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Unified Limit Analysis of a Wellbore

14.1 Introduction

A wellbore structure is usually used for underground engineering. The well-
bore should be kept stable as it is subjected to earth stress in the mining
engineering. A petroleum wellbore sustains the earth stress around the rock
as well as the internal pressure of the oil. The stability of the wellbore is of
great importance for the successful drilling.

Wellbore stress study in rock and soil engineering usually employs the
expansion theory for a thick cylinder. One main aspect of wellbore stability
analysis is the selection of an appropriate rock failure criterion, as indicated
by Al-Ajmi and Zimmerman (2006), and Al-Ajmi (2006). The commonly used
criterion for brittle failure of rocks is the Mohr-Coulomb criterion. This cri-
terion involves only the maximum and minimum principal stresses, σ1 and
σ3, and therefore assumes that the intermediate principal stress has no influ-
ence on rock strength. In contrast to the predictions of the Mohr-Coulomb
criterion, much evidence has been accumulating to suggest that intermediate
principal stress σ2 does indeed have a strengthening effect. Wellbore-stability
prediction by use of a modified Lade criterion was reported by Ewy (1999).
The stability analysis of vertical boreholes using the Mogi-Coulomb failure
criterion was presented by Al-Ajmi and Zimmerman (2006). A detailed report
is given by Al-Ajmi (2006). Luo and Li (1994) used the twin-shear strength
theory (Yu, 1985) to derive the gradually damaged behavior for thick bores
in rock and soil. Jian and Shen (1996) used the unified strength theory (Yu,
1991; 1994; 2004) to analyze the expansion trait by considering the strain-
softening characteristic of rock and soil. A unified solution for stability anal-
ysis of vertical boreholes was derived by Li and Yu (2001; 2002), Xu et al.
(2004), and Xu and Hou (2007).

In this chapter the unified strength theory is applied to analyze the stress
distribution of rock around wellbore and the limit load of the wellbore.
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14.2 Unified Strength Theory

The unified strength theory (Yu et al., 1991; 1992; 2004)

F = σ1 − 1
1 + b

(bσ2 + σ3) = σt when σ2 � σ1 + ασ3
1 + α

, (14.1a)
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1
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where the unified strength theory parameter b (0 � b � 1)) is a yield criterion
parameter to reflect the relative effect of the intermediate principal stress
σ2. c0 and ϕ0 are the internal cohesion and the angle of internal friction
respectively.

The relations of c0 and ϕ0 to other commonly used material parameters
are

α =
1− sinϕ0
1 + sinϕ0

, σt =
2c0 cosϕ0
1 + sinϕ0

,

where α is the tensile and compressible strength ratio of a material, i.e.,
α=σt/σc.

For plane strain problems a coefficient m (0 < m � 1) should be intro-
duced. When the considered material is incompressible, m is approximately 1.
For simplicity, m is defined as 1 in the following analysis. The yield function
can be expressed as
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2(1 + b) +mb(sinϕ0 − 1)

σ1 + σ3
2

+
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.

(14.3a)
It can be rewritten as (Yu et al., 1997; 2001)

σ1 − σ3
2

= −σ1 + σ3
2

sinϕuni + Cuni cosϕuni, (14.3b)

where the unified strength parameters Cuni and ϕuni were proposed by Yu et
al. in 1997 and 2001.

These two unified strength parameters are referred to as the unified ef-
fective cohesion and unified effective internal friction angle respectively, with
regard to the unified strength theory (UST). Their relations to the material
constants C0 and ϕ0 can be written as (Yu et al., 1997; 2001; 2006)

sinϕuni = − 2(1 + b) sinϕ0
2(1 + b) +mb(sinϕ0 − 1)

,

Cuni =
2(1 + b) cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
· C0
cosϕuni

,

(14.4)

where Cuni and ϕuni are the unified internal cohesion and the unified angle of
internal friction, Eq.(14.3) gives the failure criterion for plane strain problems
(Yu et al., 1997; 2006).

14.3 Equations and Boundary Conditions for the
Wellbore

The plan of a wellbore is shown in Fig.14.1. The cylindrical coordinate system
is used, where the z-axis is along the wellbore axis.

Assuming that the wellbore radius is R0, the internal liquid pressure is p0,
R∞ (R∞ >> R0) represents an infinite radius at which the liquid pressure is
p∞ and the rock lateral pressure is σr∞. The parameter β is the effective void
ratio, k is the seepage ratio, E is the elastic modulus, and ν is the Poisson’s
ratio. De and Dp represent the elastic and plastic zones of the surrounding
rock respectively. The radius r = Rd gives the boundary of the elastic and
plastic zones.

14.3.1 Strength Analysis for Wellbore

The stress state of the rock around the wellbore is plane strain and axi-
symmetrical. It is assumed that the lateral stress σr∞ around the rock is a
constant and the rock is isotropic. The normal stresses σr, σθ, and σz in the
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Fig. 14.1. Wellbore subjected to the pore pressure and seepage

radial, circumferential and axial directions are the principal stresses, and the
associated shear stress components are zero.

For the present plane strain problem, σz = ν(σr + σθ) and there is σ3 =
σr � σz � σθ = σ1.

When the drilling is finished, the rock around the wellbore is softened.
The modulus, internal cohesion, and angle of internal friction will decrease.
Denoting that c1 and ϕ1 are the softened internal cohesion and the angle of
internal friction respectively, and providing that the rock obeys the failure
criterion given in Eq.(14.3), in the initial stage of drilling there is

σr − σθ

2
= −σr + σθ

2
sinϕt0 + ct0 cosϕt0, (14.5a)

where

sinϕt0 =
2(1 + b) sinϕ0
2 + b+ b sinϕ0

, ct0 =
2(1 + b)c0 cosϕ0
2 + b+ b sinϕ0

· 1
cosϕt0

.

The parameters ct0 and ϕt0 represent the effective internal cohesion and
the effective angle of internal friction respectively in the original stage with
regard to the unified strength theory. When the drilling is finished, the failure
condition is

σr − σθ

2
= −σr + σθ

2
sinϕt1 + ct1 cosϕt1, (14.5b)

where

sinϕt1 =
2(1 + b) sinϕ1
2 + b+ b sinϕ1

, ct1 =
2(1 + b)c1 cosϕ1
2 + b+ b sinϕ1

· 1
cosϕt1

,

and ct1 and ϕt1 represent the corresponding effective internal cohesion and
effective angle of internal friction in the softening stage.
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14.3.2 Pore Pressure Analysis

According to the Darcy’s law, the pore pressure distribution along the radius
is

q =
2πrk

η

dp
dr

, (14.6)

where η is the liquid viscosity, r is the radius of the wellbore, p is the pressure
at the inner surface of the wellbore, q is the liquid flux per unit length in the
wellbore, and k is the seepage.

The boundary conditions are p |r=R0= p0 and p |r=R∞= p∞. The pressure
distribution along the radius direction is derived as

p = p0 + (p0 − p∞)
(
ln

r

R0
/ ln

R0
R∞

)
, R0 � r � R∞. (14.7)

Equilibrium equation for the rock by considering the seepage effect is

dσr

dr
− χ

dp
dr

+
σr − σθ

r
= 0. (14.8)

At the inner surface of the wellbore, the stress boundary condition is

σr|r=R0
= σr0 = −p0(1− χ). (14.9a)

At R∞,

σr|r=R∞ = σr∞ = σk + χp∞, (14.9b)

σz|r=R∞ = σz∞ = p∞b + χp∞, (14.9c)

where χ is the effective void ratio, p∞b and σ∞ are the vertical pressure and
horizontal stress caused by the above rock weight.

14.4 Elastic and Plastic Analysis

14.4.1 Elastic Phase

In the elastic stage the stress distribution can be obtained from Eqs.(14.7),
(14.8) and (14.9),
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Based on the plane strain assumption, i.e., εz = 0, the following expression
can be obtained

σz = ν(σr + σθ), (14.10c)

where σr and σθ are expressed in Eqs.(14.10a) and (14.10b).

14.4.2 Plastic Limit Pressure

When the pressure p0 increases to the elastic limit, the rock material around
the wellbore falls into the plastic stage. In the plastic zone Dp where R0 <
r < Rd, from Eq.(14.5) the relation of σr and σθ to ct1 and ϕt1 is derived as

σθ − σr

2
= (ct1 cotϕt1 − σr)

sinϕt1

1 + sinϕt1
. (14.11)

From Eqs.(14.11), (14.7), (14.8) and the boundary condition in Eq.(14.9),
the pressure at the elastic-plastic boundary can be determined as

pd = p0 + (p0 − p∞)ln
Rd

R0

/
ln

R0
R∞

, (14.12)

and the stress distribution in the plastic region Dp can be obtained as

σr = −(1− χ)p0

(
r

R0

)− 2 sinϕt1
1+sinϕt1

+
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)
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⎡
⎣1− (

r
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⎤
⎦ ,

(14.13a)

σθ =
2ct1 cosϕt1

1 + sinϕt1
+
1− sinϕt1

1 + sinϕt1
σr, (14.13b)

where
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D = χ(p0 − p∞)
/
ln

R0
R∞

.

If R0 is substituted by Rd in Eq.(14.10a) and Eq.14.10(b), the elastic
stress distribution in the elastic zone De (r > Rd) can be obtained from
Eq.(14.10a) and Eq.14.10(b).

14.4.3 Elastic-plastic Boundary

With R∞ >> R0 and R∞ >> Rd, substituting σr0, R0 and p0 in Eqs.(14.10a)
and (14.10b) with σrd, Rd and pd, the stress distribution can be deduced from
Eqs.(14.12) and (14.13) at the elastic-plastic boundary of r = Rd,

σrd = −[(1− χ)p0 + ct1 cotϕt1]
(

Rd

R0

)− 2 sinϕt1
1+sinϕt1

+ ct1 cotϕt1, (14.14a)

σθd = 2σr∞ − σrd + χ
p0 − p∞
1− ν

. (14.14b)

The relation of pressure p0 at the wellbore surface to the plastic damaged
radius Rd is

− [(1− χ)p0 + ct1 cotϕt1]
(

Rd

R0

)− 2 sinϕt1
1+sinϕt1

+ ct1 cotϕt1

= (1 + sinϕt0)
[
σr∞ +

χ(p0 − p∞)
2(1− ν)

]
+ ct0 cotϕt0.

(14.15)

When the wellbore surface goes into the plastic yield stage, that is
Rd = R0, the maximum radial pressure for retaining the wellbore elastic
stabilization can be deduced from Eq.(14.15),

pe0 = −
(1 + sinϕt0)

[
σr∞ + χ(p0−p∞)

2(1−ν)

]
+ ct0 cotϕt0

1− χ 1−sinϕt0−2ν
2(1−ν)

. (14.16)

When b = 0, the elastic limit pressure for the Mohr-Coulomb strength
theory can be obtained from Eq.(14.16).

When the rock material is completely in a plastic state, i.e., Rd >> R0,
the maximum radial pressure for the retaining wellbore stabilization can be
obtained from Eq.(14.15),

pp0 = −2(1− μ)(σr∞ + ct0 cosϕt0 − ct1 cosϕt1)
χ(1 + sinϕt0)

+ p∞. (14.17)
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When b = 1, the limit load pp0 derived from Eq.(14.17) is the limit plastic
load based on the Mohr-Coulomb criterion reported by Li (1998). The max-
imum plastic radius Rd can be obtained from Eqs.(14.15) and (14.17) with
reference to the stability of the wellbore.

14.4.4 Example

For an oil drilling wellbore (Li and Li, 1997; Liu et al., 1995) with the radius
and the oil pressure of R0 and p0, at R∞ (R∞ >> R0), the void pressure p∞
in the rock is 5 MPa, the radial stress σr∞ is 43.4 MPa, the effective void
ratio χ is 25%, the seepage ratio k is 100×10−3μm2, the elastic modulus E is
1300 MPa, the Poisson’s ratio ν is 0.15. The initial yield internal cohesion c0
and angle of internal friction ϕ0 are 0.179 MPa and 31.4◦ respectively. The
softened internal cohesion c1 and angle of internal friction ϕ1 are 0.154 MPa
and 25.2◦, respectively.

According to the above derivation, the relation of oil pressure on the
surface of the wellbore to the plastic radius is shown in Fig.14.2. The elastic
and plastic limit pressure for the stability of the oil wellbore are given in
Fig.14.3 and Fig.14.4, where p̄0 = p0/p∞, p̄e0 = pe0/p∞, p̄p0 = pp0/p∞.

Fig. 14.2. Relation curves of p0 to Rd

It is shown that the unified strength parameter b influences the plastic
radius and the limit pressures. Fig.14.2 shows that the plastic radius increases
with the increase of oil pressure in the wellbore, which means that more rock
material around the wellbore will enter the plastic phase when the oil pressure
on the wellbore surface increases. For a given oil pressure on the wellbore
surface, the plastic radius increases with the increase of the parameter b.
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Fig. 14.3. Relation of pe0 to the unified strength theory parameter b

Fig. 14.4. Relation of pp0 to the unified strength theory parameter b

Figs.14.3 and 14.4 show the elastic and plastic limit pressures versus the
unified strength theory parameter b.

14.4.5 Limit Depth for Stability of a Shaft

Analysis of the stability of a shaft (Fig.14.5) taking into consideration the
effect of intermediate principal stress is presented by Xu and Hou (2007).

On the basis of the unified strength theory, a stability analysis of a circular
shaft was carried out. The stability formula for the limit depth of the shaft
can be expressed as

Zmax =
2 + 2b
2 + b

· cosϕ
1− sinϕ

· c

γ
. (14.18)

It can be seen from Eq.(14.18) that the influence of the unified strength
theory parameter b and friction angle ϕ (i.e. the intermediate principal stress
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Fig. 14.5. Scheme of a shaft under internal pressures

effect and the strength-differential effect) on the limit depth of the shaft are
given. A special case for b = 0 can be obtained from Eq.(14.18) as

Zmax =
cosϕ

1− sinϕ
· c

γ
. (14.19)

It is the same as the result of the Mohr-Coulomb single-shear theory. The
serial results for limit depth Zmaxγ/c are listed in Table 14.1, which can also
be found in Fig.14.6.

Table 14.1. The limit depth of the shaft with the unified strength theory parameter
b and ϕ

ϕ◦ b = 0 b = 1/4 b = 1/2 b = 3/4 b = 1

0◦ 1.00 1.11 1.20 1.27 1.33

15◦ 1.30 1.45 1.56 1.66 1.74

20◦ 1.43 1.59 1.71 1.82 1.90

25◦ 2.09 2.13 2.16 2.18 2.20

30◦ 2.53 2.54 2.55 2.55 2.56

35◦ 2.81 2.82 2.83 2.83 2.84
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Fig. 14.6. The limit depth of the shaft with the parameters b and ϕ

The results show that the limit depth of the shaft will increase when
the strength-differential effect and the intermediate principal stress effect are
considered.

14.5 Summary

Based on the unified strength theory, the elastic and plastic analysis has been
carried out for the rock material around the wellbore. The stress distribution
of the rock, the elastic and plastic limit loads for the stability of the wellbore
and the maximum plastic radius are obtained. The analysis of the stability
of a shaft taking into consideration the effect of intermediate principal stress
is also discussed.

The analysis results show that the plastic radius increases with the in-
crease of the pressure on the wellbore and the unified strength theory param-
eter b. It influences the elastic and plastic limit pressures and limit stability
depth of the shaft. The analysis results can cover the solutions obtained by
other traditional failure conditions, such as the Mohr-Coulomb criterion, the
twin shear strength theory.

14.6 Problems

Problem 14.1 Compare the solutions of the elastic and plastic limit pres-
sures of the wellbore.

Problem 14.2 Determine the elastic and plastic limit pressures of the well-
bore by using the Mohr-Coulomb criterion (b = 0).

Problem 14.3 Determine the elastic limit pressures of the wellbore by using
the Mohr-Coulomb criterion (b = 0).
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Problem 14.4 Determine the elastic limit pressures of the wellbore by using
the unified strength theory with b = 0.5.

Problem 14.5 Determine the elastic limit pressures of the wellbore by using
the unified strength theory with b = 0.8.

Problem 14.6 Determine the elastic limit pressures of the wellbore by using
the unified strength theory with b = 1.0.

Problem 14.7 Determine the plastic limit pressures of the wellbore by
using the Mohr-Coulomb criterion (b = 0).

Problem 14.8 Determine the plastic limit pressures of the wellbore by
using the unified strength theory with b = 0.5.

Problem 14.9 Determine the plastic limit pressures of the wellbore by
using the unified strength theory with b = 0.8.

Problem 14.10 Determine the plastic limit pressures of the wellbore by
using the unified strength theory with b = 1.0.

Problem 14.11 Compare the solutions of limit depth of the shaft with
different criteria.

Problem 14.12 Determine the limit depth of the shaft using the unified
strength theory with b = 0.5.

Problem 14.13 Determine the limit depth of the shaft using the Mohr-
Coulomb criterion (b = 0).

Problem 14.14 Determine the limit depth of the shaft using the unified
strength theory with b = 0.8.

Problem 14.15 Determine the limit depth of the shaft using the unified
strength theory with b = 1.0.
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