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Plastic Limit Analyses of Oblique, Rhombic,
and Rectangular Plates

8.1 Introduction

Plate structures are widely used in aerospace, shipping, civil, and mechanical
engineering. Plastic limit analyses of flat plates with different geometries can
approximately estimate the load-bearing capacities of the plates. A lot of an-
alytical solutions for flat plates have been reported by Wood (1961), Sawczuk
and Jaeger (1963), Save and Massonnet (1972), Golley (1997), Mishra et al.
(1996), Moen et al. (1998). Their solutions are mainly based on the Tresca
yield criterion, the Huber-von Mises yield criterion, or the Mohr-Coulomb
strength criterion. The maximum principal stress criterion has also been ap-
plied for simplicity.

The Tresca-Mohr-Coulomb strength theory is a single-shear strength the-
ory. It ignores the effect of the intermediate principal stress. The Tresca yield
criterion and the Huber-von Mises yield criterion can be effectively applied
for the analyses of the non-SD materials. The maximum principal stress crite-
rion considers only one of the three principal stresses, which may be deficient
in yielding valid analytical results.

The unified strength theory (UST) has attracted more and more attention
in engineering applications. In this chapter the load-bearing capacity for sim-
ply supported plates of different geometries will be given. Amongst them, the
unified solution to the load-bearing capacity for a simply supported oblique
plate was presented by Li and Yu (2000).

In terms of the principal stresses, the mathematical expression of the UST
is ⎧⎪⎨

⎪⎩
f = σ1 − α

1 + b
(bσ2 + σ3) = σt,when σ2 � σ1 + ασ3

1 + α
,

f ′ =
α

1 + b
(σ1 + bσ2)− σ3 = σt,when σ2 � σ1 + ασ3

1 + α
,

(8.1)

where f and f ′ are yield functions; σ1, σ2, and σ3 are the maximum principal
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stress, the intermediate principal stress, and the minimum principal stress,
respectively; σt and σc are the tensile and compressive strengths; α the tensile
to compressive strength ratio, i.e., α = σt/σc; b is a coefficient which reflects
the relative effect of the intermediate principal stress and the intermediate
principal shear stress. It is the parameter specifying the failure criterion in
the unified strength theory. The unified strength theory parameter b can be
obtained via the tensile strength σt, the compressive strength σc and the
shear strength τ0,

b =
1 + α − σt/τ0

σt/τ0 − 1
.

The twin-shear strength theory (Yu et al., 1985) and the single-shear
strength theory (Mohr-Coulomb, 1900) can be derived from Eq.(8.1) with
b = 1 and b = 0, respectively. For the plane stress problem (σ2 = 0) the UST
can be simplified as

⎧⎪⎨
⎪⎩

f = σ1 − α

1 + b
σ3 = σt, where 0 � 1

2 (σ1 + ασ3),

f ′ =
1

1 + b
σ1 − ασ3 = σt, where 0 � 1

2
(σ1 + ασ3).

(8.2)

The limit loci of the UST in the plane stress state and in the deviatoric
plane are shown in Figs.8.1 and 8.2 respectively. The twelve mathematical
expressions of the unified yield criterion in plane stress state are

σ1 − αb

1 + b
σ2 = σt, σ2 − αb

1 + b
σ1 = σt, (8.3a)

1
1 + b

σ1 +
b

1 + b
σ2 = σt,

1
1 + b

σ2 +
b

1 + b
σ1 = σt, (8.3b)

σ1 − α

1 + b
σ2 = −σt, σ2 − α

1 + b
σ1 = −σt, (8.3c)

1
1 + b

σ1 − ασ2 = −σt,
1

1 + b
σ2 − ασ1 = −σt, (8.3d)

− α

1 + b
(bσ1 + σ2) = σt, − α

1 + b
(bσ2 + σ1) = σt, (8.3e)

b

1 + b
σ1 − ασ2 = σt,

b

1 + b
σ2 − ασ1 = σt, (8.3f)
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Fig. 8.1. Yield loci of the UST in the plane stress

Fig. 8.2. Yield loci of the UST in the deviatoric plane

8.2 Equations for Oblique Plates

8.2.1 The Equilibrium Equation in Ordinary Coordinate System

For the oblique plate in Fig.8.3 with distribution of internal forces in Fig.8.4, u
and v denote the ordinary coordinate axes; θ is the angle between the ordinary
coordinate axes; Mn,1, Mn,2, and Mt are two positive bending moments and
a shear moment per unit length of the oblique plate respectively. The unit of
the moments is in Nm/m; 2l1 and 2l2 are respectively the total length of the
two sides of the oblique plate; q is a transverse load over the plate.

The equilibrium equation of the plates in the Cartesian coordinate system
is
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Fig. 8.3. Coordinate of the oblique plate

Fig. 8.4. Distribution of internal forces

∂2Mn,x

∂x2
+ 2

∂2Mn,xy

∂x∂y
+

∂2Mn,y

∂y2
+ q = 0, (8.4)

where Mn,x, Mn,y, and Mn,xy are the normal moments and shear moment
per unit length in the rectangular Cartesian coordinate system.

The transformation between the rectangular Cartesian coordinate system
and ordinary coordinate system can be expressed as

x = u+ v cos θ, y = v sin θ, (8.5)

or
u = x − ycotθ, v = y/sin θ. (8.6)

The equilibrium equation of plates in oblique coordinate system can be
derived from Eq.(8.4),

∂2Mn,x

∂u2
+ 2

(
−cotθ∂2Mn,xy

∂u2
+

1
sin θ

∂2Mn,xy

∂u∂v

)
+ cot2θ

∂2Mn,y

∂u2

− 2
cos θ
sin2 θ

∂2Mn,y

∂u∂v
+

1
sin2 θ

∂2Mn,y

∂v2
+ q = 0.

(8.7)



158 8 Plastic Limit Analyses of Oblique, Rhombic, and Rectangular Plates

8.2.2 Field of Internal Motion

Assuming that the oblique plate is simply supported around the four outer
edges and subjected to a transverse load q, the functions of the internal forces
for the oblique plates are ⎧⎪⎨

⎪⎩
Mn,1 = c1(l21 − u2),

Mn,2 = c2(l22 − v2),
Mt = c3uv,

where c1, c2, and c3 are three coefficients to be determined.
According to the transformation of the internal moments between the

ordinary coordinate system and the rectangular Cartesian coordinate system,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mn,x = −c1
cos 2θ
sin2 θ

(l21 − u2) + c2 cot2 θ(l22 − v2) + c3
sin 2θ
sin2 θ

uv,

Mn,y = c2(l22 − v2),

Mn,xy = −c1 cot θ(l21 − u2)− c2 cot θ(l22 − v2)− c3uv.

The uniform transverse load can then be derived from Eqs.(8.5) and (8.7),

ql = [−2c1(1 + 2 cos 2θ) + 2c2 + 2c3 sin θ]/ sin2 θ. (8.8)

8.2.3 Moment Equation Based on the UST

The internal moments Mn,x, Mn,y, and Mn,xy can be integrated form the
stresses σx, σy and τxy,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mn,x =
∫ h

−h

σxzdz = σxh2,

Mn,y =
∫ h

−h

σyzdz = σyh2,

Mn,xy =
∫ h

−h

τxyzdz = τxyh2,

(8.9)

where 2h is the thickness of the oblique plate. The UST can be rewritten for
the plane stress state as
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f =
1

1 + b

⎡
⎣1 + b − α

2
(σx + σy) + (1 + b+ α)

√(
σx − σy

2

)2
+ τ2xy

⎤
⎦ = σt,

when (1 + α)
σx + σy

2
+ (1− α)

√(
σx − σy

2

)2
+ τ2xy � 0,

(8.10a)

f ′ =
1

1 + b

⎡
⎣1− αb − α

2
(σx + σy) + (1 + αb+ α)

√(
σx − σy

2

)2
+ τ2xy

⎤
⎦ = σt

when (1 + α)
σx + σy

2
+ (1− α)

√
(
σx − σy

2
)2 + τ2xy � 0.

(8.10b)
Eqs.(8.10a) and (8.10b) can be expressed in terms of Mn,x, Mn,y, and

Mn,xy as

(2 + b)2(Mn,x − Mn,y)2 + 4(2 + b)2M2
n,xy − b2(Mn,x +Mn,y)2

= 4(1 + b)Mp[(1 + b)Mp − b(Mn,x +Mn,y)],

when (1 + α)
Mn,x +Mn,y

2
+ (1− α)

√(
Mn,x +Mn,y

2

)2
+M2

n,xy � 0,

(8.11a)

(2 + b)2(Mn,x − Mn,y)2 + 4(2 + b)2M2
n,xy − b2(Mn,x +Mn,y)2

= 4(1 + b)Mp[(1 + b)Mp + b(Mn,x +Mn,y)],

when (1 + α)
Mn,x +Mn,y

2
+ (1− α)

√(
Mn,x +Mn,y

2

)2
+M2

n,xy � 0,

(8.11b)

where Mp is the limit bending moment of the plate.
The limit loci of generalized stresses in terms of the unified strength theory

for the plane plate are illustrated schematically in Fig.8.5.

8.3 Unified Solution of Limit Analysis of Simply
Supported Oblique Plates

When the inequality (1+α)Mn,x+Mn,y

2 +(1−α)

√(
Mn,x−Mn,y

2

)2
+Mn,xy � 0

is satisfied, the unified yield function for u and v can be derived by substi-
tuting Eq.(8.7) into Eq.(8.11a). With calculus regarding u and v, the limit
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Fig. 8.5. Generalized unified yield criterion in plane stress state

loading at the points (0,0), (±l1, 0), (0, ±l2), and (±l1, ±l2) of the plate can
then be derived. Defining

G = 4(1 + b)2M2
p , (8.12a)

E1 =
[
(1 + b+ α)2

cos2 2θ
sin4 θ

+ 4(1 + b+ α)2cot2θ − (1 + b − α)2
cos2 2θ
sin4 θ

]
l41,

(8.12b)

E2 =
[
(1 + b+ α)2

cos2 2θ
sin4 θ

+ 4(1 + b+ α)2cot2θ − (1 + b − α)2 csc4 θ

]
l42,

(8.12c)

E3 =
[
(1 + b+ α)2

sin2 2θ
sin4 θ

+ 4(1 + b+ α)2 − (1 + b − α)2
sin2 2θ
sin4 θ

]
l21l
2
2,

(8.12d)

F1 = 4(1 + b)(1 + b − α)Mp
cos 2θ
sin2 θ

l21, (8.12e)

F2 = 4(1 + b)(1 + b − α)Mp csc2 θl22, (8.12f)

F3 = 4(1 + b)(1 + b − α)Mp
sin 2θ
sin2 θ

l1l2. (8.12g)

The limit load is derived from Eq.(8.8),
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ql = [−2c1(1 + 2 cos 2θ) + 2c2 + 2c3 sin θ]/ sin2 θ, (8.13)

where c1, c2, and c3 are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
(

F1 +
√

F 21 + 4E1G
)
/(2E1),

c2 =
(
−F2 +

√
F 22 + 4E2G

)
/(2E2),

c3 =
(
−F3 +

√
F 23 + 4E3G

)
/(2E3).

(8.14)

When (1 + α)Mn,x+Mn,y

2 + (1− α)
√
(Mn,x−Mn,y

2 )2 +Mn,xy � 0, the limit
load ql can be derived from Eq.(8.11b) with the same form of Eq.(8.13), while
the coefficients c1, c2, and c3 are given as

c1 =
(
−F1 +

√
F 21 + 4E1G

)
/(2E1), (8.15a)

c2 =
(

F2 +
√

F 22 + 4E2G
)
/(2E2), (8.15b)

c3 =
(

F3 +
√

F 23 + 4E3G
)
/(2E3). (8.15c)

The limit load ql for a parallelogram plate with θ = π/3 can be derived
from Eq.(8.13),

ql =
[
2
l22
+

4(1 + b)
9(1 + b) + 3α

.
1

l1l2

]
Mp. (8.16)

When θ = π/4, the limit load ql becomes

ql =
[ −4(1 + b)
(1 + b+ α)

1
l21
+
2(1 + b)

α

1
l22

+
(4 + 2

√
2)(1 + b)2 + (4− 2

√
2)α(1 + b)

(1 + b)2 + α2 + 6α(1 + b)
1

l1l2

]
Mp.

(8.17)

The relations between the limit load ql and the unified strength theory
parameter b of the UST for various oblique plates (θ = π/3, l1 = 1.5l2;
θ = π/3, l1 = 2l2; θ = π/4, l1 = 1.5l2; θ = π/4, l1=2l2) are given in Fig.8.6
to Fig.8.9.
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Fig. 8.6. Relations between ql and unified strength theory parameter b (θ = π/3,
l1 = 1.5l2)

Fig. 8.7. Relations between ql and unified strength theory parameter b (θ = π/3,
l1 = 2l2)

8.4 Limit Load of Rhombic Plates

For l1 = l2, the limit load can be obtained from Eqs.(8.16) and (8.17) for
θ = π/3,

ql =
[
2 +

4(1 + b)
9(1 + b) + 3α

]
Mp

l22
when θ =

π

3
. (8.18)
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Fig. 8.8. Relations between ql and unified strength theory b (θ = π/4, l1 = 1.5l2)

Fig. 8.9. Relations between ql and unified strength theory b (θ = π/4, l1 = 2l2)

The relations between limit load ql and the unified strength theory pa-
rameter b are shown in Fig.8.10 and Fig.8.11 for θ = π/3 and θ = π/4
respectively.

8.5 Limit Load of Rectangular Plates

When θ = π/2, the limit load for rectangular plates can be derived from
Eq.(8.13),
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Fig. 8.10. Relations between limit load ql and unified strength theory parameter
b (θ = π/3, l1 = l2)

Fig. 8.11. Relations between limit load ql and unified strength theory parameter
b (θ = π/4, l1 = l2)

ql =
[
2

(
1
l21
+

1
l22

)
+

2(1 + b)
(1 + b+ α)l1l2

]
Mp. (8.19)

If the plate consists of non-SD material (α = 1), the limit load in Eq.(8.19)
can be simplified as
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ql =
[
2

(
1
l21
+

1
l22

)
+

2(1 + b)
(2 + b)l1l2

]
Mp. (8.20)

Figs.8.12 to 8.14 show the limit load ql versus the unified strength theory
parameter b for different rectangular plates.

Fig. 8.12. Relations between ql and unified strength theory parameter b (θ = π/2,
l1 = 1.5l2)

Fig. 8.13. Relations between and unified strength theory parameter b (θ = π/2,
l1 = 2l2)
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Fig. 8.14. Relations between ql and unified strength theory parameter b (θ = π/2,
l1 = 4l2))

It is seen that both α and b have significant influences on the limit load.
For a given value of α, the limit load increases with increasing parameter b.
On the other hand, for a given value of b, the limit load decreases with the
increase of α.

The limit load ql versus the ratio is shown in Figs.8.15 to 8.17 for different
parameter b.

Fig. 8.15. Variation of ql for different rectangular plates (b = 0 )
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Fig. 8.16. Variation of ql for different rectangular plates (b = 0.5)

Fig. 8.17. Variation of ql for different rectangular plates (b = 1.0)

It is seen that the limit load ql decreases with the increase of the ratio
l1/l2 and α for a given value of b. On the other hand, ql(Mp/l22) approaches
a constant of 2 (kN/m2), and is independent of b and α.
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8.6 Unified Limit Load of Square Plates

The limit load of square plates can be obtained by further simplifying the
limit load solution in Eq.(8.10) with l1 = l2

ql = 2
[
2 +

(1 + b)
1 + b+ α

]
Mp

l22
. (8.21)

When α = 1, the limit load based on the twin shear yield criterion can
be derived as

ql = 2
[
2 +

(1 + b)
2 + b

]
Mp

l22
, (8.22)

and
ql = 5.155

Mp

l22
, when b =

1
1 +

√
3
, (8.23)

which is identical to the following solution based on the von Mises criterion
(Wang, 1998)

ql = 5.2
Mp

l22
, when b =

1
2
. (8.24)

Fig. 8.18 shows the limit load ql with respect to the parameter b for square
plates.

Fig. 8.18. Relations of ql to unified strength theory parameter b (θ = π/2, l1 = l2)
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8.7 Tabulation of the Limit Load for Oblique, Rhombic
and Square Plates

For convenient comparison and easier reference, the relations of the limit
load ql(Mp/l22) to the unified strength theory parameter b, the SD ratio α,
the angle θ for the oblique plate, and the length ratio of l1/l2 are tabulated
in Table 8.1 to Table 8.4.

Table 8.1. Relation of ql(Mp/l22) to b and α with θ = 45o

α b=0 b=0.25 b=0.5 b=0.75 b=1.00

0.2 8.820 12.585 15.313 18.009 20.678

0.4 4.193 5.603 7.015 8.422 8.820

l1/l2 = 1.0 0.6 2.352 3.262 4.193 5.132 6.074

0.8 1.484 2.130 2.803 3.493 4.193

1.0 1.000 1.484 1.998 2.531 3.078

0.2 10.621 13.323 15.993 18.637 21.260

0.4 5.097 6.492 7.879 8.255 10.621

l1/l2 = 1.5 0.6 3.235 4.164 5.097 6.028 6.955

0.8 2.316 3.003 3.699 4.397 5.097

1.0 1.778 2.316 2.865 3.420 3.978

0.2 10.743 13.405 16.039 18.652 21.248

0.4 5.311 6.684 8.047 8.400 10.743

l1/l2 = 2.0 0.6 3.468 4.390 5.311 6.227 7.140

0.8 2.547 3.237 3.929 4.620 5.311

1.0 2.000 2.547 3.099 3.652 4.206

The limit load ql versus the ratio for different lengths of rectangular plates
and the unified strength theory parameter b are listed in Table 8.4. The
limit load for square plate and rectangular plates with l1/l2 = 2, l1/l2 = 4,
l1/l2 = 7, l1/l2 = 10, and l1/l2 = ∞ are given. It is seen that the limit load
ql decreases with the increase of the ratio l1/l2 and α for a given value of
b, and the limit load ql increases with the increase in the unified strength
theory parameter b in any case.

In Table 8.4, the result of α = 1 and b = 0 is the same as the result
for Tresca material; the result for α = b = 1 is the same as the result for
twin-shear yield criterion material; the result of α = 1 and b = 1/2 is the
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Table 8.2. Relation of ql(Mp/l22) to b and α with θ = 60o

α b=0 b=0.25 b=0.5 b=0.75 b=1.00

0.2 2.417 2.422 2.426 2.428 2.430

0.4 2.392 2.402 2.408 2.413 2.417

l1/l2 = 1.0 0.6 2.370 2.383 2.392 2.399 2.404

0.8 2.351 2.366 2.377 2.386 2.392

1.0 2.333 2.351 2.364 2.373 2.381

0.2 2.278 2.281 2.284 2.285 2.287

0.4 2.261 2.268 2.272 2.275 2.278

l1/l2 = 1.5 0.6 2.247 2.255 2.261 2.266 2.269

0.8 2.234 2.244 2.252 2.257 2.261

1.0 2.222 2.234 2.242 2.249 2.254

0.2 2.208 2.211 2.213 2.214 2.215

0.4 2.196 2.201 2.204 2.206 2.208

l1/l2 = 2.0 0.6 2.185 2.192 2.196 2.199 2.202

0.8 2.175 2.183 2.189 2.193 2.196

1.0 2.167 2.175 2.182 2.187 2.190

linear approximation of the result of the Huber-von Mises criterion. Because
the Huber-von Mises criterion has a nonlinear mathematical expression, it is
relatively complicated to derive analytical solutions in structural plasticity.
For practical application, approximating the numerical solutions based on the
Huber-von Mises criterion is adopted. UST with α = 1 and b = 1/2 can be
considered as a linear approximation of the Huber-von Mises yield criterion
which is more suitable for the derivation of analytic solutions. The results of
the Huber-von Mises criterion and the unified strength theory with α = 1
and 1/(1+

√
3) are very close with a percentage difference less that 3%, which

is even as low as 0.87% for the plastic limit load of the square plate.
For a given value of α, the limit load ql can be derived from Eq.(8.13)

and Eq.(8.2) for different materials. As a result the material properties of the
plates can be taken into account more appropriately if the UST is applied.

8.8 Summary

Based on the unified strength theory, the plastic limit analyses for oblique
plates are carried out and the unified limit load is derived. It gives a se-
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Table 8.3. Relation of ql(Mp/l22) to b and α with θ = 90o

α b=0 b=0.25 b=0.5 b=0.75 b=1.00

0.2 5.667 5.724 5.765 5.795 5.818

0.4 5.429 5.515 5.579 5.628 5.667

l1/l2 = 1.0 0.6 5.250 5.351 5.429 5.489 5.538

0.8 5.111 5.220 5.304 5.373 5.429

1.0 5.000 5.111 5.200 5.273 5.333

0.2 4.556 4.718 4.845 4.948 5.032

0.4 4.317 4.485 4.620 4.731 4.824

l1/l2 = 1.5 0.6 4.139 4.304 4.441 4.556 4.654

0.8 4.000 4.160 4.295 4.411 4.511

1.0 3.889 4.043 4.175 4.289 4.389

0.2 4.167 4.387 4.569 4.722 4.853

0.4 3.929 4.139 4.318 4.472 4.605

l1/l2 = 2.0 0.6 3.750 3.949 4.122 4.272 4.405

0.8 3.611 3.799 3.963 4.109 4.239

1.0 3.500 3.676 3.833 3.974 4.100

ries of solutions covering those from the single-shear theory (Mohr-Coulomb
strength theory) to the twin-shear strength theory (Yu, 1985). The unified
solution of the limit load for the oblique, rhombic, rectangular, and square
plates encompasses the solutions as special cases as reported by other re-
searchers as well as a series of new solutions.

The parameter b has a significant influence on the load-bearing capacities
of oblique plates and the influences vary for different conditions. The influ-
ences vary with the state of stress. When the intermediate principal stress
σ2 is close to the minimum principal stress σ3the difference in the limit load
based on different strength criteria is minimal. However, when the intermedi-
ate principal stress σ2 is close to σ2 = (σ1+ σ3)/2, the influence on the limit
load is significant.

The limit load ql for different materials and structures can be obtained
when α and b vary and when the different l1/l2 and θ are adopted.
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Table 8.4. Relations of limit load ql(Mp/l22) for different rectangular plates

b α l1/l2 = 1.0
(square)

l1/l2 = 2 l1/l2 = 4 l1/l2 = 7 l1/l2 = 10 l1/l2 =∞

0.2 5.667 3.333 2.542 2.279 2.187 2.0

0.4 5.429 3.214 2.482 2.245 2.163 2.0

0 0.6 5.250 3.125 2.438 2.219 2.145 2.0

0.8 5.111 3.056 2.403 2.200 2.131 2.0

1.0 5.000 3.000 2.375 2.184 2.120 2.0

0.2 5.765 3.382 2.566 2.293 2.196 2.0

0.4 5.579 3.289 2.520 2.266 2.178 2.0

0.5 0.6 5.429 3.214 2.482 2.245 2.163 2.0

0.8 5.304 3.152 2.451 2.227 2.150 2.0

1.0 5.200 3.100 2.425 2.212 2.140 2.0

1

1+
√
3

1.0 5.155(Mises) 3.077 2.414 2.206 2.135 2.0

1.0 0.2 5.818 3.409 2.580 2.301 2.202 2.0

(twin- 0.4 5.667 3.333 2.542 2.279 2.187 2.0

shear) 0.6 5.538 3.269 2.510 2.261 2.174 2.0

0.8 5.429 3.214 2.482 2.245 2.163 2.0

1.0 5.333 3.167 2.458 2.231 2.153 2.0

8.9 Problems

Problem 8.1 Try your hand at an application of the unified yield criterion
for limit analysis of a square plate.

Problem 8.2 Try your hand at an application of the unified yield criterion
for limit analysis of a rectangular plate with different l1, l2 and θ.

Problem 8.3 Try your hand at an application of the unified yield criterion
for limit analysis of a rhombic plate with different θ.

Problem 8.4 Try your hand at an application of the unified yield criterion
for limit analysis of an oblique plate with different l1, l2 and θ.

Problem 8.5 Why does the solution obtained by using the unified yield
criterion contain all the solutions of the Tresca yield criterion, the von
Mises yield criterion, the twin-shear yield criterion and other possible
yield criteria adopted for those materials with the same yield stress in
tension and in compression?
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Problem 8.6 Write a paper regarding the plastic analysis of an oblique
plate with different l1, l2 and θ using the unified yield criterion.

Problem 8.7 Can you introduce a unified plastic solution for an oblique
plate with different l1, l2 and θ using the unified strength theory? The
ratio of tensile strength σt to compressive strength σc is α = σt/σc = 0.8.

Problem 8.8 A high-strength alloy has the strength ratio in tension and
compression α = 0.9. Find the unified solution for a square plate made
of this alloy.

Problem 8.9 A high-strength alloy has the strength ratio in tension and
compression α = 0.9. Find the unified solution for a rectangular plate
made of this alloy.

Problem 8.10 A high-strength alloy has the strength ratio in compression
and tension α = 0.9. Find the unified solution for a rhombic plate made
of this alloy.

Problem 8.11 A high-strength alloy has the strength ratio in compression
and tension α = 0.9. Find the unified solution for an oblique plate made
of this alloy.

Problem 8.12 Compare the plastic solutions of a square plate using the
unified yield criterion and the unified strength theory with α = 0.8.

Problem 8.13 Compare the plastic solutions of a rectangular plate using
the unified yield criterion and the unified strength theory with α = 0.8.

Problem 8.14 Compare the plastic solutions of a rhombic plate using the
unified yield criterion and the unified strength theory with α = 0.8.

Problem 8.15 Compare the plastic solutions of an oblique plate using the
unified yield criterion and the unified strength theory with α = 0.8.
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