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Abstract. In this paper, we propose a new approach for symbol recognition using
structural signatures and a Galois Lattice as classifier. The structural signatures
are based on topological graphs computed from segments which are extracted
from the symbol images by using an adapted Hough transform. These structural
signatures, which can be seen as dynamic paths which carry high level infor-
mation, are robust towards various transformations. They are classified by using
a Galois Lattice as a classifier. The performances of the proposed approach are
evaluated on the GREC03 symbol database and the experimental results we ob-
tain are encouraging.
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1 Introduction

This paper deals with the symbol recognition problem. The literature is very abundant
in this domain [1,2,3,4]. Symbol recognition can be basically defined as a two-step
process: signature extraction and classification. Signature extraction can be achieved
by using statistical-based methods or syntactic/structural approaches while most of the
statistical-based methods use the pixels distribution. Syntactic and structural approaches
are generally based on a characterization of elementary primitives. These primitives
(basic description, relations, spatial organization, . . . ) are extracted from the symbols.
They are generally coupled with probabilistic or connexionist classifiers. In this paper,
a new approach for symbol recognition is introduced. It is based on the use of a Galois
lattice (also called concept lattice) [5] as a classifier. The combined use of statistical-
based signatures and a Galois lattice has already been introduced by Guillas et al. in
[6]. Our proposed approach is based on the joint use of structural signatures inspired
by the work of Geibel et al. [7] and a Galois lattice classifier. The paper is organized
as follows. Section 2 describes the proposed technique. Section 3 gives experimental
results. Section 4 provides a conclusion and presents our future work.

2 Description of the Approach

The technique that is introduced in this paper is based on the combined use of struc-
tural signatures and of a Galois lattice classifier. The elementary primitives on which
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are based the structural signature are segments which are extracted by using the Hough
transform. For each symbol, we compute a topological graph by describing the spa-
tial organisation of the segments. Then, signatures are constructed from the topologi-
cal graphs. Finally, these signatures are classified using a Galois Lattice classifier. Our
method is inspired of the work of Geibel et al. [7] but differs from that work on many
points. Firstly, we use a Galois lattice instead of a decision tree. Secondly, we do not use
the same set of topological relations. Finally, our method is based on a Hough-based
segments extraction method from images of symbols while [7] works on chemical com-
pounds and do not use any primitive extractor.

2.1 Segments Extraction

The structural primitives we use for symbol description are segments. The segments
extraction method we have implemented is an adaptation of the Hough transform (HT),
initially defined in the sixties [8] for line extraction by Hough. Indeed, among the exist-
ing methods, the HT is known for its robustness property [9], especially in the context
of noisy symbols images. The HT has been widely used for different purposes in image
processing and analysis ([10]). The HT key idea is to project pixels of a given image
onto a parametric space where the shapes can be represented in a compact way. This
space is used to find curves that can be parameterized like straight lines, polynomials,
circles, . . . . Each line in the image corresponds to a peak in the associated Hough space.
Therefore, the line extraction problem is solved by processing peak detection.

For our purpose we are especially interested in the detection of straight lines. The
Figure 1 shows how pixels of an image, represented with their (x, y) coordinates, can
be mapped in the Hough space where any straight line of the image is represented by
the couple (ρi, θi) of its polar coordinates.

The practical use of the Straight Line Hough Transform (SLHT) raises different
problems [10]. First of all the HT is of quadratic complexity, it is therefore necessary
to use a pre-processing step in order to decrease the number of pixels to map during
the transform. Next, on real-life images, the mapped points produce heterogeneous sine
curves in the Hough space and multiple crossing points can appear. So, a peak de-
tection algorithm is needed in order to group these crossing points and to detect their
corresponding mean line.

In this paper, we introduce an adapted version of the HT that does not suffer the
preceding drawbacks and that is designed to extract segments instead of lines. The end
points of detected lines cannot be known from the analysis of the Hough space. So, it

Fig. 1. Straight Line Hough Transform (SLHT)
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is necessary to map the lines detected in the Hough space on their corresponding docu-
ment image in order to achieve the detection process. Based on these considerations an
HT-based segments detection system can be divided into four main steps:

1. Reduction of the search space: Characteristic points are to be selected before
performing the HT, in order to reduce the number of pixels to map and as a conse-
quence the processing time. In our method, we just use a mean filtering in combi-
nation with a skeletonization processing [8].

2. Projection onto the Hough Space: Each of the previously selected point is mapped
onto the Hough space. This step corresponds to the process shown in Figure 1.
An accumulator array is commonly used during this step in order to record the
number of sine curve for a given point in the Hough space. We use the initial HT
implementation of [8].

3. Peak detection: It consists in identifying the points in the accumulator associated
to a large number of sine curves. Our peak detection algorithm is based on the
analysis of the gravity centres of the line sets.

4. Segments extraction: The lines detected in the Hough space are mapped on their
corresponding document image in order to extract segments (begin and end points).
It consists in detecting sequence of strictly adjacent pixels along the detected line.
This is realized by using the Euclidean distances d(pi, L) between the line L and
the crossing points P of the image.

Evaluation of the robustness. Our algorithm performs robust extraction of maximal
segments. An example of the obtained results is shown in Figure 2. The maximal length
of the segments implies a reduction of the possible junctions between adjacent seg-
ments. Indeed, an ”X” will be described by 2 segments instead of 4.

The Fig.3 shows the robustness of the SLHT. This table shows the recognition
rate obtained with different symbols of GREC’03 corpus ([11]). What we call
RecognitionRate here corresponds to percentage of good associations between sym-
bols tested and models they refer. Those associations were realized from matching dis-
tances between segments. The model we attribute to the treated symbol corresponds

Original image skeleton of image SLHT

Fig. 2. Examples of différents segments extraction
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Fig. 3. Evaluation of the robustness of the SLHT

to the minimal distance. In all the degradation levels we can see that the proposed
approach perform a robust segments-based symbols extraction.

2.2 Topological Graph Computation

Description. Once the segments are extracted, each topological relation between two
segments s and s′ is described by the following triplet of information:

< relation type, relation value, length ratio > (1)

– relation type: We use the finite set of relations types X, Y, V, P, O as in [12,3,1,13]
to fully describe the possible relations between pairs of segments (see Table 1).

– relation value: To be more exhaustive and to discriminate more precisely the re-
lations, we add a value to the relation. This value aims at precising topological re-
lations between segments, such as angle between intersecting segments (available
for X, Y, V and O), or distance for parallel segments (relation P).

– length ratio: The last value of each triplet is a ratio between the lengths of the
longest and shortest segments of each pair.

We build a topological graph per symbol where nodes are segments and edges are
relations (see Figure 5). The topological graph we obtain is a complete graph where
each pair of segments is uniquely described.

Table 1. The different types of relations we consider (from left to right: X, Y, V, P, O)
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Fig. 4. Example of extracted seg-
ments

Fig. 5. Associated topological graph

In order to reduce the cardinality of the possible triplets ensemble (see Eq. 1), we
discretize them. After performing a statistical analysis of the symbol shapes, we choose
to limit the set of possible values for the angles of junctions X, Y and V to the following
set: {30◦, 45◦, 60◦, 90◦} (possibly, a relation value may be assigned to the closest value
in that set). It is also possible to specialize the distances between parallel segments in
groups (collinear, near and far for example). The length ratios can be separated into
three groups (equal, globally near or very different). We could also consider only the
type of relation (or any of the pairs <relation type, relation value> or <relation type,
length ratio>), or reduce the set of types of relations we consider.

Discussion. For each symbol, we obtain a set of triplets which fully describes the
structural organization of the segments (eg., the relation type differentiates a cross from
a rhombus, the relation value a rhombus from a rectangle and the length ratio a rectangle
from a square). Moreover, the use of this triplet-based representation has three main
advantages:

– each pair of segments is described by one unique triplet;
– each symbol is characterized by one unique and complete graph;
– this description is invariant towards rotation, scale and vectorial distortion.

But, this representation also has some drawbacks:

– It does not consider circle arcs
– n2 triplets are needed to characterize one symbol (at most n2, where n is the num-

ber of segments). This number of triplets can be reduced when using a restriction
of the types of relations we consider.

2.3 Computation of the Structural Signatures

Description. The triplets which are extracted from each pair of segments characterize
the paths of length 1. These paths are equivalently described by the topological graph
(see Figure 5) or its associated adjacency matrix (see Table 2), as in [1,13]. However,
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Table 2. Adjacency matrix (M ) associated to the graph of Figure 4 where triplets are only given
by the relation type

0 1 2 3 4 5
0 P Y V Y V
1 P V Y V O
2 Y V P V Y
3 V Y P Y V
4 Y V V Y P
5 V O Y V P

paths of length 1 are insufficient for discriminating different types of structures, such as
regular shapes (square, rectangle, triangle, . . . ).

That is why, as in [7], we compute the paths of different lengths by using the adja-
cency matrix and its powers (see Tables 2 and 3). Let us denote M the adjacency matrix.
As M conveys information about paths of length 1, M3 corresponds to 3-length paths
(useful to describe triangles), M4 to 4-length paths (squares and rectangles),. . .

The adjacency matrices we work with are not boolean or integer, so we generalize
the usual product of boolean or integer matrices (see Eq. 2) :

∀(i, j) ∈ [0, L]2, (A × B)ij =
L∑

k=1

(aik × bkj) (2)

to the union of string concatenation (see Eq. 3) :

∀(i, j) ∈ [0, L]2 ; (A × B)ij = (
L⋃

k=1

(aik + bkj)) (3)

where L is the size of the matrix and + is the string concatenation operator. Once
this product has been computed, we keep only the elementary paths and group the
equivalent or symmetric paths. For instance, two equivalent paths XV are grouped as
2×XV and the symmetric paths POV and VOP are grouped as 2×POV. The matrix M2

corresponding to the square of the matrix M (given in Table 2) is provided in Table 3.

Table 3. Matrix M2 (where M is given in Table 2)

0 1 2 3 4 5
0 4YV 2PV 2YV 2PY 1YY 1VV 2PV 2YV 2PY 1YY 1VV
1 4YV 2PY 1VV 1YY 2PV 2VY 2PY 1VV 1YY 2PV 2VY
2 2PV 2VY 2PY 1VV 1YY 4VY 1YY 1VV 2PY 2VY 2PV
3 2PY 1YY 1VV 2PV 2VY 4VY 2VY 2PV 1VV 1YY 2PY
4 1VY 1YV 2PV 1VV 1YY 2PY 1YY 1VV 2PY 2VY 2PV 4VY
5 1YY 1VV 2PY 2VY 2PV 2VY 2PV 1VV 1YY 2PY 4VY
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Table 4. Structural signature of Fig. 4 with paths of length 1 & 2 (only relation type)

Signature P PV PX PY V VV X XV XX Y YV YX YY
Value 2 8 2 10 6 5 3 8 2 8 28 12 11

Once all the power matrices have been computed, a set of paths (features) of different
lengths and their number of occurrences are available. We organize these features in a
hierarchical way, as in [3], in order to compute the signature. Indeed, the presence of
a 4-length path is more discriminative than the presence of a 1-length path, but the
longest paths are the most affected by distortions. For each symbol image, we compute
its structural signature by concatenating the type of path and its number of occurrences
in the topological graph associated to that symbol.

A lot of paths might be needed to describe a symbol and therefore the signatures may
be huge and contain much redundant information. That is why we only consider paths
of length inferior or equal to 4.

Discussion. The structural signatures we obtain are not based on the search for prede-
fined shape templates. Instead, we dynamically compute the shapes observed from our
sample images, which confers genericity to our approach.

2.4 Classification

We developed a recognition system named NAVIGALA (NAVIgation into GAlois LAt-
tice), dedicated to noisy symbol recognition [14]. As denoted by its name, this system
is based on the use of a Galois lattice as classifier. A Galois lattice is a graph which
represents, in a structural way, the correspondences between a set of symbols and a set
of attributes. These correspondences are given by a binary table (see Figure 6 where
each attribute corresponds to an interval of occurrences for a given path) where crosses
are membership relations. In the Galois lattice, nodes are denoted as concepts and con-
tain a subset of symbols and a corresponding subset of attributes and edges represent
an inclusion relation between the nodes (see Figure 7). The principle of classification
is to navigate through the lattice from the top of the graph to its bottom by validat-
ing attributes and thus to reduce the candidates symbols to match. This navigation is
similar to the one used for classification with a decision tree. However, in the Galois
lattice, several ways are proposed to reach the same node of the graph. We noticed that

Fig. 6. Example of binary table used for lattice construction
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Fig. 7. Example of a concept lattice used for classification

this property is interesting for noisy symbols because, experimentally, concept lattice is
more efficient than decision tree in the presence of noise.

3 Experimental Results

We perform our experiments on the GREC03 database of symbol images [11]. We eval-
uate the effectiveness of the proposed approach on symbols extracted from 8 classes
(see Figure 8) and 9 levels of deterioration (see Figure 9). We use the original symbol,
more one symbol per level of deterioration (ie. 10 symbols per class) for training. The
recognition results are computed from 72 deteriorated query symbol images per class.
Tables 5 and 6 provide the recognition rates we obtain by using a) only the relation
types and not the full triplet given in (1) (Table 5) and b) the full triplet (Table 6).

For comparison, we perform tests on the same sets of symbols (for learning and
recognition) with a method based on the use of statistical signatures (Radon Trans-
form) and a Galois lattice as classifier [6]. The recognition rate we obtain is 98.9%.
14 attributes and 96 concepts were created in the lattice for recognition. We can see
that the use of statistical signatures gives a better global recognition rate. But the two
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Class 0 Class 1 Class 2 Class 3

Class 4 Class 5 Class 6 Class 7

Fig. 8. 8 classes of symbol used for tests

Level 0 Level 1 Level 2 Level 3

Level 4 Level 5 Level 6 Level 7

Fig. 9. Different levels of noise for class 0

Table 5. Experimental results using partial triplets

Lengths of paths 1 and 2 2 and 3 3 and 4 1, 2 and 3
Recognition rate 85,3% 87,3% 86,1% 87,7%
Number of paths 4 50 161 54

Number of attributs 20 25 27 24
Number of concepts 410 533 658 511

Table 6. Experimental results using full triplets

Lengths of paths 1 2 3 4 1 and 2 2 and 3 1, 2 and 3 1, 2, 3 and 4
Recognition rate 96% 86,1% 86,7% 82,6% 95,1% 80,4% 94,4% 95,7%
Number of paths 38 175 959 3270 202 1134 1161 4427

Number of attributs 20 22 22 28 20 20 18 16
Number of concepts 452 577 1475 9077 410 689 214 140

approaches can be complementary in some way. For example, for the symbols from
class 6, statistical signature leads to confusions with classes 0 or 3. Using the structural
signatures, we recognize symbols from class 6 without any ambiguity with classes 0
and 3 (with a structural signature, for class 6 two symbols among 81 are misclassified).
We can infer from these results that these two signatures may be combined in order to
improve the performances. We are actually working on an iterative combination of sta-
tistical and structural signatures to enhance the performances of the proposed approach.

4 Conclusion and Future Work

In this paper, we propose a new structural signature dedicated to symbol recognition
using a Galois lattice as classifier. This structural signature relies on segments ex-
tracted by using an adapted Hough transform. The structural signature extraction is
in 2 main steps. First, for each symbol, we compute a topological graph to describe
the spatial organization of the segments. Then, from these topological graphs, we can
extract the structural signature by counting the number of occurrences of each path of
the graphs. The signatures are further classified by using a Galois Lattice classifier. The
experiments we perform on the GREC03 database show the robustness of the proposed
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approach towards various sources of noise. The structural signatures we obtain are not
based on the search for predefined shape templates. Instead, we dynamically compute
the shapes observed from our sample images, which confers genericity to our approach.

In order to ameliorate this structural signature, we are further working on the extrac-
tion of circle/ellipse arcs and on their integration into our structural signature. Next, we
aim at evaluating the performances of the proposed approach not only on single sym-
bols, but in real-life applications. Finally, a procedure based on an iterative combination
of statistical and structural signatures may enhance the performances of the proposed
approach.
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