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Plastic Limit Analysis for Simply Supported
Circular Plates

5.1 Introduction

The circular plate has been used widely as an important structural element
in many branches of engineering. Reliable prediction of the load-bearing ca-
pacity of circular plates is crucial for optimum structural design. The load-
bearing capacity of circular plates by using the Tresca yield criterion and
Huber-von Mises criterion has been given by Hopkins and Wang (1954), Hop-
kins and Prager (1954), and Ghorashi (1994), et al. The design of circular
plates based on the plastic limit load was discussed by Hu (1960). Nine cases
including a simply supported circular plate, clamped circular plate, annular
plate, a built-in at inner edge and simply supported along the outer edge
plate, shearing force along the outer edge and built-in at the inner edge, etc.
were studied (Hu, 1960). A systematical summary was given by Mroz and
Sawczuk (1960), Hodge (1959; 1963), Save and Massonnet (1972), Zyczkowski
(1981), Save (1985) and Save et al. (1997).

Huang et al. (1989) applied the twin-shear stress criterion to derive the
plastic limit transverse pressure for the simply supported circular plate. Pre-
vious studies showed that the limit analysis method is effective for the analy-
sis of circular plates in the plastic limit state. However, the Tresca criterion,
Huber-von Mises criterion, and twin-shear stress criterion are only applica-
ble for certain materials. For instance, the Tresca criterion requires the shear
strength and tensile strength of the material to satisfy the relation τs = 0.5σs;
the Huber-von Mises criterion is suitable for materials with τs = 0.577σs, and
the twin-shear stress criterion is valid for the materials with τs = 0.677σs.
All one of the solutions mentioned above is single solution adopted for only
one kind of material.

A new unified solution to the plastic limit of a simply supported circular
plate by using of the unified yield criterion was presented by Ma and He
(1994), Ma et al. (1993; 1994; 1995a; 1995b; 1999). Unified plastic limit anal-
ysis of metal circular plates subjected to border uniformly distributed loading
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was derived by Wang et al. (2002). The unified solution can be adapted for
more kinds of non-SD materials. The unified solution for simply supported
circular plates using SD materials was derived by Wang and Yu (2002; 2003).
The unified plastic limit of the plate for non-SD materials is a special case of
the unified solution of the plate for SD materials, such as rock and concrete
materials (Chen, 1975; 1981; 1988).

In this chapter, plastic limit analyses of simply supported circular plates
with non-SD materials and SD materials under various transverse loading
using the unified yield criterion and the unified strength theory are presented.
Exact and unified solutions of the plastic limit load, moment field and velocity
field in the plastic limit state are derived. The moment field and velocity field
with respect to the Tresca criterion, the Huber-von Mises criterion (closed-
form solution), and the twin-shear stress criterion are compared. This chapter
presents an effective analytical method to compute the exact plastic limit load
for circular plates using a piecewise linear yield criterion.

5.2 Basic Equations of Circular Plate

When considering a circular plate of radius a and thickness h subjected to
axisymmetric transverse loading P (r), a stress element of the circular plate
is considered (Fig.5.1). Because of the axisymmetry of the structure and the
loading, the non-zero stresses are the radial stress σr, the circumferential
stress σθ, and the shear stress τrz = τrz. In the plastic limit state, the gener-
alized stresses can be expressed as (Hodge, 1963; Chakrabarty, 1987)

Fig. 5.1. Internal forces in a circular plate element

Mr =
∫ h/2

−h/2

σrzdz, Mθ =
∫ h/2

−h/2

σθzdz, (5.1a)

Qrz =
∫ h/2

−h/2

τrzdz, M0 =
∫ h/2

−h/2

σyzdz =σyh2
/
4, (5.1b)
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where Mr, Mθ and M0 are the radial, circumferential, and ultimate (fully
plastic) bending moments, respectively; Qrz is the transverse shear force
which is generally not assumed to influence the plastic yielding. Defining
dimensionless variables of r = R/a, mr = Mr/M0, mθ = Mθ/M0, p(r)
= P (r)a2/M0, the equilibrium equation of a circular plate subjected to a
constant uniform load can be written with reference to the axisymmetric
condition as

d(rmr)/dr − mθ = −
∫ r

0

p(r)rdr, (5.2)

where p(r) is the transversely distributed loading per unit area.
The equilibrium equation for a uniformly-loaded circular plate can be

simplified as

d(rmr)/dr − mθ = −p

2
r2. (5.3)

The relations between the curvature rate and the rate of deflection are

k̇r = −d2ẇ/
dr2 and k̇θ = −dẇ/(rdr), (5.4)

where ẇ, k̇r and k̇θ are non-dimensional deflection rate, non-dimensional
curvature rates in radial, and circumferential directions, respectively. The
dimensionless deflection is defined as w = W/a, where W is the actual de-
flection, and a is the radius of circular plate. According to the associated flow
rule,

k̇r = λ̇∂F/∂mr, k̇θ = λ̇∂F/∂mθ, (5.5)

where λ̇ is a plastic flow factor, F is plastic potential which is the same as
the yield function according to the associated flow rule.

5.3 Unified Solutions of Simply Supported Circular
Plate for Non-SD Materials

The plate is assumed to be made of a rigid-perfectly-plastic material, which
satisfies the unified yield criterion. Fig.5.2 shows the generalized unified yield
criterion in terms of mr and mθ. Fig.5.3 illustrates the flow vector of the
curvature velocity at the corners when the unified yield criterion parameter
b=0.5. The unified yield criterion is a piecewise linear function, and it has
the form of
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mθ = aimr + bi, (i = 1, ..., 12). (5.6)

Table 5.1 lists the respective constants ai and bi for the five lines Li

(i = 1, ..., 5) of AB, BC, CD, DE and EF in Fig.5.2.
Substituting the yield criterion into Eq.(5.3) and then integrating Eq.(5.3),

the radial moment mr located on the segments Li is obtained as

mr =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai , (i = 1, ..., 5), (5.7)

where ci (i=1, ..., 5) are integral constants to be determined by boundary and
continuity conditions. The field of velocity corresponding to each side Li is
obtained by equating Eq.(5.4) and Eq.(5.5). Considering the yield condition
Eq.(5.6), the velocity field is integrated as

ẇ = ẇ0(c1ir1−ai + c2i), (i = 1, ..., 5), (5.8)

where c1i, c2i (i=1, ..., 5) are the integral constants, ẇ0 is the velocity at the
plate center.

Fig. 5.2. Internal forces in a circular plate element

Table 5.1. Constants ai and bi in the unified yield criterion

AB BC CD DE EF
(i = 1) (i = 2) (i = 3) (i = 4) (i = 5)

ai −b b/(1 + b) 1/(1 + b) 1 + b (1 + b)/b

bi 1 + b 1 1 1 + b (1 + b)/b
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Fig. 5.3. Internal forces in a circular plate element

5.3.1 Uniformly Distributed Load

For a simply supported circular plate under uniformly distributed pressure
(Fig.5.4), in the plastic limit state, moments at the center (r=0) of the sim-
ply supported circular plate satisfy mr = mθ=1 (point A at the yield curve
in Fig.5.2). According to the boundary condition of the plate and the re-
quirement of stable flow of the plastic strains (Hodge, 1963), moments at the
simply supported edge (r = 1) satisfy mr =0 and mθ =1 (point C at the yield
curves in Fig.5.2). Bending moments at each point in the plate are located
on the sides AB and BC in view of the normality requirement of plasticity.

Fig. 5.4. Simply supported circular plate under uniformly distributed load

Assuming r1 is a non-dimensional radius of a ring where the moments
correspond to point B in Fig.5.2, the boundary conditions and continuity
conditions can be put as: (1) mr(r = 0)=1; (2) mr(r = r1) is continuous and
equals to (1+b)/(2+b); (3) mr(r = 1)=1; (4)ẇ(r = 0) = ẇ0; (5)ẇ(r = r1)
and dẇ/dr(r = r1) are continuous; (6)ẇ(r = 1) = 0. The integral coefficients
c1, c2, c11, c12, and c22 in Eq.(5.7) and Eq.(5.8) are then derived as
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c1 = 0, c2 = −(1 + b) +
1 + b

2 + b

3 + b

3 + 2b
r−2
1 ,

c11 = − r
−b(2+b)/(1+b)
1

(1 + b)2 − (2b+ b2)r1/(1+b)
1

,

c21 = 1,

c12 = −c22 = − (1 + b)2

(1 + b)2 − (2b+ b2)r1/(1+b)
1

.

(5.9)

The plastic limit load p is derived as

p =
6 + 2b
2 + b

1
r21

, (5.10)

where r1 satisfies the equation of

−(3 + 2b)(2 + b) + (3 + b)r−2
1 + 2b(2 + b)r1/(1+b)

1 = 0. (5.11)

Eq.(5.11) can be solved by half-interval search of r1 in the interval of
(0, 1) for a given value of b in the range of 0 to 1. The convergence with
sufficient accuracy of Eq.(5.11) gives the approximation of r1.

For a special case when b=0, the plastic solution becomes

⎧⎪⎪⎨
⎪⎪⎩

mr = 1− r2 , mθ = 1,
ẇ = ẇ0(1− r),

p = 6 , r1 =1
/√

2,

(5.12)

which is the same as those given by other researchers using the maximum
principal stress criterion and the Tresca criterion (Hopkins and Prager, 1953;
Hodge, 1963). Figs.5.5 and 5.6 show the moment fields and velocity fields
of a simply supported circular plate with respect to three different criteria,
namely, the Tresca criterion (b=0), the Huber-von Mises criterion (b=0.5),
and the maximum deviatoric stress criterion or the twin-shear stress criterion
(b=1). The plastic limit load p corresponding to the three criteria are 6.000,
6.489, and 6.839, respectively, when b equals 0, 0.5 or 1. The plastic limit
load versus unified yield criterion parameter b of a simply supported circular
plate is shown in Fig.5.6. The plastic limit load with respect to the Huber-von
Mises criterion obtained by Hopkins and Wang (1954) is 6.51, which is very
close to the present result with b=0.5. The upper bound limit load derived
from the expanded Tresca hexagon which circumscribes the Huber-von Mises
ellipse (Hopkins and Wang, 1954) is 6.83. The plastic limit loads obtained
with b=0.5 and b=1 of the unified yield criterion differ considerably from that
with b=0 by 8.15% and 14.0%, respectively.
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Fig. 5.5. Moment fields and velocity fields of simply supported circular plate

Fig. 5.6. Plastic limit load versus unified yield criterion parameter b of simply
supported circular plate

It is seen that the choice of strength theory has a significant influence
on the results of elasto-plastic analysis and the load-bearing capacities of
a simply supported circular plate for non-SD materials. The unified yield
criterion provides us with an effective approach to study these effects.

5.3.2 Arbitrary Axisymmetrical Load

This section presents the exact solution of a circular plate under an arbitrarily
distributed axisymmetrical load. The plastic solution of a simply supported
circular plate with a varying loading radius of the partial-uniform pressure
in Fig.5.7(a) and the arbitrary loading variation in Fig.5.7(b) under different
boundary conditions are discussed.
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Fig. 5.7. Plastic limit load versus unified yield criterion parameter b of simply
supported circular plate

5.3.2.1 Arbitrary Loading Radius

Defining dimensionless variables, r = R/a,mr = Mr/M0,m = M/M0, and
q(r) = p(r)a2/M0, the equilibrium equation of a circular plate subjected to
a constant uniform load can be derived with reference to the axisymmetric
condition as

d(rmr)/dr − mθ = −pr2/2, 0 � r � rp, (5.13)
d(rmr)/dr − mθ = −pr2p/2, rp � r � 1, (5.14)

where rp = Rp/a is the normalized loading radius of the circular plate; Rp is
the loading radius. rp = 1 implies that the entire plate is uniformly loaded,
whereas rp = 0 indicates a point loaded at the center. When the unified yield
criterion expressed by generalized stresses (Fig.5.2) is used, the expression of
the limit condition is the same as that in Eq.(5.6).

For a circular plate under arbitrarily distributed load, the center point of
the plate satisfies mr = mθ =1 (point A in Fig.5.2), and the simply supported
boundary condition leads to mr = 0 (point C in Fig.5.2). Stress states of all
the points in the plate are still on the parts AB and BC. There are two
possible cases, i.e., Case (1) rp � r0 and Case (2) rp > r0, where r0 is the
radius of the ring with the moments corresponding to the yield point B in
Fig.5.2. These two cases are illustrated in Fig.5.8.

From the boundary conditions and continuity conditions, there are: (1)
mr = 1 at r = 0; (2) mr = 0 at r = 1; (3) mr is continuous at r = rp; (4)
mr = d1 = (1 + b)/(2 + b) and is continuous at r = r0. These conditions will
be used to derive the integration coefficients in the moment equations.
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Fig. 5.8. Plastic limit load versus unified yield criterion parameter b of simply
supported circular plate

Case (1)
The moment fields of the plate corresponding to the first case can be inte-
grated as

mr =
b1

1− a1
− pr2

2(3− a1)
+ c1r

−1+a1 , 0 � r � rp, (5.15a)

mr =
b1

1− a1
− pr2p
2(1− a1)

+ c2r
−1+a1 , rp � r � r0, (5.15b)

mr =
b2

1− a2
− pr2p
2(1− a2)

+ c3r
−1+a2 , r0 � r � 1, (5.15c)

where c1, c2, and c3 are integration coefficients. The integration coefficients,
the plastic limit load p, and the demarcating radius r0 are derived with
application of the boundary and continuity conditions as

c1 = 0, (5.16a)

b1
1− a1

− pr2p
2(3− a1)

=
b1

1− a1
− pr2p
2(1− a1)

+ c2r
−1+a1
p , (5.16b)

b1
1− a1

− pr2p
2(1− a1)

+ c2r
−1+a1
0 = d1, (5.16c)

b2
1− a2

− pr2p
2(1− a2)

+ c3r
−1+a2
0 = d1, (5.16d)
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b2
1− a2

− pr2p
2(1− a2)

+ c3 = 0. (5.16e)

When the loading radius rp is specified, the unknowns c2, c3, p and r0 in
the above simultaneous equations can be derived as

c3 = − d1

1− r−1+a2
0

, (5.17)

p =
2b2
r2p

− 2(1− a2)d1
(1− r−1+a2

0 )r2p
, (5.18)

c2 =
1 + a1

(1− a1)(3− a1)r−1+a1
p

[
b2 − (1− a2)d1

1− r−1+a2
0

]
, (5.19)

where the demarcating radius r0 can be calculated from the equation of

b1
1− a1

− d1 −
[
−1− a2
1− a1

d1

1− r−1+a2
0

+
b2

1− a1

]

+
1 + a1

(1− a1)(3− a1)r−1+a1
p

[
b2 − (1− a2)d1

1− r−1+a2
0

]
r−1+a1
0 = 0.

(5.20)

When the derived values are substituted into Eqs.(5.15a)∼(5.15c), the
moment fields of the plate are calculated.

Case (2)
The corresponding moment fields of Case (2) can be derived as

mr =
b1

1− a1
− pr2

2(3− a1)
+ c1r

−1+a1 , 0 � r � r0, (5.21a)

mr =
b2

1− a2
− pr2

2(3− a2)
+ c2r

−1+a2 , r0 � r � rp, (5.21b)

mr =
b2

1− a2
− pr2p
2(1− a2)

+ c3r
−1+a2 , rp � r � 1. (5.21c)

With the same boundary and continuity conditions as for Case (1), the
integral coefficients c1, c2 and c3, the plastic limit load p, and the demarcating
radius r0 satisfy

c1 = 0, (5.22a)

b1
1− a1

− pr20
2(3− a1)

= d1, (5.22b)
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b2
1− a2

− pr20
2(3− a2)

+ c2r
−1+a2
0 = d1, (5.22c)

b2
1− a2

− pr2p
2(3− a2)

+ c2r
−1+a2
p =

b2
1− a2

− pr2p
2(1− a2)

+ c3r
−1+a2
p , (5.22d)

b2
1− a2

− pr2p
2(1− a2)

+ c3 = 0. (5.22e)

The integral coefficients, the plastic limit load and the demarcating radius
can be derived as

p =
(

b1
1− a1

− d1

)
2(3− a1)

r20
, (5.23a)

c2 =
[(

b1
1− a1

− d1

)
3− a1
3− a2

−
(

b2
1− a2

− d1

)]
r1−a2
0 , (5.23b)

c3 = − b2
1− a2

+
(

b1
1− a1

− d1

)
3− a1
1− a2

r2p
r20

, (5.23c)

where r0 can be numerically solved from Eq.(5.22d) by substituting Eqs.(5.23a)
∼(5.23c) into Eq.(5.22d).

Assuming that rp = r0 = rp0, the two cases are identical. The value of
rp0 in this special case can be derived as rp0 = 1/21+b by solving Eqs.(5.18)
and (5.22a) with application of rp = r0 = rp0. When rp � rp0, the equations
derived in Case (1) are adopted. On the other hand, when rp > rp0, the
counterparts in Case (2) are adopted. Moment fields with six different values
of loading radius rp, i.e., 1.0, 0.75, 0.5, 0.25, 0.1 and 0.00001 are shown in
Fig. 5.9. It can be seen that the moment field varies with the unified yield
criterion parameter b. The plastic limit load increases with the increase of b.
Table 5.2 gives the plastic limit load p with respect to different values of rp

and b.

Table 5.2. Plastic limit loads with different values of rp

Criterion rp = 1 rp = 0.75 rp = 0.5 rp = 0.25 rp = 0.1 rp = 0.00001

b = 0.0 (Tresca) 6.0000 7.1111 12.000 38.400 214.29 2× 1010

b = 0.5(Mises) 6.4887 7.6666 12.886 40.901 224.70 2× 1010

b = 1.0 (Twin-shear) 6.8392 8.0638 13.509 42.669 232.69 2× 1010

According to the hypothesis of the maximum principal stress condition or
the Tresca condition, mθ is equal to 1 in the whole circular plate regardless
of the variation in the loading radius rp. It is identical to the results of the
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unified yield criterion with b = 0, which is obviously unreasonable. When
0 < b � 1, mθ varies with the radius variable r and the loading radius rp.
Compared with that b = 0 or with the Tresca criterion, the varying tendency
of mθ seems more reasonable.

When rp approaches zero, the problem is approximately the case of the
circular plate under concentrated load at the center. The unified yield crite-
rion reflects the moment singularity at the center of the circular plate under
a concentrated load.

Fig. 5.9. Moment fields with different loading radii

The boundary conditions, continuity conditions, and the velocity field
when the plate is subjected to a partial-uniform load are the same as those
when the plate is under a uniformly distributed load, except that the de-
marcating radius r0 is a function of the loading radius rp. The plastic limit
load derived in the present study satisfies the equilibrium conditions and the
yield conditions. The velocity field of deflection which is compatible with the



86 5 Plastic Limit Analysis for Simply Supported Circular Plates

motion mechanism, is obtained. Therefore the solution of a plastic limit load
given here is a complete solution. Velocity profiles corresponding to six dif-
ferent values of loading radius rp, namely rp=1, rp=0.75, rp=0.5, rp=0.25,
rp=0.1, and rp=0.00001 are plotted in Fig.5.10.

Fig. 5.10. Moment fields with different loading radii

It is seen that the velocity field with b=0 is independent of the loading
radius rp which is always a straight line and is not smooth at the plate
center. The velocity field derived with the yield conditions with 0 < b � 1,
however, are functions of rp and are smoothly connected at the plate center.
This indicates that the velocity field in the plastic limit state in terms of the
unified yield criterion is again more reasonable than that based on the Tresca
criterion.

To verify the current results, the plastic limit solutions with specific pa-
rameters in the equations are explicitly given and compared with reported
results:
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(1) When b = 0, the moment field, velocity field, and the plastic limit load
are obtained as

mr = 1− r2

(3− 2rp)r2p
, mθ = 1, when 0 � r � rp, (5.24a)

mr = 1− 3r − 2rp

3− 2rp
, mθ = 1, when rp � r � 1, (5.24b)

ẇ = ẇ0(1− r), (5.24c)

p =
6

(3− 2rp)r2p
. (5.24d)

This result is identical to the solution in terms of the Tresca criterion
given by Hodge (1963).

(2) When rp = 1, the whole plate is under a uniformly distributed load. The
solution is exactly the same as that in Section 5.3.1.

(3) Denoting PT as the total load on the plate, i.e., PT = πr2pp, when rp

approaches zero, it approximates to a concentrated loading case. From
the solution of the first case, it can be derived that lim

rp→0
PT ≡ 2π which is

independent of the variable b. It agrees with the results using the Tresca
criterion and the Huber-von Mises criterion (Hodge, 1963).

5.3.2.2 Arbitrary Loading Distribution

Defining dimensionless variable p(r) = P (r)a2/M0 for a circular plate of ra-
dius a and thickness h subjected to an arbitrarily distributed axisymmetrical
transverse pressure μP (r), where μ is a plastic limit load factor, and P (r)
is a load distribution function, the equilibrium equation of the circular plate
can be written with application of the axisymmetric condition as

d(rmr)/dr − mθ = −
∫

μp(r)rdr. (5.25)

Substituting the yield criterion into Eq.(5.25) and then integrating Eq.
(5.25), mr located on the segments Li are obtained as follows:

mr =
bi

1− ai
−r−1+ai

∫
r−ai [

∫
μp(r)dr]dr+ cir

−1+ai , (i = 1, ..., 5), (5.26)

where ci (i = 1, ..., 5) are integration constants and can be determined from
the continuity and boundary conditions.

Assuming the load function p(r) =
∞∑

j=1

pjr
j−1, Eq.(5.26) becomes
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mr =
bi

1− ai
− μ

∞∑
j=1

pj
rj+1

(j + 1)(j + 2− ai)
+ cir

−1+ai . (i = 1, ..., 5) (5.27)

The field of velocity corresponding to the five sides Li is obtained as

ẇ = ẇ0(c1ir1−ai + c2i) (i = 1, ..., 5), (5.28)

where c1i and c2i (i = 1, ..., 5) are integration constants, and ẇ0 is the velocity
at the plate center.

The plastic limit load of a plate is always taken to be the total limit load
on the plate. The dimensionless total limit load of the plate is obtained as

PT = 2π
∫ 1

0

μp(r)rdr or PT = 2πμ
∞∑

j=1

pj

j + 1
. (5.29)

In the plastic limit state, moments at the center (r = 0) of a simply
supported circular plate satisfy mr = mθ = 1 (point A on the yield curves
in Fig. 5.2), and moments at the simply supported edge (r = 1) satisfy mr

= 0 and mθ = 1 (point C on the yield curves in Fig. 5.2). Bending moments
of other points in the plate are on the lines AB and BC according to the
normality requirement of plasticity. Thus, index “i” in Eqs.(5.27) and (5.28)
for a simply supported circular plate takes values of 1 or 2 only corresponding
to the line AB or the line BC in Fig.5.2, respectively. Assuming r1 is a non-
dimensional radius of a ring where the moments exactly correspond to point
B in Fig.5.2, the boundary and continuity conditions can then be described
as: (1) mr(r = 0) = 1; (2) mr(r = r1) is continuous and equal to d1; (3)
mr(r = 1) = 1; (4) ẇ(r = 0) = ẇ0; (5) ẇ(r = r1) and dẇ/dr(r = r1) are
continuous, (6) ẇ(r = 1) = 0. Accordingly, the integral coefficients c1, c2,
c11, c12, c21 and c22 in Eqs.(5.27) and (5.28) can be determined as

c1 = 0, c2 = − b2
1− a2

+ μ

∞∑
j=1

pj

(j + 1)(j + 2− a2)
, (5.30)

c11 = − r
−b(2+b)/(1+b)
1

(1 + b)2 − (2b+ b2)r1/(1+b)
1

, c21 = 1, (5.31)

c12 = −c22 = − (1 + b)2

(1 + b)2 − (2b+ b2)r1/(1+b)
1

. (5.32)

The loading factor μ is derived as

μ =
−d1 + b1

1−a1
∞∑

j=1

pjrj+1
1

(j+1)(j+2−a1)

, (5.33)
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where r1 satisfies the equation

d1 =
b2

1− a2
− μ

∞∑
j=1

pjr
j+1
1

(j + 1)(j + 2− a2)
+ c2r

−1+a2
1 . (5.34)

The above equation is solved by a half-interval search method for r1 in
the interval (0, 1) for a given value of b between 0 and 1. Substituting the
value of r1 into Eqs.(5.30)∼(5.33), the moments and velocity distributions in
Eqs.(5.27) and (5.28) can then be derived.

For a special case of b=0, the plastic solution becomes

mr = 1− μ
∞∑

j=1

pj

(j+1)(j+2)r
j+1, mθ = 1,

ẇ = ẇ0(1− r) and μ = 1
∞∑

j=1

pj
(j+1)(j+2)

, (5.35)

which are the same as those given by Ghorashi (1994) using the maximum
principal stress criterion and the Tresca criterion. If a uniformly distributed
load is applied, it becomes

mr = 1− r2, mθ = 1, ẇ = ẇ0(1− r) and μ = 6, (5.36)

which are identical to the results given by Hodge (1963).
Table 5.3 lists the plastic limit load factors and the total limit loads of the

simply supported circular plate for five linearly distributed load functions in
terms of the three particular yield criteria, namely, the Tresca criterion, the
Huber-von Mises criterion (approximated by the unified yield criterion with
b=0.5), and the twin shear stress criterion.

Table 5.3. Plastic limit loads for linearly distributed load

p(r) r 1 + r 1 2− r 1− r

PT PT PT PT PT

b = 0 12.00 25.13 4.00 20.94 6.00 18.85 4.00 16.76 12.01 12.57

b = 1/2 12.78 26.78 4.31 22.56 6.49 20.38 4.34 18.17 13.02 13.64

b = 1 13.36 27.98 4.53 23.73 6.84 21.49 4.58 19.17 13.75 14.40

From Table 5.3, different yield criteria make differences in the plastic
limit load factor, the total limit load, and the load distribution function. The
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values in terms of the Huber-von Mises criterion are about 6.5% to 8.5%
higher, while the values with the twin shear stress criterion are about 10.5%
to 14.5% higher than those with the Tresca criterion. The increasing load
distribution along the plate radius leads to minimal changes among different
yield criteria. On the other hand, it makes significant differences to the total
limit load, implying the increasing load distribution and improves the load-
bearing capacity of a plate. For a uniformly distributed load, the load factor
corresponding to the three criteria (unified yield criterion with b=0, b=0.5,
and b=1) are 6.00, 6.49 and 6.84, respectively. The load factor with respect
to the Huber-von Mises criterion reported by Hopkins and Wang (1954) is
6.51, which approximates closely the result using the unified yield criterion
with b=0.5. Fig.5.11 and Fig.5.12 illustrate schematically the moment fields
and velocity fields corresponding to these criteria for a simply supported cir-
cular plate subjected to the two types of linearly distributed load, i.e., p = r
and p = 1 − r. It is seen that the radial moment does not change much,
while the circumferential moment varies significantly with respect to differ-
ent yield criteria. The circumferential moment is not constant if the unified
yield criterion with non-zero parameter b is applied. Locations of the maxi-
mum circumferential moment shift with the loading condition and the yield
criterion. The larger r1, the larger the total limit loads. The velocity fields
with respect to the unified yield criterion (UYC) with non-zero parameter
b (0 < b � 1) distribute nonlinearly along the plate, while the velocity field
with respect to the Tresca criterion (or UYC with b=0) varies linearly and is
singular at the plate center. The distribution of velocity also depends on the
loading function as illustrated in Figs.5.11(b) and 5.12(b).

Fig. 5.11. Moment and velocity fields of simply supported circular plate (p = r)
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Fig. 5.12.Moments and velocity fields of simply supported circular plate (p = 1−r)

5.3.2.3 Edge Moment and Partial-uniform Load

For a plate loaded by edge moment and partial-uniform load as shown in
Fig.5.13, there are two possible cases, i.e., Case (1) d � r0 and Case (2)
d > r0, where d is the loading radius and r0 is the dividing radius at which
the moments mr and mθ correspond to the yield point B in Fig.5.2.

Fig. 5.13. Simply supported circular plate under partial-uniform load and edge
moment

Case (1)
When point G lies on the line segment DF (Fig.5.13(a)), the equilibrium
equations for EF , FG and GD are
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⎩ r

dmr

dr
= (1 + b)(m0 − mr)− q

2
r2

mθ = (1 + b)m0 − bmr

for EF, (5.37a)

⎧⎨
⎩ r

dmr

dr
= (1 + b)(m0 − mr)− q

2
d2

mθ = (1 + b)m0 − bmr

for FG, (5.37b)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= m0 − 1

1 + b
mr − q

2
d2

mθ = m0 − b

1 + b
mr

for GD, (5.37c)

where q is the plastic limit load, and q satisfies

q =
2(1 + b)(3 + b)m0

(2 + b)
[
(3 + b)− 2

(
d
r0

)1+b
]

d2
, (5.38)

and r0 satisfies

2(1 + b)
(

d

r0

)1+b

+ (3 + b)
(

a

r0

) 1
1+b

− 2(2 + b)
(

d

r0

)1+b (
a

r0

) 1
1+b

− (2 + b)mb

(1 + b)

[
(3 + b − 2

(
d

r0

)1+b
] (

a

r0

) 1
1+b

= 0,

(5.39)

where mb = Mb/M0.

Case (2)
When point G is on line segment EF (Fig.5.13(b)), the equilibrium equations
are ⎧⎨

⎩ r
dmr

dr
= (1 + b)(m0 − mr)− q

2
r2

Mθ = (1 + b)m0 − bmr

for EG, (5.40)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= m0 − 1

1 + b
mr − q

2
r2

mθ = m0 − b

1 + b
mr

for GF, (5.41)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= m0 − 1

1 + b
mr − q

2
d2

mθ = m0 − b

1 + b
mr

for GD, (5.42)
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where q satisfies

q =
6 + 2b
2 + b

m0

r20
, (5.43)

and r0 satisfies

3 + b

3 + 2b

(
d

r0

) 3+2b
1+b

2(2 + b)
(

a

r0

) 1
1+b

+ (3 + b)
(

d

r0

)2 [(
a

r0

) 1
1+b

−
(

d

r0

) 1
1+b

]

+
(2 + b)mb

(1 + b)

(
a

r0

) 1
1+b

+
2b(2 + b)
3 + 2b

= 0.

(5.44)

When d = r0, point F and G overlap, the moment fields of Case (1) and
Case (2) become the same, and r0 satisfies

r0 =
(
1
2
+
(2 + b)mb

2(1 + b)

)1+b

a. (5.45)

5.3.2.4 Edge Moment and Partial-linear Load

For a circular plate subjected to partial-linear load and edge moment as
shown in Fig.5.14, there also are two possible cases, i.e. Case (1) d � r0 and
Case (2) d > r0.

Fig. 5.14. Partial-linear load and edge moment
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Case (1)
When point G lies on line segment EF (Fig.5.14(a)), the plastic limit loading
is

q =
3(4 + b)
2 + b

dm0

r20
, (5.46)

and r0 satisfies

(
(2 + b)mb

(1 + b)
+
(4 + b)d3 − (2 + b)r30

r30

) (
a

r0

) 1
1+b

− 3(1 + b)(4 + b)
(4 + 3b)

(
d

r0

)3(
d

r0

) 1
1+b

+
3b(2 + b)
4 + 3b

= 0.

(5.47)

Case (2)
When point G is on line segment FD (Fig.5.14(b)), the plastic limit loading
is

q =
3(1 + b)(4 + b)m0

(2 + b)
[
(4 + b)− 3

(
d
r0

)1+b
]

d2
, (5.48)

and r0 satisfies

3(1 + b)
(

d

r0

)1+b

+ (4 + b)
(

a

r0

) 1
1+b

− 3(2 + b)
(

d

r0

)1+b (
a

r0

) 1
1+b

− (2 + b)mb

(1 + b)

[
(4 + b)− 3

(
d

r0

)1+b
] (

a

r0

) 1
1+b

= 0 .

(5.49)

When d = r0, i.e., points F and G overlap, and r0 satisfies

r0 =
(
2
3
+
(2 + b)mb

3(1 + b)

)1+b

a. (5.50)

The relationship between the plastic limit load and parameter b is given in
Table 5.4 and Fig.5.15 for the loading cases of (1) partial-uniform loading with
edge moment, and (2) partial-linear load with edge moment, where d = 0.6a
and Mb = 0.3M0. It is seen that the plastic limit load is different with respect
to different yield criteria. When b = 0 (Tresca criterion), the plastic limit load
is the minimum; when b = 1 (the twin-shear yield criterion), the plastic limit
load is the maximum.
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Table 5.4. Relationships of limit load q and parameter b

Loading type b 0 0.1 0.2 0.3 0.4 0.5

1 r0 0.7000 0.6797 0.6576 0.6418 0.6284 0.6171

q 6.4815 6.6926 6.8850 7.0610 7.2226 7.3715

2 r0 0.7412 0.7189 0.7002 0.6844 0.6709 0.6592

q 10.6061 10.9061 11.1799 11.4303 11.6603 11.8721

Loading type b 0.6 0.7 0.8 0.9 1.0

1 r0 0.6074 0.5990 0.5915 0.5847 0.5783

q 7.5093 7.6374 7.7568 7.8863 7.9729

2 r0 0.6491 0.6402 0.6324 0.6254 0.6192

q 12.0679 12.2495 12.4186 12.5765 12.7243

Fig. 5.15. Plastic limit load q versus unified yield criterion parameter b

5.4 Unified Solutions of Simply Supported Circular
Plate for SD Materials

The unified solutions of a circular plate for non-SD materials are extended to
SD materials. The unified plastic limit of a clamped circular plate with SD
materials (strength differential effect in tension and compression) by using
the unified strength theory was derived by Wei and Yu (2001). Unified plastic
limit analyses of simply supported circular plates with different tensile and
compressive strength under uniform annular load were derived by Wang and
Yu (2002; 2003a). Plastic limit analysis of simply supported circular plates
with different tensile and compressive strength under linear distributed load
was given by Wang and Yu (2003). In this section, we will analyze the plastic
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limit load of simply supported circular plates that are made of SD materials.
A parameter α is introduced, which is the ratio of the negative limit bending
moment and positive limit bending moment, α = +mp/−mp. The yield loci
in terms of the generalized stresses mr and mθ is shown in Fig.5.16 with
respect to different values of b.

The generalized yield criterion for a plate is similar to the yield criterion
in the plane stress state. The generalized unified yield criterion for a plate is
similar to the unified yield criterion in the plane stress state. However, two
cases have to be considered, i.e., (a) +mp �= −mp and (b) +mp = −mp. They
are shown in Fig.5.16.

Fig. 5.16. Generalized unified yield criterion for plate

The yield criterion of the unified strength theory in terms of generalized
stresses is

mr − αb

1 + b
mθ = mp, mθ − αb

1 + b
mr = mp, (5.51a)

mr − α

1 + b
mθ = mp, mθ − α

1 + b
mr = mp, (5.51b)

α

1 + b
(bmr +mθ) = −mp,

α

1 + b
(bmθ +mr) = −mp, (5.51c)

1
1 + b

(mr + bmθ) = mp,
1

1 + b
(mθ + bmr) = mp, (5.51d)

1
1 + b

(mr + αmθ) = mp,
1

1 + b
(mθ + αmr) = mp, (5.51e)

b

1 + b
(mr + αmθ) = mp,

b

1 + b
(mθ + αmr) = mp. (5.51f)
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The center point of the simply supported plate satisfies mr(r = 0) =
mθ(r = 0) (point A in Fig.5.16); and simply supported boundary satisfies
mr(r = a) = 0 (point C in Fig. 5.16), mθ = (1+α) mr (point B in Fig.5.16).
Stress states of all points in the plate are located on parts AB and BC. The
yield conditions of parts AB, BC in Fig.5.16 can be expressed as

AB :
b

1 + b
mr +

1
1 + b

mθ = mp, (5.52a)

BC : mθ − αb

1 + b
mr = mp. (5.52b)

5.4.1 Partial-uniform Load

There are two possible cases where the plate is subjected to a partial-uniform
load as shown in Figs.5.17(a) and 5.17(b), i.e., Case (1) d � r0 and Case
(2) d > r0, respectively, where d is the loading radius. The moments mr and
mθ at point G with a radius of r0 are located at point B in Fig.5.16.

Fig. 5.17. Simply support circular plate subjected to partial-uniform load

Case (1)
When point G lies on segment DE, the equilibrium equations for different
parts are given by
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EF :

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pr2

2
,

mθ = (1 + b)mp − bmr,

(5.53a)

GE :

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pd2

2
,

mθ = (1 + b)mp − bmr,

(5.53b)

DG :

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + b − αb

1 + b
mr − pd2

2
,

mθ = mp +
αb

1 + b
mr.

(5.53c)

Case (2)
When point G is located on segment EF , the equilibrium equations are

GF :

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pr2

2
,

mθ = (1 + b)mp − bmr,

(5.54a)

EG :

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + b − αb

1 + b
mr − pr2

2
,

mθ = mp +
αb

1 + b
mr,

(5.54b)

DG :

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + b − αb

1 + b
mr − pd2

2
,

mθ = mp +
αb

1 + b
mr.

(5.54c)

The boundary and continuity conditions are: (1) at point F , mr(r = 0)
is a finite value; (2) at point D, mr(r = 0) = 0; (3) at point E, mr(r = d) is
continuous; (4) at point G, mr(r = r0) continuous and equal to (1+b)mp/(1+
b+ α).
Case (1)
Integrate Eqs.(5.53a) and (5.53c),

mr = mp − pr2

6 + 2b
+ c1r

−(1+b)mθ = (1 + b)mp − bmr for EF, (5.55a)

mr = mp − pd2

2(1 + b)
+ c2r

−(1+b)mθ = (1 + b)mp − bmr for GE, (5.55b)

mr =
1 + b

1 + b − αb
(mp − pd2

2
) + c3r

− 1+b−αb
1+b mθ = mp +

αb

1 + b
mr for DG.

(5.55c)
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With reference to the boundary and continuity conditions (1) to (4), we
have

c1 = 0, (5.56a)

c2 =
pd3+b

(1 + b)(3 + b)
, (5.56b)

c3 =
[
− 1 + b

1 + b − αb

(
mp − pd2

2

)]
a
1+b−αb
1+b . (5.56c)

The plastic limit load is

p =
2(1 + b)(3 + b)αmp

(1 + b+ α)d2
[
(3 + b)− 2

(
d
r0

)1+b
] , (5.57)

where r0 satisfies

2α(1 + b)
(

d
r0

)1+b

+ (3 + b)(1 + b − αb)
(

a
r0

) 1+b−αb
1+b

−2(1 + b+ α)
(

d
r0

)1+b (
a
r0

) 1+b−αb
1+b

= 0.
(5.58)

Substituting c1, c2 and c3 into Eqs.(5.55a) and (5.55c), the moment fields
for Case (1) can be derived.
Case (2)
When point G located between E and F , from Eq.(5.54),

⎧⎨
⎩mr = mp − pr2

6 + 2b
+ c4r

−(1+b)

mθ = (1 + b)mp − bmr

for GF, (5.59a)

⎧⎪⎪⎨
⎪⎪⎩

mr =
1 + b

1 + b − αb
mp − (1 + b)pr2

2(3 + 3b − αb)
+ c5r

− 1+b−αb
1+b

mθ = mp +
αb

1 + b
mr

for EG, (5.59b)

⎧⎪⎪⎨
⎪⎪⎩

mr =
1 + b

1 + b − αb
mp − 1 + b

1 + b − αb

pd2

2
+ c6r

− 1+b−αb
1+b

mθ = mp +
αb

1 + b
mr

for DG. (5.59c)

Applying the boundary and continuity conditions (1) to (4), we obtain

c4 = 0, (5.60a)
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c5 = − 1 + b

1 + b − αb
mpα

1+b−αb
1+b +

(1 + b)pd2

2(1 + b − αb)

(
α

1+b−αb
1+b − d

1+b−αb
1+b

)

+
(1 + b)p

2(3 + 3b − αb)
d
3+3b−αb

1+b ,

(5.60b)

c6 =
(
− 1 + b

1 + b − αb
mp +

1 + b

1 + b − αb

pd2

2

)
α

1+b−αb
1+b . (5.60c)

The plastic limit load is derived as

p =
(6 + 2b)αmp

(1 + b − α)r20
, (5.61)

where r0 satisfies

α(1 + b)− α(3 + b)(1 + b − αb)
3 + 3b − αb

− (1 + b+ α)
(

a

r0

) 1+b−αb
1+b

+ α(3 + b)
(

d

r0

)2 [(
a

r0

) 1+b−αb
1+b

−
(

d

r0

) 1+b−αb
1+b

]

+
α(3 + b)(1 + b − αb)

3 + 3b − αb

(
d

r0

) 3+3b−αb
1+b

= 0.

(5.62)

Special Case
When r0 = d, i.e., point G overlaps point E, the moment fields of the two
cases are the same as

⎧⎨
⎩mr = mp − pr2

6 + 2b
+ c7r

−(1+b)

mθ = (1 + b)mr − bmr

for EF, (5.63a)

⎧⎪⎪⎨
⎪⎪⎩

mr =
1 + b

1 + b − αb

(
mp − pd2

2

)
+ c8r

− 1+b−αb
1+b

mθ = mp +
αb

1 + b
mr

for DE. (5.63b)

From the boundary and continuity conditions (1) to (4),

c7 = 0, (5.64a)

c8 =
[
− 1 + b

1 + b − αb

(
mp − pd2

2

)]
α

1+b−αb
1+b , (5.64b)

the plastic limit load is simplified as
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p =
α(6 + 2b)mp

(1 + b+ α)d2
, (5.65)

where d = r0 and

(α

d

) 1+b−αb
1+b

=
−2α

1 + b − αb − 2α
. (5.66)

Denoting the critical loading radius as d0, when d � d0, i.e. Case (1),
Eq.(5.58) gives a unique solution in the region of d < r � a, while Eq.(5.62)
has no solution in 0 < r � d. Thus the equations for Case (1) are adopted
to solve the plastic limit load and moment fields. When, on the other hand,
Eq.(5.58) has no solution in d < r � a, while Eq.(5.62) can be used to solve
r0 in the region of 0 < r � d. In this case, point G is on the segment EF .
The plastic limit load and moment fields can be obtained from Case (2).

Figs.5.18 to 5.21 show the moment fields when α = 0.1, d = a, 0.5a, 0.1a
and 0.00001a, respectively. The plastic limit loads with respect to different
values of unified yield criterion parameter b are plotted in Fig.5.22.

Fig. 5.18. Moment fields when d = a

From Fig.5.18 to Fig.5.21, the moment fields depend on the unified yield
criterion parameter b. The higher the parameter b, the higher the corre-
sponding moment and the plastic limit load. When b = 0, the moment mθ

is independent of the loading radius, and mθ = mp. When b �= 0, mθ varies
along the radial direction, and the variation of mθ gives a more reasonable
representation than that with b = 0. When d approaches zero, which corre-
sponds to a concentrated loading case, the solution of mθ has no singularity
at r = 0 when the parameter b is equal to 0. When b �= 0, the solutions of
both mθ and mr have singularity at r = 0. It can be said that when using
the unified strength theory, the singularity of the moment fields at the plate
center for a concentrated loading case can be properly represented.
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Fig. 5.19. Moment fields when d = 0.5a

Fig. 5.20. Moment fields when d = 0.1a

5.4.2 Linearly Distributed Load

For a simply supported circular plate under linearly distributed load, two
different loading cases are discussed in the following context.

Case (1)
For a linear pressure load as shown in Fig.5.23, when the moment of point
F falls on point B in Fig.5.16, the moment fields satisfy the boundary and
continuity conditions of (1) mr = mθ at r = 0; (2) mr and mθ are continuous
at point F or r = r0; (3) mr = 0 at r = a of the outer edge.

The equilibrium equations of lines EF and FD are
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Fig. 5.21. Moment fields when d = 0.00001a

Fig. 5.22. Plastic limit loads with respect to different values of unified yield crite-
rion parameter b

Fig. 5.23. Linearly distributed loading (Case (1))

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − p

3a
r3

mθ = (1 + b)mp − bmr

for EF, (5.67a)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + (1− α)b

1 + b
mr − p

3a
r3

mθ = (1 + b)mp − αb

1 + b
mr

for FD. (5.67b)
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Solving Eq.(5.67) with references to the boundary and continuity condi-
tions yields

⎧⎪⎪⎨
⎪⎪⎩

mr = c1r
−(1+b) +mp − pr3

3a(4 + b)

mθ = −c1br
−(1+b) +mp +

bpr3

3a(4 + b)

for EF, (5.68a)

⎧⎪⎪⎨
⎪⎪⎩

mr = c2r
− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp − (1 + b)pr3

3α(4 + 4b − bα)

mθ = c2
αb

1 + b
r− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp − αbpr3

3α(4 + 3b)

for FG.

(5.68b)

The two coefficients c1 and c2 are derived as

c1 = 0, (5.69a)

c2 =
[
− (1 + b)mp

1 + (1− α)b
+

(1 + b)pa2

3(4 + 4b − bα)

]
α

1+(1−α)b
1+b . (5.69b)

The limit loading is

p =
3α(4 + b)αmp

(1 + α+ b)r30
, (5.70)

and r0 satisfies

α(4 + b)[1 + (1− α)b]
(

a

r0

)3(
a

r0

) 1+(1−α)b
1+b

− (4 + 4b − bα)(1 + α

+ b)
(

a

r0

) 1+(1−α)b
1+b

+ 3αb(1 + α+ b) = 0

(5.71)

Case (2)
For a linear pressure load as shown in Fig.5.24, when the moment of point F
is at point B in Fig.5.16, the equilibrium equations of lines EF and FD are

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pr2

2
+

p

3a
r3

mθ = (1 + b)mp − bmr

for EF, (5.72a)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + (1− α)b

1 + b
mr − pr2

2
+

p

3a
r3

mθ = (1 + b)mp − αb

1 + b
mr

for FD. (5.72b)
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Fig. 5.24. Linearly distributed loading (Case (2))

Eq.(5.72) can be solved with application of the boundary and continuity
conditions as

⎧⎪⎪⎨
⎪⎪⎩

mr = c3r
−(1+b) +mp − pr2

2(3 + b)
+

pr3

3a(4 + b)

mθ = −c1br
−(1+b) +mp +

bpr2

2(3 + b)
− bpr3

3a(4 + b)

for EF, (5.73a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mr = c4r
− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp

− (1 + b)pr2

2(3 + 3b − bα)
+

(1 + b)pr3

3α(4 + 4b − bα)

mθ = c4
αb

1 + b
r− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp

+
αbpr2

2(3 + 3b − bα)
− αbpr3

3α(4 + 3b)

for FD. (5.73b)

The two coefficients c3 and c4 are derived as

c3 = 0, (5.74a)

c4 =
[

(1 + b)(6 + 6b − bα)pa2

6(3 + 3b − bα)(4 + 4b − bα)
− (1 + b)
1 + (1− α)b

mp

]
α

1
1+b . (5.74b)

The limit loading is obtained as

p =
6αa(3 + b)(4 + b)mp

(1 + α+ b)[3a(4 + b)r20 − 2(3 + b)r30]
, (5.75)

and r0 satisfies
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6αab(1 + α+ b)(4 + b)(4 + b − bα)r20 − (1 + α+ b)(3 + 3b

− bα)(4 + 4b − bα)(3a2(4 + b)r20 − 2(3 + b)r30)
(

a

r0

) (1+(1−α)b)
1+b

− 6αb(1 + α+ b)(3 + 3b − bα)(3 + b)r30 = 0.

(5.76)

From Eqs.(5.70) and (5.75), the relationship of the plastic limit load and
the unified strength theory parameters b and α can be determined as shown in
Figs.5.25 and 5.26. It is seen that the plastic limit load is significantly affected
by the unified yield criterion parameters b and α. When α is given, the plastic
limit load increases with the increase in b. When b = 0, which corresponds
to the Mohr-Coulomb criterion, the plastic limit load is the minimum, and
when b = 1 corresponding to the twin-shear strength criterion, the plastic
limit load gives the maximum value. For any specific value of parameter b,
the plastic limit load increases with the increase in α. When α = 1, it gives
the same results as those based on the unified yield criterion.

Fig. 5.25. Relation curves of limit loading and unified strength theory parameters
b, α (Case (1))

It is seen from Fig.5.25 and Fig.5.26 that the unified strength theory pa-
rameters b and the ratio of material strength in tension and in compression
α have a significant influence on the limit bearing capacity of a simply sup-
ported circular plate. The unified strength theory provides us with an effective
approach for studying these effects and for raising the bearing capacities of
engineering structures more than the Tresca criterion and the Mohr-Coulomb
criterion (b = 0). So, there is a considerable economical benefit in using the
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Fig. 5.26. Relation curves of limit loading and unified strength theory parameters
b, α (Case (2))

new results if the strength of material is adapted to the new yield criterion
(b > 0). This brings a tremendous energy saving and reduction in pollution.

5.5 Summary

The unified solution to the plastic limit load for simply supported circular
plates made of either non-SD materials or SD materials under various loading
conditions are derived. They are obtained by applying the unified strength
theory in the plane stress state. The unified solution gives a series of new
results, and establishes a relationship between various results and encom-
passes solutions using the Tresca criterion, the maximum stress criterion, the
Huber-von Mises criterion, the Mohr-Coulomb criterion and the twin-shear
criterion as special cases. The plastic limit load of a simply supported cir-
cular plate under a uniformly distributed load is p = (6 + 2b)/(2 + b)r20 for
non-SD materials, p = α(6 + 2b)/((1 + b + α)r20) for SD materials, where p
is the normalized plastic limit load, and p = Pa2/Mp. A series of solutions
for various materials can be deduced from the unified solution. For an easier
understanding of the current results, some specific solutions are given below:

Non-SD materials:
p = 6.0, it follows the Tresca criterion (or the unified yield criterion with

b=0);
p = 6.51, it follows the Huber-von Mises criterion (Hopkins-Wang 1954,

numerical integrated method);
p = 6.46, it follows the Huber-von Mises criterion (Sokolovsky’s solution,

1955);
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p = 6.49, it follows the unified yield criterion with b = 1/2 (Ma and He,
1994; Ma et al., 1995);

p = 6.84, it satisfies the twin-shear yield criterion (Li, 1988; Huang and
Zeng, 1989) or the unified yield criterion with b = 1 (Ma and He, 1994; Ma
et al, 1995).

SD materials:
p = 6α/((1+α)r20) for SD materials satisfying the Mohr-Coulomb criterion

(b = 0);
p = 14α/((3+2α)r20) for SD materials satisfying a new criterion (b = 1/2);
p = 9α/((2 + α)r20) for SD materials satisfying the twin-shear strength

criterion (b = 1).
A series of research exercises were carried out to show the effects of

strength theory on the results of elasto-plastic analysis and the load-bearing
capacities of a simply supported circular plate for non-SD materials and SD
materials. The choice of strength theory has a significant influence on these
results. The unified yield criterion and unified strength theory provide us
with an effective approach for studying these effects. The unified plastic limit
of a clamped circular plate for non-SD materials and SD materials will be
described in Chapter 6.

5.6 Problems

Problem 5.1 Determine the limit bearing capacity of a simply supported
circular plate by using of the Tresca criterion.

Problem 5.2 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 0).

Problem 5.3 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 0.5).

Problem 5.4 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 0.8).

Problem 5.5 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 1.0).

Problem 5.6 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 0).

Problem 5.7 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 0.5).

Problem 5.8 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 0.8).

Problem 5.9 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 1.0).

Problem 5.10 A simply supported circular plate under uniform annular
load is shown in Fig.5.27. The relationship of limit load q and b for a
special case is shown in Fig.5.28. Please derive the unified solution for
the plate. The referenced figure similar to Fig.5.8 is shown in Fig.5.29.
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Fig. 5.27.

Fig. 5.28.

Fig. 5.29.

Problem 5.11 A simply supported circular plate is under linear and uni-
form load, as shown in Fig.5.30. Please derive the unified solution for the
plate.

Fig. 5.30.

Problem 5.12 A simply supported circular plate is under linear and uni-
form load as shown in Fig.5.31. Please derive the unified solution for the
plate.
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Fig. 5.31.
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