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Abstract. While much work has been done in Structural and Syntactical Pattern
Recognition applied to drawings, most approaches are non-interactive. However,
the recent emergence of viable pen-computers makes it desirable to handle pen-
input such as sketches and drawings interactively. This paper presents a syntax-
directed approach to parse sketches based on Relational Adjacency Grammars,
which describe spatial and topological relations among parts of a sketch. Our
approach uses a 2D grid to avoid re-scanning all the previous input whenever
new strokes entered into the system, thus speeding up parsing considerably. To
evaluate the performance of our approach we have tested the system using non-
trivial inputs analyzed with two different grammars, one to design user interfaces
and the other to describe floor-plans. The results clearly show the effectiveness
of our approach and demonstrate good scalability to larger drawings.

1 Introduction

Sketching interfaces are a useful and natural way for people to communicate with com-
puters. By using a digital pen, users can input information such as cursive script an-
notations or, in a graphical domain, freehand diagrams or graphical gestures. Sketch
recognition is therefore a powerful tool in disciplines such as architecture or engineer-
ing. In the graphical domain, sketches have an important value. Indeed, sketches pro-
vide the ability of expressing complex ideas with simple visual notations, and are a
fluent way of human-computer interaction. From a technical point of view, according to
Liu’s [4] interesting survey, on-line graphics recognition processes may be divided into
three main parts: Primitive Shape Detection, Composite Object Recognition and Sketch
Understanding. In this work we focus on symbol recognition in sketching diagrams.

Sketches are collections of strokes, i.e. line drawings where basic primitives are the
sequences of points captured between a stylus’ pen-up and pen-down events. Roughly
speaking, sketched symbols are sets of line primitives organized spatially and some-
times in a temporal sequence. These characteristics make desirable to use structural
approaches to recognize drawings. In this paper we focus on a syntactic approach to de-
scribe and recognize graphical symbols in an on-line framework. A syntactic approach
addresses two relevant issues: the description of the graphical entity and the recogni-
tion process. The former is based on the theory of formal languages, where a grammar
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describes the recognized shapes and its productions represent the relations among com-
position elements. The latter requires a parsing approach. A parser is a process that,
given an input and a grammar G, says if the input belongs to the language generated by
the grammar, L(G).

A number of grammatical formalisms exist in the literature to describe bi-dimensional
graphical objects. Early attempts augmented linear languages with 2D operators to ex-
press the spatial relations among the primitives. Picture Description Languages
or Plex grammars [7] are two examples of this approach. Over the last two decades
new paradigms of languages have been studied. These languages are inherently
bi-dimensional, and thus more apt to describe 2D symbols. They are referred as Visual
Languages (VLs). Among the different approaches to VLs we find Relational Gram-
mars [6], where productions describe relations among the different primitive symbols
in terms of a set of attributes defined as join points. Adjacency Grammars [2] define a
set of constraints denoting spatial, temporal or logic relations. Graph Grammars [19]
define productions in terms of graph-based rewriting rules but require complex rules.

Together with grammatical formalisms parsing paradigms were devised to validate
whether visual languages belonged to the language generated by those grammars. Most
of these parsing methodologies are tailored to a specific grammatical formalism, such
as the parsers presented in [16], [18]. Despite these specific methodologies other works
extend traditional parsing techniques to try and develop more general methods such as
the work of Costagliola et al. [21] which extends conventional LR-parsing techniques
to the realm of visual languages.

As described above, a syntactic approach to sketched symbol recognition requires
first a grammatical model and second a parsing engine to perform the proper recogni-
tion. To this end, we adopt an Adjacency Grammar to describe 2D shapes using a lin-
ear language by defining constraints to describe the different relations among the parts
composing a sketch. Then we use an incremental parser, to analyze visual sketched
sentences. This is done by constructing a parsing-tree each time a new token is drawn.
Differently from traditional parsers, our parsing algorithm is able to cope with the main
issue of VLs, that is, parsing the input in an order free manner. In this way, the relations
the parse tree is built according to spatial or logical relations among the different sym-
bols composing a sketch rather than relying on their temporal sequence as happens with
conventional textual languages. This is because, our parser uses a spatial data structure
to allocate the different tokens as they are analyzed and, to search the set of neighbour-
ing symbols to match grammatical rules when a new token is drawn and recognized.

This paper is organized as follows: section 2 presents related work on sketch recog-
nition systems and syntactic approaches to describe 2D patterns. In section 3 we present
the syntactic approach used to describe and interpret sketches. Section 4 presents ex-
perimental evaluation of our work. Finally, section 5 discusses these results and points
to future directions in our research.

2 Related Work

This section discusses related work developed in the field of sketch recognition and
compares syntactic approaches to describing 2D symbols.
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2.1 Sketch Recognition

Sketch recognition is a field of increasing interest due to the progress of digital pen
devices allowing interaction between Humans and Computers. This requires designing
new applications to analyze sketched inputs, either statically, as in document analysis
and recognition or more recently in interactive settings, including calligraphic and pen-
based interfaces. In the literature, we find different work that describes sketch recogni-
tion as applied to different fields. Landay and Myers presented SILK [13] a system to
describe User Interfaces. SILK system attempts to recognize basic primitives forming
the sketch using Rubine’s algorithm [14] to recognize gestures. Once a primitive is
detected the system tries to detect the spatial relations between the primitive and other
components or widgets. The system then returns the recognized widget to the user, who
is able to correct this output if an error occurs. However, using Rubine’s recognizer
limited the system to single-stroke basic primitives.

Hammond and Davis [15] developed a system to recognize UML Class Diagrams in
four steps: pre-processing, selection, recognition and identification. The pre-processing
step classifies the most recent stroke in one of four categories an ellipse, a line, a poly-
line or a complex shape. Next, the system attempts to match this to a set of (previously
drawn) unrecognized strokes. The authors limit the match candidates to at most nine
trying to avoid an exponential time search on the number of strokes required to iden-
tify a symbol. This task is ascribed to specific symbol recognizers which identify each
different symbol allowed in UML diagrams. The identification process combines the
probability of each recognizer with other criteria, such as the number of strokes that
compose the symbol recognized.

Kara and Stahovic [11] developed a sketch recognition system to describe engineer-
ing circuits that can be used as input to Simulink, using a hierarchical recognition ap-
proach. First, the system tries to identify specific symbols as markers. These symbols
should be easy to recognize and serve as anchors to help recognizing the remainder of
the sketch. In this case, the markers describe arrows which are recognized according
to features based on drawing speed. Then the system generates a set of symbol candi-
dates, by taking into account the number of input and output arrows for a given cluster.
To recognize a symbol among the different candidates the authors use the combination
of four different recognizers by choosing the answer with the best score.

Alvarado and Davis in [10] present a multi-domain sketch recognition system, based
on a dynamically constructed bayesian network. The network is constructed using
LADDER [8] a language that is able to describe and draw shapes for a specific domain.
For each new stroke is drawn the system classifies it in one of the basic categories. Then
a hypothesis is generated in three steps: a bottom-up step generates the hypothesis from
the new stroke, followed by a top-down step that attempts to find subshapes missing on
the partial hypothesis created by the previous step and finally, a pruning step that keeps
the number of hypothesis manageable to be analyzed in real time.

2.2 Grammatical Symbol Recognition

Different grammatical formalisms have been proposed to describe visual constructs
(symbols). These formalisms describe symbols as a collection of basic primitives and a
set of relations connecting those shapes.
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Linear grammatical formalisms are presented in [16], [17] and [18]. These three
grammars describe productions as a set of symbols and a set of constraints among
those symbols. While Relation Grammars [17] define their productions over a set of
un-attributed tokens, Constraint Multiset Grammars [16] and Picture Layout Gram-
mars [18] describe their productions using sets of attributed tokens. Constraint Multiset
Grammars are context-sensitive grammars that define a set of tokens that may exist
to produce a valid rule. In this latter formalism, contextual tokens may be specified in
spatial or logical constraints, while not being considered part of the production proper.

Coüasnon developed a language named EPF (Enhanced Position Formalism) [20]
using an operator based grammatical formalism. In EPF the productions are concate-
nations of symbols and operators between the symbols. The operators may describe
positional relations, factorization of symbols, etc.

While the grammatical formalisms presented before are linear grammars, other
researchers focus on visual languages defined via high-dimensional grammars. Wit-
tenburg and Weitzmann [6] present Relational Grammars. These grammars are high-
dimensional context-free grammars. Grammar productions are defined over ordered sets
of symbols and a set of constraints among the symbols. Other high-dimensional for-
malisms include Layered Graph Grammars [19]. These grammars are context-sensitive,
restricting the size on the left-hand of the production to be smaller than the right-hand.

More recent work that combines sketch recognition with a syntactic approach. Sketch
Grammars [21] extend context-free string grammars, by defining relations other than
concatenation relations. These relations include temporal or spatial constraints among
symbols. Productions in these grammars also define a set of actions that may include
drawing constraints and semantic context. LADDER [8] is a closely related technique
that describes relations among complex symbols defined in terms of basic elements and
specifies drawing, editing and semantic actions as part of a production.

3 A Syntactic Approach to Recognize Hand-Drawn Sketches

The syntactic formalism presented in this paper is a one-dimensional grammar based
on Adjacency Grammars [2]. The symbols in the right-hand-side of a production are
described as an unordered set of tokens that should obey a set of constraints, which
allows these grammars to describe drawings in an order-free manner.

Adjacency Grammars are formally defined as a 5-tuple G = {Vt , Vn, S, P, C} where:

– Vt represents the terminal vocabulary.
– Vn represents the non-terminal vocabulary.

With Vt

⋂
Vn = ∅ and Vt

⋃
Vn = Σ being Σ the alphabet of the language gener-

ated by the grammar L(G).
– S is the start symbol.
– P is the set of productions of the grammar defined as:

α → {β1, . . . , βj} if Γ1(Φ1, c1), . . . , Γn(Φn, cn)

Where α ∈ Vn and ∀i ∈ [1, . . . , j]βi ∈ {Vt ∪ Vn}, constitute the possible empty
multiset of terminal and non-terminal symbols. ∀k ∈ [1, . . . , n] Γk are the
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adjacency constraints defined on the attributes of the subsets Φk ⊂ {β1, . . . , βj}
and ck are the cost functions associated to each constraint.

– C represents a set of constraints. This set represents the different spatial relations
that we may find between two different grammatical symbols.

fα: Rd
1×. . .×Rd

j → Rd
α is a function that calculates the attributes of the new token from

the attributes of the tokens of the right hand of the grammatical productions. Being d the
cardinality of the attributes of the token α and j the number of tokens on the right-hand-
side. This function is used when a symbol is reduced from a grammatical production
during the parsing process.

Concerning the parser required in this approach, it is an incremental on-line parser
to recognize sketches, which analyzes each new input token drawn until all inputs are
processed. Then the parser either recognizes the whole sketch, or signals an error due
to a invalid input.

While conventional parsers analyze input tokens with these grammars according to
a predefined input order, in a sketching framework we can not expect such an ordered
list of tokens when a user is drawing a symbol. On the contrary, each user may draw the
constituents of a symbol in a different order. There are two solutions to this problem.
The first establishes a predefined input order, and the user has no freedom to draw a
sketch which allows a conventional linear parsing to be applied. The second works with
no predefined order but entails a high computational cost because, for each new token,
the parser has to look among all the previously drawn symbols for those that may be
combined to yield a valid rule.

The parser presented in this paper requires no predefined order in the input but uses
a uniform grid to avoid re-scanning all the input as each new token is drawn. When
a new token is read by the parser, it is placed into an array of rectangular cells. Then
the parser searches the neighbouring cells for symbols that may produce a valid rule,
instead of searching all symbols seen so far. For well-behaved languages this allows
polynomial-time search while making possible to provide an analysis in real time for
reasonable input sentences.

Constructing the grid entails some decisions: whether it should be a static or dynamic
structure, the size of the cells, whether cells should be of fixed size or use adaptive di-
mensions, and how to place the symbols into the grid. Using a dynamic grid requires
recalculating the regions each time that a new item is inserted. Regarding the size of
cells, if we choose too small a size, each inserted symbol will be stored in many small
cells, thus taking up more space, and the parser will need to analyze more cells to find
candidate tokens, taking up more time. Using larger cells means that a major number of
symbols could be stored inside any given cell. This may mean a large number of ”false
candidates” showing up in neighbor queries, thus wasting computational resources. Fi-
nally, we need to take into account the method used to calculate the cells each symbol
belongs to. Using a bounding-box is not always an adequate heuristic to find the cells
spanned by a given symbol. I.e. if we have a token that describes a diagonal line its
bounding box will intersect many cells that do not really belong the symbol. This will
then waste computational resources, by attempting to match the symbol against non-
neighbor terms.
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(a) (b)

Fig. 1. Different placements algorithms used on the grid based parser:(a) Bounding-Box and (b)
Bresenham’s Algorithm

Being:
Gr = {Cx1, . . . , Cxn×m} the Grid over the space, with each of its Cxi cells.

BB(Cxi) : The boundind box of the cell Cxi (x1, y1), (x2, y2)
N(Cxi) : The set of Neighbouring cells of Cxi
E(Cxi) : The elements (tokens, completed or unfinished rules) inside a cell Cxi
E(Cxi1 , . . . , Cxim

) : The elements (tokens, completed or unfinished rules) inside a set of im cells

t is a token
Cells(t) is the set of cells that belongs to the token t following fig. 1.

r′ = V alidate(r, e1, e2) where r′ is the modification of the rule r if e1ande2 satisfy the constraints defined in r.

r′ = F inalize(r, e1) add the element e1 if it satisfies the constraints defined in r.
V alid(e) returns true if the element e has all of its composing elements and they have produced a valid reduction. Given a token t
P arser(t)

C = Cells(t)
N = {Cxi, ∀Cxj ∈ C&&Cxi ∈ N(Cxj)}

For each t′ ∈ E(N)
If V alid(t′) then

Find productions P r with t and t′
For each p′ ∈ Pr

t′′ = V alidate(p′, t, t′)
insert t′′ into Cells(t′′)
If V alid(t′′) then

P arser(t′′)
End If

End For
Else t′′ = F inalize(t′, t)
If V alid(t′′) then

P arser(t′′)
End If

End For

Fig. 2. Incremental Grid-Based On-line Algorithm

In our method after some experiments we have defined a static grid with a fixed cell
size of 1/2 × 1/2 inch. Using larger cells involves covering a more extensive area and
therefore taking more primitives into account. On the contrary, smaller cells entail a
larger number of memory accesses. To place the symbols into the cells we decide to use
two different methods depending on whether the token is a line or not. If the token is
a line we use Bresenham’s algorithm [9] to compute the cells that contain the line. On
the contrary, the bounding box determines the set of cells belonging to it, see fig. 1.

Our parser works as described in fig. 2: When a new primitive p, is input, the parser
finds out which grid cells it overlaps. Then the parser searches among the neighbouring
cells which contains graphical elements that, together with the new primitive, can match
a production in the grammar. If no such elements are found and p does not match the
right-hand-side of a production by itself, the parser looks for the next primitive input.
If a matching production is found, the parser will check to see if the constraints on the
right-hand-side are met. If all the constraints match, the symbol s1 on the left-hand-side
of this rule, generates a parse item, which is placed into the grid. Otherwise, if part of
the production rule is valid but there are still missing components s1 is marked as an



Representing and Parsing Sketched Symbols 175

unfinished parse item and it is placed also into the grid. Note that incomplete parse
items can match incoming primitives as a production would do. If a complete parse
item has been produced, we check to see if additional productions can match s1 (the
non-terminal labelling the new item). We recurse on new (completed) items until no
more production rules can fire.

4 Experimental Evaluation and Discussion

To evaluate our syntactic approach, we have defined two example grammars, as shown
in fig. 3. The first grammar, in fig. 3.a, describes architectural floor-plans. Here, a room
is defined as a rectangle which has a door and a window that intersects with it. The
second grammar describes a graphical user interface GUI as shown in fig. 3.b. For ex-
ample, we define a MenuBar as a rectangle that contains two or more Menu tokens. The
basic primitives of these grammars are described by Adjacency constraints. To simplify
writing these grammars, the definition of these basic primitives is automatically done
using a grammatical inference method (see [5]).

The experiments show how our grammatical formalism is able to describe hand-
drawn sketches using two grammars described above. The first experiment highlights
the resource savings due to the adoption of a grid and which is the correct size of its
cells. The second one shows how our method is able to cope with distortion, errors
and uneven spatial distribution of tokens. Finally, we have tested the syntactic approach
with sketches drawn by different users.

Bath Room:= {Room, Shower} isInside(Room,Shower)
Bed-Room := {Room, Bed} isInside(Room, Bed)
Room := {Rectangle, Window, Door} isIntersecting(Rectangle,Window) &&
isIntersecting(Rectangle,Door).
Flat := {Bed-Room, Bath Room, Rectangle, Door}

IsInside(Rectangle,Bed-Room) &&
IsInside(Rectangle,Bath Room) &&
IsIntersecting(Rectangle, Door)

ce := {Circle} | {Ellipse}
Text := {WavyLine} | {Line} isHorizontal(Line)
TextField := {Rectangle, Text} isInside(Rectangle, Text)
TextArea := {TextField, Text} isInside(TextField, Text)
Button := {Rectangle, Rectangle} isInside(Rectangle, Rectangle) &&
haveSimilarAreas(Rectangle, Rectangle)
ComboBox := {Triangle, Rectangle} isInside(Triangle, Rectangle)
Image := {ce, Triangle} isIntersecting(ce, Triangle)
MultiMediaArea := {ce, ce} isIntersecting(ce, ce)
ListBox := {TextArea, Text} isInside(TextArea, Text)
Menu := {ListBox, Text} isInside(ListBox, Text)
Menu Bar := {Rectangle, Menu, Menu) IsInside(Rectangle, Menu) &&
IsInside(Rectangle, Menu)

a) b)

Fig. 3. Example of a grammar specification

4.1 Experiment 1: Grid Tuning

This experiment evaluates the computational resource savings afforded by the grid and
allows us to estimate a good cell size. Table 1.a shows number of memory accesses by
our parsing algorithm. As we can see a small cell size increases the number of memory
accesses. Such grids involves small size on the cells that may introduce errors at the time
to search symbols in the neighbouring cells of the new token, as two real neighbouring
tokens may be placed in not neighbouring cells. This requires expanding the search area
to encompass more cells, which in turn increases again the number of memory accesses.
On the other hand, large cells yield more ”false positive” tests, as more elements which
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a) b) c) d)

Fig. 4. Examples used on grid tuning: a) Example1, b) Example2, c) Example3, and d) Example4

are placed too far apart to match adjacency relations show up in neighbor queries. As
can bee seen from Table 1, the smallest number of memory accesses seem to occur
around 1/2 in x 1/2 in cells. This, of course is dependent on input data average size and
primitive types. Different input tokens would probably require cells of a different size.
Further more comprehensive testing would be required to establish better heuristics for
cell size which would take into account grammar tokens and input characteristics.

Table 1.b shows a comparison in terms of finished and unfinished parse items be-
tween our method and a non-constrained (i.e. griddles) parser. This parser is somewhat
similar to the parser defined by Golin in [18]. We consider as unfinished parse items
those productions for which the parser has not been able to match all symbols on the
right-hand-side. As we can see, the difference between the two methods lies in the num-
ber of unfinished productions. When the user draws a new stroke, unconstrained parsers
have to re-analyze all the primitives previously seen, even if they bear no relation to the
symbol being drawn. Our method takes into account less primitives, thus it reduces
the number of feasible productions tested while generating less temporary (unfinished)
parse items. Finally, table 1.c shows the recognition times for each of the samples. As
we can see, the time values are reasonable to analyze an input in real time.

Table 1. Parser performance a) Number of memory accesses as a function of cell size, b) Number
of Finished and Unfinished parse items created and c) Recognition Time

�������Sample
Cell Size

1 inch 1/2 inch 1 cm 1/2 cm

Example1 360 504 774 2529

Example2 189 333 504 1944

Example3 108 108 180 450

Example4 126 144 378 945

Sample With Grid Without Grid
Finish./Unfinish. Finish./Unfinish.

Example1 15/1 17/125

Example2 1/2 1/65

Example3 8/4 8/86

Example4 2/1 2/67

a) b)
Sample #tokens #symbols Time(ms) Average(ms)

Example1 19 15 404 26.93
Example2 12 1 155 155
Example3 8 8 220 27.5
Example4 11 3 203 67.3

c)
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Flat 1

Door

Rectangle Bed Room Bath Room

Room Bed Room Shower

Rectangle

Door

DoorRectangle

Window

Window

a) b)

Flat 1

Door

Rectangle Bed Room Bath Room

Room Bed Room Shower

Rectangle

Door

DoorRectangle

Window

Window

Window

c) d)

Fig. 5. Architectural floor-plan a) and corresponding parse tree b) c)Another Instance and its parse
tree d)

4.2 Experiment 2: Distortion Tolerance

Contrary to document recognition, error tolerance and the ability to cope with sizeable
variations in input tokens are very desirable features to have in a parsing algorithm tai-
lored to interactive use. This experiment shows how tolerant our method is to distortion
and input errors such as added (extraneous) elements and changes in spatial relation-
ships among the strokes on a given sketch.

Figure 5 shows two samples representing sketched floor-plans and their correspond-
ing parse trees. As we can see, at the time that each new token of the input of the
left-hand is drawn by the user, the parsing algorithm constructs the parse tree on the
right side where the leaves corresponds to the terminal symbols of the alphabet and
each non-leaf node represents a non-terminal symbol labelling the corresponding pro-
duction in the grammar. Figure 5.c shows the same visual sentence where an additional
element circled in red has been added. This element has been recognized as a window
(as described by the grammar in Fig. 3.a), it does not satisfy the relational constraint
to the other elements of the production. Although this additional symbol appears to be
spurious input, we can see that the parser is able to describe the whole sketch, and with
some extra work, it would be possible to identify which strokes do not participate on
a complete parse tree (i.e. one labelled by the start symbol at the root). This is accom-
plished through cover sets as described in [1] .

4.3 Experiment 3: User Testing

This experiment evaluates the ability of our methodology to accommodate the vari-
ability in drawing styles produced by different users. To perform the experiment we
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Table 2. Experimental test based on a set of users

Sample # Recognized tokens # Unrecognized tokens Error Description
1 13 1 Constraints Failure on the token window.
2 15 0 No problems into the sketch.
3 15 0 No problems into the sketch.
4 15 0 No problems into the sketch.
5 12 3 Window recognized as a Rectangle.
6 15 0 The sketch does not present problems
7 15 0 The sketch does not present problems
8 15 0 The sketch does not present problems
9 15 0 The Sketch does not present problems

10 19 0 The sketch presents some extra tokens forming
a bed-room that has not been recognized.

a) b) c)

Fig. 6. Three different samples from Sketched User Interfaces a) Complete Recognition, b) token
mis-recognized and c) missing token

showed a sketched floor-plan, see fig. 5.a, to ten users who were then asked to draw a
similar sketch. Each floor plan requires drawing roughly 40 strokes to depict 15 visual
elements. We ran our parsing algorithm on these sketches. Out of the ten sketches, two
were not correctly interpreted. Seven sketches contain the forty recognized strokes with
a correct interpretation. On one case the user repeated a token, due to a mis-recognized
production (constraint failure). Table 2 summarizes the experimental outcome. From
the results obtained by the parsing methodology we can see that our approach is able
to interpret floor plans interactively. Indeed, some of the failures can be corrected by
adding interactive correction capabilities to our method. This will be done in future
versions of the system.

We also tested the syntactic approach presented in this paper with a grammar that
describes User Interfaces. Figure 6 shows three samples of the same sketch drawn by
three different users. Figure 6.a shows a sketch where all the tokens are well recognized
comparing it with the sketches in fig. 6.b and fig. 6.c we can see that in the first only
one token is not recognized. In this case the unrecognized token is due to a stroke
preprocessing error. The system has recognized an arc instead of two segments. The
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sketch in fig. 6.c has one token missing on its top part and there is a token that has not
been well recognized. This is due to the fact the token was highly distorted.

5 Conclusions

In this paper we have presented a syntactic approach for sketch recognition including
two components: First, we have described a grammatical formalism based on an Adja-
cency grammar that allows describing spatial relations among the different symbols that
compose a hand-drawn sketch. Second, a parsing method based on a regular grid has
been introduced. This parsing method allows partially re-scanning the input when new
strokes are entered by users, which makes it suitable for interactive use. Preliminary
experimental evaluation of the system shows that using a uniform grid with cells of ad-
equate size reduces the spatial and temporal complexity of the parsing algorithm, thus
making it suitable to be used in an interactive sketch recognition framework. Moreover,
the syntactic approach presented is flexible enough to describe and interpret sketches
from different problem domains, in this case architectural floor-plans and User Inter-
faces. Finally, the results obtained from the evaluation suggest a good scalability to
larger drawings. As future work we plan to expand the system to make it more flexible
and support interactive user correction and modification of input drawings.
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20. Coüasnon, B.: DMOS, a generic document recognition method: application to table structure
analysis in a general and in a specific way. International Journal on Document Analysis and
Recognition 8(2-3), 111–122 (2006)

21. Costagliola, G., Deufemia, V., Risi, M.: Sketch Grammars: A Formalism for Describing and
Recognizing Diagrammatic Sketch Languages. In: International Conference on Document
Analysis and Recognition, Hong-Kong, pp. 1226–1230 (2005)


	Representing and Parsing Sketched Symbols Using Adjacency Grammars and a Grid-Directed Parser
	Introduction
	Related Work
	Sketch Recognition
	Grammatical Symbol Recognition

	A Syntactic Approach to Recognize Hand-Drawn Sketches
	Experimental Evaluation and Discussion
	Experiment 1: Grid Tuning
	Experiment 2: Distortion Tolerance
	Experiment 3: User Testing

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




