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Abstract. Modern content-based image retrieval systems use different
features to represent properties (e.g., color, shape, texture) of the visual
content of an image. Retrieval is performed by example where a query
image is given as input and an appropriate metric is used to find the
best matches in the corresponding feature space. Both selecting the fea-
tures and the distance metric continue to be active areas of research.
In this paper, we propose a new approach, based on the recently pro-
posed Multidimensional Dynamic Time Warping (MD-DTW) distance
[1], for assessing the texture similarity of images with structured tex-
tures. The MD-DTW allows the detection and comparison of arbitrarily
shifted patterns between multi-dimensional series, such as those found
in structured textures. Chaos theory tools are used as a preprocessing
step to uncover and characterize regularities in structured textures. The
main advantage of the proposed approach is that explicit selection and
extraction of texture features is not required (i.e., similarity comparisons
are performed directly on the raw pixel data alone). The method pro-
posed in this preliminary investigation is shown to be valid by proving
that it creates a statistically significant image texture similarity measure.

Keywords: Content-Based Image Retrieval, Texture, Dynamic Time
Warping, Similarity Measure, Distance Measure, Chaos Theory.

1 Introduction

In recent years, the rapid development of information technologies and the advent
of the Web have accelerated the growth of digital media and, in particular, image
collections. As a result, new mechanisms to search on large image databases have
been proposed. One of the first approaches was keyword-matching, which uses a
textual representation and is based on the manual annotation of images with de-
scriptive keywords. This approach is not only subjective and error-prone but also
very time-consuming and cumbersome for large databases.
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Recently, automatic image labeling approaches [2,3,4] have been proposed as
an attempt to improve the manual annotation of images. In [2], image recognition
techniques are employed to automatically assign a limited number of descriptive
keywords. This approach is limited by the fact that current image recognition
methods are not completely reliable and, as a consequence, the assigned keywords
have to be verified by a person. Other works such as [3] consider the textual
context of images, in web pages, to automatically extract descriptive keywords
(such as those that appear in captions). The performance of those approaches
is lower than the one obtained by using manual annotation. Furthermore, their
applicability is limited in situations where there is no textual context (such as
in photo albums). Those textual description approaches can only obtain part of
the richness and complexity of an image’s visual content.

To overcome these problems, content-based image retrieval (CBIR) [5] was
proposed in the early 1990’s. The basic idea is to directly use the visual content
when determining image similarity. Retrieval is performed by using a query im-
age as input, which has a feature set extracted to represent its visual content
(e.g., color, shape, texture). Afterwards, an appropriate metric is applied to find
the best matches in the corresponding feature-set space. In this context, tex-
ture is one of the most important visual characteristics when defining similarity
among images.

Texture is defined as the repetition of a certain atomic pattern (or texton)
residing in a region. For a low-level image analysis, texture features play a very
important role in distinguishing textured regions from one another based on the
measurement of optical homogeneity of surfaces. In the 1970’s, Haralick et al.
[6] proposed the first systematic analysis of texture by using a co-occurrence
matrix, which describes the distribution of co-occurring pixel values at a given
offset. Based on such matrix, several texture features (e.g., contrast, entropy),
which explore the spatial dependence of pixel values, can be extracted. Other
researchers carried on investigating texture. For example, Tamura et al. [7] de-
veloped a set of texture features designed to measure the visual properties of
coarseness, contrast, directionality, line-likeness, regularity, and roughness which,
based on conducted psychological experiments, are thought to dominate human
visual perception of texture. Research into other techniques, such as the use of
wavelet-based texture features, has also been very active.

When considering texture similarity, the selection of both a set of features
and a distance metric continues to be the most critical decision. The selection of
features requires the application of methods to extract the most relevant visual
characteristics, which are then used to compare to other textures. The distance
metric is responsible for the comparison of the feature values of different textures.

The complexity of feature extraction and the observation that structured tex-
ture contains regular repeated patterns has motivated this work to investigate
the suitability of the Dynamic Time Warping (DTW) distance [8] as a feature-
independent (i.e., based on the raw pixel values only) measure of image texture
similarity. DTW was designed to find the minimal distance between two series
considering their synchronization through shifts. In this context, we consider raw
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pixel data to compute texture similarity. All the relevant features of a texture
are, in some way, ”hidden” in the raw information. Besides that, any feature ex-
traction technique has its limitations because, as of yet, no one has completely
figured out and implemented a technique that is able to obtain the same charac-
terization quality as a person. Thus, instead of attempting to determine texture
similarity based on a small set of (probably incomplete) features, we find that it
may be advantageous to use a similarity measure that is based on the raw data
itself.

The objective of this research is to obtain some preliminary evidence as to
whether a DTW-based feature-independent texture similarity measure can ac-
tually result in a good, and statistically significant, retrieval performance. This
paper is organized as follows: Section 2 introduces the chaos theory concepts of
Embedded and Separation dimensions, which are used as a preprocessing step
to obtain a descriptive representation of textures. In Section 3 we introduce the
traditional and multi-dimensional DTW. Our approach (and its evolution) is
described in section 4. Experimental results with a real data set are presented
in Section 5. Finally, concluding remarks are given in Section 6.

2 Embedded and Separation Dimensions

The occurrence of repeated patterns, in structured textures, has encouraged us
to investigate a similarity measure which considers textures as series of events.
From that, we decided to consider DTW, a technique that can measure the mini-
mal distance between two series, by considering possible synchronization points.
Although, during our studies, we observed that the original image representation
may not be the most suitable when uncovering the regularities and patterns of
textures. Based on such conclusion, we decided to consider chaos theory tools
to unfold and reorganize data textures according to possible hidden regularities.
The concepts considered in this work are presented next.

Chaos theory is defined as the qualitative study of unstable aperiodic behavior
in deterministic nonlinear dynamical systems [9,10]. Attempts to understand the
behavior of such systems have led to the development of several works (e.g.,
[10,11]) which aim at characterizing possible internal regularities. In order to
understand how the internal regularities can be obtained, consider the logistic
equation (1) with the initial conditions t ∈ [0, 4000], b = 3.8 and x0 = 0.5.

xt+1 = b × xt × (1.0 − xt) (1)

Figure 1(a) presents the outputs for the logistic function. If we directly apply
a similarity measure comparing this series to another one, we may obtain bad
results. A better solution comes by applying chaos theory tools to unfold the
full series behavior through two dimensional analysis: the embedded and the
separation dimensions. By obtaining those two dimensions, we can understand
how information has to be represented in the space, before using it in further
comparisons (in the case of texture retrieval).
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Fig. 1. Logistic Function

Whitney [12] proposed that a series x0, x1, ..., xn−1 could be reconstructed
into a multidimensional space xn(m, τ) = (xn, xn+τ , ..., xn+(m−1)τ ) where m is
the embedded dimension and τ is a fixed time delay. According to this study,
each series can be reconstructed and, consequently, simplified to be understood
and compared. To better understand those dimensions, consider the same logistic
function outputs reconstructed in a multidimensional space where m = 2 and
τ = 1. This reconstruction, which is basically the plot of xt versus xt+1, is
presented in figure 1(b). Now the behavior of the logistic function, which was
apparently a random walk (figure 1(a)), can be understood and modeled in an
easier way.

Basically, the embedded dimension defines the number of axis that we will plot
the series to unfold its full behavior. Some series can only be understood when
using more than two dimensions. Besides the embedded, there is the separation
dimension which helps to extract the periodic behavior of a series. This basically
tells the number of points we may look back in the history to detect regular
behavior (or patterns, this is also known as the seasonability of the series). Next
we discuss how to determine good values for both dimensions.

According to Abarbanel [13] we have to apply the autocorrelation function
(equation (2), where E[.] is the expected value, μ is the average, k is the time
shift size and σ2 is the variance) on a series and use its first minimum as the
separation dimension. The autocorrelation measures how well the series matches
itself considering a time separation. This is useful to find repeated patterns in a
series. However, this technique is formulated for linear series, and, consequently,
it may not present good results for non-linear and chaotic ones.

ACF (k) =
E[(Xi − μ)(Xi+k − μ)]

σ2 (2)

Fraser and Swinney [14] studied and confirmed that the Auto Mutual In-
formation (AMI) technique presents better results to estimate the separation
dimension. This technique is not linear-dependent, and consequently is more in-
teresting for this work. To use this technique we must calculate it for different
time shifts and adopt the first minimum of the function. The average mutual
information is defined in equation (3) where X and Y have, respectively, the
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probability distribution functions PX , PY and X and Y occur in pairs with the
joint distribution PXY [15].

I(X ; Y ) =
∫

dxdyPXY (x, y) log2
PXY (x, y)

PX(x)PY (y)
(3)

After defining the separation dimension we must find the embedded dimen-
sion. Takens [16] and Mañé [17] studied and confirmed that the upper limit of
the embedded dimension De, an integer value, can be defined using the fractal
dimension Df according to De > 2.0 × Df . Although this dimension is usually
larger than necessary. For instance, the fractal dimension of the Lorenz attractor
is 2.06 [18], consequently the upper limit of the embedded dimension would be
De > 2.0 × 2.06, then it is 5. Although, according to [19] the attractor can be
represented in De = 3. The important point here is that we can represent the
attractor with a number of dimensions smaller than 5, which reduces complexity.
From a mathematical point of view, using either 3 or 5 results in no difference,
because once the attractor is unfolded the analysis can be conducted. Although,
if we unnecessarily work with more dimensions, we add complexity and execu-
tion time to obtain solutions [19]. This conclusion motivated works on how to
define a good embedded dimension for different series.

The traditional approach to obtain the minimum embedding dimension is by
calculating any system invariant (such as the Lyapunov exponent) to different
embedded dimension values and observe when it saturates. The complexity of
this approach motivated Kennel et al. [19] to propose the False Nearest Neigh-
bors (FNN) method. In FNN, the nearest neighbors for each point, in the space,
are calculated, initially with the embedded dimension equal to 1. Then, the Eu-
clidean distance from the point to its nearest neighbor is calculated. Afterwards,
a new dimension is added and the distance of the point to its nearest neighbor
obtained. If this distance increases, those two points are considered false neigh-
bors. This happens because the attractor being modeled needs more dimensions
to be unfolded and studied.

Kennel et al. [19] consider a embedded dimension d where the rth nearest neigh-
bor of y(n) is y(r)(n). The Euclidean distance between the point y(n) and its rth

nearest neighbor is obtained by equation (4). Adding a new dimension, we go for
d + 1 and add the coordinate (d + 1)th in each vector y(n). The new coordinate is
x(n + Td) which is included in the new Euclidean distance equation (5).

R2
d(n, r) =

d−1∑
k=0

(x(n + kT ) − x(r)(n + kT ))2 (4)

R2
d+1(n, r) = R2

d(n, r) + (x(n + dT ) − x(r)(n + dT ))2 (5)

Then, the criterion is to measure the distance variation when adding the new
dimension as presented in equation (6).

Vn,r =

√
R2

d+1(n, r) − R2
d(n, r)

R2
d(n, r)

=
|x(n + Td) − x(n)(n + Td)|

R2
d(n, r)

(6)
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The authors indicate that, if Vn,r > Rtol, then the points are considered false
neighbors, where Rtol is a threshold. They conclude that Rtol ≥ 10.0 is enough
to generate good results. This reconstruction, using the embedded and separa-
tion dimensions, unfolds the attractor and can be applied to any series. After
unfolding, we can better and more easily study the behavior of a series. Then,
we use the new dataset (the reorganized representation of the image) to compare
against others. This new representation has less complexity to understand the
image regularities and, consequently, to model it.

3 Multi-Dimensional Dynamic Time Warping

The distance between two hypothetical series can be quantified using different
measures, one of them is Dynamic Time Warping (DTW) [8]. This technique
aligns two series to find the ideal warp (the best synchronization point) in order
to minimize the distance between them.

In order to understand it, consider two series S = s0, s1, ..., sm−1 and T =
t0, t1, ..., tn−1 of length m and n, respectively. Firstly, DTW (algorithm 1) cre-
ates an m-by-n matrix d where each element (ith, jth) represents the distance
d(Si, Tj) = (Si − Tj)2 between each pair of points Si and Tj. Afterwards, DTW
creates a new matrix D to accumulate the total distance between each possible
pair of points of the two series. This step fills out the matrix D where the ele-
ments represent all possible alignments (synchronizations) of the two series and
their distances.

After calculating the matrix, the DTW distance is computed through the sum-
ming of the shortest possible path that starts at the right bottom of the matrix
and goes up to the left-top element. This path represents the best synchroniza-
tion between the two series and the sum of all of its matrix elements is the
DTW distance. DTW was designed for one-dimensional series. However, there
are many applications in which calculating an optimal alignment requires the
use of multi-dimensional series. Holt et al. [1] proposed the Multi-Dimensional
Dynamic Time Warping (MD-DTW), an approach to calculate the DTW by
synchronizing multi-dimensional series, which is basically an extension of the
original DTW, where the matrix D is created by computing the distance be-
tween k-dimensional points (where, differently from the original approach, k
can be larger than 1). This approach preprocesses the multi-dimensional series,
which must have the same number of dimensions, according to algorithm 2. The
last step of this algorithm is the execution of the traditional DTW (algorithm 1)
considering the matrix D as the result of the preprocessing phase.

4 Proposed Approach

The first investigations we conducted, using DTW as a similarity measure to
retrieve images, generated better results than random retrieval. Firstly, each
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Algorithm 1. Dynamic Time Warping Algorithm
Let m and n be the length of the series S and T , respectively.
Let d be the matrix which computes the distance of pairs of values of S and T .
for i = 0 to m − 1 do

for j = 0 to n − 1 do
d[i][j] = (S[i] − T [j])2;

end for
end for
Let D be the matrix with the DTW distance among pairs of elements of series S and T .
D[0][0] = d[0][0];
for i = 1 to m − 1 do

D[i][0] = d[i][0] + D[i − 1][0];
end for
for j = 1 to n − 1 do

D[0][j] = d[0][j] + D[0][j − 1];
end for
for i = 1 to m − 1 do

for j = 1 to n − 1 do
D[i][j] = min(D[i − 1][j], D[i − 1][j − 1], D[i][j − 1]) + d[i][j];

end for
end for
The total DTW distance between the two series is stored at the matrix element D[m − 1][n − 1].

Algorithm 2. Multi-dimensional Dynamic Time Warping Algorithm
Let S, T be two series of dimension K and length n and m, respectively.
Normalize each dimension of S and T separately to a zero mean and unit variance.
Fill the matrix D according to:
D(i, j) =

∑ K
k=1 |S(i, k) − T (j, k)|

Consider the matrix D to compute the traditional DTW algorithm (instead of the matrix D of
the traditional approach).

RGB color image was converted to the corresponding grayscale image. After-
wards, we applied a Laplace edge detection algorithm to the grayscale images.
Then, before applying DTW as the similarity measure, we organized the pixel
values of the preprocessed images in two different ways. To better understand
them, let P = {p0,0, p0,1, ..., p1,0, p1,1, ..., pr−1,c−1}, where 0 ≤ pi,j ≤ 255 is the
grayscale value of the pixel at the intersection of the ith row and jth column of
an image with r rows and c columns, be the matrix representation of an image.
In the first way, we organized the series using the pixels in the following or-
der {p0,0, p0,1, ..., p1,0, p1,1, ..., pr−1,c−1}; in the second approach, the pixels were
organized as {p0,0, p1,0, ..., p0,1, p1,1, ..., pr−1,c−1}.

After organizing the pixels, we conducted experiments comparing images by
using the two different orders but the results were inconsistent (i.e., most query
images resulted in very different retrieval performances when using the two or-
ders). Thus, the first conclusion was that neither one of this one-dimensional
orders was a good representation of image textures. That is, the original texture
representation may not be the most suitable for uncovering existing regularities
or patterns. This motivated us to study and apply chaos theory tools to perform
optimal data reorganization.

For each image, the embedded and the separation dimensions, were first
computed. Then, each image was reconstructed into a multidimensional space
xn(m, τ) = (xn, xn+τ , ..., xn+(m−1)τ ) where m is the embedded dimension and
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τ is the separation dimension. The resulting multi-dimensional series were then
used as the input for MD-DTW-based similarity comparisons.

5 Experimental Results

Consider a database consisting of a set of images D. Let x be a query image and
A ⊂ D be the subset of images in D that are relevant to x. After processing x, the
image retrieval method generates R ⊂ D as the retrieval set. Then, R+ = R∩A
is the set of relevant images to x that appear in R. Users want the database
images to be ranked according to their relevance to x and then be presented
with only the k most relevant images so that |R| = k < |D|. Thus, images
are ranked by their distance to the query image and, in order to account for the
quality of image rankings, precision at a cut-off point (e.g., k) is commonly used.
Thus, the performance of the image retrieval method is commonly measured by
precision, which quantifies the ability to retrieve only relevant images and is
defined as precision := |R+|

|R| .
The objective of our experiments was to obtain preliminary evidence as to

whether the proposed approach actually creates a statistically significant image
texture similarity measurement. Therefore, we tested its performance against
a uniform random retrieval to select the images in R. The Texture data set,
obtained from MIT Media Lab [20] was used for evaluation. There are 40 different
texture images that are manually classified into 15 classes. Each of those images
is then cut into 16 non-overlapping images of size 128x128. Thus, there are 640
images in the database. Sample images are shown in figure 2.

Fig. 2. Sample images from Texture data set

Each image was used as a query and the precision and recall of a retrieval
set of k ∈ [1, 640] nearest images was measured. The results of our approach
and the random retrieval are presented in figure 3, which shows the degradation
of precision as k increases. That is, attempting to increase recall results in the
introduction of more non-relevant images into R. Thus, precision-recall graphs
have a classical concave shape. In order to increase both precision and recall,
the curve should move up and to the right (as observed after the initial decrease
(i.e., at the middle) of the curve in figure 3) so that both recall and precision
are higher at every point along the curve.
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It is common to compare retrieval methods by using a fixed retrieval set size.
A reasonable (and commonly used) value for the size of the retrieval set k = 20.
The average precision over the 640 queries with k = 20 for the proposed approach
and for random retrieval was 0.594 and 0.079 respectively. As can be observed
by these results and figure 3, the proposed approach performed surprisingly well
and is obviously statistically different than uniform random retrieval. Table 1
shows the average precision for each of the texture classes shown in Figure 2.

Table 1. Average Precision for each of the 15 texture classes shown in figure 2

Class Average Precision Class Average Precision Class Average Precision
1 0.974 2 0.970 3 0.797
4 0.998 5 0.422 6 1
7 0.134 8 0.573 9 0.786
10 0.263 11 0.190 12 0.472
13 0.238 14 0.194 15 0.979

6 Conclusions

Based on the observation that structured image textures contain repeated pat-
terns, we investigated the possibility of using the MD-DTW [1], which allows for
the comparison of arbitrarily shifted patterns in multi-dimensional series, as a
measure of image texture similarity. Chaos theory tools were used in the prepro-
cessing step in order to allow the identification, characterization and unfolding
of regularities in the raw data of structured textures. The main advantage of
the proposed approach is that explicit selection and extraction of texture fea-
tures is not required (i.e., similarity comparisons are performed directly on the
raw pixel data alone). The proposed approach performed surprisingly well when
compared against uniform random retrieval thus proving that it creates a sta-
tistically significant image texture similarity measure. This is an encouraging
preliminary result that motivates us to continue to work on the MD-DTW as a
feature-independent measure of texture similarity.
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