the type t is satisfied by
the constraint context ϕ.

– P; R �constr t, ϕ denoting that the regions of the type t are from the set of the live
regions R, while ϕ is the invariant of the type t.

– P; R; ϕ �field field denoting that the type of a field field is well-formed with respect to
�type judgment.

– P; R; ϕ � t<:t′ denoting that the type t is a subtype of the type t′, namely both types
are well-formed and the region constraint of the subtyping relation (defined in
Fig. 3) is satisfied by the constraint context ϕ.

The rule [RC−PROG] denotes that a region-annotated program is well-typed if all de-
clared classes are well-typed. The predicates in the premise are used to capture the
standard well-formedness conditions for the object-oriented programs such as no dupli-
cate definitions of classes and no cycle in the class hierarchy; no duplicate definitions
of fields; no duplicate definitions of methods; and soundness of class subtyping and
method overriding.

reg({})=def{} reg({v:τ 〈r∗〉}∪Γ )=def{r∗}∪reg(Γ )

reg(τ 〈r∗〉)=def{r∗} reg((τ 〈r∗〉 f))=def{r∗}
reg(r1�r2)=def{r1, r2} reg(r1=r2)=def{r1, r2}

reg(true)=def{} reg(ϕ1∧ϕ2)=defreg(ϕ1)∪reg(ϕ2)

fieldlist(Object〈r〉)=def[ ]

class cn1〈r1..n〉 extends cn2〈r1..m〉..{(ti fi)i:1..p..}∈P′

�=fieldlist(ρ cn2〈r1..m〉) ρ=[ri →xi]
n
i=1

fieldlist(cn1〈x1..n〉)=def�++[(ρ ti) fi]
p
i=1

Fig. 6. Auxiliary Region Checking Rules

The rule [RC−CLASS] in-
dicates that a class is well-
formed if all its fields and
methods are well-formed,
and the class invariant en-
sures the necessary life-
time relations among class
region parameters. In addi-
tion, the rule does not al-
low the first region of the
class to be used by the re-
gion types of the fields. Us-
ing the first region on a
field would break the ob-
ject (region) subtyping (rule [RegSub] of Fig. 3). Function reg(fieldi) returns the region
variables of a field type (see Fig. 6).

The rule [RC−METH] checks the well-formedness of a method declaration. Each re-
gion type is checked to be well-formed, that means its regions are in the current set of
live regions and its invariant is satisfied by the current constraint context. The method
body is checked using the type relation for expressions such that the gathered type has
to be a subtype of the declared type.

Our type relation for expressions is defined in a syntax-directed fashion. Take note
that region constraints of the variables are not checked at their uses ([RC−VAR]), but
at their declaration sites ([RC−EB]). The region invariant of an object is also checked
when that object is created ([RC−NEW]). In the rule for object creation ([RC−NEW]), the
function fieldlist(cn〈x1..n〉) returns a list comprising all declared and inherited fields of
the class cn〈x1..n〉 and their region types according to the regions x1..xn of the class cn
(see Fig. 6). They are organized in an order determined by the constructor function.
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The rule [RC−INVOKE] is used to check a method call. It ensures that the method re-
gion parameters are live regions and the method precondition is satisfied by the current
constraint context as ϕ⇒ρϕ0. A substitution ρ is computed for the method’s formal re-
gion parameters. The current arguments are also checked to be subtypes of the method’s
formal parameters.

The rule [RC−LETR] is used to check a local region declaration. The local expression
is checked with an extra live region a (that is a fresh region), and an extra constraint
∧

r′∈R(r
′�a) that ensures that newly introduced region is on the top of the region stack.

The rule uses a region substitution on the expressions. Note that the region substitutions
on expressions, constraints and types are defined as expected. The gathered region type
of the local expression is checked to contain only live regions (from R excepting a).
This guarantees that the localized region a does not escape. Function reg(t) returns all
region variables of t (see Fig. 6).

4 Dynamic Semantics

In this section we define the dynamic semantics of our region calculus. Our dynamic
semantics rules use runtime checks to throw an error and to abort the execution, when-
ever the evaluation of a region-annotated Core-Java program tries to create a dangling
reference. In Section 6 we prove that those runtime checks are redundant for well-typed
programs, namely the evaluation of a well-typed region-annotated Core-Java program
never creates a dangling reference. The dynamic semantics is defined as a small-step
rewriting relation from machine states to machine states. A machine state is of the form
〈�, Π〉[e], where � is the heap organized as a stack of regions, Π is the variable en-
vironment, and e is the current program. Our dynamic semantics was inspired by the
previous work on abstract models of memory management [18] and region-based mem-
ory management [9,13]. The following notations are used:

Region Variables : r, a ∈ RegVar

Offset : o ∈ Offset

Locations : � or (r, o) ∈ Location=RegVar×Offset

Primitive Values : k | null ∈ Prim

Values : δ ∈ Value = Prim � Location

Variable Environment : Π ∈ VEnv = Var ⇀fin Value

Field Environment : V ∈ FEnv = FieldName ⇀fin Value

Object Values : cn〈r∗〉(V) ∈ ObjVal = ClassName × (RegVar)n × FEnv

Store : � ∈ Store = [ ]|[r →Rgn]Store

Runtime Regions : Rgn ∈ Region = Offset ⇀fin ObjVal

Regions are identified by region variables. We assume a denumerably infinite set of
region variables, RegVar. The store � is organized as a stack, that defines an ordered
map from region variables, r to runtime regions Rgn. The notation [r →Rgn]� denotes a
stack with the region r on the top, while [ ] denotes an empty store. The store can only
be extended with new region variables. A runtime region Rgn is an unordered finite map
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from offsets to object values. We assume a denumerably infinite set of offsets, Offset for
each runtime region Rgn.

The set of values that can be assigned to variables and fields is denoted by Value.
Such a value is either a primitive value (a constant or a null value) or it is a location in
the store. A location consists of a pair of a region variable and an offset.

An object value consists of a region type cn〈r∗〉, and a field environment V mapping
field names to values. V is not really an environment since it can only be updated, never
extended. An update of field f with value δ is written as V +{f →δ}.

The variable environment Π is a mapping Var ⇀fin Value, while the type environment
Γ that corresponds to the runtime variable environment is also a mapping Var ⇀fin Type.
To avoid variable name duplication, we assume that the local variables of the blocks
and the arguments of the functions are uniquely renamed in a preprocessing phase.

Notation f : A ⇀fin B denotes a partial function from A to B with a finite domain,
written A = dom(f). We write f+{a → b} for the function like f but mapping a to b (if
a∈dom(f) and f(a)=c then (f+{a → b})(a)=b). The notation {} (or ∅) stands for an un-
defined function. Given a function f : A ⇀fin B , the notation f−C denotes the function
f1 : (A−C ) ⇀fin B such that ∀x∈(A−C )·f1(x)=f(x).

We require some intermediate expressions for the small-step dynamic semantics to
follow through. The intermediate expressions help our proof to use simpler induction
techniques rather than a more elaborate co-induction machinery. The syntax of inter-
mediate expressions is thus extended from the original expression syntax, as follows:

e ::= . . . | (r, o) | ret(v, e) | retr(r, e)

The expression ret(v, e) is used to capture the result of evaluating a local block, or the
result of a method invocation. The variable associated with ret denotes either a block
local variable or a method receiver or a method parameter. This variable is popped from
the variable environment at the end of the block’s evaluation. In the case of a method
invocation there are multiple nested rets which pop off the receiver and the method
parameters from the variable environment at the end of the method’s evaluation. The
expression retr(r, e) is used to pop off the top region, r of the store stack at the end of
expression e evaluation.

Dynamic semantics rules of region annotated Core-Java are shown in Fig. 7 and
Fig. 8. The evaluation judgment is of the form:

〈�, Π〉[e]↪→〈�′, Π ′〉[e′]
where � (�′) denotes the store before (after) evaluation, while Π (Π ′) denotes the vari-
able environment before (after) evaluation. The store � organized as a stack establishes
the outlive relations among regions at runtime. The function ord(�) returns the outlive
relations for a given store. The function dom(�) returns the set of the store regions,
while the function location dom(�) returns the set of all locations from the store. They
are defined as follows:

ord([r1 →Rgn1][r2 →Rgn2]�)=def(r2�r1)∧ord([r2 →Rgn2]�)
ord([r →Rgn]) =def true ord([ ]) =def true
dom([r →Rgn]�)=def{r}∪dom(�) dom([r →∅]�)=def{r}∪dom(�) dom([ ])=def∅
location dom(�)=def{(r, o) | �=�1[r →Rgn]�2 ∧ Rgn
=∅ ∧ o∈dom(Rgn)}

Notation �(r)(o) denotes an access into the region r at the offset o, as follows:

�(r)(o)=defRgn(o) where �=�1[r →Rgn]�2
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[D−VAR]

v ∈ dom(Π)

〈�, Π〉[v]↪→〈�, Π〉[Π(v)]

[D−FD]

Π(v)=(r, o) �=�1[r →Rgn]�2 Rgn(o)=cn〈a+〉(V)

〈�, Π〉[v.f]↪→〈�, Π〉[V (f)]

[D−ASSGN1]

lhs = v | v.f
〈�, Π〉[e]↪→〈�′, Π ′〉[e′]

〈�,Π〉[lhs = e]↪→〈�′, Π ′〉[lhs = e′]

[D−ASSGN2]

v∈dom(Π) Π ′=Π+{v →δ}
δ=(r1, o1) ∧ r1∈dom(�)

〈�,Π〉[v = δ]↪→〈�, Π ′〉[()]

[D−ASSGN2−DANGLERR]

v ∈ dom(Π)
δ=(r1, o1) ∧ r1 
∈dom(�)

〈�, Π〉[v=δ]↪→danglingerr

[D−ASSGN3]

Π(v)=(a, o) �=�1[a →Rgn]�2 Rgn(o)=cn〈a+〉(V)
Rgn′=Rgn+{o→cn〈a+〉(V+{f →δ})} �′=�1[a →Rgn′]�2

δ=(r1, o1) ∧ ord(�)⇒(r1�fieldregion(cn〈a+〉, f))

〈�, Π〉[v.f = δ]↪→〈�′, Π〉[()]
[D−ASSGN3−DANGLERR]

Π(v)=(a, o) �=�1[a →Rgn]�2 Rgn(o)=cn〈a+〉(V)
δ=(r1, o1) ∧ ¬ (ord(�)⇒(r1�fieldregion(cn〈a+〉, f)))

〈�, Π〉[v.f = δ]↪→danglingerr

[D−NEW]

class cn〈r1..n〉 extends c〈...〉 where ϕinv {...} ∈ P ord(�)⇒ϕinv

�=�1[r1 →Rgn]�2 V ={f1 →Π(v1), ..., fp →Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p

if Π(vi)=(r′i, o
′
i) then ord(�)⇒(r′i�fieldregion(cn〈r1..n〉, fi)) i=1..p

o/∈dom(Rgn) Rgn′=Rgn+{o→cn〈r1..n〉(V)} �′=�1[r1 →Rgn′]�2

〈�, Π〉[new cn〈r1..n〉(v1..p)]↪→〈�′, Π〉[(r1, o)]

[D−NEW−DANGLERR]

class cn〈r1..n〉 extends c〈...〉 where ϕinv {...} ∈ P
V ={f1 →Π(v1), ..., fp →Π(vp)} fieldlist(cn〈r1..n〉)=(ti fi)i:1..p

¬(ord(�)⇒ϕinv) ∨ (∃i∈{1..p} · Π(vi)=(r′i, o
′
i) ∧

¬(ord(�)⇒(r′i�fieldregion(cn〈r1..n〉, fi)))

〈�, Π〉[new cn〈r1..n〉(v1..p)]↪→danglingerr

[D−INVOKE]

{a+, a′+}⊂dom(�)
Π(v′0) = (a1, o) �(a1)(o) = cn〈a+〉(V)

(t0 mn〈a+r′+〉((t v)1..p)where ϕ {e}) ∈ cn〈a+〉
ni=fresh() i = 0..p ρ=[r′+ →a′+] Π ′=Π+{ni →Π(v′i)i:0..p}

e′=ret(n0,ret(n1, ..ret(np, [this →n0][vi →ni]
p
i:1ρe)))

〈�,Π〉[v′0.mn〈a+a′+〉(v′1..p)]↪→〈�,Π ′〉[e′]
[D−INVOKE−DANGLERR]

¬(r+∈dom(�))

〈�,Π〉[v.mn〈r+〉(v∗)]↪→danglingerr

Fig. 7. Dynamic Semantics for Region-Annotated Core-Java: Part I
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[D−EB]

n=fresh() Π ′=Π+{(n →init(t))} e′=ret(n, e)
〈�,Π〉[{(t v) e}]↪→〈�,Π ′〉[e′]

[D−RET1]

〈�, Π〉[e]↪→〈�′, Π ′〉[e′]
〈�,Π〉[ret(v, e)]↪→〈�′, Π ′〉[ret(v, e′)]

[D−RET2]

〈�,Π〉[ret(v, δ)]↪→〈�, Π−{v}〉[δ]
[D−LETR]

a=fresh()

〈�,Π〉[letreg r in e]↪→〈[a→∅]�, Π〉[retr(a, [r→a]e)]

[D−RETR1]

〈�, Π〉[e]↪→〈�′, Π ′〉[e′]
〈�,Π〉[retr(a, e)]↪→〈�′, Π ′〉[retr(a, e′)]

[D−RETR2]

(δ=(r, o))⇒(r∈dom(�))
∀v∈Π · (Π(v)=(r, o))⇒(r∈dom(�))

∀(r1, o)∈location dom(�) · (�(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom(�)∧
∀f ∈ dom(V) . V(f)=(rf , of ) ∧ rf∈dom(�))

〈[a →Rgn]�, Π〉[retr(a, δ)]↪→〈�, Π〉[δ]
[D−RETR2−DANGLERR]

¬(a=a1)∨
¬((δ=(r, o))⇒(r∈dom(�))) ∨ ¬((∀v∈Π · (Π(v)=(r, o))⇒(r∈dom(�))))
∨¬(∀(r1, o)∈location dom(�) · (�(r1)(o)=cn〈r1..n〉(V))⇒(r1..n∈dom(�)∧

∀f ∈ dom(V) . V(f)=(rf , of ) ∧ rf∈dom(�)))

〈[a →Rgn]�, Π〉[retr(a1, δ)]↪→danglingerr

[D−IF1]

Π(v)=true
〈�, Π〉[if v then e1 else e2]↪→〈�,Π〉[e1]

[D−IF2]

Π(v)=false
〈�,Π〉[if v then e1 else e2]↪→〈�, Π〉[e2]

[D−LOOP1]

Π(v)=true
〈�, Π〉[while v e]↪→〈�, Π〉[e ; while v e]

[D−LOOP2]

Π(v)=false
〈�, Π〉[while v e]↪→〈�, Π〉[()]

[D−SEQ1]

〈�, Π〉[e1]↪→〈�′, Π ′〉[e′1]
〈�,Π〉[e1 ; e2]↪→〈�′, Π ′〉[e′1 ; e2]

[D−SEQ2]

〈�,Π〉[δ1 ; e2]↪→〈�, Π〉[e2]

[D−NULLERR1]

Π(v)=null
〈�,Π〉[v.f]↪→nullerr

[D−NULLERR2]

Π(v)=null
〈�,Π〉[v.f = δ]↪→nullerr

[D−NULLERR3]

Π(v)=null
〈�, Π〉[v.mn〈a∗〉(u∗)]↪→nullerr

Fig. 8. Dynamic Semantics for Region-Annotated Core-Java: Part II

We define the meaning of no-dangling references property at runtime. The property
refers to two kinds of references: (1) references from variable environment to store
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locations, and (2) references from store locations to other store locations. Note that the
notion of no-dangling references was introduced in Fig. 1, and a reference is formalized
as a location (r, o).

Definition 1. (live location) A location (r, o) is live with respect to a store �, if r ∈
dom(�).

Definition 2. (no-dangling)

1. A variable environment Π is no-dangling with respect to a store � if for all v
∈ dom(Π),Π(v) is either a primitive value, or a live location (r, o) with respect
to �.

2. A runtime store � is no-dangling if each region r1 ∈ dom(�) contains only ref-
erences to regions older than itself, that means that for each location (r1, o) ∈
location dom(�) containing an object value �(r1)(o)=cn〈r1..n〉(V), that object value
satisfies the non-dangling requirement for a class, such that ord(�)⇒∧

i:2..n(ri�r1)

and the current values of the fields are either primitives or references to regions
older than those expected by the region type cn〈r1..n〉, as follows:

∀f ∈ dom(V) . V(f)=(rf , of ) ord(�)⇒rf�fieldregion(cn〈r1..n〉, f)
Function fieldregion(cn〈r1..n〉, f) computes the region type of the class field f and then
returns its first region where the field is expected to be stored.

The dynamic semantics evaluation rules may yield two possible runtime errors, namely:
Error ::= nullerr | danglingerr

The first error nullerr is due to null pointers (by accessing fields or methods of null
objects). The second error danglingerr is reported when a store updating operation
or a variable environment updating operation creates a dangling reference. Our dynamic
semantics rules use runtime checks to guarantee that a danglingerr error is reported
(and the execution is aborted) whenever the program evaluation tries to create a dan-
gling reference. There are five situations that require no-dangling reference checks at
runtime:

– Creation of a new object value. Rule [D−NEW] checks whether the class invariant
holds, ord(�)⇒ϕinv (mainly whether the fields regions ri:2..n outlive the region r1

of the object). The initial value of a field is also checked to be stored in a region that
outlives the expected region of that field r′i�fieldregion(cn〈r1..n〉, fi). The function
fieldlist(cn〈r1..n〉) is defined in Fig. 6.

– Updating of an object’s field. Rule [D−ASSGN3] checks whether the region r1 of
the new location δ=(r1, o1) outlives the expected region for the object field f ,
r1�fieldregion(cn〈a+〉, f).

– Updating a variable from the variable environment. Rule [D−ASSGN2] checks
whether the new location δ=(r1, o1) assigned to a variable is live, namely its re-
gion is in the current store, r1∈dom(�).

– Deallocation of a region. Rule [D−RETR2] checks whether the region a is on the
top of the store stack. Then it checks whether a reference to a does not escape
neither through the value result δ, nor through the program variable environment
Π , nor through the object values of the store �. Note that when a new region is
allocated, in rule [D−LETR], a fresh region name is used in order to avoid region
name duplication in the store.
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– Calling a method. Rule [D−INVOKE] checks whether the method’s region argu-
ments are in the current store and then prepares the variable environment for the
method’s body execution.

The corresponding rules [D−NEW−DANGLERR], [D−ASSGN3−DANGLERR],
[D−ASSGN2 −DANGLERR], [D−RETR2−DANGLERR], and [D−INVOKE−DANGLERR]
generate a danglingerr error due to the failure of their runtime checks. In the rules
[D−ASSGN2], [D−ASSGN3], and [D−LOOP2] the result () denotes the singleton value of
type void. Note that the type void is assumed to be isomorphic to type unit. In rule
[D−EB], the locally declared variable is assigned, with the help of the function init, an
initial value according to its type as follows:

init(t) =def case t of
boolean → false
int → 0
cn〈r1..n〉 → null

5 Extended Static Semantics

In this section we extend our static semantics rules from Section 3 to include the new
intermediate constructions introduced by the small-step dynamic semantics rules in
Section 4.

First we define a valid program using a novel syntactic condition valid(e), that re-
stricts the places where the intermediate constructions may occur in a program.

Definition 3. (valid program)

1. A program is a valid program if all the program’s classes are valid classes.
2. A class is a valid class if all the class’s methods are valid methods.
3. A method is a valid method if the method’s body e is a valid block expression such

that retvars(e)=∅ and retregs(e)=∅.
4. Expression e is a valid expression if the predicate valid(e) holds, where valid(e) is

defined as follows:
valid(e) =def case e of

{(t v) e} → retvars(e)=∅ ∧ retregs(e)=∅
lhs = e → retvars(e)∩vars(lhs)=∅ ∧ valid(e)
e1 ; e2 → retregs(e2)=∅ ∧ retvars(e2)=∅ ∧ valid(e1)

∧retvars(e1)∩vars(e2)=∅ ∧ retregs(e1)∩regs(e2)=∅
if v then e1 else e2 → retregs(e1)=∅ ∧ retvars(e1)=∅

∧retregs(e2)=∅ ∧ retvars(e2)=∅
while v e | letreg r in e → retregs(e)=∅ ∧ retvars(e)=∅
ret(v, e) → v 
∈ retvars(e) ∧ valid(e)
retr(r, e) → r 
∈ retregs(e) ∧ valid(e)
otherwise → true

This condition does not restrict source-level region calculus, since intermediate con-
structions are generated during the program evaluation. A source language Core-Java
program is by default a valid program since it does not contain any intermediate ex-
pression. The above condition is based on the functions vars(e), retvars(e), regs(e), and
retregs(e) which are defined as follows:
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Definition 4. 1. The function vars(e) computes the set of all program variables which
occur in the expression e, excepting those variables introduced by e’s block subex-
pressions, as follows:

vars(e) =def case e of
ret(v, e) → {v} ∪ vars(e)
{(t v) e} → vars(e) \ {v}
retr(r, e) | letreg r in e → vars(e)
v.f = e | v = e | while v e → {v} ∪ vars(e)
v.f | v → {v}
if v then e1 else e2 → {v} ∪ vars(e1) ∪ vars(e2)
e1 ; e2 → vars(e1) ∪ vars(e2)
new cn〈r+〉(v∗) → {v∗}
v.mn〈v∗〉(v∗) → {v} ∪ {v∗}
otherwise → ∅

2. The function retvars(e) computes the set of all program variables which occur in the
ret subexpressions of the expression e, as follows:

retvars(e) =def case e of
ret(v, e) → {v} ∪ retvars(e)
retr(r, e) | v.f = e | v = e | {(t v) e} → retvars(e)
while v e | letreg r in e → retvars(e)
e1 ; e2 | if v then e1 else e2 → retvars(e1) ∪ retvars(e2)
otherwise → ∅

3. The function regs(e) computes the set of all region variables which occur in the
expression e, excepting those regions introduced by e’s letreg subexpressions, as
follows:

regs(e) =def case e of
{(t v) e} → reg(t) ∪ regs(e)
retr(r, e) → {r} ∪ regs(e)
letreg r in e → regs(e) \ {r}
ret(v, e) | v.f = e | v = e | while v e → regs(e)
(r, o) → {r}
if v then e1 else e2 | e1 ; e2 → regs(e1) ∪ regs(e2)
new cn〈r+〉(v∗) | v.mn〈r+〉(v∗) → {r+}
otherwise → ∅

where reg(t) is defined in the Figure 6.
4. The function retregs(e) computes the set of all region variables which occur in the

retr subexpressions of the expression e, as follows:

retregs(e) =def case e of
retr(r, e) → {r} ∪ retregs(e)
ret(v, e) | v.f = e | v = e | {(t v) e} → retregs(e)
while v e | letreg r in e → retregs(e)
e1 ; e2 | if v then e1 else e2 → retregs(e1) ∪ retregs(e2)
otherwise → ∅
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In order to describe the type of each location, we introduce a store typing. This ensures
that objects created in the store during run-time are type-wise consistent with those
captured by the static semantics. Store typing is conventionally used to link static and
dynamic semantics [20]. In our case, it is denoted by Σ, as follows:

Σ ∈ StoreType = RegVar⇀finOffset ⇀fin Type

The judgments of static semantics are extended with store typing, as follows:

P; Γ ; R; ϕ; Σ � e : t

For a store typing Σ : R⇀finO⇀finType, a region r, a location (r, o), and a type t we also
introduce the following notations:

dom(Σ)=R Σ(r)(o)=f(o), where f=Σ(r)
location dom(Σ)=def{(r, o) | r∈dom(Σ) ∧ f=Σ(r) ∧ f 
=∅ ∧ o∈dom(f)}
Σ−r=defΣ1 such that Σ1 : (R−{r})⇀finO⇀finType ∧ ∀r′∈(R−r) · Σ1(r

′)=Σ(r′)
Σ+r=defΣ2 such that Σ2 : (R∪{r})⇀finO⇀finType ∧ Σ2(r)=∅ ∧ ∀r′∈R · Σ2(r

′)=Σ(r′)
Σ−(r, o)=defΣ3 such that Σ3 : R⇀finO⇀finType

∧r∈R ∧ Σ3(r)=Σ(r)−{o} ∧ ∀r′∈(R−r) · Σ3(r
′)=Σ(r′)

Σ+((r, o) : t)=defΣ4 such that Σ4 : R⇀finO⇀finType
∧r∈R ∧ Σ4(r)=Σ(r)+{o→t} ∧ ∀r′∈(R−r) · Σ4(r

′)=Σ(r′)

The judgments of the new intermediate expressions are presented in Fig. 9. They as-
sume that the expressions are valid with respect to the Definition 3. The first two rules
[RC−LOCATION] and [RC−ObjVal] are used to type the store, either a location or an ob-
ject value (i.e. a location’s content). Rule [RC−ObjVal] preserves the same invariants as
those of the rule [RC−NEW]. Rule [RC−RET] ensures that the variable to be popped off,
v is in the current environment Γ . The subsumption rule [SUBSUMPTION] simplifies the
next theorems and their proofs.

Rule [RC−RETR] is similar to rule [RC−LETR], but it takes into account the evaluation
of the expression retr(r, e). The first check ensures that the region to be deallocated,

[RC−LOCATION]

r∈R Σ(r)(o) = t

P; Γ ; R; ϕ; Σ � (r, o) : t

[RC−ObjVal]
P; R; ϕ �type cn〈r1..n〉 fieldlist(cn〈r1..n〉) = (ti fi)i:1..p

P; Γ ; R; ϕ; Σ � V(fi) : t′i P; R; ϕ � t′i <: ti i=1..p

P; Γ ; R; ϕ; Σ � cn〈r1..n〉(V) : cn〈r1..n〉
[RC−RET]

v∈Γ P; Γ ; R; ϕ; Σ � e : t

P; Γ ; R; ϕ; Σ � ret(v, e) : t

[SUBSUMPTION]
P; Γ ; R; ϕ; Σ � e : t′ P; R; ϕ � t′ <: t

P; Γ ; R; ϕ; Σ � e : t

[RC−RETR]
a∈R Rt=R−lreg(e)−{a} ϕ⇒V

r∈Rt
(r�a)

reg(t)⊆Rt reg(Γ−lvar(e)) ⊆ Rt P; Γ ; R; ϕ; Σ � e : t

P; Γ ; R; ϕ; Σ � retr(a, e) : t

Fig. 9. Region Type Checking Rules for Valid Intermediate Expressions
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a is in R. The Rt denotes the regions from R which are different than a and are not
younger than a. Note that lreg(e) denotes the regions which are younger than a. The
second check ensures that our type system uses only lexically scoped regions such that
the region to be deallocated, a is always on the top of the regions stack. The third and
the fourth check ensure that the region a and the regions younger than a do not escape
either through the result or through the live variables of the type environment. Note that
lvar(e) denotes the local variables of the expression e which are deallocated from the
variable environment during the evaluation of e.

The rules from Fig. 9 are using the functions lvar(e), lreg(e), and lloc(e) which are
defined as follows:

Definition 5. Using the evaluation rules from Fig. 7 and Fig. 8

1. The function lvar(e) estimates the set of variables which may be popped off from the
variable environment Π during the evaluation of the valid expression e (note that
only ret(v, e) may affect Π), as follows:

lvar(e) =def case e of
ret(v, e) → {v} ∪ lvar(e)
retr(r, e) | lhs = e | e ; e1 → lvar(e)
otherwise → ∅

2. The function lreg(e) estimates the set of regions which may be popped off from the
store � during the evaluation of the valid expression e (note that only retr(r, e)
may affect �), as follows:

lreg(e) =def case e of
retr(r, e) → {r} ∪ lreg(e)
ret(v, e) | lhs = e | e ; e1 → lreg(e)
otherwise → ∅

3. The function lloc(e) estimates the new location which may be created into an exist-
ing region during one evaluation step of the valid expression e (note that only new
may create a new location), as follows:

lloc(e) =def case e of
new cn〈r1, .., rn〉(v∗) → {(r1, o)}
ret(v, e) | retr(r, e) | lhs = e | e ; e1 → lloc(e)
otherwise → ∅

where the offset o of the region r is the offset where the next allocation in r is done.

6 Soundness Theorems

In this section we prove the soundness of our region calculus, namely that a valid pro-
gram well-typed by our type system never creates dangling references. We use a syn-
tactic proof method [25], based on a subject reduction theorem and a progress theorem.

First we define the consistency relationship between the static and dynamic seman-
tics, namely a relationship between what we can estimate at compile-time and what can
happen during run-time execution.
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Definition 6. (consistency relationship)
A run-time environment (�,Π) is consistent with a static environment (Γ, R, ϕ, Σ),

written Γ, R, ϕ, Σ � 〈�, Π〉, if the following judgment holds:

dom(Γ )=dom(Π) ∀v ∈ dom(Π) · P; Γ ; R; ϕ; Σ � Π(v) : Γ (v) reg(Γ )⊆R
location dom(Σ)=location dom(�) dom(Σ)=dom(�) R=dom(�)

ord(�)⇒ϕ ∀(r, o)∈location dom(�) · P; Γ ; R; ϕ; Σ � �(r)(o) : Σ(r)(o)

Note that �(r)(o) returns an object value cn〈r∗〉(V) whose type is cn〈r∗〉. In our instru-
mented operational semantics an object value and its type are stored together.

The subject reduction theorem ensures that the region type is preserved during the
execution of a valid program, as follows:

Theorem 1. (Subject Reduction): If

valid(e) P; Γ ; R; ϕ; Σ � e : t
Γ, R, ϕ, Σ � 〈�,Π〉

〈�, Π〉[e] ↪→ 〈�′, Π ′〉[e′]

then there exist Σ′, Γ ′, R′, and ϕ′, such that

(Σ′−(lreg(e′)−lreg(e)))−(lloc(e)−lloc(e′)) = Σ−(lreg(e)−lreg(e′))
Γ ′−(lvar(e′)−lvar(e)) = Γ−(lvar(e)−lvar(e′))
R′−(lreg(e′)−lreg(e)) = R−(lreg(e)−lreg(e′))
ϕ′−(lreg(e′)−lreg(e)) ⇒ ϕ−(lreg(e)−lreg(e′))

Γ ′, R′, ϕ′, Σ′ � 〈�′, Π ′〉
valid(e′) P; Γ ′; R′; ϕ′; Σ′ � e′ : t.

Proof: By structural induction on e. The detailed proof is in [11].

Although the hypothesis of the above theorem contains an evaluation relation, the proof
does not use the run-time checks associated with the evaluation rules to prove that
the result of the evaluation (result and dynamic environment) is well-typed, valid and
consistent.

The progress theorem guarantees that the execution of a valid program cannot gen-
erate danglingerr errors, by proving that those run-time checks are redundant for a
well-typed valid program (the run-time checks are proved by the static semantics).

Theorem 2. (Progress) If

valid(e) P; Γ ; R; ϕ; Σ � e : t
Γ, R, ϕ, Σ � 〈�,Π〉

then either

• e is a value, or
• 〈�,Π〉[e]↪→nullerr or
• there exist �′, Π ′, e′ such that 〈�, Π〉[e] ↪→ 〈�′, Π ′〉[e′].

Proof: By induction over the depth of the type derivation for expression e. The detailed
proof is in [11].

We conclude with the following soundness theorem for region annotated Core-Java.
The theorem states that if a valid program is well-typed and is evaluated in a run-time
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environment consistent with the static environment, the result of a finite number of
reduction steps (denoted by ↪→∗) is (1) either an error different from a dangling error,
(2) or a value, (3) or that the program diverges (namely after a finite number of reduction
steps there still exists one more reduction step). The evaluation never reports dangling
errors, namely the program never creates dangling references.

Theorem 3. (Soundness) Given a well-typed valid Core-Java program P=def∗ and
the main function (void main(void){e0})∈P, where e0 is a well-typed valid closed term
(without free regions and free variables), such that retvars(e0)=∅ ∧ retregs(e0)=∅ and
P; Γ0; R0; ϕ0; Σ0 � e0 : void, where Γ0=∅, R0=∅, ϕ0=true, and Σ0=∅ . Starting
from the initial run-time environment 〈�0, Π0〉, where �0=[ ], Π0=∅, such that
Γ0, R0, ϕ0, Σ0 � 〈�0, Π0〉. Then either

〈�0, Π0〉[e0] ↪→∗ nullerr (1)

or there exist a store �, a variable environment Π , a value δ, a type environment Γ , a
set of regions R, a region constraint ϕ, a store typing Σ such that

〈�0, Π0〉[e0] ↪→∗ 〈�, Π〉[δ] Γ, R, ϕ, Σ � 〈�,Π〉 P; Γ ; R; ϕ; Σ � δ : void (2)

or for a store �, a variable environment Π , a valid expression e, a type environment Γ ,
a set of regions R, a region constraint ϕ, a store typing Σ such that

〈�0, Π0〉[e0] ↪→∗ 〈�, Π〉[e] Γ, R, ϕ, Σ � 〈�,Π〉 P; Γ ; R; ϕ; Σ � e : void valid(e)

there exist a store �′, a variable environment Π ′, an expression e′, a type environment
Γ ′, a set of regions R′, a region constraint ϕ′, a store typing Σ′ such that

〈�, Π〉[e] ↪→ 〈�′, Π ′〉[e′] Γ ′,R′,ϕ′,Σ′ � 〈�′, Π ′〉 P;Γ ′;R′;ϕ′;Σ′�e′:void valid(e′) (3)

Proof: The proof is an induction on the number of the reduction steps. We can repeat-
edly use the progress theorem (Theorem 2) to prove that there is a reduction step and
then the preservation theorem (Theorem 1) to prove that the run-time environment after
evaluation is still well-typed and the evaluation result is valid.

7 Conclusion

We have considered a region calculus consisting of an object-oriented core language
annotated with regions. We have defined the dynamic semantics for our region calculus
based on a simpler small-step rewriting relation. Some of the region calculus construc-
tions (e.g. letreg) are firstly evaluated to intermediate constructions. Therefore the
static semantics must also be extended to include these new intermediate constructions.
We have used a novel syntactic condition (valid(e)) to restrict the places where the
intermediate constructions may occur in a program. This condition does not restrict
source-level region calculus, since intermediate constructions are generated during the
program evaluation. Our dynamic semantics is instrumented with runtime checks to
guarantee that a special danglingerr error is reported whenever the program eval-
uation tries to create a dangling reference. We have defined an important consistency
relationship between the static and dynamic semantics. A store typing technique is used
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to ensure that objects created in the store during run-time are type-wise consistent with
those captured by the static semantics. We have proven the soundness of the region cal-
culus by using a syntactic proof method [25], based on subject reduction and progress.
The subject reduction theorem ensures that the region type of a valid program is pre-
served during the evaluation. The progress theorem guarantees that the evaluation of a
valid program cannot generate danglingerr errors (namely those runtime checks are
redundant for a well-typed valid program). We have proven both theorems in a modular
fashion using just a simple induction. This simple soundness proof adds confidence to
our region-based memory inference and execution systems.
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