
Developing Domain-Specific Gesture

Recognizers for Smart Diagram Environments

Adrian Bickerstaffe, Aidan Lane, Bernd Meyer, and Kim Marriott

Monash University, Clayton, Victoria 3800, Australia

Abstract. Computer understanding of visual languages in pen-based
environments requires a combination of lexical analysis in which the ba-
sic tokens are recognized from hand-drawn gestures and syntax analysis
in which the structure is recognized. Typically, lexical analysis relies on
statistical methods while syntax analysis utilizes grammars. The two
stages are not independent: contextual information provided by syntax
analysis is required for lexical disambiguation. Previous research into vi-
sual language recognition has focussed on syntax analysis while relatively
little research has been devoted to lexical analysis and its integration
with syntax analysis. This paper describes GestureLab, a tool designed
for building domain-specific gesture recognizers, and its integration with
Cider, a grammar engine that uses GestureLab recognizers and parses
visual languages. Recognizers created with GestureLab perform proba-
bilistic lexical recognition with disambiguation occurring during parsing
based on contextual syntactic information. Creating domain-specific ges-
ture recognizers is not a simple task. It requires significant amounts of
experimentation and training with large gesture corpora to determine
a suitable set of features and classifier algorithm. GestureLab supports
such experimentation and facilitates collaboration by allowing corpora
to be shared via remote databases.

1 Introduction

There has been considerable research into the automatic recognition of diagrams
as the basis for smart diagrammatic environments (SDEs). These SDEs use
structured diagrams as a means of visual human-computer interaction [10]. An
example SDE is a smart whiteboard that automatically interprets, refines and
annotates sketches jotted down in group discussion. Much of this research has
focused on generic diagram interpretation engines based on incremental multi-
dimensional parsers. Such parsers can automatically be generated from a gram-
matical specification of the diagrammatic language [5], greatly simplifying the
task of implementing SDEs. The inputs to such a parser are lexical tokens such
as lines, rectangles, or arrows. Typically the user composes a diagram from these
with an object-oriented drawing editor.

Extending the (semi-)automatic generation of diagram interpreters to support
sketching in pen-based environments is a challenging task and the focus of this
paper. A generic two-stage approach is taken in which syntax analysis (parsing) is

W. Liu, J. Lladós, and J.-M. Ogier (Eds.): GREC 2007, LNCS 5046, pp. 145–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

146 A. Bickerstaffe et al.

preceded by lexical analysis (gesture recognition). While some previous projects
have used parsing techniques for lexical analysis, decades of research into pattern
analysis suggests that feature-based and statistical methods are better suited to
this problem [7]. The core challenges tackled in our paper are: (1) to automate
as far as possible the development of statistical recognizers for stylus-drawn
graphical tokens and (2) to integrate statistical lexical recognition with grammar-
based syntax analysis.

The main contribution of this paper is to describe GestureLab, a tool for gen-
erating probabilistic gesture recognizers. GestureLab is integrated with Cider [5],
a multi-dimensional parser generator for diagram analysis: gesture recognizers
generated with GestureLab can be interfaced automatically with an incremen-
tal parser generated by Cider. Together these two systems provide a suite of
generic tools for the construction of interactive sketch interpretation systems.
These tools automate the SDE construction process to a high degree. The via-
bility of the GestureLab-Cider approach is demonstrated in the development of
a computer algebra system that interprets stylus-drawn mathematical expres-
sions. The tool recognises algebraic and matrix notation from interactive input
and demonstrates context-driven disambiguation.

GestureLab uses Support Vector Machines (SVMs) as the default mecha-
nisms for learning new recognizers. SVMs are a popular approach to supervised
learning of wide-margin classifiers because they are well-understood, theoreti-
cally well-founded and have shown excellent performance across a broad variety
of applications [2,13]. However, standard SVMs perform non-probabalistic two-
way classification. A second contribution of this paper is to describe an extension
to SVMs that allows GestureLab to generate probabilistic k-way recognizers.

2 GestureLab

Given the huge variety of lexical tokens occurring in different types of diagrams,
it is clear that generating an interpreter for a new diagram type requires lexical
recognition to be tailored to the gestures of interest. GestureLab (see Fig. 1)
is a software tool designed to facilitate rapid development and testing of such
domain specific gesture recognizers. Recognizers can be developed entirely within
GestureLab without any need for a testbed application and can be coupled to
Cider without modification.

GestureLab recognizers follow the standard approach to statistical gesture
recognition: recognition is performed on digital ink which includes position, tim-
ing, pressure, and angle data. Statistical summary features such as the total
length of the gesture, initial stroke angle, and maximum curvature are extracted
from this data and used by a classifier algorithm to predict class labels (ges-
ture types). A recognizer thus consists of a bundle of feature extractors and a
classifier algorithm trained on a particular gesture corpus.

GestureLab supports all phases of the recognizer development process: (a)
collecting, manipulating and sharing gesture corpora, and (b) automatic training
and cross-validation of feature extraction and recognizer mechanisms. In the

Developing Domain-Specific Gesture Recognizers 147

Fig. 1. Main window of GestureLab

event that the built-in feature extraction and recognizer mechanisms are insuf-
ficient, GestureLab also allows the developer to readily define (c) new feature
extraction mechanisms and (d) new recognizer algorithms.

A core challenge for any two-phase approach which splits lexical and syntactic
analysis is that lexical recognition may be ambiguous; contextual information
from syntax analysis may be needed to disambiguate the lexical classification.
This disambiguation must be delayed until the parsing stage when contextual
syntactic information is readily available. To support this, GestureLab generates
probabilistic recognizers that return membership probabilities for all possible
token classes instead of a single most likely class.

Corpus Management: GestureLab arranges gestures in terms of a library con-
taining named categories (or “classes”) of gestures and collections of gestures
selected from these categories. Class membership determines the intended inter-
pretation of a gesture, while collections are named sets for training and testing.
Each gesture may belong to any number of named collections and classes. In
this way, training and test collections can be created, modified, and deleted
without altering the corpora. The library can be accessed and manipulated us-
ing an intuitive drag-and-drop interface or via an SQL interface. SQL queries
are based on attributes such as collection names, feature data, and experimental
results (see below). Gestures can be reviewed visually either as static images or
as animations showing the original drawing process.

148 A. Bickerstaffe et al.

GestureLab uses a single database to store corpora and experiment data.
Remote access to this database is possible using GestureLab clients connected
via the Internet. This makes it possible for geographically distributed research
groups and for whole research communities to contribute to shared corpora,
and to use this data for recognizer development. Corpora and experiment data
are also accessible for other software applications via a versatile text-based im-
port/export facility.

Defining New Classifier Algorithms: In the simplest case, a domain-specific
recognizer is built by simply training a generic classifier on a domain-specific
corpus. GestureLab uses a probabilistic k-way Support Vector Machine as the
default recognizer algorithm (see Section 3). When this is insufficient, specialized
classifier algorithms can easily be added by the developer. Classifier algorithms
are implemented by writing a new C++ class which inherits from a base recog-
nizer and which implements the recognizer interface defined by virtual functions.
This interface comprises functions for training and classifying feature vectors, in
addition to saving and loading the recognizer to/from file.

Different applications may need different ink pre-processing such as smoothing
or hook removal. The responsibility for any pre-processing rests with the indi-
vidual recognizers so that each recognizer can process stroke data in a manner
which is most suitable for the particular application.

Defining New Feature Extractors: The standard GestureLab distribution
includes a set of pre-defined feature extractors, following [12]. These include, for
example, the initial angle, maxmimum speed, and total duration of the gesture.
However, the features required for effective classification of new gesture sets
can vary greatly and so GestureLab provides a flexible mechanism for defining
new feature extractors. Feature extractors are defined using a plug-in interface
and are implemented by writing a C++ class which inherits from a pre-defined
feature class. The interface is straight forward: the extractor receives stroke
data and returns the feature as a single real-value. In this way, there are no
restrictions on the types of features that can be defined or on the algorithms
used to compute these. Several feature extractors can be bundled together as a
single feature plug-in module.

Automatic Training and Testing: GestureLab offers full support for auto-
matic recognizer training, testing, and experimentation via an intuitive graphical
interface. For an experiment, the designer couples specific feature recognizers and
classifier algorithms with chosen gesture collections and can then train and val-
idate the thus defined recognizer automatically. This is particularly useful since
training times for some classifiers of large alphabets can be extremely long.
GestureLab performs automatic cross validation and can automatically create
training and test data sets by randomly sampling from a collection of gestures.
All experiment data (including feature values, recognition probabilities, param-
eters settings, etc.) are stored in the central database and are fully accessible so
that experiments can be easily repeated and varied. A versatile experiment report

Developing Domain-Specific Gesture Recognizers 149

facility allows the developer to obtain experiment summaries including the
overall recognizer accuracy, the number of gestures correctly/incorrectly classi-
fied, and the particular gestures which were misclassified. Results can be filtered
to display only correct or only incorrect predictions. Gestures contained in the
results table can be displayed graphically and replayed as a temporary collec-
tion. This is particularly useful for diagnosing causes of misclassification and
developing new feature extractors to address the problems found.

GestureLab also supports quicker, less comprehensive testing of recognizers.
A “test pad” allows recognizers to be evaluated on a gesture by gesture basis
using interactive input instead of a whole gesture collection. The test pad is
particularly useful for investigating unexpected recognizer traits.

3 SVM Gesture Recognition in GestureLab

The default classifier algorithm for GestureLab recognizers is the Support Vec-
tor Machine (SVM [2,13]). SVMs are chosen because they are well-understood,
theoretically well-founded and have proven performance in a wide range of ap-
plication areas.

Fig. 2. SVM classification example

Linear SVMs: Basic SVMs are
binary linear wide-margin classifiers
with a supervised learning algorithm.
Let X be a set of m training samples,
xi ∈ R

n, with associated class labels
ci ∈ {+1,−1}. Assuming linear sep-
arability, the goal of SVM learning is
to find an (n − 1)-dimensional hyper-
plane which separates the classes {xi ∈
X |ci = +1} and {xi ∈ X |ci = −1}.
Such a hyperplane fulfils ci(w·xi+b) ≥
0 and corresponds to the decision function cpred(x) = sign((w ·x+b)). In general,
there are an infinite number of such hyperplanes.

SVMs compute the hyperplane that provides the maximum class separation
by finding a maximal subset S ⊆ X of so-called support vectors for which w, b
can be re-scaled such that ci(w · si + b) = 1 for si ∈ S. The separation mar-
gin perpendicular to the separation hyperplane is 2/||w|| (see Fig. 2), so that
maximizing the margin can be done by solving the quadratic program (QP)

minw,b ||w||2 s.t. ∀i : ci(w · xi + b) ≥ 1 (1)

or its dual

maxαi

m∑

i=1

αi −
m∑

i=1

m∑

j=1

αiαjcicjxi
T xj s.t.

m∑

i=1

αici = 0 ∧ ∀i : αi ≥ 0 (2)

where w =
∑

i αixici.

150 A. Bickerstaffe et al.

Such a hyperplane cannot be found if the two classes are not linearly separable:
some xi will always be on the wrong side of the plane and QP (1,2) is not feasible.
In this case, the aim is to minimize the classification error whilst simultaneously
maximizing the margin. This is achieved by introducing a penalty term ξi for
misclassified samples in the corresponding QP (3) or its dual.

min ||w||2 + C
∑

i

ξi s.t. ∀i : ci(w · xi + b) ≥ 1 − ξi (3)

Non-linear SVMs: The approach described thus far computes only linear clas-
sifiers.

In many cases an SVM can, however, separate classes that require non-linear
decision surfaces by first transforming the data into some higher-dimensional
space in which linear separation is possible. Such transformations can potentially
be expensive, but the so-called “Kernel Trick” allows us to side-step the explicit
transformation. For a transformation φ(·), a kernel function k(·, ·) computes the
dot product of transformed data without explicitly computing the transforma-
tion, i.e. k(x, x′) = φ(x) ·φ(x′). Of course, kernel functions can only be found for
a limited class of transformations φ(·). Kernel functions provide a general way to
apply a linear algorithm (in a limited way) to non-linear problems, provided the
crucial computations of the algorithm can be phrased in terms of dot products,
as is the case for SVMs.

-1

-1

-1

-1

-1

+1

+1

+1

+1

+1

Fig. 3. A non-linear classification
problem linearly separable in the
transformed feature space

A non-linear SVM attempts to perform
linear separation of the transformed sam-
ples φ(xi) using the kernel trick [13]. Com-
mon kernels include the polynomial kernel
k(x, x′) = (x·x′)d and the Radial Basis Func-
tion (RBF) kernel k(x, x′) = exp(−γ||x −
x′||2), γ > 0. Fig. 3 shows a non-linear clas-
sification problem.

GestureLab’s default classifier uses RBF
kernels and performs a two-dimensional grid-
search to optimize the kernel parameters.
This search is guided by cross-validation re-
sults using all training data relevant to the
decision node and 5-fold cross-validation.

Multiclass SVMs: Standard SVMs are bi-
nary classifiers and it is not at all straight-
forward to use these for multi-way classification. The standard techniques to
build k-way SVMs are one-against-all [4], one-against-one [4], and DAGSVM
schemes [11]. A one-against-all classifier requires k SVMs for a k-class problem,
where the ith SVM is trained using all samples from the ith class versus all other
samples. A sample is classified by evaluating all k trained SVMs and the label of
the class for which the decision function is maximum is chosen. The one-against-
one scheme trains k(k−1)

2 classifiers derived from pairwise comparison of target

Developing Domain-Specific Gesture Recognizers 151

classes. A prediction is made by evaluating each SVM and recording “votes”
for the favored class; the class with the most votes is selected as the predicted
class. Both methods suffer from very long training times and this issue is fur-
ther compounded for large data sets such as our corpus of over 10000 gestures.
Furthermore, there is no bound on the generalization error of one-against-all
schemes, and one-against-one schemes can tend to overfit.

The DAGSVM scheme is more complex. The decision DAG is created by
viewing the problem as a series of operations on a list, with each node eliminat-
ing one element from the list. Given a list initialized with all class labels, the
root node is formed using the training data corresponding to the first and last
elements of the list. A decision can now be made which will eliminate one of
the two classes being compared. The eliminated class is removed from the list
and the DAG proceeds to form a child node again using the first and last list
elements. The formation of child nodes in this manner occurs for both decision
paths and continues until only one element remains in the list. The DAGSVM
will consequently comprise k(k−1)

2 nodes and achieve predictions by evaluating
k − 1 of these nodes. Note that each final node can be reached using more than
one pathway from the root node and thus, acyclic graph structure is exhibited.
The problem of lengthy training times also applies to the DAGSVM schema
since, like one-against-one, it requires training k(k−1)

2 decision nodes. The per-
formance of a DAGSVM also relies on the order in which classes are processed,
and no practical method is known to optimize this order.

We believe a better approach is to reduce the set of possible classes at each
decision node and take relative class similarity into account during the construc-
tion of the decision tree. We construct the decision tree as a Minimum Cost
Spanning Tree (MCST) based on feature distances. Each of the leaves corre-
sponds to a target class and the interior nodes group classes into progressively
more disjoint sets. For each internal node in the MCST an SVM is trained to
separate all samples belonging to classes in its left subtree from those in the
right subtree. Fig. 4 contrasts the DAGSVM and MCST-SVM approaches for a
four class example.

The MCST recognizer scales features to [−1, 1] and computes a representative
feature vector for each class. The representative feature for a given class is the
centroid of all samples belonging to that class. Euclidean distances between all

Fig. 4. DAGSVM (left) vs. MCST (right) structure

152 A. Bickerstaffe et al.

unique unordered pairs of representative vectors are calculated, and from these
distances (or “edge weights”) an MCST is constructed (in polynomial time)
using Kruskal’s algorithm [6]. Average-linkage and complete-linkage versions of
the decision tree have also been implemented.

The MSCT recognizer requires k− 1 nodes for a k-class problem and a maxi-
mum of k−1 decisions for a prediction. MCST recognizers have a core advantage
over the other schemas since they discriminate between classes based on class
similarity. Furthermore, training time is reduced because only k− 1 SVMs must
be trained.

Probabilistic SVMs: A standard SVM provides only a non-probabilistic class
prediction (“best guess”). As explained earlier, probabilistic predictions are re-
quired to perform context-based syntactic disambiguation. The MCST approach
facilitates inference of probability distributions for prediction errors during the
training phase in a simple manner: after completing the training of all recognizer
nodes, a test prediction for each training sample is made and the frequencies of
predicting class ci for a data item of true (known) class cj are tabulated. From
these, maximum likelihood probability distributions are computed for each leaf
node of the SVM decision tree.

Coupled with a standard set of feature extractors, the probabilistic MCST-
SVM recognizers produce state-of-the-art recognition rates [3].

4 Cider

Syntactic recognition is provided by Cider. Only a quick overview can be given
here, for more details see [5]. Fig. 5 shows the components that comprise the
Cider toolkit and how these components are used in the creation of an applica-
tion. The white boxes indicate components of Cider; cross-hatched boxes indi-
cate optional components that can be tailored to extend the capabilities of the
toolkit; shading indicates components that must be created by the application
developer.

Cider automatically generates a parser for a visual language from a grammat-
ical specification of the visual language’s syntax. Parsers produced by Cider are
fully incremental which means that users can add, delete, or modify components
of a diagram at any time and that the interpretation engine automatically main-
tains a consistent interpretation of the diagram state. Furthermore, the ability
to specify syntactic transformations provides a powerful mechanism for encod-
ing diagram manipulations and user interactions. Cider compiles the grammar
and transformation specifications into libraries that can then be used as domain-
specific diagram interpretation engines by an application.

Both the syntax and transformation rules are specified using Constraint Mul-
tiset Grammars [9], a kind of attributed multi-set grammar. As a simple example,
consider the following production which defines a division term t as composed
of two numerals a and b with a horizontal division line:

Developing Domain-Specific Gesture Recognizers 153

t:Term ::= l:Line

exist a:Numeral, b:Numeral

where immediately_above(a.bbox, l.bbox) and

immediately_below(b.bbox, l.bbox) and

horiziontally_centered(l.bbox, a.bbox) and

horizontally_centered(l.bbox, b.bbox)

{ t.value = a.value / b.value }

Importantly, Cider supports structure preserving diagram manipulation. This
means that specifications can be written so that once a syntactic diagram com-
ponent has been recognized, the syntactic structure is automatically maintained
when the user manipulates one of the component constituents. For example,
when a fraction has been recognized in a mathematical expression and the user
extends the denominator, the fraction line can automatically be extended; when
the fraction line is dragged, numerator and denominator terms can be dragged
with it, etc. This is achieved by using a constraint solver in the diagram proces-
sor to automatically update attribute values of tokens so that the specification
remains consistent with the visual state of the diagram.

Fig. 5. Cider Architecture

5 System Integration

Building an SDE with GestureLab and Cider: Cider and GestureLab
provide a powerful tool suite for building pen-based SDEs. An SDE created with
GestureLab and Cider has three main components: a graphical front-end where

154 A. Bickerstaffe et al.

Fig. 6. System components

input is drawn, the Cider runtime environment, and the recognition engine. The
recognition engine consists of the lexical recognizer generated by GestureLab and
the syntax recognizer (i.e. parser) generated by Cider (see Fig. 6). The graphical
front-end is either provided by the application or a generic graphical editor.

The first step in building such an SDE is to bundle the gesture recognizers de-
veloped in GestureLab as a single static library. The second step is to develop a
Constraint Multiset Grammar that parses the targeted diagram language. Using
Cider, this grammar is compiled into another static library that encapsulates the
syntactic recognition engine. The application must then be set up to communi-
cate with Cider through the Cider controller API. Primarily, the controller han-
dles the addition, modification and deletion of gestures on the front-end side, as
well as the addition of non-terminals (recognition of syntactic components), and
their modification and deletion. Non-terminals are added, modified and deleted
by Cider as the consequence of a production application or in reaction to a struc-
ture preserving manipulation. Communication between the front-end and Cider
occurs in terms of requests made to Cider from the front-end. Asynchronous re-
sponses from Cider are handled by registering callback functions for events such
as the creation or removal of a non-terminal symbol, or attribute changes.

Handling Lexical Ambiguity: Interpretation by the recognition engine is a
two-phase process: first, the lexical recognizer provides a probabilistic classifi-
cation of the gesture; second, resolution of lexical ambiguity is delayed until
parsing so as to allow the use of contextual information. For instance, consider a
toy problem in which we want to recognize divisions written in TeX in-line style,
such as “4 / 5” where numbers always comprise a single digit (the extension to
multi-digit numbers is simple).

Developing Domain-Specific Gesture Recognizers 155

The grammar contains a “Gesture” terminal symbol in addition to “Numeral”,
“Operator”, and “Term” non-terminal symbols. All symbols have bounding box
attributes. The “Numeral” and “Term” non-terminals require a further integer
attribute to store their numerical value.

The problem that we encounter is that there can be ambiguity on the lexical
level when classifying a vertical line: depending on the angle of the line, it may
represent the numeral “one” or a division operator. At some angles the interpre-
tation will be ambiguous and the classification must be delayed until sufficient
syntactic context is available to disambiguate in the parser. A vertical line must
be a division operator if there are numeric operands to its left and right, whereas
the line must be a numeral with value “one” if there is no numeral immediately
to the left or right of it. This syntactic disambiguation is taken into account in
the following CMG grammar fragment:

n:Numeral ::= g:Gesture where (most_likely(g, zero))

{ n.value := 0, n.bbox = Gesture.bbox }

n:Numeral ::= g:Gesture where (most_likely(g, line))

not exists (n:numeral)

where (immediately_left_of(n.bbox, g.bbox) or

immediately_right_of(n.bbox, g.bbox))

{ n.value := 1, n.bbox = Gesture.bbox }

...

n:Numeral ::= g:Gesture where (most_likely(g, nine))

{ n.value := 9, n.bbox = Gesture.bbox }

d:Operator ::= g:Gesture where (most_likely(g, line))

exists (n:numeral)

where (immediately_left_of(n.bbox, g.bbox) or

immediately_right_of(n.bbox, g.bbox))

{ d.bbox = g.bbox }

t:Term ::= o:Operator

exist a:Numeral, b:Numeral

where immediately_left_of(a.bbox, o.bbox) and

immediately_right_of(b.bbox, o.bbox) and

vertically_centered(o.bbox, a.bbox) and

vertically_centered(o.bbox, b.bbox)

{ t.value = a.value / b.value }

The attribute constraints will be automatically processed with default toler-
ances, however tolerances can be set explicitly and arbitrary attribute tests can
be implemented as user-defined functions.

Case study: The GestureLab-Cider pair has been used to create a pen-based
front-end for a computer algebra system. This system interprets stylus-drawn
mathematical expressions and handles fractions, exponentials, basic arithmetic,
and matrices. The case study demonstrates the viability of the GestureLab-Cider
approach for generating domain-specific SDEs. Note that due to the incremental
nature of Cider parsers, expressions can be written in any order of symbols and
can arbitrarily be modified; a consistent interpretation will automatically be
maintained at all times.

156 A. Bickerstaffe et al.

6 Conclusions

This paper has described GestureLab, a tool designed for building domain-
specific gesture recognizers, and its integration with Cider, a grammar engine for
parsing visual languages that use GestureLab recognizers. Together these two
systems form a suite of generic tools for the construction of interactive sketch
interpretation systems. These tools automate the SDE construction process to
a high degree.

GestureLab has been specifically designed to facilitate collaboration between
researchers, allowing gesture corpora to be stored and shared via remote databases
either locally or via the Internet. The software has been released into the public do-
main at http://www.csse.monash.edu.au/~adrianb/GL/Home.html. Gesture-
Lab aims to provide synergy between different research efforts by facilitating the
sharing of corpora and recognizer reference implementations. Cider is also avail-
able upon request.

References

1. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

2. Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20, 273–297
(1995)

3. Garain, U., Chaudhuri, B.B.: Recognition of online handwritten mathematical ex-
pressions. IEEE Transactions on Systems, Man, and Cybernetics - Part B 34(6),
2366–2376 (2004)

4. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks 13 (2002)

5. Jansen, A.R., Marriott, K., Meyer, B.: Cider: A component-based toolkit for creat-
ing smart diagram environments. In: International Conference on Distributed and
Multimedia Systems, Miami (September 2003)

6. Kruskal, J.B.: On the shortest spanning subtree and the traveling salesman prob-
lem. Proceedings of the American Mathematical Society 7, 48–50 (1956)

7. Liu, W.: On-line graphics recognition: state-of-the-art. In: Lladós, J., Kwon, Y.-B.
(eds.) GREC 2003. LNCS, vol. 3088, pp. 291–304. Springer, Heidelberg (2004)

8. Lorena, A.C., de Carvalho, A.C.P.L.F.: Minimum spanning trees in hierarchical
multiclass support vector machines generation. In: Ali, M., Esposito, F. (eds.)
IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 422–431. Springer, Heidelberg (2005)

9. Marriott, K., Meyer, B.: On the classification of visual languages by grammar
hierarchies. Journal of Visual Languages and Computing 8(4), 374–402 (1997)

10. Meyer, B., Marriott, K., Allwein, G.: Intelligent diagrammatic interfaces: state of
the art. In: Diagrammatic Representation and Reasoning, pp. 411–430. Springer,
London (2001)

11. Platt, J.C., Cristinini, N., Shawe-Taylor, J.: Large margin DAGs for multiclass
classification. Advances in Neural Information Processing Systems 12, 547–553
(2000)

12. Rubine, D.: Specifying gestures by example. Computer Graphics 25(4), 329–337
(1991)

13. Schölkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Developing Domain-Specific Gesture Recognizers for Smart Diagram Environments
	Introduction
	GestureLab
	SVM Gesture Recognition in GestureLab
	Cider
	System Integration
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

