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Theorems of Limit Analysis

4.1 Introduction

To understand plastic limit analysis it is helpful to review the behavior of an
elastic-plastic solid or structure subjected to mechanical loading. An inelastic
solid will yield at a specific magnitude of the applied load. The corresponding
load is called the elastic limit of the structure. If the external load exceeds
the elastic limit, a plastic region starts to spread through the structure. With
further expansion of the yield area, the displacement of the structure progres-
sively increases. At another critical load, the plastic region becomes so large
as not to resist the unconstrained plastic flow in the solid. The load can-
not be increased beyond this point. The collapse load is called the plastic
limit of the structure. Plastic limit analysis involves an associated flow rule
of the adopted yield criterion. The plastic limit load is also registered as the
load-bearing capacity of the structure.

Limit analysis and design of steel structures have been well explored
(Symonds and Neal, 1951; Neal, 1956; Hodge, 1959; 1963; Baker and Heyman,
1969; Heyman, 1971; Save and Massonnet, 1972; Horne, 1979; Zyczkowski,
1981; Mrazik et al., 1987; Save et al., 1997). Exploitation of the strength re-
serve of the load-bearing capacity yields a design of structures with increased
admissible loads or decreased cross-sections, which results in a reduction in
the amounts of materials and costs.

To save material, one of the choices is to transfer part of the load from
the most highly stressed cross-sections to those that are understressed in the
elastic state. The number of fully exploited cross-sections can be increased by
the redistribution of the internal forces. The load-bearing capacity of struc-
tures may be more accurately estimated by choosing an appropriate strength
theory or yield criterion.

In plastic limit analysis, direct integration of the equilibrium equations
governed by certain yield condition leads to the load-bearing capacity for spe-
cific boundary conditions. The associated flow rule is often used to determine
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the velocity field. Only in some special cases is it possible to derive closed
form solutions. But in general it is always feasible to derive approximations
through numerical integration of the basic equations.

Determination of the load-bearing capacity of a structure is the simplest
when the yield curve is polygonal in shape, as is the case for the Tresca
yield criterion and the twin-shear yield criterion. The reason is that only
linear equations need to be solved when these kinds of criteria are applied.
For other criteria nonlinear equations are involved. Numerical techniques are
more appropriate. Thus, the replacement of the Tresca yield conditions by the
Huber-von Mises criterion usually renders the analytical solution impractical.
However, the unified yield criterion and the unified strength criterion have
the advantages of the piecewise linear form, and uniform solutions of the load
bearing capacity with respect to different yield conditions can be derived for
some simple structures, such as the axial-symmetrical plates, cylinders, tubes
and thick-wall vessels.

Ma and He (1994), Ma et al. (1993; 1994; 1995a; 1995b; 1995c) gave a
unified plastic limit solution to circular plates under uniform loads and par-
tially uniform loads. Ma and Hao (1998) derived a unified solution to simply
supported and clamped circular plates with the Yu’s unified yield criterion.
Further applications of the unified yield criterion to plastic limit analysis of
circular plates under arbitrary loads were reported by Ma et al. (1999). The
unified solutions of the limit speed of the rotating disc and cylinder using the
unified yield criterion were given by Ma et al. (2001).

The unified plastic limit solution to circular plates under uniform loads
and partially uniform loads using the Yu unified strength theory for SD ma-
terials was presented by Wei and Yu (2001; 2002), Wang and Yu (2002).

A general formulation of limit design theorems for perfectly plastic mate-
rials was given by Gvozdev (1938; 1960). However his work was not known in
the Western world until the late 1950s, and before that a very similar theory
had been developed by Prager at Brown University (Drucker et al., 1952;
Prager, 1947).

One of the most important developments in plastic theory is the upper
and lower bound theorems. The contents of these theorems were known by
intuition long before Gvozdev’s and Prager’s school works. However, a com-
plete and precise formulation was given by Gvozdev, Drucker and Greenberg.
And Prager’s formulation has been proved very valuable. These important
principles were also stated by Prager (1947), Hill (1950), Mendelson (1968),
Kachanov (1971), Save and Masonnet (1972), Martin (1975), Chen (1975),
Zyczkowski (1981), and Nielsen (1999).

The early applications of plasticity to structural concrete were mainly for
those reinforced concrete structures whose strength was governed by rein-
forcement. For such structures a plastic limit design has been standardized.
Examples are the yield hinge method for beams and frames (Baker and Hey-
man, 1969) and the yield line theory for slabs.
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The theorems of limit analysis were first presented by Gvozdev in 1938 and
independently proved by Hill in 1950 for rigid-perfectly-plastic materials and
by Drucker et al. in 1952 for elastic-perfectly-plastic materials. The general
forms of the theorems of limit analysis are described in the following sections.

4.2 Perfectly Plastic Solid

A perfectly-plastic solid refers to the material undergoing unlimited plastic
deformation under a constant yield stress σY . Fig.4.1 schematically shows
the difference among elastic, perfectly-plastic (ideal plastic), hard and soft
behavior of material. The value of σY is different for different materials,
and even for the same material in different environmental conditions. In the
following context, strains and strain rates refer to the plastic quantities unless
it is explicitly stated otherwise.

Fig. 4.1. Behavior of elastic, strain hardening, and perfect-plastic materials

At the incipience of plastic flow, it is assumed that strains are very
small. Hence strains and displacement are related through Eqs.(2.19) and
(2.20), whereas strain rates are derived from displacement rates (or veloci-
ties) through Eqs.(2.19) and (2.20).

4.3 Power of Dissipation

At the incipience of plastic flow for a specific point in the stress space, where
the stress state is described by (σx, σy, σz, τxy, τyz, τxz), and the strain
rate by (ε̇x, ε̇y, ε̇z, γ̇xy, γ̇yz, γ̇xy), the power of the stress per unit volume of
material is

d = σxε̇x + σy ε̇y + σz ε̇z + τxyγ̇xy + τyz γ̇yz + τxz γ̇xz. (4.1)
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For purely plastic strains this power is dissipated as heat during plas-
tic flow. Therefore, it is called “power of dissipation”, which is essentially
positive.

Eq.(4.1) can be put into vector form as

d = {σ}T{ε̇}. (4.2)

If elastic strain rates are neglected so that {ε̇} represents the plastic strain
rate, the scalar product in Eq.(4.2) is the specific rate of energy dissipation.

The yield surface has the expression

σR(σx, · · · , τxy, · · · )− σy = 0. (4.3)

Any stress state at the yield limit is represented by a stress point on this
surface. For perfectly plastic materials, σR depends on only the stress state
instead of the strain state because these materials do not exhibit workhard-
ening. The yield surface is therefore a fixed surface in the six-dimensional
space.

The yield surface can be represented by the equations of σR(σx, σy, σz,
τxy, τyz, τyz)=σY , where σR(σx, σy, σz, τxy, τyz, τyz) is a potential function
for the strain rates because normality of {ε̇} to the surface at the stress point
P gives

ε̇x = λ
∂σR

∂σx
, · · ·, γxy = λ

∂σR

∂σxy
, · · ·, (x, y, z), (4.4)

where λ is a positive scalar factor. When generalized to vertices and flats,
Eq.(4.4) is also called the plastic potential flow law.

4.4 Lower-bound Theorem

If a stress distribution balances the applied load, and is below yield or at
yield throughout the structure, the structure will not collapse or will just
be at the point of collapse. This gives a lower bound of the limit load and
is called the lower bound theorem. The maximum lower bound is the limit
load.

We can define a statically admissible stress field as being in internal equi-
librium when in balance with the external load λp, and not exceeding the
yield limit anywhere. A multiplier λ is used to define the load magnitude
acting on the structure. The multiplier λ corresponding to a statically ad-
missible stress field is called a statically admissible multiplier. The lower
bound theorem can be stated by saying that the limit load factor λ0 is the
largest statically admissible multiplier λ−, i.e.,

λ− � λ0. (4.5)
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4.5 Upper-bound Theorem

The structure will collapse if there is any compatible pattern of plastic de-
formation for which the rate of the external forces at work is equal to or
exceeds the rate of internal dissipation. It gives the upper bound of the limit
or collapse load, and thus is called the upper bound theorem. The minimum
upper bound is the limit load.

The upper bound theorem can be stated in view of the admissible multi-
plier as follows: the limit load factor λ0 is the smallest kinematically admis-
sible multiplier λ+, i.e.,

λ+ � λ0. (4.6)

The above theorems define the upper and lower bounds for the limit load.
They can be summarized as

λ− � λ0 � λ+ . (4.7)

4.6 Fundamental Limit Theorems

When considering a structure which is subjected to a system of loads that
start from zero and increase quasi-statically and proportionally, the term
“quasi-static” indicates that the loading process is sufficiently slow for all
dynamic effects to be disregarded. The term “proportionally” implies that
the ratios of the stresses at the same locations of any two different loads are
constant throughout the structure. A specific type of loading is determined
by the loading location, the direction, and the ratios of stresses at different
locations. Choosing one of the loads, we use its magnitude P as a measure
for the loading intensity. The variable P is then called the loading parameter.

For beams and frames the transition from a purely elastic region through
restricted plastic deformation to unrestricted plastic flow has been extensively
studied. For complex structures however it is not straightforward. Emphasis
has been put on the direct determination of the limit state in which the
plastic deformation in the plastic zones is no longer restricted by the adjacent
non-plastic zones and the structure begins to flow under constant loads. The
intensity of loading for this limit state is called the limit load, which is usually
denoted as Pl.

Limit analysis of a structure is concerned with the limit states of struc-
tures under loads. The incipience of the limit state of unrestrained plastic
flow is characterized by two phenomena:

a) The stresses are in equilibrium state with the applied loads P , and
satisfy the yield condition σR= σY all over the domain. Such a stress field is
called statically admissible.

b) The flow mechanism satisfies the kinematical boundary conditions, and
for energy balance the power of the applied loads P is equal to the power
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dissipated in the plastic flow. Such a flow mechanism is called kinematically
admissible.

For a given type of loading there may be numerous statically admissible
stress fields. Each of the fields corresponds to a certain intensity of loading,
which is denoted as P−. Similarly, for a given kinematically admissible mech-
anism and a given type of loading, an intensity of loading P+ can be defined
in such a manner that the power of the loads at this intensity of loading is
equal to the power of dissipation in the yield mechanism.

The fundamental theorems for limit analysis can then be stated as follows:
a) Static (or lower bound) theorem: the limit load Pl is the largest of all

loads P− corresponding to statically admissible stress fields.
b) Kinematical (or upper bound) theorem: the limit load Pl is the smallest

of all loads P+ corresponding to kinematically admissible mechanisms.

4.7 Important Remarks

4.7.1 Exact Value of the Limit Load (Complete Solution)

Assuming that a statically admissible stress field and a kinematically admissi-
ble mechanism that correspond to the same load P have been identified, there
are P � Pl and P � Pl according to the aforementioned two fundamental
theorems. Hence, P = Pl is the exact limit load. It very often happens that it
is possible to associate a statically admissible stress field and a kinematically
admissible mechanism by the plastic potential flow law. The work equation
defining P+ can then be regarded as a virtual work equation expressing the
equilibrium of the associated stress field. Consequently P+ = P−, and denot-
ing this common value as P , we have P = Pl.

A combined theorem is thus derived when it is possible to associate a
statically admissible stress field and a kinematically admissible mechanism
by the plastic potential flow law and the load P corresponding simultaneously
to both fields is the exact limit load Pl.

The two fields of above form are called a complete solution of the limit
analysis of a structure. For practical application, one usually starts from a
mechanism or from a statically admissible stress field and then searches for
the other field.

4.7.2 Elastic-plastic and Rigid-plastic Bodies

With the elastic-plastic idealization, the limit state matches the incipient
unrestrained plastic flow. For an example of a relevant displacement δ versus
the applied load P (Fig.4.2 (a)), the first part is a ray OA (elastic range), the
second part a curve AB (elastic-plastic range, restricted plastic flow) followed
by the part parallel to the axis, which indicates unrestrained plastic flow.
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With the rigid-plastic idealization, all deformations up to the onset of
unrestrained plastic flow at the limit load Pl, sometimes also called the yield-
point load, vanish (Fig.4.2 (b)).

Fig. 4.2. Elasto-plastic (a) and rigid-plastic (b) idealization cases

On the other hand, the fundamental theorems of limit analysis are iden-
tical for both idealizations. They are based exclusively on the concepts of
statically admissible stress fields and kinematically admissible plastic strain
rate fields, irrespective of the elastic or rigid nature of the material before
yielding. Thus the lower bound P−, the upper bound P+, and the complete
solutions are valid for both idealizations.

4.7.3 Load-bearing Capacity

To derive the load-bearing capacity of a structure it requires:
a) an equilibrium stress field satisfying σR � σY ;
b) a field of plastic strains at impending unrestrained plastic flow.
From the limit analysis point of view, the stress field is statically admis-

sible. The strain field specifies a kinematically admissible mechanism that
corresponds to the stress field by the plastic potential flow law. Consequently,
a “load-bearing capacity” determined by the deformation theory is the exact
limit load for limit analysis.

4.7.4 Uniqueness

The limit load for proportional loading Pl is unique, since it simultaneously
matches a statically admissible stress field ({σ}) and a kinematically admis-
sible strain rate field ({ε̇}). If there exist several limit loads, the fundamental
theorems indicate that P ∗ must be equal to any one of them. Hence Pl is
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unique and coincides with P ∗.
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