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Introduction

1.1 Background

Plasticity is one of the underlying principles in the design of structures, es-
pecially metal and reinforced concrete structures. Numerous textbooks and
monographs on structural plasticity and plastic design have been published
since the 1950s (Baker et al., 1956; Baker, 1956; Neal, 1956; Heyman, 1958;
1971; Hodge, 1959; 1963; Horne, 1964; 1978; Baker and Heyman, 1969; Save
and Massonnet, 1972; Chen, 1975; 1982; Morris and Randall, 1979; Horne
and Morris, 1981; Zyczkowski, 1981; König and Maier, 1981; König, 1987;
Mrazik et al., 1987; Save et al., 1997; Nielsen, 1999). The European Rec-
ommendations for the design of steelwork and reinforced concrete structures
apply widely the plastic behavior of materials (Horne and Morris, 1981).

The advantages of the plastic method for structural analysis were dis-
cussed by Massonnet, Beedle, Heyman and Chen as follows:“The method
of plastic design represents reality better than the conventional elastic
method; it must lead to better proportioned and more economical struc-
tures”(Heyman, 1960). “For plastic design to represent reality means that
the collapse load computed from plastic theory can be closely observed in
practice” (Heyman, 1960).

“Engineers and research workers have been stimulated to study the plastic
strength of steel structures and its application to design for three principal
reasons: (a) it has a more logical design basis; (b) it is more economical in the
use of steel, and (c) it represents a substantial saving of time in the design”
(Beedle, 1960).

“The calculation of load-carrying capacity by use of the limit theorems
is much easier than the calculation of stress. Answers obtained are not only
physically more meaningful but also simpler. The simplicity of limit anal-
ysis opens the way to limit design, to direct design as contrasted with the
trial-and-error procedure normally followed in conventional design.” “The es-
timation of the collapse load is of great value, not only as a simple check for
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a more refined analysis, but also as a basis for engineering design” (Chen,
1982).

The elastic and plastic limit loads are two important indicators for the
overall robustness of a structure to resist external loads. Load-carrying ca-
pacity of a structure usually refers to the plastic limit load, which is also
called collapse load.

The plastic limit analysis gives a straightforward approximation of the
maximum strength and shakedown load of structures. It simplifies the anal-
ysis of structures and also helps to derive a cost-effective design.

The elastic and plastic limit loads of structures are often used for de-
sign and safety evaluation purposes. Although advanced computer software
using numerical methods have been applied widely in engineering practices,
analytical solutions still play an important role because they can provide
explicit forms of the limit loads, stress and bending moment fields and de-
formation field of structures, which enables a preliminary structure design
and validation of numerical results. The elastic and plastic limit solutions
are simple to derive, especially for plate and rotationally symmetrical solids,
whose governing equations contain only a few variables.

Conventionally the Tresca and Mohr-Coulomb criteria are adopted to de-
rive the plastic limit load for structures because they have piecewise linear
mathematical expressions, which makes the integration of the governing dif-
ferential equations tractable. The plastic limit loads based on the Tresca
criterion for metallic material structures and the Mohr-Coulomb criterion for
geomaterial structures have been well applied in design and safety evaluation
practice. However, these strength criteria ignore the influence of the interme-
diate principal stress on the material strength and may lead to improper or
over-conservative design of structures.

On the other hand, another widely used criterion, the Huber-von Mises
yield criterion has a nonlinear mathematical expression, which renders its
application unstraightforward. The effect of different yield criteria on the
estimation of the load-bearing capacity of structures has not been fully ex-
plored. Most of the textbooks on the plastic limit analysis introduce only
solutions based on the Tresca criterion. However, these solutions give a lower
bound of the plastic limit load of structures. They may underestimate the
load-bearing capacity of structures, which will be addressed in the following
chapters. To achieve a better design it is necessary to investigate accurately
the plastic limit load of structures.

A unified strength theory was brought up and developed by Yu (1991;
1992; 2004), which is formulated by piecewise linear expression. The theory
is based on the assumption that material yielding is dominated by the two
larger principal shear stresses (or twin-shear stresses). A parameter b ranging
from 0 to 1 is applied on the second principal shear stress, which adjusts
the relatively low effect of the second principal shear stress compared to
that of the first one. The parameter b reflects different material strength
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behaviors indicated by different relative shear strengths, which are supported
by much experimental evidence. The unified strength theory can represent
or approximate the most prevailing yield and strength criteria, such as the
Tresca criterion, the Huber-von Mises criterion, the Mohr-Coulomb criterion,
and the twin-shear stress criterion. Using the unified strength theory, the
plastic limit load of structures made of different materials can be derived
conveniently in a unified manner. This book presents the plastic limit and
shakedown analyses of various plates and rotationally symmetrical structures
based on the unified strength theory. The derived solutions demonstrate the
effect of different yield and strength criteria on the plastic limit loads of
structures.

This book is one of a series of books on the fundamentals, developments,
and applications of the unified strength theory (Yu, 2004; Yu et al., 2006).

1.2 Unification of Yield and Strength Criteria

In general, a yield criterion refers to a simpler form of a strength criterion that
is applied for metallic materials which are ductile and have identical tensile
and compressive uniaxial strengths. A strength criterion is more general and
applicable to both metallic and non-metallic materials, which may exhibit
strength difference in tension and compression. Non-metallic materials, such
as rock, concrete, and soils, are also referred as strength difference or SD
materials. Correspondingly, the uniaxial tensile and compressive strengths of
metallic materials are identified as those of non-SD materials. The unified
strength theory consists of a unified strength theory, which is applicable to
the SD materials, and a unified yield criterion to the non-SD materials. The
unified yield criterion is a specific form of the unified strength theory when
the strength difference in uniaxial tension and compression can be ignored.

For stable and isotropic metal materials, the Tresca criterion (or the
single-shear criterion) is the lower bound yield criterion, and the twin-shear
yield criterion (Yu, 1961; 1983) is the upper bound according to the convexity
condition. The lowest and the highest load carrying capacities of metal struc-
tures are calculated with respect to these two criteria. Some nonlinear yield
criteria, whose geometrical graphs lie between the two surfaces defined by the
single-shear criterion and the twin-shear criterion, have also been proposed.
However, their nonlinear mathematical expressions make the derivation of the
closed-form solutions of plastic limit loads for structures very complicated.

The Yu unified yield criterion bounded by the single-shear criterion and
the twin-shear criterion has the advantage of simple expression in giving the
unified solution of the load-bearing capacity of structures. A series of different
solutions can be derived by choosing the unified yield criterion parameter b
from 0 to 1. It can be applied to various non-SD materials. The plastic limit
loads estimated by the single-shear criterion (Tresca criterion), the Huber-
von Mises criterion and the twin-shear stress criterion are special cases or
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close approximations of the solutions based on the unified yield criterion
with specific values of strength parameter b.

The unified strength theory, which is a straightforward extension of the
twin-shear yield criterion (Yu, 1961; 1983) and twin-shear strength theory
(Yu et al., 1985), also has a piecewise linear mathematical expression. It
gives the plastic limit solutions for structures of SD materials. The plastic
limit load based on the Tresca criterion or the Mohr-Coulomb criterion is one
of the specific forms of the solutions given by the unified strength theory. A
series of new solutions can be derived by varying the unified strength theory
parameter b from 0 to 1.

A detailed description of the unified strength theory can be found in
the companion volumes of Unified Strength Theory and Its Applications and
General Plasticity published by Springer in 2004 and 2006. A paper entitled
“Remarks on Model of Mao-Hong Yu” was made by Altenbach and Kolupaev
(2008). Reviews of “Unified Strength Theory and Its Applications” were made
by Shen (2004) and Teodorescu (2006). The comments on the unified strength
theory were made by Fan and Qiang (2001) and Zhang et al. (2001).

1.3 Plastic Limit Analysis

The traditional estimation of the load-carrying capacity of a structure under
static loading was based on the “local” permissible stress condition. More
realistic approaches must take plastic deformation into account. The simplest
estimation of the load-bearing capacity is furnished by concept of the limit-
carrying capacity. The related ideas date back to the 18th century (Gvozdev,
1938; Prager et al., 1951; Zyczkowski, 1981). The theorems of limit analysis
which provide upper and lower bounds to the true collapse load were first
presented by Gvozdev (1938) and independently proved by Hill (1951) for
the rigid-perfectly plastic materials, and by Drucker et a1. (1952) for the
elastic-perfectly plastic materials.

The circular plate is an important structural element in many branches of
engineering. Reliable prediction of the load-bearing capacity of the circular
plate is crucial in achieving an optimal structural design. Previous studies by
other researchers have shown that the limit analysis is an effective measure in
exploring the strength behaviors of a circular plate in the plastic limit state
(Hodge, 1963). Hopkins and Prager (1953), Zaid (1958), and Hodge (1963)
investigated the load-bearing capacity of circular and annular plates with
limit analysis theorems and proved that an exact plastic limit solution for an
axisymmetrical plate can be analytically derived if the material of the plate
satisfies a linear yield criterion. Ghorashi (1994) derived the plastic limit
solutions for circular plates subjected to arbitrary-rotationally symmetric
loading. However, most of the reported results have been derived in terms of
the maximum stress yield criterion or the Tresca criterion that takes account
of the effect of only one or two principal stresses in the three dimensional
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stress space. Solutions in terms of these yield criteria may not reflect the
real characteristics of a circular plate in the plastic limit state. Hopkins and
Wang (1954) investigated the load-bearing capacities of circular plates with
respect to the Huber-von Mises criterion and a parabolic criterion by iterative
method. The percentage differences of the plastic limit loads with respect to
the Huber-von Mises criterion and the Tresca criterion are approximately 8%
and 10% for a simply supported and a clamped circular plate, respectively.
These observations indicate that the plastic limit loads in terms of different
yield criteria are different and the difference varies with the variation of the
constraint conditions of the plate.

Limit analysis of structures applies only if the loading magnitude is less
than the plastic collapse force. With impact or explosive blast loading the
structures may be subjected to an intense but short duration pressure or force
pulse that exceeds the plastic collapse force. The response of circular plates
to pulse loading was presented by Florence (1966; 1977), Youngdagl (1971;
1987), Li and Jones (1994), Li and Huang (1989), etc. The dynamic plastic
behavior of beams has been investigated in detail by Stronge and Yu (1993).
However, it is difficult to get the analytical solution for plate and shell in
a dynamic plastic deformation state because of the complicated constitutive
formulation. On the other hand, the dynamic analytical solution for a circular
plate is much simpler because of the axisymmetry. Exact theoretical solutions
to the dynamic response of a rigid, perfectly plastic, simply supported circular
plate have been explored initially by Hopkins and Prager (1954). In the past
forty years a number of studies (Jones, 1980; 1989; Florence, 1966; 1977;
Symonds, 1979; Li and Jones, 1994; Liu and Jones, 1996) have been done
on this subject by introducing various boundaries, loading conditions, and
plastic flow assumptions for a circular plate. So far all these studies are based
on the Tresca yield criterion or the maximum stress yield criterion. The
influence of different yield criteria on the dynamic plastic behavior of circular
plates (Florence, 1966) has not been addressed. Recently the influence of the
transverse shear force on the final central deflection of circular plates has
attracted some attention (Liu and Stronge, 1996; Youngdagl, 1971; 1987;
Shen and Jones, 1993; Woodward, 1987). Jones and Oliveira (1980) analyzed
a simply supported circular plate subjected to an impulsive velocity uniformly
distributed over the entire plate. Dynamic plastic behavior of annular plates
with transverse shear effects was studied by Lellep and Torn (2006).

Circular plates are sometimes strengthened in the radial direction or the
circumferential direction with stiffeners, which induces orthotropic yield mo-
ments. Material orthotropy can also arise from the cold forming process,
which results in different yield strengths in different directions. Orthotropic
yield criteria for those plates have been suggested by many researchers
(Sawczuk, 1956; Markowitz and Hu, 1965; Save et al., 1997). They are mainly
modifications of the Tresca criterion. Olszak and Sawczuk (1960) investigated
the plastic limit behavior of an orthotropic circular plate in terms of the
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modified Tresca criterion. The results have been extended to various loading
cases by Markowitz and Hu (1965). The plastic limit solution given in these
studies satisfies both a statically admissible moment field and kinematically
admissible velocity fields and thus, is an exact solution.

Many monographs concerning the limit analysis of a structure were pub-
lished. It can be seen in Baker (1956), Baker, Horne and Heyman (1956),
Neal (1956), Hodge (1959; 1963), Horne (1964), Baker and Heyman (1969),
Heyman (1971), Save and Massonnet (1972), Chen (1975; 1981; 1998), Horne
(1978), Morris and Randall (1979), Horne and Morris (1981), Zyczkowski
(1981), Xu and Liu (1985), Mrazik, Skaloud and Tochacek (1987), Xiong
(1987), Save, Massonnet and Saxce (1997), Huang and Zhen (1998), Nielsen
(1999). The number of papers devoted to problems of the limit carrying ca-
pacity of various structures is enormous. The Tresca criterion, Huber-von
Mises criterion and maximum normal stress criterion are used to obtain the
plastic limit of structures in most books and papers. The literature concerning
the plastic analysis of a structure was summarized by Zyczkowski (1981).

The twin-shear yield criterion was used for limit analysis of a structure.
Some solutions were presented by Li (1988) and Huang and Zeng (1989).
Fourteen problems using the twin-shear criterion were collected in the mono-
graph of Huang and Zeng (1998). Application of the twin-shear strength the-
ory in the strength calculation of gun barrels was reported by Liu, Ni, Yan et
al. (1998). The twin-shear criterion was also used in axisymmetric identifica-
tion of a semi-infinite medium (Zhao, Xu, and Yang et al., 1998) and math-
ematical solutions for forming mechanics of continuum (Zhao, 2004). The
calculation of stable loads of strength-differential thick cylinders and spheres
by the twin-shear strength theory was reported by Ni, Liu, and Wang (1998).

The unified yield criterion was used for plastic analysis of structures of
non-SD materials by Ma, He and Yu (1993), Ma and He (1994) and Ma,
Yu, Iwasaki et al. (1994; 1995). Following these results, Ma et al. presented
a series of unified solutions for non-SD materials. The unified solutions of
structures for SD materials were presented by Li and Yu (2000b), Wei and
Yu (2001; 2002), Wang and Yu (2002; 2005), Xu and Yu (2004), and others.

1.4 Plastic Limit Analysis of Rotating Solids

Rotating discs are used widely as important structural elements in mechan-
ical engineering. In a structural design procedure, it is inevitable that we
must estimate the angular velocity and the stress distribution of a rotat-
ing disc in a fully plastic state. The theoretical study of a rotating disc was
presented by Nadai and Donnell (1929), and since then numerous works in-
volving plastic collapse speeds (Heyman, 1958; Lenard and Haddow, 1972),
thermal effects (Thompson, 1946; Gamer and Mack, 1985), acceleration ef-
fects (Reid, 1972), and variable thickness influence (Güven, 1992; 1994), etc.,
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have been reported. Most of them employed the Tresca criterion which re-
sults in an over-conservative estimation of the load-bearing capacity of a
structure because it does not take account of the effect of the second inter-
mediate principal stress on material yielding (Hill, 1950). As Gamer (1983;
1985) pointed out, when the Tresca criterion and its associated flow rule is
used, the displacement across the elasto-plastic interface of a rotating disc is
not continuous, and negative circumferential plastic strain is derived in the
disc center area where the stresses are tensile. To solve this problem, Gamer
(1984) suggested an additional strain-hardening region at the center area of
the disc. The idea was extended by Güven (1994) in investigating the plastic
limit of angular velocity of a solid rotating disc with variable thickness. Calla-
dine (1969), on the other hand, explained that the singularities in the strain
increments at the center could be interpreted as a tendency for the disc to
“thin” so much as to produce a small hole very quickly. From a mathemat-
ical point of view, the deficiencies in the Tresca solution can be avoided by
applying a non-associated flow rule, e.g., combining the Tresca criterion with
a Levy-Mises flow rule, or by applying the Huber-von Mises criterion and
its associated flow rule (Rees, 1999). The latter must resort to a numerical
iteration method because of the nonlinear expression of the Huber-von Mises
criterion.

The limit of angular velocity of a rotating disc based on the Tresca crite-
rion always gives the lowest estimation. The effect of different yield criterion
on the limit of angular velocity of a rotating disc with variable thickness has
not been well studied because the solution based on the Huber-von Mises
criterion can only be obtained with numerical iteration (Rees, 1999).

1.5 Shakedown Analysis of Structures

The concept and method of shakedown analysis were first brought up in
the 1930s and widely explored in the 1950s. The most significant milestones
in shakedown theory of elasto-plastic structures are the pioneering works
by Bleich (1932), Melan (1936), and Koiter (1953; 1960). They brought up
two crucial shakedown theorems, namely the static shakedown theorem (also
called the Melan’s theorem, the first shakedown theorem, or the lower bound
shakedown theorem), and the dynamic shakedown theorem (also called the
Koiter’s theorem, the second shakedown theorem or the upper bound shake-
down theorem). The later developments of shakedown analysis can be cat-
egorized into the static and the dynamic shakedown analysis methods. The
shakedown theory has constituted a well-established branch of plasticity the-
ory. The bound to shakedown loads was discussed by Zouain and Silveira
(2001).

In recent years, the shakedown analysis of an elasto-plastic structure has
gradually attracted attention in engineering due to the requirements of mod-
ern technologies such as nuclear power plants, the chemical industry, aeronau-
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tical and astronautical technologies. The shakedown theory has been applied
successfully in a number of engineering problems such as the construction of
nuclear reactors, highways and railways, and employed as one of the tools for
structural design and safety assessment in some design standards, rules, and
regulations (König, 1987; Polizzotto, 1993; Feng et al., 1993; 1994; Maier,
2001). Shakedown analysis of the shape-memory-alloy structures is presented
by Feng and Sun (2007). A new unified solution of the shakedown of cylinder
and rotating disc for non-SD materials and SD materials is given by Xu and
Yu (2005). Xu and Yu (2005) also give a shakedown analysis of a thick-walled
spherical shell of material with different strengths in tension and compression.

1.6 Plastic Limit Analysis Based on the Unified
Strength Theory

There have been significant developments in plastic limit analyses of plates
and rotationally symmetrical solids based on the unified strength theory in
recent years. This book mainly updates these developments which have con-
siderable potential in extending the derived solutions to various other struc-
tural forms.

The yield loci of the unified strength theory cover all the traditional con-
vex yield criteria. The Tresca yield criterion, the Huber-von Mises yield cri-
terion, the twin-shear yield criterion and a series of other new linear yield
criteria are special cases or approximations of the unified strength theory.
It provides a new approach to the study of the load-carrying capacities of
structures in a unified manner.

Ma et al. (1993; 1994; 1995a; 1995b; 1995c) derived a unified plastic limit
solution to a circular plate under uniform and partially uniform load. Ma et al.
(1998) gave a unified solution to simply supported circular plates and clamped
circular plates in terms of the Yu’s unified yield criterion. Applications of
the unified yield criterion to unified plastic limit analysis of circular plates
under arbitrary load were reported by Ma et al. (1998; 1999; 2001). The
unified solutions of the limit speed of disc and cylinder using the unified
yield criterion were derived by Ma et al. (1994; 1995a; 1995b; 1995c) for non-
SD materials. The solutions in terms of maximum principal stress criterion,
the Tresca yield criterion, the Huber-von Mises criterion, and the twin-shear
yield criterion are all special cases or close approximations to the solutions
using the unified yield criterion.

The unified solutions of the plastic limit and shakedown load to plate,
cylinder, and limit speed of rotating disc and cylinder for SD materials have
been reported by Wang and Fan (1998), Li and Yu (2001), Wei and Yu (2002),
Wang and Yu (2002; 2005), Xu and Yu (2004; 2005). It will be described in
this book, too.
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A new orthotropic yield criterion, which is an extension of the unified
yield criterion, has been suggested by Ma et al. (2002). The new orthotropic
yield criterion is applicable to the plastic limit analysis of orthotropic plates.

The results derived from the present study show the influence of different
yield criteria, which is helpful in achieving optimized design of structures and
in validating the numerical models in plastic analysis.

1.7 Summary

Various single yield criteria are used for the limit analysis, shakedown analysis
and dynamic plastic analysis of structures. The solution is a single result
adapted for one kind of material. Owing to the development of the unified
strength theory, a series of unified solutions of limit analysis, shakedown
analysis and dynamic plastic analysis of structures were presented during the
last decade.

The unified strength theory is an accumulation of serial yield criteria
adapted for non-SD materials and SD materials. The serial criteria cover all
areas between the lower bound (single-shear criterion, Tresca-Mohr-Coulomb
(1864; 1900)) and upper bound (twin-shear criteria, Yu (1961; 1983; 1985)).
It is well known that all the yield criteria of the unified strength theory are
piecewise linear with the attendant simplification of the analytical solution
of the structure. The application of the unified strength theory gives not
only a single solution, but also a series of solutions. The serial solution for a
structure is referred to the unified solution, which can be adopted for more
materials and structures.
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