
G. Zaverucha and A. Loureiro da Costa (Eds.): SBIA 2008, LNAI 5249, pp. 53–62, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Enhancing the Interaction between Agents and Users*

Marcelo Armentano, Silvia Schiaffino, and Analía Amandi

ISISTAN Research Institute, Fac. Cs. Exactas, UNCPBA
Campus Universitario, Paraje Arroyo Seco, Tandil, 7000, Argentina

CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
{marmenta,sschia,amandi}@exa.unicen.edu.ar

Abstract. A key aspect when interface agents provide personalized assistance
to users, is knowing not only a user’s preferences and interests with respect to a
software application but also when and how the user prefers to be assisted. To
achieve this goal, interface agents have to detect the user’s intention to deter-
mine when to assist the user, and the user’s interaction and interruption prefer-
ences to provide the right type of assistance at the right time. In this work we
describe a user profiling approach that considers these issues within a user pro-
file, which enables the agent to choose the best type of assistance for a given
user in a given situation. We also describe the results obtained when evaluating
our proposal in a calendar application.

Keywords: intelligent agents, user profiling, human-computer etiquette.

1 Introduction

In the last years, there has been an increasing interest in the area of human-computer
etiquette [9]. Particularly, when talking about interface agents, researchers and devel-
opers are directing efforts towards learning how to best assist the user, that is provid-
ing the right help, at the right time and in the right way, without hindering the user’s
work. Learning users’ habits, preferences and interests to provide them personalized
assistance with a software application is not the only goal.

When working with a software application, a user can perform different tasks.
Consequently, it is very important for an interface agent to know exactly the task the
user is carrying out because it gives the context in which the user is working. By tak-
ing this context into account, the agent may infer the user’s intention and try to col-
laborate with him. In addition, if the agent knows the user’s intention, it will avoid
interrupting him at an improper time. Users generally do not want to be interrupted
while working on a specific task, unless this interruption is strongly related to the task
they are performing, or it has a high priority. Also, users differ in their preferences
about how and when they want to be assisted, and even a single user may differ in the
type of assistance he prefers for different contexts [11,12]. For example, if the agent
observes that the user is scheduling a work meeting for the following day, the agent
can offer to automatically complete the information required and send an email on the

* This work was also supported by ANPCyT, Argentina, through PICT Project 20178.

54 M. Armentano, S. Schiaffino, and A. Amandi

user’s behalf to each participant of the meeting, provided that it knows the user’s
preferences about the kind of meeting he is scheduling. The user might accept this
type of assistance for a certain type of meeting, but he might prefer only a suggestion
or no assistance at all in a different context.

In this work, we propose a new definition for a user profile considering these is-
sues. We also propose a profiling approach to acquire the different components of the
proposed profile. This enhanced profile enables interface agents to decide how to best
assist a user. Our profiling approach uses, first, plan recognition to detect a user’s
intentions. Plan recognition aims at identifying the goal of a subject based on the
actions he performs [2]. Then, we use two user profiling algorithms we developed,
namely WATSON and IONWI, to learn a user’s interaction and interruption prefer-
ences [12]. Finally, we combine the different components of the user profile in a deci-
sion making algorithm that enables an interface agent to decide how to best assist a
user in a given situation.

The rest of the work is organized as follows. Section 2 presents an overview of our
proposed approach. Section 3 describes how to detect a user’s intention using plan
recognition. Section 4 describes how to learn a user’s interaction and interruption
preferences. Section 5 presents the results obtained when evaluating our approach.
Then, Section 6 analyzes some related works. Finally, we present our conclusions.

2 Overview of Our Proposed Approach

A user profile typically contains information about a user’s interests, preferences,
behavioral patterns, knowledge, and priorities, regarding a particular domain. How-
ever, such information is not enough to personalize the interaction with a user. The
user’s intentions with a software application and his interaction preferences play a
relevant role in user-agent interactions.

Consider for example the following situation. A user of a calendar application has
the intention of arranging a work meeting with John Smith, his project manager. To
achieve this, he has to perform a set of tasks, such as selecting John Smith from his
contact list, creating a new event, entering the subject, date, place and all the informa-
tion required about the meeting, and sending an email to John Smith. The sooner the
agent detects the user’s intention, the better it will assist him in accomplishing his
intention. We propose to use Plan Recognition to detect the user’s intention. Plan
recognition aims at identifying the goal of a subject based on the actions he performs
[2]. Once the agent has detected that the user wants to arrange a work meeting with
John Smith, it can use the information contained in the classic user profile to assist
him. However, different users may have different preferences about the type of assis-
tance they welcome from an interface agent. For example, some users may prefer the
agent to automatically complete all the tasks it can, while others just prefer to receive
suggestions. Moreover, this information is strongly dependent on the situation in
which the agent is about to assist the user. In our approach, the information needed to
determine what type of assistance a user wants to receive in a given situation is
contained in the user interaction profile. This profile also comprises the expected
modality of the assistance. In a certain context the user might want just a notification

 Enhancing the Interaction between Agents and Users 55

containing the suggested meeting date or place, while in a different context the user
might prefer an interruption.

To obtain the proposed components of a user profile, we developed two profiling
algorithms: WATSON and IONWI. WATSON learns a user’s assistance preferences,
that is, when a user wants a suggestion, a warning, an automated action or no assis-
tance. IONWI learns a user’s interruption preferences, that is, when a user prefers an
interruption and when a notification. To achieve their goals, these user profiling algo-
rithms analyze the user’s interactions with the agent recorded when observing the
user’s behavior, and they consider the feedback provided by the user after the agent
assisted him. An overview of our proposal is shown in Figure 1.

Interface Agent

User

Computer Application

Interacts with

Observes

Interacts with

Assists

Asks for Help
Provides Feedback

Observes

Classic
User Profile

User
Intentions

User Assistance
Preferences

User Interruption
Preferences

Fig. 1. Proposed user profiling approach

We define a user profile as: User Profile = Classic User Profile + User Intentions
+ User Interaction Profile, and User Interaction Profile = User Assistance Prefer-
ences + User Interruption Preferences. The user intentions are the set of all the
possible intentions the user can be trying to achieve, each of them with a degree of
certainty: User Intentions = {<User intention, Certainty>}. The assistance prefer-
ences are a set of problem situations or contexts with the required assistance action
and a parameter (certainty) indicating how sure the agent is about the user wanting
that assistance action in that particular situation: User Assistance Preferences =
{<Situation, Assistance Action, Certainty>}.

We define the interruption preferences as a set of situations with the preferred as-
sistance modality (interruption or no interruption). They might also contain the type
of assistance action to execute. A parameter indicates how certain the agent is about
this user preference: User Interruption Preferences ={<Situation, [Assistance Ac-
tion], Assistance Modality, Certainty>}. The following sections explain how we ob-
tain these components.

3 Detecting a User’s Intentions

Plan recognition can be used to infer the user’s intentions based on the observation of
the tasks the user performs in the application. Plan recognizers take as inputs a set of
goals the agent expects the user to carry out in the domain, a plan library describing
the way in which the user can reach each goal, and an action observed by the agent.

56 M. Armentano, S. Schiaffino, and A. Amandi

The plan recognition process itself, consists in foretelling the user’s goal, and deter-
mining how the observed action contributes to reach it. There are two main aspects
that make classical approaches [2,10] to plan recognition unsuitable for being used by
interface agents. First, the agent should deal with transitions and changes in the user
intentions. Second, we have to take into account the influence of a user’s preferences
in the plan recognition process.

We propose Bayesian Networks (BN) [6] as a knowledge representation capable of
capturing and modeling dynamically the uncertainty of user-agent interactions. We
represent the set of intentions the user can pursue in the application domain as an
Intention Graph (IG). An IG is materialized as a BN and represents a context of exe-
cution of tasks. BN are directed acyclic graphs representing probabilistic relationships
between elements in the domain. Knowledge is represented by nodes called random
variables and arcs representing causal relationships between variables. Each variable
has a finite set of mutually exclusive states. Nodes without a parent node have an
associated prior probability table. On the other hand, the strengths of the relationships
are described using parameters encoded in conditional probability tables.

BN are used for calculating new probabilities when some evidence becomes avail-
able. By making use of BN probabilistic inference we will be able to know, having as
evidence the set of tasks performed by the user, the probability that the user is pursu-
ing any given intention modeled by the IG. Moreover, if the user explicitly declares
his intentions, we will be able to probabilistically assess the tasks he has to perform to
achieve his goal.

In our IG variables correspond to goals that the user can pursue and to tasks the
user can perform in the application to achieve those goals. The two possible states of
these variables are true, indicating that the user is pursuing that goal or that the user
performed that task, and false. We call certainty of an intention to the probability of a
variable being in a true state. Evidence on a task node will be set when the user inter-
acts with a widget in the application GUI that is associated to the execution of that
task. Our IG includes a third kind of variable: context variables. This kind of variables
will be used to personalize the intention detection process by learning new relations
that may arise between the attributes of the tasks performed by the user and the inten-
tion nodes in the IG.

Fig. 2. Example of an intention graph

 Enhancing the Interaction between Agents and Users 57

For example, in a calendar application, the user can select a contact from the ad-
dress book with the objective of sending this contact an email or with the objective of
scheduling a meeting with this contact, as shown in the IG presented in Figure 2. The
IG constructed manually by a domain expert will allow the agent to rank which of the
two goals is more probable, given that the user selected a contact in his address book.
However, the information of the selected contact can be relevant in discerning which
goal the user is pursuing. To consider this information, we introduce into the defini-
tion of our IG, the concept of traceable nodes. A traceable node is a node in which we
want to register the values taken by some attributes of the corresponding task per-
formed by the user, with the aim of adding new variables that represent the context in
which the user performs that task and to find new relations between these variables
and the nodes in the IG. In the example above, the task corresponding to the selection
of a contact in the address book is a traceable node. The designer of the IG should
decide which attributes of this task are of interest (for example, the city in which the
contact lives or the group the contact belongs to) for which set of intentions (sending
a mail to the selected contact or scheduling a meeting with him or her).

Each time the user performs a task corresponding to a traceable node, the agent
will observe the values taken by the attributes of the task (for example, the selected
contact is from New York and belongs to the group of friends). Then, the agent will
continue observing the user until it can infer which his intention(s) are and will record
the experience in an interaction history. Each experience will be of the form: <attrib-
ute1,,...,attributen, intention1, ..., intentionk>, where attributei is the value taken by the
attributei and intentionj is true if the agent infers that the user was pursuing intentionj,
or false otherwise. This database of experiences is then used by the agent to run a
batch learning algorithm and a parametric learning algorithm to find relations between
the attributes and between the attributes and the intentions [6]. To adapt the probabili-
ties (set by the domain expert who constructed the network) to a particular user’s
behavior, we take an statistical on-line learning approach [6].

Finally, as stated in Section 2, most of previous plan recognition approaches do not
consider the uncertainty related to the moment in which the user starts a new plan to
achieve a new goal. Those which consider this issue limit the memory of the plan
recognizer by making evidence to be present in a fixed interval of time and then com-
pletely disregarding it. We take a different approach in which evidence is gradually
forgotten. We adopt the concept of soft evidence to fade the evidence we entered to
the BN as the user performs further tasks [6]. To do this, we use a fading function to
gradually forget the tasks performed by the user. Evidence is faded according to this
function until it reaches its original value, that is until the probability of a given node
becomes less than the value that it would have if we would not have observed the
execution of the corresponding task in the application. Fading functions can be any
function that, given the IG and the evidence on tasks performed so far, decrements the
certainty of the evidence gradually, according to some heuristic. For example, we can
decrement current evidence by a fixed factor 0≤∇≤1 every time the user performs a
task in the application.

58 M. Armentano, S. Schiaffino, and A. Amandi

4 Learning a User’s Interaction and Interruption Preferences

To learn a user’s interaction and interruption preferences, the information obtained by
observing a user’s behavior is recorded as a set of user-agent interaction experiences.
An interaction experience Ex=<Sit, Act, Mod, UF, E, date> is described by six argu-
ments: a situation Sit that originates an interaction; the assistance action Act the agent
executed to deal with the situation (warning, suggestion, action on the user’s behalf);
the modality Mod that indicates whether the agent interrupted the user or not to pro-
vide him/her assistance; the user feedback UF obtained after assisting the user; an
evaluation E of the assistance experience (success, failure or undefined); and the date
when the interaction took place. For example, if we consider an agent assisting a user
of a calendar management system, an assistance experience could be the following.
John Smith is scheduling a new event: a meeting to discuss the evolution of project A
with his employees Johnson, Taylor and Dean. The event is being scheduled for Fri-
day at 5 p.m. at the user’s office. The agent has learned by observing the user’s ac-
tions and schedules that Mr. Dean will probably disagree about the meeting date and
time because he never schedules meetings on Friday evenings. Thus, it decides to
warn the user about this problem. In reply to this warning, the user asks the agent to
suggest him another date for the event.

To obtain a user’s interruption and assistance preferences, we developed two algo-
rithms: WATSON and IONWI. These algorithms use association rules to discover the
existing relationships between situations or contexts and the assistance actions a user
requires to deal with them, as well as the relationships between a situation, a user
task, and the assistance modality required.

Association rules imply a relationship among a set of items in a given domain. As
defined by [1], association rule mining is commonly stated as: Let I = i1,…, in be a set
of items and D be a set of transactions, each consisting of a subset X of items in I. An
association rule is an implication of the form X Y, where X ⊆ I, Y ⊆ I, and X ∩ Y
= ∅. X is the rule’s antecedent and Y is the consequent. The rule has support s in D if
s percent of D’s transactions contains X∪Y. The rule X Y holds in D with confi-
dence c if c percent of D’s transactions that contain X also contain Y. Given a transac-
tion database D, the problem of mining association rules is to find all association rules
that satisfy minimum support and minimum confidence.

We use the Apriori algorithm [1] to generate association rules from a set of user-
agent interaction experiences. Then, we automatically post-process the rules Apriori
generates so that we can derive useful information about the user’s preferences from
them. Post-processing includes detecting the most interesting rules according to our
goals, eliminating redundant rules, eliminating contradictory rules, and summarizing
the information obtained. To filter rules, we use templates or constraints [7] that select
those rules that are relevant to our goals. For example, we are interested in those asso-
ciation rules of the forms: situation, assistance action user feedback, evaluation, in
the WATSON algorithm, and situation, modality, [assistance action] user feedback,
evaluation, in the IONWI algorithm, where brackets mean that the attributes are op-
tional. Rules containing other combinations of attributes are not considered. To elimi-
nate redundant rules, we use a subset of the pruning rules proposed in [13]. Basically,
these pruning rules state that given the rules A,B C and A C, the first rule is re-
dundant because it gives little extra information. Thus, it can be deleted if the two

 Enhancing the Interaction between Agents and Users 59

rules have similar confidence values. Similarly, given the rules A B and A B,C,
the first rule is redundant since the second consequent is more specific. Thus, the
redundant can be deleted provided that both rules have similar confidence values.
Then, we eliminate contradictory rules. We define a contradictory rule in WATSON as
one indicating a different assistance action for the same situation and having a small
confidence value with respect to the rule being compared. Similarly, in IONWI, a
contradictory rule is one that indicates a different assistance modality for the same
context. After pruning, we group rules by similarity and generate a hypothesis that
considers a main rule, positive evidence (redundant rules that could not be elimi-
nated), and negative evidence (contradictory rules that could not be eliminated). The
main rule is the rule in the group with the greatest support value. Once we have a
hypothesis, the algorithm computes its certainty degree by taking into account the
main rule’s support values and the positive and negative evidence. To compute cer-
tainty degrees, we use equation 1:

∑

∑

∑

∑
+

=

=
+

=

=
−

−
+

+=
tr

k

t

k

tr

k

r

k

ESup

ESup

ESup

ESup

ARSupHCer

1

1

1

1

)(

)(

)(

)(

)()(γβα

(1)

where α, β, and γ are the weights of the terms in the equation (we use α=0.7, β=0.15
and γ=0.15), Sup(AR) is the main rule support, Sup(E+) is the positive evidence sup-
port, Sup(E-) is the negative evidence support, Sup(E) is the support of a rule taken as
evidence (positive or negative), r is the amount of positive evidence, and t is the
amount of negative evidence. If the certainty degree of the hypothesis is greater than a
given threshold value δ, it becomes part of the user profile. Otherwise, it is discarded.

5 Experimental Results

We carried out two types of experiments. First, we studied the influence of users’
preferences on the detection of users’ intentions with plan recognition. Then, we ana-
lyzed the precision of our profiling approach at assisting users.

5.1 Evaluation of Our Plan Recognition Approach

To analyze the influence that the user’s preferences have on the detection of the user’s
intention, we selected an scenario in which a user used a calendar application to or-
ganize a meeting with some contact in his address book, and then selected another
contact to register his or her birthday. To achieve these goals, the user performed the
following sequence of tasks: Select Contact, Add Contact To Meeting, Select Contact,
Edit Contact, Personal Information, Enter Birthday. We recorded the certainty values
for all the intentions both in the IG containing the user’s preferences information and
in the same IG without context nodes (the one owned originally by the agent). Figure
3 shows the evolution of the certainty values of related intentions. Intentions in the
original IG are indicated with completed lines. In the first time slice, we show the a
priori probabilities of each intention when the user has not perform any tasks in
the application yet. “Send Mail To Contact” is the most probable intention, while
“Contact Birthday” is the least probable one. When the user performed the first task,

60 M. Armentano, S. Schiaffino, and A. Amandi

“Select Contact”, the ranking remained unchanged, although there was a small incre-
ment in those intentions that contained this task. Then the user performed "Add Con-
tact To Meeting", and "Invite Contact To Meeting" became the most probable inten-
tion. With the next set of tasks performed by the user, "Contact Birthday" increased
its certainty while the other intentions decreased them. The agent considered a thresh-
old value of 0.7 to believe in the intention pursued by the user. It needed both tasks to
be performed to detect "Invite To Meeting", and three tasks out of four to detect
"Contact Birthday".

Fig. 3. Experimental results obtained with plan recognition

Dotted lines in Figure 3 show the same scenario but using the IG with context
nodes merged. The first "Select Contact Task" was performed when the user selected
a contact from the "Friends" group, living in "New York", who already had the
birthday registered. We can see that the certainty for "Invite To Meeting" is higher
only with the first task performed. We can also see that the other intentions dramati-
cally decreased their certainty values. Obviously the user would not register a birth-
day in the contact information because the selected contact already had a birthday
date.
The second contact selected by the user was also from the "Friends" group and its
city was "New York", but the birthday was not registered yet in this case. So, we
can see that with the mere selection of the contact, "Contact Birthday" intention
could be predicted.

It is worth noting that the curves corresponding to the possible user’s intentions are
closer when we do not consider the user’s preferences than when we do. Another
interesting fact that can be observed in Figure 3 is that the certainty of finished inten-
tions gradually decrements to its original value, as happens with "Invite To Meeting"
intention. This is due to the fading function used by the IG that gradually decrements
by a fixed constant to the strength of the evidence on the performed tasks. Similar
experiments were carried out with different scenarios, with similar results.

 Enhancing the Interaction between Agents and Users 61

5.2 Evaluation of Our Profiling Algorithms

To evaluate the precision of our interaction profiling approach at assisting users, we
studied the number of correct assistance actions, where the “correctness” is deter-
mined by the user through explicit and implicit feedback. To do this, we used a preci-
sion metric that measures an agent’s ability to accurately assist a user. We used this
metric to evaluate the agent’s performance in deciding between a warning, a sugges-
tion, or an action on the user’s behalf; and between an interruption or a notification.
For each problem situation, we compared the number of correct assistance actions
against the total number of assistance actions the agent executed. The resulting ratio is
the agent’s precision. To carry out the experiments, we used 33 data sets containing
user-agent interaction experiences in the calendar management domain. Each database
record contains attributes that describe the problem situation (or the situation originat-
ing the interaction), the assistance action the agent executed, the user feedback, and
the user’s evaluation of the interaction experience. The data sets contained anywhere
from 30 to 125 user-agent interactions1. We studied four calendar-management situa-
tions: new event, the user is scheduling a new event, and the agent has information
about the event’s potential time, place, or duration; overlapping, the user is scheduling
an event that overlaps with a previously scheduled event; time, not enough time exists
to travel between the proposed event and the event scheduled to follow it; holiday, the
user is scheduling a business event for a holiday.

We compared the precision values for three approaches: confidence-based (this
algorithm is classical in agents [8]), WATSON, and WATSON+IONWI. The values
were obtained by averaging the precision for the different datasets belonging to the
different users. We used percentage values because the number of user-agent interac-
tions varied from one user to another. Our approach had a higher overall percentage
of correct assistance actions or interactions, 86% for WATSON and 91% for
WATSON+IONWI, than the confidence-based algorithm, which got a 67% of preci-
sion. In some situations, although the etiquette-aware agent knew how to automate an
action on the user’s behalf it only made him a suggestion because it had learnt that the
user wanted to control the situation by himself. The agent using the standard
algorithm made an autonomous action in that case because it knew what the user
would do. However, it did not consider that the user wanted to do the task by himself.
When the problem is infrequent and warnings are required, the three algorithms
behave similarly.

6 Related Work

Our work is related to those works that study the etiquette of human-computer rela-
tionships [9], since learning when to interrupt a user, detecting a user’s intentions, and
deciding how to best assist him can be considered as part of this etiquette. Consider-
ing these issues within interface agent development, and particularly within user pro-
files, is novel.

Regarding interruptions, they have been widely studied in the Human-Computer
Interaction area, but they have not been considered in interface agent development.

1 The datasets are available at http://www.exa.unicen.edu.ar/~sschia

62 M. Armentano, S. Schiaffino, and A. Amandi

With respect to agents using plan recognition to detect a user’s plans, some works
have been done in this direction [4,10]. However, they do not consider the user’s
preferences within the process. Some algorithms have been proposed to decide which
action an agent should execute next. These algorithms adopt mainly one of two ap-
proaches: some use decision and utility theory [3,5], and others use confidence values
attached to different actions [8]. However, these works do not consider a user’s inter-
action preferences, the possibility of providing different types of assistance, or the
particularities of the situation at hand.

7 Conclusions

In this article, we presented an approach to enhance the interaction with users that
considers the user’s intentions and the user’s interaction preferences. To detect a
user’s intentions we propose a plan recognition approach, which considers the user’s
preferences to allow an earlier detection. To learn a user’s interaction preferences, we
proposed two profiling algorithms. We evaluated our proposal with promising results.
As a future work, we will evaluate our approach in a different application domain.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. 20th Int.
Conf. on Very Large Data Bases (VLDB 1994), pp. 487–499 (1994)

2. Charniak, E., Goldman, R.P.: A bayesian model of plan recognition. Artificial Intelli-
gence 64(1), 53–79 (1993)

3. Fleming, M., Cohen, R.: A user modeling approach to determining system initiative in
mixed-initiative AI systems. In: Proc. 18th Int. Conf. On User Modeling, pp. 54–63 (2001)

4. Horvitz, E., Heckerman, D., Hovel, D., Rommelse, K.: The Lumière Project: Bayesian
User Modeling For Inferring The Goals And Needs Of Software Users. In: Proc. 14th
Conf. on Uncertainty in Artificial Intelligence, pp. 256–265 (1998)

5. Horvitz, E.: Principles of Mixed-Initiative User Interfaces. In: Proc. ACM Conf. Human
Factors in Computing Systems (CHI 1999), pp. 159–166 (1999)

6. Jensen, F.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
7. Klementinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding inter-

esting rules from large sets of discovered association rules. In: 3rd Int. Conf. on Informa-
tion and Knowledge Management, pp. 401–407 (1994)

8. Maes, P.: Agents That Reduce Work And Information Overload. Communications of the
ACM 37(7), 30–40 (1994)

9. Miller, C.: Human-computer etiquette: Managing expectations with intentional agents.
Communications of the ACM 47(4), 31–34 (2004)

10. Rich, C., Sidner, C., Leash, N.: Collagen: Applying Collaborative Discourse Theory To
Human-Computer Interaction. Artificial Intelligence 22(4), 15–25 (2001)

11. Schiaffino, S., Amandi, A.: User – interface agent interactions: personalization issues. In-
ternational Journal of Human Computer Studies 60(1), 129–148 (2004)

12. Schiaffino, S., Amandi, A.: Polite Personal Agents. IEEE Intelligent Systems 21(1), 12–19
(2006)

13. Shah, D., Lakshmanan, L., Ramamrithnanm, K., Sudarshan, S.: Interestingness and Prun-
ing of Mined Patterns. In: Proc. Workshop Research Issues in Data Mining and Knowl-
edge Discovery. ACM Press, New York (1999)

	Enhancing the Interaction between Agents and Users
	Introduction
	Overview of Our Proposed Approach
	Detecting a User’s Intentions
	Learning a User’s Interaction and Interruption Preferences
	Experimental Results
	Evaluation of Our Plan Recognition Approach
	Evaluation of Our Profiling Algorithms

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

