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Abstract. In this paper we propose a general framework for the char-
acterization of shape descriptors and show its application to graphic
symbols. The framework is based on the combination of several perfor-
mance measures independent of the application. We have applied this
framework using a standard set of descriptors and databases. We show
how it can be used to characterize the properties of each descriptor for
a given database.

1 Introduction

There has been an increasing interest in research in performance evaluation
in Graphics Recognition during the last years. Several contests have been orga-
nized in past editions of GREC Workshop concerning raster-to-vector conversion
[1,2,3], arc segmentation[4] and symbol recognition[5,6]. In the particular domain
of symbol recognition, a general framework of evaluation has been proposed[7]
with the goal of getting a deeper understanding of the characteristics, pros
and cons of various approaches to symbol recognition. The contests aim to
analyze the performance of symbol recognition methods with several types of
test data, including different number of symbols and several kinds of transfor-
mations and degradations. The results have been very positive as they permit
to determine the robustness of participant methods under the different kinds of
noise included in the test set. However, we cannot get a global understanding of
different approaches to symbol recognition as only few methods (those used by
the participants in the competition) were evaluated. In addition, as remarked
in the conclusions of the last contest (cf. [6]), not always a detailed information
about the techniques employed by each participant method is available and,
therefore, we cannot have a good understanding of recognition rates according
to the different types of methods.

In this paper we propose a different and more general approach for
performance evaluation of methods for symbol recognition. If we take a look
at them, we can observe that most of them are based on some kind of shape
descriptor, as shape is the most characteristic visual feature of symbols. Indeed,
the selection of a suitable shape description and representation that permits
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to capture the most relevant features of symbols is a key issue in order to ob-
tain good recognition rates. Actually, a large number of shape descriptors have
been proposed in the literature [8,9] and most of them have been applied to the
problem of symbol recognition.

Then, our main goal is to propose a framework to evaluate the general
performance of several shape descriptors and apply this framework to the
particular case of symbol representation. This is the first difference with pre-
vious approaches to performance evaluation of symbol recognition. Instead of
evaluating specific methods for symbol recognition we will evaluate general shape
descriptors that can also be used for other problems in pattern recognition. The
second difference is in the final goal of the evaluation framework. We do not
want to focus on recognition, but we aim at characterizing the behavior of shape
descriptors under several circumstances. Then, our evaluation is not only based
on the recognition rate, but on the combination of several measures: recognition
rate, homogeneity, separability, precision and recall.

In the experiments we have used two databases the symbol database
defined for previous contests on symbol recognition, and the standard MPEG
shape database. We have taken several standard and well-known shape
descriptors grouped in three categories: pixel-based descriptors (Fourier-Mellin,
Generic Fourier Descriptor and Zernike moments), contour-based descriptors
(shape context, pixel-level constraint and string matching) and structural
descriptors (graph-based).

The paper is organized as follows: first, in section 2 we explain the frame-
work for performance characterization, mainly the evaluation measures. Then,
in section 3 we describe the experiments using the selected set of descriptors and
shapes. Finally, in section 4 we draw the main conclusions of this work.

2 Performance Characterization

As we have said before, our main goal is the characterization of shape descriptors,
i.e, to define a kind of genetic map of a number of descriptors, i.e, a list of relevant
and intrinsic properties for each family of descriptors. Such list of properties
can help to choose the most appropriate family of descriptors given a practical
pattern recognition problem.

For such a protocol to be of general use, it must be independent of datasets
and must evaluate several properties of each descriptor such as the complexity,
the robustness to different kinds of transformations and degradations, the power
of discrimination as the number of classes and the variability of shapes grows,
the genericity with very different datasets or the influence of the setting of the
intrinsic parameters of the descriptor.

In this context, we cannot rely only on recognition rate as evaluation
measure. Recognition rates can be very dependant on the type of classifier used.
In addition, they are largely linked to one kind of practical problem, the classifi-
cation of unknown shapes and cannot be the best choice to evaluate other kind
of applications, such as shape retrieval.
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Therefore, we need more general evaluation criteria in order to get a deep
understanding of the properties of descriptors. Thus, we have decided to use 5
different measures for that: two of them (separability and homogeneity) try to be
independent of the application as they intend to evaluate how well distributed
are the shapes in the space of representation provided by the shape descriptor.
The other three measures evaluate the performance of the descriptors in two of
the most common real problems: recognition rate for the problem of classifying
unknown shapes and precision/recall for shape retrieval.

All these measures rely on the computation of the matrix of distances among
the representation of all the images in the shape database obtained using a
given descriptor. The definition of the distance will assure that all the distances
are normalized between 0 and 1 (for instance, using the Pearson correlation
coefficient or the normalized euclidean distance).

– Homogeneity: A good description of a class of shapes should yield an
homogeneous representation in the sense that the representation of all the
shapes should be concentrated in a small area of the feature space. In this
sense, we have defined a measure so that values close to zero mean that
all the feature vectors are close (the descriptor is more homogeneous). This
measure, H is based on the distance between elements belonging to the same
class and is defined in the following way:

H =
N∑

c=1

H(c)
N

(1)

H(c) =
2h(c)

Mc(Mc − 1)
(2)

h(c) =
Mc∑

i=1

Mc∑

j=1,j>i

δ(vi, vj) (3)

where N is the number of classes, Mc is the number of elements in class c, vi

is the representation of element i using a particular descriptor and δ(vi, vj) is
the distance between two elements in the feature space normalized between
0 and 1.

– Separability: Another property of a good shape description is that elements
belonging to different classes have a dis-similar representation. Thus, we
have defined a measure of separability that permits to assess this property.
The farther feature vectors of elements belonging to different classes are the
more separability of the descriptor. This measure, S, is based on the distance
between elements belonging to different classes and defined as:

S =
N∑

c=1

S(c)
N

(4)
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S(c) =
s(c)

Mc

∑N
k=1,k �=c(Mk − 1)

(5)

s(c) =
Mc∑

i=1

N∑

k=1,k �=c

Mk∑

j=1

δ(vi, vj) (6)

– Recognition rate: Using the well-known 1-NN classifier, we evaluate the
performance of each descriptor for recognition. This is a standard measure
that can be used as a benchmark for the performance of the descriptor in
recognition tasks.

– Precision/Recall: These measures are commonly used in the context of
image retrieval and are useful to evaluate the ability of the descriptor to
retrieve shapes similar to a given query shape. They can be used to evaluate
the performance of the descriptor in retrieval tasks. Precision, P , measures
how many retrieved shapes really correspond to the class of the query shape,
while recall, R, measures the percentage of the total number of shapes be-
longing to the query shape actually retrieved by the descriptor. They are
defined in the usual way:

P =
Nc

N
(7)

R =
Nc

Mc
(8)

where c is the class of the query shape, N is the total number of retrieved
shapes, Nc is the number of retrieved shapes belonging to class c and Mc is
the total number of shapes belonging to class c.

3 Experiments

3.1 Shape Descriptors

All these measures have been applied to evaluate a set of standard and well-
known shape descriptors. As it is usually done in the literature we have
distinguished between pixel-based, contour-based and structural descriptors.

Pixel-based descriptors are computed directly from the pixels of the whole
image. We have used the following descriptors in this category:

– Fourier-Mellin[10]: based on the application of the Mellin and the Fourier
transforms to the polar representation of the image. It is invariant to rotation
and scaling.

– General Fourier Descriptor (GFD)[11]: based on the Modified Polar Fourier
Transform, that applies a 2-D Fourier Transform to the polar representation
of the image. The coefficients are conveniently normalized in order to achieve
invariance to rotation and scaling.
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– Zernike moments[12]: based on computing the projection of the image onto
the Zernike polynomials and have been widely used in pattern recognition.
They are also invariant to rotation and scaling.

Contour-based descriptors are obtained after extracting the outer contour of
the shape. In this category we have used:

– Shape Context[13]: this descriptor is based on taking a sample of points from
the contour of the shape and computing the histogram of spatial relations
between a reference point and all other sample points in the contour. It is
invariant to translation and scaling.

– Pixel-level constraint (PLC)[14]: it is based on the points of the skeleton of
the shape. Then, taking any of these points as reference the ratio of angle
and length between any other pair of points can be computed and then, the
histogram of these ratios is obtained. The histograms obtained taking every
point in the skeleton as reference point can be grouped in two matrices,
one for angular information and the other one for the length information,
that are processed to obtain the final descriptor, that is rotation and scale
invariant.

– String matching[15]: based on the representation of the contour as a chain
code and applying and edit distance to compute the similarity between chain
code of two different shapes.

Structural descriptors are based on representing relationships between com-
ponents of the shape, normally using graphs or grammars. In our case, we have
used a graph representation where nodes correspond to junction points or end
points and edges correspond to the lines joining these points. From this graph
representation a signature is computed assigning to each node a value based on
the number of incident edges and the angle and relative length between them.

3.2 Shape Databases

All these descriptors have been applied to two shape databases: the database of
graphic symbols defined for the first contest on symbol recognition at GREC’
2003 [5] and the MPEG-7 contour database.

The GREC database is composed of 50 graphic symbols composed of straight
lines and arcs of circumference. The original database generated for the contest
contained images with 3 kinds of transformations: geometric transformations
(rotation and scaling), binary degradations and vectorial distortions. In our ex-
periments we have used two subsets of images from the original database:

– GREC-50: in this set we have images of the 50 original symbols with rotation,
scaling and slight binary degradations (see figure 1(a))

– GREC-Vec: in this set we have included images with vectorial distortion
generated by randomly moving junction and end points, but keeping line
connectivity as required by the graph-based descriptor. In this case we have
only used the 26 symbols composed only of straight lines. In figure 1(b) we
can see some examples of the kind of distortions that have been generated.



Performance Characterization of Shape Descriptors 283

(a) (b)

Fig. 1. Example of symbols of GREC database. (a) symbols in the set GREC-50. (b)
Vectorial distortion applied to symbols included in the set GREC-Vec.

However, in this kind of images, contour-based descriptors do not perform well.
In addition, one of the goals of the proposed protocol for the characterization
of descriptors was to test the genericity with different datasets. Then, in order
to obtain more general results and to be able to better compare pixel-based
and contour-based descriptors we have also used images of the MPEG-7 shape
database (some examples can be seen in figure 3.2). For this database we have
defined 4 subsets:

– MPEG-99: composed of 99 images belonging to 9 different classes.
– MPEG-216: contains images of 18 classes, 12 images per each class.
– MPEG-1045: 1045 images belonging to 42 classes. There are between 3 and

60 images per class.
– MPEG-Occ: this set is the same as MPEG-99, but we have applied a method

to generate random partial occlusions of the contour as can be seen in figure
3.2

Fig. 2. Examples of the shapes included in the MPEG-7 shape database
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Fig. 3. Examples of the shapes with partial occlusions of the contour

3.3 Analysis of Results

Not all the set of descriptors described in section 3.1 could be applied to all the
sets of images explained in section 3.2 due to the properties of each descriptor.
Then, in the summary table 1 we can see which descriptors have been applied to
each database. Mainly, pixel-based descriptors were applied to both databases,
contour-based descriptors only to the MPEG-7 database and structural descrip-
tors only to the GREC database.

Then, once obtained the representation of all the shapes with every descriptor,
we computed the distance matrix among all elements and all the evaluation
measures: homogeneity, separability, recognition rate and precision/recall. Due
to space availability we cannot show the detailed results for all descriptors and
databases, but the analysis of these results permit to state some conclusions
about the performance of the descriptors, both from a global point of view and
from the particular point of view of every descriptor.

If we analyze the results globally, considering all descriptors and databases
we can say:

– GFD and Zernike moments have always obtained the best recognition rates.
In addition, recognition rates are better for the GREC database than for the
MPEG database. This seems logical as shapes in the GREC database have
less shape variability.

– In general GFD also gives the best value for homogeneity. For contour-based
descriptors, PLC is the descriptor with the best homogeneity. The graph-
based descriptor has also a very good homogeneity in the only case where it
is used.

Table 1. Summary of the performance of descriptors

GREC-50 GREC-Vec MPEG-99 MPEG-216 MPEG-1045 MPEG-Occ

Fourier-Mellin - - - + + + - - - -

GFD ++ ++ +++ ++ ++ +

Zernike ++ ++ ++ ++ + ++

Shape Context - - - - - - +

PLC + ++ ++ +

String matching - - - -

Graph +
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– Zernike moments have always the best separability measure, although they
present one of the worst homogeneity values.

– There are some descriptors (GFD, Zernike) with better precision than recall.
That means that they prioritize retrieving exact shapes than all meaning-
ful shapes relevant to a given query. On the contrary, other descriptors
(Fourier-Mellin, PLC and Shape context) with better recall than precision
are better in order to retrieve all relevant shapes although some of them do
not correspond to the query. On the other hand, graph-based descriptors
and string matching reach a good compromise between precision and recall
in the sense that they are able to retrieve a good number of relevant shapes
while keeping low the number of non-relevant answers.

Beside these global conclusions we can also state some interesting conclusions
about every particular descriptor:

– GFD has a good separability in long and thick shapes and in shapes with
curves.

– Fourier-Melllin gives better separability in closed shapes and better homo-
geneity in long and thick shapes.

– Shape context has better separability in occluded shapes. The recognition
rates are, in general, low.

– Pixel-level constraint obtains good recognition rates and good separability
in long and thick shapes.

– String matching gives better separability when there are significant changes
of direction in the contour of the shape.

– Graph-based descriptors do not really have a good recognition rate. They
have difficulty in separating objects with the same structure, but they have
good separability for shapes with large number of lines.

We have summarized these conclusions in Table 1 where for every set of images
we show how positive (+,++,+++) or negative (-,- -,- - -) are the results obtained
for each descriptor. The evaluation of each descriptor is based on the analysis
of the results of the recognition rate, the homogeneity and the separability. The
precision and recall have not been taken into account. This analysis does not
intend to be a rigorous, formal and exact evaluation of the descriptors. However
it permits to establish a kind of tendency for each descriptor and can help to
choose a descriptor for a given application. For instance, it can be observed that
GFD, Zernike and PLC always obtain a positive evaluation, although the ”best”
descriptor varies depending on the dataset.

4 Conclusions

In this paper we have proposed to use several performance measures for the
characterization of shape descriptors. The combination of these measures permits
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to have a better understanding of the behavior of each descriptor than using
single classical indices such as the recognition rate, precision or recall, that are
more oriented to specific tasks. We illustrate the usefulness of this approach by
analyzing a set of standard shape descriptors using a database of graphic symbols
and a database of contour shapes. From the analysis of the results obtained with
the proposed evaluation measures we are able to state several conclusions that
characterize the performance of the descriptors for each database permitting to
summarize it in a table.
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