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Unified Solution of Shakedown Limit for
Circular Plate

16.1 Introduction

The static shakedown theorem (Melan’s theorem, the first shakedown theo-
rem, or the lower bound shakedown theorem, Melan, 1936) and the dynamic
shakedown theorem (Koiter’s theorem, the second shakedown theorem, or the
upper bound shakedown theorem, Koiter, 1953; 1956; 1960) and the unified
solution of shakedown limit for a thick-walled cylinder have been described
in Chapter 15. In this chapter we will deal with the shakedown analysis for
a simply supported circular plate and a clamped circular plate. The unified
solutions are given for non-SD materials.

Circular plates are used widely in many branches of engineering. They
are often subjected to repeated transverse load. Hence it is necessary to con-
duct the shakedown analysis in order to determine the shakedown load of the
plate. Under the varying load the circular plate will deform in elastic and
plastic states. The elasto-plastic response of a circular plate to varying loads
is a complicated process (Symonds, 1951; König, 1987). The previous shake-
down analysis is based on Koiter’s upper bound shakedown theorem with the
Tresca and Huber-von-Mises yield criteria (Kachanov, 1971; Gokhfeld and
Cherniavski, 1980; König, 1978; 1987; Pham, 1996; 1997; 2003). By using
numerical methods and based on the static shakedown theorem, the shake-
down analysis of perfectly plastic, different kinematic hardening materials is
carried out by Stein et al. (1993), Polizzotto (1982; 1993), Ponter and Carter
(1997), Maier et al. (2000; 2001).

As discussed by Pham (1997), the shakedown limit will depend on the
different yield criteria. From the previous studies we know that the limit
load analysis should use different yield criterion for different materials. The
Yu unified yield criterion (UYC) will be used in this chapter to investigate
the shakedown limit when the circular plates suffer from quasi-static recycle
loadings. If the load does not exceed the critical value, the circular plate
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will behave plastically at first and then elastically and the structure will
shakedown due to the repeated loading.

The elastic, plastic and shakedown analysis of a circular plate, which
is simply supported or clamped at the edges, will be carried out in this
chapter. By choosing proper values for unified yield criterion parameter b, the
solution can be applicable to plates made of different materials. In addition,
by applying the solution based on the unified yield criterion, the effects of
the yield criterion on the shakedown load of the plate are evaluated.

16.2 Unified Solution of Shakedown Limit for Simply
Supported Circular Plate

A circular plate with radius a and thickness h is subjected to a uniformly
distributed transverse load P , as shown in Fig.16.1, the only non-zero stresses
are σr, σθ and τrz = τzr in the plate. The generalized stresses can be expressed
as

Mr =
∫ h/2

−h/2
σrzdz, Mθ =

∫ h/2

−h/2
σθzdz,

Qrz =
∫ h/2

−h/2
τrzzdz, M0 =

∫ h/2

−h/2
σ0zdz = σ0h

2/4,
(16.1)

where Mr, Mθ and M0 are the radial, tangential and ultimate (fully plastic)
bending moments, respectively, and Qrz is the transverse shear force which
is assumed not to influence the plastic yielding.

Defining dimensionless variables, r = R/a, mr=Mr/M0, mθ=Mθ/M0 and
p=Pa2/M0, the equilibrium equation of a circular plate subjected to a con-
stant uniform load is

d(rmr)
dr

− mθ = −pr2

2
. (16.2)

When subjected to a uniformly distributed transverse load P , the plate
will deform and be in an elastic state, elastic-plastic state and a completely
plastic state.

16.2.1 Elastic State

The deformation and the stress state of the plate are in an elastic state when
the load p is not big. The dimensionless radial and tangential bending mo-
ments mr andmθ for a simply supported plate can be written as (Timoshenko
and Woinowsky-Krieger, 1959)

mr =
3 + ν

16
p(1− r2), mθ =

p

16
[
(3 + ν)− (1 + 3ν)r2

]
. (16.3)
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The elastic limit load pe can be calculated from Eq.(16.3),

pe =
16

3 + ν
. (16.4)

16.2.2 Elastic-plastic State

The center of the plate (r = 0) will firstly go into yield state when p > pe.
The plate is in plastic state ranges from 0 to re and the plate is in elastic
state ranges from re to 1. In the plastic zone, if the UYC is chosen as the
yield function, the expression of UYC can be written as a piecewise linear
function

mθ = aimr + bi (i = 1, ..., 12), (16.5)

where the values of parameters ai and bi are shown in Table 5.1.
Substituting Eq.(16.5) into Eq.(16.2) and then integrating Eq.(16.2), mr

falling on the segments Li (the lines shown in Fig.5.3) is obtained as follows:

mr =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai (i = 1, ..., 5), (16.6)

where ci are the constants and can be derived from the continuous and bound-
ary conditions. For a simply supported circular plate going into a plastic
state, the bending moments at every point in the plate are located on the
sides AB and BC for the normality requirement of plasticity (Ma et al.,
1999). Therefore, i should be 1 and 2 in the plastic zone when the plate is in
an elastic-plastic state (Fig.16.1).

In elastic zone, the bending moments can be expressed as (Timoshenko
and Woinowsky-Krieger, 1959)

mr =
B

r2
− C − 3 + ν

16
pr2, mθ = −B

r2
− C − 1 + 3ν

16
pr2, (16.7)

where B and C are the constants. They can be derived from the continuous
and boundary conditions.

The boundary and continuous conditions are:
(a) mr (r = 0) = mθ (r = 0) = 1;
(b) mr (r = r1) and mθ (r = r1) are continuous, and mr (r = r1) = (1 +

b)/(2+b), where r1 is the non-dimensional radius of a ring where the moments
correspond to point B in Fig.5.2 where UYC is expressed by generalized
stresses;
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Fig. 16.1. Elastic-plastic state for a simply supported circular plate

(c) mr (r = r2) and mθ (r = r2) are continuous, where r2 is the non-
dimensional radius of plastic zone;

(d) mr (r = 1) = 0.
The integration coefficients ci (i = 1, 2) can be derived from Eqs.(16.5)

and (16.6) and the boundary and continuous conditions as follows:

c1 = 0, c2 =
2(1 + b)
3 + 2b

r
1

1+b

1 , (16.8)

and the relation between load p and r1 is

p =
6 + 2b
2 + b

1
r21

. (16.9)

The relations between B, C, r2 and r1 are obtained from Eq.(16.5) to
Eq.(16.7) and the boundary and continuous conditions (c) and (d) as follows:

B

r22
− C = (1 + b) +

(
3 + ν

8
· 3 + b

1 + b
− 3 + b

2 + b
· 1 + b

3 + 2b

) (
r2
r1

)2

− 2b(1 + b)
3 + 2b

(
r1
r2

) 1
1+b

,

(16.10)

B − C =
3 + ν

8
· 3 + b

2 + b

1
r21

, (16.11)

B

r22
(1 + 2b) + C +

[
(1 + 3ν)(1 + b)(3 + b)

8(2 + b)
− (3 + ν)b(3 + b)

8(1 + b)

](
r2
r1

)2
+ (1 + b) = 0.

(16.12)

The constants B, C, and plastic zones r2 and r1 can be derived from
Eq.(16.8) to Eq.(16.11). Then the moment field in elastic and plastic zones
can be obtained for a given load p.
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16.2.3 Completely Plastic State

If the plate goes completely into a plastic state, r2 will equal 1, and the plastic
limit load pp derived from Eq.(16.9) is

pp =
6 + 2b
2 + b

1
r21

, (16.13)

where r1 satisfies the following equation:

−(3 + 2b)(2 + b) + (3 + b)r−2
1 + 2b(2 + b)r1/(1+b)

1 = 0. (16.14)

16.2.4 Shakedown Analysis

If the circular plate is unloaded from the initial elastic-plastic state, i.e. p →
0, it will be left with residual stresses. Here we assume that the residual
stresses will not produce inverse yielding. In that case the unloading process
is purely elastic. So from the elastic solution of the circular plates, we obtain
the changes in mr and mθ as

Δmr = − p

16
(3 + ν)(1− r2), Δmθ = − p

16
[
(3 + ν) + r2(1 + 3ν)

]
. (16.15)

The residual stresses in the plate are

mr
r =

bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai − p

16
(3 + ν)(1− r2),

mr
θ = aimr + bi − p

16
[(3 + ν) + r2(1 + 3ν)], (i = 1, 2).

(16.16)

Observing the residual stress, it can be seen that the reverse yielding
would begin first at the center of the plate, that is,

mr
r|r=0 = mr

θ|r=0 = −1. (16.17)

Eqs.(16.16) and (16.17) lead to the minimum uniformly distributed trans-
verse load ps for reverse yielding to occur in the plate

ps =
32

1 + ν
= 2pe. (16.18)

Evidently, as long as the applied transverse load p does not exceed ps, the
residual stresses will not result in reverse plastic deformation in the circular
plate.

When the transverse load p, not exceeding the original value, acts on the
circular plate and is then removed, the loading-unloading process will not
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result in a new plastic deformation in the plate. From the above analysis
it can been found that if a simply supported circular plate is subjected to
cyclic pressure that ranges from 0 → p → 0 → p → 0 → · · ·, and p does not
exceed pp (for the first loading from 0 → p) and 2pe (for the other loading
from p → 0 → p → 0 → · · ·), yielding will not occur in the circular plate
during the loading-unloading process and the circular plate is safe. When this
happens the circular plate is said to be in shakedown. Hence the shakedown
limit for a circular plate subjected to a load p is

ps = min{2pe, pp}. (16.19)

16.2.5 Discussion

There is always 2pe > pp in Eq.(16.19) for ν and parameter b. So ps is equal to
pp or (6+2b)/(2+b)/r21, where r1 is satisfied with Eq.(16.14). The parameter
b shows the effect of intermediate principal stress and the difference of various
yield criteria. The influences of parameter b on the shakedown limit ps and
r1 are analyzed. Figs.16.2 and 16.3 indicate that the unified yield criterion
parameter b will influence both ps and r1. The shakedown limit ps is the
smallest for b=0 (corresponding to the Tresca criterion) and is the biggest
for b=1.0 (corresponding to the twin-shear yield criterion). The difference of
ps for these two cases of b=0 and b=1.0 is about 14%. Fig.16.3 shows that
the radius of mθmax decreases with the increase in the unified yield criterion
parameter b.

Fig. 16.2. Unified solution of shakedown limit ps for simply supported circular
plate



350 16 Unified Solution of Shakedown Limit for Circular Plate

Fig. 16.3. Effect of the unified strength theory parameter b on the radius of mθmax

16.3 Unified Solution of Shakedown Limit for Clamped
Circular Plate

16.3.1 Elastic State

In an elastic state the moment fields of a clamped circular plate satisfy mr=
mθ at the center of the plate (r =0), mθ = νmr at the clamped edge and
mθ > mr at other points on the plate. The dimensionless radial and tan-
gential bending moments mr and mθ for a clamped plate can be written as
(Timoshenko and Woinowsky-Krieger, 1959)

mr =
p

16
[(1 + ν)− r2(3 + ν)], mθ =

p

16
[(1 + ν)− r2(1 + 3ν)], (16.20)

the elastic limit load pe can be calculated from Eq.(16.20),

pe =
16

1 + ν
. (16.21)

16.3.2 Elastic-plastic State

When the plate is in an elastic-plastic state, the boundary and continuous
conditions are

(a) mr (r = 0) = mθ (r = 0) = 1;
(b) mr (r = rj) are continuous, where j = 1, ..., 4;
(c) mr (r = re) and mθ (r = re) are continuous, where re is the dimen-

sionless radius of plastic zone and rj < re;
(d) mr = mθ/ν at r = 1.
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In the plastic zone (0 � r � re) the generalized stresses satisfy the UYC
and have the same form of Eq.(16.6). The moment fields of the entire clamped
plate lie on the five sides corresponding to AB, BC, CD, DE and EF (Ma
et al., 1999).

In the elastic zone (re � r � 1) the generalized stresses can be expressed
as the same form of Eq.(16.7), where r ranges from re to 1 and the constants
B and C can be derived from the continuous and boundary conditions (c)
and (d).

16.3.3 Completely Plastic State

When the plate is in a completely plastic state, there is re = 1 and mr( r = 1)
= mθ/ν = −(1 + b)/(1 + b − νb). The load-carrying capacity of a clamped
plate in this state has been obtained by Ma et al. (1999),

pp =
6 + 2b
2 + b

1
r21

, (16.22)

where r1 can be solved from the boundary and continuous conditions.

16.3.4 Shakedown Analysis

Using the similar analyzing method, the residual stresses can be obtained
when the plate is unloaded from the initial load of the elasto-plastic state to
zero, i.e. p → 0.

mr
r =

bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai − p

16
[(1 + ν)− r2(3 + ν)],

mr
θ = aimr + bi − p

16
[
(1 + ν)− r2(1 + 3ν)

]
, (i = 1, ..., 5).

(16.23)

Observing the residual stress, it can be seen that the reverse yielding
would begin first at the center of the plate, that is,

mr
r|r=0 = mr

θ|r=0 = −1. (16.24)

Eqs.(16.23) and (16.24) lead to the minimum uniformly distributed trans-
verse load ps for reverse yielding to occur in the plate

ps =
32

1 + ν
= 2pe. (16.25)

So the shakedown limit for a clamped circular plate subjected to a load
p is

ps = min{2pe, pp}. (16.26)
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16.3.5 Discussion

There is always 2pe > pp in Eq.(16.26) for every ν and parameter b. So
ps is equal to pp or (6 + 2b)/(2 + b)/r21. When b = 0, the UYC becomes
the Tresca criterion and the load-bearing capacity of the circular plate with
respect to the Tresca criterion is 11.258 in the case of ν=0.25 which is in
good agreement with the analyzing result ps=11.26 (ν=0.25) in the reference
(Pham, 1997) with error at approximately 0.018%. In the same case of the
Poisson’s ratio, the shakedown solution using UYC is 12.23 when b=0.5 (near
to the von-Mises criterion), while the shakedown result using Mises material
(Pham, 1997) is 12.23 with M0 being substituted by 2/30.5M0. The difference
between these two results is only about 7.3%.

The relations between the unified strength theory parameter b with the
shakedown limit ps and the radius r1 of mθmax are illustrated in Fig.16.4
and 16.5. Both the figures show that the parameter b affects the values of
shakedown limit ps and the radius r1. It can be seen in Fig.16.4 that for a
given kind of Poisson’s ratio, the shakedown limit ps is the smallest in the
case of b=0, and ps is the biggest in the case of b=1. For three kinds of
Poisson’s ratio, the ps-b curve increases most slowly when ν=0.

Fig. 16.4. Effect of the unified strength theory parameter b on shakedown limit ps

When b=1, the difference of the shakedown limit ps for the case of ν=0
and ν=0.5 is about 1.631. For a given Poisson’s ratio in Fig.16.5, the radius
of mθmax decreases with an increase in the unified strength theory parameter
b. For a given parameter b, the shakedown limit ps for ν=0.5 is the biggest,
while ps for ν=0 is the smallest.
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Fig. 16.5. Effect of the unified strength theory parameter b on the radius of mθmax

16.4 Comparison between Shakedown Solution and
Limit Results

Based on the unified yield criterion, a shakedown analysis of a circular plate
under a uniformly distributed transverse load is carried out and the unified
solution of a shakedown load for a circular plate is derived in this chapter.
The solution encompasses the existing classical solution as a special case and
a series of new results.

From the above analysis it is noted from Eqs.(16.19) and (16.26) that the
shakedown solutions for simply supported and clamped plates are almost the
same, that is, both are the minimum of the twice elastic limit load and the
plastic limit load,

ps = min{2pe, pp}.
Because the unified strength parameter b ranges from 0 to 1 and the

Poisson’s ratio is from 0 to 0.5 no matter what the value of parameter
b and the Poisson’s ratio, there is always 2pe > pp. Therefore the shake-
down solution ps of a circular plate is equal to its plastic limit load pp; i.e.
ps=pp=(6+2b)/(2+b)/r21, which is related to the parameter b for the simply
supported circular plate and both the parameter b and the Poisson’s ratio for
the clamped circular plate, as shown in Figs.16.2 and 16.4.

It is also found that the special solutions for shakedown analysis of cir-
cular plates when b=0 are equal to the plastic limit load of the Tresca cri-
terion; i.e. ps=6.0 for the simply supported circular plate and ps=11.258 for
the clamped circular plate. Meanwhile, when b=0 the shakedown solution of
clamped circular plate is the same as the result in the references. Besides
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the shakedown solution for b=0, the other solutions for different parameter
b when it ranges from b > 0 to b=1 can also be calculated, as can be seen
in Fig.16.2 and Fig.16.4. The following table shows the shakedown limit load
for both the simply supported and clamped plates when the unified yield
criterion parameter b changes.

Table 16.1. Shakedown limit load pp with the changes in parameter b

b 0 0.3 0.5 0.6 0.8 1.0

Simply supported plate 6.0 6.31 6.49 6.57 6.71 6.8

Clamped plate (ν=0.25) 11.26 11.9 12.23 12.37 12.63 12.85

16.5 Summary

The unified yield criterion is used to analyze the shakedown limit of a circular
plate. The results are applicable for a wide range of materials and structures.
The shakedown analysis of the circular plate shows the effect of yield criterion
on the plastic limit loads and shakedown loads.

For both a simply supported and a clamped circular plate, the shakedown
limit ps increases with the growth of the unified yield criterion parameter b
and the shakedown limit ps for the simply supported plate is smaller than that
for the clamped plate. When b=0, the analyzed result is in good agreement
with the result in the references. The study also shows that the radius of
mθmax decreases with the growth of the unified yield criterion parameter b.
The shakedown limit ps for the clamped circular plate is influenced by the
Poisson’s ratio, while ps for the simply supported circular plate will not be
affected by the Poisson’s ratio.

By comparison with the limit load, the shakedown solutions ps of the
simply supported and clamped circular plates are both equal to the plastic
limit load. ps of the simply supported circular plate varies only with the
unified yield criterion parameter b, while ps of the clamped circular plate
changes with the unified yield criterion parameter b and the Poisson’s ratio.

16.6 Problems

Problem 16.1 Compare the solutions of limit analysis and shakedown anal-
ysis.

Problem 16.2 Compare the solutions of shakedown analysis of a simply
supported and a clamped circular plate.

Problem 16.3 Determine the shakedown load of a simply supported circu-
lar plate by using the Tresca yield criterion (b=0).
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Problem 16.4 Determine the shakedown load of a clamped circular plate
by using the Tresca yield criterion (b=0).

Problem 16.5 Determine the shakedown load of a simply supported circu-
lar plate by using the twin-shear yield criterion (b=1).

Problem 16.6 Determine the shakedown load of a clamped supported cir-
cular plate by using the twin-shear yield criterion (b=1).

Problem 16.7 Determine the shakedown load of a simply supported circu-
lar plate by using the unified yield criterion with b=0.5.

Problem 16.8 Determine the shakedown load of a clamped circular plate
by using the unified yield criterion with b=0.5.

Problem 16.9 Determine the shakedown load of a simply supported circu-
lar plate by using the unified yield criterion with b=0.8.

Problem 16.10 Determine the shakedown load of a clamped circular plate
by using the unified yield criterion with b=0.8.
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