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Unified Solution of Shakedown Limit for
Thick-walled Cylinder

15.1 Introduction

Correct prediction of the load-bearing capacity of structures is a crucial task
in the analysis and design of engineering structures. The plastic limit load
of structures from limit analysis or slip-line analysis is usually used as an
index of the load-bearing capacity of the structure, subjected to a monotonic
loading. When the loading is a repeated loading, the structures fail at a load
which is lower than the plastic limit load. This is due to gradual deterioration
caused by the alternating plasticity or by the incremental plasticity instead
of sudden collapse.

If the load does not exceed the critical value, the structure subjected to
the repeated loading may behave plastically at first and then elastically. No
further plastic deformation takes place in the structure. The structure shakes
down due to the repeated loading. If the load exceeds the critical value the
structure does not shake down and fails due to the alternating plasticity or
the incremental plasticity. This critical load level is called the shakedown
load. The shakedown load is usually regarded as the load-bearing capacity of
the structure subjected to the repeated loading.

Many engineering structures or components are subjected to mechani-
cal or other loads varying with time. The shakedown condition should be
guaranteed for the safety of such kinds of structures.

Shakedown theory of structures is usually applied for such kinds of prob-
lems. A structure in a non-shakedown or inadaptation condition under vary-
ing loads may fail by one of two failure modes, namely alternating plasticity
or incremental plastic collapse. The structure will shake down if neither of the
failure modes occurs (Symonds, 1951; Hodge, 1954; Kachanov, 1971; Martin,
1975; Zyczkowski, 1981; Chakrabarty, 1987, Mroz et al., 1995).

The concept and methods of shakedown analysis were initially addressed
in the 1930s and developed in the 1950s. The pioneering works of shakedown
include those by Bleich (1932), Melan (1936). Koiter (1956) proved two cru-
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cial shakedown theorems, i.e., the static shakedown theorem (Melan’s theo-
rem, the first shakedown theorem, or the lower bound shakedown theorem),
and the dynamic shakedown theorem (Koiter’s theorem, the second shake-
down theorem, or the upper bound shakedown theorem), which constitute
the fundamentals in the shakedown theory of elasto-plastic structures.

Accordingly, numerous existing methods for shakedown analysis can be
divided into two classes, i.e., the static and the dynamic shakedown analysis
methods. Shakedown theory has become a well-established branch of plastic-
ity theory.

In recent years shakedown analysis of elasto-plastic structures has increas-
ingly attracted attention from engineers due to the requirements of modern
technologies such as in nuclear power plants, chemical industry, the aeronau-
tical and astronautical, electrical and electronic industries. Shakedown theory
has been applied with success in a number of engineering problems such as
the construction of nuclear reactors, highways and railways and employed
as one of the tools for structural design and safety assessment in some de-
sign standards, rules, and regulations. A study of the plastic shakedown of
structures was made by Polizzotto (1993), and of some issues in shakedown
analysis by Maier (2001) and Maier et al. (2000).

Long thick-walled cylinders are very often used as gun barrels and pres-
sure vessels in engineering. They are usually subjected to repeated internal
pressure. It is necessary to conduct shakedown analysis in order to determine
the shakedown load of the cylinder. The solution to shakedown problem of
cylinder is readily available in textbooks of the classical plasticity, and the
analytical solution can be found in some published literature and in the Pres-
sure Vessel Code, such as Cases of ASME Boiler and Pressure Vessel Code.
However, the solution is based on the Tresca yield criterion, and the analyt-
ical solution based on the Huber-von Mises criterion is not readily derivable
in most cases due to the nonlinear expression of the criterion. As we have
discussed, the Tresca yield criterion considers the effects of only the first
and the third principal stresses and ignores the compressive-tensile strength
difference (SD) effect of materials. Thus, this classical solution can only be
applied to the cylinder made of non-SD materials where the intermediate
principal stress effect is negligible. It is of great importance to develop a new
approach to cover the SD effect and the intermediate principal stress effect
for more general applications. The influence of different strengths in tension
and compression for the shakedown of thick-walled cylinders was studied by
Feng and Liu (1995). A series of results were given by Feng et al. (1993-1999).
An elasto-plastic model incorporating the Yu unified strength theory (UST)
was suggested for shakedown analysis of a thick-walled cylinder by Xu and
Yu (2005). A closed-form solution of shakedown load for cylinders will be pre-
sented in this chapter. The solutions involve the two parameters of Yu unified
strength theory m and b and can reflect both the effect of intermediate prin-
cipal stress and the SD effect in a quantitative manner. It is referred to as



15.2 Shakedown Theorem 329

the unified solution including serial solutions. By choosing proper values for
m and b, the solution is applicable to cylinders made of different materials.
In addition, by applying the solution based on Yu unified strength theory,
the effects of SD and the intermediate principal stress on the shakedown load
of the thick-walled cylinder are evaluated.

15.2 Shakedown Theorem

Many engineering structures or components are subjected to mechanical or
other loads varying with time. In many cases only the loading range within
which the loads change can be estimated, while the loading path is unknown.
It is important to guarantee the shakedown condition for the safety of such
kinds of structures.

15.2.1 Static Shakedown Theorem (Melan’s Theorem)

The static or Melan’s shakedown theorem (Melan, 1936; Kachanov, 1971;
Martin, 1975) indicates the necessary condition for the occurrence of shake-
down: there exist time-independent fields of residual stresses σij such that
the sum (σij+ σe

ij) is admissible, where σe
ij are the elastic components of

stresses. It implies that the stress field (σij+ σe
ij) is safe if no arbitrary load-

variation in the prescribed limits causes the yield surface f(σij+ σe
ij) to be

reached, i.e.,

f(σij + σe
ij) < 0. (15.1)

The necessary condition is not obtained if there is no distribution of resid-
ual stresses for which f (σij+ σe

ij)<0, and so shakedown cannot occur.
On the contrary, shakedown occurs if there is a fictitious residual stress

field σij that is independent of time. For any variations of loads within the
prescribed limits, the sum of this field with the stress field σe

ij in a perfectly
elastic body is safe (sufficient condition).

The residual stress field is expediently chosen such that the region of
admissible load variation is the greatest. Melan’s theorem serves as a low
bound of the limit load.

15.2.2 Kinematic Shakedown Theorem (Koiter Theorem)

Koiter’s theorem (1956), also called the kinematic inadaptation theorem, can
be regarded as an extension of the upper bound theorem in limit analysis.
The theorem is framed in terms of an admissible plastic strain rate cycle
ε̇kp

ij (s, t) for 0 < t < T . In view of the principle of virtual work, the statement
of Koiter’s theorem can be interpreted as showing that if the external power
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of any admissible plastic strain rate cycle ε̇kp
ij (s, t) can be found to exceed the

power dissipated in the structure, i.e.,

T∫
0

dt
∫∫
ST

pj u̇
k
jdS >

T∫
0

dt
∫∫
ST

σk
ij ε̇

kp
ij dV , (15.2)

shakedown will not occur, where σk
ij is the stress field associated with ε̇kp

ij (s, t);
u̇k

j is the velocity field for a cycle by the loads pj .
It should be noted that the static shakedown theorem and the kinematic

non-shakedown theorem determine the lower and the upper bounds to the
permissible loading range for the shakedown of a structure.

15.3 Shakedown Analysis for Thick-walled Cylinders

When considering a plane strain thick-walled cylinder under uniform internal
pressure p with internal and external radii of ri and re, respectively, for sim-
plicity it is assumed that the material is incompressible and elastic-perfectly
plastic with negligible Bauschinger effect. If the pressure p is moderate, the
thick-walled cylinder is in an elastic state. The stress field of the cylinder is
given by the Lame solutions,

σr =
r2i p

r2e − r2i
(1− r2e

r2
), (15.3a)

σθ =
r2i p

r2e − r2i
(1 +

r2e
r2
), (15.3b)

σz =
r2i p

r2e − r2i
. (15.3c)

From Eqs.(15.3a), (15.3b), and (15.3c), σθ is the major principal stress,
σz the intermediate principal stress, σr the minor principal stress, and they
satisfy

σz � mσθ + σr

m+ 1
. (15.4)

Therefore, the unified strength theory can be expressed as

σθ − 1
m(1 + b)

(bσz + σr) = σt, (15.5)

where m is the ratio of material strength in compression and in tension, for
non-SD materials m =σc/σt=1.
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From Eq.(15.5) the maximum value for σθ − (bσz + σr)/(m+mb) occurs
on the internal wall of the cylinder. Yielding starts from the internal wall of
the cylinder when the internal pressure reaches

pe =
m(1 + b)(r2e − r2i )

(m+ 1 +mb)r2e + (m − 1)(1 + b)r2i
σt, (15.6)

where pe is the elastic limit pressure of the cylinder.
When the internal pressure exceeds pe, a plastic zone spreads out from

the inner radius. If the plastic zone reaches the radius rp, the cylinder can
be divided into two parts: a plastic zone in the range of ri � r � rp, and a
elastic zone of rp � r � re. Using the Lame solution, the boundary condition
σr = 0 at r = re and at r = rp, the yield condition in Eq.(15.5) is satisfied.
The stress components in the elastic zone are derived as

σr =
r2ppp

r2e − r2p

(
1− r2e

r2

)
, (15.7a)

σθ =
r2ppp

r2e − r2p

(
1 +

r2e
r2

)
, (15.7b)

σz =
r2ppp

r2e − r2p
, (15.7c)

where

pp =
m(1 + b)(r2e − r2p)

(m+ 1 +mb)r2e + (m − 1)(1 + b)r2p
σt

is the associated radial pressure on the elasto-plastic interface under the
internal pressure p.

According to the equilibrium equation

dσr

dr
+

σr − σθ

r
= 0, (15.8)

the yield condition in Eq.(15.5), the boundary condition of σr = p at r = ri,
the incompressible condition of materials, then the stress components in the
plastic zone are derived as

σr = −
(

p+
mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt, (15.9a)

σθ = − (2 + b)
2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(1+b)(m−1)
2m+2mb−b

+
m

m − 1
σt, (15.9b)
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σz = − 1 +m+mb

2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(1+b)(m−1)
2m+2mb−b

+
m

m − 1
σt. (15.9c)

With reference to the continuity of σr across r = rp, the relationship be-
tween the internal pressure p and the radius of the plastic zone rp is obtained

p =
mσt

m − 1

[
(2m+ 2mb − b)r2e

(m+ 1 +mb)r2e + (m − 1)(1 + b)r2p
(rp/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]
.

(15.10)
With the increase of the pressure p, the plastic zone expands further

and the elastic-plastic interface moves gradually to the external wall of the
cylinder. Setting rp = re in Eq.(15.10), the internal pressure becomes

ps =
mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]
, (15.11)

which is the plastic limit pressure of the cylinder.
If pe < p < ps, the cylinder is partially plastic. When the cylinder is

unloaded there will be residual stress. If p is small the unloading process is
purely elastic and the residual stress is derived by superposition of the elastic
unloading stress and the elastic-plastic loading stress. The expressions for
the residual stresses in the zone adjacent to the internal wall of the cylinder
(ri � r � rp) can be written as

σr
r = −

(
p+

mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt

− r2i p

r2e − r2i

(
1− r2e

r2

)
,

(15.12a)

σr
θ = − (2 + b)

2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt − r2i p

r2e − r2i
(1 +

r2e
r2
),

(15.12b)

σr
z = − 1 +m+mb

2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt − r2i p

r2e − r2i
.

(15.12c)

Given r = ri, the residual stresses on the internal wall of the cylinder are
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σr
r = 0, (15.13a)

σr
θ = −

[
(2 + 2b)

2m+ 2mb − b
+

r2e + r2i
r2e − r2i

]
p+

(2 + 2b)m
2m+ 2mb − b

σt, (15.13b)

σr
z = −1

2
·
[

(2 + 2b)
2m+ 2mb − b

+
r2e + r2i
r2e − r2i

]
p+

(1 + b)m
2m+ 2mb − b

σt. (15.13c)

It is seen that σr
r , σr

z , and σr
θ on the internal wall are the major princi-

pal stress, the intermediate principal stress, and the minor principal stress
respectively, and the intermediate principal stress σr

z � (mσr
r + σr

θ)/(m+1).
Therefore, the unified strength theory on the internal wall is

1
1 + b

(σr + bσz)− σθ

m
= σt. (15.14)

From Eqs.(15.13) and (15.14), the internal wall of the cylinder yields when
the internal pressure reaches

pmax =
2m(m+ 1)(1 + b)(b+ 2)/(2m+ 2mb − b)/(2− mb+ 2b)

(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )
σt.

(15.15)
If p < pmax, a secondary yielding does not take place at the internal wall of

the unloaded cylinder. It can be demonstrated that the residual stress induced
by the cycle of loading-unloading will not yield any new plastic deformation
in the whole cross-section of the cylinder. Therefore the shakedown condition
for a thick-walled cylinder under repeated loading and unloading is that the
internal pressure p is less than the critical value pshakedown or pplastic, i.e.,

pmax,shakedown =

min
{
2m(m+ 1)(1 + b)(2 + b)/(2m+ 2mb − b)/(2− mb+ 2b)

(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )
σt

}
,

(15.16a)

pmax,plastic = min
{

mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]}
, (15.16b)

which is the shakedown load of the thick-walled cylinder. Setting m=1 and
b=0 in Eq.(15.16b), the shakedown load of the thick-walled cylinder has the
form of

pmax = min
{
σt(1− r2i

/
r2e), σt ln (re/ri)

}
, (15.17)
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which is in agreement with the shakedown load of a cylinder from the classical
plasticity based on the Tresca criterion.

The shakedown load given by Eq.(15.16a) is correlated with the compres-
sive tensile strength ratio m, and the unified yield criterion parameter b. It
can be said the present approach has the capability to reflect the SD ef-
fects and intermediate principal stress on the shakedown load of the cylinder
quantitatively, which is ignored in the classical solution.

15.4 Unified Solution of Shakedown Pressure of
Thick-walled Cylinders

In order to demonstrate the SD effects and intermediate principal stress on
the shakedown load of a thick-walled cylinder, the results from the derived
closed-form solution are depicted in Fig.15.1, in which the abscissa denotes
the wall ratio of the cylinder re/ri, and the ordinates is the shakedown load
pmax/σt.

From Fig.15.1, the effect of the intermediate principal stress on the shake-
down load for non-SD materials (m=1) is obvious.

Fig. 15.1. Shakedown load for different values of the unified strength theory pa-
rameter b (m=1.0)

The curve (1) in Fig.15.1 (b=0 and m=1.0) is suitable for materials with-
out both the SD and the intermediate principal stress effects, which is exactly
the result of the classical solution based on the single-shear yield criterion.
The present solution with m=1 and b=0.5 (curve (3) in Fig.15.1) is a close
approximation to the result from the Huber-von Mises criterion. The curve
(5) in Fig.15.1 (b=1.0 and m=1) is the same as the result from the twin-shear
stress yield criterion.
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Fig.15.2 (m=1.1) and Fig.15.3 (m=1.2) show the shakedown pressure for
materials with SD effect. It is seen from these figures that the shakedown
load is related to the unified strength theory parameter b which reflects the
effect of the intermediate principal stress on material strength. The higher
the parameter b, the higher the shakedown load pmax. Consequently, for a
given compressive-tensile strength ratio m, that of b=0 corresponding to the
Tresca criterion or the Mohr-Coulomb criterion gives the lowest value of pmax,
that of b=1 corresponding to the twin-shear yield criterion or the generalized
twin-shear criterion gives the highest value. Therefore, the shakedown load
of the cylinder may be underestimated when the effect of the intermediate
principal stress of materials is neglected, or an improper yield condition is
applied.

Fig. 15.2. Shakedown load for different values of the unified strength theory pa-
rameter b (m=1.1)

Fig.15.4 shows the SD effect on the shakedown load of a cylinder. The
results with respect to b=0 are shown in Fig.15.4, which is the same as the
result based on the Mohr-Coulomb criterion. It is suitable for materials with
negligible intermediate principal stress effect. The curve (1) in Fig.15.4 (b=0
and m=1) is the result of the classical solution based on the Tresca criterion.

Fig.15.5 (corresponding to b = 0.5 of the unified strength theory) and
Fig.15.6 (corresponding to b = 1.0, i.e., the twin-shear strength criterion) are
suitable for materials with the intermediate principal stress effect.

From analysis and schematical illustrations of the results, the shakedown
load depends on the compressive-tensile strength ratio m and the shakedown
load will increase with increasing parameter m. Thus, the shakedown load
of the cylinder may be underestimated when the SD effect of materials is
ignored. The SD effect of materials on the shakedown load of the cylinder is
insignificant when the wall ratio is small, whereas it is prominent when the
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Fig. 15.3. Shakedown load for different values of the unified strength theory pa-
rameter b (m=1.2)

Fig. 15.4. Shakedown load for different values of parameter m (b=0)

wall ratio is high. Therefore, the SD effect of materials should be taken into
account in shakedown analysis of the cylinder especially for a high wall ratio
of the cylinder.

15.5 Connection between Shakedown Theorem and
Limit Load Theorem

Based on the unified strength theory, shakedown analysis of a thick-walled
cylinder under internal pressure is carried out and the unified analytical solu-
tion of shakedown load for a cylinder is derived in this chapter. This solution
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Fig. 15.5. Shakedown load for different values of parameter m (b=0.5)

Fig. 15.6. Shakedown load for different values of parameter m (b=1.0)

includes not only the existing classical solution as its special case but gives a
series of new results.

It is noted that this solution consists of two parts (Eqs.(15.16a) and
(15.16b)): the limit pressure and shakedown pressure (Xu and Yu, 2004a;
2005b), i.e.,

pmax,shakedown =

min
{
2m(m+ 1)(1 + b)(2 + b)/(2m+ 2mb − b)/(2− mb+ 2b)

(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )
σt

}
,

(15.18a)

pmax,plastic = min
{

mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]}
. (15.18b)
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The relation between the shakedown pressure and the plastic limit pres-
sure are shown in Fig.15.7 for different parameter b.

Fig. 15.7. Shakedown load and plastic limit load when m=1.5

It is seen that the two curves will intersect when the limit pressure equals
the shakedown pressure, i.e.,
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mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]
=

2m(m+ 1)(1 + b)(2 + b)/(2m+ 2mb − b)/(2− mb+ 2b)
(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )

σt. (15.19)

The current unified solution consists of the two parameters m and b to
reflect both the SD and the intermediate principal stress effects of materials.
With the variation of m and b, the present solution gives a series of values
for the shakedown load that can be applied to materials with or without the
SD and the intermediate principal stress effects.

In order to demonstrate more clearly the SD effects and intermediate
principal stress on the shakedown load, the analytical solution is illustrated
schematically. This shows that both the SD and the intermediate principal
stress have influences on the shakedown load, and the more pronounced the
two effects, the higher the shakedown load. Therefore, for the cylinder made
of materials with the SD and/or the intermediate principal stress effect, the
classical solution underestimates the shakedown load. It is therefore of sig-
nificance for the shakedown analysis to take into account their effects.

It is worth mentioning that besides SD and intermediate principal stress,
other important properties such as the Bauschinger effect, the strain-hardening
effect, etc., should also be considered when their effects are prominent.

15.6 Shakedown Pressure of a Thick-walled Spherical
Shell

Shakedown analysis of a thick-walled spherical shell was derived by Liu et
al.(1997) using the Mohr-Coulomb criterion and Xu and Yu (2005b) using
the UST. The shakedown limit pressure of a thick-walled spherical shell for
SD material is

pmax,shakedown

= min

{
m

m − 1

[(
re

ri

) 2m−2
m

− 1

]
σt,

m(m+ 1)(r3e − r3i )
(m − 1)r3i + (0.5m+ 1)r3e

σt

}
.

(15.20)

This result is the same as the solution obtained by using the Mohr-
Coulomb strength criterion obtained by Feng and Liu (1995) and Liu et al.
(1997) and the twin-shear strength criterion. The relationship of the shake-
down limit pressure to the ratio of the strength of material in tension and
compression is illustrated in Fig.15.8.



340 15 Unified Solution of Shakedown Limit for Thick-walled Cylinder

Fig. 15.8. Relationship of shakedown limit pressure to the ratio of material
strength in tension and compression

15.7 Summary

The unified strength theory is used to derive unified solutions of the plas-
tic limit and shakedown limit of a thick-walled cylinder. These results are
applicable for a wide range of materials and engineering structures.

In the current solutions, the SD effect and the effect of intermediate prin-
cipal stress acting on the plastic limit loads and shakedown loads of a thick-
walled cylinder under uniform internal pressure are presented. By changing
the two parameters mα and b (or m and b), a series of values for limit loads
and shakedown loads can be obtained from the current solution, which in-
cludes both the results from classical plasticity and a series of new results.
These solutions are suitable for materials with the SD effect and the inter-
mediate principal stress effect.

Finally, the illustrations of alternatives to the analytical solution are pre-
sented to demonstrate graphically to examine the effects of strength difference
and intermediate principal stress on the limit loads and the shakedown loads.
They show that the limit loads and the shakedown loads depend on both the
strength difference in tension and compression and the effect of intermediate
principal stress. The limit loads and shakedown loads may be grossly un-
derestimated if these two effects are simply neglected. The unified strength
theory gives us a basic theory for use in the strength design of engineering
structures. It also provides a tool for estimating accurately the admissible
loads with an in-depth understanding of the material strength behavior so
that a more economical and optimized design of structures can be achieved.

15.8 Problems

Problem 15.1 Compare the solutions of limit analysis and shakedown anal-
ysis.
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Problem 15.2 Determine the shakedown load of a pressure cylinder by
using the Tresca yield criterion (m=1 and b=0).

Problem 15.3 Determine the shakedown load of a pressure cylinder by
using the Mohr-Coulomb strength theory(b=0).

Problem 15.4 Determine the shakedown load of a pressure cylinder by
using the twin-shear yield criterion (m=b=1).

Problem 15.5 Determine the shakedown load of a pressure cylinder by
using the twin-shear strength theory (b=1).

Problem 15.6 Determine the shakedown load of a cylinder under inter-
pressure by using the unified strength theory with b=0.6.

Problem 15.7 Determine the shakedown load of a cylinder under tension
and inter-pressure by using the twin-shear strength theory (b=1).

Problem 15.8 Determine the shakedown load of a cylinder under tension
and inter-pressure by using the unified strength theory with b=0.6.
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