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Projectile Penetration into Semi-infinite
Target

12.1 Introduction

A lot of research work has been conducted on impact and penetration anal-
ysis. The penetration studies include various lab and field tests, analytical
derivations and numerical simulations. Early works were mainly experimen-
tal studies. In the last three decades, analytical and numerical tools have
been used increasingly as a substitute for costly experiments. The critical is-
sue in an analytical penetration model is to formulate properly the resultant
penetration resistance force applied on the missile by the target medium.
The most well-known resistance function is based on the so-called dynamic
cavity expansion theory. The theory was pioneered by Bishop et al. (1945),
who developed the equations for the quasi-static expansion of cylindrical
and spherical cavities and estimated forces on conical nose punches pushed
slowly into metal targets. Later Hill (1950) and Hopkins (1960) derived and
discussed the dynamic and spherically symmetric cavity-expansion equations
for an incompressible target material.

The cavity expansion theory was further developed by Luk and Forrestal
(1987), Forrestal and Tzou (1997), and Mastilovic and Krajcinovic (1999) to
model the penetration of projectiles through soil, porous rock, ceramic and
concrete targets. An overview on projectile penetration into geological targets
was given by Heuze (1990). Li QM (2005) summarized the recent progress in
the penetration mechanics of a hard missile and extended Forrestal’s concrete
penetration model to missiles of general nose shapes.

By comparison with the analytical results derived from the cylindrical and
spherical cavity expansion theories, it is found that the cylindrical assump-
tion gives closer results to test data for low and medium velocity impacts.
Tresca criterion and Huber-von Mises criterion were often used for penetra-
tion problems of metallic targets, and the Mohr-Coulomb strength theory
was used for penetration problems of geomaterials (Longcope and Forrestal,
1983). The selection of failure criteria is of great importance (Zukas et al.,
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1982). To reflect the strength difference effect and the effect of failure criteria,
the unified strength theory (Yu, 1992; 2004) has been adopted in penetration
analysis for both metallic and geological targets (Li and Yu, 2000; Li, 2001;
Wei and Yu, 2002; Wei, 2002; Wang et al., 2004; 2005).

The present chapter firstly presents the spatial axisymmetric form of the
unified strength theory as the failure condition of target materials in Section
12.2. The governing differential equations for concrete targets are summarized
in Section 12.3. The cylindrical cavity expansion model is then applied to
incompressible and compressible materials in Sections 12.4. Explicit forms
of the pressure on the cavity expansion surface and the cavity expansion
velocity are derived in Section 12.5. Section 12.6 gives the resistance force
on different nose shapes of the projectile, which is simplified as a rigid body.
The penetration depth of the projectile is obtained and compared with test
results available in the published literature in Section 12.7.

12.2 Spatial Axisymmetric Form of Unified Strength
Theory

There are four stress components σr, σθ, σz and τrz in a spatial axisymmetric
problem. The other components, namely, τrθ and τθz, are zero. According to
the spatial axisymmetric unified characteristics line theory (Yu et al., 2001),
the stress σ2 can be expressed as

σ2 = σ3 +m

(
σ1 + σ3

2
− σ3

)
, (12.1)

where m is a parameter and 0 � m � 2. When m=0 and m =2, Eq.(12.1) is
the Haar-von Karman complete plastic condition. If we define

P =
σ1 + σ3

2
, R =

σ1 − σ3
2

, (12.2)

then

σ1 = P +R, σ2 = P + (m − 1)R, σ3 = P − R. (12.3)

The non-zero stress components of an axisymmetric problem can be ex-
pressed as

σr = P +R cos 2θ, σz = P − R cos 2θ,
τrz = R sin 2θ, σθ = P + (m − 1)R,

(12.4)

where θ is the angle between the directions of the maximum principal stress
and axis r.
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Since m−1 � sinϕ0, that is σ2 � P −R sinϕ0, the unified strength theory
(UST) has an expression with respect to the internal friction angle ϕ0 and
cohesion C0,

F = σ1 − 1− sinϕ0
(1 + b)(1 + sinϕ0)

(bσ2 + σ3) =
2C0 cosϕ0
1 + sinϕ0

,

when σ2 � 1
2
(σ1 + σ3) +

sinϕ

2
(σ1 − σ3),

(12.5a)

F ′ =
1

1 + b
(σ1 + bσ2)− 1− sinϕ

1 + sinϕ
σ3 =

2C0 cosϕ0
1 + sinϕ0

,

when σ2 � 1
2
(σ1 + σ3) +

sinϕ

2
(σ1 − σ3).

(12.5b)

Then, there is

R = − 2(1 + b) sinϕ0
2(1 + b) +mb(sinϕ0 − 1)

P +
2(1 + b)C0 cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
. (12.6)

The above equation can be rewritten as (Yu et al., 1997; 2001)

R = −P sinϕuni + Cuni cosϕuni, (12.7)

where the unified strength parameters Cuni and ϕuni were proposed and de-
rived by Yu et al. in 1997 and 2001. These two parameters are referred as
the unified cohesion and unified internal friction angle corresponding to the
UST respectively. Their relations to the material constants C0 and ϕ0 can be
written as (Yu et al., 1997; 2001)

sinϕuni =
2(1 + b) sinϕ0

2(1 + b) +mb(sinϕ0 − 1)
, (12.8)

Cuni =
2(1 + b)C0 cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
· 1
cosϕuni

. (12.9)

Denoting compressive stress as P , Eq.(12.7) can be expressed as (Yu et
al., 1997; 2001)

R = P sinϕuni + Cuni cosϕuni. (12.10)

12.3 Fundamental Equations for Concrete Targets

12.3.1 Conservation Equations

In cylindrical coordinates, the conservation equations of momentum and mass
for the target materials can be expressed as
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∂v

∂r
+

v

r
= −1

ρ

dρ
dt

, (12.11)

∂σr

∂r
+

σr − σθ

r
= −ρ

dv
dt

, (12.12)

where υ is the radial velocity of a particle in the target material and υ is
positive if it is in the outward direction.

12.3.2 Relation between Pressure and Bulk Strain

If the material is compressive, the relation between pressure and bulk strain
can be expressed as

P = Kη = K(1− ρ0
ρ
), (12.13)

where η is the bulk strain, K is the bulk modulus, P is the hydrostatic
pressure and can be written as

P =
1
3
(σr + σθ + σz). (12.14)

For the problem of cavity expansions, the relation among stresses is

σz = ν (σr + σθ) in elastic zone, (12.15a)

σz =
1
2
(σr + σθ) in plastic zone. (12.15b)

Eqs.(12.15a) and (12.15b) are applied respectively for the elastic zone and
plastic zone when material is compressible, while only Eq. (12.15b) is used
when material is incompressible.

12.3.3 Failure Criterion Expressed by σr and σθ

The UST is used as the failure condition for the target material in this chap-
ter. According to the axisymmetric stress state of the target material im-
pacted and penetrated by a long rod, Eq.(12.10) has another form of

σr − σθ = Auniσr +Buni, (12.16)

where

Auni =
2 sinϕuni
1 + sinϕuni

, Buni =
2Cuni cosϕuni
1 + sinϕuni

.
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12.3.4 Interface Conditions

The target medium can be divided into four zones during the cavity expan-
sion, i.e., a plastic zone, a radial cracked zone, an elastic zone and an undis-
turbed zone. At the two interfaces between the plastic and radial cracked
zones, radial cracked and elastic zones, the Hugoniot jump conditions are
valid. According to the conservation of mass and momentum across the in-
terface, there are

[ρ(v − cJ)] = 0, (12.17)

[σr + ρv(v − cJ)] = 0, (12.18)

where the expression [G] = G+−G− stands for the magnitude of the discon-
tinuity of the square-bracketed variable across the wave front (interface) that
propagates with an interface velocity of cJ . The above equations can also be
rewritten as

ρ1(v1 − cJ) = ρ2(v2 − cJ), (12.19)

σ2 − σ1 = ρ1(cJ − v1)(v2 − v1). (12.20)

12.4 Cylindrical Cavity Expansion Analysis

A cylindrical symmetric cavity expands with velocity vr from an initial radius
of zero when the target is impacted and penetrated by a long rod (Fig.12.1).
In Fig.12.2, c is the interface velocity between the plastic and radial cracked
zones; c1 is the interface velocity between the radial cracked and elastic zones;
cd is the elastic dilatation velocity. The stress in the plastic zone (vrt � r � ct)
has reached the yield surface of the unified strength theory. Because geoma-
terials are always very weak in tension, radial cracks adjacent to the plastic
zone are often observed in a penetration process for targets made of geoma-
terials. The formation and the magnitude of the area for a cracked zone or
a damaged zone depend on the circumferential tensile stress. If the circum-
ferential stress exceeds the tensile strength of the target material, a radial
cracked zone forms. The range of the radial cracked zone can be represented
by ct < r � c1t. The elastic zone is in the range of c1t < r � cdt; and the
undisturbed zone is in the range of r > cdt. Defining a dimensionless variable
of ξ = r/ct, the four different zones can be categorized in Fig.12.3.
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Fig. 12.1. Penetration by a long rod

Fig. 12.2. Different zones of target material

12.4.1 Elastic Zone (c1t � r � cdt, β1/β � ξ � 1/α)

In the elastic zone, the target materials satisfy the linear stress-strain rela-
tions. According to the generalized Hooke’s law,

σr = − E

(1− 2ν)(1 + ν)

[
(1− ν)

∂u

∂r
+ ν

u

r

]
, (12.21)

σθ = − E

(1− 2ν)(1 + ν)

[
ν

∂u

∂r
+ (1− ν)

u

r

]
, (12.22)

where E and ν are the modulus of elasticity and Poisson’s ratio; u is the radial
displacement. The normal stresses are positive in compression for convenient
formulation.

The conservation equation of momentum can be expressed as
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Fig. 12.3. Dimensionless expression of the four zones

Fig. 12.4. Dimensionless expression of the three zones

∂σr

∂r
+

σr − σθ

r
= −ρ

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.23)

Substituting Eqs.(12.21) and (12.22) into Eq.(12.23), we obtain

∂2u

∂r2
+
1
r

∂u

∂r
− u

r2
=

1
c2d

d2u
dt2

, (12.24)

where cd is the elastic wave velocity in the semi-infinite medium and

cd =

√
E(1− ν0)

(1 + ν0)(1− 2ν0)ρ0
. (12.25)

Defining

u =
ū

ct
, (12.26)
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Eq.(12.24) can be rewritten as

(1− α2ξ2)
d2ū
dξ2

+
1
ξ

dū
dξ

− 1
ξ2

ū = 0, (12.27)

where α = c/cd.
Defining

z = αξ, ū = zφ, F =
dφ
dz

, (12.28)

then ⎧⎪⎪⎨
⎪⎪⎩
dū
dξ

= αφ+ αzF,

d2ū
dξ2

= 2α2F + α2z
dF
dz

.

(12.29)

Eq.(12.27) can be simplified into a first-order differential equation with
reference to Eq.(12.29). Integrating Eq.(12.27), we obtain

ū = Aαξ +

[
αξ

2
ln
1 +

√
1− α2ξ2

αξ
−

√
1− α2ξ2

2αξ

]
· B, (12.30)

where A and B are integration constants that can be determined by consid-
ering the following boundary conditions:

ū(ξ =
1
α
) = 0, (12.31)

σθ(ξ =
β1
β
) = −σt, (12.32)

where Eq.(12.31) indicates that the radial displacement is zero at the interface
of the elastic and undistributed zones; Eq.(12.32) indicates that the circum-
ferential stress reaches the tensile strength at the interface of the elastic and
radial crack zones.

With reference to Eq.(12.30) and Eq.(12.31),

A = 0. (12.33)

The displacement distribution in the elastic zone is then derived as

ū =

[
αξ

2
ln
1 +

√
1− α2ξ2

αξ
−

√
1− α2ξ2

2αξ

]
· B. (12.34)
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From Eq.(12.34),

ū

ξ
=

[
α

2
ln
1 +

√
1− α2ξ2

αξ
−

√
1− α2ξ2

2αξ2

]
· B, (12.35)

∂ū

∂ξ
=

[
α

2
ln
1 +

√
1− α2ξ2

αξ
+

√
1− α2ξ2

2αξ2

]
· B. (12.36)

Defining

σ̄r =
σr

K
, σ̄θ =

σθ

K
, σ̄t =

σt

K
, (12.37)

the dimensionless circumferential stress and radial stress in the elastic zone
can be derived from Eqs.(12.21) and (12.22),

σ̄θ = − 3
1 + ν

[
α

2
ln
1 +

√
1− α2ξ2

αξ
− (1− 2ν)

√
1− α2ξ2

2αξ2

]
· B, (12.38)

σ̄r = − 3
1 + ν

[
α

2
ln
1 +

√
1− α2ξ2

αξ
+
(1− 2ν)

√
1− α2ξ2

2αξ2

]
· B. (12.39)

The integration constant B can be obtained from Eq.(12.32) with refer-
ence to Eq.(12.38),

B =
1 + ν

3
σt

⎡
⎣α

2
ln
1 +

√
1− α2 (β1/β)2

α (β1/β)
−
(1− 2ν)

√
1− α2 (β1/β)2

2α (β1/β)2

⎤
⎦

−1

.

(12.40)
Defining a dimensionless radial velocity as

ν̄(ξ) =
ν̄

c
, (12.41)

Eq.(12.34) yields

ν̄(ξ) =

[
−

√
1− α2ξ2

αξ

]
· B. (12.42)

At the interface of elastic-radial cracked zones, i.e., ξ = β1/β, the radial
stress, the circumferential stress and the velocity in the elastic zone are
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σ̄r1 = − 3
1 + ν

⎡
⎣α

2
ln
1 +

√
1− α2 (β1/β)2

α (β1/β)
+
(1− 2ν)

√
1− α2 (β1/β)2

2α (β1/β)2

⎤
⎦ · B,

(12.43)

σ̄θ1 = − 3
1 + ν

⎡
⎣α

2
ln
1 +

√
1− α2 (β1/β)2

α (β1/β)
−
(1− 2ν)

√
1− α2 (β1/β)2

2α (β1/β)2

⎤
⎦ · B,

(12.44)

ν̄1(ξ) =

⎡
⎣−

√
1− α2 (β1/β)2

α (β1/β)

⎤
⎦ · B. (12.45)

12.4.2 Interface of Elastic-cracked Zones (r = c1t, ξ = β1/β)

Defining at the interface the dimensionless radial stress and radial velocity in
the cracked zone as σ̄r2 and ν̄2, respectively, with reference to the Hugoniot
jump condition,

ρ1

(
ν̄1 − β1

β

)
= ρ2

(
ν̄2 − β1

β

)
, (12.46)

σ̄r2 = σ̄r1 +
ρ1
ρ0

β2
(

β1
β

− ν̄1

)
(ν̄2 − ν̄1) , (12.47)

where ρ1 and ρ2 are the density of materials in the elastic and crack zones
respectively.

According to the pressure-bulk strain relation, in the elastic zone,

(1 + ν)σr + (2− ν)σθ

3
= K

(
1− ρ0

ρ

)
. (12.48)

Since the circumferential stress is zero in the cracked zone, the above
equation can be rewritten as

1 + ν

3
σr = K

(
1− ρ0

ρ

)
. (12.49)

At the interface, the circumferential stress in the elastic zone reaches the
tensile strength, which implies

σ̄θ1 = −σ̄t. (12.50)

Substituting the above equation into Eq.(12.48), the radial stress in the
elastic zone near to the interface can be expressed as
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σ̄r1 =
2− ν

1 + ν
σ̄t +

3
1 + ν

(
1− ρ0

ρ1

)
. (12.51)

From Eq.(12.49), the radial stress in the cracked zone near to the interface
can be derived as

σ̄r2 =
3

1 + ν

(
1− ρ0

ρ2

)
. (12.52)

Substituting Eq.(12.51) into Eq.(12.47),

σ̄r2 = σ̄r1 +
3(β1 − βν̄1)(βν̄2 − βν̄1)
3− (1 + ν)(σ̄r1 − σ̄t)

. (12.53)

Putting the expression of ρ1 and ρ2 from Eqs.(12.51) and (12.52) into
Eq.(12.46),

βν̄2 = β1 +
3− σ̄r2(1 + ν)

3− (σ̄r1 − σ̄t)(1 + ν)
(βν̄1 − β1). (12.54)

12.4.3 Radial Cracked Zone (ct � r � c1t, 1 � ξ � β1/β)

When the circumferential stress reaches the tensile strength, the radial cracks
occur. Once the radial cracks occur, σθ diminishes immediately to zero. The
conservation equations of mass and momentum can be expressed as

∂ν

∂r
+

ν

r
= −1

ρ

dρ
dt

, (12.55)

∂σr

∂r
+

σr

r
= −ρ

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.56)

According to the pressure-bulk strain relation,

P =
1 + ν

3
σr = K

(
1− ρ0

ρ

)
= Kη. (12.57)

Putting Eq.(12.57) into Eqs.(12.55) and (12.56) respectively,

∂ν

∂r
+

ν

r
= − 1 + ν

3K(1− η)
dσr

dt
, (12.58)

∂σr

∂r
+

σr

r
= − ρ0

1− η

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.59)

Because the bulk strain is very small, there is 1 − η ≈ 1. The above
equations can be rewritten as
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⎪⎪⎩
dν̄
dξ

+
ν̄

ξ
=
1 + ν

3
ξ
dσ̄r

dξ
,

dσ̄r

dξ
+

σ̄r

ξ
= β2ξ

dν̄
dξ

.

(12.60)

Integrating Eq.(12.60), we obtain

σ̄r(ξ) = −D1

ξ
+D2, (12.61)

ν̄(ξ) = − D2

β2ξ
+
1 + ν

3
D1, (12.62)

where D1 and D2 are the integration constants that can be determined with
application of boundary conditions.

At the interface of the cracked and plastic zones (r = ct, ξ = 1), defining
radial stress and radial velocity in the cracked zone σ̄r3 and ν̄3, respectively,
the boundary conditions can be expressed as

r = ct(ξ = 1),
{

σ̄r(ξ = 1) = σ̄r3 = B̄t

1−At
,

ν̄(ξ = 1) = ν̄3,
(12.63)

r = c1t(ξ = β1/β),

⎧⎨
⎩

σ̄r(ξ = β1/β) = σ̄r2,

ν̄(ξ = β1/β) = ν̄2.
(12.64)

From Eqs.(12.61) and (12.63),

−D1 +D2 =
B̄t

1− At
. (12.65)

The radial stress and the radial velocity in the cracked zone adjacent to
the interface of the cracked and elastic zones (r = c1t, ξ = β1/β) can be
expressed as

σ̄r2 = − D1

β1/β
+D2, (12.66)

ν̄2 = − D2

β1β
+
1 + ν

3
D1, (12.67)

the integration constants D1, D2 can then be expressed as

D1 =
3β1(σ̄r2 + β1βν̄2)
β[β21(1 + ν)− 3]

, (12.68)

D2 =
β21(1 + ν)σ̄r2 + 3β1βν̄2

β21(1 + ν)− 3
. (12.69)
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Putting Eqs.(12.68) and (12.69) into Eq.(12.65),

B̄t

1− At
= −3β1(σ̄r2 + β1βν̄2)

β[β21(1 + ν)− 3]
+

β21(1 + ν)σ̄r2 + 3β1βν̄2
β21(1 + ν)− 3

. (12.70)

The velocity in the cracked zone adjacent to the cracked-elastic zones
interface can be written as

ν̄3 = − 1
β2

β21(1 + ν)σ̄r2 + 3ββ1ν̄2
β2(1 + ν)− 3

+
β1(1 + ν)(σ̄r2 + ββ1ν̄2)

β[β21(1 + ν)− 3]
. (12.71)

12.4.4 Interface of the Plastic and Cracked Zones (r = ct, ξ = 1)

Defining σ̄r4 and ν̄4 the radial stress and velocity, respectively, in the plastic
zone adjacent to the interface, with reference to the Hugoniot jump condition,

ρ4 (ν̄4 − 1) = ρ3 (ν̄3 − 1) , (12.72)

σ̄r4 = σ̄r3 +
ρ3
ρ0

β2 (1− ν̄3) (ν̄4 − ν̄3) , (12.73)

where ρ4 and ρ3 are the density in the plastic and cracked zones adjacent to
the interface respectively.

From Eq.(12.63),

σ̄r3 =
B̄uni

1− Auni
. (12.74)

According to the pressure-bulk strain relation, the following expression
can be obtained: (

1− ρ0
ρ3

)
=
1 + ν

3
B̄uni

1− Auni
. (12.75)

Putting Eq.(12.75) into Eq.(12.73),

σ̄r4 = σ̄r3 +
3(1− Auni)β2 (1− ν̄3) (ν̄4 − ν̄3)

3(1− Auni)− (1 + ν)B̄uni
. (12.76)

Based on the unified strength theory, the material in the plastic zone
satisfies

σ̄r − σ̄θ = Auniσ̄r + B̄uni, (12.77)

where
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Auni =
2 sinϕuni
1 + sinϕuni

, Buni =
2Cuni cosϕuni
1 + sinϕuni

.

Cuni and ϕuni are the unified internal friction angle and unified cohesion,
respectively, corresponding to the unified strength theory and they have the
form of

sinϕuni =
2(1 + b) sinϕ0
2 + b+ b sinϕ0

, (12.78)

Cuni =
2(1 + b)c0 cosϕ0
2 + b+ b sinϕ0

· 1
cosϕuni

. (12.79)

At the interface, Eq.(12.77) can be rewritten as

σ̄r4 − σ̄θ4 = Auniσ̄r4 + B̄uni. (12.80)

According to the pressure-bulk strain relation,

1
2
(σ̄r4 + σ̄θ4) = 1− ρ0

ρ4
. (12.81)

From the above equations it derives

ρ4 =
2ρ0

2− (2− Auni)σ̄r4 + B̄uni
. (12.82)

Putting Eq.(12.82) into Eq.(12.72), then there is

ν̄4 = 1 +
ρ3(2 + B̄uni)(ν̄3 − 1)

2ρ0
− ρ3(2− Auni)σ̄r4(ν̄3 − 1)

2ρ0
. (12.83)

From Eqs.(12.83) and (12.76), we can get

σ̄r4 = n̄σ̄r3 + n̄
ρ3
ρ0

β2(ν̄3 − 1)2
[
1− ρ3(2 + B̄uni)

2ρ0

]
, (12.84)

where

n̄ =
2ρ20

2ρ20 − ρ23β
2(1− ν̄3)2(2− Auni)

.
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12.4.5 Plastic Zone (vrt � r � ct, δ � ξ � 1)

The mass and momentum equations in Eqs.(12.55) and (12.56) are still valid
in the plastic zone. The boundary stress and velocity conditions in the plastic
zone can be expressed as

r = vrt, ν̄(ξ = δ) = δ, (12.85)

r = ct,

{
σ̄r(ξ = 1) = σ̄r4,
ν̄(ξ = 1) = ν̄4.

(12.86)

According to the pressure-bulk strain relation,

(σr + σθ) = 2K
(
1− ρ0

ρ4

)
= 2Kη. (12.87)

The material in the plastic zone satisfies the unified strength theory,

σr − σθ = Atσr +Bt. (12.88)

From Eqs.(12.87) and (12.88),

η =
(2− At)σ̄r − B̄t

2
. (12.89)

Putting Eqs.(12.87) and (12.88) into the mass and momentum conserva-
tion equations, the following differential equations can be derived,

∂ν

∂r
+

ν

r
= − 2− At

2K(1− η)

(
∂σr

∂t
+ ν

∂σr

∂r

)
, (12.90)

∂σr

∂r
+

Atσr +Bt

r
= − ρ0

1− η

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.91)

The dimensionless expressions of the above equations are

dν̄
dξ

+
ν̄

ξ
= −2− Auni

2(1− η)
(ξ − ν̄)

dσr

dξ
, (12.92)

dσ̄r

dξ
+

Auniσ̄r + B̄uni
ξ

=
β2

1− η
(ξ − ν̄)

dν̄
dξ

. (12.93)

Eqs.(12.92) and (12.93) can be rewritten as

dσ̄r

dξ
=
2(1− η)

[
βν̄(βξ − βν̄) + (1− η)(Auniσ̄r + B̄uni)

]
ξ[(2− Auni)(βξ − βν̄)2 − 2(1− η)2]

, (12.94)
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d (βν̄)
dξ

=
(1− η)

[
(2− Auni)(Auniσ̄r + B̄uni)(βξ − βν̄) + 2βν̄(1− η)

]
ξ[(2− Auni)(βξ − βν̄)2 − 2(1− η)2]

.

(12.95)
Eqs.(12.94) and (12.95) can be solved using the Runge-Kutta method.

Defining y1 = σ̄r and y2 = ν̄, the boundary conditions can be written as
y1(0) = σ̄r4 and y2(0) = ν̄4. When the stress and velocity in the plastic zone
are deduced, Eqs.(12.94) and (12.95) can be expressed in the form{

y′
1 = f(ξ, y1, y2), y1(0) = σr4,

y′
2 = g(ξ, y1, y2), y2(0) = ν̄4.

(12.96)

The integral domain borders the plastic-cracked zones interface (ξ = 1)
and the cavity surface (ξ = δ). According to the boundary conditions, when
ξn = 1− nΔξ, y2n = ξn. The radial stress and velocity at the cavity surface
can be obtained when δ = ξn and y1(n) = σ̄r(δ).

The detailed procedures for solving the differential equations are given as
follows:

Step 1. Substituting Eqs.(12.43), (12.45), (12.53), and (12.54) into Eq.
(12.70), the relation between β1 and β is deduced.

Step 2. Assuming an initial value for β1, β can be calculated with reference
to the relations between β1 and β deduced in Step 1.

Step 3. σ̄r1 and ν̄ are calculated from Eqs.(12.43) and (12.45) with ref-
erence to β1 and β. Putting σ̄r1 and ν̄1 into Eqs.(12.53), (12.54), (12.68),
(12.69), and (12.71), σ̄r2 and ν̄2, the integration constants D1 and D2, and
ν̄3 are determined. Putting the above quantities into Eqs.(12.74) and (12.75),
σ̄r3 and ρ̄3 are obtained.

Step 4. Substituting σ̄r3, ρ̄3, and ν̄3 into Eqs.(12.84) and (12.83), σ̄r4 and
ν̄4 are determined.

Step 5. Based on boundary conditions, the differential equation in Eq.(12.
96) is solved from ξ = 1 to ξ = δ. The stress and velocity distribution in the
plastic zone is then calculated. With application of the boundary conditions,
the radial stress and the expansion velocity are obtained.

When the bulk strain is zero, i.e., η = 0, and ρi = ρ0 (i = 1, ..., 4), the
solutions for incompressible materials can be deduced from Eqs.(12.21) to
(12.96). If the interface velocities c and c1 are the same, the radial cracked
zone disappears and there are only plastic, elastic, and undisturbed zones in
the materials.

12.5 Cavity Expansion Pressure and Velocity

With application of the concrete parameters given by Forrestal (1997), i.e.,
bulk modulus K of 6.7 GPa, compressive strength Y of 130 MPa, elastic
modulus E of 11.3 GPa, Poisson’s ratio ν of 0.22, tensile strength σt = 13
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MPa, density ρ0 = 2260 kg/m3, according to the derived equations based
on the cylindrical cavity expansion theory, the material is considered to be
incompressible or compressible. The response of the target can be elastic-
plastic or elastic-crack-plastic, respectively.

12.5.1 Incompressible Material

Fig.12.5 illustrates the relation between the radial stress at the cavity surface
and the cavity expansion velocity for the elastic-plastic response of the target.
From Fig.12.5, the radial stress increases with increasing cavity expansion
velocity, the radial stress and the unified strength theory parameter b.

Fig. 12.5. Radial stress versus cavity expansion velocity (incompressible material,
elastic-plastic response)

Figs.12.6 and 12.7 plot the curves of the plastic-crack interface velocity
c and the elastic-crack interface velocity c1 versus the cavity expansion ve-
locity vr for incompressible material for b = 1.0 and b = 0, respectively. It
is shown that for a given velocity vr, c1 is higher than c. When b = 1.0 and
vr/(Y/ρ0)1/2 = 0.82, the curves of c1 and c intersect, i.e., the cracked zone
vanishes at this cavity expansion velocity and there are only elastic and plas-
tic zones in the material. When b = 0 and vr/(Y/ρ0)1/2 = 0.7, the curves of c1
and c also intersect, the response of material shifts from elastic-crack-plastic
to elastic-plastic. The current solution with b = 0 conforms to the result re-
ported by Forrestal (1997), who applied the spherical cavity expansion theory
and discovered that the cracked zone disappears when vr/(Y/ρ0)1/2 = 0.71.

Fig.12.8 illustrates schematically the relation between the radial stress in
the cavity surface and the cavity expansion velocity for incompressible mate-
rials under elastic-crack-plastic response for b = 0 and b = 1.0, respectively.
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Fig. 12.6. Cavity expansion velocity versus interface velocity (incompressible ma-
terial, elastic-crack-plastic response, b = 1.0)

Fig. 12.7. Cavity expansion velocity versus interface velocity (incompressible ma-
terial, elastic-crack-plastic response, b = 0)

The radial stress for b = 1.0 is higher than that for b = 0. The radial stress
increases with increasing cavity expansion velocity. The quasi-static cavity
expansion pressure is the radial stress at the cavity surface when vr = 0.

Compared with the results given by Forrestal (1997) which are based on
the spherical cavity expansion theory, the radial stress derived based on the
cylindrical cavity expansion theory is smaller when the impact velocity is
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relatively low. However, it is higher when the impact velocity is relatively
high. It agrees with the statements by Forrestal (1997).

Fig.12.9 compares the radial stresses between the elastic-plastic response
and the elastic-crack-plastic response for incompressible material. From Fig.
12.9, the stress is higher for the elastic-plastic response when the velocity
is lower. When the velocity increases, the stress of the elastic-crack-plastic
response gradually transfers to that of elastic-plastic response. Finally, the
curves of the two responses intersect.

Fig. 12.8. Radial stress at cavity surface versus cavity expansion velocity (incom-
pressible material, elastic-crack-plastic response)

Fig.12.10 shows the curves of elastic-crack interface velocity c1 versus
plastic-crack interface velocity c during the cavity expansion. The curves are
different for different parameter b. Fig.12.11 plots the curves of the cavity
expansion velocity vr versus the plastic-crack interface velocity c for incom-
pressible material. Fig.12.12 plots the curves of the radial stress versus the
radius for incompressible material under the elastic-crack-plastic response.
Fig.12.12 shows that the stress at the cavity surface is the highest and re-
duces gradually with the increasing radius.

12.5.2 Compressible Material

Figs.12.13 and 12.14 compare the cavity expansion stress of compressible ma-
terials with that of incompressible materials under elastic-plastic response for
b = 0 (Single-shear theory) and b = 1.0 (Twin-shear theory) respectively. It
is seen that for a given cavity expansion velocity, the cavity expansion surface
pressure of incompressible materials is much higher than that of compressible
materials.
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Fig. 12.9. Comparison of radial stress for elastic-plastic and elastic-crack-plastic
responses (incompressible material)

Fig. 12.10. Curves of c1 versus c for incompressible material

Fig.12.15 illustrate the curves of cavity expansion velocity vr versus the
plastic-crack interface velocity c. From Fig.12.15, for a given vr, c is the
highest when b = 0, while it is the lowest when b = 1.0. Fig.12.16 plots
the relations between the cavity expansion velocity, plastic-crack interface
velocity c and plastic-crack interface velocity c1 for compressible materials
with b = 0.5. Similar to the incompressible materials, for a given vr the
elastic-crack interface velocity c1 is higher than the plastic-crack interface
velocity c, where f(ξ, y1, y2) and g(ξ, y1, y2) correspond with Eqs.(12.94)
and (12.95). The curves of c1 and c intersect at the point when vr/(Y/ρ0)1/2 =
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Fig. 12.11. Curves of vr versus c for incompressible material

Fig. 12.12. Radial stress versus radius for incompressible material

1.05, where the cracked zone disappears and the response of the material is
elastic-plastic.

Figs.12.17 and 12.18 compare the cavity expansion pressures between the
elastic-plastic and elastic-crack-plastic responses for compressible materials
for b = 1.0 (Twin-shear theory), b = 0.5 (Median theory) and b = 0 (Single-
shear theory), respectively.

From Figs.12.17, 12.18, and 12.19, the cavity expansion pressure for
elastic-crack-plastic response is lower when the expansion velocity is lower.
With the increase of the cavity expansion velocity, the cracked zone disap-
pears and the response of the target becomes elastic-plastic.
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Fig. 12.13. Comparison of radial stress between incompressible and compressible
materials (b = 0)

Fig. 12.14. Comparison of radial stress between incompressible and compressible
materials (b = 1.0)

For compressible materials the curves of the cavity expansion pressure
versus cavity expansion velocity can be expressed as a quadric parabola,

σr/K = A1 +B1

(
vr

cp

)2
, (12.97)

where vr is the cavity expansion velocity; A1 is the quasi-static cavity expan-
sion pressure.
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Fig. 12.15. vr versus c for elastic-crack-plastic response (incompressible materials)

Fig. 12.16. Cavity expansion velocity versus interface velocity (compressible ma-
terials, b = 0.5)

The coefficients in Eq.(12.97) are listed in Table 12.1 for the elastic-
plastic and elastic-crack-plastic responses, respectively, with different unified
strength theory parameter b.
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Fig. 12.17. Comparison of cavity expansion velocities between elastic-plastic and
elastic-crack-plastic responses (compressible materials, b = 1.0)

Fig. 12.18. Comparison of cavity expansion velocities between elastic-plastic and
elastic-crack-plastic responses (compressible materials, b = 0.5)

12.6 Penetration Resistance Analysis

The capabilities of penetration and destruction of a long rod projectile are
much higher than those of the old-style armor-piercing projectile since the
long rods have a higher length-diameter ratio. The long rod projectiles can
be divided into straight-shank type and cone-shank type. According to the
shape of warhead the long rod can be categorized into a spherical, ogive, and
conical warhead nose, respectively, as shown in Fig.12.20.
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Fig. 12.19. Comparison of cavity expansion velocities between elastic-plastic and
elastic-crack-plastic responses (compressible materials, b = 0)

Table 12.1. Curve fitting of cavity expansion pressure for compressible materials
under elastic-plastic response

Response Material strength A1 B1

parameter b

1.0 0.044 1.80

Elastic-plastic 0.5 0.045 1.83

0.0 0.046 1.87

1.0 0.029 2.90

Elastic-crack-plastic 0.5 0.030 3.02

0.0 0.031 3.10

Because a long rod impacts and penetrates a target with an impact ve-
locity V0 and a penetration velocity Vz, the coordination xOz of the target
is established as shown in Fig.12.21. The origin is the impacting point of
the long rod, the positive z axial is downwards vertically, and the x axial
is horizontal. The resistance on the long rod includes the resistance on the
warhead and that on the surface of the shank. The resistance on the shank
surface is very small and can be omitted because the velocity of the impact
and penetration is low (Jones et al., 1993; Bless et al., 1987).

The tractions that resist the penetration are the normal force Fn, and the
tangential force Ft. The resistance is analyzed in the following context for
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Fig. 12.20. Different head shapes of straight long rods

Fig. 12.21. Rod-target system

Fig. 12.22. Resistance on the long rod

the ogive-nose projectile. The resistances for other nose shape projectiles can
be similarly derived.

For an ogive-nose projectile as shown in Fig.12.20(b) with radius of s,
central angle of θ0,

θ0 = sin−1
(

s − a

s

)
. (12.98)
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The normal force on the tiny surface of the warhead is

dFn = 2πs2
[
sin θ −

(
s − a

s

)]
σrdθ. (12.99)

The tangential force on the tiny surface of the warhead is

dFt = 2πs2
[
sin θ −

(
s − a

s

)]
μσrdθ, (12.100)

where σr is the principal stress on the warhead, which is also the radial
stress on the cavity surface using the cavity expansion theory. μ is the friction
coefficient. The value of μ depends on the penetration depth, velocity and the
material properties of the rod and the target. Its linear experiential formula
is proposed by Bowden and Tabor (1966),

μ =

⎧⎨
⎩

μd, Vz � Vd,

μs − μs − μd

Vd
Vz, Vz � Vd,

(12.101)

where Vd is the critical penetration velocity which can be obtained by trial-
and-error; μs and μd are friction parameters of the targets, which are related
to the penetration velocity. For the geomaterials, there are Vd = 300 m/s,
μs = 0.5, μd = 0.08 (Bowden and Tabor, 1966).

The radial stress can be written as

σr/K = A1 +B1

(
νr

cp

)2
. (12.102)

The relation between the cavity expansion velocity and the penetration
velocity is

Vr = Vz cos θ, (12.103)

where θ is the angle between the surface normal and the rod axial directions.
Putting Eq.(12.103) into Eq.(12.102),

σr/K = A1 +B1

(
Vz cos θ

cp

)2
. (12.104)

The total resistance on the warhead is

Fz = 2πs2
∫ π

2

θ0

[(
sin θ − s − a

s

)
(cos θ + μ sin θ)

]
σrdθ. (12.105)

Integrating Eq.(12.102) with reference to Eq.(12.105),
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Fz = αs + βsV
2
z , (12.106)

where

αs = π a2KA1[1 + 4μψ2(π/2− θ0)− μ(2ψ − 1)(4ψ − 1)1/2], (12.107)

βs = π a2ρB1

[
(8ψ − 1)
24ψ2

+ μψ2(π/2− θ0)

−μ(2ψ − 1)(6ψ2 + 4ψ − 1)(4ψ − 1)1/2

24ψ2

]
.

(12.108)

The resistance on rods of other shapes can also be deduced similarly with
the replacement of different geometry shape functions based on the shapes
of the nose of the rod.

12.7 Analysis and Verification of Penetration Depth

Assuming a long rod is non-deformable during the penetration, with reference
to the Newton’s second law,

mp
dVz

dt
= mpVz

dVz

dz
= −Fz = −(αs + βsV

2
z ), (12.109)

where αs and βs are the shape parameters of the nose; mp is the mass of the
rod.

Integrating Eq.(12.109) with reference to the initial and final conditions,
the penetration depth can be deduced,

Zmax =
mp

2βs
ln

[
1 +

βsV
2
0

αs

]
. (12.110)

The parameters for the target material in Section 12.5 are also applied
for the current problem. The parameters used for the long rod are mp=1.6
kg, s=91.5 mm, a=15.25 mm.

Based on the results of the cavity expansion pressure for compressible
materials in Section 12.5, the final penetration depth can be derived for the
target material impacted by an ovate straight long rod with a velocity of 300
sim 1100 m/s. The analytical results from the current penetration model
agree very well with the test data (Forrestal et al., 1996) when the initial
velocity is low.



12.7 Analysis and Verification of Penetration Depth 289

The penetration depths are illustrated schematically in Fig.12.23 for the
friction parameters μ = 0.1 and μ = 0.2 respectively. From Fig.12.23 the fric-
tion parameter has great influence on the penetration depth. The penetration
depth for μ = 0.1 is closer to the test results (Forrestal et al., 1996).

Fig. 12.23. Comparison of penetration depths

Fig.12.24 shows the influence of rod mass on the penetration depth. It is
seen that the heavier the rod, the greater the penetration capability.

Fig. 12.24. Influence of the rod mass on the penetration depth

The penetration depths are solved for the ovate and spherical warheads
with the same shank diameter as that for the ogive-nose projectile as shown
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Fig.12.25. It can be seen that the ovate-warhead rod can penetrate deeper
than the spherical warhead rod.

Fig. 12.25. Influence of different shapes of warhead on penetration depth

12.8 Summary

Based on the cylindrical cavity-expansion theory, the unified strength theory
is applied as the failure condition for penetration analysis. The cavity ex-
pansion pressure is deduced from the elastic-plastic and elastic-crack-plastic
responses for incompressible and compressible materials. Assuming the long
rods are rigid during the penetration, the penetration depths of rods are ob-
tained and are compared with the test results. The following conclusions are
derived:

(1) It is convenient to use the unified strength theory for penetration
problems.

(2) When the cavity expansion velocity is low, the target response is
elastic-crack-plastic. When the cavity expansion velocity increases to a certain
value, the cracked zone disappears and the target responds elastic-plastically.
It agrees with the results reported by Forrestal (1997).

(3) The cavity expansion pressure and the penetration depth are different
when the different parameter b is used, which represents a different failure
criterion. The penetration depth is higher for b = 0 than that for b = 1.
The current solutions agree well with test results in the published literature
for low impact velocity cases (Forrestal et al., 1996). However, the predicted
penetration depth is smaller than that in the test results when the impact
velocity is larger than 1000 m/s.
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(4) For a given shape and dimension, the higher the rod mass or the
density of the rod material, the deeper the penetration. This may be the
underlying reason why those high-density metals are used as warheads for
modern weapons.

(5) The shape of a warhead has a significant influence on the penetration
depth. When the shank diameter is the same, the ovate-warhead rod can
penetrate deeper than the spherical warhead.

References

Bishop RF, Hill R, Mott NF (1945) The theory of identification and hardness
tests. The Proc. Phys. Soc. 57(3):147-159

Bless SJ, Rosenberg Z, Yoon B (1987) Hypervelocity penetration of ceramics. Int.
J. Impact Eng., 5:165-171

Bowden FP, Tabor D (1966) Friction, lubrication and wear—survey of work during
last decade. British Journal of Applied Physics, 17(12):1521-1544

Forrestal MJ, Frew DJ, Hanchak SJ, Brar NS (1996) Penetration of grout and
concrete targets with ogive-nose steel projectiles. Int. J. Impact Eng., 18(5):465-
476

Forrestal MJ, Tzou DY (1997) Spherical cavity-expansion penetration model for
concrete targets. Int. J. Solids Struct., 34(31-32):4127-4146

Forrestal MJ, Zhou DY, Askari E, Longcope DB (1995) Penetration into ductile
metal targets with rigid spherical-nose rods. Int. J. Impact. Eng., 16(5/6):699-
710

Heuze FE (1990) Overview of projectile penetration into geological materials,
with emphasis on rocks. Int. J. Rock Mechanics and Mining Sciences & Ge-
omechanics Abstracts, 27(1):1-14

Hill R (1950) The mathematical theory of plasticity. Clarendon Press, London
Hopkins HG (1960) Dynamic expansion of spherical cavities in metal. In: Sneddon
IN, Hill R (eds.) Progress in Solid Mechanics, Vol.1, Chapter III, North-Holland
Publ. Co., Amsterdam, New York

Jones SE, Marlow RB, House JW, et al. (1993) A one-dimensional analysis of the
penetration of semi-infinite 1100-0 aluminum targets by rods. Int. J. Impact
Eng., 14: 407-416

Li JC (2001) Investigation of high velocity long-rod penetration semi-infinite con-
crete plate. Ph.D. dissertation, Xi’an Jiaotong University (in Chinese, English
abstract)

Li JC, Yu MH, et al. (2000) The dynamic investigation of semi-infinite concrete
targets penetrated by long rods. Mechanics 2000, Forest Press, Beijing, 519-
520.(in Chinese)

Li JC, Yu MH, Gong YN (2000) Dynamic investigation of semi-infinite concrete
target penetrated by long rod. In: Proceedings of the 3rd Asian-Pacific Confer-
ence. On Aerospace Technology and Science, Beijing University of Aeronautics
and Astronautics Press, Beijing, 263-269

Li QM (2005) Penetration of a hard missile. 6th Asia-Pacific Conference on Shock
& Impact Loads on Structures, Dec 7-9, 2005, Perth W, Australia, 49-62

Longcope DB, Forrestal MJ (1983) Penetration of targets described by a Mohr-
Coulomb failure criterion with a tension cutoff. J. Appl. Mech., 50:327-333



292 12 Projectile Penetration into Semi-infinite Target

Luk VK, Forrestal MJ (1987) Penetration into semi-infinite reinforced-concrete
targets with spherical and ogival noise projectiles. Int. J. Impact Eng., 6(4):291-
301

Mastilovic S, Krajcinovic D (1999) Penetration of rigid projectiles through quasi-
brittle materials. J. Appl. Mech., 66:585-592

Wang YB (2004) Research in structural impacting problems based on the uni-
fied strength theory. Ph.D. dissertation, Xi’an Jiaotong University (in Chinese,
English abstract)

Wang YB, Li ZH, Wei XY, Yu MH (2005) Analysis of high-velocity tungsten rod
on penetration brittle target. Chinese J. High Pressure Physics, 19(3):257-263
(in Chinese, English abstract)

Wang YB, Zhu YY, Yu MH (2004) Penetration analysis of high-velocity tungsten
rod on ceramic targets using unified strength theory. Explosion and Shock
Waves, 24(6):534-540 (in Chinese, English abstract)

Wei XY (2002) Investigation of long-rod penetration problems. Ph.D. dissertation,
Xi’an Jiaotong University (in Chinese, English abstract)

Wei XY, Yu MH (2002) Analysis of tungsten rod on penetration ceramic targets at
high velocity. Acta Armamentarii, 23(2):167-170 (in Chinese, English abstract)

Yu MH (1992) A new system of strength theory. Xi’an Jiaotong University Press,
Xi’an, China (In Chinese)

Yu MH (2004) Unified Strength theory and its applications. Springer, Berlin
Yu MH, He LN (1991) A new model and theory on yield and failure of materials
under complex stress state. In: Mechanical Behavior of Materials-6, Pergamon
Press, Oxford, 3:841-846

Yu MH, He LN, Liu CY (1992) Generalized twin shear stress yield criterion and
its generalization. Chinese Science Bulletin, 37(24):2085-2089

Yu MH, Li JC, Zhang YQ (2001) Unified characteristics line theory of spatial ax-
isymmetric plastic problem. Science in China (Series E), English ed., 44(2):207-
215; Chinese ed., 44(4):323-331

Yu MH, Ma GW, Qiang HF, et al. (2006) Generalized plasticity. Springer, Berlin
Yu MH, Yang SY, Liu CY, Liu JY (1997) Unified plane-strain slip line theory.
China Civil Eng. J. 30(2):14-26 (in Chinese, English abstract)

Zukas JA, Nicholas T, Swift HF, et al. (1982) Impact dynamics. John Wiley &
Sons, Inc., New York


