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Abstract. In this paper, the inversion of a joint Audio-Visual Hidden
Markov Model is proposed to estimate the visual information from speech
data in a speech driven MPEG-4 compliant facial animation system. The
inversion algorithm is derived for the general case of considering full co-
variance matrices for the audio-visual observations. The system perfor-
mance is evaluated for the cases of full and diagonal covariance matrices.
Experimental results show that full covariance matrices are preferable
since similar, to the case of using diagonal matrices, performance can be
achieved using a less complex model. The experiments are carried out
using audio-visual databases compiled by the authors.

Keywords: Hidden Markov Models, Audio-Visual Speech Processing,
Facial Animation.

1 Introduction

Speech driven animation of virtual characters is playing an increasingly impor-
tant role due to the widespread use of multimedia applications such as computer
games, online virtual characters, video telephony, and other interactive human-
machine interfaces. Among the different approaches proposed in the literature
to model audio-visual data, the ones based on Hidden Markov Models (HMM)
have proved to yield more realistic results when used in applications of speech
driven facial animation.

Earlier approaches for speech-driven facial animation systems, such as the
works in [1], [2], [3] and [4], resort to different HMM structures and require the
use of Viterbi optimization algorithm [5] in the training or synthesis stages. This
leads to video predictions of limited quality due to the high noise sensitivity of
Viterbi algorithm. To address this limitation, Choi et al [6] have proposed a
Hidden Markov Model Inversion (HMMI) method for audio-visual conversion.
HMMI was originally introduced in [7] in the context of robust speech recog-
nition. In HMMI, the visual output is generated directly from the given audio
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input and the trained HMM by means of an expectation-maximization (EM)
iteration, thus avoiding the use of the Viterbi sequence and improving the per-
formance of the estimation [8]. Recently, Xie et al [9] proposed a coupled HMM
approach and derived an expectation maximization (EM)-based A/V conversion
algorithm for the CHMMs, which converts acoustic speech into reasonably good
facial animation parameters.

In this paper, a speech driven MPEG-4 compliant facial animation system
is proposed. A joint audio-visual Hidden Markov Model (AV-HMM) is trained
using audio-visual data and then Hidden Markov Model inversion is used to
estimate the animation parameters from speech data. The feature vector corre-
sponding to the visual information during the training is obtained via Indepen-
dent Component Analysis (ICA). Previous approaches based on HMMs consider
diagonal covariance matrices for the audio-visual observation, invoking reasons
of computational complexity. In this paper, the use of full covariance matrices
is investigated. Simulation results show that the use of full covariance matrices
leads to an accurate estimation of the visual parameters, yielding a performance
similar to that of using diagonal covariance matrices, but with a less complex
model and without affecting significantly the computational load.

The rest of the paper is organized as follows. An overview of the speech driven
facial animation system is presented in section 2. The AV-HMM is introduced
in section 3, where an HMMI algorithm for the general case of considering full
covariance matrices for the audio-visual observations is also derived. In section 4,
the proposed algorithm for feature extraction is described. The MPEG-4 com-
pliant facial animation technique is presented in section 5. Experimental results
and some concluding remarks are included in sections 6 and 7, respectively.

2 Speech Driven Facial Animation System Overview

A block diagram of the proposed speech driven animation system is depicted in
Fig. 1. An audiovisual database is used to estimate the parameters of a joint
AV-HMM. This database consists of videos of a talking person with reference
marks in the region around the mouth, see Fig. 2(a).

In a first training stage, feature parameters of the audiovisual data are ex-
tracted. The audio part of the feature vector consists of mel-cepstral coefficients,
while the visual part are the coefficients in a ICA representation of the above
mentioned set of reference marks. In a second training stage, the audio part of
the AV-HMM is re-trained using audio data from a speech-only database. Re-
training only the audio part of the model allows to obtain a more robust model
against inter-speaker variability, avoiding the need to record videos of speakers
with the reference marks on their faces.

For the speech driven animation, speech data is used to estimate the visual
features by inversion of the AV-HMM using the technique described in section 3.
From these data, Facial Animation Parameters (FAPs) of the MPEG-4 [10] stan-
dard are computed to generate the facial animation.
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Fig. 1. Schematic representation of the speech driven animation system

3 Audio Visual Model

In this paper, a joint AV-HMM is used to represent the correlation between the
speech and facial movements. The AV-HMM, denoted as λav, is characterized by
three probability measures, namely, the state transition probability distribution
matrix (A), the observation symbol probability distribution (B) and the initial
state distribution (π), and a set of N states S = (s1, s2, . . . , sN ), and audiovisual
observation sequence Oav = {oav1, . . . , oavT }. In addition, the observation symbol
probability distribution at state j and time t, bj(oavt), is considered a continuous
distribution which is represented by a mixture of M Gaussian distributions

bj(oavt) =
M∑

m=1

cjmN (oat, ovt, μjm, Σjm) , (1)

where cjm is the mixture coefficient for the m-th mixture at state j and N (oat, ovt,
μjm, Σjm) is a Gaussian density with mean μjm and covariance Σjm. The audio-
visual observation oavt is partitioned as oavt �

[
oT

at, o
T
vt

]T , where oat and ovt are
the audio and visual observation vectors, respectively.

A single ergodic (that is one in which transitions among all the states are
allowed) HMM is proposed to represent the audiovisual data. An alternative
to an ergodic model, would be a set of left-to-right HMMs representing the
different phonemes (with associated visemes) of the particular language. These
models have been used in the context of speech modeling by several authors,
see for instance [9]. An ergodic model provides a more compact representation
of the audiovisual data, without the need of phoneme segmentation, which is
required when left-to-right models are used. In addition, this has the advantage
of making the system adaptable to any language.
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3.1 AV-HMM Training

The training of the AV-HMM consists of two stages, each one using a different
database. In the first training stage, an audiovisual database consisting of a set
of videos of a single talking person with reference marks drawn on the region
around the mouth, is used to estimate the parameters of an ergodic AV-HMM,
resorting to the standard Baum-Welch algorithm [11]. Details on the composi-
tion of the audiovisual feature vector are given in Section 4, where procedures
to take into account audio-visual synchronization and co-articulation are also
described. In the second training stage, a speech-only database consisting of au-
dio recordings from a set of talking persons is employed to re-train the audio
part of the AV-HMM, leading to a speaker independent model. The re-training
is carried out using an only audio HMM (hereafter denoted as A-HMM), with
the same structure, which is constructed from the AV-HMM. The A-HMM has
the same transition probability and initial state probability matrices obtained
in the first stage, while the corresponding observation symbol probability distri-
bution is re-estimated from the speech-only database. The observation symbol
probability distribution is parameterized by μjm, Σjm and cjm, see equation (1).
To emphasize the mix composition of the AV-HMM, the mean and covariance
parameters can be partitioned as

μjm =
[
μa

jm

μv
jm

]
, Σjm =

[
Σa

jm Σav
jm

Σva
jm Σv

jm

]
, (2)

where the superscript a and v denote the audio and visual parts, respectively.
During the second training stage, only μa

jm and Σa
jm are re-estimated using

speech-only data. Finally, the re-estimated parameters are fed back into the
AV-HMM.

3.2 Audio-to-Visual Conversion

Hidden Markov Model Inversion (HMMI) was originally proposed in [7] in the
context of robust speech recognition. Choi and co-authors [6] used this technique
to estimate the visual features associated to audio features for the purposes of
speech driven facial animation. Typically, it is assumed [7], [6], [9] a diagonal
structure for the covariance matrices of the Gaussian mixtures, invoking reasons
of computational complexity. This assumption is relaxed in this paper allowing
for full covariance matrices. This leads to more general expressions for the visual
feature estimates.

The idea of HMMI for audio-to-visual conversion is to estimate the visual
features based on the trained AV-HMM, in such a way that the probability that
the whole audiovisual observation has been generated by the model is maxi-
mized. It has been proved [11] that this optimization problem is equivalent to
the maximization of the auxiliary function
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Q(λav; λav, Oa, Ov, O′
v) �

N∑

j=1

M∑

m=1

P (Oa, Ov, j, m | λav) log P (Oa, O′
v, j, m | λav)

=
N∑

j=1

M∑

m=1

P (Oa, Ov, j, m | λav)

[
log πj0 +

T∑

t=1

log ajt−1jt+

+
T∑

t=1

log N (oat, o
′
vt, μjtmt , Σjtmt) +

T∑

t=1

log cjtmt

]
, (3)

that is
O′

v = arg max
O′

v

{Q(λav; λav, Oa, Ov, O′
v)} , (4)

where Oa, Ov and O′
v denote the matrices containing the audio, visual and

estimated visual sequences from t = 1, . . . , T , respectively, πj0 denotes the initial
probability for state j and ajt−1jt denotes the state transition probability from
state jt−1 to state jt.

The solution to the optimization problem in (4) can be computed by equating
to zero the derivative of Q with respect to o′vt. Considering that the only term
that depends on o′vt is the one involving the Gaussians, this derivative can be
written as

∂Q(λav; λav, Oa, Ov, O
′
v)

∂o′vt

=
N∑

j=1

M∑

m=1

P (Oa, Ov, j, m | λav)×

× ∂

∂o′vt

[
T∑

t=1

log N (oat, o
′
vt, μjtmt , Σjtmt)

]
= 0 . (5)

Considering that

log N (oat, o
′
vt, μjtmt , Σjtmt) = log

1
(2π)d/2

√
|Σjtmt |

−

− 1
2

[
oat − μa

jtmt

ovt − μv
jtmt

]T [
Φa

jtmt
Φav

jtmt

Φvtat

jtmt
Φv

jtmt

] [
oat − μa

jtmt

ovt − μv
jtmt

]
, (6)

where d is the dimension of oavt and

Σ−1
jtmt

=
[
Φa

jtmt
Φav

jtmt

Φva
jtmt

Φv
jtmt

]
,

the estimated visual observation becomes

o′vt =

⎡

⎣
N∑

j=1

M∑

m=1

P (oa, ov, j, m | λav)Φv
jm

⎤

⎦
−1

×

×
N∑

j=1

M∑

m=1

P (oa, ov, j, m | λav)
[
Φv

jmμv
jm − Φva

jm(oat − μa
jm)

]
. (7)
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For the case of diagonal matrices, equation (7) reduces to

o′
vt =

[
N∑

j=1

M∑

m=1

P (oa, ov, j, m | λav)Φv
jm

]−1

×
N∑

j=1

M∑

m=1

P (oa, ov , j, m | λav)Φv
jmμv

jm ,

(8)

which is equivalent to the equation derived in [6].
As is common in HMM training, the estimation algorithms (7) and (8) are

implemented in a recursive way, initializing the visual observation randomly.

4 Feature Extraction

The audio signal is partitioned in frames with the same rate as the video frame
rate. A number of Mel-Cepstral Coefficients in each frame (at) are used in
the audio part of the feature vector. To take into account the audiovisual co-
articulation, several frames are used to form the audio feature vector oat =[
aT

t−tc
, . . . , aT

t−1, a
T
t , aT

t+1, . . . , a
T
t+tc

]T corresponding to the visual feature vector ovt.
For the visual part, the coefficients in an Independent Component representa-

tion of the coordinates of marks in the region around the mouth of the speaking
person are used, see Fig. 2(a). Let F = {f1, f2, . . . , fT } represent the training data
collected from videos. Each vector ft = [x(t)

1 , x
(t)
2 , . . . , x

(t)
P , y

(t)
1 , y

(t)
2 , . . . , y

(t)
P ]T

contains the coordinates (x(t)
p , y

(t)
p ) of each mark (p = 1, 2, . . . , P ) for the t-th

frame, t = 1, 2, . . . , T .
Let f0 be the neutral facial expression, mainly defined as the expression with

all face muscles relaxed and the mouth closed [10]. The relative facial deformation
(with respect to the neutral expression) at each frame can be computed as dt =
ft − f0, and a deformation matrix can then be defined as

D = [d1,d2, . . . ,dT ] . (9)

The different facial expressions in the training data are represented by the
columns of matrix D. The idea is to represent any facial expression as the linear
combination of a reduced number of independent vectors. The dimensionality
reduction can be performed by Principal Component Analysis [12]. The PCA
stage yields an uncorrelated set of vectors. It is desirable to have a statistically
independent set of vector so that information contained in each vector will not
provide information on any of the others. This is the main idea in ICA. Summa-
rizing, ICA after PCA will be performed on the data matrix D.

Several algorithms are available in the literature for ICA computation. The
reader is referred to [12] and the references therein. In this paper, the symmetric
decorrelation based FastICA algorithm as implemented in [13] was employed.

As a result of the ICA processing, any facial deformation can then be com-
puted as

ft =
K∑

k=1

ovtk
uk + f0 , (10)
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where {uk}K
k=1 are the independent components from D and ovtk

is the k-th
component of the visual vector ovt. The coefficients ovtk

are computed in two
stages. In the first stage, the mark locations are estimated using image processing
techniques. In the second stage, the coefficients ovtk

are computed in such a way
that the facial expression is given by the linear combination of the ICs vectors
that best match the mark estimation computed in the first stage. Details of this
procedure can be found in [14].

5 Facial Animation

As already mentioned, the facial animation technique proposed in this paper is
MPEG-4 compliant. The MPEG-4 standard defines 64 Facial Animation Param-
eters and 84 Feature Points (FPs) on a face model in its neutral state [15]. FAPs
represent a complete set of basic facial actions such as head motion, and eye,
cheeks and mouth control. FPs are used as reference points to perform the facial
deformation.

Based on the estimated facial expression for each frame, the associated FAPs
can be determined by computing the displacement of a set of marks from their
corresponding position in the neutral facial expression. For instance, the marks
encircled in red in Fig. 2(a) can be associated to FAP3 corresponding to jaw
opening. Figure 2(b) shows the resulting expression after applying the estimated
FAP3 to the neutral expression (several other FAPs, in addition to FAP3, have
also been applied to produce the mouth opening and cheek movements). Simi-
larly, several subsets of marks can be associated to the different FAPs.

6 Experimental Results

For the audio-visual training, videos of a talking person with reference marks on
the region around the person’s mouth were recorded at a rate of 30 frames per
seconds, with (320×240) pixels resolution. The audio was recorded at 11025Hz
synchronized with the video. The videos consist of sequences of the Spanish
utterances corresponding to the digits zero to nine in random order. For the
re-training of the audio part of the AV-HMM, an only-audio database con-
sisting of recordings of sequences of the utterances corresponding to the dig-
its zero to nine by 25 speakers (balance proportion of males and females) was
collected.

Experiments were performed with AV-HMM with full and diagonal covari-
ance matrices, different number of states and mixtures in the ranges [3, 20] and
[2, 19], respectively, and different values of the co-articulation parameter tc in
the range [2, 5]. In the experiments, the audio feature vector at is composed by
the first eleven non-DC Mel-Cepstral coefficients, while the visual feature vec-
tor ov is of dimension two (K = 2 in equation (10)). The performances of the
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(a) (b)

Fig. 2. (a) Real person facial expression. Marks associated to FAP3 are encircled in
red. (b) Synthesized facial expression.

different models were compared by computing the Average Mean Square Error
(AMSE)(ε), and the Average Correlation Coefficient (ACC)(ρ) between the true
and estimated visual parameters, defined as

ε =
1

TK

K∑

k=1

1
σ2

vk

T∑

t=1

[
o′vtk

− ovtk

]2
, (11)

ρ =
1

TK

T∑

t=1

K∑

k=1

(ovtk
− μvk

)(o′vtk
− μ′

vk
)

σvk
σ′

vk

, (12)

respectively, where μvk
and σvk

denote the mean and the variance of the true
visual observation, respectively, and μ′

vk
and σ′

vk
denote the mean and variance

of the estimated visual parameters, respectively.
For the quantification of the visual estimation accuracy, a separate audio-

visual dataset, different from the training dataset, was employed. The following
results correspond to a co-articulation parameter tc = 5, which proves to be the
optimal value in the given range. Fig. 3(a) and Fig. 3(b), show the AMSE and
the ACC as a function of the number of states and the number of mixtures for an
AV-HMM with full covariance matrix. In this case, equation (7) applies for the
estimation of the visual observations o′vt. As can be observed, as the number of
states and the number of mixtures increase, the AMSE increases and the ACC
decreases, indicating that the accuracy of the estimation deteriorates. This is
probably due to the bias-variance tradeoff inherent to any estimation problem.
The optimal values for the number of states and mixtures could be for this case
N = 4 and M = 2, respectively, corresponding to ε = 0.47 and ρ = 0.75.

Fig. 3(c) and Fig. 3(d), show the AMSE and the ACC as a function of the
number of states and the number of mixtures for an AV-HMM with diagonal co-
variance matrix. In this case, equation (8) applies for the estimation of the visual
observations o′vt. As can be observed, to obtain a similar accuracy a more com-
plex model (larger number of states or mixtures) is required. For this case, the
optimal values are N = 19 and M = 3, corresponding to ε = 0.47 and ρ = 0.76.
The use of full covariance matrices affects the computational complexity during
the training stage but, since this is carried out off-line, this does not repre-
sent a problem. During the synthesis stage (visual estimation through HMM
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Fig. 3. AMSE (ε) and ACC (ρ) as a function of the number of states N and the
number of mixtures M . Where (a) and (b) correspond to the case of full covariance
matrices and, (c) and (d) correspond to the case of diagonal covariance matrices.
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inversion), and due to the low dimension of the visual feature vector (K = 2),
the computational load is similar to the case of using diagonal covariance ma-
trices for the same number of states and mixtures.

The above arguments allow one to conclude that the use of full covariance
matrices is preferable from the point of view of both computational complexity
and accuracy.

The true and estimated visual parameters for the case of full covariance ma-
trices with N = 4 states and M = 2 mixtures (optimal values) are represented
in Fig. 4, where a good agrement can be observed.
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7 Conclusions

A speech driven MPEG-4 compliant facial animation system was introduced in
this paper. A joint AV-HMM is proposed to represent the audio-visual data and
an algorithm for HMM inversion was derived for the general case of considering
full covariance matrices for the audio-visual observations. The influence on the
visual estimation accuracy of the use of full covariance matrices, as opposed
to diagonal ones, was investigated. Simulation results show that the use of full
covariance matrices leads to an accurate estimation of the visual parameters,
yielding a performance similar to that of using diagonal covariance matrices,
but with a less complex model and without affecting the computational load.
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