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Abstract. Patrolling refers to the act of walking around an area, with
some regularity, in order to protect or supervise it. A group of agents
is usually required to perform this task efficiently. Previous works in
this field, using a metric that minimizes the period between visits to
the same position, proposed static solutions that repeats a cycle over
and over. But an efficient patrolling scheme requires unpredictability,
so that the intruder cannot infer when the next visitation to a position
will happen. This work presents various strategies to partition the sites
among the agents, and to compute the visiting sequence. We evaluate
these strategies using three metrics which approximates the probability
of averting three types of intrusion - a random intruder, an intruder that
waits until the guard leaves the site to initiate the attack, and an intruder
that uses statistics to forecast how long the next visit to the site will be.
We present the best strategies for each of these metrics, based on 500
simulations.

1 Introduction

Patrolling an environment can be seen as finding efficient ways of performing
visits to all the important points of a given area. This task can be considered
inherently multiagent-like since in most cases the process will be started in a
distributed manner, by a group of agents. Research on multiagent patrolling,
however, is not limited to patrolling real-world problem, but they can find ap-
plications on several domains, such as network security systems and games. In
other words, patrolling can be useful in any domain characterized by the need
of systematically visiting a set of predefined points. Additionally, it is important
to keep the visit order secret, since an intruder could use it to plan a path that
avoids being seen by the patrols.

The existing works in the area give priority to shorten the time spent between
visits to all the regions in the environment, proposing methodologies without
any kind of variation in the order which the points are visited. Although these
methods achieve an efficient way of performing the visits, the order with which
the nodes are visited can be easily deducted by any external intruder. By knowing
the visit-order and the period between visits, an intruder can mount a successful
intrusion. For example, if the intruder knows that a security guard visits a safe
with a combination lock every 50 minutes regularly, he may successfully open
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the lock, even if the whole process takes longer than 50 minutes. By interrupting
his attempt just before the guard arrives and hiding, and because his attempt
does not leave a traces in the lock that can be recognized by the guard, the
intruder will have time to try all lock combinations until he can open the safe.
Of course if the intruder is trying to open the safe by cutting it with a welding
torch, the interruption trick will not work. If cutting the safe takes 60 minutes,
then a guard that returns every 50 minutes guarantees that the intrusion will be
stop. But if cutting the safe takes 40 minutes, and the intruder can wait until
the guard leaves the safe to start the attack, then a fixed period of 50 between
visits will not detain the intrusion. Thus, depending on the type of intrusions,
unpredictability of the period of the visits, or at least variability may be more
important than shortening the period.

In this work, we will model the problem of patrolling as a problem of visiting
vertices in a graph. The patrol will move from vertex to vertex, transversing the
edges. Each edge has a value that corresponds to the time needed to traverse it.
Each vertex is a place that needs to be observed for intruders, but we will assume
that such observation are instantaneous. Each patrol will be called an “agent”.
The intruder will choose a vertex, and will stay some time at that location to
achieve the intrusion or attack. If a patrol visits the vertex while the intruder
is there, the attack has been averted. If not, the attack is successful and the
patrolling task failed. Intruders do not move in the graph.

The multiagent patrolling task can be partitioned into two almost orthogonal
decisions: if and how to divide the work, and how to select the visiting sequence
for each agent. The first decision is whether all agents will patrol the whole
graph or if each one will have a different subgraph to patrol. We call the second
alternative the decision to partition the graph, and for the lack of better name, we
call the alternative a non-partitioning decision. If the graph will be partitioned,
then one has to decide on how to select the subgraphs that will be assigned to
each agent. We call it the partition algorithm.

Independent of the partitioning decision, one has to select the sequence of
vertex visitation for each agent. We call this the sequencing algorithm. In this
paper we will only deal with homogeneous agents, that is, they all use the same
sequencing algorithm. The combination of the partitioning decision, the partition
algorithm (if needed) and the sequencing algorithm is known as a strategy.

This paper is organized as follows: the next section briefly describes previous
works on multiagent patrolling; section 3 introduces our approach in details;
section 4 presents an experimental evaluation; and, in section 5, we discuss the
results and directions for the future.

2 Related Work

The use of multiples agents, acting cooperatively or not, to perform search of in-
truders or a patrolling tasks, have been studied by many researchers. [1] proposed
the combination of map-learning and pursuit of invaders in a single problem, us-
ing a greedy policy that directs the pursuers at each instant to the location
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that maximize the probability of finding an invader. [2] studied the problem of
generating near-optimal trajectories that will be followed by several agents to co-
operatively search for targets in an environment with some a priori information
about the target distribution. [3] investigated multiagent pursuit of targets that
become observable for short time periods, this is used by each agent to estimate
the next position of any intruder. [4] studied the use of stochastic rules to guide
agents motions in order to perform the surveillance task. Their main interest was
to define the rate at which the Markov chain converges to its steady state distri-
bution. Thus they have not defined any evaluation criteria to precisely measure
effectiveness of their strategies, and have not made any comparison with other
possible architectures.

Very relevant to this work, is the work of Machado et al[5], which was fol-
lowed by others [6,7,8,9]. These works also model the problem of patrolling as
graph traversal. Their goal was to reduce the period between two consecutive
visits to any vertex. In [5] they explore different alternatives for a local decision
(by each agent) on the next vertex to visit, based on properties of the agents
and communication abilities. [8] considered the use of reinforcement learning to
discover plans for traversing the graph. All these are variations to the sequenc-
ing algorithm. [9] explores alternatives for the partitioning algorithm based on
different alternative of negotiations protocols among the agents.

[6] uses the well-know travelling salesman problem (TSP) as a sequencing
algorithm. Consider the problem of minimize the period between two consecu-
tive visits to a vertex. This problem can be seen as finding the minimal cycle
that contains all the vertexes in the graph, which is exactly the TSP definition.
Although this is a NP-hard problem, there techniques to solve TSP can now
determine the optimal result on very large instances of the problem. The stan-
dard TSP solution is designed for one agent traveling the graph. Two multiagent
extensions were proposed: the first dispose the agents on the TSP-cycle, keep-
ing an approximate distance between them. The second strategy partitions the
graph into disjoint regions, each agent is assigned to patrol one region. Except
for specific cases, the cyclic strategy achieved better result. As the expected, the
TSP-based solution achieved the best results of all other alternatives for most
cases.

3 The Probabilistic Patrolling Problem

3.1 Evaluation Criteria

We define three evaluation criteria for any solution to the problem. These criteria
are approximations to detecting an attack by three different kind of intruder.

The random intruder will start an attack on a random node at a random
time. The attack must last A to be successful. If within the time interval A, a
agent visits the attacked vertex, the intrusion is averted.

The waiting intruder will wait (hidden) until the agent leaves a (random)
vertex and start the attack then.
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The statistical intruder will collect statistics on the period between visits
to a random node and will initiate the attack whenever the data assures that
it is safe to attack. The statistical intruder keeps a visit history, and computer
the correlation ρ between the period of two consecutive visits to its goal node.
Given that the last period to visit the node was x, the attacker will search the
visit history to the node and find out the closest period to x in the record, and
discover the following visit period y. If y × ρ > A the intruder will initiate the
attack. ρ is a measure of how certain the intruder is that the next period will be
y (because it was so in the past).

These intruders are in an increasing order of sophistication. The metrics are
approximations to the probability of averting each of these intruders. PRI(A) is
the probability of catching a random intruder with attack of length A. PWI(A)
is the probability of catching a waiting intruder, and PSI(A) is the probability
of catching a statistical intruder.

3.2 Sequencing Algorithms

We discuss two main alternatives to the sequencing algorithm. The random walk
alternatives, have high variability and unpredictability, while the TSP-based
solutions achieve shorter visiting periods, but have lower variability.

Random walk based: The intuitive idea of the random walk is to take suc-
cessive steps, each one in a random direction. In graphs, random walks are
discussed in [10]. There are theoretical results that with enough time every ver-
tex in a graph will be reached, and there are lower and upper bounds to cover
completely a graph. Since, every vertex will be visited in a random walk, one can
consider using random-based solutions as the sequence algorithm. We propose
two random based algorithms:

– Local random algorithm: The agent will choose randomly one vertex
among all the adjacent nodes.

– Global random algorithm: The agent will choose randomly any vertex of
the graph to be the next objective-node. To reach this vertex in case there is
no direct edge between the current vertex and the objective-node, the agent
will use the shortest path between them.

TSP-Based: As discussed above, a solution to the travelling salesman problem
(TSP) on the graph is clearly a sequence that will minimize the period between
visits to each node in the graph. But this solution has no variability or unpre-
dictability, and thus will not stop some of the intruders discussed above. But
given the TSP solution to a graph, there are alternatives to add variability to
the sequence of visits.

– Original TSP: This is the sequence generated by the TSP solution of the
graph. The TSP cycle is repeated continuously until the end of the task.

– TSP with local visits: The TSP cycle is covered over and over, but for
each node visited, the agent decides randomly with probability LV% if a local
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visit will be performed or not. A local visit consists in visiting one neighbor
of the current node, after this the agent returns to the original node and the
next node in the cycle will be visited.

– TSP with local changes: This algorithm proposes that for each cycle the
agent will perform a random local change in the TSP-cycle. Two nodes are
chosen randomly and the order in which they appear in the TSP-cycle is
exchanged. For example, if the original TSP-cycle was {v1, v2, v3, v4, v5, v6},
and the two nodes chosen were v2 and v5 then the new cycle would be:
{v1, v5, v3, v4, v2, v6}.

– TSP rank of solutions: This algorithm is based on the fact that although
there may be only one optimal solution, sub-optimal solutions to the TSP
problem may also be efficient, and will provide variability. It is possible to
some branch and bound TSP solvers to generate also other, sub-optimal
solutions. Every time a feasible solution is found, it is stored in a priority
queue. The TSP solver will return not only the optimal solution (which is the
first element in the queue), but the K first elements of the heap, provided
the cost of each solution is less than twice the cost of the optimal solution.
The TSP rank of solutions algorithm will for each cycle, choose randomly
one of the K solutions returned by the altered TSP solver.

3.3 Partitioning

Non-partitioning Cyclic Strategy: In this strategy all the agents will act
with the same set of nodes. Although the vertices which the agents will have ac-
cess are the same, they will act independently making their decisions without any
influence from others agents. Nevertheless, it is very important to defined a way
in which the agents will be distributed initially in the graph. Two alternatives
are presented:

– Random cycle: in this alternative the agents will be distributed randomly
through all the vertices of the graph, the only criteria followed was that one
vertex can not be assigned to more than one agent.

– Approximate equal distance cycle: the second alternative distribute
the agents equidistantly in the TSP-cycle, that is, from one agent to the
next in the cycle there exists a constant distance, that will be repeated to
all the agents. This constant distance is equal to the optimal TSP-solution
size divided by the number of agents. In many cases, however, the perfect
distribution of the agents will not be possible. Hence, this strategy finds
the best, but not necessarily optimal solution. This is achieved by verifying
all the possibilities and choosing the one which less distortion of the ideal
equidistant distribution.

Partition algorithms: The problem of partitioning a graph is well known and
important in a wide range of applications. There are, however, many possible
approaches to perform this task, all of them based on different premises and
goals. Three possibilities were explored in this work.



Probabilistic Multiagent Patrolling 129

– Multilevel graph partitioning: This partitioning scheme gives priority to
the size of the resulting partitions. Although, for the multiagent patrolling
problem a fair partitioning of the graph is one where the distances travelled
by each agent are equal, we approximate this requirement to determining
subgraphs with approximately the same number of vertexes.

– K-Means: We use the K-means clustering algorithm [11] to partition the
graph in K clusters based on the euclidean distance of each vertex to the
prototype of each cluster (see section 4.1 for the discussion on “euclidean
distance” of vertexes).

– Agglomerative hierarchical clustering: Agglomerative hierarchical clus-
tering [11] is also a clustering algorithm, and in particular using the single
linkage alternative for metric for the algorithm seems to closely correspond
to the idea that close by vertexes should be joined into the same cluster, and
that each agent should be responsible for one of the K clusters.

After the partitioning process, each agent will be assigned to each partition.
And without any influence or knowledge about another agents, the patrol task
will be performed in its partition.

4 Results

4.1 Experimental Scenario

To evaluate the different alternatives, we developed a graph generator that gen-
erates instances of a patrolling problem. We will now describe the way graphs
are generated. Parameters of the generation process will be written in uppercase,
and are defined manually.

1. Randomly decide the number of vertices n ≤ MAXn that the graph will
contain. The vertices will occupy a 2D square of size MAXc

2. Each vertex v ∈ V have their 2D coordinates chosen randomly provided that
different vertexes are sufficiently distant from one another, that is ∀(v1 �=
v2) ∈ V, dist(v1, v2) ≥ MINdist where dist(v1, v2) is the euclidean distance.

3. Create edges between each pair of vertexes and randomly select elimv <
CHelim of those edges to be eliminated, but keeping the graph connected.

4. For each edge e that remains in E, calculate the euclidean distance between
vertexes W − e. With probability 1 − CHd the weight of the edge will be
We and with probability CHd the weight will be the distance multiplied by
a distortion De randomly selected from 1 to MAXd.

4.2 Simulation Details

In our experiments we used 500 graphs, the minimal distance between vertexes
(MINdist) was 2, the size of the 2D square (MAXc) was defined as 100 × 100.
Each graph had between (MINn) 80 and (MAXn) 100 vertexes. The chance of
an endge has its weight distorted (CHd) was 15% and the distortion (MAXd)
was at most 20%. The chance of an edge been removed (CHelim) was 5%. Each
experiment were run with 2, 4 and 6 agents. For each of the 500 evaluation
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scenarios created, we ran all strategies. Each simulation had a total time execu-
tion limited by 100 × TSPcycle, where TSPcycle is the time needed to travel the
TSP-cycle of the graph. Each time we used the k-means to partition a graph,
the algorithm was executed five times, with different seeds, and the best solution
was chosen.

For the TSP based solutions, we used TSP solvers based on 1-tree relaxation of
the branch and bound algorithm (see [12]). For the multilevel graph partitioning,
we used the software METIS [13].

The PRI, PWI, and PSI are evaluated on just one randomly selected vertex
of the graph. To calculate the PRI we use a Monte Carlo approach - given all
visit times for the vertex, we generate 50 random attacks for each simulation,
and count the number of failed attacks. The PWI and PSI are calculated deter-
ministically - for each simulation we compute the number of failed attacks, and
the number of tries. We used 5 different attack intervals based on the TSP-cycle
divided by the number of agents, which we abbreviate as T/n: 1

8 ×T/n, 1
4 ×T/n,

1
2 × T/n, 1 × T/n and 2 × T/n.

4.3 Results

Tables 1, 4.3 and 3 are the main results of this work. They list for all attack
intervals, the average rate with which the intrusion was averted in the five best
solutions found considering separately each evaluation criterion. We calculated
this average rate considering only experiments that have at least one attack try.
The tables are ordered by decreasing value of general effectiveness (the average
for all values). Table 1 is the data for PRI, table 4.3 for PWI, and table 3
for PSI.

Table 1. PRI

Number of Partition Sequencing PRI(%)
Agents Scheme Algorithm 1

8 × T
n

1
4 × T

n
1
2 × T

n
1 × T

n
2 × T

n

K-Means Original TSP 12 24 47 91 100
K-Means TSP local visits 11 22 44 84 99

2 Equal distance cycle Original TSP 12 23 43 76 99
K-Means TSP rank 11 22 43 79 98

Random cycle Original TSP 12 23 43 74 99
K-Means Original TSP 12 23 47 87 100
K-Means TSP local visits 11 22 44 83 99

4 K-Means TSP rank 11 22 42 77 98
Hierarchical Original TSP 12 24 44 68 93

Equal distance cycle Original TSP 12 23 41 69 94
K-Means Original TSP 13 25 49 87 100
K-Means TSP local visits 12 24 48 85 100

6 K-Means TSP rank 12 23 45 78 98
Hierarchical Original TSP 12 24 46 76 96
Hierarchical TSP local visits 12 23 45 73 94
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Table 2. PWI

Number of Partition Sequencing PWI(%)
Agents Scheme Algorithm 1

8 × T
n

1
4 × T

n
1
2 × T

n
1 × T

n
2 × T

n

Random cycle Original TSP 7 12 25 50 100
Equal distance cycle Original TSP 6 11 25 50 100

2 Equal distance cycle TSP rank 7 14 26 50 89
Random cycle TSP rank 7 13 26 50 89
Random cycle TSP local visits 6 12 24 46 89
Random cycle Original TSP 8 17 32 57 88

Equal distance cycle Original TSP 8 16 32 57 88
4 Random cycle TSP rank 9 17 32 56 85

Equal distance cycle TSP rank 9 17 32 56 85
Equal distance cycle TSP local visits 9 16 31 54 83
Equal distance cycle Original TSP 9 19 35 60 87

Random cycle Original TSP 9 19 35 59 87
6 Random cycle TSP rank 10 19 34 58 85

Equal distance cycle TSP rank 10 19 34 58 84
Equal distance cycle TSP local visits 9 18 33 56 83

Table 3. PSI

Number of Partition Sequencing PSI(%)
Agents Scheme Algorithm 1

8 × T
n

1
4 × T

n
1
2 × T

n
1 × T

n
2 × T

n

Random cycle TSP rank 6 10 17 28 81
Equal distance cycle TSP rank 6 11 18 28 72

2 Equal distance cycle TSP local visits 6 12 22 29 44
Random cycle TSP local visits 5 11 20 27 43

Multilevel partition TSP local visits 1 4 7 10 56
Random cycle TSP rank 8 16 29 51 100

Equal distance cycle TSP rank 9 16 29 50 92
4 Random cycle TSP local visits 8 15 26 50 88

Equal distance cycle TSP local visits 8 14 26 47 80
Equal distance cycle TSP local changes 7 13 24 44 85

Random cycle TSP rank 10 18 33 59 100
Equal distance cycle TSP rank 10 18 33 57 100

6 Random cycle TSP local visits 9 16 31 55 100
Equal distance cycle TSP local changes 8 15 28 48 94

Random cycle TSP local changes 8 15 27 48 90

5 Discussion and Conclusions

The reliable patrolling is a complex problem, requiring solutions that integrate
efficiency and unpredictability. The main contribution of this paper consists
into presenting 3 new metrics to evaluate the patrolling problem. Each metric
considers different kinds of invaders. Based on this metrics we proposed and
compared various partition schemes and sequencing algorithms.



132 T. Sak, J. Wainer, and S.K. Goldenstein

Our results point out that for invaders that act randomly - the attack is made
without any knowledge about the agents - the traditional partitioning schemes
are more effective than use non-partitioning strategies. However, when the at-
tacker have some information about the agents, like an historical of visits to
a specific place, or even if the invader can only perceives when an agent visit
some place, the non-partitioning strategies perform better. It is also important
to notice that in the non-partitioning strategies the best equal distance distri-
bution of the agents not necessarily guarantee a better solution, since a random
distribution can also contribute to the unpredictability of the strategy. Another
important result is that for invaders that use statistical information to plan his
actions the sequencing algorithm that achieve the best results were the TSP
rank, which is not a static solution, like the original TSP strategy. This corrob-
orate our assumption that unpredictability is an essential characteristic to the
patrolling task. And as a general rule, random walk based sequencing algorithms,
although very unpredictable, have so long periods between visits, that they are
not usefull to avert any of the three attackers modeled.

When the attacker acts randomly or with very restricted information, perform
the TSP cycle over and over was the best solution found. This happens because
this approach finds the cycle that covers all the nodes with the minimal time
needed, so it maximizes the number of times that all the vertexes will be visited,
raising the chances that an agent averts an invasion from a random or almost-
random invader.

The solutions proposed in this paper are mainly centralized solutions. For
example, the TSP with local visits selection depends on calculating the TSP
solution to the graph, which requires not only global knowledge of the graph but
enough computational power. But once the solution is computed and distributed
to the agents, they each perform based on local decisions, regardless of the
other agent’s decisions. Other architectures, for example, the global random
architecture are also based on local decisions, and require global knowledge of
the graph, but are not that computationally expensive.

From one point of view, if the terrain being patrolled is static, and if the pa-
trolling will last for a long time, then it is probably worth to compute the “best”
solution to the problem in a centralized way. In situations in which a global
knowledge is not possible, or it is not worth to gather all the local knowledge
into a global one, and spend time computing the best solution, a distributed way
of achieving the solution could be interesting, and our results can be seen as an
upper bound to what can be achieved with the distributed problem solving.

Extensions to this work include, for instance, analysis of more other strategies,
modifications on the scenario generator to include new specific cases; inclusion
of new characteristics to the patrolling task, for example, prioritized regions and
dynamic topologies. Another important extension is to study the scenario where
there is redundancy in the number of agents that visits a place, so that the
compromise of one/few patrolling agent does not compromise the system as a
whole.
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