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Plastic Limit Analysis of Pressure Vessels

9.1 Introduction

Thin-walled vessels and thick-walled cylinders are applied widely in industry
as pressure vessels, pipes, gun barrels, cylinders of rockets, etc. The limit
analyses of thick-walled hollow spheres and cylinders under internal pressure
were discussed in detail by Hill (1950), and Johnson and Mellor (1962). Fur-
ther studies on this subject were reported by Derrington and Johnson (1958),
Johnson and Mellor (1962), Tuba (1965), and Zyczkowski (1981). The Tresca
yield criterion or the Huber-von Mises yield criterion is usually applied for
the design of thin-walled pressure vessels. The result using the Huber-von
Mises yield criterion for a spherical vessel is similar to that using the Tresca
yield criterion. These solutions are applicable only for non-SD materials. It
can be seen in the textbook of plasticity.

For SD materials two-parameter failure criteria have to be used (Drucker,
1973; Richmond et al. 1980). The limit pressure of a thick-walled hollow
cylinder with material, following the Mohr-Coulomb strength theory, was
discussed by Xu and Liu (1995). The limit pressures of the thick-walled hollow
sphere and cylinder with material following the twin-shear strength theory
were reported by Ni et al. (1998) and Zhuang (1998). Application of the twin-
shear strength theory in the strength-calculation of gun barrels was given by
Liu et al. (1998) and Li et al. (2007).

The elastic limit and plastic limit of the thin-walled vessel and thick-
walled cylinder were studied with respect to the unified strength theory by
Wang and Fan (1998), a series of unified solutions of limit loads for pressure
vessels were given (Wang and Fan, 1998). Zhao et al. (1999), Feng et al.
(2004a; 2004b) and recently Li et al. (2007) also give some results of unified
solutions for pressure vessels. The unified strength theory is also applied to
the unified limit load solution for fiber-reinforced concrete cylinder taking
into consideration the strain softening of material by Chen et al. (2006). The
effects of failure criterion on the elastic limit and plastic limit loads of the
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thin-walled pressure vessel and thick-walled pressure vessel were summarized
by Yu (2004).

In most of the applications the thickness of the cylinder is constant and
the cylinder is subjected to a uniform internal pressure p. The deformations
of the cylinder are symmetrical with respect to the symmetric axis of the
cylinder. The deformations at a cross section sufficiently far from the junc-
tion of the cylinder and its end caps are independent of the axial coordinate z.
In particular, if the cylinder is open-ended (no end caps) and unconstrained,
it undergoes axisymmetric deformations due to pressure p which is indepen-
dent of z. If the deformation of cylinder is constrained by end caps, the
displacements and stresses at cylinder cross sections near the end cap junc-
tions differ from those at sections far away from the end cap junctions, if
axially symmetrical loads and constraints are considered. Thus the solution
is axisymmetrical; the solutions are functions of the radial coordinate r only.
In the case of a thin-walled cylinder, the difference in stresses at the inner
wall and outer wall is small if the thickness t is much less than the vessel di-
ameter. The internal stresses can then be assumed to be independent of the
radial coordinate r. Relationships between the internal pressure p, the dimen-
sions of the thin-walled vessel, circumferential and axial stresses in a pressure
vessel, can be found in textbooks of Mechanics of Materials or Strength of
Materials.

The systematic results of elastic and plastic limit loads for thin-walled
and thick-walled pressure vessels will be described in this chapter.

9.2 Unified Solution of Limit Pressure of Thin-walled
Pressure Vessel

Considering the stresses in a thin-walled pressure vessel subjected to an inter-
nal pressure as shown in Fig.9.1, the pressure incurs a circumferential stress
(or hoop stress) σ1 and a longitudinal stress σm or σ2 that can be expressed
as

σ1 =
pD

2t
, σ2 = σm =

pD

4t
, σ3 = 0. (9.1)

Based on the unified strength theory,

F = σ1 − α

1 + b
(bσ2 + σ3) = σt, when σ2 � σ1 + ασ3

1 + α
, (9.2a)

F ′ =
1

1 + b
(σ1 + bσ2)− ασ3 = σt, when σ2 � σ1 + ασ3

1 + α
. (9.2b)

The stresses of a thin-walled vessel satisfy the inequity condition σ2 =
1
2 (σ1+σ3) � σ1+ασ3

1+α , therefore the first formula of the unified strength theory
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Fig. 9.1. Stresses in thin-walled pressure vessel

Eq.(9.2a) is valid for the yield condition of the vessel. Substituting Eq.(9.1)
into Eq.(9.2a), the yield condition for a thin walled cylinder obeying the
unified strength theory is obtained

F = σ1 − α

1 + b
(bσ2 + σ3) =

pD

2t
− αb

1 + b

pD

4t
= σt. (9.3)

The elastic limit pressure can be derived as

pe =
1 + b

2 + 2b − αb

4t
D

σt. (9.4)

If the material has an allowable tensile stress of [σ] = σt/n, where n is
the factor of safety, the allowable limit pressure is

[p] =
1 + b

2 + 2b − αb

4t
D
[σ]. (9.5)

If the internal pressure p and allowable stress [σ] are given, the wall thick-
ness should satisfy

t � 2 + 2b+ αb

1 + b

pD

4[σ]
. (9.6)

The relationship between the limit pressure and wall thickness and the
unified strength theory parameter b are illustrated in Fig.9.2 and Fig.9.3,
respectively.

The unified solution with b = 0 and α �= 1 is with respect to the Mohr-
Coulomb material and the solution for the Tresca material is a special case
of the unified solution with b = 0 and α = 1. The unified solution with b = 1
and α �= 1 corresponds to the generalized twin-shear criterion (Yu, 1983), and
the unified solution with b = α = 1 is the same as the solution of the twin-
shear stress criterion (Yu, 1961) or the maximum deviatoric stress criterion
(Haythorthwaite, 1960). Other solutions are new which can be applied to
different materials. Therefore the unified solution can be adopted for analysis
of structures made of various materials.

It is worth noting that:
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Fig. 9.2. Elastic limit pressure versus the unified strength theory parameter b

Fig. 9.3. Minimum wall thickness versus the unified strength theory parameter b

(1) The traditional solution is a single solution (with respect to b = 0
in the unified strength theory), which can be adopted only for one kind of
material. The unified solution, however, gives a serial solution, which can be
adopted for various materials and structures.

(2) The solution for Tresca material (b = 0 and α = 1) is identical to the
solution for the Mohr-Coulomb material (b = 0 and α �= 1). It means that the
SD effect of materials (α �= 1) cannot be considered by the Mohr-Coulomb
strength theory in this case.

(3) All the solutions of the bearing capacity of structures with b > 0 are
higher than the solution of the traditional Tresca or Mohr-Coulomb criterion.
All the solutions of the required wall thickness of pressure vessels with b >
0 are lower than the solution of the traditional Tresca or Mohr-Coulomb
criterion.
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(4) The application of the unified strength theory and the unified solutions
are more economical in terms of the effective use of materials and energy.

Example 9.1 Design of Space Shuttle
The satellite carrier rockets launched by the United States, Europe and

China have very large diameters, for example the diameter of a satellite carrier
rocket is 3.5 m with a pressurized body length of 15 m. Under an internal
pressure p, the stresses of the rocket wall are

σ1 =
pD

2t
, σ2 =

pD

4t
, σ3 = 0.

The stresses of a thin-walled vessel satisfy the inequity condition,

σ2 =
1
2
(σ1 + σ3) � σ1 + σ3

2
.

Therefore any one of the two expressions of the unified yield criterion
Eq.(9.2a) or Eq.(9.2b) is valid for the yield condition of the vessel. The cal-
culated formulas of thickness of a missile body under inner pressure is

t � 2 + 2b+ αb

1 + b

pD

4[σ]
(for SD materials),

t � 2 + 3b
1 + b

pD

4[σ]
(for non-SD materials).

From the above results, for a specific allowable stress [σ], factor of safety n,
internal pressure p and diameterD, the required wall thickness of the pressure
vessels depends on the parameter b in the unified yield criterion. When b =
0 which corresponds to the single shear criterion, the required thickness is
the largest; when b = 1 with respect to the twin shear stress criterion, the
thickness is the smallest. The difference between the two required thicknesses
is 33.3%.

A carrier rocket is a tool to launch a satellite and itself is not the target
to be launched and positioned in space. Given the certain capacity of the
launching system, a reduction in the rocket’s selfweight is beneficial for in-
creasing the satellite weight. Based on Zhang (1998) and Xia (1999), the cost
of launching a satellite per ton mass is as high as tens of thousands of US
dollars. The transportation cost per unit effective mass is about US$22,000
even if the satellite is positioned on a lower track (Xia, 1999; Zhang, 1998).

The application of new materials is an effective way of reducing the self-
weight of the rocket. A new ultra-high-strength Al-Cu-Li 2195 alloy has been
successfully used to fabricate large-scale tanks for the space shuttle, and the
weight of the tanks decreases by 3405 kg.

On the other hand, using a more accurate analysis method may be an
alternative way of making a cost-effective design of the carrier rocket. The
current design of the rocket strength is based on the Tresca criterion which
is a single shear criterion. If the unified yield criterion for b = 1 or b = 1/2
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is adopted, the required wall thickness of the rocket can be reduced by more
than 16.5%. A rough estimation shows that the body weight of the rocket may
reduce by 440 kg if the wall thickness is 1 mm thinner. Thus the economic
benefit is as high as US$9.2 million if the unified yield criterion with b = 1 is
used.

9.3 Limit Pressure of Thick-walled Hollow Sphere

If a thick-walled sphere with inner radius ra and outer radius rb is subjected
to an internal pressure p, as shown in Fig.9.4. The sphere will deform sym-
metrically about the center; the radial and any two orthogonal tangential
directions will be the principal directions.

Fig. 9.4. Thick-walled sphere shell

The three corresponding principal strains are εr, εθ, εϕ and εθ = εϕ. The
equilibrium equation is

dσr

dr
= 2

σθ − σr

r
. (9.7)

The elastic stress-strain relations are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εr =
1
E
(σr − 2νσθ),

εθ =
1
E
[(1− ν)σθ − νσr)].

(9.8)

or
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σθ = σϕ =
E

(1 + ν)(1− 2ν)
(εθ + νεr),

σr =
E

(1 + ν)(1− 2ν)
[(1− ν)εr + 2νεθ.

(9.9)

The compatibility equation has the form of

dεθ

dr
+

εθ − εr

r
= 0. (9.10)

9.3.1 Elastic Limit Pressure of Thick-walled Sphere Shell

The Lame solutions of the elastic stress distribution had been given (Johnson
and Mellor, 1962) as follows:

σr =
pr3a
r3

(r3b
(r3a

−r3

−r3b

)
)
, (9.11)

σθ = σϕ =
pr3a
2r3

(2r3 + r3b )
(r3b − r3a)

. (9.12)

For convenience of formulation, the following dimensionless quantities are
introduced:

K =
rb

ra
, ρ =

r

ra
, α =

σt

σc
, (9.13)

where σt is the yield strength in uniaxial tension.
The stress expressions can then be written as

σr =
ρ3 − K3

ρ3(K3 − 1)
p , σθ = σϕ =

2ρ3 +K3

2ρ3(K3 − 1)
p. (9.14)

The magnitude of these stresses in elastic range is limited by the yield
criterion. When the unified strength theory Eq.(9.2a) and Eq.(9.2b) are used,
because σθ = σϕ > σr, i.e., σ1 = σθ (or σϕ), σ2 = σϕ (or σθ), σ3 = σr, τ12 = 0,
τ13 = τ23, there is

σ2 � σ1 + ασ3
1 + α

.

Thus Eq.(9.2b) should be used as the yield condition when the unified
strength theory is applied. The inner surface of the spherical shell yields first
at the elastic limit pressure. Substituting the stress components at the inner
surface into Eq.(9.2b), the elastic limit pressure pe in terms of the unified
strength theory is derived as
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pe =
K3 − 1

(1− α) +K3( 12 + α)
σt. (9.15)

The relation of elastic limit pressure with the ratios of the outer radius to
the inner radius K = rb/ra is shown in Fig. 9.5. It is worth noting that, as K
approaches infinity, the elastic limit pressure approaches a specific value. If
α = 1, this pressure is equal to 2/3 of the yield stress σy. When the ratio K
is larger than 2, the increment of the limit pressure is the minimum in spite
of different α.

Fig. 9.5. Relation of elastic limit pressure of sphere shell to K = rb/ra

The elastic limit pressure for non-SD materials are a special case in Eq.
(9.15) with α =1,

pe =
2
3

K3 − 1
K3

σy. (9.16)

This result is identical with the previous result (Johnson and Mellor,
1962), which is a special case for results obtained based on the unified yield
criterion.

The limit pressure of a thick-walled hollow sphere is independent of the
strength parameter b. The reason is that the stress state of a spherical shell
is spherically symmetrical about the center, and the three principal stresses
satisfy σ1 = σ2 > σ3. All the limit loci of the unified strength theory with
different parameter b intersect each other for this stress state.

9.3.2 Plastic Limit Pressure of Thick-walled Sphere Shell

When the internal pressure p reaches the elastic limit pressure pe, the inner
surface of the hollow sphere shell yields. As the internal pressure increases,
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the plastic zone spreads towards the outer surface. Denoting the outer radius
of the plastic zone as rp, and assuming the material is perfectly plastic, the
failure condition of the unified strength theory for the spherical shell can be
simplified as

σθ − ασr = σt. (9.17)

The stresses in the plastic region (ra � r � rp) can then be derived
from the equilibrium equation (Eq.(9.9)) with application of the boundary
condition of r = ra, σr = −p,

⎧⎪⎪⎨
⎪⎪⎩

σp
r =

σt

1− α

[
1−

(ra

r

)2(1−α)
]
− p

(ra

r

)2(1−α)

,

σp
θ = σp

ϕ =
σt

1− α

[
1− α

(ra

r

)2(1−α)
]
− αp

(ra

r

)2(1−α)

.

(9.18)

Since no stress-strain relation is required to derive the stresses, it is a
statically determinate problem.

At the plastic zone boundary of r = rp, the radial stress σp
r can be cal-

culated by substituting the boundary condition into Eq.(9.18). The elastic
part of the sphere is then considered as a new sphere with an inner radius of
rp and an outer radius of rb with an internal pressure of σp

r at r = rp. The
stresses in the elastic region (rp � r � rb) can be written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
σe

r =
r3p(1− r3b

r3 )

r3p(1− α) + r3b (
1
2 + α)

σt,

σe
θ = σe

ϕ =
r3p(1 +

r3b
2r3 )

r3p(1− α) + r3b (
1
2 + α)

σt.

(9.19)

The pressure at the elastic-plastic boundary and the radius of the plastic
zone can be derived from the stress continuous condition at the elasto-plastic
boundary,

pep =

⎧⎪⎨
⎪⎩− 1

1− α

[(
rp

ra

)2(1−α)

− 1

]
+

(r3b − r3p)
(

rp

ra

)2(1−α)

r3p(1− α) + r3b (
1
2 + α)

⎫⎪⎬
⎪⎭ σt. (9.20)

When rp is equal to the outer radius of the sphere rb, the sphere shell is
completely plastic. The plastic limit of the internal pressure pp can be derived
as

pp =
σt

1− α
(K2(1−α) − 1). (9.21)
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Eq.(9.21) is the same as the result based on the twin-shear strength theory
(Zhuang, 1998) and the result obtained by using the Mohr-Coulomb strength
theory. The relationship of the plastic limit pressure with different ratios of
the outer radius to the inner radius K = rb/ra is shown in Fig.9.6. The plastic
limit pressure increases with the increase of the ratio.

The plastic limit pressure of a thick-walled hollow sphere shell of non-SD
materials can be calculated from Eq.(9.21) with α =1,

pp = 2 lnK. (9.22)

Eq.(9.22) is the same as the result based on the Tresca criterion (Johnson
and Mellor, 1962).

The stresses in the plastic region (rp � r � rb) can be expressed as

σp
r =

σt

1− α

[
1−

(rb

r

)2(1−α)
]

, (9.23)

σp
θ = σp

ϕ =
σt

1− α

[
1− α

(rb

r

)2(1−α)
]

. (9.24)

Fig. 9.6. Relation of plastic limit pressure of sphere shell to the ratio of K = rb/ra

9.4 Unified Solution of Elastic Limit Pressure of
Thick-walled Cylinder

Considerable works on elasto-plastic analysis for a thick-walled cylinder under
internal pressure have been reported by Turner (1909), Nadai (1931), Man-
ning (1945), Allen and Sopwith (1951), and Crossland and Bones (1958). Dis-
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cussions in depth on this subject can also be found in the books by Hill (1950),
Johnson and Mellor (1962), Mendelson (1968), and Chakrabarty (1987).

The twin-shear yield criterion proposed by Yu (1961; 1983) was applied
to study the limit pressure of a thick-walled cylinder by Li (1998), Huang and
Zeng (1989). The generalized twin-shear strength theory (Yu et al., 1985) was
also used to derive the limit pressure of a thick-walled cylinder and hollow
sphere shell by Zhuang (1998), Zhao et al. (1999), and Ni et al. (1998). It was
also applied to gun barrels by Liu et al. (1998). The elastic limit pressure,
plastic limit pressure, and autofrettage pressure in an autofretted gun barrel
were reported by Liu et al. (1998).

Nowadays, gun barrels are made of high-strength steel having different
strength in tension and compression. Therefore, the results with respect to
the generalized twin-shear strength theory, which takes into account the SD
effect of materials, should be more appropriate. The unified yield criterion
(Yu and He, 1991) was used to drive the limit pressure for thick-walled tubes
with different end conditions, e.g., the open-end condition, the closed-end
condition, and the plane strain condition (Wang and Fan, 1998). For pressure-
sensitive materials, a failure criterion should take into account the SD effect
of material. The unified strength theory takes all the stress components into
account and is suitable for both non-SD and SD materials. In this chapter the
effects of yield criteria on elastic and plastic limit pressures for thick-walled
tubes using the unified strength theory are summarized and discussed.

Considering a thick-walled cylinder with the inner and outer radii of the
cylinder ra and rb under an internal pressure p and a longitudinal force P ,
the radius of the cylinder is assumed to be so large that the plane transverse
sections remain on the plane during the expansion. It implies that the longi-
tudinal strain εz is independent of the radius. Since the stresses and strains
in a cross-section that is sufficiently far away from the ends do not vary along
the length of the cylinder, the equation of equilibrium can be written as

dσr

dr
=

σθ − σr

r
. (9.25)

It should be mentioned that the z axis of the cylindrical coordinates (r,
θ, z) is the longitudinal axis of the tube. Based on the generalized Hooke’s
law, the longitudinal stress in the elastic state can be written as

σz = Eεz + ν(σr + σθ), (9.26)

where E is Young’s modulus and ν the Poisson’s ratio. The radial strain εr

and the circumferential strain εθ are

εr = −νεz +
1 + ν

E
[(1− ν)σr − νσθ] , (9.27a)
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εθ = −νεz +
1 + ν

E
[(1− ν)σθ − νσr] . (9.27b)

The compatibility equation is d
dr (σr+σθ) = 0, which indicates that σr+σθ

have constant values at each stage of the elastic expansion. Integrating Eq.
(9.25) and applying the boundary conditions of σr = 0 at r = rb, and σr = −p
at r = ra, the stresses are given as

σr = −p

⎛
⎝ r2b

r2 − 1
r2b
r2a

− 1

⎞
⎠ , σθ = p

⎛
⎝ r2b

r2 + 1
r2b
r2a

− 1

⎞
⎠ . (9.28)

This is Lame’s solution given by Lame (1852). If the resultant longitudinal
load is denoted by P , the axial stress σz is P/

[
π(r2b − r2a)

]
since this stress is

constant over the cross section. In particular, p = 0 represents an open-end
condition and P = πr2ap represents a closed-end condition. For a plane strain
condition (εz = 0), σz can be directly derived from Eqs.(9.26) and (9.28),

σz =
p

K2 − 1
, closed end, (9.29a)

σz = 0, open end, (9.29b)

σz =
2νp

K2 − 1
. plane strain. (9.29c)

The corresponding axial strains are

εz =
(1− 2ν)p
(K2 − 1)E

, closed end, (9.30a)

εz = 0, open end, (9.30b)

εz =
−2νp

(K2 − 1)E
, plane strain. (9.30c)

In all the three cases, σz is the intermediate principal stress. For the
closed-end condition, σz is the average or the mean value of the other two
principal stresses. If the material is assumed to be incompressible in both the
elastic and plastic ranges, σz of the plane strain condition is identical to that
of the closed-end condition. There are σ1 = σθ, σ2 = σz, σ3 = σr, and

σ2 =
1
2
(σ1 + σ3) � σ1 + ασ3

1 + α
. (9.31)

Thus the first equation of the unified strength theory should be applied
as the yield conditions,

σ1 − α

1 + b
(bσ2 + σ3) = σt. (9.32)
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Substituting Eq.(9.31) into Eq.(9.32), the yield condition in the case of
thick-walled cylinder with closed-end and plane strain condition can be ex-
pressed as

2 + (2− α)α
2(1 + b)

σθ − α(2 + b)
2(1 + b)

σr = σt. (9.33)

For on open-end cylinder it is

σθ − α

1 + b
σr = σt. (open end) (9.34)

Substituting Eq.(9.28) into Eqs.(9.33) and (9.34), we get

[2 + (2− α)b]
p

K2 − 1

(
r2b
r2

+ 1
)
+ α(2 + b)

p

K2 − 1

(
r2b
r2

− 1
)
= 2(1 + b)σt.

(9.35)
The elastic limit pressure in terms of the unified strength theory can be

derived as

pe =
(1 + b)(K2 − 1)σt

K2(1 + b+ α) + (1 + b)(1− α)
, closed end (9.36)

pe =
(1 + b)(K2 − 1)σt

(1 + b)(K2 + 1) + α(K2 − 1)
, open end (9.37)

pe =
(1 + b)(K2 − 1)σt

K2(1 + b+ α) + (1 + b)(1− α)
. plane strain (9.38)

The limit pressure for the closed-end cylinder based on the Mohr-Coulomb
strength theory (single-shear theory) is

pe =
K2 − 1

(1 + α)K2 + (1− α)
σt. (Mohr-Coulomb strength theory) (9.39)

The limit pressure of a thick-walled cylinder in terms of twin-shear
strength theory was reported by Zhuang (1998) and Ni et al. (1998) as

pe =
2(K2 − 1)

(2 + α)K2 + 2(1− α)
σt. (twin shear strength theory) (9.40)

These limit pressures are specific cases of the solutions in terms of the
unified solution with b = 0 and b = 1 respectively.

For non-SD materials, i.e., α = 1 or σt = σc = σy, Eqs.(9.36)∼(9.38) are
simplified as
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pe =
(1 + b)(K2 − 1)

K2(2 + b)
σy, closed end (9.41)

pe =
(1 + b)(K2 − 1)
K2(2 + b) + b

σy, open end (9.42)

pe =
(1 + b)(K2 − 1)

K2(2 + b) + b(1− 2ν)
σy. plane strain (9.43)

These results are identical to the solutions with Yu unified yield criterion
(Wang and Fan, 1998).

The elastic limit pressure for the Tresca material at closed end, open end,
and plane strain conditions can be obtained from Eqs.(9.41)∼(9.43) with
α = 1, b = 0. The solutions for different conditions are identical,

pe =
K2 − 1
2K2

σy. (9.44)

The elastic limit pressure for the Huber-von Mises material can be ap-
proximately derived from the unified solution with α = 1, b=1/2,

pe =
3(K2 − 1)

5K2
σy, closed end (9.45)

pe =
3(K2 − 1)

5K2 + (1− 2ν)
σy. plane strain (9.46)

The classical solutions for Huber-von Mises material are

pe =
K2 − 1√
3K2

σy, closed end (9.47)

pe =
K2 − 1√
3K4 + 1

σy, open end (9.48)

pe =
K2 − 1√

3K4 + (1− 2ν)2
σy. plane strain (9.49)

The percentage difference between the approximated elastic limit pressure
with regard to the unified solution with α = 1, b = 1/2, and the exact solution
based on the Huber-von Mises criterion is as low as 0.38%.

The elastic limit pressure in terms of the twin-shear yield criterion can
be derived from the unified solution with α = 1, b = 1,

pe =
2(K2 − 1)

3K2
σy, closed end (9.50)

pe =
2(K2 − 1)
3K2 + 1

σy, open end (9.51)
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pe =
2(K2 − 1)

3K2 + (1− 2ν)
σy. plane strain (9.52)

The percentage difference of the solutions between the Tresca material
and the twin-shear material is as high as 33.4%.

It can be noted from the above derivation that all the solutions with
regard to the prevailing yield criteria can be approximated or deduced from
the unified solution in view of the unified strength theory with specific values
of α and b. The variations of the unified solution regarding different values
of α and b are illustrated in Figs.9.7 and 9.8.

Fig. 9.7. Relation of elastic pressure with K = rb/ra

The results of the elastic limit pressures of a thick-walled cylinder for
closed end and open end in view of different yield criteria are summarized in
Table 9.1 and Table 9.2.

When a uniform pressure p is applied externally to a thick-walled cylinder
with wall ratio rb/ra, the elastic stress distribution of σr and σθ can be derived
from Eq.(9.28) by exchanging the positions of ra and rb in the formulation.
In this case both the stresses are compressive, and the magnitude of σθ is
higher than that of σr.
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Fig. 9.8. Relation of elastic pressure with the unified strength theory parameter b

Table 9.1. Summary of elastic limit pressures for closed end

Materials Elastic limit pressures Failure criterion used

1 SD material pe =
(1+b)(K2−1)σt

K2(1+b+α)+(1+b)(1−α)
Unified strength theory

α �= 1
2 SD material pe =

K2−1
(1+α)K2+(1−α)

σt Unified strength theory

α �= 1 b = 0, Mohr-Coulomb

3 SD material pe =
2(K2−1)

K2(2+α)+2(1−α)
σt Unified strength theory

α �= 1 b = 1, twin-shear theory

4 α = 1 materials pe =
(1+b)(K2−1)

K2(2+b)
σy Unified yield criterion

5 α = 1 materials pe =
K2−1
2K2 σy Unified yield criterion

b = 0, Tresca criterion

6 α = 1 materials pe =
K2−1√
3K2 σy von Mises yield criterion

7 α = 1 materials pe =
3(K2−1)

5K2 σy Unified yield criterion

b = 1/2

8 α = 1 materials pe =
2(K2−1)

3K2 σy Unified yield criterion

b = 1, twin-shear criterion

9.5 Unified Solution of Plastic Limit Pressure of
Thick-walled Cylinder

9.5.1 Stress Distribution

When the internal pressure exceeds pe, a plastic zone starts at the inner
surface and spreads towards the outer surface. If the outer radius of the
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Table 9.2. Summary of elastic limit pressures for open end

Materials Elastic limit pressures Failure criterion used

1 SD material pe =
(1+b)(K2−1)σt

(1+b)(K2+1)+α(K2−1) Unified strength theory

α �= 1
2 SD material pe =

K2−1
(1+α)K2+(1−α)

σt Unified strength theory

α �= 1 b = 0, Mohr-Coulomb

3 SD material pe =
2(K2−1)

K2(2+α)+2(1−α)
σt Unified strength theory

α �= 1 b = 1, twin-shear theory

4 α = 1 materials pe =
(1+b)(K2−1)
K2(2+b)+b

σy Unified yield criterion

5 α = 1 materials pe =
K2−1
2K2 σy Unified yield criterion

b = 0, Tresca criterion

6 α = 1 materials pe =
K2−1√
3K4+1

σy von Mises yield criterion

7 α = 1 materials pe =
3(K2−1)
5K2+1

σy Unified yield criterion

b = 1/2

8 α = 1 materials pe =
2(K2−1)
3K2+1

σy Unified yield criterion

b = 1, twin-shear criterion

elastic-plastic boundary is denoted as rc, in the elastic region (rc � r � rb),
the radial and circumferential stresses can be derived from Lame’s equations
with application of the boundary conditions of σr = 0 at r = rb, and the
stresses at r = rc satisfying the yield conditions. The pressure reaches its
maximum value when the plastic zone reaches the outer surface of the thick-
walled tube.

The elastic part of the elastic-plastic thick-walled tube can be considered
as a new tube with the inner radius rc, outer radius rb and an internal pressure
pe. The stress distribution in the elastic region for incompressible material
can be written as

σθ =
per

2
c

r2b − r2c

(
1 +

r2b
r2

)
, (9.53)

σr =
per

2
c

r2b − r2c

(
1− r2b

r2

)
, (9.54)

σz =
ν

2
(σθ + σr), (9.55)

where
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pe =
2(1 + b)(r2b − r2c )

(2 + 2b − αb)(r2b + r2c ) + α(2 + b)(r2b − r2c )
σt. (9.56)

9.5.2 Plastic Zone in the Elasto-plastic Range

In the plastic zone, for elastic-perfectly-plastic material, the stress state sat-
isfies Eq.(9.2a) or Eq.(9.2b) when the unified strength theory is adopted.
According to the stress state condition of Eq. (9.3a), the first equation of
the unified strength theory, i.e., Eq. (9.2a), should be applied as the yield
condition,

2 + (2− α)b
2(1 + b)

σθ − α(2 + b)
2(1 + b)

σr = σt. (9.57)

Substituting Eq.(9.57) into the equilibrium equation in Eq.(9.25), we get

dσr

dr
+
2(1 + b)(1− α)
2 + (2− α)b

σr

r
− 2(1 + b)
2 + (2− α)b

σt

r
= 0. (9.58)

The general solution to this differential equation is

σr =
c

r 2(1+b)(1−α)
2+(2−α)b

+
σt

1− α
. (9.59)

The integration constant can be determined by the boundary condition
of r = ra, σr = −p as −p = c

ra
2(1+b)(1−α)
2+(2−α)b

+ σt

1−α , which gives

c = (−p − σt

1− α
)A

2(1+b)(1−α)
2+(2−α)b . (9.60)

Therefore, the stress distribution in the plastic region (ra � r � rc) is

σr = −
(

p+
σt

1− α

) (ra

r

) 2(1+b)(1−α)
2+(2−α)b

+
σt

1− α
, (9.61)

σθ =
2(1 + b)σt

2 + (2− α)b
− α(2 + b)
2 + (2− α)b

[(
p+

σt

1− α

) (ra

r

) 2(1+b)(1−α)
2+(2−α)b

+
σt

1− α

]
,

(9.62)

σz =
1
2
(σr + σθ). (9.63)

Eqs.(9.61)∼(9.63) give the stresses of a thick-walled cylinder at the plastic
region. Since no stress-strain relation is required to derive the stresses, the
problem is considered statically determinate.
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9.5.3 Plastic Zone Radius in the Elasto-plastic Range

The pressure on the elastic and plastic zone boundary satisfies Eq.(9.57) of
the elastic zone solution. Assuming that the radius of the plastic zone is rc,
for a given internal pressure p, the plastic zone radius rc can be determined
from Eq.(9.57). When pressure increases, the plastic zone radius rc increases
gradually from ra to rb.

The stress continuity of radial stress σr across r = rc gives

σr=rc
(elastic zone) = σr=rc

(plastic zone).
Substituting the radial stress in Eq.(9.55) and the radial stress in Eq.(9.60)

into the stress continuity condition, the relation of pressure p to plastic zone
radius is derived,

p =
(

rc

ra

) 2(1+b)(1−α)
2+(2−α)b

[
2(1 + b)(r2b − r2c )

(2 + 2b − αb)(r2b + r2c ) + α(2 + b)(r2b − r2c )

+
1

1− α

]
σt − σt

1− α
.

(9.64)

As an example, the relation of pressure versus the plastic zone radius is
illustrated schematically in Fig.9.9 for the ratio of the external radius rb to
the internal radius ra, K = rb/ra = 2.

Fig. 9.9. Plastic zone radius versus internal pressure for different α (K = 2, b = 1.0)

9.5.4 Plastic Limit Pressure

9.5.4.1 Plastic Limit Pressure for SD Materials

When rc is equal to rb, the thick-walled tube is completely plastic. The plastic
limit pressure for the thick-walled cylinder is
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pp =
σt

1− α

(
K

2(1+b)(1−α)
2+2b−αb − 1

)
. (9.65)

The solution in Eq.(9.65) is for a thick-walled cylinder with closed end or
plane strain conditions. It can be referred to as the unified solution of plastic
limit pressure for thick-walled cylinder.

When b = 0, the plastic limit pressure in terms of the Mohr-Coulomb
theory is deduced from the unified solution,

pp =
σt

1− α
(K(1−α) − 1). (9.66)

When b = 1, the unified solution becomes the plastic limit pressure in
terms of the twin-shear strength theory,

pp =
σt

1− α
(K

4(1−α)
4−α − 1). (9.67)

9.5.4.2 Plastic Limit Pressure for Non-SD Materials

The unified solution for non-SD materials can be derived from the unified
solution with α = 1. The plastic limit pressure of a thick-walled cylinder
based on the unified yield criterion can be expressed as

pp =
2(1 + b)σt

2 + b
lnK. (9.68)

The limit pressure in terms of the Tresca yield criterion can be derived
from the unified solution with b = 0,

pp = σt lnK, (9.69)

which is identical to the classical solution based on the Tresca yield criterion.
The plastic limit pressure in terms of the linear Huber-von Mises yield

criterion can be approximately obtained with the unified solution with b =
1/2,

pp =
6
5
σt lnK. (9.70)

The plastic limit pressure in terms of the twin-shear yield criterion can
be obtained from the unified solution with b = 1,

pp =
4
3
σt lnK. (9.71)

Eqs.(9.70) and (9.71) are identical to the plastic limit pressure based on
the twin-shear strength theory (Zhuang, 1998).
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The relation of the plastic limit pressure with respect to the different
parameter b and different thickness of cylinder (K = rb/ra = 1.8, K = 2.0,
K = 2.5, K = 3.0) are shown in Fig.9.10 to Fig.9.13. From these figures the
effect of failure criteria is prominent.

Fig. 9.10. Relation of plastic limit pressure to the unified strength theory param-
eter b when K = 1.8

Fig. 9.11. Relation of plastic limit pressure to the unified strength theory param-
eter when K = 2.0

From Figs.9.13, 9.14 and Table 9.3, the elastic limit pressure in terms of
the unified strength theory increases monotonically with increasing b for all
the three end conditions.
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Fig. 9.12. Relation of plastic limit pressure to the unified strength theory param-
eter when K = 2.5

Fig. 9.13. Relation of plastic limit pressure to the unified strength theory param-
eter when K = 3.0

The elastic limit pressure in terms of the Tresca criterion is equal to that
of the unified strength theory with b = 0 and α = 1. The elastic limit pressure
in terms of the von Mises criterion is equal to that of the unified strength
theory with b 
 4. Therefore it can be concluded that the Huber-von Mises
and the Tresca criteria are encompassed in the unified strength theory with
regard to the elastic limit pressure. The maximum elastic limit pressure in
terms of the twin-shear yield criterion is obtained with b = 1. It is 33.4% and
15.5% higher than those obtained from the Tresca criterion and the Huber-
von Mises criterion respectively. It was also found that the higher values
obtained from the unified strength theory were insensitive to the variations
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Fig. 9.14. Relation of pp/σt and re/ri with different b and α

of the inner-to-outer-radius ratio regardless of the different end conditions.
For the plastic limit pressure, similar statements can be made.

The results of plastic limit pressures of a thick-walled cylinder under the
closed end condition in terms of different yield criteria are summarized in
Table 9.3.

The elastic limit pressure and plastic limit pressure, two important param-
eters in the design of a cylinder, have been derived using the unified strength
theory. It was found that the percentage difference of the elastic-plastic limit
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Table 9.3. Summary of elastic limit pressures for open end

Materials Elastic limit pressures Failure criterion used

1 SD material pp =
σt
1−α

(K
2(1+b)(1−α)
2+2b−αb − 1) Unified strength theory

α �= 1
2 SD material pp =

σt
1−α

(K(1−α) − 1) Unified strength theory

α �= 1 b = 0, Mohr-Coulomb

3 SD material pp =
σt
1−α

(K
4(1−α)
4−α − 1) Unified strength theory

α �= 1 b = 1, twin-shear theory

4 α = 1 materials pp =
2(1+b)σt

2+b
lnK Unified yield criterion

α = 1

5 α = 1 materials pp = σt lnK Tresca yield criterion

α = 1, b = 0

6 α = 1 materials pp =
6
5
σt lnK Unified yield criterion

b=1/2

7 α = 1 materials pp =
4
3
σt lnK Twin-shear yield criterion

α = 1, b = 1

pressures derived from different criteria could differ from one from another as
much as 33.4%. If the unified strength criterion is used in the design instead
of the Tresca or the Huber-von Mises criterion, it could lead to a substantial
saving of material.

9.6 Summary

The limit analysis of the thick-walled hollow sphere and cylinder under pres-
sure was discussed in detail in literature. The Tresca yield criterion or the
Huber-von Mises yield criterion has been applied for analysis and design pur-
poses. The solution is adopted only for one kind of material.

In the last decade the elastic limit and plastic limit of thin-walled ves-
sels and thick-walled cylinders were studied by researchers with respect to
the unified strength theory. Unified limit solutions for a thick-wall cylinder
subject to external and internal pressure are given. The unified solution is a
series of results which can be adopted for more materials. They are described
in this chapter.

The application of the unified strength theory is also extended from ideal
elasto-plastic materials to hardening material. The unified limit analysis of a
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Fig. 9.15. Relation of plastic limit pressure with the thickness of cylinder

thick-wall cylinder of linearly strengthened material is derived by Ma (2004).
It was also extended recently to brittle materials such as concrete or rock.
Based on Yu unified strength theory with a material’s strain softening prop-
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erty considered, a unified strength criterion for strain softening materials has
also been proposed to find out the bearing capacity of a thick-walled cylinder
subject to external pressure.

A unified solution for a cylinder is generalized to take into account the
strain softening material, elasto-brittle-plastic materials and fiber-reinforced
concrete. The bearing capacity analysis for a thick walled cylinder, take into
account elasto-brittle-plastic and strain softening, is presented by Xu and Yu
(2004), Chen et al. (2006a; 2006b).

9.7 Problems

Problem 9.1 Derive the elastic limit pressure equation for a spherical shell
under internal pressure in terms of the Mohr-Coulomb theory.

Problem 9.2 Derive the elastic limit pressure equation for a spherical shell
under internal pressure in terms of the twin-shear strength theory.

Problem 9.3 Explain why we would expect the Mohr-Coulomb strength
theory, the twin-shear strength theory and the unified strength theory to
coincide in the case of a spherical shell with spherical symmetry.

Problem 9.4 Derive the elastic limit pressure equation for a thick-walled
cylinder under internal pressure using the Mohr-Coulomb theory

pe =
K2 − 1

K2(1 + α)(1− α)
σt, K = rb/ra.

Problem 9.5 Derive the elastic limit pressure equation for a thick-walled
cylinder under internal pressure by using the twin-shear strength theory

pe =
K2 − 1

K2(1 + α/2)(1− α)
σt, K =

rb

ra
.

Problem 9.6 Compare the results of Problem 9.4 with those of Problem
9.5.

Problem 9.7 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the elastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the Mohr-Coulomb strength theory.

Problem 9.8 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the elastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the twin-shear strength theory.

Problem 9.9 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,



9.7 Problems 201

where σθ is more compressive than σr. Introduce the plastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the unified strength theory.

Problem 9.10 Compare the results obtained for Problems 9.7, 9.8 and 9.9.
Problem 9.11 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the elastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the Mohr-Coulomb strength theory.

Problem 9.12 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the plastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the twin-shear strength theory.

Problem 9.13 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the plastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the unified strength theory.

Problem 9.14 Compare the results obtained in Problems 9.11, 9.12 and
9.13.

Problem 9.15 Explain why we have to determine the stress state condition
σ2 � σ1+ασ3

1+α or σ2 � σ1+ασ3
1+α using the unified strength theory.

Problem 9.16 How do you choose between the two equations in the unified
strength theory?

Problem 9.17 What is the result if you use the second equation of the
unified strength theory for the stress state of σ2 � σ1+ασ3

1+α ?
Problem 9.18 What is the result if you use the first equation of the unified
strength theory for the stress state of σ2 � σ1+ασ3

1+α ?
Problem 9.19 Complete discussions of the effects of pressure and temper-
ature on yielding of thick-walled spherical shells given by Johnson and
Mellor (1962), Mendelson (1968), and Chakrabarty (1987). The Tresca
yield criterion was used in these studies. Can you obtain a more complete
study on this subject using the unified yield criterion (α = 1)?

Problem 9.20 A complete discussion of the effects of pressure and tempera-
ture on yielding of thick-walled spherical shells was given by Johnson and
Mellor (1962), Mendelson (1968), and Chakrabarty (1987). The Tresca
yield criterion was used in these studies. Can you obtain a more complete
study on this subject using the unified strength theory (α �= 1)?

Problem 9.21 Complete discussions of the effects of pressure and temper-
ature on yielding of thick-walled cylinder given by Johnson and Mellor
(1962), Mendelson (1968), and Chakrabarty (1987). The Tresca yield cri-
terion was used in these studies. Can you obtain a more complete study
on this subject using the unified yield criterion (α = 1)?
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Problem 9.22 Complete discussions of the effects of pressure and temper-
ature on yielding of thick-walled cylinder given by Johnson and Mellor
(1962), Mendelson (1968), and Chakrabarty (1987). The Tresca yield cri-
terion was used in these studies. Can you obtain a more complete study
on this subject using the unified strength theory (α �= 1)?

Problem 9.23 The unified yield criterion can be used in many fields. Write
an article regarding the application of the unified yield criterion.

Problem 9.24 The unified strength theory can be used in many fields.
Write an article regarding the application of the unified strength theory.
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