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Preface

Structural Plasticity: Limit, Shakedown and Dynamic Plastic Analyses of
Structures is the second monograph on plasticity. The others are General-
ized Plasticity(Springer Berlin Heidelberg, 2006) and Computational Plas-
ticity(forthcoming Zhejiang University Press Hangzhou and Springer Berlin
Heidelberg, 2009) with emphasis on the application of the unified strength
theory.

Generalized Plasticity, the first monograph on plasticity in this series, cov-
ers both traditional plasticity for metals (non-SD materials) and plasticity for
geomaterials (SD materials). It describes the unified slip line theory for plane
strain problems and characteristics theory for plane stress and axisymmetric
problems, as well as the unified fracture criterion for mixed cracks. General-
ized Plasticity can be used for either non-SD materials or SD materials. The
second one is Structural Plasticity: Limit, Shakedown and Dynamic Plastic
Analyses of Structures, which deals with limit analysis, shakedown analysis
and dynamic plastic analyses of structures using the analytical method. The
third one is Computational Plasticity, in which numerical methods are ap-
plied. The advances in strength theories of materials under complex stress
are summarized in the book Unified Strength Theory and Its Applications
(Springer Berlin Heidelberg, 2004).

The elastic and plastic limit analysis and shakedown analysis for struc-
tures can provide a very useful tool for the design of engineering structures.
Conventionally, the Tresca yield criterion, the Huber-von Mises yield crite-
rion, the maximum principal stress criterion and the Mohr-Coulomb criterion
are applied in elastic-plastic limit analysis and shakedown analysis of struc-
tures. However, the result from each of the criteria above is a single solution
suitable only for one kind of material. Only one or two principal stresses
are taken into account in the maximum principal stress criterion, the Tresca
criterion and the Mohr-Coulomb criterion. In addition, the Huber-von Mises
criterion is inconvenient to use because of its nonlinear mathematical expres-
sion.



VI Preface

In the last decade more general solutions of plastic limit analysis and
shakedown analysis for structures with a new unified strength theory have
been presented. A series of unified solutions using the unified strength theory
have been given. Unified plastic limit solutions of structures were presented in
the literature, including unified solutions for circular plates, annular plates,
oblique plates, rhombus plates, rectangular plates and square plates, orthogo-
nal circular plates, thin plates with a hole, rotating discs and cylinders. So did
unified solutions for the shakedown limit of pressure vessels, circular plates
and rotating discs and for the dynamic plastic behavior of circular plates
under soft impact. These unified solutions encompass not only the Tresca
solution and the Mohr-Coulomb solution as special cases, but also a series of
new solutions. The Huber-von Mises solution can also be approximated by
the unified solution. The unified solution is a systematical one covering all
results from a lower result to an upper result. These results can be suitable
for a wide range of materials and engineering structures.

As an example, the unified solution of the limit load for oblique plates
(θ = π/3, l1 = 2l2) is illustrated in Fig.0.1. It can be seen from the figure
that the limit load q can be obtained for various oblique plates with different
angles and length and for various materials with a different strength ratio
in tension and in compression and for various failure criteria with different
parameter b.

Fig. 0.1. Limit loads of oblique plate (θ = π/3, l1 = 2l2) for different materials

The solution with b = 0 is the same as the solution of the Mohr-Coulomb
material, and the solution with b = 0 and α = 1.0 is the same for the
Tresca material. The solution with b = 1.0 is for the generalized twin-shear
criterion and the solution with b = α = 1.0 is the solution of the twin-
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shear stress criterion. Other serial solutions between the single-shear theory
(Tresca-Mohr-Coulomb theory) and the twin-shear theory are new solutions
for different materials. Therefore the unified solution can be adopted for
more materials and structures. It can be noted that all the solutions for the
bearing capacity of structures with b > 0 are higher than those with the
Tresca or Mohr-Coulomb criterion. The application of the unified solution
is economical in the use of materials and energy. The other example is the
determination of the limit pressure and thickness of pressure vessels in design.
The relationship between limit pressure and wall thickness of a thin-walled
vessel with the unified strength theory parameter b is shown in Fig.0.2 and
Fig.0.3 respectively.

Fig. 0.2. Limit pressure versus unified strength theory parameter b

Fig. 0.3. Wall thickness versus unified strength theory parameter b
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It can be seen that

• The conventional solution is a single solution (b = 0 in Fig.0.2 and
Fig.0.3), which can be adopted only for one kind of material. The new
solution is a unified solution, a serial solution, which can be adopted for
more materials and structures.

• The solution for Tresca material (b = 0 and α = 1.0) is identical to the
solution for the Mohr-Coulomb material (b = 0 and α �= 1.0). It appears
that the SD effect of materials (α �= 1.0 material) cannot be considered
by the Mohr-Coulomb strength theory in this case.

• All the solutions for the bearing capacity of structures with b > 0 are
higher than those for the Tresca-Mohr-Coulomb criterion. All the solu-
tions for the wall thickness of a pressure vessel with b > 0 are lower than
the solution using the conventional Tresca criterion or Mohr-Coulomb
criterion.

• The applications of the unified strength theory and the unified solutions
are more economical in the use of materials and the use of energy, leading
to a reduction in environmental pollution.

• The wider application of the enhancement-factor concept on a global scale
is, on the one hand, going to bring tremendous energy saving and pollution
mitigation. It calls, on the other hand, for a theoretical support on which
the concept can be based. Engineering practice in general has a desire
to have a new strength theory, which should be more rational and more
consistent with the experimental data than what can be achieved by using
the Tresca-Mohr-Coulomb single-shear strength theory.

A series of the unified solutions for various structures are described in this
book. It is organized as:

Chapters 2∼4 give a brief introduction to the fundamental stress state,
yield function and limit analysis theorem.

Chapters 5∼9 deal with plastic limit analyses for circular plates, annular
plates, oblique plates, rhombus plates, rectangular plates, square plates and
cylinders by using the unified strength theory.

In Chapters 10, 11, the unified solutions of the dynamic plastic analysis of
plates, and the limit velocity of rotating discs and cylinders are emphasized.

Penetration, wellbore analyses and orthogonal circular plates are pre-
sented in Chapters 12∼14.

Chapters 15∼17 are devoted to the shakedown theorem and shakedown
analysis of pressure vessels, simply supported and clamped circular plates
and rotating discs, using the unified strength theory. Brief summaries and
references are given at the end of each chapter.

The unified strength theory and unified solutions provide a fundamental
theory for the application of strength design of engineering structures. They
can also be used for increasing the admissible loads or decreasing the cross-
sections and the weight of structures. This results in a reduction in materials
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and energy consumption and a reduction in environmental pollution and the
cost of structures.

The applications of the unified strength theory in plastic limit analysis
and shakedown analysis for different structures are still developing. This book
summarizes the research results obtained up to now. It is expected that the
unified strength theory will have more and more applications in the future in
addition to the plate and cylindrical structures discussed in this book. The
applications of the unified strength theory in computational analysis are still
growing. We hope that the Chinese idiom “Throwing out a brick to attract
a piece of jade” becomes real and this book can serve as a solid brick.

The results of bearing capacity and shakedown loads obtained by using
various yield criteria are very different. The results are influenced strongly by
the selection of the yield criterion. We need to use a new efficient criterion.
The straight-line segments on the unified strength theory make it convenient
for analytical treatment of plasticity problems. The unified strength theory
provides us with a very effective approach to studying the effect of yield cri-
terion for various engineering problems. The serial results can be appropriate
for most materials, from metallic materials to geomaterials.

Appreciation must be expressed for the support of the China Academy
of Launch Vehicle Technology in Beijing, the Aircraft Strength Research In-
stitute of China in Xi’an, the MOE Key Lab for Strength and Vibration at
Xi’an Jiaotong University, Nanyang Technological University in Singapore,
Springer and Zhejiang University Press.
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Prof. Xu Shuanqiang and Dr. Li.

I am also indebted to thank many other researchers for their research on
the unified solution of structures in the fields of soil mechanics, rock mechan-
ics, concrete mechanics and computational mechanics. I would like to express
sincere thanks to Academician Shen ZJ, Academician Yang XM, Academi-
cian Chen SY, Academician Shen ZY, Academician Chen HQ, Prof. Fan SC
at Nanyang Technological University, Singapore, Prof. Jiang MJ, Prof. Zhao
JH, Prof. Fan W, Prof. Fung XD, Prof. Zhou XP, Prof. Yang XL, Prof. Liao
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1

Introduction

1.1 Background

Plasticity is one of the underlying principles in the design of structures, es-
pecially metal and reinforced concrete structures. Numerous textbooks and
monographs on structural plasticity and plastic design have been published
since the 1950s (Baker et al., 1956; Baker, 1956; Neal, 1956; Heyman, 1958;
1971; Hodge, 1959; 1963; Horne, 1964; 1978; Baker and Heyman, 1969; Save
and Massonnet, 1972; Chen, 1975; 1982; Morris and Randall, 1979; Horne
and Morris, 1981; Zyczkowski, 1981; König and Maier, 1981; König, 1987;
Mrazik et al., 1987; Save et al., 1997; Nielsen, 1999). The European Rec-
ommendations for the design of steelwork and reinforced concrete structures
apply widely the plastic behavior of materials (Horne and Morris, 1981).

The advantages of the plastic method for structural analysis were dis-
cussed by Massonnet, Beedle, Heyman and Chen as follows:“The method
of plastic design represents reality better than the conventional elastic
method; it must lead to better proportioned and more economical struc-
tures”(Heyman, 1960). “For plastic design to represent reality means that
the collapse load computed from plastic theory can be closely observed in
practice” (Heyman, 1960).

“Engineers and research workers have been stimulated to study the plastic
strength of steel structures and its application to design for three principal
reasons: (a) it has a more logical design basis; (b) it is more economical in the
use of steel, and (c) it represents a substantial saving of time in the design”
(Beedle, 1960).

“The calculation of load-carrying capacity by use of the limit theorems
is much easier than the calculation of stress. Answers obtained are not only
physically more meaningful but also simpler. The simplicity of limit anal-
ysis opens the way to limit design, to direct design as contrasted with the
trial-and-error procedure normally followed in conventional design.” “The es-
timation of the collapse load is of great value, not only as a simple check for
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a more refined analysis, but also as a basis for engineering design” (Chen,
1982).

The elastic and plastic limit loads are two important indicators for the
overall robustness of a structure to resist external loads. Load-carrying ca-
pacity of a structure usually refers to the plastic limit load, which is also
called collapse load.

The plastic limit analysis gives a straightforward approximation of the
maximum strength and shakedown load of structures. It simplifies the anal-
ysis of structures and also helps to derive a cost-effective design.

The elastic and plastic limit loads of structures are often used for de-
sign and safety evaluation purposes. Although advanced computer software
using numerical methods have been applied widely in engineering practices,
analytical solutions still play an important role because they can provide
explicit forms of the limit loads, stress and bending moment fields and de-
formation field of structures, which enables a preliminary structure design
and validation of numerical results. The elastic and plastic limit solutions
are simple to derive, especially for plate and rotationally symmetrical solids,
whose governing equations contain only a few variables.

Conventionally the Tresca and Mohr-Coulomb criteria are adopted to de-
rive the plastic limit load for structures because they have piecewise linear
mathematical expressions, which makes the integration of the governing dif-
ferential equations tractable. The plastic limit loads based on the Tresca
criterion for metallic material structures and the Mohr-Coulomb criterion for
geomaterial structures have been well applied in design and safety evaluation
practice. However, these strength criteria ignore the influence of the interme-
diate principal stress on the material strength and may lead to improper or
over-conservative design of structures.

On the other hand, another widely used criterion, the Huber-von Mises
yield criterion has a nonlinear mathematical expression, which renders its
application unstraightforward. The effect of different yield criteria on the
estimation of the load-bearing capacity of structures has not been fully ex-
plored. Most of the textbooks on the plastic limit analysis introduce only
solutions based on the Tresca criterion. However, these solutions give a lower
bound of the plastic limit load of structures. They may underestimate the
load-bearing capacity of structures, which will be addressed in the following
chapters. To achieve a better design it is necessary to investigate accurately
the plastic limit load of structures.

A unified strength theory was brought up and developed by Yu (1991;
1992; 2004), which is formulated by piecewise linear expression. The theory
is based on the assumption that material yielding is dominated by the two
larger principal shear stresses (or twin-shear stresses). A parameter b ranging
from 0 to 1 is applied on the second principal shear stress, which adjusts
the relatively low effect of the second principal shear stress compared to
that of the first one. The parameter b reflects different material strength
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behaviors indicated by different relative shear strengths, which are supported
by much experimental evidence. The unified strength theory can represent
or approximate the most prevailing yield and strength criteria, such as the
Tresca criterion, the Huber-von Mises criterion, the Mohr-Coulomb criterion,
and the twin-shear stress criterion. Using the unified strength theory, the
plastic limit load of structures made of different materials can be derived
conveniently in a unified manner. This book presents the plastic limit and
shakedown analyses of various plates and rotationally symmetrical structures
based on the unified strength theory. The derived solutions demonstrate the
effect of different yield and strength criteria on the plastic limit loads of
structures.

This book is one of a series of books on the fundamentals, developments,
and applications of the unified strength theory (Yu, 2004; Yu et al., 2006).

1.2 Unification of Yield and Strength Criteria

In general, a yield criterion refers to a simpler form of a strength criterion that
is applied for metallic materials which are ductile and have identical tensile
and compressive uniaxial strengths. A strength criterion is more general and
applicable to both metallic and non-metallic materials, which may exhibit
strength difference in tension and compression. Non-metallic materials, such
as rock, concrete, and soils, are also referred as strength difference or SD
materials. Correspondingly, the uniaxial tensile and compressive strengths of
metallic materials are identified as those of non-SD materials. The unified
strength theory consists of a unified strength theory, which is applicable to
the SD materials, and a unified yield criterion to the non-SD materials. The
unified yield criterion is a specific form of the unified strength theory when
the strength difference in uniaxial tension and compression can be ignored.

For stable and isotropic metal materials, the Tresca criterion (or the
single-shear criterion) is the lower bound yield criterion, and the twin-shear
yield criterion (Yu, 1961; 1983) is the upper bound according to the convexity
condition. The lowest and the highest load carrying capacities of metal struc-
tures are calculated with respect to these two criteria. Some nonlinear yield
criteria, whose geometrical graphs lie between the two surfaces defined by the
single-shear criterion and the twin-shear criterion, have also been proposed.
However, their nonlinear mathematical expressions make the derivation of the
closed-form solutions of plastic limit loads for structures very complicated.

The Yu unified yield criterion bounded by the single-shear criterion and
the twin-shear criterion has the advantage of simple expression in giving the
unified solution of the load-bearing capacity of structures. A series of different
solutions can be derived by choosing the unified yield criterion parameter b
from 0 to 1. It can be applied to various non-SD materials. The plastic limit
loads estimated by the single-shear criterion (Tresca criterion), the Huber-
von Mises criterion and the twin-shear stress criterion are special cases or
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close approximations of the solutions based on the unified yield criterion
with specific values of strength parameter b.

The unified strength theory, which is a straightforward extension of the
twin-shear yield criterion (Yu, 1961; 1983) and twin-shear strength theory
(Yu et al., 1985), also has a piecewise linear mathematical expression. It
gives the plastic limit solutions for structures of SD materials. The plastic
limit load based on the Tresca criterion or the Mohr-Coulomb criterion is one
of the specific forms of the solutions given by the unified strength theory. A
series of new solutions can be derived by varying the unified strength theory
parameter b from 0 to 1.

A detailed description of the unified strength theory can be found in
the companion volumes of Unified Strength Theory and Its Applications and
General Plasticity published by Springer in 2004 and 2006. A paper entitled
“Remarks on Model of Mao-Hong Yu” was made by Altenbach and Kolupaev
(2008). Reviews of “Unified Strength Theory and Its Applications” were made
by Shen (2004) and Teodorescu (2006). The comments on the unified strength
theory were made by Fan and Qiang (2001) and Zhang et al. (2001).

1.3 Plastic Limit Analysis

The traditional estimation of the load-carrying capacity of a structure under
static loading was based on the “local” permissible stress condition. More
realistic approaches must take plastic deformation into account. The simplest
estimation of the load-bearing capacity is furnished by concept of the limit-
carrying capacity. The related ideas date back to the 18th century (Gvozdev,
1938; Prager et al., 1951; Zyczkowski, 1981). The theorems of limit analysis
which provide upper and lower bounds to the true collapse load were first
presented by Gvozdev (1938) and independently proved by Hill (1951) for
the rigid-perfectly plastic materials, and by Drucker et a1. (1952) for the
elastic-perfectly plastic materials.

The circular plate is an important structural element in many branches of
engineering. Reliable prediction of the load-bearing capacity of the circular
plate is crucial in achieving an optimal structural design. Previous studies by
other researchers have shown that the limit analysis is an effective measure in
exploring the strength behaviors of a circular plate in the plastic limit state
(Hodge, 1963). Hopkins and Prager (1953), Zaid (1958), and Hodge (1963)
investigated the load-bearing capacity of circular and annular plates with
limit analysis theorems and proved that an exact plastic limit solution for an
axisymmetrical plate can be analytically derived if the material of the plate
satisfies a linear yield criterion. Ghorashi (1994) derived the plastic limit
solutions for circular plates subjected to arbitrary-rotationally symmetric
loading. However, most of the reported results have been derived in terms of
the maximum stress yield criterion or the Tresca criterion that takes account
of the effect of only one or two principal stresses in the three dimensional
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stress space. Solutions in terms of these yield criteria may not reflect the
real characteristics of a circular plate in the plastic limit state. Hopkins and
Wang (1954) investigated the load-bearing capacities of circular plates with
respect to the Huber-von Mises criterion and a parabolic criterion by iterative
method. The percentage differences of the plastic limit loads with respect to
the Huber-von Mises criterion and the Tresca criterion are approximately 8%
and 10% for a simply supported and a clamped circular plate, respectively.
These observations indicate that the plastic limit loads in terms of different
yield criteria are different and the difference varies with the variation of the
constraint conditions of the plate.

Limit analysis of structures applies only if the loading magnitude is less
than the plastic collapse force. With impact or explosive blast loading the
structures may be subjected to an intense but short duration pressure or force
pulse that exceeds the plastic collapse force. The response of circular plates
to pulse loading was presented by Florence (1966; 1977), Youngdagl (1971;
1987), Li and Jones (1994), Li and Huang (1989), etc. The dynamic plastic
behavior of beams has been investigated in detail by Stronge and Yu (1993).
However, it is difficult to get the analytical solution for plate and shell in
a dynamic plastic deformation state because of the complicated constitutive
formulation. On the other hand, the dynamic analytical solution for a circular
plate is much simpler because of the axisymmetry. Exact theoretical solutions
to the dynamic response of a rigid, perfectly plastic, simply supported circular
plate have been explored initially by Hopkins and Prager (1954). In the past
forty years a number of studies (Jones, 1980; 1989; Florence, 1966; 1977;
Symonds, 1979; Li and Jones, 1994; Liu and Jones, 1996) have been done
on this subject by introducing various boundaries, loading conditions, and
plastic flow assumptions for a circular plate. So far all these studies are based
on the Tresca yield criterion or the maximum stress yield criterion. The
influence of different yield criteria on the dynamic plastic behavior of circular
plates (Florence, 1966) has not been addressed. Recently the influence of the
transverse shear force on the final central deflection of circular plates has
attracted some attention (Liu and Stronge, 1996; Youngdagl, 1971; 1987;
Shen and Jones, 1993; Woodward, 1987). Jones and Oliveira (1980) analyzed
a simply supported circular plate subjected to an impulsive velocity uniformly
distributed over the entire plate. Dynamic plastic behavior of annular plates
with transverse shear effects was studied by Lellep and Torn (2006).

Circular plates are sometimes strengthened in the radial direction or the
circumferential direction with stiffeners, which induces orthotropic yield mo-
ments. Material orthotropy can also arise from the cold forming process,
which results in different yield strengths in different directions. Orthotropic
yield criteria for those plates have been suggested by many researchers
(Sawczuk, 1956; Markowitz and Hu, 1965; Save et al., 1997). They are mainly
modifications of the Tresca criterion. Olszak and Sawczuk (1960) investigated
the plastic limit behavior of an orthotropic circular plate in terms of the
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modified Tresca criterion. The results have been extended to various loading
cases by Markowitz and Hu (1965). The plastic limit solution given in these
studies satisfies both a statically admissible moment field and kinematically
admissible velocity fields and thus, is an exact solution.

Many monographs concerning the limit analysis of a structure were pub-
lished. It can be seen in Baker (1956), Baker, Horne and Heyman (1956),
Neal (1956), Hodge (1959; 1963), Horne (1964), Baker and Heyman (1969),
Heyman (1971), Save and Massonnet (1972), Chen (1975; 1981; 1998), Horne
(1978), Morris and Randall (1979), Horne and Morris (1981), Zyczkowski
(1981), Xu and Liu (1985), Mrazik, Skaloud and Tochacek (1987), Xiong
(1987), Save, Massonnet and Saxce (1997), Huang and Zhen (1998), Nielsen
(1999). The number of papers devoted to problems of the limit carrying ca-
pacity of various structures is enormous. The Tresca criterion, Huber-von
Mises criterion and maximum normal stress criterion are used to obtain the
plastic limit of structures in most books and papers. The literature concerning
the plastic analysis of a structure was summarized by Zyczkowski (1981).

The twin-shear yield criterion was used for limit analysis of a structure.
Some solutions were presented by Li (1988) and Huang and Zeng (1989).
Fourteen problems using the twin-shear criterion were collected in the mono-
graph of Huang and Zeng (1998). Application of the twin-shear strength the-
ory in the strength calculation of gun barrels was reported by Liu, Ni, Yan et
al. (1998). The twin-shear criterion was also used in axisymmetric identifica-
tion of a semi-infinite medium (Zhao, Xu, and Yang et al., 1998) and math-
ematical solutions for forming mechanics of continuum (Zhao, 2004). The
calculation of stable loads of strength-differential thick cylinders and spheres
by the twin-shear strength theory was reported by Ni, Liu, and Wang (1998).

The unified yield criterion was used for plastic analysis of structures of
non-SD materials by Ma, He and Yu (1993), Ma and He (1994) and Ma,
Yu, Iwasaki et al. (1994; 1995). Following these results, Ma et al. presented
a series of unified solutions for non-SD materials. The unified solutions of
structures for SD materials were presented by Li and Yu (2000b), Wei and
Yu (2001; 2002), Wang and Yu (2002; 2005), Xu and Yu (2004), and others.

1.4 Plastic Limit Analysis of Rotating Solids

Rotating discs are used widely as important structural elements in mechan-
ical engineering. In a structural design procedure, it is inevitable that we
must estimate the angular velocity and the stress distribution of a rotat-
ing disc in a fully plastic state. The theoretical study of a rotating disc was
presented by Nadai and Donnell (1929), and since then numerous works in-
volving plastic collapse speeds (Heyman, 1958; Lenard and Haddow, 1972),
thermal effects (Thompson, 1946; Gamer and Mack, 1985), acceleration ef-
fects (Reid, 1972), and variable thickness influence (Güven, 1992; 1994), etc.,
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have been reported. Most of them employed the Tresca criterion which re-
sults in an over-conservative estimation of the load-bearing capacity of a
structure because it does not take account of the effect of the second inter-
mediate principal stress on material yielding (Hill, 1950). As Gamer (1983;
1985) pointed out, when the Tresca criterion and its associated flow rule is
used, the displacement across the elasto-plastic interface of a rotating disc is
not continuous, and negative circumferential plastic strain is derived in the
disc center area where the stresses are tensile. To solve this problem, Gamer
(1984) suggested an additional strain-hardening region at the center area of
the disc. The idea was extended by Güven (1994) in investigating the plastic
limit of angular velocity of a solid rotating disc with variable thickness. Calla-
dine (1969), on the other hand, explained that the singularities in the strain
increments at the center could be interpreted as a tendency for the disc to
“thin” so much as to produce a small hole very quickly. From a mathemat-
ical point of view, the deficiencies in the Tresca solution can be avoided by
applying a non-associated flow rule, e.g., combining the Tresca criterion with
a Levy-Mises flow rule, or by applying the Huber-von Mises criterion and
its associated flow rule (Rees, 1999). The latter must resort to a numerical
iteration method because of the nonlinear expression of the Huber-von Mises
criterion.

The limit of angular velocity of a rotating disc based on the Tresca crite-
rion always gives the lowest estimation. The effect of different yield criterion
on the limit of angular velocity of a rotating disc with variable thickness has
not been well studied because the solution based on the Huber-von Mises
criterion can only be obtained with numerical iteration (Rees, 1999).

1.5 Shakedown Analysis of Structures

The concept and method of shakedown analysis were first brought up in
the 1930s and widely explored in the 1950s. The most significant milestones
in shakedown theory of elasto-plastic structures are the pioneering works
by Bleich (1932), Melan (1936), and Koiter (1953; 1960). They brought up
two crucial shakedown theorems, namely the static shakedown theorem (also
called the Melan’s theorem, the first shakedown theorem, or the lower bound
shakedown theorem), and the dynamic shakedown theorem (also called the
Koiter’s theorem, the second shakedown theorem or the upper bound shake-
down theorem). The later developments of shakedown analysis can be cat-
egorized into the static and the dynamic shakedown analysis methods. The
shakedown theory has constituted a well-established branch of plasticity the-
ory. The bound to shakedown loads was discussed by Zouain and Silveira
(2001).

In recent years, the shakedown analysis of an elasto-plastic structure has
gradually attracted attention in engineering due to the requirements of mod-
ern technologies such as nuclear power plants, the chemical industry, aeronau-
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tical and astronautical technologies. The shakedown theory has been applied
successfully in a number of engineering problems such as the construction of
nuclear reactors, highways and railways, and employed as one of the tools for
structural design and safety assessment in some design standards, rules, and
regulations (König, 1987; Polizzotto, 1993; Feng et al., 1993; 1994; Maier,
2001). Shakedown analysis of the shape-memory-alloy structures is presented
by Feng and Sun (2007). A new unified solution of the shakedown of cylinder
and rotating disc for non-SD materials and SD materials is given by Xu and
Yu (2005). Xu and Yu (2005) also give a shakedown analysis of a thick-walled
spherical shell of material with different strengths in tension and compression.

1.6 Plastic Limit Analysis Based on the Unified
Strength Theory

There have been significant developments in plastic limit analyses of plates
and rotationally symmetrical solids based on the unified strength theory in
recent years. This book mainly updates these developments which have con-
siderable potential in extending the derived solutions to various other struc-
tural forms.

The yield loci of the unified strength theory cover all the traditional con-
vex yield criteria. The Tresca yield criterion, the Huber-von Mises yield cri-
terion, the twin-shear yield criterion and a series of other new linear yield
criteria are special cases or approximations of the unified strength theory.
It provides a new approach to the study of the load-carrying capacities of
structures in a unified manner.

Ma et al. (1993; 1994; 1995a; 1995b; 1995c) derived a unified plastic limit
solution to a circular plate under uniform and partially uniform load. Ma et al.
(1998) gave a unified solution to simply supported circular plates and clamped
circular plates in terms of the Yu’s unified yield criterion. Applications of
the unified yield criterion to unified plastic limit analysis of circular plates
under arbitrary load were reported by Ma et al. (1998; 1999; 2001). The
unified solutions of the limit speed of disc and cylinder using the unified
yield criterion were derived by Ma et al. (1994; 1995a; 1995b; 1995c) for non-
SD materials. The solutions in terms of maximum principal stress criterion,
the Tresca yield criterion, the Huber-von Mises criterion, and the twin-shear
yield criterion are all special cases or close approximations to the solutions
using the unified yield criterion.

The unified solutions of the plastic limit and shakedown load to plate,
cylinder, and limit speed of rotating disc and cylinder for SD materials have
been reported by Wang and Fan (1998), Li and Yu (2001), Wei and Yu (2002),
Wang and Yu (2002; 2005), Xu and Yu (2004; 2005). It will be described in
this book, too.
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A new orthotropic yield criterion, which is an extension of the unified
yield criterion, has been suggested by Ma et al. (2002). The new orthotropic
yield criterion is applicable to the plastic limit analysis of orthotropic plates.

The results derived from the present study show the influence of different
yield criteria, which is helpful in achieving optimized design of structures and
in validating the numerical models in plastic analysis.

1.7 Summary

Various single yield criteria are used for the limit analysis, shakedown analysis
and dynamic plastic analysis of structures. The solution is a single result
adapted for one kind of material. Owing to the development of the unified
strength theory, a series of unified solutions of limit analysis, shakedown
analysis and dynamic plastic analysis of structures were presented during the
last decade.

The unified strength theory is an accumulation of serial yield criteria
adapted for non-SD materials and SD materials. The serial criteria cover all
areas between the lower bound (single-shear criterion, Tresca-Mohr-Coulomb
(1864; 1900)) and upper bound (twin-shear criteria, Yu (1961; 1983; 1985)).
It is well known that all the yield criteria of the unified strength theory are
piecewise linear with the attendant simplification of the analytical solution
of the structure. The application of the unified strength theory gives not
only a single solution, but also a series of solutions. The serial solution for a
structure is referred to the unified solution, which can be adopted for more
materials and structures.
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2

Fundamental Concepts of Stress and Strain

2.1 Stress Components and Invariants

The mechanical behavior at a point of a solid can be represented by stress
and strain components in three-dimensional space. Consider a generic point
O of an elementary parallelepiped of a continuum referred to by orthogonal
Cartesian axes x, y, z as shown in Fig.2.1. Each of the three faces in the
reference planes is in general subjected to one normal stress and two shear
stresses. The state of stress at O is thus characterized by these nine stress
components.

Fig. 2.1. Stress components

Rotational equilibrium of the parallelepiped about its axes yields equality
of the shear stresses,
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τxy = τyx, τyz = τzy and τzx = τxz. (2.1)

Thus there remain only six independent stress components, namely the
normal stresses σx, σy, σz and the shear stresses τxy, τyz, τzx. Any stress
tensor, which is usually denoted by [σ], can be represented by these six com-
ponents in the matrix form of

σij =

⎡
⎢⎣

σx τxy τxz

τyx σy τyz

τzx τzy σz

⎤
⎥⎦ , (2.2a)

where x, y and z refer to orthogonal Cartesian axes.
It can be seen in the textbooks of the mechanics of materials, elasticity,

mechanics of solids or plasticity that there exist three principal stresses σ1,
σ2 and σ3 and where the companion shear stresses are zero; and the state of
stress at the element can be described as

σi =

⎡
⎢⎣

σ1 0 0
0 σ2 0
0 0 σ3

⎤
⎥⎦ . (2.2b)

An element of material subjected to principal stresses σ1, σ2 and σ3 acting
in mutually perpendicular directions is said to be in a state of triaxial stress
or three-dimensional stress. If one of the principal stresses is equal to zero, it
degrades to a plane stress state or a biaxial stress state. The triaxial or biaxial
stress state is sometimes referred as polyaxial, multiaxial, or complex stress
state. The principal planes are the planes on which the principal stresses
occur. They are mutually perpendicular.

The principal stresses are the three roots of the equation of

σ3 − (σx + σy + σz)σ2 + (σxσy + σyσz + σzσx − τ2xy − τ2yz − τ2zx)σ

− (σxσyσz + 2τxyτyzτzx − σxτ2yz − σyτ2zx − σzτ
2
xy) = 0.

(2.3)

Eq.(2.3) can be rewritten in a simpler form of

σ3 − I1σ
2 + I2σ − I3 = 0, (2.4)

where I1, I2 and I3 are stress tensor invariants which have the following
expressions:



18 2 Fundamental Concepts of Stress and Strain

I1 = σx + σy + σz = σ1 + σ2 + σ3, (2.5a)

I2 = σxσy + σyσz + σzσx − τ2xy − τ2yz − τ2zx = σ1σ2 + σ2σ3 + σ3σ1, (2.5b)

I3 = σxσyσz + 2τxyτyzτzx − σxτ2yz − σyτ2zx − σzτ
2
xy = σxσyσz = σ1σ2σ3.

(2.5c)

The quantities I1, I2 and I3 are independent of the direction of the axes
chosen. The stresses σ1, σ2 and σ3 are called principal stresses, and their
directions principal directions. Each principal direction is orthogonal to the
plane determined by the other two directions. The shear stresses associated
with these stresses equal zero.

Plane stress states, when one principal stress vanishes, are frequently the
case in practical engineering. Letting σ3 be the vanishing principal stress, all
the other stresses then lie in the plane (O, σ1, σ2) of the two other principal
directions. Consider a plane surface element with the exterior normal coin-
ciding with that of the (O, σ1, σ2) plane and the x-axis having an angle α
(clockwise positive) with respect to the direction of the first principal stress.
The principal stresses are related to the stress components σx, σy and τxy by

σ1 =
σx + σy

2
+

√
1
4
(σx − σy)2 + τ2xy, (2.6a)

σ2 =
σx + σy

2
−

√
1
4
(σx − σy)2 + τ2xy, (2.6b)

and the inclined angle α is given by

tan 2α = − 2τxy

σx − σy
. (2.7)

2.2 Deviatoric Stress Tensor and the Tensor Invariants

For convenient application in the study of strength theory and plasticity, the
stress tensor is split into two parts; one is the deviatoric stress tensor Sij ,
and the other the spherical stress tensor pij . There are

σij = Sij + pij = Sij + σmδij . (2.8)

The spherical stress tensor is the tensor whose components are σmδij ,
where σm is the mean stress, and

pij = σmδij = σm

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ =

⎡
⎣σm 0 0
0 σm 0
0 0 σm

⎤
⎦ , (2.9)

and
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σm = (σx + σy + σz)/3 = (σ1 + σ2 + σ3)/3 = I1/3. (2.10)

It is apparent that σm is not changed for all the orientations of the axes.
Thus it is also referred as hydrostatic stress or spherical stress.

The deviatoric stress tensor Sij can be written as

Sij = σij − pij = σij − σmδij . (2.11)

The invariants of the deviatoric stress tensor are denoted by J1, J2 and
J3, which have the form of

J1 = S1 + S2 + S3 = 0, (2.12a)

J2 =
1
2
SijSij =

1
6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

]
, (2.12b)

J3 = |Sij | = S1S2S3, (2.12c)

where S1, S2 and S3 are three principal deviatoric stresses.

2.3 Principal Shear Stresses

The maximum shear stress acts on the plane bisecting the angle between
the largest and the smallest principal stresses and it is equal to half of the
difference between these principal stresses,

τmax = τ13 =
1
2
(σ1 − σ3). (2.13)

It is also called the maximum principal shear stress. The shear stresses
in the other two perpendicular planes are the intermediate or the minimum
principal shear stresses. The three principal shear stresses τ13, τ12 and τ23
can be obtained as

τ13 =
1
2
(σ1 − σ3), τ12 =

1
2
(σ1 − σ2), τ23 =

1
2
(σ2 − σ3). (2.14)

The companion normal stresses σ13, σ12 and σ23 for the principal shear
stresses have the form of

σ13 =
1
2
(σ1 + σ3), σ12 =

1
2
(σ1 + σ2), σ23 =

1
2
(σ2 + σ3). (2.15)

The directions of the principal stresses and the principal shear stresses
are illustrated schematically in Fig.2.2.

The three principal stresses, three principal shear stresses and three nor-
mal stresses acting on the principal shear stress plane can be illustrated by
three stress circles referred to as the Mohr circles, as shown in Fig.2.3.
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Fig. 2.2. Directions of the principal stresses and the principal shear stresses

Fig. 2.3. Three principal stresses, three principal shear stresses and three normal
stresses acting on the principal shear stress plane
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The magnitudes of the normal and shear stresses in any plane are equal to
the distance of the corresponding stress point on the stress circle to the origin
of the referred coordinate frame. The three principal shear stresses are equal
to the radii of three stress circles. Detailed descriptions of the stress circle can
be found in Johnson and Mellor (1962), Kussmaul (1981), and Chakrabarty
(1987) and other textbooks on plasticity or mechanics of materials.

2.4 Octahedral Shear Stress

If the normal of an oblique plane forms equal angles with the three principal
axes, i.e.,

l = m = n = ± 1√
3
, (2.16)

where l, m and n are the directional cosines of the principal planes, principal
shear stress planes, and the octahedral plane respectively. The shear stresses
acting on the octahedral plane are called octahedral shear stresses. The nor-
mal stress on this plane is accordingly referred as an octahedral normal stress
σ8 (or σoct) which equals the mean stress

σ8 =
1
3
(σ1 + σ2 + σ3) = σm. (2.17)

A tetrahedron similar to this one can be constructed in each of the four
quadrants above/below the x-y plane. In the eight tetrahedral oblique planes
the condition l2 = m2 = n2 = 1/3 is satisfied. The tetrahedra can be dif-
ferentiated from each other by the signs of l, m and n. Fig.2.4 shows vari-
ous representative elements and the corresponding stress elements. The eight
tetrahedral sections form octahedra as shown in Fig.2.4(e). The octahedral
normal stress is given by Eq.(2.17), and the shear stress τ8 (sometimes de-
noted as σoct) on the octahedral plane is

τ8 =
1
3
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]1/2

=
1√
3
[(σ1 − σm)2 + (σ2 − σm)2 + (σ3 − σm)2]1/2.

(2.18)

The directional cosines l, m and n of the principal planes, principal shear
stress planes and octahedral plane, the normal stresses σ and shear stresses
τ are listed in Table 2.1.
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Fig. 2.4. Various polyhedral elements

2.5 Strain Components

When a continuum is deformed, a generic point experiences a displacement
{U} with components u, v, w with respect to Cartesian orthogonal axes x, y,
z, respectively. For very small strains, the axial strains εx, εy, εz and shear
strains γxy, γyz, γzx can be expressed by the displacement differentiation as
follows:
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Table 2.1. Directional cosines of the principal planes, the principal shear stress
planes and the octahedral plane

Principal planes Principal shear stress planes Octa. plane

l = ±1 0 0 ± 1√
2

± 1√
2

0 1√
3

m = 0 ±1 0 ± 1√
2

0 ± 1√
2

1√
3

n = 0 0 ±1 0 ± 1√
2

± 1√
2

1√
3

σ = σ1 σ2 σ3 σ12 =
σ1+σ2

2
σ13 =

σ1+σ3
2

σ23 =
σ2+σ3

2
σ8

τ = 0 0 0 τ12 =
σ1−σ2

2
τ13 =

σ1−σ3
2

τ23 =
σ2−σ3

2
τ8

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
, (2.19)

γxy =
∂u

∂y
+

∂v

∂x
, γyz =

∂v

∂z
+

∂w

∂y
, γxz =

∂u

∂z
+

∂w

∂x
. (2.20)

Six strain components εx, εy, εz, γxy, γyz, γzx can describe completely
the state of strain at the considered point. Similar to the stress tensor, there
also exist principal strains ε1, ε2, ε3 with companion shear strains equal to
zero. For a plane strain state, i.e., the third principal strain ε3 vanishes, the
principal strains can be expressed as follows:

ε1 =
εx + εy

2
+

√
1
4
(εx − εy)2 + (γxy/2)2,

ε2 =
εx + εy

2
−

√
1
4
(εx − εy)2 + (γxy/2)2.

(2.21)

The principal direction is given by

tan 2α = − γxy

εx − εy
. (2.22)

Eq.(2.22) still holds when εz ≡ ε3 �= 0, provided εz is a principal strain.
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2.6 Equations of Equilibrium

The following three differential equations of equilibrium in the directions of
the coordinate axes are

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+X = 0,

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
+ Y = 0, (2.23)

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
+ Z = 0,

where X, Y , Z are the components of the body force per unit volume. For
a body in the equilibrium state, the variation in stresses is governed by the
above equations of equilibrium.

2.7 Generalized Hooke’s Law

Equations relating stress, strain, stress rate (increase of stress per unit time)
and strain rate are called the constitutive equations, which are determined
by the material properties under consideration. In the case of elastic solids
the constitutive equations take the form of the generalized Hooke’s law that
involves stress and strain instead of the stress rate and strain rate.

In a general three-dimensional stress state, the generalized Hooke’s law
has the form of

εx =
1
E
[σx − ν(σy + σz)], (2.24a)

εy =
1
E
[σy − ν(σx + σz)], (2.24b)

εz =
1
E
[σz − ν(σx + σy)], (2.24c)

γxy =
1
G

τxy, γyz =
1
G

τyz, γxz =
1
G

τxz, (2.24d)

where E and ν are the modulus of elasticity and the Poisson’s ratio, respec-
tively; G is the modulus of rigidity. Only two of them are independent, and
there is

G =
E

2(1 + ν)
.

Eqs.(2.24a) ∼ (2.24d) may be rewritten conversely,
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σx = 2Gεx + λ(εx + εy + εz),

σy = 2Gεy + λ(εx + εy + εz),

σz = 2Gεz + λ(εx + εy + εz),

τxy = Gγxy, τyz = Gγyz, τzx = Gγzx,

(2.25)

where the constants G and λ are called Lame’s constants,

λ =
νE

(1 + ν)(1− 2ν)
. (2.26)

Another important elastic constant is called the bulk modulus of elasticity
K, which defines the dilatation (volumetric strain) εv as the unit change in
volume,

εv = εx + εy + εz, (2.27)

with the hydrostatic component of stress, or spherical component of stress
σm,

σm =
1
3
(σx + σy + σz), (2.28)

such that

εv =
1
K

σm. (2.29)

From the generalized Hooke’s law, K is derived as

K =
E

[3(1− 2ν)]
. (2.30)

2.8 Compatibility Equations

Eqs.(2.19) and (2.20) implicitly show that the strain components are func-
tions of the three displacement components. Differentiate the first equation
of Eq.(2.19) twice with respect to y and the second equation of Eq.(2.19)
twice with respect to x and add the results,

∂2εx

∂y2
+

∂2εy

∂x2
=

∂3u

∂y2∂x
+

∂3v

∂x2∂y
. (2.31)
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Differentiating the first equation of Eq.(2.20) with respect to x and y
yields

∂2γxy

∂x∂y
=

∂2

∂x∂y

(
∂u

∂y
+

∂v

∂x

)
. (2.32)

And since the order of differentiation for single-value, continuous functions
is immaterial, thus,

∂2εx

∂y2
+

∂2εy

∂x2
=

∂2γxy

∂x∂y
.

Similarly, we can derive the following additional equations:

∂2εx

∂y2
+

∂2εy

∂x2
=

∂2γxy

∂x∂y
, (2.33a)

∂2εy

∂z2
+

∂2εz

∂y2
=

∂2γyz

∂y∂z
, (2.33b)

∂2εz

∂x2
+

∂2εx

∂z2
=

∂2γzx

∂z∂x
, (2.33c)

2
∂2εx

∂y∂z
=

∂

∂x

(
−∂γyz

∂x
+

∂γxz

∂y
+

∂γxy

∂z

)
, (2.33d)

2
∂2εy

∂z∂x
=

∂

∂y

(
∂γyz

∂x
− ∂γxz

∂y
+

∂γxy

∂z

)
, (2.33e)

2
∂2εz

∂x∂y
=

∂

∂z

(
∂γyz

∂x
+

∂γxz

∂y
− ∂γxy

∂z

)
. (2.33f)

Eqs.(2.33a) ∼ (2.33f) are called Saint-Venant compatibility equations, or
compatibility equations in terms of strain.

In total there are fifteen governing equations, including three equilib-
rium equations (Eq.(2.23)), six strain displacement relations (Eq.(2.19) and
Eq.(2.20)), and six stress-strain relations (Eq.(2.24)) to solve the fifteen vari-
ables (six stress components σx, σy, σz, τxy, τyz and τxz, six strain compo-
nents εx, εy, εz, γxy, γyz and γxz, and three displacements u, v, w). The
compatibility equations are derived from the strain-displacement equations
and therefore cannot be counted as governing equations. The compatibility
equations will be satisfied automatically if the fifteen governing equations are
satisfied.

2.9 Governing Equations for Plane Stress Problems

For plane stress problems the stress components are simplified as
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σx = σx(x, y), σy = σy(x, y), τxy = τxy(x, y), (2.34a)

τxz = τyz = σz = 0. (2.34b)

The equilibrium equations become

∂σx

∂x
+

∂τxy

∂y
+X = 0, (2.35a)

∂τxy

∂x
+

∂σy

∂y
+ Y = 0, (2.35b)

where the body forces X and Y are functions of x and y only, and Z equals
zero. The strain-stress relations take the form of

εx = εx(x, y) =
1
E
[σx − νσy], (2.36a)

εy = εy(x, y) =
1
E
[σy − νσx], (2.36b)

εz = εz(x, y) =
1
E
[−ν(σx + σy)], (2.36c)

γxy = γxy(x, y) =
1
G

τxy. (2.36d)

The two shear strains γxz and γyz and the normal strain εz vanish. Finally
the strain-displacement relations are simplified as

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂u

∂y
+

∂v

∂x
. (2.37)

There are eight equations in total to correlate the eight unknown quanti-
ties of σx, σy, τxy, εx, εy, γxy, u and v. Again, the governing equations can
only be solved with specific stress and displacement boundary conditions.

2.10 Governing Equations in Polar Coordinates

For analysis of circular ring and plate, rotating disk, curved bar of narrow
rectangular cross section with a circular axis, etc., it is advantageous to use
polar coordinates. If the external forces are also rotationally symmetric, the
stress state can be assumed to be the plane stress independent of the z-axis
which is perpendicular to the polar coordinates plane. The position of a point
in the middle plane of a plate is then defined by the distance from the origin O
and the angle θ between r and a certain axis Ox fixed in the plane. Denoting
σr and σθ as the normal stress component in the radial and circumferential
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directions respectively, and τrθ the shear stress component, the equation of
equilibrium takes the form of

∂σr

∂r
+
1
r

∂τrθ

∂θ
+

σr − σθ

r
+R = 0, (2.38a)

1
r

∂σθ

∂θ
+

∂τrθ

∂r
+
2τrθ

r
+ S = 0, (2.38b)

where R and S are the components of body force per unit volume in the
radial and tangential directions, respectively.

The corresponding stress components are derived as

σr =
A

r2
+B(1 + 2 log r) + 2C, (2.39a)

σθ = − A

r2
+B(3 + 2 log r) + 2C, (2.39b)

τrθ = 0, (2.39c)

where A, B and C are constant that can be determined by boundary condi-
tions.

Denoting the displacements in the radial and tangential directions as ur

and uθ respectively, the strain components in the polar coordinates are de-
rived as

εr =
∂ur

∂r
, εθ =

ur

r
+
1
r

∂uθ

∂θ
and γrθ =

1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r
. (2.40)

The generalized Hooke’s law is then expressed by

εr =
1
E
(σr − νσθ), (2.41a)

εθ =
1
E
(σθ − νσr), (2.41b)

γrθ =
1
G

τrθ. (2.41c)

Thus, based on the equilibrium equations, strain-displacement relations,
compatibility equations, and Hooke’s law plus relative boundary conditions,
the stress and displacement fields of the rotational symmetrical body can be
solved. Detailed derivations can be referred to Theory of Elasticity by Timo-
shenko and Goodier (1970) and Elasticity: Tensor, Dynamic and Engineering
Approaches by Chou and Pagano (1967).
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2.11 Bending of Circular Plate

It is assumed that a circular plate is perfectly elastic, isotropic and homoge-
neous, and is subjected to a variable symmetrical transverse load. The plate is
initially flat and of uniform thickness. Maximum deflection is relatively small
with respect to thickness (no more than half the thickness). Deformation
of the plate is symmetrical about the cylindrical axis. During deformation
the straight lines in the plate initially parallel to the cylindrical axis remain
straight but become inclined. All forces, loads and reactions are parallel to
the cylindrical axis. Shear effect on bending is negligible.

The pertinent strain equations according to Hooke’s law for plane stress
and the geometrical relations are (Griffel, 1968)

εr =
σr

E
− ν

σθ

E
= y

dφ
dr

, εθ =
σθ

E
− ν

σr

E
= y

φ

r
, (2.42)

where
φ ≈ −dw

dr

and w is the transverse deflection of the plate; y is the distance from the
mid-plane to the considered point in the cross section of the plate. Solving
Eq.(2.42) for the radial and tangential unit stresses,

σr =
Ey

1− ν2

(
dφ
dr

+ ν
φ

r

)
, (2.43a)

σθ =
Ey

1− ν2

(
φ

r
+ ν

dφ
dr

)
. (2.43b)

Assuming that unit stresses are proportional to the distance from the
mid-plane, the radial and tangential bending moments can be written as

Mr =
∫ h/2

−h/2

σrydA = D

[
dφ
dr

+ ν
φ

r

]
, (2.44a)

Mθ =
∫ h/2

−h/2

σθydA = D

[
φ

r
+ ν

dφ
dr

]
, (2.44b)

where

D =
EI

1− ν2
=

Eh3

12(1− ν2)
. (2.45)

The equilibrium equation is then expressed as

dMr

dr
+

Mr − Mθ

r
= −

∫
p(r)dr, (2.46)
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where p(r) is the transverse pressure symmetrically distributed on the plate.
The equilibrium equation in terms of the bending angle and radius is the
derivative of Eq.(2.42a). Substituting Eq.(2.42a) and Eqs.(2.44a) and (2.42b)
into Eq.(2.46),

d2φ
dr2

+
1
r

dφ
dr

− φ

r2
=

d
dr

[
1
r

d
dr
(rφ)

]
= − 1

D

∫
p(r)dr. (2.47)

Integrating Eq.(2.47), we derive

d
dφ

(rφ) = − r

D

∫ (∫
p(r)dr

)
dr + C1r. (2.48)

Integrating Eq.(2.47) once again leads to

−dw
dr

≈ φ = − 1
rD

∫
r

[∫ (∫
p(r)dr

)
dr

]
dr +

1
2
C1r +

1
r
C2. (2.49)

Thus

w =
1
D

∫
1
r

{∫
r

[∫ (∫
p(r)dr

)
dr

]
dr

}
dr − C1

4
r2 − C2 ln r + C3.

(2.50)
The moments Mr and Mθ are then calculated by

Mr = −
∫ (∫

p(r)dr
)
dr − (1− ν)

1
r2

∫
r

[∫ (∫
p(r)dr

)
dr

]
dr

+
C1D

2
(1 + ν)− C2D

r2
(1− ν),

(2.51a)

Mθ = −(1− ν)
1
r2

∫
r

[∫ (∫
p(r)dr

)
dr

]
dr − ν

∫ (∫
p(r)dr

)
dr

+
C1D

2
(1 + ν) +

C2D

r2
(1− ν).

(2.51b)

For a special case when p = 0 which corresponds to an unloaded part of
the plate, the moments Mr and Mθ are derived as

Mr =
C1D

2
(1 + ν)− C2D

r2
(1− ν), (2.52a)

Mθ =
C1D

2
(1 + ν) +

C2D

r2
(1− ν). (2.52b)

When a uniformly distributed pressure is applied to the plate, the moment
Mr and Mθ become
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Mr = −5− ν

8
pr2 +

C1D

2
(1 + ν)− C2D

r2
(1− ν), (2.53a)

Mθ = −1 + 5ν
8

pr2 +
C1D

2
(1 + ν) +

C2D

r2
(1− ν). (2.53b)

The integral constants C1, C2 and C3 are determined by boundary con-
ditions. The derived equations can be applied to either a solid plate or an
annular plate with axially symmetrical loads. It should be noted that the
above equations are valid with respect to elastic deformations.

2.12 Summary

This chapter presents the fundamentals of solid mechanics. Some basic con-
cepts with respect to the stress tensors, stress tensor invariants, deviatory
stress tensors, deviatory stress tensor invariants, octahedral shear and nor-
mal stresses, principal stresses and principal shear stresses, strain and strain-
rate components are introduced. Governing equations for general stress state
solids, plane stress solids, rotationally symmetrical solids, and rotationally
symmetrical plates are given.

It should be mentioned that only the governing equations in the elastic
range of solids are considered. Based on the elastic solutions, by adopting a
proper yield criterion the elastic limit load of the solid body can be derived.
For elasto-plastic analysis and plastic limit analysis, a yield criterion and
a relevant flow law should be applied. The following chapter will introduce
conventional yield criteria and a unified strength criterion developed by Yu
(1991; 1992; 2004).
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3

Yield Condition

3.1 Introduction

A yield condition or yield criterion describes a material failure in structural
plasticity. It defines the threshold state of a material between elastic and plas-
tic or brittle failure deformations. It is very important to adopt a proper yield
criterion in the design of a structure. The estimated load-bearing capacity of
structures may be significantly affected by the choice of different yield criteria.
Great efforts have been devoted to the formulation of yield criteria. Many dif-
ferent yield criteria have been proposed during the past 100 years (Pisarenko
and Lebedev, 1976; Zyczkowski, 1981; Chen, 1982; 1998; Yu, 2002b; 2004).
Amongst them, the Tresca criterion (Tresca, 1864), the Huber-von Mises cri-
terion (Huber, 1904; von Mises, 1913), and the twin-shear yield criterion (Yu,
1961; 1983) are three representative criteria which can be used for materials
that have identical strength in tension and compression (non-SD materials),
and the shear strengths of τY =0.5σY , τy=0.577σy and τy=0.667σy, respec-
tively, where σy is the uniaxial yield strength. The Drucker-Prager criterion is
an extension of the Huber-von Mises criterion. Although the Drucker-Prager
criterion has been widely applied for non-metallic materials, it contradicts
some experimental results for geomaterials. The Mohr-Coulomb strength cri-
terion (Mohr, 1900) and the twin-shear strength criterion (Yu, 1985) give the
lower and upper bounds of the convex yield curves. Generally, a yield crite-
rion is suitable for a certain type of material only. Thus it is of significance
to develop different yield criteria for different materials.

A new strength theory, which gives a new system of yield criteria, was
proposed by Yu (Yu and He, 1991; Yu, 1992; 2004). It consists of a unified
yield criterion for metallic materials and a unified strength theory for SD
materials (strength difference in tension and compression). It encompasses
the most commonly used yield criteria and a series of new yield criteria as
special cases or linear approximation. The conventional yield criteria, the
unified yield criterion and unified strength theory will be introduced in this
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chapter. A detailed description of the unified strength theory can be found
in the book entitled Unified Strength Theory and Its Applications published
by Springer in 2004.

3.2 Conventional Yield Criteria

3.2.1 Maximum Normal Stress Criterion

When a stress state is uniaxial tension or compression, the yield condition
for most metals is

σ = ±σY , (3.1)

where σY is the uniaxial material strength. This criterion is also suitable for
brittle materials whose failure is characterized by the sudden breakdown of
stress with an increase in deformation. It is also sometimes used as a cut-off
criterion for geomaterial in tensile stress state.

3.2.2 Maximum Shear Stress-based Criteria — Single-shear
Theory

3.2.2.1 Tresca Criterion for Non-SD Materials

In a multiaxial stress state, material yields when a stress state satisfies a
certain condition. The yield condition should satisfy Eq.(3.1) when the stress
state is in uniaxial tension or compression. For metals, particularly mild steel,
it has been observed that the plastic deformations largely consist of the slip in
crystals. Hence, it is assumed that the maximum shear stress governs material
yielding. In other words, when the maximum shear stress reaches a specific
value and above, material will yield. This yield condition is the well-known
Tresca yield criterion.

The mathematical modeling of the Tresca criterion has a very simple form
of

τmax = C. (3.2)

It can be represented by the maximum and minimum principal stresses

τmax = τ13 =
σ1 − σ3

2
= C. (3.3)

In the uniaxial tensile stress state, the yield shear stress is written as

τmax,y =
σY − 0

2
=

σY

2
, (3.4)

where σY is the tensile stress at yield or the tensile strength. By combining
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Eq.(3.2) with Eq.(3.4), the maximum shear stress criterion or the Tresca
criterion is given by

σ1 − σ3 = σY . (3.5)

In the case of in-plane bending of beams, the stress state is defined by
σx = σ, σy = 0, and τxy = τ , we have

τmax =
1
2

√
σ2 + 4τ2, (3.6)

and the Tresca yield criterion becomes

σ2 + 4τ2 = σ2Y . (3.7)

In plane orthogonal Cartesian coordinates (Oσ, Oτ), Eq.(3.7) can be
represented by an ellipse.

The yield surface of the Tresca criterion in the three-dimensional stress
space is shown in Fig.3.1. Its axis is equally inclined with respect to the
coordinate axes. When one of the principal stresses vanishes, e.g., σ3 equals
0, the yield surface degenerates to be a hexagon obtained by intersecting the
prism with the plane of σ3 = 0 (Fig.3.1). Then the yield condition becomes

max [|σ1| , |σ2| , |σ1 − σ2|] = σY . (3.8)

Fig. 3.1. Yield surface and yield loci in deviatoric plane and plane stress state of
Tresca criterion

It is worth noting that the magnitude of the maximum shear stress is
actually half of the (algebraic) difference of the two extreme principal stresses.
Therefore the intermediate principal stress plays no role in the Tresca yield
criterion. The Tresca yield criterion assumes that the uniaxial tensile and
compressive strengths of the material are the same, thus it can only be used
for non-SD materials.
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3.2.2.2 Mohr-Coulomb Criterion for SD Materials

The Mohr-Coulomb criterion is an extension of the Tresca criterion. The
mathematical modelling of the Mohr-Coulomb strength theory is expressed
by

τ13 + βσ13 = C. (3.9)

The mathematical expression is

σ1 − ασ3 = σt, (3.10)

where β, C, α, and σt are material parameters, σt is the uniaxial tensile
strength, α is the ratio of uniaxial tensile strength to compressive strength of
the material, i.e. α = σt/σc, where σc is the uniaxial compressive strength.
In the uniaxial stress state, the Mohr-Coulomb criterion becomes the Tresca
criterion when the material parameter β equals zero or the strength ratio α
equals 1. In other words, the Mohr-Coulomb criterion can take into account
the effect of the strength difference in tension and compression of materials
(SD effect) by the introduction of extra material parameters into the Tresca
criterion.

The yield surface of the Mohr-Coulomb criterion and the projections on
the deviatoric plane and the yield loci in plane stress state are illustrated in
Fig.3.2. The yield surface is pressure dependent from Fig.3.2.

Fig. 3.2. Yield surface and yield loci in deviatoric plane and plane stress of Mohr-
Coulomb criterion

The Mohr-Coulomb criterion has been widely used for non-metallic ma-
terials, especially for geomaterials such as rock, concrete, soil, etc., whose
strength difference in tension and compression may not be ignored. And
again the inefficiency of the Mohr-Coulomb criterion is that the effect of
intermediate principal stress σ2 on the material strength is ignored.

For geomaterials, the Mohr-Coulomb criterion sometimes takes the form
of
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τf = c+ σnf tanϕ, (3.11)

where c and ϕ are the cohesion and the friction angle of the material, respec-
tively. τf and σnf are the shear strength and the corresponding normal stress
at failure, respectively. Eq.(3.11) is identical to Eq.(3.8) when the failure
plane is parallel to the maximum shear stress.

There are many other extensions of the Tresca yield criterion. Among
them, the single-shear strength theory assumes that the material yield is
mainly dominated by the maximum shear stress and its associated normal
stress.

3.2.2.3 The Mechanical Model of Mohr-Coulomb Criterion

The Mohr-Coulomb criterion can be introduced by using the mechanical
model and mathematical modelling. It is convenient and clear. The key is
to propose a reasonable model. A single-shear model (Yu, 1988) is proposed
to introduce the Tresca criterion and the Mohr-Coulomb criterion as shown
in Fig.3.3.

Fig. 3.3. Single-shear model of the Mohr-Coulomb criterion

The mathematical modelling and mathematical expressions of the Tresca
criterion and the Mohr-Coulomb criterion can be introduced from the single-
shear model. It is also seen from the single-shear model that the intermediate
principal stress is not taken into account in the formulae of the Tresca crite-
rion and the Mohr-Coulomb criterion.

3.2.3 Octahedral Shear Stress-based Criteria—Three-shear
Theory

3.2.3.1 Huber-von Mises Criterion for Non-SD Materials

The Huber-von Mises criterion was proposed by Huber (1904), Hencky (1925),
and von Mises (1913). It can also be introduced by using a regular octahedral
model (Ros and Eichinger, 1926; Nadai, 1931), as shown in Fig.3.4.
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Fig. 3.4. Regular octahedral model

The octahedral shear stress criterion assumes that the material yield is
governed by the octahedral shear stress. The mathematical modelling formula
for the yield condition is

τ8 = C, (3.12)

where τ8 is the octahedral shear stress, and

τ8 =
1
3

√
(σ1 − σ3)2 + (σ1 − σ2)2 + (σ2 − σ3)2. (3.13)

σ1, σ2, and σ3 are the principal stresses and the yield condition can be
rewritten in terms of the principal stresses as

σ21 + σ22 + σ23 − σ1σ2 − σ2σ3 − σ3σ1 = σ2Y . (3.14)

The yield surface is symmetrical regarding the three principal stresses. It
implies that the effect of the three principal stresses on the material yielding
is identical. When the stress components σx, σy, σz, τxy, τyz and τxz of the
stress tensor are used, Eq.(3.14) becomes

σ2x + σ2y + σ2z − σxσy − σyσz − σzσx + 3τ2xy + 3τ2yz + 3τ2zx = σ2Y . (3.15)

The Huber-von Mises criterion is sometimes referred to as the maximum
distortion strain energy criterion because the distortion strain energy is pro-
portional to the square of the octahedral stress.

Eq.(3.14) can also be represented by the three principal shear stresses,
i.e., τ13 = (σ1 − σ3)/2, τ12 = (σ1 − σ2)/2 and τ23 = (σ2 − σ3)/2 in the form
of

τ213 + τ212 + τ223 = C, (3.16)

where C is a material constant. It is seen from Eq.(3.16) that the Huber-von
Mises criterion includes the effects of the three principal shear stresses. It is
thus categorized as a three-shear stress criterion (Yu, 1988; 2002).
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The yield surface and yield loci in the deviatoric plane and plane stress
state of the Huber-von Mises criterion are illustrated in Fig.3.5. In a plane
stress state (σ3 = 0), Eq.(3.14) can be rewritten as an equation of ellipse

σ21 + σ22 − σ1σ2 = σ2Y , (3.17)

and the yield locus on the σ1-σ2 plane is shown in Fig.3.5, where the dotted
line of the single-shear theory is also given for comparison.

Fig. 3.5. Yield surface and yield loci in deviatoric plane and plane stress state of
the Huber-von Mises criterion

In the particular plane stress state of bending beams with shear, where
σx = σ, σy = 0, σz = 0, and τ is the shear stress, Eq.(3.14) becomes

σ2 + 3τ2 = σ2Y . (3.18)

From Eq.(3.14) the yield stress in pure shear is derived as

τY =
σY√
3
, (3.19)

while τY has the magnitude of σY /2 according to the Tresca condition.
Two yield conditions of the Tresca and Huber-von Mises criteria are the

most widely-accepted yield criteria for metals. They are applicable to non-
SD materials because the tensile and compressive strengths are assumed to
be the same. In contrast to the uniaxial tensile strength criterion, these two
criteria predict different shear yield strengths. The Tresca criterion is more
suitable for a material with τY = 0.5σY , while the Huber-von Mises criterion
is more suitable for a material with τY = 0.577σY . For materials with other
shear-to-tensile strength ratios, different yield conditions are required.

3.2.3.2 Drucker-Prager Criterion for SD Materials

Drucker-Prager strength criterion is a simple adaptation of the Huber-von
Mises criterion for material that has different tensile and compressive behav-
ior by introducing an additional term to reflect the influence of a hydrostatic
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stress component on material failure. The expression of mathematical mod-
eling for the Drucker-Prager criterion is

τ8 + βσ8 = C, (3.20)

where τ8 and σ8 are respectively the octahedral shear stress and the compan-
ion normal stress. β and C are material constants. The octahedral normal
stress σ8 is identical to the hydrostatic stress or the mean stress (σm) in
magnitude,

σ8 = σm =
1
3
(σ1 + σ2 + σ3). (3.21)

Eq.(3.20) is very similar to Eq.(3.9) for the Tresca criterion in that both of
them have two material constants and can be applied to pressure-dependent
materials or materials with the SD effect.

For geomaterials, the Drucker-Prager criterion takes the form of

k1I1 +
√

J2 − k2 = 0, (3.22)

where I1 is the first invariant of the stress tensor, J2 is the second invari-
ant of the deviatoric stress tensor. k1 and k2 are positive material constants.
Eq.(3.22) is identical to Eq.(3.20) because the square root of J2 and I1 are
proportional to τ8 and σ8, respectively. k1 and k2 are correlated to the cohe-
sion c and the friction angle ϕ,

k1 =
2 sinϕ√

3(3− sinϕ)
, k2 =

6c cosϕ√
3(3− sinϕ)

. (3.23)

The yield surface of the Drucker-Prager criterion is shown in Fig.3.6. Its
yield locus in deviatoric plane is a circle.

Fig. 3.6. Yield surface of the Drucker-Prager criterion

The Drucker-Prager criterion has been widely used in rock, concrete, and
soil plasticity. The inefficiency of the criterion is that the projection of the
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yield surface on the deviatoric plane is a circle. It has been criticized by
Zienkiewicz and Pande (1977), Chen (1982), Chen and Saleeb (1994), Chen
et al. (1994) on the grands that the Drucker-Prager criterion gives a very
poor approximation to the real failure conditions for rock, soil and concrete.

3.2.4 Twin-shear Stress-based Criterion—Twin-shear Theory

3.2.4.1 Twin-shear Model

It can be seen that the single-shear theory only takes the maximum principal
shear stress τ13 and the corresponding normal stress σ13 into account in the
yield of materials. The effect of the intermediate principal stress σ2 is not
taken into account in the Tresca and the Mohr-Coulomb strength theory.
So they have obvious shortcomings in describing the realistic characteristics
of materials, since even if the value of σ2 is zero, the other principal shear
stresses also reflect the effect of σ2.

The principal stress state (σ1, σ2, σ3) can be converted into the princi-
pal shear stress state (τ13, τ12, τ23). The principal shear stress state can be
described by a rhombic dodecahedral element model as shown in Fig.3.7 (Yu
et al., 1985). It can also be used as a three-shear model.

Fig. 3.7. Rhombic dodecahedral principal shear stress element

According to the definition of the principal shear stresses, only two of
them are independent because the maximum principal shear stress (τ13) is
equal to the sum of the other two (τ12 + τ23). So the idea of twin-shear is
developed (Yu, 1983; 1985; 1988).



3.2 Conventional Yield Criteria 41

3.2.4.2 Twin-shear Yield Criterion

A twin-shear yield criterion based on two principal shear stresses was devel-
oped by Yu (1961; 1983). The mathematical modeling is formulated in terms
of the two larger principal shear stresses,

τ13 + τ12 = C when τ12 � τ23, (3.24a)

τ13 + τ23 = C when τ12 � τ23, (3.24b)

where τ13, τ12, τ23 are the three principal shear stresses, and there are τ13 =
(σ1 − σ3)/2, τ12 = (σ1 − σ2)/2, and σ23 = (σ2 − σ3)/2, where σ1, σ2 and
σ3 are the principal stresses and satisfy the inequality σ1 � σ2 � σ3, C is a
material strength parameter to be determined by experiments.

The twin-shear stress yield criterion can be derived and expressed in terms
of the principal stresses, as follows

σ1 − 1
2
(σ2 + σ3) = σy, when σ2 � 1

2
(σ1 + σ3), (3.25a)

1
2
(σ1 + σ2)− σ3 = σy, when σ2 � 1

2
(σ1 + σ3), (3.25b)

where σY is the uniaxial yield strength. The yield surface and yield loci in
plane stress state and deviatoric plane of the twin-shear yield criterion in
stress space are shown in Fig.3.8. The other two yield loci of the single-
shear theory and three-shear theory in plane stress state are also given for
comparison.

Fig. 3.8. Yield surface and yield loci in deviatoric plane and the plane stress state
of the twin-shear yield criterion
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It is seen that the expression of the twin-shear yield criterion is piecewise
linear. In uniaxial tension and compression, the criterion is the same as other
two yield criteria when the experimental uniaxial tension is considered. The
Eq.(3.25a) of the twin-shear criterion is equivalent to the maximum deviatoric
stress yield criterion (Haythornthwaite, 1961; Zyczkowski, 1981).

In the case of special plane stress state of normal stress with shear stress
defined by σx = σ, σy = 0, and τxy = τ , the principal stresses are derived as

σ1 =
σ

2
+
1
2

√
σ2 + 4τ2, σ2 = 0 and σ3 =

σ

2
− 1
2

√
σ2 + 4τ2. (3.26)

Thus, the twin-shear yield criterion has the form of

2σ2 + 2σσY − 4σ2Y + 9τ2 = 0. (3.27)

According to Eq.(3.27), the shear yield strength is derived as

τmax =
2
3
σY . (3.28)

The shear strength with respect to different yield criteria is compared in
Table 3.1. It indicates that, even in a simple stress state, the predictions of
material strength may be very different based on different yield criteria. Some
materials that have larger shear strength may be more properly represented
by the twin-shear yield criterion (Yu, 1961; 1983). The Tresca criterion always
gives the lowest estimation of the material strength, while the twin-shear yield
criterion gives the highest.

Table 3.1. Comparison of shear strength based on different criteria

Criteria Tresca (1864) Mises (1913) Twin-shear (1961)

Shear strength (τmax) 0.5σY 0.577σY 0.667σY

3.2.4.3 Twin-shear Strength Theory for SD Materials

The twin-shear yield criterion was extended to SD materials by Yu in 1985
by including the effect of the corresponding normal stresses of the two larger
principal shear stresses. The principal shear stress state can be converted into
the twin-shear stress state (τ13, τ12; σ13, σ12) or (τ13, τ23; σ13, σ23) as shown
in Fig.3.9.

The mathematical modelling has the form of

τ13 + τ12 + β(σ13 + σ12) = C, when τ12 + βσ12 � τ23 + βσ23, (3.29a)

τ13 + τ23 + β(σ13 + σ23) = C, when τ12 + βσ12 � τ23 + βσ23. (3.29b)
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Fig. 3.9. Twin-shear model (orthogonal octahedral element)

The twin-shear strength theory can be obtained from combining Eqs.(3.29a)
and (3.29b) and uniaxial tension condition and uniaxial compression condi-
tion. It can be expressed as follows:

σ1 − α

2
(σ2 + σ3) = σt, when σ2 � σ1 + ασ3

1 + α
, (3.30a)

1
2
(σ1 + σ2)− ασ3 = σt, when σ2 � σ1 + ασ3

1 + α
. (3.30b)

Compared to the single-shear theory and the three-shear theory, the Yu
twin-shear theory is a completely new perspective for characterizing mate-
rial yield and failure. It provides another option for describing the material
strength besides the Tresca criterion, Mohr-Coulomb criterion and Huber-von
Mises-Drucker-Prager criteria.

Fig.3.10 shows the yield surface and yield loci in the deviatoric plane and
in the plane stress condition of the twin-shear strength criterion (α =1/2).
The dotted lines represent the Mohr-Coulomb criterion for comparison.

Fig. 3.10. Yield surface and yield loci in deviatoric plane and plane stress state of
twin-shear strength theory (α = 1/2)
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3.3 Unified Yield Criterion for Metallic Materials
(Non-SD Materials)

Further improvement has been made to the twin-shear yield criterion (Yu
and He, 1991; Yu, 1992; 2004) based on the fact that the effects of the two
larger principal shear stresses on yield of material may be different. A coef-
ficient to the second principal shear stress is introduced. The mathematical
modelling of the improved twin-shear yield criterion and the unified yield
criterion becomes

τ13 + bτ12 = C, when τ12 � τ23, (3.31a)

τ13 + bτ23 = C, when τ12 � τ23, (3.31b)

where b is a strength parameter that reflects the relative influence of the
intermediate principal shear stress. Yu (1991) suggested the range from 0 to
1 for b.

The expression of the unified yield criterion can be derived from the math-
ematical modelling and the experimental condition of axial yield test. We
have

σ1 − 1
1 + b

(bσ2 + σ3) = σY , when σ2 � 1
2
(σ1 + σ3), (3.32a)

1
1 + b

(σ1 + bσ2)− σ3 = σY , when σ2 � 1
2
(σ1 + σ3), (3.32b)

where σY is the uniaxial yield strength.
The criterion is called unified yield criterion because, when b equals 0, the

shape function of the criterion gives the lower limit of convex shape functions
which is identical to that of the Tresca yield criterion; and when b equals 1, it
gives the upper limit which is the twin-shear yield criterion. The Huber-von
Mises yield criterion can be approximated by the unified yield criterion with
b = 0.5. Any other convex shape functions can be obtained or approximated
with different values of b. It is worth noting that the unified yield criterion
unifies the convex shape functions in a simple formula.

Fig.3.11 shows the projections of the prism yield surface on the devia-
toriy plane for the unified yield criterion. The unified yield criterion param-
eter b has its values b=0, b=0.1, b=0.2, b=0.3, b=0.4, b=0.5, b=0.6, b=0.7,
b=0.8, b=0.9 and b=1 (Fig.3.11(a)); and b=0, b=1/4, b=1/2, b=3/4 and b=1
(Fig.3.11(b)), respectively.

It is worth indicating that the curved Huber-von Mises criterion is replace-
able by the unified yield criterion with b=1/2 or b = 1/(1 +

√
3), as shown

in Fig.3.11(b) and Fig.3.11(c). The unification of the yield criteria and their
piecewise linear mathematical form make it possible to derive stress and de-
formation fields for different materials and structures in a unified manner.
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Fig. 3.11. Yield loci of the unified yield criterion

However, the unified yield criterion can only be applied to materials which
do not show apparent strength difference in tension and compression (non-SD
material).

3.4 Unified Strength Theory for SD Materials

It is understood that a general yield/strength criterion for materials in a
complex stress state should be a function of the three principal stresses,

F (σ1, σ2, σ3) = 0. (3.33a)

Alternatively, the yield function can be expressed by the three indepen-
dent invariants I1, J2 and J3

F (I1, J2, J3) = 0. (3.33b)
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The maximum normal stress criterion assumes that the material yield or
failure depends only on σ1 or σ3. The Tresca and Mohr-Coulomb criteria
include only two principal stresses σ1 and σ3. The Huber-von Mises criterion
considers only the effect of J2. The Drucker-Prager criterion ignores J3 (see
Eq.(3.33b)). For a more generally applicable strength criterion, the effects of
all the principal stresses σ1, σ2 and σ3 or the three stress invariants I1, J2
and J3 should be accounted for.

3.4.1 Mechanical Model of the Unified Strength Theory

It is clear that there are three principal shear stresses τ13, τ12 and τ23 in
the three-dimensional principal stress state σ1, σ2 and σ3. However, only two
principal shear stresses are independent variables among τ13, τ12, τ23 because
the maximum principal shear stress equals the sum of the other two, that is,

τ13 = τ12 + τ23. (3.34)

The mechanical model and mathematical modelling are important for
establishing and understanding a new theory (Meyer, 1985; Tayler, 1986;
Besseling and Giessen, 1994; Wu et al., 1999). The mechanical model is an
abstraction, a formation of an idea or ideas that may involve the subject with
special configurations. Mathematical modelling may involve relationships be-
tween continuous functions of space, time and other variations (Tayler, 1986;
Meyer, 1985; Besseling and van der Giessen, 1994). Since there are only two
independent principal shear stresses, the shear stress state can also be con-
verted into the twin-shear stress state (τ13, τ12; σ13, σ12) or (τ13, τ23; σ13,
σ23). This stress state corresponds to the twin-shear model proposed by Yu
in 1961 and 1985. The eight sections that two groups of shear stresses act on
consist of the orthogonal octahedral elements, so the twin-shear mechanical
model can be obtained as shown in Fig.3.12.

Fig. 3.12. Yu twin-shear model (orthogonal octahedral element)
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By removing half of the orthogonal octahedral model, we can obtain a
new pentahedron element, as shown in Fig.3.13. The relationship between
the twin-shear stress and the principal stress σ1 or σ3 can be deduced from
this element. Based on the orthogonal octahedral element and pentahedron
element, the unified strength theory can be developed.

Fig. 3.13. Yu twin-shear model (pentahedron element)

The twin-shear orthogonal octahedral model is different from the regular
octahedral model. The orthogonal octahedral model consists of two groups
of four sections that are perpendicular to each other and acted on by the
maximum shear stress τ13 and the intermediate principal shear stress τ12 or
τ23.

3.4.2 Mathematical Modelling of the Unified Strength Theory

The mathematical modelling of the unified strength theory has the expression
of

F = τ13+bτ12+β(σ13+bσ12) = C, when τ12+βσ12 � τ23+βσ23, (3.35a)

F ′ = τ13+bτ23+β(σ13+bσ23) = C, when τ12+βσ12 � τ23+βσ23, (3.35b)

F ′′ = σ1 = σ2, when σ1 > σ2 > σ3 > 0. (3.35c)

The unified strength theory takes into account (1) the SD effect, (2) the
hydrostatic stress effect, (3) the normal stress effect, (4) the effect of the
intermediate principal stress, and (5) the effect of the intermediate principal
shear stress.

The magnitudes of β and C can be determined by experimental results
of uniaxial tensile strength σt and uniaxial compressive strength σc,
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σ1 = σt, σ2 = σ3 = 0,
σ1 = σ2 = 0, σ3 = −σc.

(3.36)

So the material constants β and C can be determined by

β =
σc − σt

σc + σt
=
1− α

1 + α
, C =

2σcσt

σc + σt
=

2
1 + α

σt. (3.37)

3.4.3 Mathematical Expression of the Unified Strength Theory

The mathematical expression can be derived from the mathematical mod-
elling, uniaxial tension and uniaxial compression conditions as follows:

F = σ1 − α

1 + b
(bσ2 + σ3) = σt, when σ2 � σ1 + ασ3

1 + α
, (3.38a)

F ′ =
1

1 + b
(σ1 + bσ2)− ασ3 = σt, when σ2 >

σ1 + ασ3
1 + α

, (3.38b)

F ′′ = σ1 = σ2, when σ1 > σ2 > σ3 > 0. (3.38c)

Eq.(3.38c) is used only for the stress state of three tensile stresses. It is
similar to the Mohr-Coulomb theory with tension cutoff suggested by Paul
in 1961. It is expressed as Eq.(3.38c). The unified strength theory with the
tension cutoff can be used for geomaterials.

When the uniaxial tensile and compressive strengths are identical, or α=1,
Eqs.(3.38a) and (3.38b) are simplified to Eqs.(3.32a) and (3.32b) for non-SD
materials. Thus, the unified strength theory is applicable to both SD and
non-SD materials. The widely used Mohr-Coulomb criterion for geomaterials
is a specific form of the unified strength theory (Eqs.(3.38a) and (3.38b) with
b=0).

3.4.4 Yield Surfaces and Yield Loci of the Unified Strength
Theory

A series of yield surfaces of the unified strength theory can be illustrated in
Fig.3.14 (drawn by Dr. Zhang, 2005). The inner yield surface is the same as
the yield surface of the unified strength theory with b=0 or the yield surface of
the Mohr-Coulomb strength theory, and the outer yield surface is the yield
surface of the unified strength theory with b=1 or the yield surface of the
twin-shear strength theory. The other surfaces are the yield surfaces of the
unified strength theory with 0 < b < 1.

Fig.3.15 shows the yield surfaces of three special cases with b=0, b=1/2
and b=1 (Zhang, 2005).

The projections of the unified strength theory on the deviatoric plane are
illustrated in Fig.3.16. A series of yield loci on the deviatoric plane of unified
yield criterion for non-SD materials (α =1) is shown in Fig.3.17. The unified
strength theory gives a series of yield and strength criteria and establishes
the relationship among various failure criteria.
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Fig. 3.14. Serial yield surfaces of the unified strength theory in stress space

Fig. 3.15. Three special cases (b=0, b=1/2 and b=1) of the unified strength theory

3.5 Significance of the Unified Strength Theory

The unified strength theory is introduced in the twin-shear orthogonal octa-
hedral model (Fig.3.12) or twin-shear pentahedron element (Fig.3.13). These
two models are spatial equipartition, which consists of completely filling a
volume with polyhedra of the same kind. The combination of many twin-
shear models can be used as a continuous body, as shown in Fig.3.18. It is
worth noticing that the twin-shear model can be subjected to an affinity de-
formation but remains a parallelehedron, which fills the space without gaps
or overlapping.

The characteristics of the unified strength theory can be summarized as
follows:
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Fig. 3.16. Yield loci on deviatoric plane of unified strength theory for SD materials
(α = 1/2)

Fig. 3.17. Yield loci on deviatoric plane of unified yield criterion for non-SD ma-
terials (α = 1)

(1) The unified strength theory is an assemblage of serial yield criteria
adopted for non-SD materials and SD materials. The serial criteria cover the
whole region between the lower bound (single-shear criterion, Tresca-Mohr-
Coulomb, 1864; 1900) and upper bound (twin-shear criteria, Yu, 1961; 1985).

(2) Unified strength theory consists of various yield criteria by chang-
ing the parameter b. The single-shear stress-based criteria, the twin-shear
stress-based criteria and some other strength criteria are special cases or the
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Fig. 3.18. Filling a space by twin-shear models

approximations of the unified strength theory as shown in Fig.3.19. A series
of new criteria can also be obtained.

(3) All the yield criteria of the unified strength theory are piecewise linear,
with the attendant simplification of the analytical solution of the structure
which is well known. The application of the unified strength theory gives not
only a single solution, but also a series of solutions. It is referred to as the
unified solution adopted for more materials and structures.

(4) It is in good agreement with experimental results for various materials.
(5) The Yu unified strength theory can be used to built up unified elasto-

plastic constitutive equations. It can be implemented in a finite element code
in a unified manner. It is also convenient for elastic limit design, elasto-plastic
and plastic limit analysis of structures because of its piecewise linear form.

Fig. 3.19. Relationship among single-shear, twin-shear, and new criteria



52 3 Yield Condition

In summary, the unified strength theory contains two families of yield
criteria, namely yield criteria for non-SD materials (α=1) and failure criteria
for SD materials (α �= 1). The Tresca yield criterion and the twin-shear
yield criterion are special cases of the unified yield criterion with b=0 and
b=1, respectively. The Huber-von Mises criterion can be approximated by
the unified yield criterion with b=0.5.

Fig.3.20 illustrates the relationship among the unified yield criterion, the
unified strength criteria, the single-shear-based criteria, the twin-shear-based
criteria and some new yield/strength criteria.

Fig. 3.20. Yu unified strength theory and its special cases

3.6 Unified Strength Theory in the Plane Stress State

The three-dimensional stress state is degenerated into a plane stress state if
one of the three principal stresses is equal to zero. The unified strength theory



3.6 Unified Strength Theory in the Plane Stress State 53

in the plane stress state can be divided into three regions, as described in the
following context.

3.6.1 σ1 � σ2 > 0, σ3 = 0

The unified strength theory in the plane stress state in this region can be
expressed as

σ1 − αb

1 + b
σ2 = σt, when σ2 � σ1

1 + α
, (3.39a)

1
1 + b

σ1 +
b

1 + b
σ2 = σt, when σ2 >

σ1
1 + α

. (3.39b)

3.6.2 σ1 � 0, σ2 = 0, σ3 < 0

In this region it becomes

− α

1 + b
(bσ2 + σ3) = σt, when σ2 � ασ3

1 + α
, (3.40a)

b

1 + b
σ2 − ασ3 = σt, when σ2 >

ασ3
1 + α

. (3.40b)

Eqs.(3.39a) and (3.39b) to Eqs.(3.41a) and (3.41b) are the special cases
of the unified strength theory (Eq.(3.38)) with one of the principal stresses
zero. The yield loci in the plane stress state can be plotted in Fig.3.21. The
yield loci are mirrored-symmetric on the line σ1 = σ2.

Fig. 3.21. Variation of yield loci of the UST in plane stress (σ �= 1 materials)
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Fig.3.22 illustrates the yield loci of the unified strength theory in the plane
stress state for α = 1/2 and α = 1/3 materials. The unified strength theory
parameter b varying from 0 to 1 gives a series of convex strength criteria in
the (σ1, σ2) space. The unified strength theory with b=0 is the well-known
Mohr-Coulomb strength theory (Yu, 2002; 2004).

Fig. 3.22. Unified yield criterion in plane stress state

The equations of the twelve sides of the yield loci in Fig. 3.21 are expressed
as

σ1 − αb

1 + b
σ2 = σt, σ2 − αb

1 + b
σ1 = σt, (3.41a)

1
1 + b

σ1 +
b

1 + b
σ2 = σt,

1
1 + b

σ2 +
b

1 + b
σ1 = σt, (3.41b)

σ1 − α

1 + b
σ2 = −σt, σ2 − α

1 + b
σ1 = −σt, (3.41c)

1
1 + b

σ1 − ασ2 = −σt,
1

1 + b
σ2 − ασ1 = −σt, (3.41d)

− α

1 + b
(bσ1 + σ2) = σt, − α

1 + b
(bσ2 + σ1) = σt, (3.41e)

b

1 + b
σ1 − ασ2 = σt,

b

1 + b
σ2 − ασ1 = σt. (3.41f)

With α = 1 for non-SD materials, the above equations are simplified as

σ1 − b

1 + b
σ2 = ±σY ,

b

1 + b
σ1 − σ2 = ±σY , (3.42a)
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1
1 + b

σ1 +
b

1 + b
σ2 = ±σY ,

b

1 + b
σ1 +

1
1 + b

σ2 = ±σY , (3.42b)

σ1 − 1
1 + b

σ2 = ±σY ,
1

1 + b
σ1 − σ2 = ±σY . (3.42c)

Fig.3.22(a) shows the serial yield loci of the unified yield criterion with
respect to b=0, b=0.1, b=0.2, b=0.3, b=0.4, b=0.5, b=0.6, b=0.7, b=0.8, b=0.9,
and b=1, respectively. It is seen that the criterion with b=0 is exactly the
same as the Tresca criterion as shown in Fig.3.1. When b=1 it becomes the
twin-shear yield criterion in plane stress condition (Fig.3.8). The unified yield
criterion parameter b between 0 and 1 gives a series of new convex yield
criteria bounded between the single-shear criterion (Tresca criterion) and the
twin-shear yield criterion. Five special cases of the unified yield criterion are
illustrated in Fig.3.22(b).

3.7 Summary

Each of the conventional yield criteria, including the Tresca yield criterion
(1864), the Huber-von Mises yield criterion (1913), the twin-shear stress yield
criterion (Yu, 1961a; 1983), or the maximum deviatoric stress yield criterion
(Haythornthwaite, 1961), the Mohr-Coulomb criterion, and the twin-shear
strength criterion (Yu et al., 1985) is applicable to a specific type of ma-
terials. Based on the concepts of the twin-shear models, a unified strength
theory was developed by Yu (Yu and He, 1991; Yu, 1992; 2004). The uni-
fied strength theory is a completely new system of strength criteria. It em-
braces many well-established criteria in its special or approximating cases,
such as the Tresca yield criterion, the Huber-von Mises yield criterion, the
Mohr-Coulomb strength theory, the twin-shear yield criterion (Yu, 1961a),
the twin-shear strength criterion (Yu et al., 1985), and the unified yield crite-
rion (Yu and He, 1991; Yu, 1992). The unified strength theory forms an entire
spectrum of convex and non-convex criteria, which can be used to describe
many different types of engineering materials. The unified strength theory
has a unified mechanical model, a unified mathematical model and a simple
and unified mathematical expression that conform to the various experimen-
tal data. It is easy to be applied for both research and engineering design
purposes because of its simple and linear form.

For more information readers can refer to Yu (1992; 2002; 2004), Yu et al.
(1998b; 1999a; 2002; 2006). The Yu unified strength theory and the advances
in strength theories in the twentieth century are summarized by Yu (2002;
2004). The theory has many connotations yet to be explored and its study
has attracted much attention and many research efforts since 1998.

A paper entitled “Remarks on Model of Mao-Hong Yu” is made by Al-
tenbach and Kolupaev (2008). Reviews of “Unified Strength Theory and Its
Applications” were presented by Shen (2004) and Teodorescu (2006). The
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comments on the unified strength theory were presented by Fan and Qiang
(2001) and Zhang et al. (2001).

3.8 Problems

Problem 3.1 Which criterion can be used for materials that have identical
strength in tension and compression (non-SD materials), and the shear
strengths of τY = 0.5σY ?

Problem 3.2 Which criterion can be used for materials that have identical
strength in tension and compression (non-SD materials), and the shear
strengths of τY = 0.577σY ?

Problem 3.3 Which criterion can be used for materials that have identical
strength in tension and compression (non-SD materials), and the shear
strengths of τY = 0.667σY ?

Problem 3.4 Can the Huber-von Mises criterion be used for SD materials
(that have different strengths in tension and compression)?

Problem 3.5 Compare the four yield criteria of non-SD material, the yield
loci in plane stress are shown in Fig.3.23.

Fig. 3.23. The yield loci of four yield criteria in plane stress state

Problem 3.6 Introduce the well-known Mohr-Coulomb strength theory
from the unified strength theory when b=0. Show the cross-sectional
shapes of the unified strength theory when b=0 on the deviatory plane,
on the meridian planes, and on the σ1-σ2 plane with σ3=0.
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Problem 3.7 Introduce a new failure criterion from the unified strength the-
ory when b=1/4. Show the cross-sectional shapes of the unified strength
theory when b=1/4 (new strength criterion) on the deviatory planes, on
the meridian planes, and on the σ1-σ2 plane with σ3=0.

Problem 3.8 Introduce a new failure criterion from the unified strength the-
ory when b=1/2. Show the cross-sectional shapes of the unified strength
theory when b=1/2 (new strength criterion) on the deviatory planes, on
the meridian planes, and on the σ1-σ2 plane with σ3=0.

Problem 3.9 Introduce a new failure criterion from the unified strength the-
ory when b=3/4. Show the cross-sectional shapes of the unified strength
theory when b=3/4 (new strength criterion) on the deviatory planes, on
the meridian planes, and on the σ1-σ2 plane with σ3=0.

Problem 3.10 Introduce the twin-shear strength theory from the unified
strength theory when b=1. Show the cross-sectional shapes of the unified
strength theory when b=1 (twin-shear strength theory) on the deviatory
planes, on the meridian planes, and on the σ1-σ2 plane with σ3=0.

Problem 3.11 Compare the unified strength theory when b=1/2 with the
Drucker-Prager criterion.

Problem 3.12 Introduce a new failure criterion from the unified strength
theory taking any value of b, and describe the characteristics of this cri-
terion.

Problem 3.13 Introduce the unified strength theory in terms of stress
invariant F (I1, J2, θ) and materials parameters σt and α.

Problem 3.14 Introduce the unified strength theory in terms of stress
invariant F (I1, J2, θ) and materials parameters c and ϕ.

Problem 3.15 Introduce the unified strength theory by using the experi-
mental condition of pure shear τ0 and uniaxial tension strength σt.

Problem 3.16 Five kinds of yield loci of the unified strength theory (UST)
are shown in Fig.3.24. Indicate the mathematical expressions of the parts
AC and CB of the unified strength theory with b=1.

Problem 3.17 Five kinds of yield loci of the unified strength theory (UST)
are shown in Fig.3.24. Indicate the mathematical expressions of the parts
AC and CB of the unified strength theory with b=3/4.

Problem 3.18 Five kinds of yield loci of the unified strength theory (UST)
are shown in Fig.3.24. Indicate the mathematical expressions of the parts
AC and CB of the unified strength theory with b=1/2.

Problem 3.19 Five kinds of yield loci of the unified strength theory (UST)
are shown in Fig.3.24. Indicate the mathematical expressions of the parts
AC and CB of the unified strength theory with b=1/4.

Problem 3.20 Five kinds of yield loci of the unified strength theory (UST)
are shown in Fig.3.24. Indicate the mathematical expressions of the parts
AC and CB of the unified strength theory with b=0.

Problem 3.21 The yield equation in π-plane of the unified strength theory
with b=0 (Mohr-Coulomb theory) is
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Fig. 3.24. Yield loci of UST in π-plane

F = F ′ = −
√
2
2

ax+
√
6
6
(2 + α)y +

√
3
3
(1− α)z = σt. (3.43)

Draw the yield locus in π-plane.

Problem 3.22 A new failure criterion equation in π-plane of the unified
strength theory with b=1/4 is

F = −3
√
2

10
ax+

√
6
6
(2 + α)y +

√
3
3
(1− α)z = σt, (3.44a)

F ′ = −(1
5
+ α)

√
2
2

x+ (
7
5
+ α)

√
6
6

y +
√
3
3
(1− α)z = σt. (3.44b)

Draw the yield locus in π-plane.

Problem 3.23 A new failure criterion equation in π-plane of the unified
strength theory with b=1/2 is

F = −
√
2
6

ax+
√
6
6
(2 + α)y +

√
3
3
(1− α)z = σt, (3.45a)

F ′ = −(1
3
+ α)

√
2
2

x+ (1 + α)
√
6
6

y +
√
3
3
(1− α)z = σt. (3.45b)

Draw the yield locus in π-plane.

Problem 3.24 A new failure criterion equation in π-plane of the unified
strength theory with b=3/4 is
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F = −
√
2

14
ax+

√
6
6
(2 + α)y +

√
3
3
(1− α)z = σt, (3.46a)

F ′ = −(3
7
+ α)

√
2
2

x+ (
5
7
+ α)

√
6
6

y +
√
3
3
(1− α)z = σt. (3.46b)

Draw the yield locus in π-plane.

Problem 3.25 A new failure criterion equation in π-plane of the unified
strength theory with b=1 (the twin-shear strength theory) is

F =
√
6
6
(2 + α)y +

√
3
3
(1− α)z = σt, (3.47a)

F ′ = −(1
2
+ α)

√
2
2

x+ (
1
2
+ α)

√
6
6

y +
√
3
3
(1− α)z = σt. (3.47b)

Draw the yield locus in π-plane.

Problem 3.26 Show the cross-sectional shapes of the unified strength the-
ory when b=1 and α=1/3 (new strength criterion) on the meridian planes
and on the σ1-σ2 plane with σ3=0.

Problem 3.27 Show the cross-sectional shapes of the unified strength the-
ory when b=3/4 and α=1/3 (new strength criterion) on the meridian
planes and on the σ1-σ2 plane with σ3=0.

Problem 3.28 Five kinds of yield loci of the unified yield criterion when
α = σt/σc = 1 and in plane stress state are shown in Fig.3.25. These yield
equations and yield loci of the unified yield criterion of α = σt/σc = 1
materials for any value of parameter b can be obtained. For example, the
12 yield equations of the unified yield criterion under the plane stress
state when b=1/2 can be given as follows. The yield loci of this yield
criterion are illustrated in Fig.3.25.

f1,7 = σ1 − 1
3
σ2 = ±σy; f2,8 = 2σ1 + σ2 = ±σy, (3.48a)

f3,9 =
1
3
(σ1 + 2σ2) = ±σy; f4,10 =

1
3
σ1 − σ2 = ∓σy, (3.48b)

f5,11 =
2
3
σ1 − σ2 = ±σy; f6,12 = σ1 − 2

3
σ2 = ∓σy. (3.48c)

Write out the 12 yield equations of the unified yield criterion under the
plane stress state when b = 0, b = 1/4, b = 3/4, and b = 1, respectively.

Problem 3.29 The unified yield criterion in plane stress state can be di-
vided into three cases as follows.
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Fig. 3.25. Yield loci of UST in plane stress

Case 1 σ1 � σ2 > 0, σ3 = 0
The unified yield criterion with α = σt/σc = 1 in the plane stress state is

f = σ1 − b

1 + b
σ2 = σy; if σ2 � 1

2
σ1, (3.49a)

f ′ =
1

1 + b
σ1 +

b

1 + b
σ2 = σy, if σ2 � 1

2
σ1. (3.49b)

Case 2 σ1 � 0, σ2 = 0, σ3 < 0
The unified yield criterion for α = σt/σc = 1 materials in plane stress

state is

f = σ1 − 1
1 + b

σ3 = σy,, if
1
2
(σ1 + σ3) � 0, (3.50a)

f ′ =
1

1 + b
σ1 − σ3 = σy, if

1
2
(σ1 + σ3) � 0. (3.50b)

Case 3 σ1=0, σ2 � σ3 < 0
The unified yield criterion for α = σt/σc =1 materials in plane stress state

is

f = − 1
1 + b

(bσ2 + σ3) = σy, if σ2 � 1
2
σ3, (3.51a)

f ′ =
1

1 + b
σ1 − σ3 = σy, if σ2 � 1

2
σ1. (3.51b)

Draw a yield locus in plane stress state for b=1 and α = σt/σc = 1
material.
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Problem 3.30 Draw a yield locus in plane stress state for b=0.6 and α =
σt/σc = 1 material.

Problem 3.31 Draw a yield locus in plane stress state for b=1/2 and α =
σt/σc = 1 material.

Problem 3.32 Draw a yield locus in plane stress state for b=0 and α =
σt/σc = 1 material.

Problem 3.33 Show the cross-sectional shapes of the unified strength the-
ory when b=1 and α=1/3 (twin-shear strength theory) on the deviatoric
planes, on the meridian planes, and on the σ1-σ2 plane with σ3 = 0.

Problem 3.34 Draw a yield locus of a new failure criterion from the unified
strength theory taking any value of b.
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4

Theorems of Limit Analysis

4.1 Introduction

To understand plastic limit analysis it is helpful to review the behavior of an
elastic-plastic solid or structure subjected to mechanical loading. An inelastic
solid will yield at a specific magnitude of the applied load. The corresponding
load is called the elastic limit of the structure. If the external load exceeds
the elastic limit, a plastic region starts to spread through the structure. With
further expansion of the yield area, the displacement of the structure progres-
sively increases. At another critical load, the plastic region becomes so large
as not to resist the unconstrained plastic flow in the solid. The load can-
not be increased beyond this point. The collapse load is called the plastic
limit of the structure. Plastic limit analysis involves an associated flow rule
of the adopted yield criterion. The plastic limit load is also registered as the
load-bearing capacity of the structure.

Limit analysis and design of steel structures have been well explored
(Symonds and Neal, 1951; Neal, 1956; Hodge, 1959; 1963; Baker and Heyman,
1969; Heyman, 1971; Save and Massonnet, 1972; Horne, 1979; Zyczkowski,
1981; Mrazik et al., 1987; Save et al., 1997). Exploitation of the strength re-
serve of the load-bearing capacity yields a design of structures with increased
admissible loads or decreased cross-sections, which results in a reduction in
the amounts of materials and costs.

To save material, one of the choices is to transfer part of the load from
the most highly stressed cross-sections to those that are understressed in the
elastic state. The number of fully exploited cross-sections can be increased by
the redistribution of the internal forces. The load-bearing capacity of struc-
tures may be more accurately estimated by choosing an appropriate strength
theory or yield criterion.

In plastic limit analysis, direct integration of the equilibrium equations
governed by certain yield condition leads to the load-bearing capacity for spe-
cific boundary conditions. The associated flow rule is often used to determine



4.1 Introduction 65

the velocity field. Only in some special cases is it possible to derive closed
form solutions. But in general it is always feasible to derive approximations
through numerical integration of the basic equations.

Determination of the load-bearing capacity of a structure is the simplest
when the yield curve is polygonal in shape, as is the case for the Tresca
yield criterion and the twin-shear yield criterion. The reason is that only
linear equations need to be solved when these kinds of criteria are applied.
For other criteria nonlinear equations are involved. Numerical techniques are
more appropriate. Thus, the replacement of the Tresca yield conditions by the
Huber-von Mises criterion usually renders the analytical solution impractical.
However, the unified yield criterion and the unified strength criterion have
the advantages of the piecewise linear form, and uniform solutions of the load
bearing capacity with respect to different yield conditions can be derived for
some simple structures, such as the axial-symmetrical plates, cylinders, tubes
and thick-wall vessels.

Ma and He (1994), Ma et al. (1993; 1994; 1995a; 1995b; 1995c) gave a
unified plastic limit solution to circular plates under uniform loads and par-
tially uniform loads. Ma and Hao (1998) derived a unified solution to simply
supported and clamped circular plates with the Yu’s unified yield criterion.
Further applications of the unified yield criterion to plastic limit analysis of
circular plates under arbitrary loads were reported by Ma et al. (1999). The
unified solutions of the limit speed of the rotating disc and cylinder using the
unified yield criterion were given by Ma et al. (2001).

The unified plastic limit solution to circular plates under uniform loads
and partially uniform loads using the Yu unified strength theory for SD ma-
terials was presented by Wei and Yu (2001; 2002), Wang and Yu (2002).

A general formulation of limit design theorems for perfectly plastic mate-
rials was given by Gvozdev (1938; 1960). However his work was not known in
the Western world until the late 1950s, and before that a very similar theory
had been developed by Prager at Brown University (Drucker et al., 1952;
Prager, 1947).

One of the most important developments in plastic theory is the upper
and lower bound theorems. The contents of these theorems were known by
intuition long before Gvozdev’s and Prager’s school works. However, a com-
plete and precise formulation was given by Gvozdev, Drucker and Greenberg.
And Prager’s formulation has been proved very valuable. These important
principles were also stated by Prager (1947), Hill (1950), Mendelson (1968),
Kachanov (1971), Save and Masonnet (1972), Martin (1975), Chen (1975),
Zyczkowski (1981), and Nielsen (1999).

The early applications of plasticity to structural concrete were mainly for
those reinforced concrete structures whose strength was governed by rein-
forcement. For such structures a plastic limit design has been standardized.
Examples are the yield hinge method for beams and frames (Baker and Hey-
man, 1969) and the yield line theory for slabs.
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The theorems of limit analysis were first presented by Gvozdev in 1938 and
independently proved by Hill in 1950 for rigid-perfectly-plastic materials and
by Drucker et al. in 1952 for elastic-perfectly-plastic materials. The general
forms of the theorems of limit analysis are described in the following sections.

4.2 Perfectly Plastic Solid

A perfectly-plastic solid refers to the material undergoing unlimited plastic
deformation under a constant yield stress σY . Fig.4.1 schematically shows
the difference among elastic, perfectly-plastic (ideal plastic), hard and soft
behavior of material. The value of σY is different for different materials,
and even for the same material in different environmental conditions. In the
following context, strains and strain rates refer to the plastic quantities unless
it is explicitly stated otherwise.

Fig. 4.1. Behavior of elastic, strain hardening, and perfect-plastic materials

At the incipience of plastic flow, it is assumed that strains are very
small. Hence strains and displacement are related through Eqs.(2.19) and
(2.20), whereas strain rates are derived from displacement rates (or veloci-
ties) through Eqs.(2.19) and (2.20).

4.3 Power of Dissipation

At the incipience of plastic flow for a specific point in the stress space, where
the stress state is described by (σx, σy, σz, τxy, τyz, τxz), and the strain
rate by (ε̇x, ε̇y, ε̇z, γ̇xy, γ̇yz, γ̇xy), the power of the stress per unit volume of
material is

d = σxε̇x + σy ε̇y + σz ε̇z + τxyγ̇xy + τyz γ̇yz + τxz γ̇xz. (4.1)



4.4 Lower-bound Theorem 67

For purely plastic strains this power is dissipated as heat during plas-
tic flow. Therefore, it is called “power of dissipation”, which is essentially
positive.

Eq.(4.1) can be put into vector form as

d = {σ}T{ε̇}. (4.2)

If elastic strain rates are neglected so that {ε̇} represents the plastic strain
rate, the scalar product in Eq.(4.2) is the specific rate of energy dissipation.

The yield surface has the expression

σR(σx, · · · , τxy, · · · )− σy = 0. (4.3)

Any stress state at the yield limit is represented by a stress point on this
surface. For perfectly plastic materials, σR depends on only the stress state
instead of the strain state because these materials do not exhibit workhard-
ening. The yield surface is therefore a fixed surface in the six-dimensional
space.

The yield surface can be represented by the equations of σR(σx, σy, σz,
τxy, τyz, τyz)=σY , where σR(σx, σy, σz, τxy, τyz, τyz) is a potential function
for the strain rates because normality of {ε̇} to the surface at the stress point
P gives

ε̇x = λ
∂σR

∂σx
, · · ·, γxy = λ

∂σR

∂σxy
, · · ·, (x, y, z), (4.4)

where λ is a positive scalar factor. When generalized to vertices and flats,
Eq.(4.4) is also called the plastic potential flow law.

4.4 Lower-bound Theorem

If a stress distribution balances the applied load, and is below yield or at
yield throughout the structure, the structure will not collapse or will just
be at the point of collapse. This gives a lower bound of the limit load and
is called the lower bound theorem. The maximum lower bound is the limit
load.

We can define a statically admissible stress field as being in internal equi-
librium when in balance with the external load λp, and not exceeding the
yield limit anywhere. A multiplier λ is used to define the load magnitude
acting on the structure. The multiplier λ corresponding to a statically ad-
missible stress field is called a statically admissible multiplier. The lower
bound theorem can be stated by saying that the limit load factor λ0 is the
largest statically admissible multiplier λ−, i.e.,

λ− � λ0. (4.5)
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4.5 Upper-bound Theorem

The structure will collapse if there is any compatible pattern of plastic de-
formation for which the rate of the external forces at work is equal to or
exceeds the rate of internal dissipation. It gives the upper bound of the limit
or collapse load, and thus is called the upper bound theorem. The minimum
upper bound is the limit load.

The upper bound theorem can be stated in view of the admissible multi-
plier as follows: the limit load factor λ0 is the smallest kinematically admis-
sible multiplier λ+, i.e.,

λ+ � λ0. (4.6)

The above theorems define the upper and lower bounds for the limit load.
They can be summarized as

λ− � λ0 � λ+ . (4.7)

4.6 Fundamental Limit Theorems

When considering a structure which is subjected to a system of loads that
start from zero and increase quasi-statically and proportionally, the term
“quasi-static” indicates that the loading process is sufficiently slow for all
dynamic effects to be disregarded. The term “proportionally” implies that
the ratios of the stresses at the same locations of any two different loads are
constant throughout the structure. A specific type of loading is determined
by the loading location, the direction, and the ratios of stresses at different
locations. Choosing one of the loads, we use its magnitude P as a measure
for the loading intensity. The variable P is then called the loading parameter.

For beams and frames the transition from a purely elastic region through
restricted plastic deformation to unrestricted plastic flow has been extensively
studied. For complex structures however it is not straightforward. Emphasis
has been put on the direct determination of the limit state in which the
plastic deformation in the plastic zones is no longer restricted by the adjacent
non-plastic zones and the structure begins to flow under constant loads. The
intensity of loading for this limit state is called the limit load, which is usually
denoted as Pl.

Limit analysis of a structure is concerned with the limit states of struc-
tures under loads. The incipience of the limit state of unrestrained plastic
flow is characterized by two phenomena:

a) The stresses are in equilibrium state with the applied loads P , and
satisfy the yield condition σR= σY all over the domain. Such a stress field is
called statically admissible.

b) The flow mechanism satisfies the kinematical boundary conditions, and
for energy balance the power of the applied loads P is equal to the power
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dissipated in the plastic flow. Such a flow mechanism is called kinematically
admissible.

For a given type of loading there may be numerous statically admissible
stress fields. Each of the fields corresponds to a certain intensity of loading,
which is denoted as P−. Similarly, for a given kinematically admissible mech-
anism and a given type of loading, an intensity of loading P+ can be defined
in such a manner that the power of the loads at this intensity of loading is
equal to the power of dissipation in the yield mechanism.

The fundamental theorems for limit analysis can then be stated as follows:
a) Static (or lower bound) theorem: the limit load Pl is the largest of all

loads P− corresponding to statically admissible stress fields.
b) Kinematical (or upper bound) theorem: the limit load Pl is the smallest

of all loads P+ corresponding to kinematically admissible mechanisms.

4.7 Important Remarks

4.7.1 Exact Value of the Limit Load (Complete Solution)

Assuming that a statically admissible stress field and a kinematically admissi-
ble mechanism that correspond to the same load P have been identified, there
are P � Pl and P � Pl according to the aforementioned two fundamental
theorems. Hence, P = Pl is the exact limit load. It very often happens that it
is possible to associate a statically admissible stress field and a kinematically
admissible mechanism by the plastic potential flow law. The work equation
defining P+ can then be regarded as a virtual work equation expressing the
equilibrium of the associated stress field. Consequently P+ = P−, and denot-
ing this common value as P , we have P = Pl.

A combined theorem is thus derived when it is possible to associate a
statically admissible stress field and a kinematically admissible mechanism
by the plastic potential flow law and the load P corresponding simultaneously
to both fields is the exact limit load Pl.

The two fields of above form are called a complete solution of the limit
analysis of a structure. For practical application, one usually starts from a
mechanism or from a statically admissible stress field and then searches for
the other field.

4.7.2 Elastic-plastic and Rigid-plastic Bodies

With the elastic-plastic idealization, the limit state matches the incipient
unrestrained plastic flow. For an example of a relevant displacement δ versus
the applied load P (Fig.4.2 (a)), the first part is a ray OA (elastic range), the
second part a curve AB (elastic-plastic range, restricted plastic flow) followed
by the part parallel to the axis, which indicates unrestrained plastic flow.
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With the rigid-plastic idealization, all deformations up to the onset of
unrestrained plastic flow at the limit load Pl, sometimes also called the yield-
point load, vanish (Fig.4.2 (b)).

Fig. 4.2. Elasto-plastic (a) and rigid-plastic (b) idealization cases

On the other hand, the fundamental theorems of limit analysis are iden-
tical for both idealizations. They are based exclusively on the concepts of
statically admissible stress fields and kinematically admissible plastic strain
rate fields, irrespective of the elastic or rigid nature of the material before
yielding. Thus the lower bound P−, the upper bound P+, and the complete
solutions are valid for both idealizations.

4.7.3 Load-bearing Capacity

To derive the load-bearing capacity of a structure it requires:
a) an equilibrium stress field satisfying σR � σY ;
b) a field of plastic strains at impending unrestrained plastic flow.
From the limit analysis point of view, the stress field is statically admis-

sible. The strain field specifies a kinematically admissible mechanism that
corresponds to the stress field by the plastic potential flow law. Consequently,
a “load-bearing capacity” determined by the deformation theory is the exact
limit load for limit analysis.

4.7.4 Uniqueness

The limit load for proportional loading Pl is unique, since it simultaneously
matches a statically admissible stress field ({σ}) and a kinematically admis-
sible strain rate field ({ε̇}). If there exist several limit loads, the fundamental
theorems indicate that P ∗ must be equal to any one of them. Hence Pl is
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unique and coincides with P ∗.
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5

Plastic Limit Analysis for Simply Supported
Circular Plates

5.1 Introduction

The circular plate has been used widely as an important structural element
in many branches of engineering. Reliable prediction of the load-bearing ca-
pacity of circular plates is crucial for optimum structural design. The load-
bearing capacity of circular plates by using the Tresca yield criterion and
Huber-von Mises criterion has been given by Hopkins and Wang (1954), Hop-
kins and Prager (1954), and Ghorashi (1994), et al. The design of circular
plates based on the plastic limit load was discussed by Hu (1960). Nine cases
including a simply supported circular plate, clamped circular plate, annular
plate, a built-in at inner edge and simply supported along the outer edge
plate, shearing force along the outer edge and built-in at the inner edge, etc.
were studied (Hu, 1960). A systematical summary was given by Mroz and
Sawczuk (1960), Hodge (1959; 1963), Save and Massonnet (1972), Zyczkowski
(1981), Save (1985) and Save et al. (1997).

Huang et al. (1989) applied the twin-shear stress criterion to derive the
plastic limit transverse pressure for the simply supported circular plate. Pre-
vious studies showed that the limit analysis method is effective for the analy-
sis of circular plates in the plastic limit state. However, the Tresca criterion,
Huber-von Mises criterion, and twin-shear stress criterion are only applica-
ble for certain materials. For instance, the Tresca criterion requires the shear
strength and tensile strength of the material to satisfy the relation τs = 0.5σs;
the Huber-von Mises criterion is suitable for materials with τs = 0.577σs, and
the twin-shear stress criterion is valid for the materials with τs = 0.677σs.
All one of the solutions mentioned above is single solution adopted for only
one kind of material.

A new unified solution to the plastic limit of a simply supported circular
plate by using of the unified yield criterion was presented by Ma and He
(1994), Ma et al. (1993; 1994; 1995a; 1995b; 1999). Unified plastic limit anal-
ysis of metal circular plates subjected to border uniformly distributed loading
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was derived by Wang et al. (2002). The unified solution can be adapted for
more kinds of non-SD materials. The unified solution for simply supported
circular plates using SD materials was derived by Wang and Yu (2002; 2003).
The unified plastic limit of the plate for non-SD materials is a special case of
the unified solution of the plate for SD materials, such as rock and concrete
materials (Chen, 1975; 1981; 1988).

In this chapter, plastic limit analyses of simply supported circular plates
with non-SD materials and SD materials under various transverse loading
using the unified yield criterion and the unified strength theory are presented.
Exact and unified solutions of the plastic limit load, moment field and velocity
field in the plastic limit state are derived. The moment field and velocity field
with respect to the Tresca criterion, the Huber-von Mises criterion (closed-
form solution), and the twin-shear stress criterion are compared. This chapter
presents an effective analytical method to compute the exact plastic limit load
for circular plates using a piecewise linear yield criterion.

5.2 Basic Equations of Circular Plate

When considering a circular plate of radius a and thickness h subjected to
axisymmetric transverse loading P (r), a stress element of the circular plate
is considered (Fig.5.1). Because of the axisymmetry of the structure and the
loading, the non-zero stresses are the radial stress σr, the circumferential
stress σθ, and the shear stress τrz = τrz. In the plastic limit state, the gener-
alized stresses can be expressed as (Hodge, 1963; Chakrabarty, 1987)

Fig. 5.1. Internal forces in a circular plate element

Mr =
∫ h/2

−h/2

σrzdz, Mθ =
∫ h/2

−h/2

σθzdz, (5.1a)

Qrz =
∫ h/2

−h/2

τrzdz, M0 =
∫ h/2

−h/2

σyzdz =σyh2
/
4, (5.1b)
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where Mr, Mθ and M0 are the radial, circumferential, and ultimate (fully
plastic) bending moments, respectively; Qrz is the transverse shear force
which is generally not assumed to influence the plastic yielding. Defining
dimensionless variables of r = R/a, mr = Mr/M0, mθ = Mθ/M0, p(r)
= P (r)a2/M0, the equilibrium equation of a circular plate subjected to a
constant uniform load can be written with reference to the axisymmetric
condition as

d(rmr)/dr − mθ = −
∫ r

0

p(r)rdr, (5.2)

where p(r) is the transversely distributed loading per unit area.
The equilibrium equation for a uniformly-loaded circular plate can be

simplified as

d(rmr)/dr − mθ = −p

2
r2. (5.3)

The relations between the curvature rate and the rate of deflection are

k̇r = −d2ẇ/
dr2 and k̇θ = −dẇ/(rdr), (5.4)

where ẇ, k̇r and k̇θ are non-dimensional deflection rate, non-dimensional
curvature rates in radial, and circumferential directions, respectively. The
dimensionless deflection is defined as w = W/a, where W is the actual de-
flection, and a is the radius of circular plate. According to the associated flow
rule,

k̇r = λ̇∂F/∂mr, k̇θ = λ̇∂F/∂mθ, (5.5)

where λ̇ is a plastic flow factor, F is plastic potential which is the same as
the yield function according to the associated flow rule.

5.3 Unified Solutions of Simply Supported Circular
Plate for Non-SD Materials

The plate is assumed to be made of a rigid-perfectly-plastic material, which
satisfies the unified yield criterion. Fig.5.2 shows the generalized unified yield
criterion in terms of mr and mθ. Fig.5.3 illustrates the flow vector of the
curvature velocity at the corners when the unified yield criterion parameter
b=0.5. The unified yield criterion is a piecewise linear function, and it has
the form of
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mθ = aimr + bi, (i = 1, ..., 12). (5.6)

Table 5.1 lists the respective constants ai and bi for the five lines Li

(i = 1, ..., 5) of AB, BC, CD, DE and EF in Fig.5.2.
Substituting the yield criterion into Eq.(5.3) and then integrating Eq.(5.3),

the radial moment mr located on the segments Li is obtained as

mr =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai , (i = 1, ..., 5), (5.7)

where ci (i=1, ..., 5) are integral constants to be determined by boundary and
continuity conditions. The field of velocity corresponding to each side Li is
obtained by equating Eq.(5.4) and Eq.(5.5). Considering the yield condition
Eq.(5.6), the velocity field is integrated as

ẇ = ẇ0(c1ir1−ai + c2i), (i = 1, ..., 5), (5.8)

where c1i, c2i (i=1, ..., 5) are the integral constants, ẇ0 is the velocity at the
plate center.

Fig. 5.2. Internal forces in a circular plate element

Table 5.1. Constants ai and bi in the unified yield criterion

AB BC CD DE EF
(i = 1) (i = 2) (i = 3) (i = 4) (i = 5)

ai −b b/(1 + b) 1/(1 + b) 1 + b (1 + b)/b

bi 1 + b 1 1 1 + b (1 + b)/b
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Fig. 5.3. Internal forces in a circular plate element

5.3.1 Uniformly Distributed Load

For a simply supported circular plate under uniformly distributed pressure
(Fig.5.4), in the plastic limit state, moments at the center (r=0) of the sim-
ply supported circular plate satisfy mr = mθ=1 (point A at the yield curve
in Fig.5.2). According to the boundary condition of the plate and the re-
quirement of stable flow of the plastic strains (Hodge, 1963), moments at the
simply supported edge (r = 1) satisfy mr =0 and mθ =1 (point C at the yield
curves in Fig.5.2). Bending moments at each point in the plate are located
on the sides AB and BC in view of the normality requirement of plasticity.

Fig. 5.4. Simply supported circular plate under uniformly distributed load

Assuming r1 is a non-dimensional radius of a ring where the moments
correspond to point B in Fig.5.2, the boundary conditions and continuity
conditions can be put as: (1) mr(r = 0)=1; (2) mr(r = r1) is continuous and
equals to (1+b)/(2+b); (3) mr(r = 1)=1; (4)ẇ(r = 0) = ẇ0; (5)ẇ(r = r1)
and dẇ/dr(r = r1) are continuous; (6)ẇ(r = 1) = 0. The integral coefficients
c1, c2, c11, c12, and c22 in Eq.(5.7) and Eq.(5.8) are then derived as
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c1 = 0, c2 = −(1 + b) +
1 + b

2 + b

3 + b

3 + 2b
r−2
1 ,

c11 = − r
−b(2+b)/(1+b)
1

(1 + b)2 − (2b+ b2)r1/(1+b)
1

,

c21 = 1,

c12 = −c22 = − (1 + b)2

(1 + b)2 − (2b+ b2)r1/(1+b)
1

.

(5.9)

The plastic limit load p is derived as

p =
6 + 2b
2 + b

1
r21

, (5.10)

where r1 satisfies the equation of

−(3 + 2b)(2 + b) + (3 + b)r−2
1 + 2b(2 + b)r1/(1+b)

1 = 0. (5.11)

Eq.(5.11) can be solved by half-interval search of r1 in the interval of
(0, 1) for a given value of b in the range of 0 to 1. The convergence with
sufficient accuracy of Eq.(5.11) gives the approximation of r1.

For a special case when b=0, the plastic solution becomes

⎧⎪⎪⎨
⎪⎪⎩

mr = 1− r2 , mθ = 1,
ẇ = ẇ0(1− r),

p = 6 , r1 =1
/√

2,

(5.12)

which is the same as those given by other researchers using the maximum
principal stress criterion and the Tresca criterion (Hopkins and Prager, 1953;
Hodge, 1963). Figs.5.5 and 5.6 show the moment fields and velocity fields
of a simply supported circular plate with respect to three different criteria,
namely, the Tresca criterion (b=0), the Huber-von Mises criterion (b=0.5),
and the maximum deviatoric stress criterion or the twin-shear stress criterion
(b=1). The plastic limit load p corresponding to the three criteria are 6.000,
6.489, and 6.839, respectively, when b equals 0, 0.5 or 1. The plastic limit
load versus unified yield criterion parameter b of a simply supported circular
plate is shown in Fig.5.6. The plastic limit load with respect to the Huber-von
Mises criterion obtained by Hopkins and Wang (1954) is 6.51, which is very
close to the present result with b=0.5. The upper bound limit load derived
from the expanded Tresca hexagon which circumscribes the Huber-von Mises
ellipse (Hopkins and Wang, 1954) is 6.83. The plastic limit loads obtained
with b=0.5 and b=1 of the unified yield criterion differ considerably from that
with b=0 by 8.15% and 14.0%, respectively.
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Fig. 5.5. Moment fields and velocity fields of simply supported circular plate

Fig. 5.6. Plastic limit load versus unified yield criterion parameter b of simply
supported circular plate

It is seen that the choice of strength theory has a significant influence
on the results of elasto-plastic analysis and the load-bearing capacities of
a simply supported circular plate for non-SD materials. The unified yield
criterion provides us with an effective approach to study these effects.

5.3.2 Arbitrary Axisymmetrical Load

This section presents the exact solution of a circular plate under an arbitrarily
distributed axisymmetrical load. The plastic solution of a simply supported
circular plate with a varying loading radius of the partial-uniform pressure
in Fig.5.7(a) and the arbitrary loading variation in Fig.5.7(b) under different
boundary conditions are discussed.
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Fig. 5.7. Plastic limit load versus unified yield criterion parameter b of simply
supported circular plate

5.3.2.1 Arbitrary Loading Radius

Defining dimensionless variables, r = R/a,mr = Mr/M0,m = M/M0, and
q(r) = p(r)a2/M0, the equilibrium equation of a circular plate subjected to
a constant uniform load can be derived with reference to the axisymmetric
condition as

d(rmr)/dr − mθ = −pr2/2, 0 � r � rp, (5.13)
d(rmr)/dr − mθ = −pr2p/2, rp � r � 1, (5.14)

where rp = Rp/a is the normalized loading radius of the circular plate; Rp is
the loading radius. rp = 1 implies that the entire plate is uniformly loaded,
whereas rp = 0 indicates a point loaded at the center. When the unified yield
criterion expressed by generalized stresses (Fig.5.2) is used, the expression of
the limit condition is the same as that in Eq.(5.6).

For a circular plate under arbitrarily distributed load, the center point of
the plate satisfies mr = mθ =1 (point A in Fig.5.2), and the simply supported
boundary condition leads to mr = 0 (point C in Fig.5.2). Stress states of all
the points in the plate are still on the parts AB and BC. There are two
possible cases, i.e., Case (1) rp � r0 and Case (2) rp > r0, where r0 is the
radius of the ring with the moments corresponding to the yield point B in
Fig.5.2. These two cases are illustrated in Fig.5.8.

From the boundary conditions and continuity conditions, there are: (1)
mr = 1 at r = 0; (2) mr = 0 at r = 1; (3) mr is continuous at r = rp; (4)
mr = d1 = (1 + b)/(2 + b) and is continuous at r = r0. These conditions will
be used to derive the integration coefficients in the moment equations.
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Fig. 5.8. Plastic limit load versus unified yield criterion parameter b of simply
supported circular plate

Case (1)
The moment fields of the plate corresponding to the first case can be inte-
grated as

mr =
b1

1− a1
− pr2

2(3− a1)
+ c1r

−1+a1 , 0 � r � rp, (5.15a)

mr =
b1

1− a1
− pr2p
2(1− a1)

+ c2r
−1+a1 , rp � r � r0, (5.15b)

mr =
b2

1− a2
− pr2p
2(1− a2)

+ c3r
−1+a2 , r0 � r � 1, (5.15c)

where c1, c2, and c3 are integration coefficients. The integration coefficients,
the plastic limit load p, and the demarcating radius r0 are derived with
application of the boundary and continuity conditions as

c1 = 0, (5.16a)

b1
1− a1

− pr2p
2(3− a1)

=
b1

1− a1
− pr2p
2(1− a1)

+ c2r
−1+a1
p , (5.16b)

b1
1− a1

− pr2p
2(1− a1)

+ c2r
−1+a1
0 = d1, (5.16c)

b2
1− a2

− pr2p
2(1− a2)

+ c3r
−1+a2
0 = d1, (5.16d)
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b2
1− a2

− pr2p
2(1− a2)

+ c3 = 0. (5.16e)

When the loading radius rp is specified, the unknowns c2, c3, p and r0 in
the above simultaneous equations can be derived as

c3 = − d1

1− r−1+a2
0

, (5.17)

p =
2b2
r2p

− 2(1− a2)d1
(1− r−1+a2

0 )r2p
, (5.18)

c2 =
1 + a1

(1− a1)(3− a1)r−1+a1
p

[
b2 − (1− a2)d1

1− r−1+a2
0

]
, (5.19)

where the demarcating radius r0 can be calculated from the equation of

b1
1− a1

− d1 −
[
−1− a2
1− a1

d1

1− r−1+a2
0

+
b2

1− a1

]

+
1 + a1

(1− a1)(3− a1)r−1+a1
p

[
b2 − (1− a2)d1

1− r−1+a2
0

]
r−1+a1
0 = 0.

(5.20)

When the derived values are substituted into Eqs.(5.15a)∼(5.15c), the
moment fields of the plate are calculated.

Case (2)
The corresponding moment fields of Case (2) can be derived as

mr =
b1

1− a1
− pr2

2(3− a1)
+ c1r

−1+a1 , 0 � r � r0, (5.21a)

mr =
b2

1− a2
− pr2

2(3− a2)
+ c2r

−1+a2 , r0 � r � rp, (5.21b)

mr =
b2

1− a2
− pr2p
2(1− a2)

+ c3r
−1+a2 , rp � r � 1. (5.21c)

With the same boundary and continuity conditions as for Case (1), the
integral coefficients c1, c2 and c3, the plastic limit load p, and the demarcating
radius r0 satisfy

c1 = 0, (5.22a)

b1
1− a1

− pr20
2(3− a1)

= d1, (5.22b)
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b2
1− a2

− pr20
2(3− a2)

+ c2r
−1+a2
0 = d1, (5.22c)

b2
1− a2

− pr2p
2(3− a2)

+ c2r
−1+a2
p =

b2
1− a2

− pr2p
2(1− a2)

+ c3r
−1+a2
p , (5.22d)

b2
1− a2

− pr2p
2(1− a2)

+ c3 = 0. (5.22e)

The integral coefficients, the plastic limit load and the demarcating radius
can be derived as

p =
(

b1
1− a1

− d1

)
2(3− a1)

r20
, (5.23a)

c2 =
[(

b1
1− a1

− d1

)
3− a1
3− a2

−
(

b2
1− a2

− d1

)]
r1−a2
0 , (5.23b)

c3 = − b2
1− a2

+
(

b1
1− a1

− d1

)
3− a1
1− a2

r2p
r20

, (5.23c)

where r0 can be numerically solved from Eq.(5.22d) by substituting Eqs.(5.23a)
∼(5.23c) into Eq.(5.22d).

Assuming that rp = r0 = rp0, the two cases are identical. The value of
rp0 in this special case can be derived as rp0 = 1/21+b by solving Eqs.(5.18)
and (5.22a) with application of rp = r0 = rp0. When rp � rp0, the equations
derived in Case (1) are adopted. On the other hand, when rp > rp0, the
counterparts in Case (2) are adopted. Moment fields with six different values
of loading radius rp, i.e., 1.0, 0.75, 0.5, 0.25, 0.1 and 0.00001 are shown in
Fig. 5.9. It can be seen that the moment field varies with the unified yield
criterion parameter b. The plastic limit load increases with the increase of b.
Table 5.2 gives the plastic limit load p with respect to different values of rp

and b.

Table 5.2. Plastic limit loads with different values of rp

Criterion rp = 1 rp = 0.75 rp = 0.5 rp = 0.25 rp = 0.1 rp = 0.00001

b = 0.0 (Tresca) 6.0000 7.1111 12.000 38.400 214.29 2× 1010

b = 0.5(Mises) 6.4887 7.6666 12.886 40.901 224.70 2× 1010

b = 1.0 (Twin-shear) 6.8392 8.0638 13.509 42.669 232.69 2× 1010

According to the hypothesis of the maximum principal stress condition or
the Tresca condition, mθ is equal to 1 in the whole circular plate regardless
of the variation in the loading radius rp. It is identical to the results of the
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unified yield criterion with b = 0, which is obviously unreasonable. When
0 < b � 1, mθ varies with the radius variable r and the loading radius rp.
Compared with that b = 0 or with the Tresca criterion, the varying tendency
of mθ seems more reasonable.

When rp approaches zero, the problem is approximately the case of the
circular plate under concentrated load at the center. The unified yield crite-
rion reflects the moment singularity at the center of the circular plate under
a concentrated load.

Fig. 5.9. Moment fields with different loading radii

The boundary conditions, continuity conditions, and the velocity field
when the plate is subjected to a partial-uniform load are the same as those
when the plate is under a uniformly distributed load, except that the de-
marcating radius r0 is a function of the loading radius rp. The plastic limit
load derived in the present study satisfies the equilibrium conditions and the
yield conditions. The velocity field of deflection which is compatible with the
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motion mechanism, is obtained. Therefore the solution of a plastic limit load
given here is a complete solution. Velocity profiles corresponding to six dif-
ferent values of loading radius rp, namely rp=1, rp=0.75, rp=0.5, rp=0.25,
rp=0.1, and rp=0.00001 are plotted in Fig.5.10.

Fig. 5.10. Moment fields with different loading radii

It is seen that the velocity field with b=0 is independent of the loading
radius rp which is always a straight line and is not smooth at the plate
center. The velocity field derived with the yield conditions with 0 < b � 1,
however, are functions of rp and are smoothly connected at the plate center.
This indicates that the velocity field in the plastic limit state in terms of the
unified yield criterion is again more reasonable than that based on the Tresca
criterion.

To verify the current results, the plastic limit solutions with specific pa-
rameters in the equations are explicitly given and compared with reported
results:
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(1) When b = 0, the moment field, velocity field, and the plastic limit load
are obtained as

mr = 1− r2

(3− 2rp)r2p
, mθ = 1, when 0 � r � rp, (5.24a)

mr = 1− 3r − 2rp

3− 2rp
, mθ = 1, when rp � r � 1, (5.24b)

ẇ = ẇ0(1− r), (5.24c)

p =
6

(3− 2rp)r2p
. (5.24d)

This result is identical to the solution in terms of the Tresca criterion
given by Hodge (1963).

(2) When rp = 1, the whole plate is under a uniformly distributed load. The
solution is exactly the same as that in Section 5.3.1.

(3) Denoting PT as the total load on the plate, i.e., PT = πr2pp, when rp

approaches zero, it approximates to a concentrated loading case. From
the solution of the first case, it can be derived that lim

rp→0
PT ≡ 2π which is

independent of the variable b. It agrees with the results using the Tresca
criterion and the Huber-von Mises criterion (Hodge, 1963).

5.3.2.2 Arbitrary Loading Distribution

Defining dimensionless variable p(r) = P (r)a2/M0 for a circular plate of ra-
dius a and thickness h subjected to an arbitrarily distributed axisymmetrical
transverse pressure μP (r), where μ is a plastic limit load factor, and P (r)
is a load distribution function, the equilibrium equation of the circular plate
can be written with application of the axisymmetric condition as

d(rmr)/dr − mθ = −
∫

μp(r)rdr. (5.25)

Substituting the yield criterion into Eq.(5.25) and then integrating Eq.
(5.25), mr located on the segments Li are obtained as follows:

mr =
bi

1− ai
−r−1+ai

∫
r−ai [

∫
μp(r)dr]dr+ cir

−1+ai , (i = 1, ..., 5), (5.26)

where ci (i = 1, ..., 5) are integration constants and can be determined from
the continuity and boundary conditions.

Assuming the load function p(r) =
∞∑

j=1

pjr
j−1, Eq.(5.26) becomes
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mr =
bi

1− ai
− μ

∞∑
j=1

pj
rj+1

(j + 1)(j + 2− ai)
+ cir

−1+ai . (i = 1, ..., 5) (5.27)

The field of velocity corresponding to the five sides Li is obtained as

ẇ = ẇ0(c1ir1−ai + c2i) (i = 1, ..., 5), (5.28)

where c1i and c2i (i = 1, ..., 5) are integration constants, and ẇ0 is the velocity
at the plate center.

The plastic limit load of a plate is always taken to be the total limit load
on the plate. The dimensionless total limit load of the plate is obtained as

PT = 2π
∫ 1

0

μp(r)rdr or PT = 2πμ
∞∑

j=1

pj

j + 1
. (5.29)

In the plastic limit state, moments at the center (r = 0) of a simply
supported circular plate satisfy mr = mθ = 1 (point A on the yield curves
in Fig. 5.2), and moments at the simply supported edge (r = 1) satisfy mr

= 0 and mθ = 1 (point C on the yield curves in Fig. 5.2). Bending moments
of other points in the plate are on the lines AB and BC according to the
normality requirement of plasticity. Thus, index “i” in Eqs.(5.27) and (5.28)
for a simply supported circular plate takes values of 1 or 2 only corresponding
to the line AB or the line BC in Fig.5.2, respectively. Assuming r1 is a non-
dimensional radius of a ring where the moments exactly correspond to point
B in Fig.5.2, the boundary and continuity conditions can then be described
as: (1) mr(r = 0) = 1; (2) mr(r = r1) is continuous and equal to d1; (3)
mr(r = 1) = 1; (4) ẇ(r = 0) = ẇ0; (5) ẇ(r = r1) and dẇ/dr(r = r1) are
continuous, (6) ẇ(r = 1) = 0. Accordingly, the integral coefficients c1, c2,
c11, c12, c21 and c22 in Eqs.(5.27) and (5.28) can be determined as

c1 = 0, c2 = − b2
1− a2

+ μ

∞∑
j=1

pj

(j + 1)(j + 2− a2)
, (5.30)

c11 = − r
−b(2+b)/(1+b)
1

(1 + b)2 − (2b+ b2)r1/(1+b)
1

, c21 = 1, (5.31)

c12 = −c22 = − (1 + b)2

(1 + b)2 − (2b+ b2)r1/(1+b)
1

. (5.32)

The loading factor μ is derived as

μ =
−d1 + b1

1−a1
∞∑

j=1

pjrj+1
1

(j+1)(j+2−a1)

, (5.33)



5.3 Unified Solutions of Simply Supported Circular Plate for Non-SDMaterials 89

where r1 satisfies the equation

d1 =
b2

1− a2
− μ

∞∑
j=1

pjr
j+1
1

(j + 1)(j + 2− a2)
+ c2r

−1+a2
1 . (5.34)

The above equation is solved by a half-interval search method for r1 in
the interval (0, 1) for a given value of b between 0 and 1. Substituting the
value of r1 into Eqs.(5.30)∼(5.33), the moments and velocity distributions in
Eqs.(5.27) and (5.28) can then be derived.

For a special case of b=0, the plastic solution becomes

mr = 1− μ
∞∑

j=1

pj

(j+1)(j+2)r
j+1, mθ = 1,

ẇ = ẇ0(1− r) and μ = 1
∞∑

j=1

pj
(j+1)(j+2)

, (5.35)

which are the same as those given by Ghorashi (1994) using the maximum
principal stress criterion and the Tresca criterion. If a uniformly distributed
load is applied, it becomes

mr = 1− r2, mθ = 1, ẇ = ẇ0(1− r) and μ = 6, (5.36)

which are identical to the results given by Hodge (1963).
Table 5.3 lists the plastic limit load factors and the total limit loads of the

simply supported circular plate for five linearly distributed load functions in
terms of the three particular yield criteria, namely, the Tresca criterion, the
Huber-von Mises criterion (approximated by the unified yield criterion with
b=0.5), and the twin shear stress criterion.

Table 5.3. Plastic limit loads for linearly distributed load

p(r) r 1 + r 1 2− r 1− r

PT PT PT PT PT

b = 0 12.00 25.13 4.00 20.94 6.00 18.85 4.00 16.76 12.01 12.57

b = 1/2 12.78 26.78 4.31 22.56 6.49 20.38 4.34 18.17 13.02 13.64

b = 1 13.36 27.98 4.53 23.73 6.84 21.49 4.58 19.17 13.75 14.40

From Table 5.3, different yield criteria make differences in the plastic
limit load factor, the total limit load, and the load distribution function. The
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values in terms of the Huber-von Mises criterion are about 6.5% to 8.5%
higher, while the values with the twin shear stress criterion are about 10.5%
to 14.5% higher than those with the Tresca criterion. The increasing load
distribution along the plate radius leads to minimal changes among different
yield criteria. On the other hand, it makes significant differences to the total
limit load, implying the increasing load distribution and improves the load-
bearing capacity of a plate. For a uniformly distributed load, the load factor
corresponding to the three criteria (unified yield criterion with b=0, b=0.5,
and b=1) are 6.00, 6.49 and 6.84, respectively. The load factor with respect
to the Huber-von Mises criterion reported by Hopkins and Wang (1954) is
6.51, which approximates closely the result using the unified yield criterion
with b=0.5. Fig.5.11 and Fig.5.12 illustrate schematically the moment fields
and velocity fields corresponding to these criteria for a simply supported cir-
cular plate subjected to the two types of linearly distributed load, i.e., p = r
and p = 1 − r. It is seen that the radial moment does not change much,
while the circumferential moment varies significantly with respect to differ-
ent yield criteria. The circumferential moment is not constant if the unified
yield criterion with non-zero parameter b is applied. Locations of the maxi-
mum circumferential moment shift with the loading condition and the yield
criterion. The larger r1, the larger the total limit loads. The velocity fields
with respect to the unified yield criterion (UYC) with non-zero parameter
b (0 < b � 1) distribute nonlinearly along the plate, while the velocity field
with respect to the Tresca criterion (or UYC with b=0) varies linearly and is
singular at the plate center. The distribution of velocity also depends on the
loading function as illustrated in Figs.5.11(b) and 5.12(b).

Fig. 5.11. Moment and velocity fields of simply supported circular plate (p = r)
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Fig. 5.12.Moments and velocity fields of simply supported circular plate (p = 1−r)

5.3.2.3 Edge Moment and Partial-uniform Load

For a plate loaded by edge moment and partial-uniform load as shown in
Fig.5.13, there are two possible cases, i.e., Case (1) d � r0 and Case (2)
d > r0, where d is the loading radius and r0 is the dividing radius at which
the moments mr and mθ correspond to the yield point B in Fig.5.2.

Fig. 5.13. Simply supported circular plate under partial-uniform load and edge
moment

Case (1)
When point G lies on the line segment DF (Fig.5.13(a)), the equilibrium
equations for EF , FG and GD are
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⎩ r

dmr

dr
= (1 + b)(m0 − mr)− q

2
r2

mθ = (1 + b)m0 − bmr

for EF, (5.37a)

⎧⎨
⎩ r

dmr

dr
= (1 + b)(m0 − mr)− q

2
d2

mθ = (1 + b)m0 − bmr

for FG, (5.37b)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= m0 − 1

1 + b
mr − q

2
d2

mθ = m0 − b

1 + b
mr

for GD, (5.37c)

where q is the plastic limit load, and q satisfies

q =
2(1 + b)(3 + b)m0

(2 + b)
[
(3 + b)− 2

(
d
r0

)1+b
]

d2
, (5.38)

and r0 satisfies

2(1 + b)
(

d

r0

)1+b

+ (3 + b)
(

a

r0

) 1
1+b

− 2(2 + b)
(

d

r0

)1+b (
a

r0

) 1
1+b

− (2 + b)mb

(1 + b)

[
(3 + b − 2

(
d

r0

)1+b
] (

a

r0

) 1
1+b

= 0,

(5.39)

where mb = Mb/M0.

Case (2)
When point G is on line segment EF (Fig.5.13(b)), the equilibrium equations
are ⎧⎨

⎩ r
dmr

dr
= (1 + b)(m0 − mr)− q

2
r2

Mθ = (1 + b)m0 − bmr

for EG, (5.40)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= m0 − 1

1 + b
mr − q

2
r2

mθ = m0 − b

1 + b
mr

for GF, (5.41)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= m0 − 1

1 + b
mr − q

2
d2

mθ = m0 − b

1 + b
mr

for GD, (5.42)
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where q satisfies

q =
6 + 2b
2 + b

m0

r20
, (5.43)

and r0 satisfies

3 + b

3 + 2b

(
d

r0

) 3+2b
1+b

2(2 + b)
(

a

r0

) 1
1+b

+ (3 + b)
(

d

r0

)2 [(
a

r0

) 1
1+b

−
(

d

r0

) 1
1+b

]

+
(2 + b)mb

(1 + b)

(
a

r0

) 1
1+b

+
2b(2 + b)
3 + 2b

= 0.

(5.44)

When d = r0, point F and G overlap, the moment fields of Case (1) and
Case (2) become the same, and r0 satisfies

r0 =
(
1
2
+
(2 + b)mb

2(1 + b)

)1+b

a. (5.45)

5.3.2.4 Edge Moment and Partial-linear Load

For a circular plate subjected to partial-linear load and edge moment as
shown in Fig.5.14, there also are two possible cases, i.e. Case (1) d � r0 and
Case (2) d > r0.

Fig. 5.14. Partial-linear load and edge moment
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Case (1)
When point G lies on line segment EF (Fig.5.14(a)), the plastic limit loading
is

q =
3(4 + b)
2 + b

dm0

r20
, (5.46)

and r0 satisfies

(
(2 + b)mb

(1 + b)
+
(4 + b)d3 − (2 + b)r30

r30

) (
a

r0

) 1
1+b

− 3(1 + b)(4 + b)
(4 + 3b)

(
d

r0

)3(
d

r0

) 1
1+b

+
3b(2 + b)
4 + 3b

= 0.

(5.47)

Case (2)
When point G is on line segment FD (Fig.5.14(b)), the plastic limit loading
is

q =
3(1 + b)(4 + b)m0

(2 + b)
[
(4 + b)− 3

(
d
r0

)1+b
]

d2
, (5.48)

and r0 satisfies

3(1 + b)
(

d

r0

)1+b

+ (4 + b)
(

a

r0

) 1
1+b

− 3(2 + b)
(

d

r0

)1+b (
a

r0

) 1
1+b

− (2 + b)mb

(1 + b)

[
(4 + b)− 3

(
d

r0

)1+b
] (

a

r0

) 1
1+b

= 0 .

(5.49)

When d = r0, i.e., points F and G overlap, and r0 satisfies

r0 =
(
2
3
+
(2 + b)mb

3(1 + b)

)1+b

a. (5.50)

The relationship between the plastic limit load and parameter b is given in
Table 5.4 and Fig.5.15 for the loading cases of (1) partial-uniform loading with
edge moment, and (2) partial-linear load with edge moment, where d = 0.6a
and Mb = 0.3M0. It is seen that the plastic limit load is different with respect
to different yield criteria. When b = 0 (Tresca criterion), the plastic limit load
is the minimum; when b = 1 (the twin-shear yield criterion), the plastic limit
load is the maximum.
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Table 5.4. Relationships of limit load q and parameter b

Loading type b 0 0.1 0.2 0.3 0.4 0.5

1 r0 0.7000 0.6797 0.6576 0.6418 0.6284 0.6171

q 6.4815 6.6926 6.8850 7.0610 7.2226 7.3715

2 r0 0.7412 0.7189 0.7002 0.6844 0.6709 0.6592

q 10.6061 10.9061 11.1799 11.4303 11.6603 11.8721

Loading type b 0.6 0.7 0.8 0.9 1.0

1 r0 0.6074 0.5990 0.5915 0.5847 0.5783

q 7.5093 7.6374 7.7568 7.8863 7.9729

2 r0 0.6491 0.6402 0.6324 0.6254 0.6192

q 12.0679 12.2495 12.4186 12.5765 12.7243

Fig. 5.15. Plastic limit load q versus unified yield criterion parameter b

5.4 Unified Solutions of Simply Supported Circular
Plate for SD Materials

The unified solutions of a circular plate for non-SD materials are extended to
SD materials. The unified plastic limit of a clamped circular plate with SD
materials (strength differential effect in tension and compression) by using
the unified strength theory was derived by Wei and Yu (2001). Unified plastic
limit analyses of simply supported circular plates with different tensile and
compressive strength under uniform annular load were derived by Wang and
Yu (2002; 2003a). Plastic limit analysis of simply supported circular plates
with different tensile and compressive strength under linear distributed load
was given by Wang and Yu (2003). In this section, we will analyze the plastic
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limit load of simply supported circular plates that are made of SD materials.
A parameter α is introduced, which is the ratio of the negative limit bending
moment and positive limit bending moment, α = +mp/−mp. The yield loci
in terms of the generalized stresses mr and mθ is shown in Fig.5.16 with
respect to different values of b.

The generalized yield criterion for a plate is similar to the yield criterion
in the plane stress state. The generalized unified yield criterion for a plate is
similar to the unified yield criterion in the plane stress state. However, two
cases have to be considered, i.e., (a) +mp �= −mp and (b) +mp = −mp. They
are shown in Fig.5.16.

Fig. 5.16. Generalized unified yield criterion for plate

The yield criterion of the unified strength theory in terms of generalized
stresses is

mr − αb

1 + b
mθ = mp, mθ − αb

1 + b
mr = mp, (5.51a)

mr − α

1 + b
mθ = mp, mθ − α

1 + b
mr = mp, (5.51b)

α

1 + b
(bmr +mθ) = −mp,

α

1 + b
(bmθ +mr) = −mp, (5.51c)

1
1 + b

(mr + bmθ) = mp,
1

1 + b
(mθ + bmr) = mp, (5.51d)

1
1 + b

(mr + αmθ) = mp,
1

1 + b
(mθ + αmr) = mp, (5.51e)

b

1 + b
(mr + αmθ) = mp,

b

1 + b
(mθ + αmr) = mp. (5.51f)
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The center point of the simply supported plate satisfies mr(r = 0) =
mθ(r = 0) (point A in Fig.5.16); and simply supported boundary satisfies
mr(r = a) = 0 (point C in Fig. 5.16), mθ = (1+α) mr (point B in Fig.5.16).
Stress states of all points in the plate are located on parts AB and BC. The
yield conditions of parts AB, BC in Fig.5.16 can be expressed as

AB :
b

1 + b
mr +

1
1 + b

mθ = mp, (5.52a)

BC : mθ − αb

1 + b
mr = mp. (5.52b)

5.4.1 Partial-uniform Load

There are two possible cases where the plate is subjected to a partial-uniform
load as shown in Figs.5.17(a) and 5.17(b), i.e., Case (1) d � r0 and Case
(2) d > r0, respectively, where d is the loading radius. The moments mr and
mθ at point G with a radius of r0 are located at point B in Fig.5.16.

Fig. 5.17. Simply support circular plate subjected to partial-uniform load

Case (1)
When point G lies on segment DE, the equilibrium equations for different
parts are given by
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EF :

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pr2

2
,

mθ = (1 + b)mp − bmr,

(5.53a)

GE :

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pd2

2
,

mθ = (1 + b)mp − bmr,

(5.53b)

DG :

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + b − αb

1 + b
mr − pd2

2
,

mθ = mp +
αb

1 + b
mr.

(5.53c)

Case (2)
When point G is located on segment EF , the equilibrium equations are

GF :

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pr2

2
,

mθ = (1 + b)mp − bmr,

(5.54a)

EG :

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + b − αb

1 + b
mr − pr2

2
,

mθ = mp +
αb

1 + b
mr,

(5.54b)

DG :

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + b − αb

1 + b
mr − pd2

2
,

mθ = mp +
αb

1 + b
mr.

(5.54c)

The boundary and continuity conditions are: (1) at point F , mr(r = 0)
is a finite value; (2) at point D, mr(r = 0) = 0; (3) at point E, mr(r = d) is
continuous; (4) at point G, mr(r = r0) continuous and equal to (1+b)mp/(1+
b+ α).
Case (1)
Integrate Eqs.(5.53a) and (5.53c),

mr = mp − pr2

6 + 2b
+ c1r

−(1+b)mθ = (1 + b)mp − bmr for EF, (5.55a)

mr = mp − pd2

2(1 + b)
+ c2r

−(1+b)mθ = (1 + b)mp − bmr for GE, (5.55b)

mr =
1 + b

1 + b − αb
(mp − pd2

2
) + c3r

− 1+b−αb
1+b mθ = mp +

αb

1 + b
mr for DG.

(5.55c)



5.4 Unified Solutions of Simply Supported Circular Plate for SD Materials 99

With reference to the boundary and continuity conditions (1) to (4), we
have

c1 = 0, (5.56a)

c2 =
pd3+b

(1 + b)(3 + b)
, (5.56b)

c3 =
[
− 1 + b

1 + b − αb

(
mp − pd2

2

)]
a
1+b−αb
1+b . (5.56c)

The plastic limit load is

p =
2(1 + b)(3 + b)αmp

(1 + b+ α)d2
[
(3 + b)− 2

(
d
r0

)1+b
] , (5.57)

where r0 satisfies

2α(1 + b)
(

d
r0

)1+b

+ (3 + b)(1 + b − αb)
(

a
r0

) 1+b−αb
1+b

−2(1 + b+ α)
(

d
r0

)1+b (
a
r0

) 1+b−αb
1+b

= 0.
(5.58)

Substituting c1, c2 and c3 into Eqs.(5.55a) and (5.55c), the moment fields
for Case (1) can be derived.
Case (2)
When point G located between E and F , from Eq.(5.54),

⎧⎨
⎩mr = mp − pr2

6 + 2b
+ c4r

−(1+b)

mθ = (1 + b)mp − bmr

for GF, (5.59a)

⎧⎪⎪⎨
⎪⎪⎩

mr =
1 + b

1 + b − αb
mp − (1 + b)pr2

2(3 + 3b − αb)
+ c5r

− 1+b−αb
1+b

mθ = mp +
αb

1 + b
mr

for EG, (5.59b)

⎧⎪⎪⎨
⎪⎪⎩

mr =
1 + b

1 + b − αb
mp − 1 + b

1 + b − αb

pd2

2
+ c6r

− 1+b−αb
1+b

mθ = mp +
αb

1 + b
mr

for DG. (5.59c)

Applying the boundary and continuity conditions (1) to (4), we obtain

c4 = 0, (5.60a)
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c5 = − 1 + b

1 + b − αb
mpα

1+b−αb
1+b +

(1 + b)pd2

2(1 + b − αb)

(
α

1+b−αb
1+b − d

1+b−αb
1+b

)

+
(1 + b)p

2(3 + 3b − αb)
d
3+3b−αb

1+b ,

(5.60b)

c6 =
(
− 1 + b

1 + b − αb
mp +

1 + b

1 + b − αb

pd2

2

)
α

1+b−αb
1+b . (5.60c)

The plastic limit load is derived as

p =
(6 + 2b)αmp

(1 + b − α)r20
, (5.61)

where r0 satisfies

α(1 + b)− α(3 + b)(1 + b − αb)
3 + 3b − αb

− (1 + b+ α)
(

a

r0

) 1+b−αb
1+b

+ α(3 + b)
(

d

r0

)2 [(
a

r0

) 1+b−αb
1+b

−
(

d

r0

) 1+b−αb
1+b

]

+
α(3 + b)(1 + b − αb)

3 + 3b − αb

(
d

r0

) 3+3b−αb
1+b

= 0.

(5.62)

Special Case
When r0 = d, i.e., point G overlaps point E, the moment fields of the two
cases are the same as

⎧⎨
⎩mr = mp − pr2

6 + 2b
+ c7r

−(1+b)

mθ = (1 + b)mr − bmr

for EF, (5.63a)

⎧⎪⎪⎨
⎪⎪⎩

mr =
1 + b

1 + b − αb

(
mp − pd2

2

)
+ c8r

− 1+b−αb
1+b

mθ = mp +
αb

1 + b
mr

for DE. (5.63b)

From the boundary and continuity conditions (1) to (4),

c7 = 0, (5.64a)

c8 =
[
− 1 + b

1 + b − αb

(
mp − pd2

2

)]
α

1+b−αb
1+b , (5.64b)

the plastic limit load is simplified as
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p =
α(6 + 2b)mp

(1 + b+ α)d2
, (5.65)

where d = r0 and

(α

d

) 1+b−αb
1+b

=
−2α

1 + b − αb − 2α
. (5.66)

Denoting the critical loading radius as d0, when d � d0, i.e. Case (1),
Eq.(5.58) gives a unique solution in the region of d < r � a, while Eq.(5.62)
has no solution in 0 < r � d. Thus the equations for Case (1) are adopted
to solve the plastic limit load and moment fields. When, on the other hand,
Eq.(5.58) has no solution in d < r � a, while Eq.(5.62) can be used to solve
r0 in the region of 0 < r � d. In this case, point G is on the segment EF .
The plastic limit load and moment fields can be obtained from Case (2).

Figs.5.18 to 5.21 show the moment fields when α = 0.1, d = a, 0.5a, 0.1a
and 0.00001a, respectively. The plastic limit loads with respect to different
values of unified yield criterion parameter b are plotted in Fig.5.22.

Fig. 5.18. Moment fields when d = a

From Fig.5.18 to Fig.5.21, the moment fields depend on the unified yield
criterion parameter b. The higher the parameter b, the higher the corre-
sponding moment and the plastic limit load. When b = 0, the moment mθ

is independent of the loading radius, and mθ = mp. When b �= 0, mθ varies
along the radial direction, and the variation of mθ gives a more reasonable
representation than that with b = 0. When d approaches zero, which corre-
sponds to a concentrated loading case, the solution of mθ has no singularity
at r = 0 when the parameter b is equal to 0. When b �= 0, the solutions of
both mθ and mr have singularity at r = 0. It can be said that when using
the unified strength theory, the singularity of the moment fields at the plate
center for a concentrated loading case can be properly represented.
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Fig. 5.19. Moment fields when d = 0.5a

Fig. 5.20. Moment fields when d = 0.1a

5.4.2 Linearly Distributed Load

For a simply supported circular plate under linearly distributed load, two
different loading cases are discussed in the following context.

Case (1)
For a linear pressure load as shown in Fig.5.23, when the moment of point
F falls on point B in Fig.5.16, the moment fields satisfy the boundary and
continuity conditions of (1) mr = mθ at r = 0; (2) mr and mθ are continuous
at point F or r = r0; (3) mr = 0 at r = a of the outer edge.

The equilibrium equations of lines EF and FD are
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Fig. 5.21. Moment fields when d = 0.00001a

Fig. 5.22. Plastic limit loads with respect to different values of unified yield crite-
rion parameter b

Fig. 5.23. Linearly distributed loading (Case (1))

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − p

3a
r3

mθ = (1 + b)mp − bmr

for EF, (5.67a)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + (1− α)b

1 + b
mr − p

3a
r3

mθ = (1 + b)mp − αb

1 + b
mr

for FD. (5.67b)
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Solving Eq.(5.67) with references to the boundary and continuity condi-
tions yields

⎧⎪⎪⎨
⎪⎪⎩

mr = c1r
−(1+b) +mp − pr3

3a(4 + b)

mθ = −c1br
−(1+b) +mp +

bpr3

3a(4 + b)

for EF, (5.68a)

⎧⎪⎪⎨
⎪⎪⎩

mr = c2r
− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp − (1 + b)pr3

3α(4 + 4b − bα)

mθ = c2
αb

1 + b
r− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp − αbpr3

3α(4 + 3b)

for FG.

(5.68b)

The two coefficients c1 and c2 are derived as

c1 = 0, (5.69a)

c2 =
[
− (1 + b)mp

1 + (1− α)b
+

(1 + b)pa2

3(4 + 4b − bα)

]
α

1+(1−α)b
1+b . (5.69b)

The limit loading is

p =
3α(4 + b)αmp

(1 + α+ b)r30
, (5.70)

and r0 satisfies

α(4 + b)[1 + (1− α)b]
(

a

r0

)3(
a

r0

) 1+(1−α)b
1+b

− (4 + 4b − bα)(1 + α

+ b)
(

a

r0

) 1+(1−α)b
1+b

+ 3αb(1 + α+ b) = 0

(5.71)

Case (2)
For a linear pressure load as shown in Fig.5.24, when the moment of point F
is at point B in Fig.5.16, the equilibrium equations of lines EF and FD are

⎧⎨
⎩ r

dmr

dr
= (1 + b)mp − (1 + b)mr − pr2

2
+

p

3a
r3

mθ = (1 + b)mp − bmr

for EF, (5.72a)

⎧⎪⎪⎨
⎪⎪⎩

r
dmr

dr
= mp − 1 + (1− α)b

1 + b
mr − pr2

2
+

p

3a
r3

mθ = (1 + b)mp − αb

1 + b
mr

for FD. (5.72b)
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Fig. 5.24. Linearly distributed loading (Case (2))

Eq.(5.72) can be solved with application of the boundary and continuity
conditions as

⎧⎪⎪⎨
⎪⎪⎩

mr = c3r
−(1+b) +mp − pr2

2(3 + b)
+

pr3

3a(4 + b)

mθ = −c1br
−(1+b) +mp +

bpr2

2(3 + b)
− bpr3

3a(4 + b)

for EF, (5.73a)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mr = c4r
− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp

− (1 + b)pr2

2(3 + 3b − bα)
+

(1 + b)pr3

3α(4 + 4b − bα)

mθ = c4
αb

1 + b
r− 1+(1−α)b

1+b +
1 + b

1 + (1− α)b
mp

+
αbpr2

2(3 + 3b − bα)
− αbpr3

3α(4 + 3b)

for FD. (5.73b)

The two coefficients c3 and c4 are derived as

c3 = 0, (5.74a)

c4 =
[

(1 + b)(6 + 6b − bα)pa2

6(3 + 3b − bα)(4 + 4b − bα)
− (1 + b)
1 + (1− α)b

mp

]
α

1
1+b . (5.74b)

The limit loading is obtained as

p =
6αa(3 + b)(4 + b)mp

(1 + α+ b)[3a(4 + b)r20 − 2(3 + b)r30]
, (5.75)

and r0 satisfies
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6αab(1 + α+ b)(4 + b)(4 + b − bα)r20 − (1 + α+ b)(3 + 3b

− bα)(4 + 4b − bα)(3a2(4 + b)r20 − 2(3 + b)r30)
(

a

r0

) (1+(1−α)b)
1+b

− 6αb(1 + α+ b)(3 + 3b − bα)(3 + b)r30 = 0.

(5.76)

From Eqs.(5.70) and (5.75), the relationship of the plastic limit load and
the unified strength theory parameters b and α can be determined as shown in
Figs.5.25 and 5.26. It is seen that the plastic limit load is significantly affected
by the unified yield criterion parameters b and α. When α is given, the plastic
limit load increases with the increase in b. When b = 0, which corresponds
to the Mohr-Coulomb criterion, the plastic limit load is the minimum, and
when b = 1 corresponding to the twin-shear strength criterion, the plastic
limit load gives the maximum value. For any specific value of parameter b,
the plastic limit load increases with the increase in α. When α = 1, it gives
the same results as those based on the unified yield criterion.

Fig. 5.25. Relation curves of limit loading and unified strength theory parameters
b, α (Case (1))

It is seen from Fig.5.25 and Fig.5.26 that the unified strength theory pa-
rameters b and the ratio of material strength in tension and in compression
α have a significant influence on the limit bearing capacity of a simply sup-
ported circular plate. The unified strength theory provides us with an effective
approach for studying these effects and for raising the bearing capacities of
engineering structures more than the Tresca criterion and the Mohr-Coulomb
criterion (b = 0). So, there is a considerable economical benefit in using the
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Fig. 5.26. Relation curves of limit loading and unified strength theory parameters
b, α (Case (2))

new results if the strength of material is adapted to the new yield criterion
(b > 0). This brings a tremendous energy saving and reduction in pollution.

5.5 Summary

The unified solution to the plastic limit load for simply supported circular
plates made of either non-SD materials or SD materials under various loading
conditions are derived. They are obtained by applying the unified strength
theory in the plane stress state. The unified solution gives a series of new
results, and establishes a relationship between various results and encom-
passes solutions using the Tresca criterion, the maximum stress criterion, the
Huber-von Mises criterion, the Mohr-Coulomb criterion and the twin-shear
criterion as special cases. The plastic limit load of a simply supported cir-
cular plate under a uniformly distributed load is p = (6 + 2b)/(2 + b)r20 for
non-SD materials, p = α(6 + 2b)/((1 + b + α)r20) for SD materials, where p
is the normalized plastic limit load, and p = Pa2/Mp. A series of solutions
for various materials can be deduced from the unified solution. For an easier
understanding of the current results, some specific solutions are given below:

Non-SD materials:
p = 6.0, it follows the Tresca criterion (or the unified yield criterion with

b=0);
p = 6.51, it follows the Huber-von Mises criterion (Hopkins-Wang 1954,

numerical integrated method);
p = 6.46, it follows the Huber-von Mises criterion (Sokolovsky’s solution,

1955);
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p = 6.49, it follows the unified yield criterion with b = 1/2 (Ma and He,
1994; Ma et al., 1995);

p = 6.84, it satisfies the twin-shear yield criterion (Li, 1988; Huang and
Zeng, 1989) or the unified yield criterion with b = 1 (Ma and He, 1994; Ma
et al, 1995).

SD materials:
p = 6α/((1+α)r20) for SD materials satisfying the Mohr-Coulomb criterion

(b = 0);
p = 14α/((3+2α)r20) for SD materials satisfying a new criterion (b = 1/2);
p = 9α/((2 + α)r20) for SD materials satisfying the twin-shear strength

criterion (b = 1).
A series of research exercises were carried out to show the effects of

strength theory on the results of elasto-plastic analysis and the load-bearing
capacities of a simply supported circular plate for non-SD materials and SD
materials. The choice of strength theory has a significant influence on these
results. The unified yield criterion and unified strength theory provide us
with an effective approach for studying these effects. The unified plastic limit
of a clamped circular plate for non-SD materials and SD materials will be
described in Chapter 6.

5.6 Problems

Problem 5.1 Determine the limit bearing capacity of a simply supported
circular plate by using of the Tresca criterion.

Problem 5.2 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 0).

Problem 5.3 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 0.5).

Problem 5.4 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 0.8).

Problem 5.5 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified yield criterion (b = 1.0).

Problem 5.6 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 0).

Problem 5.7 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 0.5).

Problem 5.8 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 0.8).

Problem 5.9 Determine the limit bearing capacity of a simply supported
circular plate by using of the unified strength theory (b = 1.0).

Problem 5.10 A simply supported circular plate under uniform annular
load is shown in Fig.5.27. The relationship of limit load q and b for a
special case is shown in Fig.5.28. Please derive the unified solution for
the plate. The referenced figure similar to Fig.5.8 is shown in Fig.5.29.
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Fig. 5.27.

Fig. 5.28.

Fig. 5.29.

Problem 5.11 A simply supported circular plate is under linear and uni-
form load, as shown in Fig.5.30. Please derive the unified solution for the
plate.

Fig. 5.30.

Problem 5.12 A simply supported circular plate is under linear and uni-
form load as shown in Fig.5.31. Please derive the unified solution for the
plate.
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Fig. 5.31.
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6

Plastic Limit Analysis of Clamped Circular
Plates

6.1 Introduction

The unified solutions of plastic limit analyses for a simply supported circular
plate have been described in last chapter. Clamped circular plates are one of
the typical structural elements in many branches of engineering. The limit
analyses for a clamped circular plate were studied by using the Tresca, Huber-
von Mises and Mohr-Coulomb criteria (Wang and Hopkins, 1954; Hu, 1960;
Hodge, 1963; Zyczkowski, 1981; Nielsen, 1999).

In this chapter the plastic limit analyses of clamped circular plates are
carried out based on the unified strength theory. The unified yield criterion,
which is suitable for materials without SD effect, is first employed to derive
the moment and velocity fields and the plastic limit load for various trans-
verse loads. A unified solution including a series of solutions for a clamped
circular plate was first derived by Ma et al. (1994; 1999). The SD effect was
subsequently considered by applying the unified strength theory. The unified
solution to a clamped circular plate for SD materials was derived by Wei and
Yu (2001). A series of solutions for a clamped circular plate is given. These
results are described in this chapter and compared with reported results using
the Tresca, Huber-von Mises and Mohr-Coulomb criteria.

6.2 Unified Solutions of Clamped Circular Plate for
Non-SD Materials

6.2.1 Uniformly Distributed Load

Considering a clamped circular plate under a uniformly distributed load in
Fig.6.1, the normalized moment variables mr and mθ are similar to those in
Chapter 5. The moment and velocity equations of the plate remain the same
as given in Eq.(5.2) to Eq.(5.5).
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Fig. 6.1. Clamped circular plate

When the SD effect for a material is negligible, the unified strength theory
can be simplified to the unified yield criterion which has the piecewise linear
form of

mθ = aimr + bi (i = 1, ..., 12). (6.1)

The clamped circular plate is assumed to be made of a rigid-perfectly-
plastic material that satisfies the unified yield criterion as shown in Fig.5.2
(see Chapter 5). The constants ai and bi for the five lines Li (i = 1, ..., 5) of
AB, BC, CD, DE, and EF in Fig.5.2 are listed in Table 5.1.

Substituting the yield criterion in Eq.(6.1) into Eq.(5.3) and integrating
Eq.(5.3), the radial moment mr falling on the segments Li is derived as

mr =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai (i = 1, ..., 5), (6.2)

where ci (i = 1, ..., 5) are integration constants for the five lines Li (i =
1, ..., 5) to be determined by boundary and continuity conditions. The field
of velocity corresponding to the lines Li is derived by equating Eq.(5.4) and
Eq.(5.5). Considering the yield condition Eq.(6.1), the velocity field is inte-
grated as

ẇ = ẇ0(c1ir1−ai + c2i) (i = 1, ..., 5), (6.3)

where c1i and c2i (i = 1, ..., 5) are the integration constants, ẇ0 is the velocity
at the plate center. Eqs.(6.2) and (6.3) are the same as Eqs.(5.7) and (5.8)
given in Chapter 5.

In the elastic state the moment fields of a clamped circular plate (Fig.6.1)
satisfy mθ = mr at the plate center (r = 0), mθ = νmr at the fixed edge,
and mθ � mr at other points in the plate, where ν is the elastic Poisson’s
ratio. In the plastic limit state, it remains mθ = mr at the plate center due
to the symmetry of the plate.

According to the kinematically admissible requirement, ẇ is a decreasing
function of r which implies k̇θ � 0 in Eq.(5.4). Solutions with respect to the
Tresca criterion and the Huber-von Mises criterion assume mθ = 0 and mθ =
0.5 at the fixed edge, respectively (Hodge, 1963; Hopkins and Wang, 1954).
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Providing mθ = νpmr at the outer edge, where νp is an edge effect coefficient
in the plastic limit state and 0 � νp � 0.5, the moment fields of the entire
plate lie on the five sides of AB, BC, CD, DE and EF as shown in Fig.5.2
of the unified yield criterion. Assuming that the points A, B, C, D, and E
in Fig.5.2 correspond to dimensionless radii r0, r1, r2, r3 and r4 in the plate
respectively, there is 0 = r0 � r1 � r2 � r3 � r4 � 1. They divide the plate
into five parts Li (i = 1, ..., 5). On the outer edge where r = 1, the moments
mr and mθ lie on the line EF . They are at point F when νp is 0.5, and
at point E when νp is zero. The continuity and boundary conditions of the
clamped circular plate give (1) mr(r = 0)=1; (2) mr(r = ri, i = 1, ..., 4) are
continuous; and (3) mr(r = 1)= mθ / νp=−(1+b)/(1+b−νpb) corresponding
to the yield line EF in Fig.5.2. Defining α1=r1/r2, α2=r2/r3, α3=r3/r4, and
α4=r4, there are r1=α1α2α3α4, r2=α2α3α4, r3=α3α4, and r4=α4.

The continuity conditions of the radial moment mr with respect to the
yield points A, B, C, D, E leads to

mr(r = ri) = di (i = 0, ..., 5). (6.4)

The values of di (i = 0, ..., 5) are listed in Table 6.1.

Table 6.1. Constants di

Points A (i = 0)) B (i = 1) C (i = 2)

di 1 (1 + b)/(2 + b) 0

Points D (i = 3) E (i = 4) line EF (i = 5)

di − (1 + b)/(2 + b) −1 −(1 + b)/(1 + b− νpb)

With the application of the above continuity and boundary conditions, ci

(i = 1, ..., 5) in Eq.(6.2) are determined as

c1 = 0, (6.5a)

c2 = −2b(1 + b)
3 + 2b

r
1/(1+b)
1 , (6.5b)

c3 =
[
(1 + b)(3 + b)
(2 + 3b)(2 + b)

α−2
1 − 1 + b

b

]
r

b/(1+b)
2 , (6.5c)

c4 =
[
2(1 + b)
b(2 + b)

+
(3 + b)

(2− b)(2 + b)
α−2
1 α−2

2

]
r−b
3 , (6.5d)

c5 =
[
b+

b(3 + b)
(2b − 1)(2 + b)

α−2
1 α−2

2 α−2
3

]
r

−1/b
4 , (6.5e)
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where the coefficients α1, α2, α3 and α4 satisfy the equations of

−(3 + 2b)(2 + b) + (3 + b)α−2
1 + 2b(2 + b)α1/(1+b)

1 = 0, (6.6a)

2(1 + b)(2 + 3b)− b(3 + b)α−2
1 α−2

2

+
[
b(3 + b)α−2

1 − (2 + 3b)(2 + b)
]
α

b/(1+b)
2 = 0,

(6.6b)

−(2− b)(2 + b)− b(3 + b)α−2
1 α−2

2 α−2
3

+
[
2(1 + b)(2− b) + b(3 + b)α−2

1 α−2
2

]
α−b
3 = 0,

(6.6c)

− b(1 + b)(1− νp)
1 + b − νpb

− b(3 + b)
(2b − 1)(2 + b)

α−2
1 α−2

2 α−2
3 α−2

4

+
[
b+

b(3 + b)
(2b − 1)(2 + b)

α−2
1 α−2

2 α−2
3

]
α

−1/b
4 = 0.

(6.6d)

The load-bearing capacity of the clamped circular plate is then derived
as

p =
2(3 + b)
2 + b

r−2
1 . (6.7)

αi (0 � αi � 1, i=1, ...,4) can be calculated from Eqs.(6.6a)∼(6.6d) with
half interval search method. Substituting the values of ci and ri into Eqs.(6.2),
(6.5) and (6.7), the moment fields and the plastic limit load of the plate are
then determined.

The continuous and boundary conditions of the velocity field can be ex-
pressed as (1) ẇ(r = 0) = ẇ0; (2) ẇ and dẇ/dr(r = ri, i = 1, ..., 4) are
continuous; and (3) ẇ(r = 1) = 0. According to these conditions, the con-
stants c1i and c2i in Eq.(6.3) can be derived as

c11 = − ẇ0
(d14 + d24)d13d12d11 + d23d12d11 + d22d11 + d21

, (6.8)

and [
c1(i+1)

c2(i+1)

]
=

[
d1i 0
d2i 1

][
c1i

c2i

]
(i = 1, ..., 4), (6.9)

where d1i and d2i (i = 1, ..., 5) are constants determined by the continuous
conditions, and they have the form of

d1i =
1− ai

1− ai+1
r

ai+1−ai

i , d2i = −ai+1 − ai

1− ai+1
r1−ai
i (i = 1, ..., 4). (6.10)

Substituting these integration constants into Eq.(6.3), the velocity field
of the clamped circular plate is then obtained.
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Figs.6.2 and 6.3 respectively show the moment fields mr, mθ, and velocity
field ẇ when the coefficient νp is 0.5 and b = 0, 0.5 and 1. The equilibrium
equation, when the Tresca criterion is used, is invalid on the line EF (Hodge,
1963). However, the singularity of the solution can be simply avoided by
replacing b = 0 by a very small value, e.g., b = 0.001, when the unified yield
criterion is adopted.

Fig. 6.2. Moment fields of clamped circular plate (νp=0.5)

Fig. 6.3. Velocity fields of clamped circular plate (νp=0.5)

The moment and velocity fields when νp=0 and b = 0 are the same as
those with the Tresca criterion (Hodge, 1963; Save et al., 1972; 1997). The
plastic limit load of the clamped circular plate with respect to the Tresca
criterion, the Huber-von Mises criterion and the twin-shear stress criterion
are 11.265, 11.799 and 12.179 when νp=0.0; 11.277, 12.720, and 13.791 when
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νp=0.5, respectively. Hopkins and Wang (1954) gave a plastic load of 12.5
based on the Huber-von Mises criterion. They also gave the lower bound
and upper bound solutions of the plastic limit load using the Tresca yield
hexagons inscribed and circumscribed to the Huber-von Mises ellipse as 11.26
and 13.00 respectively. It is seen that the solution based on the unified yield
criterion with νp=0.5 and that derived by Hopkins and Wang (1954) are in
good agreement with the solution using the Huber-von Mises criterion with
the percentage difference of approximately of 1.76%. However, the upper
bound plastic limit load (13.00) given by Hodge (1963), Save et al. (1997)
is lower than that of the present result (13.791). The plastic limit load of a
clamped circular plate obtained with respect to the unified yield criterion of
b = 0.5 and b = 1 differs remarkably from that with b = 0 by 12.8% and
22.3%, respectively.

6.2.2 Arbitrary Loading Radius

Considering an arbitrary loading radius as shown in Fig.6.4, the equilibrium
equation for the clamped circular plate is the same as Eqs.(5.13) and (5.14) for
the simply supported circular plate. The boundary conditions and continuity
conditions are the same as those stated in Section 6.2.1. Since that the loading
radius is arbitrary, there are a few possible cases with different locations of
the loading radius.

Fig. 6.4. Clamped plate with partial uniform loading

For a specific loading radius rp or rj (j = 1, ..., 4) corresponding to the
yield points B, C, D, and E in Fig.5.2, the plate is divided into five parts. The
loading radius may lie in one of these parts, i.e., rj−1 � rp � rj (j = 1, ..., 5).
Considering the particular case of rp = rj , j = 1, ..., 5, and defining the
critical radius rp or rj as rpj (j = 1, ..., 5), direct integration of the differential
Eqs.(5.13) and (5.14) of radial moment mr with respect to r leads to

mri =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai , 1 � i � j or 0 � r � rpj , (6.11a)
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mri =
bi

1− ai
− pr2pj

2(1− ai)
+ cir

−1+ai , j � i � 5 or rpj � r � 1, (6.11b)

where ci (i = 1, ..., 5) are integration constants. Eq.(6.11a) gives the moment
distribution in the loading area, while Eq.(6.11b) is the moment distribution
in the area outside the loading radius. Applying the boundary and continuity
conditions yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bi

1− ai
− pr2i−1
2(3− ai)

+ cir
−1+ai
i−1 = di−1

bi

1− ai
− pr2i
2(3− ai)

+ cir
−1+ai
i = di

1 � i � j , (j = 1, ..., 5), (6.12a)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bi

1− ai
− pr2pj

2(1− ai)
+ cir

−1+ai
i−1 = di−1

bi

1− ai
− pr2pj

2(1− ai)
+ cir

−1+ai
i = di

j + 1 � i � 5, (j = 1, ..., 4).

(6.12b)
Since the moment at the plate center is a finite value,

c1 = 0. (6.13)

The plastic limit load is derived from Eq.(6.12a) as

p = 2(3− a1)
(
−d1 +

b1
1− a1

)
r−2
1 or p =

2(3− a1)
2− a1

r−2
1 . (6.14)

For the case of j = 1, it can be derived from Eq.(6.12b) that

ci =
di − di−1

r−1+ai
i − r−1+ai

i−1
, (i = 2, ..., 5), (6.15)

η−1+ai
i−1 = 1− (di − di−1)

/[
di − bi

1− ai
+

3− a1
(1− ai)(2− a1)

]
, (i = 2, ..., 5),

(6.16)

where ηi (i = 1, ..., 4) are defined as

ηi−1 = ri−1/ri. (6.17)

The values of ηi for this case can be calculated directly from Eq.(6.12b).
For the case of 2 � j � 5, it can be derived from Eq.(6.12a) that
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ci =
[
di−1 − bi

1− ai
+

pr2i−1
2(3− ai)

]
r1−ai
i−1 , (2 � i � j), (6.18)

and ηi−1 (2 � i � j) satisfies

bi

1− ai
− (3− a1)η−2

1 · · · η−2
i−2

(3− ai)(2− a1)
η−2

i−1

+

[
di−1 − bi

1− ai
+
(3− a1)η−2

1 · · · η−2
i−2

(3− ai)(2− a1)

]
η1−ai

i−1 = di, 2 � i � j.

(6.19)

The other integration constants can be derived from Eq.(6.12b) as

ci =
di − di−1

r−1+ai
i − r−1+ai

i−1
, (j + 1 � i � 5), (6.20)

and ηi−1 (j + 1 � i � 5) satisfies

η−1+ai
i−1 = 1− (di − di−1)[

di − bi

1−ai
+
(3−a1)η

−2
1 ···η−2

j−1
(1−ai)(2−a1)

] , (j + 1 � i � 5). (6.21)

Thus, for both cases there are

r1 = η1η2η3η4, r2 = η2η3η4, r3 = η3η4, r4 = η4 and r5 = 1. (6.22)

Substituting ri (i=1, ..., 5) and all the integration constants into Eq.(6.11a),
Eq.(6.11b) and Eq.(6.14), the moment fields and the plastic limit load for the
critical cases are then determined. The critical loading radii rjp (j = 1, ..., 5)
can also be calculated from Eq.(6.22).

For an arbitrary loading radius rp, i.e., r(j−1)p � rp � rjp (j = 1, ..., 5),
the moment fields become

mri =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai , 0 � r � rj−1, (6.23a)

mrj1 =
bj

1− aj
− pr2

2(3− aj)
+ cj1r

−1+aj , rj−1 � r � rp, (6.23b)

mrj2 =
bj

1− aj
− pr2p
2(1− aj)

+ cj2r
−1+aj , rp � r � rj , (6.23c)

mri =
bi

1− ai
− pr2p
2(1− ai)

+ cir
−1+ai , rj � r � 1. (6.23d)
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In comparison with the uniformly distributed load case discussed in Sec-
tion 6.2.1, Eq.(6.23) introduces one more integration constant with the con-
tinuity condition of mrj1(r = rp) = mrj2(r = rp). Therefore the integration
constants and the dividing radius can be calculated with reference to the
boundary and the continuity conditions in a similar manner as the cases
discussed above.

The equations of the velocity fields are the same as Eq.(6.3). The conti-
nuity and boundary conditions of velocity can be described with (1) ẇ0(r =
0) = ẇ0; (2) ẇ0 and dẇ/dr (r = ri, i = 1, ..., 4) are continuous; and (3)
ẇ(r = 1) = 0. c1i and c2i in Eq.(6.3) can then be determined following the
derivation procedure as derived in Section 6.2.1.

Table 6.2 lists the plastic limit loads p for the Tresca criterion, the Huber-
von Mises criterion and the twin-shear stress criterion, with the load uni-
formly distributed over the entire plate (rp = 1). The results given by Hopkins
and Wang (1954) based on the Tresca criterion are also given for compar-
ison. From Table 6.2, the results based on the unified yield criterion can
approximate all the previous solutions with the Huber-von Mises criterion,
the twin-shear stress criterion and the Tresca criterion. The edge effect, which
is a function of the ratio νp, also affects the plastic limit load.

Table 6.2. Plastic limit loads for three common yield criteria

Tresca (νp=0) Mises (νp=0.5) Twin-shear (Yu, 1961)

Yield Hopkins b = b = Hopkins b = b = 1 b = 1

criteria (1954) 0.0001 0.001 (1954) 0.5 νp = 0 νp = 0.5

p 11.26 11.259 11.260 12.5 12.720 12.176 13.708

Again the equilibrium conditions in Eqs.(5.13) and (5.14) on the line EF
are invalid if the Tresca criterion is used. They are valid only when the point
E corresponds to the fixed edge (r = 1), which leads to νp = 0, mθ = 0, and
mr = −1 at the plate edge. On the other hand, mθ = 0.5mr or νp = 0.5
at the plate edge has to be assumed when the Huber-von Mises criterion is
applied according to the plastic flow requirement (Hodge, 1963). Thus the
Tresca and the Huber-von Mises criteria adopt two different coefficients for
νp. When the unified yield criterion is adopted, it is straightforward to extend
the yield trajectory to line EF in Fig.5.2 in the plastic limit analysis because
νp can cover the range from 0 to 0.5 to reflect the edge effect on the plastic
limit solutions. It is worth noting that a small value of b, e.g., 0.0001, instead
of 0 should be used to avoid the singularity problem as incurred with the
Tresca criterion.

Fig.6.5 illustrates the moment fields of the plate in plastic limit state
under different load radii for νp=0 and νp=0.5 respectively, with respect to
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different criteria. For νp=0, it is seen that the influences of yield criteria
on the radial moment distributions are insignificant, but they are prominent
on the tangential moment distributions. The moment at the plate center is
equal to that at the plate edge regardless of the yield criterion. The twin-
shear yield criterion (b = 1) results in the largest values for both mr and
mθ, while the Tresca criterion (b = 0) leads to the smallest estimations. The
maximum tangential moment mθ based on the unified yield criterion with
non-zero parameter b is not equal to 1 as predicted by the Tresca criterion,
indicating the maximum mθ does not occur at the plate center. The highest
mθ is equal to 2(1+b)(2+b) and occurs at r = r1. For νp=0.5, different criteria
affect the moment distributions near the edge significantly. The twin-shear
stress criterion results in the largest positive and negative values of mr and
mθ, while the Tresca criterion results in the smallest.

The velocity fields with νp=0.5 are compared in Fig.6.6(a) against the
different loading radii and the different criteria. It is seen that the influence
of the criteria on the velocity fields is relatively large when the transverse
load is uniformly distributed over the whole plate or concentrated at the plate
center. The velocity distribution is more concentrated at the center area of the
plate as the loading radius reduces. It should be mentioned that the velocity
field is not smooth at the plate center for the Tresca criterion. Fig.6.6(b) and
Fig.6.6(c) illustrate the edge effects for the unified yield criterion with b = 1
and b = 0.5, respectively. The influence of νp on the velocity distribution
is in-significant when the loading radius is large, and it increases with the
decrease of rp. However, the effects become less prominent with the decrease
of the parameter b. The velocity distribution with νp=0 is always higher than
that with νp=0.5.

Besides the moment and velocity distributions, the plastic limit load of
the circular plate with various loading radii is also an important factor for
structural design. Fig.6.7 illustrates the influences of yield criteria, edge effect,
and loading radius on PT , which is defined as the total plastic limit load, i.e.,
PT = πr2pp. It can be seen that the total plastic load PT increases as any of
b, rp and νp increases. The twin-shear yield criterion results in the largest
plastic limit loads, while the Tresca criterion gives the smallest estimations.
For a demonstration of the effect of different criteria, a difference ratio of
plastic limit loads is defined as follows:

Dr =
PT − PT (Tresca)

PT (Tresca)
× 100%, (6.24)

where PT (Tresca) is the plastic limit load based on the Tresca criterion.
Fig.6.8 illustrates the percentage differences corresponding to the Huber-

von Mises criterion and the twin-shear stress criterion by specifying the uni-
fied strength theory parameter b as 0.5 and 1 respectively for the unified
yield criterion. It is seen that the percentage difference varies from 10.6% to
13.0% and from 17.8% to 21.7% with respect to the two criteria of different
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loading radii. The maximum percentage difference between the total plastic
limit loads between the Tresca criterion and the twin-shear stress criterion
is 21.7% when rp = 1 and νp = 0.5. These results imply that the Tresca
criterion may significantly underestimate the plastic limit load or bearing
capacities of a clamped circular plate. The Tresca criterion (or the unified
yield criterion with b = 0) cannot reflect properly the edge effects (νp) on the
plastic limit load either.

Fig. 6.5. Velocity fields for clamped circular plate

6.2.3 Arbitrary Loading Distribution

Fig.6.9 shows a clamped circular plate under arbitrarily distributed axisym-
metrical pressure.
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Fig. 6.6. Velocity fields with different loading radii and edge conditions

Fig. 6.7. Effects of yield criteria, edge condition and loading radii

Fig. 6.8. Percentage differences of the plastic limit loads
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Fig. 6.9. Clamped plate under arbitrary loading distribution

Defining dimensionless variable p(r) = P (r)a2/M0 for a circular plate of
radius a and thickness h subjected to an arbitrarily distributed axisymmetri-
cal transverse pressure μp(r), where μ is a plastic limit load factor, and p(r)
is a load distribution function, the equilibrium equation can be written with
application of the axial-symmetrical condition as

d(rmr)/dr − mθ = −
∫

μp(r)rdr. (6.25)

Substituting the unified yield criterion of Eq.(6.1) into Eq.(6.25) and in-
tegrating Eq.(6.25), mr corresponding to segments Li is obtained as

mr =
bi

1− ai
− r−1+ai

∫
r−ai

[∫
μp(r)dr

]
dr + cir

−1+ai , (i = 1, ..., 5),

(6.26)

where ci (i = 1, ..., 5) are integration constants and they can be determined
from the continuity and boundary conditions.

Assuming the load function can be expanded as p(r) =
∞∑

j=1

pjr
j−1, Eq.

(6.26) becomes

mr =
bi

1− ai
− μ

∞∑
j=1

pj
rj+1

(j + 1)(j + 2− ai)
+ cir

−1+ai , (i = 1, ..., 5). (6.27)

The field of velocity corresponding to the five sides Li is obtained as

ẇ = ẇ0(c1ir1−ai + c2i), (i = 1, ..., 5), (6.28)

where c1i and c2i (i = 1, ..., 5) are integration constants, and ẇ0 is the velocity
at the plate center.

The load-bearing capacity of a plate is always taken as the total limit load
on the plate. The dimensionless total limit load of the plate can be derived
as
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PT = 2π
∫ 1

0

μp(r)rdr or PT = 2πμ
∞∑

j=1

pj

j + 1
. (6.29)

In the plastic limit state there is mθ = mr = 1 at the center of a clamped
circular plate. According to the kinematically admissible requirement, ẇ is
a decreasing function of r, so that k̇θ � 0. Hence the moment fields of the
entire clamped circular plate lie on the five lines of AB, BC, CD, DE, and
EF in Fig.5.2 based on the unified yield criterion. The points A, B, C, D,
and E in Fig.5.2 correspond to five dividing dimensionless radii on the plate,
which divide the plate into five parts. The five radii are denoted as r0, r1, r2,
r3, and r4, respectively and there is r0 � r1 � r2 � r3 � r4 � 1. On the outer
edge (r = r5 = 1), the moments mr and mθ are assumed to correspond to the
yield point F . The continuous and the boundary conditions of the clamped
circular plate can be expressed as (1) mr(r = 0) = 1; (2) mr(r = ri)=di

(i = 1, ..., 4) are continuous, (3) mr(r = 1) = d5. ci (i=1, ..., 5) in Eq.(6.27)
are determined with application of these conditions,

c1 = 0, ci =

⎡
⎣di−1 − bi

1− ai
+ μ

∞∑
j=1

pjr
j+1
i−1

(j + 1)(j + 2− ai)

⎤
⎦ r1−ai

i−1 , (i = 2, ..., 5).

(6.30)
The load factor is derived as

μ =
−d1 + b1

1−a1
∞∑

j=1

pjrj+1
1

(j+1)(j+2−a1)

, (6.31)

and the dividing radii ri (i = 2, ..., 5) are calculated by the following simul-
taneous equations:

bi

1− ai
+

⎡
⎣di−1 − bi

1− ai
+ μ

∞∑
j=1

pjr
j+1
i−1

(j + 1)(j + 2− ai)

⎤
⎦ r1−ai

i−1 r−1+ai
i

− μ
∞∑

j=1

pjr
j+1
i

(j + 1)(j + 2− ai)
= di, (i = 2, ..., 5).

(6.32)

Eq.(6.32) can be solved by iterative method. Giving an arbitrary initial
value of r1, ri (i = 2, ..., 5) in Eq.(6.32) can be solved by trial and error. It
should be noted that r5 is equal to 1, which can be used as the convergent
criterion. For any load distribution p(r), r1 should be reduced if the calculated
r5 is less than 1.0 or increased if the calculated r5 is larger than 1.0.

Substituting the values of ci and ri into Eqs.(6.27) and (6.29), the mo-
ment fields and the plastic limit load factor of the clamped circular plate are
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determined. The expression of the velocity fields is the same as that for the
uniformly distributed load case.

The plastic limit load factors and the total limit loads of the clamped
circular plate under the five different linear load distributions in terms of
different criteria (unified yield criterion with different parameter b) are listed
in Table 6.3.

Table 6.3. Plastic limit loads of clamped circular plate

p(r) r 1 + r 1 2− r 1− r

μ PT μ PT μ PT μ PT μ PT

b = 0 22.98 48.13 7.57 39.66 11.28 35.43 7.45 31.26 21.87 22.90

b = 1/2 25.83 54.09 8.54 44.72 12.72 39.96 8.40 35.19 24.60 25.76

b = 1 27.78 58.19 9.20 48.19 13.71 43.06 9.05 37.91 26.46 27.71

From Table 6.3, the loading conditions have a significant effect on the
plastic limit load. Increasing load distribution leads to a larger plastic limit
load. The plastic limit load of a clamped circular plate is about twice that of
a simply supported circular plate with similar load distribution. The plastic
limit loads with respect to the Huber-von Mises criterion (b = 0.5) are 12.4%
to 12.8% higher than those with respect to the Tresca criterion (b = 0) for
the five linear loading conditions. They are 20.9% to 21.5% higher if the twin-
shear stress criterion (b = 1) is adopted. The differences are more pronounced
than for the simply supported circular plate, which indicates the influence
of different yield criteria on the load factor and the total limit load varies
with different end conditions. For a uniformly distributed load, Hopkins and
Wang (1954) presented a numerical solution of the load factor of 12.5 based on
the Huber-von Mises criterion. The present result of 12.72 corresponding to
b = 0.5 is in good agreement with their result since the percentage difference
is only 1.76%.

Fig.6.10 and Fig.6.11 respectively show the moment fields mr, m and
velocity field for the two load distribution conditions of p = r and p = 1− r.
A solution based on the Tresca criterion can be approximated with a very
small value of b, e.g., b = 0.001. The moment and velocity fields with b = 0.001
of the unified yield criterion are the same as those with the Tresca criterion
(Hodge, 1963). Comparing Figs.6.10 and 6.11, the moment profiles vary with
the different loading conditions as well as the yield criterion. r1 is higher in
Fig.6.10(a) than that in Fig.6.11(a), implying a higher total limit load when
p = r. The profiles of velocity fields also depend on the loading condition and
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the yield criterion. There is no singularity at the central point if the unified
yield criterion with non-zero parameter b is adopted.

Fig. 6.10. Moment and velocity fields of clamped circular plate (p = r)

6.3 Unified Solutions of Clamped Circular Plate for SD
Materials

For SD materials, such as rock, concrete, soils, etc. (Chen, 1981; 1998; Nielsen,
1999), the strength function is the same as Eq.(6.1), while the parameters ai

and bi are related to the strength difference ratio α. The generalized stress
yield loci are shown in Fig.6.12(a). Fig.6.12(b) shows the yield loci of the
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Fig. 6.11. Moment and velocity fields of clamped circular plate, p = 1− r

generalized stress for reinforced concrete plates when the parameter α =
+mp/−mp = 0.5. Table 6.4 gives the values of ai and bi in Li (i = 1, ..., 6),
i.e., AB, BC, CD, DE, EF , and FG lines.

Table 6.4. ai and bi of unified strength theory

AB (i = 1) BC (i = 2) CD (i = 3) DE (i = 4) EF (i = 5) FG (i = 6)

ai −b α(1 + b)/b α(1 + b) α(1 + b) α(1 + b)/b −1/b

bi 1 + b 1 1 1 + b (1 + b)/b −(1 + b)/αb
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Fig. 6.12. Unified strength theory expressed by generalized stresses

In the elastic stage the center of the plate satisfies the condition of mr=
mθ (r=0). On the fixed boundaries the relation mθ=μmr is valid; and mr

and mθ are both negative. When the plates are in the elasto-plastic stage,
at the central point, the condition mr= mθ (r = 0) is still valid due to the
symmetry of the structure. On the fixed boundaries, mr and mθ are both
negative while |mr| > |mθ|. mr is −1/α as the line EF reaches point F .
The circumferential bending moment gives the maximum negative moment
on the fixed boundary. The plastic hinge appears on the fixed boundary.
Substituting mr = −1/α into the equilibrium equation,

mθ = −
(
1
a
− 1
2
pr2

)
. (6.33)

With increasing p, |mθ| decreases and subsequently mr and mθ approach
point E, where mθ=0 and mr = −1/α. At the center of the plate, on the
other hand, there is mr = mθ = 1 when the plastic limit load is reached.
Around the plate center, mr and mθ are determined by the yield functions of
AB and BC. Therefore the internal moment corresponds to lines AB, BC,
CD, and DE when the clamped plate falls into the plastic limit state. We
assume the non-dimensional radii r0, r1, r2 and r3 to correspond to points A,
B, C, and D respectively. The plates will be divided into four annular areas,
where 0 = r0 � r1 � r2 � r3 � r4 = 1. Defining α1 = r1/r2, α2 = r2/r3 and
α3 = r3/r4, there are r1 = α1α2α3, r2 = α2α3, and r3 = α3. The boundary
conditions and continuity conditions can be written as (1) mr(r = 0) = 1; (2)
mr(r = ri) = 1 (i = 1, ..., 3) continuous; (3) mr(r = 1) = −1/α; (4) cẇ(r =
0) = ẇ0; (5) dẇ/dr(r = ri) and, i = 1, ..., 3 continuous; (6) ẇ(r = 1) = 0. We
can calculate the integration constants with application of these boundary
and continuity conditions as
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c1 = 0, c2 =
−2αb(1 + b)

(3 + 3b − αb)(1 + b − αb)
r
1+b−αb
1+b

1 , (6.34a)

c3 =
{

α(3 + b)(1 + b)
(α+ b+ 1)(3 + 3b − α)

α−2
1 − 1 + b

1 + b − α

}
r(1+b−α)/(1+b)
2

, (6.34b)

c4 =
{

(1 + b)(1 + α)
α(b+ 2)(α − 1 + αb)

+
α(3 + b)

(3− α − αb)(α+ b+ 1)
α−2
1 α−2

2

}
r(1−α−αb)
3

,

(6.34c)

where αi (i = 1, ..., 3) satisfies

(α+b+1)(3+3b−αb)−α(3+b)(1+b−αb)α−2
1 −2αb(α+b+1)α

1+b−αb
1+b

1 = 0,
(6.35a)

1
1− b − α

+
1

α(b+ 2)
− α(3 + b)
(α+ b+ 1)(3 + 3b − α)

α−2
1 α−2

2

+
{

α(3 + b)
(α+ b+ 1)(3 + 3b − α)

α−2
1 − 1

1 + b − α

}
α
(1+b−α)/(1+b)
2 = 0,

(6.35b)

1
α(1− α − αb)

− α(3 + b)
(α+ b+ 1)(3− α − αb)

α−2
1 α−2

2 α−2
3

+
{

(1 + b)(1 + α)
α(b+ 2)(α − 1 + αb)

+
α(3 + b)

(3− α − αb)(α+ b+ 1)
α−2
1 α−2

2

}
α
(1−α−αb)
3 = 0.

(6.35c)
αi (i = 1, ..., 3) can be solved from Eqs.(6.35a)∼(6.35c), and subsequently

ci and ri can be obtained.
c1i and c2i in Eq.(6.3) can be derived as

c11 = − ẇ0
(d14 + d24)d13d12d11 + d23d12d11 + d22d11 + d21

, (6.36a)

c21 = 1, (6.36b)

and [
c1(i+1)
c2(i+1)

]
=

[
d1i 0
d2i 1

] [
c1i
c2i

]
, (i = 1, ..., 4), (6.36c)

where d1i and d2i (i = 1, ..., 4), are constants that can be expressed as

d1i =
1− ai

1− ai+1
r

ai+1−ai

i , (i = 1, ..., 3), (6.37a)

d2i = −ai+1 − ai

1− ai+1
r1−ai
i , (i = 1, ..., 3). (6.37b)
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The plastic limit load is

p =
α(6 + 2b)
α+ b+ 1

r−2
1 . (6.38)

Substituting the coefficients ci, c1i, and c2i into Eqs.(6.2) and (6.3), and
ri into Eq.(6.38), the internal moment, velocity fields and plastic limit load
can then be derived.

When α = 1 and b = 0, the unified strength theory is simplified to be
the Tresca criterion, and the plastic limit load is equal to 11.26, which agrees
with the results with respect to the Tresca criterion given by Hopkins and
Wang (1954). When α = 1 and b = 0.5, the unified strength theory gives the
linear approximation of the Huber-von Mises criterion and the corresponding
plastic limit load derived from Eq.(6.38) is 11.799. When α = 1 and b = 1,
the unified strength theory is simplified to be the twin-shear yield criterion,
and the plastic limit load is derived to be 12.176, which is consistent with
the results based on the twin-shear yield criterion given by Ma and Iwasaki
(1999).

Fig.6.13 shows the variation of the plastic limit load p with respect to the
unified strength theory parameters b and α. It is seen that the plastic limit
load p deceases with the increase of α for specific tensile strength.

Fig. 6.13. Plastic limit load of clamped circular plate with the unified strength
theory parameter b

Figs.6.14 and 6.15 give the fields of internal moments of a clamped cir-
cular plate when α = 1 and b = 1, respectively. It is demonstrated that the
effect of different b on the radial bending moment is small while that on
the circumferential bending moment is relatively high; and the parameter α
has a significant effect on both radial and circumferential bending moments.
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Figs.6.16 and 6.17 depict the velocity fields of a clamped circular plate when
α = 1 and b = 1. It is seen that both b and α affect the velocity field signifi-
cantly.

Fig. 6.14. Moment fields of clamped plate when α = 1

Fig. 6.15. Moment fields of clamped plate when b = 1

For different materials, the parameter α is the ratio of the tensile strength
σt to the compressive strength σc, i.e., α = σt/σc; unified strength theory
parameter b may be determined by the shear strength limit of materials τ0,
tensile and compressive strengths, i.e.,

b =
(1 + α)τ0 − σt

σc − τ0
. (6.39)
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Fig. 6.16. Velocity fields of clamped plate when α = 1

Fig. 6.17. Velocity fields of clamped plate when b = 1

6.4 Summary

The plastic limit load, internal moment field and velocity field for a clamped
circular plate are derived based on the unified strength theory. With different
values of parameters b and α, a series of plastic limit loads are obtained. The
results when b = 0 and b = 1 represent, respectively, the lower bound and up-
per bound solutions of the plastic limit load. These solutions are closed-form
solutions as they satisfy all static and kinematic admissible conditions, i.e.,
the equilibrium equation, stress boundary conditions, yield condition, flow
rule, and velocity boundary conditions. The solutions of non-SD materials
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with identical tensile and compressive strengths are special cases of the so-
lutions using the unified strength theory for SD materials. It is found that
the ratio of tensile and compressive strengths has a significant effect on the
plastic limit load. The unified strength theory parameter b also affects the
plastic limit load of the plate significantly. The solutions based on the unified
strength theory are the systematic solutions for more materials. They may
be more accurate for different materials. It considers that different materi-
als behave in different ways with respect to the intermediate principal stress
effect compared to those with the Tresca criterion and the Mohr-Coulomb
criterion, which ignore the effect of the intermediate principal stress.

6.5 Problems

Problem 6.1 Determine the limit bearing capacity of clamped circular
plate by using the Tresca criterion.

Problem 6.2 Determine the limit bearing capacity of clamped circular
plate by using the unified yield criterion (b = 0).

Problem 6.3 Determine the limit bearing capacity of clamped circular
plate by using the unified yield criterion (b = 0.5).

Problem 6.4 Determine the limit bearing capacity of clamped circular
plate by using the unified yield criterion (b = 0.8).

Problem 6.5 Determine the limit bearing capacity of clamped circular
plate by using the unified yield criterion (b = 1.0).

Problem 6.6 Determine the limit bearing capacity of clamped circular
plate by using the unified strength theory (b = 0).

Problem 6.7 Determine the limit bearing capacity of clamped circular
plate by using the unified strength theory (b = 0.5).

Problem 6.8 Determine the limit bearing capacity of clamped circular
plate by using the unified strength theory (b = 0.8).

Problem 6.9 Determine the limit bearing capacity of clamped circular
plate by using the unified strength theory (b = 1.0).

Problem 6.10 Write a paper concerning the unified solution of plastic limit
analysis for a clamped circular plate under another load.
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7

Plastic Limit Analysis of Annular Plate

7.1 Introduction

An annular plate is a very common structural component in many branches
of engineering, such as mechanical, aeronautic, and civil fields. Limit analysis
of the plate is important in revealing its structural behavior and load-bearing
capacity. The load-bearing capacity of circular plates has been given in terms
of the Huber-von Mises criterion (Hopkins and Prager, 1953) and the Tresca
yield criterion (Hopkins and Wang, 1954). The results are applicable for the
materials which has τs = 0.5σs and τs = 0.577σs, respectively. The load-
bearing capacity of annular plates was studied by Mroz and Sawczuk (1960),
Hodge (1959, 1963), Save and Massonnet (1972), Zyczkowski (1981), Save,
Massonnet and Saxce (1997), et al.

Recently, the twin-shear yield criterion and unified strength theory have
been applied in many fields (Huang et al., 1989; Li, 1988; Ma et al., 1994;
1995; 1999). The load-bearing capacity of circular and annular plates using an
arbitrary yield criterion was given by Aryanpour and Ghorashi (2002). The
yield criteria they used are applicable for the materials with identical tensile
and compressive strength (non-SD materials). However, many materials have
an SD effect (different tensile and compressive strengths), such as concrete,
rock, cast iron and polymer. Recent studies have shown that even some high-
strength metal materials have an obvious SD effect (Chait, 1972; Rauch et
al., 1972; Drucker, 1973; Casey and Sullivan, 1985). Therefore, the plastic
limit analysis for the materials having an SD effect is very necessary.

For a simply supported annular plate under uniform load as shown in
Fig.7.1, the unified solutions for non-SD materials in terms of the unified
yield criterion was given by Ma et al. (1994; 1995). The Tresca-Mohr-Coulomb
strength theory has been used for limit analysis. But the effect of interme-
diate principal stress has not been considered in the Tresca-Mohr-Coulomb
strength theory. The unified solution for the plastic limit of an annular plate
with the unified strength theory was given by Wei and Yu (2002).
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In this chapter, the unified solutions of an annular plate under uniform
load for non-SD and SD materials will be presented. The unified solutions of
plastic load-bearing capacities, moment fields and velocity fields of an annular
plate are obtained. The solutions take into account all the stress components,
and can be applied for the non-SD and SD materials with different shear-
tension ratios, or different relative effects of the intermediate principal stress.

Fig. 7.1. Simply supported annular plate

7.2 Basic Equations for Annular Plate Based on UYC

For an annular plate with a simply supported outer edge and a free inner
edge, if the load per unit area is P , the generalized stresses are

Mr =
∫ h

2

− h
2

σrzdz, Mθ =
∫ h

2

− h
2

σθzdz, (7.1a)

Qrz =
∫ h

2

− h
2

τrzzdz, M0 =
∫ h

2

− h
2

σtzdz, (7.1b)

where Mr and Mθ are radial and circumferential bending moments, respec-
tively; Qrz is the transverse shear force; M0 is the ultimate bending moment.
Defining
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r = R/a, mr = Mr/M0, mθ = Mθ/M0,

p = Pa2/M0, β = a0/a,

then the moment fields of the entire plate satisfy mr � 0 and mθ � 0.
It implies that the moment components mr and mθ lie on the two seg-

ments CB and BA in Fig.7.2(b) for the unified yield criterion. Boundary
conditions of the annular plate give that mr = 0 and ẇ = ẇ0 at the inner
edge (r = β); and mr = 0, ẇ = 0 at the outer edge (r = 1). The equilibrium
equation can be written as

d(rmr)/dr − mθ =
1
2
pβ2 − 1

2
pr2, (7.2)

which satisfies the condition of zero shear force at the inner edge.
The varying trajectory of moment componentsmr andmθ along the radial

direction can be put into two cases according to the unified yield criterion,
namely, (1) C → B → C when the inner to outer radius ratio β is larger than
the critical value of β0 (Fig.7.2(a)), and (2) C → B → A → B → C when β
is smaller than β0 (Fig.7.2(b)).

Fig. 7.2. Case (1): β is larger, Case (2): β is smaller

The unified yield criterion for the plate can be expressed by generalized
stresses mr and mθ as follows:
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⎪⎪⎪⎪⎪⎪⎩

Mr − b

1 + b
Mθ = ±Mp, Mr − 1

1 + b
Mθ = ±Mp,

1
1 + b

(bMr +Mθ) = ±Mp,
1

1 + b
Mr − Mθ = ±Mp,

1
1 + b

(Mr + bMθ) = ±Mp,
b

1 + b
Mr − Mθ = ±Mp,

(7.3)

which can be rewritten as

mθ = aimr + bi, (i = 1, ..., 5), (7.4)

where ai and bi are constants and their values are shown in Table 7.1. Ac-
cording to Eqs.(7.3) and (7.4),

mr =
bi + 1

2pβ2

1− ai
− pr2

2(3− ai)
+ cir

−1+ai , (i = 1, ..., 5). (7.5)

The values of ai and bi are shown in Table 7.1 for Li (i = 1, ...,4) (AB,
BC, CD, DE lines).

Table 7.1. Constants ai and bi in the unified yield criterion

AB (i = 1) BC (i = 2) CD (i = 3) DE (i = 4) EF (i = 5)

ai −b b/(1 + b) 1/(1 + b) 1 + b (1 + b)/b

bi 1 + b 1 1 1 + b (1 + b)/b

According to the symmetry of the geometry,

k̇r = −d2ẇ/dr2, k̇θ = −(1/r)dẇ/dr. (7.6)

Based on the associated flow rule,

k̇r = λ̇∂F/∂mr, k̇θ = λ̇∂F/∂mθ. (7.7a)

From Eq.(7.4),

∂F/∂mr = −ai, ∂F/∂mθ = 1.

Substituting the above equations into Eq.(7.7a) yields

k̇r = −λ̇ai, k̇θ = λ̇. (7.7b)

The velocity field is derived by substituting Eq.(7.7b) into Eq.(7.6) and
integrating Eq.(7.6),

w = c1ir
1−ai + c2i, (i = 1, ..., 3). (7.8)
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7.2.1 Case (1)

The moment at each point in the plate lies on the side CB in Fig.7.2(a) if
the ratio of the inner radius to outer radius β is bigger than a critical value
β0. The equilibrium equation can be derived by direct integration of Eq.(7.2)
with application of the boundary condition of the outer and inner edges,

w = c1ir
1−ai + c2i, (i = 1, ..., 3), (7.9a)

mr = (1 + b)
(
1 +

1
2
pβ2

)
(1− r− 1

1+b )− 1 + b

6 + 4b
p(r2 − r− 1

1+b ), (7.9b)

mθ =
b

1 + b
mr + 1. (7.9c)

And the plastic limit load is

p =
(6 + 4b)(1− β−1/(1+b))

(3 + 2b)β(1+2b)/(1+b) − 2(1 + b)β2 − β−1/(1+b)
. (7.10)

The velocity field can be derived from Eq.(7.8) and the boundary condi-
tions as

ẇ = ẇ0
1− r1/(1+b)

1− β1/(1+b)
. (7.11)

To satisfy the requirement of statical admissibility, all the moment com-
ponents (mθ,mr) should lie on the segment CB. Thus, the maximum radial
moment mr at r = r0 satisfies

mr(r = r0) � (1 + b)/(2 + b), (7.12)

and
∂mr/∂r = 0. (7.13)

For the critical case of β = β0, the maximum moment mr at r = r0 is
equal to (1+b)/(2+b), which corresponds to the corner point B in Fig.7.2(a).
r0 can then be deduced from Eqs.(7.9a) and (7.13) as

r0 =

[
2(1 + b)p

(6 + 4b)(1 + pβ2
/
2)− p

]− 1+b
3+2b

. (7.14)

When Eqs.(7.10) and (7.14) are substituted into Eq.(7.9a), the critical ra-
dius ratio β0 can be calculated by the half interval search method in the inter-
val (β, 1) regarding the yield condition mr(r = r0, β = β0) = (1 + b)/(2 + b)
at point B in Fig.7.2(a).
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7.2.2 Case (2)

When the radius ratio β � β0, and the moments mθ and mr locate on the
side BA in Fig.7.2(b), mr is obtained by integrating Eq.(7.2),

mr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 + pβ2
/
2

1− a2
− pr2

2(3− a2)
+ c1r

−1+a2 , β � r � r1,

b1 + pβ2
/
2

1− a1
− pr2

2(3− a1)
+ c2r

−1+a1 , r1 � r � r2,

b2 + pβ2
/
2

1− a2
− pr2

2(3− a2)
+ c3r

−1+a2 , r2 � r � 1,

(7.15)

where a1, b1, a2 and b2 are defined in Table 7.1; r1 and r2 are dividing radii
where the moments fall on point B in Fig.7.2(b); c1, c2 and c3 are integration
constants. The six unknowns c1, c2, c3, p, r1 and r2 in Eq.(7.15) can be
numerically calculated from the six equations of boundary and continuous
conditions, namely,

(1) mr(r = β) = 0 (point C in Fig.7.2(b));
(2) mr(r = r1, β � r � r1) = (1 + b)/(2 + b) (point B in Fig.7.2(b));
(3) mr(r = r1, r1 � r � r2) = (1 + b)/(2 + b) (point B in Fig.7.2(b));
(4) mr(r = r2, r1 � r � r2) = (1 + b)/(2 + b) (point B in Fig.7.2(b));
(5) mr(r = r2, r2 � r � 1) = (1 + b)/(2 + b) (point B in Fig.7.2(b));
(6) mr(r = 1) = 0 (point C in Fig.7.2(b)).
The procedure to derive c1, c2, c3, p, r1 and r2 is similar to that for Case

(1).
The velocity fields are then derived as

ẇ = ẇ0

⎧⎪⎨
⎪⎩

c11r
1−a2 + c12, β � r � r1,

c21r
1−a1 + c22, r1 � r � r2,

c31r
1−a2 + c32, r2 � r � 1,

(7.16)

where ẇ0 is the velocity at the inner edge; c11, c21, c12, c22, c31 and c32 are
integration constants.

According to the boundary and continuous conditions of velocity fields:
(1) ẇ(r = β) = ẇ0; (2) ẇ and dẇ/dr (r = ri, i = 1, 2) are continuous; (3)
ẇ(r = 1) = 0, the integration constants in Eq.(7.16) are determined from the
following matrix equations,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1/(1+b) 1 0 0 0 0
r
1/(1+b)
1 1 −r

1/(1+b)
1 −1 0 0

r
−b/(1+b)
1

/
(1 + b) 0 (1 + b)rb

1 0 0 0

0 0 r1+b
2 1 −r1+b

2 −1
0 0 (1 + b)r−b

2 0 r
−1/(1+b)
2

/
(1 + b) 0

0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11
c12
c21
c22
c31
c32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7.17)

The constants c1i and c2i (i=1, ..., 3) can be calculated directly from
Eq.(7.17) since the coefficient matrix is constant for the unified strength
theory parameter b and ratio β. The velocity field can then be determined
by substituting those constants into Eq.(7.16).

7.2.3 Special Case

The above two subsections give the similar solutions when the unified strength
theory parameter b is equal to 0 in Eqs.(7.9a)∼(7.11), (7.15) and (7.16), which
is the exact solution in terms of the Tresca criterion. The moments are

mr = (1 +
1
2
pβ2)(1− r−1)− 1

6
p(r2 − r−1). (7.18)

The velocity field is obtained from Eq.(7.8) with application of the bound-
ary and continuous conditions as

ẇ = ẇ0
1− r

1− β
. (7.19)

And the corresponding plastic limit load is derived from Eq.(7.10) with
b = 0,

p =
6

(1− β)(1 + 2β)
. (7.20)

7.3 Unified Solutions of Annular Plate for Non-SD
Materials

Figs.7.3(a) and 7.3(b) illustrate schematically the radial and circumferential
moment fields of an annular plate when the radius ratio β=0.1 and 0.5, which
are representative of the second case and the first case, respectively.

There are two peak values of mθ (Fig.7.3(a)) for the second case, which
occur at the radii r = r1 and r = r2, while there is only one peak value of
mθ (Fig.7.3(b)) for the first case.
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Fig. 7.3. Moment fields of annular plate based on UYC

The influence of yield criteria on the moment distribution is more promi-
nent for the second case than for the first one. The plastic limit loads of an
annular plate in the case of β=0.1 are 5.555, 6.307 and 6.790 respectively for
the three specific cases of the unified yield criterion with b = 0, b = 0.5 and
b = 1.

Figs.7.4(a) and 7.4(b) show the velocity fields of the annular plates with
β=0.1 and β=0.5, respectively. Fig.7.5 illustrates schematically the percent-
age difference of plastic limit loads in terms of the unified yield criterion with
b = 0.5 and b = 1 to that in terms of the Tresca criterion when the ratio of
inner radius to outer radius β ranges from 0.01 to 0.99. The maximum per-
centage differences of plastic limit loads with respect to UYC with b = 0.5
and b = 1 to that with b = 0 are 13.9% and 23.0%, respectively, for the
critical case of β = β0.

The difference of yield criterion has significant influence on the load-
bearing capacities of circular plates. Fig.7.6 shows the plastic limit loads
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Fig. 7.4. Velocity fields of annular plate based on UYC

Fig. 7.5. Percentage difference of plastic limit loads by different criteria

with the parameter b varying from 0 to 1 for the three circular plates with
different supporting conditions. The plastic limit loads increase with b; the
upper bound and lower bound load-bearing capacities are deduced with b = 1
and b = 0, respectively. Since the solutions are both statically admissible and
kinematically admissible, i.e., all the equilibrium equations, stress boundary
conditions, yield conditions, flow conditions, and velocity boundary condi-
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tions are satisfied, they are the exact solutions to the problems. For fixed
boundary condition, a solution based on the Tresca criterion (Hodge, 1963)
leads to mθ = 0 (corresponding to νp =0) according to the moment boundary
condition at the edge; the iterative solution based on the Huber-von Mises
criterion (Hopkins and Wang, 1954) satisfies mθ = 0.5mr (corresponding to
νp =0.5) at the edge according to the plastic flow requirement (k̇θ � 0). The
present study has derived the unified solutions with the edge effect coefficient
νp in the range of 0 � νp � 0.5, which satisfies both the moment boundary
condition and the plastic flow requirement.

Fig. 7.6. Plastic limit loads of plates with different unified strength theory param-
eter b

7.4 Unified Solutions of Limit Load of Annular Plate for
SD Materials

7.4.1 Unified Strength Theory

The unified strength theory (UST) has been described in Chapter 3. It has a
unified model and a simple unified mathematical expression. It is applicable
for various materials. In the mathematical expression of UST, α is the ratio of
tensile strength σt to compressive strength σc, i.e., α = σt/σc; b is the material
strength parameter that reflects the influences of the intermediate principal
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stress on the yield of material (0 � b � 1). The UST could represent other
prevailing yield or strength criteria with specific values of b. When b = 0,
UST becomes the Mohr-Coulomb theory; when b = 1, it is the twin-shear
strength theory (Yu et al., 1985); when α = 1, it is the unified yield criterion
(UYC); and when b = 0, b = 0.5 and b = 1, the Tresca yield criterion, linear
approximation of the Huber-von Mises yield criterion, and the twin-shear
stress yield criterion (Yu, 1961) are obtained respectively.

7.4.2 Basic Equations for Annular Plate Based on the UST

The unified strength theory (UST) can be expressed in terms of generalized
stresses Mr, Mθ,

Mr − αb

1 + b
Mθ = ±MP , Mr − α

1 + b
Mθ = ±MP ,

α

1 + b
(bMr +Mθ) = ±MP ,

1
1 + b

Mr − αMθ = ±MP , (7.21)

α

1 + b
(Mr + bMθ) = ±Mp,

b

1 + b
Mr − αMθ = ±MP .

It can be rewritten as

mθ = aimr + bi, (i = 1, ..., 4), (7.22)

where ai and bi are constants and the values are shown in Table 7.2. From
Eqs.(7.2) and (7.22),

mr =
bi + 1

2pβ2

1− ai
− pr2

2(3− ai)
+ cir

−1+ai , (i = 1, ..., 4). (7.23)

The values of ai and bi are listed in Table 7.1 for Li (i = 1, ..., 4) (lines
AB, BC, CD, DE) in Fig.7.7, respectively.

The velocity field expression based on UST is the same as that with UYC.
The coefficients ai and bi are listed in Table 7.2.

Table 7.2. Constants ai and bi in the unified strength theory

AB (i = 1) BC (i = 2) CD (i = 3) DE (i = 4)

ai −b α b
1+b

α
1+b

α(1 + b)

bi 1 + b 1 1 1 + b
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Fig. 7.7. Yield loci of UST in generalized stresses mr-mθ space

7.4.3 Limit Analysis

Case (1)
When β � β0, mr and mθ correspond to C → B → C. Referring to Eq.(7.23)
and the boundary conditions, the moment field can be derived as

mr =
1 + b

1 + b − αb
(1 +

1
2
pβ2)(1− r− 1+b−αb

1+b )− p(1 + b)
6 + 6b − 2αb

(r2 − r
− 1+b−αb

1+b ),

(7.24)

mθ =
αb

1 + b
mr + 1, (7.25)

and the limit load coefficient can be expressed as

p =
(6 + 6b − 2αb)(β− 1+b−αb

1+b − 1)

2(1 + b)β2 + (1 + b − αb)β− 1+b−αb
1+b − (3 + 3b − αb)β

1+b+αb
1+b

. (7.26)

The velocity field can be derived from Eq.(7.8) with application of the
boundary condition,

ẇ = ẇ0
1− r

1+b−αb
1+b

1− β
1+b−αb
1+b

. (7.27)

When r = r0, mr is the maximum from Eq.(7.24). When mr and mθ are
on the line CB, they satisfy the relation of
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mr(r = r0) � 1 + b

1 + b+ α
and

∂mr

∂r

∣∣∣∣
r=r0

= 0. (7.28)

From Eqs.(7.24), (7.12) and (7.13),

r0 =
[

2p(1 + b)
(1 + 1

2pβ2)(6 + 6b − 2αb)− p(1 + b − αb)

]− 1+b
3+3b−αb

. (7.29)

When β = β0, mr (r = r0) lies at point B,

mr(r = r0, β = β0) =
1 + b

1 + b+ α
. (7.30)

The critical variable β0 can be deduced from Eqs.(7.29), (7.30), (7.26)
and (7.24).
Case (2)
When β � β0, mr and mθ correspond to C → B → A → B → C. Assuming
r1 is the dimensionless radius when point B is reached for the first time
(C → B), r2 is the dimensionless radius when point B is reached for the
second time (C → B → A → B). And referring to Eq.(7.23),

mr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 + 1
2pβ2

1− a2
− pr2

2(3− a2)
+ c1r

−1+a2 , β � r � r1,

b1 + 1
2pβ2

1− a1
− pr2

2(3− a1)
+ c2r

−1+a1 , r1 � r � r2,

b2 + 1
2pβ2

1− a2
− pr2

2(3− a2)
+ c3r

−1+a2 , r2 � r � 1.

(7.31)

The integration constants c1, c2, c3 and the variables p, r1, r2 can be
derived from the following continuity and boundary conditions: (1) mr(r =
β) = 0; (2) mr(r = r1, β � r � r1) = 1+b

1+b+α ; (3) mr(r = r1, r1 � r � r2) =
1+b
1+b+α ; (4) mr(r = r2, r1 � r � r2) = 1+b

1+b+α ; (5) mr(r = r2, r2 � r � 1) =
1+b
1+b+α ; (6) mr(r = 1) = 0.

From Eq.(7.8), the velocity field can be expressed as

ẇ = ẇ0

⎧⎪⎨
⎪⎩

c11r
1−a2 + c21, β � r � r1,

c12r
1−a1 + c22, r1 � r � r2,

c13r
1−a2 + c23, r2 � r � 1.

(7.32)

The continuity and boundary conditions can be written as: (1) ẇ(r =
0) = ẇ0; (2) dẇ/dr (r = ri, i=1, 2) and ẇ are continuous; (3) ẇ(r = 1) = 0.

The integration constants cij (i=1, 2, j=1, 2, 3) can be derived from these
conditions.
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Special Case
When the parameter b is equal to 0 in Eqs.(7.24),(7.27), the moment fields,
velocity fields, and plastic limit loads of the annular plate for SD materials
with 0 < α � 1 in the two different cases are the same, which is the exact
solution in terms of the Mohr-Coulomb strength theory. The moments are

mr =
(
1 +

1
2
pβ2

)
(1− r−1)− 1

6
p(r2 − r−1), (7.33)

mθ = 1. (7.34)

The corresponding plastic limit load coefficient is

p =
6

1 + β − 2β2
. (7.35)

The velocity field is

ẇ =
ẇ0(1− r)
(1− β)

. (7.36)

7.4.4 Results and Discussions

Figs.7.8(a) and 7.8(b) show the relations of the plastic limit load to the unified
strength theory parameter b and α for Case (1) and Case (2), respectively.
For a specific value of α, the plastic limit load increases with the parameter
b.

Fig. 7.8. Plastic limit loads of annular plates with different unified strength theory
parameter b

Figs.7.9(a) and 7.9(b) illustrate the radial and circumferential moment
fields with the radius ratio β=0.5 and 0.05, b = 1, which are representatives
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for Case (1) and Case (2), respectively. There are two peak values of mθ

(Fig.7.9(b)) for Case (2), which occur at the radii r = r1 and r = r2; for
Case (1), there is only one peak value of mθ (Fig.7.4(a)). The influence of
different strength criteria on the moment distribution is higher for Case (2)
than for Case (1). Table 7.3 shows the relationship between the plastic limit
load coefficient p and the parameters α, b, and β.

Fig. 7.9. Moment field when b = 1

7.5 Summary

The unified solutions of the limit-bearing capacity of an annular plate for
non-SD materials (Ma et al. 1994; 1995; 1998) and SD materials (Wei and
Yu, 2001; 2002) have the following characteristics:
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Table 7.3. Plastic limit load having different cohesion α and b

β α b = 0 b = 0.2 b = 0.4 b = 0.6 b = 0.8 b = 1.0

0.7 5.459 5.816 6.005 6.210 6.391 6.532

0.1 0.8 5.503 5.769 6.094 6.276 6.438 6.563

1.0 5.517 5.591 6.175 6.319 6.385 6.650

0.2 6.000 6.026 6.044 6.058 6.069 6.077

0.4 6.000 6.051 6.088 6.117 6.139 6.157

0.5 0.6 6.000 6.077 6.134 6.177 6.211 6.238

0.8 6.000 6.103 6.180 6.238 6.284 6.322

1.0 6.000 6.130 6.226 6.301 6.360 6.408

0.2 9.600 9.616 9.628 9.636 9.643 9.648

0.4 9.600 9.632 9.655 9.673 9.686 9.697

0.75 0.6 9.600 9.648 9.683 9.710 9.730 9.747

0.8 9.600 9.665 9.711 9.747 9.774 9.797

1.0 9.600 9.681 9.740 9.784 9.819 9.847

0.2 21.429 21.441 21.450 21.457 21.463 21.467

0.4 21.429 21.454 21.472 21.486 21.497 21.505

0.9 0.6 21.429 21.467 21.494 21.515 21.531 21.544

0.8 21.429 21.480 21.516 21.544 21.566 21.583

1.0 21.429 21.493 21.539 21.573 21.600 21.622

(1) It is the first time we use the unified strength theory to analyze the
plastic limit load, moment field and velocity field for annular plates. A series
of limit solutions from the single-shear failure criteria (Tresca criterion and
Mohr-Coulomb criterion) to the twin-shear yield criterion (Yu, 1961), and
the twin-shear strength theory (Yu et al., 1985) are specific cases of the
unified solutions from UST with the specific values of the parameters α and
b. And the upper bound and lower bound solutions can be obtained with
b = 0 and b = 1, respectively. The solutions satisfy the static and dynamic
conditions, namely the equilibrium equations, stress boundary conditions,
yield conditions, associate flow rule, and the velocity boundary conditions.
The solutions can be applied to all kinds of isotropic materials.

(2) The unified strength theory parameter b can be considered as the
identifier for different strength criteria and different yield criteria. The mutual
quantificational relationships are implemented in the unified strength theory.
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(3) The solutions in the references for the non-SD materials are special
case solutions of the results in this chapter. The tensile-compressive strength
ratio has a great influence on the plastic limit load.

7.6 Problems

Problem 7.1 Determine the limit bearing capacity of annular plate by
using the Tresca criterion.

Problem 7.2 Determine the limit bearing capacity of annular plate by
using the unified yield criterion (b = 0).

Problem 7.3 Determine the limit bearing capacity of annular plate by
using the unified yield criterion (b = 0.5).

Problem 7.4 Determine the limit bearing capacity of annular plate by
using the unified yield criterion (b = 0.8).

Problem 7.5 Determine the limit bearing capacity of annular plate by
using the unified yield criterion (b = 1.0).

Problem 7.6 Determine the limit bearing capacity of annular plate by
using the unified strength theory (b = 0).

Problem 7.7 Determine the limit bearing capacity of annular plate by
using the unified strength theory (b = 0.5).

Problem 7.8 Determine the limit bearing capacity of annular plate by
using the unified strength theory (b = 0.8).

Problem 7.9 Determine the limit bearing capacity of annular plate by
using the unified strength theory (b = 1.0).
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8

Plastic Limit Analyses of Oblique, Rhombic,
and Rectangular Plates

8.1 Introduction

Plate structures are widely used in aerospace, shipping, civil, and mechanical
engineering. Plastic limit analyses of flat plates with different geometries can
approximately estimate the load-bearing capacities of the plates. A lot of an-
alytical solutions for flat plates have been reported by Wood (1961), Sawczuk
and Jaeger (1963), Save and Massonnet (1972), Golley (1997), Mishra et al.
(1996), Moen et al. (1998). Their solutions are mainly based on the Tresca
yield criterion, the Huber-von Mises yield criterion, or the Mohr-Coulomb
strength criterion. The maximum principal stress criterion has also been ap-
plied for simplicity.

The Tresca-Mohr-Coulomb strength theory is a single-shear strength the-
ory. It ignores the effect of the intermediate principal stress. The Tresca yield
criterion and the Huber-von Mises yield criterion can be effectively applied
for the analyses of the non-SD materials. The maximum principal stress crite-
rion considers only one of the three principal stresses, which may be deficient
in yielding valid analytical results.

The unified strength theory (UST) has attracted more and more attention
in engineering applications. In this chapter the load-bearing capacity for sim-
ply supported plates of different geometries will be given. Amongst them, the
unified solution to the load-bearing capacity for a simply supported oblique
plate was presented by Li and Yu (2000).

In terms of the principal stresses, the mathematical expression of the UST
is ⎧⎪⎨

⎪⎩
f = σ1 − α

1 + b
(bσ2 + σ3) = σt,when σ2 � σ1 + ασ3

1 + α
,

f ′ =
α

1 + b
(σ1 + bσ2)− σ3 = σt,when σ2 � σ1 + ασ3

1 + α
,

(8.1)

where f and f ′ are yield functions; σ1, σ2, and σ3 are the maximum principal
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stress, the intermediate principal stress, and the minimum principal stress,
respectively; σt and σc are the tensile and compressive strengths; α the tensile
to compressive strength ratio, i.e., α = σt/σc; b is a coefficient which reflects
the relative effect of the intermediate principal stress and the intermediate
principal shear stress. It is the parameter specifying the failure criterion in
the unified strength theory. The unified strength theory parameter b can be
obtained via the tensile strength σt, the compressive strength σc and the
shear strength τ0,

b =
1 + α − σt/τ0

σt/τ0 − 1
.

The twin-shear strength theory (Yu et al., 1985) and the single-shear
strength theory (Mohr-Coulomb, 1900) can be derived from Eq.(8.1) with
b = 1 and b = 0, respectively. For the plane stress problem (σ2 = 0) the UST
can be simplified as

⎧⎪⎨
⎪⎩

f = σ1 − α

1 + b
σ3 = σt, where 0 � 1

2 (σ1 + ασ3),

f ′ =
1

1 + b
σ1 − ασ3 = σt, where 0 � 1

2
(σ1 + ασ3).

(8.2)

The limit loci of the UST in the plane stress state and in the deviatoric
plane are shown in Figs.8.1 and 8.2 respectively. The twelve mathematical
expressions of the unified yield criterion in plane stress state are

σ1 − αb

1 + b
σ2 = σt, σ2 − αb

1 + b
σ1 = σt, (8.3a)

1
1 + b

σ1 +
b

1 + b
σ2 = σt,

1
1 + b

σ2 +
b

1 + b
σ1 = σt, (8.3b)

σ1 − α

1 + b
σ2 = −σt, σ2 − α

1 + b
σ1 = −σt, (8.3c)

1
1 + b

σ1 − ασ2 = −σt,
1

1 + b
σ2 − ασ1 = −σt, (8.3d)

− α

1 + b
(bσ1 + σ2) = σt, − α

1 + b
(bσ2 + σ1) = σt, (8.3e)

b

1 + b
σ1 − ασ2 = σt,

b

1 + b
σ2 − ασ1 = σt, (8.3f)
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Fig. 8.1. Yield loci of the UST in the plane stress

Fig. 8.2. Yield loci of the UST in the deviatoric plane

8.2 Equations for Oblique Plates

8.2.1 The Equilibrium Equation in Ordinary Coordinate System

For the oblique plate in Fig.8.3 with distribution of internal forces in Fig.8.4, u
and v denote the ordinary coordinate axes; θ is the angle between the ordinary
coordinate axes; Mn,1, Mn,2, and Mt are two positive bending moments and
a shear moment per unit length of the oblique plate respectively. The unit of
the moments is in Nm/m; 2l1 and 2l2 are respectively the total length of the
two sides of the oblique plate; q is a transverse load over the plate.

The equilibrium equation of the plates in the Cartesian coordinate system
is
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Fig. 8.3. Coordinate of the oblique plate

Fig. 8.4. Distribution of internal forces

∂2Mn,x

∂x2
+ 2

∂2Mn,xy

∂x∂y
+

∂2Mn,y

∂y2
+ q = 0, (8.4)

where Mn,x, Mn,y, and Mn,xy are the normal moments and shear moment
per unit length in the rectangular Cartesian coordinate system.

The transformation between the rectangular Cartesian coordinate system
and ordinary coordinate system can be expressed as

x = u+ v cos θ, y = v sin θ, (8.5)

or
u = x − ycotθ, v = y/sin θ. (8.6)

The equilibrium equation of plates in oblique coordinate system can be
derived from Eq.(8.4),

∂2Mn,x

∂u2
+ 2

(
−cotθ∂2Mn,xy

∂u2
+

1
sin θ

∂2Mn,xy

∂u∂v

)
+ cot2θ

∂2Mn,y

∂u2

− 2
cos θ
sin2 θ

∂2Mn,y

∂u∂v
+

1
sin2 θ

∂2Mn,y

∂v2
+ q = 0.

(8.7)
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8.2.2 Field of Internal Motion

Assuming that the oblique plate is simply supported around the four outer
edges and subjected to a transverse load q, the functions of the internal forces
for the oblique plates are ⎧⎪⎨

⎪⎩
Mn,1 = c1(l21 − u2),

Mn,2 = c2(l22 − v2),
Mt = c3uv,

where c1, c2, and c3 are three coefficients to be determined.
According to the transformation of the internal moments between the

ordinary coordinate system and the rectangular Cartesian coordinate system,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mn,x = −c1
cos 2θ
sin2 θ

(l21 − u2) + c2 cot2 θ(l22 − v2) + c3
sin 2θ
sin2 θ

uv,

Mn,y = c2(l22 − v2),

Mn,xy = −c1 cot θ(l21 − u2)− c2 cot θ(l22 − v2)− c3uv.

The uniform transverse load can then be derived from Eqs.(8.5) and (8.7),

ql = [−2c1(1 + 2 cos 2θ) + 2c2 + 2c3 sin θ]/ sin2 θ. (8.8)

8.2.3 Moment Equation Based on the UST

The internal moments Mn,x, Mn,y, and Mn,xy can be integrated form the
stresses σx, σy and τxy,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mn,x =
∫ h

−h

σxzdz = σxh2,

Mn,y =
∫ h

−h

σyzdz = σyh2,

Mn,xy =
∫ h

−h

τxyzdz = τxyh2,

(8.9)

where 2h is the thickness of the oblique plate. The UST can be rewritten for
the plane stress state as
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f =
1

1 + b

⎡
⎣1 + b − α

2
(σx + σy) + (1 + b+ α)

√(
σx − σy

2

)2
+ τ2xy

⎤
⎦ = σt,

when (1 + α)
σx + σy

2
+ (1− α)

√(
σx − σy

2

)2
+ τ2xy � 0,

(8.10a)

f ′ =
1

1 + b

⎡
⎣1− αb − α

2
(σx + σy) + (1 + αb+ α)

√(
σx − σy

2

)2
+ τ2xy

⎤
⎦ = σt

when (1 + α)
σx + σy

2
+ (1− α)

√
(
σx − σy

2
)2 + τ2xy � 0.

(8.10b)
Eqs.(8.10a) and (8.10b) can be expressed in terms of Mn,x, Mn,y, and

Mn,xy as

(2 + b)2(Mn,x − Mn,y)2 + 4(2 + b)2M2
n,xy − b2(Mn,x +Mn,y)2

= 4(1 + b)Mp[(1 + b)Mp − b(Mn,x +Mn,y)],

when (1 + α)
Mn,x +Mn,y

2
+ (1− α)

√(
Mn,x +Mn,y

2

)2
+M2

n,xy � 0,

(8.11a)

(2 + b)2(Mn,x − Mn,y)2 + 4(2 + b)2M2
n,xy − b2(Mn,x +Mn,y)2

= 4(1 + b)Mp[(1 + b)Mp + b(Mn,x +Mn,y)],

when (1 + α)
Mn,x +Mn,y

2
+ (1− α)

√(
Mn,x +Mn,y

2

)2
+M2

n,xy � 0,

(8.11b)

where Mp is the limit bending moment of the plate.
The limit loci of generalized stresses in terms of the unified strength theory

for the plane plate are illustrated schematically in Fig.8.5.

8.3 Unified Solution of Limit Analysis of Simply
Supported Oblique Plates

When the inequality (1+α)Mn,x+Mn,y

2 +(1−α)

√(
Mn,x−Mn,y

2

)2
+Mn,xy � 0

is satisfied, the unified yield function for u and v can be derived by substi-
tuting Eq.(8.7) into Eq.(8.11a). With calculus regarding u and v, the limit
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Fig. 8.5. Generalized unified yield criterion in plane stress state

loading at the points (0,0), (±l1, 0), (0, ±l2), and (±l1, ±l2) of the plate can
then be derived. Defining

G = 4(1 + b)2M2
p , (8.12a)

E1 =
[
(1 + b+ α)2

cos2 2θ
sin4 θ

+ 4(1 + b+ α)2cot2θ − (1 + b − α)2
cos2 2θ
sin4 θ

]
l41,

(8.12b)

E2 =
[
(1 + b+ α)2

cos2 2θ
sin4 θ

+ 4(1 + b+ α)2cot2θ − (1 + b − α)2 csc4 θ

]
l42,

(8.12c)

E3 =
[
(1 + b+ α)2

sin2 2θ
sin4 θ

+ 4(1 + b+ α)2 − (1 + b − α)2
sin2 2θ
sin4 θ

]
l21l
2
2,

(8.12d)

F1 = 4(1 + b)(1 + b − α)Mp
cos 2θ
sin2 θ

l21, (8.12e)

F2 = 4(1 + b)(1 + b − α)Mp csc2 θl22, (8.12f)

F3 = 4(1 + b)(1 + b − α)Mp
sin 2θ
sin2 θ

l1l2. (8.12g)

The limit load is derived from Eq.(8.8),
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ql = [−2c1(1 + 2 cos 2θ) + 2c2 + 2c3 sin θ]/ sin2 θ, (8.13)

where c1, c2, and c3 are⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 =
(

F1 +
√

F 21 + 4E1G
)
/(2E1),

c2 =
(
−F2 +

√
F 22 + 4E2G

)
/(2E2),

c3 =
(
−F3 +

√
F 23 + 4E3G

)
/(2E3).

(8.14)

When (1 + α)Mn,x+Mn,y

2 + (1− α)
√
(Mn,x−Mn,y

2 )2 +Mn,xy � 0, the limit
load ql can be derived from Eq.(8.11b) with the same form of Eq.(8.13), while
the coefficients c1, c2, and c3 are given as

c1 =
(
−F1 +

√
F 21 + 4E1G

)
/(2E1), (8.15a)

c2 =
(

F2 +
√

F 22 + 4E2G
)
/(2E2), (8.15b)

c3 =
(

F3 +
√

F 23 + 4E3G
)
/(2E3). (8.15c)

The limit load ql for a parallelogram plate with θ = π/3 can be derived
from Eq.(8.13),

ql =
[
2
l22
+

4(1 + b)
9(1 + b) + 3α

.
1

l1l2

]
Mp. (8.16)

When θ = π/4, the limit load ql becomes

ql =
[ −4(1 + b)
(1 + b+ α)

1
l21
+
2(1 + b)

α

1
l22

+
(4 + 2

√
2)(1 + b)2 + (4− 2

√
2)α(1 + b)

(1 + b)2 + α2 + 6α(1 + b)
1

l1l2

]
Mp.

(8.17)

The relations between the limit load ql and the unified strength theory
parameter b of the UST for various oblique plates (θ = π/3, l1 = 1.5l2;
θ = π/3, l1 = 2l2; θ = π/4, l1 = 1.5l2; θ = π/4, l1=2l2) are given in Fig.8.6
to Fig.8.9.
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Fig. 8.6. Relations between ql and unified strength theory parameter b (θ = π/3,
l1 = 1.5l2)

Fig. 8.7. Relations between ql and unified strength theory parameter b (θ = π/3,
l1 = 2l2)

8.4 Limit Load of Rhombic Plates

For l1 = l2, the limit load can be obtained from Eqs.(8.16) and (8.17) for
θ = π/3,

ql =
[
2 +

4(1 + b)
9(1 + b) + 3α

]
Mp

l22
when θ =

π

3
. (8.18)



8.5 Limit Load of Rectangular Plates 163

Fig. 8.8. Relations between ql and unified strength theory b (θ = π/4, l1 = 1.5l2)

Fig. 8.9. Relations between ql and unified strength theory b (θ = π/4, l1 = 2l2)

The relations between limit load ql and the unified strength theory pa-
rameter b are shown in Fig.8.10 and Fig.8.11 for θ = π/3 and θ = π/4
respectively.

8.5 Limit Load of Rectangular Plates

When θ = π/2, the limit load for rectangular plates can be derived from
Eq.(8.13),
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Fig. 8.10. Relations between limit load ql and unified strength theory parameter
b (θ = π/3, l1 = l2)

Fig. 8.11. Relations between limit load ql and unified strength theory parameter
b (θ = π/4, l1 = l2)

ql =
[
2

(
1
l21
+

1
l22

)
+

2(1 + b)
(1 + b+ α)l1l2

]
Mp. (8.19)

If the plate consists of non-SD material (α = 1), the limit load in Eq.(8.19)
can be simplified as
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ql =
[
2

(
1
l21
+

1
l22

)
+

2(1 + b)
(2 + b)l1l2

]
Mp. (8.20)

Figs.8.12 to 8.14 show the limit load ql versus the unified strength theory
parameter b for different rectangular plates.

Fig. 8.12. Relations between ql and unified strength theory parameter b (θ = π/2,
l1 = 1.5l2)

Fig. 8.13. Relations between and unified strength theory parameter b (θ = π/2,
l1 = 2l2)
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Fig. 8.14. Relations between ql and unified strength theory parameter b (θ = π/2,
l1 = 4l2))

It is seen that both α and b have significant influences on the limit load.
For a given value of α, the limit load increases with increasing parameter b.
On the other hand, for a given value of b, the limit load decreases with the
increase of α.

The limit load ql versus the ratio is shown in Figs.8.15 to 8.17 for different
parameter b.

Fig. 8.15. Variation of ql for different rectangular plates (b = 0 )
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Fig. 8.16. Variation of ql for different rectangular plates (b = 0.5)

Fig. 8.17. Variation of ql for different rectangular plates (b = 1.0)

It is seen that the limit load ql decreases with the increase of the ratio
l1/l2 and α for a given value of b. On the other hand, ql(Mp/l22) approaches
a constant of 2 (kN/m2), and is independent of b and α.
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8.6 Unified Limit Load of Square Plates

The limit load of square plates can be obtained by further simplifying the
limit load solution in Eq.(8.10) with l1 = l2

ql = 2
[
2 +

(1 + b)
1 + b+ α

]
Mp

l22
. (8.21)

When α = 1, the limit load based on the twin shear yield criterion can
be derived as

ql = 2
[
2 +

(1 + b)
2 + b

]
Mp

l22
, (8.22)

and
ql = 5.155

Mp

l22
, when b =

1
1 +

√
3
, (8.23)

which is identical to the following solution based on the von Mises criterion
(Wang, 1998)

ql = 5.2
Mp

l22
, when b =

1
2
. (8.24)

Fig. 8.18 shows the limit load ql with respect to the parameter b for square
plates.

Fig. 8.18. Relations of ql to unified strength theory parameter b (θ = π/2, l1 = l2)
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8.7 Tabulation of the Limit Load for Oblique, Rhombic
and Square Plates

For convenient comparison and easier reference, the relations of the limit
load ql(Mp/l22) to the unified strength theory parameter b, the SD ratio α,
the angle θ for the oblique plate, and the length ratio of l1/l2 are tabulated
in Table 8.1 to Table 8.4.

Table 8.1. Relation of ql(Mp/l22) to b and α with θ = 45o

α b=0 b=0.25 b=0.5 b=0.75 b=1.00

0.2 8.820 12.585 15.313 18.009 20.678

0.4 4.193 5.603 7.015 8.422 8.820

l1/l2 = 1.0 0.6 2.352 3.262 4.193 5.132 6.074

0.8 1.484 2.130 2.803 3.493 4.193

1.0 1.000 1.484 1.998 2.531 3.078

0.2 10.621 13.323 15.993 18.637 21.260

0.4 5.097 6.492 7.879 8.255 10.621

l1/l2 = 1.5 0.6 3.235 4.164 5.097 6.028 6.955

0.8 2.316 3.003 3.699 4.397 5.097

1.0 1.778 2.316 2.865 3.420 3.978

0.2 10.743 13.405 16.039 18.652 21.248

0.4 5.311 6.684 8.047 8.400 10.743

l1/l2 = 2.0 0.6 3.468 4.390 5.311 6.227 7.140

0.8 2.547 3.237 3.929 4.620 5.311

1.0 2.000 2.547 3.099 3.652 4.206

The limit load ql versus the ratio for different lengths of rectangular plates
and the unified strength theory parameter b are listed in Table 8.4. The
limit load for square plate and rectangular plates with l1/l2 = 2, l1/l2 = 4,
l1/l2 = 7, l1/l2 = 10, and l1/l2 = ∞ are given. It is seen that the limit load
ql decreases with the increase of the ratio l1/l2 and α for a given value of
b, and the limit load ql increases with the increase in the unified strength
theory parameter b in any case.

In Table 8.4, the result of α = 1 and b = 0 is the same as the result
for Tresca material; the result for α = b = 1 is the same as the result for
twin-shear yield criterion material; the result of α = 1 and b = 1/2 is the
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Table 8.2. Relation of ql(Mp/l22) to b and α with θ = 60o

α b=0 b=0.25 b=0.5 b=0.75 b=1.00

0.2 2.417 2.422 2.426 2.428 2.430

0.4 2.392 2.402 2.408 2.413 2.417

l1/l2 = 1.0 0.6 2.370 2.383 2.392 2.399 2.404

0.8 2.351 2.366 2.377 2.386 2.392

1.0 2.333 2.351 2.364 2.373 2.381

0.2 2.278 2.281 2.284 2.285 2.287

0.4 2.261 2.268 2.272 2.275 2.278

l1/l2 = 1.5 0.6 2.247 2.255 2.261 2.266 2.269

0.8 2.234 2.244 2.252 2.257 2.261

1.0 2.222 2.234 2.242 2.249 2.254

0.2 2.208 2.211 2.213 2.214 2.215

0.4 2.196 2.201 2.204 2.206 2.208

l1/l2 = 2.0 0.6 2.185 2.192 2.196 2.199 2.202

0.8 2.175 2.183 2.189 2.193 2.196

1.0 2.167 2.175 2.182 2.187 2.190

linear approximation of the result of the Huber-von Mises criterion. Because
the Huber-von Mises criterion has a nonlinear mathematical expression, it is
relatively complicated to derive analytical solutions in structural plasticity.
For practical application, approximating the numerical solutions based on the
Huber-von Mises criterion is adopted. UST with α = 1 and b = 1/2 can be
considered as a linear approximation of the Huber-von Mises yield criterion
which is more suitable for the derivation of analytic solutions. The results of
the Huber-von Mises criterion and the unified strength theory with α = 1
and 1/(1+

√
3) are very close with a percentage difference less that 3%, which

is even as low as 0.87% for the plastic limit load of the square plate.
For a given value of α, the limit load ql can be derived from Eq.(8.13)

and Eq.(8.2) for different materials. As a result the material properties of the
plates can be taken into account more appropriately if the UST is applied.

8.8 Summary

Based on the unified strength theory, the plastic limit analyses for oblique
plates are carried out and the unified limit load is derived. It gives a se-
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Table 8.3. Relation of ql(Mp/l22) to b and α with θ = 90o

α b=0 b=0.25 b=0.5 b=0.75 b=1.00

0.2 5.667 5.724 5.765 5.795 5.818

0.4 5.429 5.515 5.579 5.628 5.667

l1/l2 = 1.0 0.6 5.250 5.351 5.429 5.489 5.538

0.8 5.111 5.220 5.304 5.373 5.429

1.0 5.000 5.111 5.200 5.273 5.333

0.2 4.556 4.718 4.845 4.948 5.032

0.4 4.317 4.485 4.620 4.731 4.824

l1/l2 = 1.5 0.6 4.139 4.304 4.441 4.556 4.654

0.8 4.000 4.160 4.295 4.411 4.511

1.0 3.889 4.043 4.175 4.289 4.389

0.2 4.167 4.387 4.569 4.722 4.853

0.4 3.929 4.139 4.318 4.472 4.605

l1/l2 = 2.0 0.6 3.750 3.949 4.122 4.272 4.405

0.8 3.611 3.799 3.963 4.109 4.239

1.0 3.500 3.676 3.833 3.974 4.100

ries of solutions covering those from the single-shear theory (Mohr-Coulomb
strength theory) to the twin-shear strength theory (Yu, 1985). The unified
solution of the limit load for the oblique, rhombic, rectangular, and square
plates encompasses the solutions as special cases as reported by other re-
searchers as well as a series of new solutions.

The parameter b has a significant influence on the load-bearing capacities
of oblique plates and the influences vary for different conditions. The influ-
ences vary with the state of stress. When the intermediate principal stress
σ2 is close to the minimum principal stress σ3the difference in the limit load
based on different strength criteria is minimal. However, when the intermedi-
ate principal stress σ2 is close to σ2 = (σ1+ σ3)/2, the influence on the limit
load is significant.

The limit load ql for different materials and structures can be obtained
when α and b vary and when the different l1/l2 and θ are adopted.
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Table 8.4. Relations of limit load ql(Mp/l22) for different rectangular plates

b α l1/l2 = 1.0
(square)

l1/l2 = 2 l1/l2 = 4 l1/l2 = 7 l1/l2 = 10 l1/l2 =∞

0.2 5.667 3.333 2.542 2.279 2.187 2.0

0.4 5.429 3.214 2.482 2.245 2.163 2.0

0 0.6 5.250 3.125 2.438 2.219 2.145 2.0

0.8 5.111 3.056 2.403 2.200 2.131 2.0

1.0 5.000 3.000 2.375 2.184 2.120 2.0

0.2 5.765 3.382 2.566 2.293 2.196 2.0

0.4 5.579 3.289 2.520 2.266 2.178 2.0

0.5 0.6 5.429 3.214 2.482 2.245 2.163 2.0

0.8 5.304 3.152 2.451 2.227 2.150 2.0

1.0 5.200 3.100 2.425 2.212 2.140 2.0

1

1+
√
3

1.0 5.155(Mises) 3.077 2.414 2.206 2.135 2.0

1.0 0.2 5.818 3.409 2.580 2.301 2.202 2.0

(twin- 0.4 5.667 3.333 2.542 2.279 2.187 2.0

shear) 0.6 5.538 3.269 2.510 2.261 2.174 2.0

0.8 5.429 3.214 2.482 2.245 2.163 2.0

1.0 5.333 3.167 2.458 2.231 2.153 2.0

8.9 Problems

Problem 8.1 Try your hand at an application of the unified yield criterion
for limit analysis of a square plate.

Problem 8.2 Try your hand at an application of the unified yield criterion
for limit analysis of a rectangular plate with different l1, l2 and θ.

Problem 8.3 Try your hand at an application of the unified yield criterion
for limit analysis of a rhombic plate with different θ.

Problem 8.4 Try your hand at an application of the unified yield criterion
for limit analysis of an oblique plate with different l1, l2 and θ.

Problem 8.5 Why does the solution obtained by using the unified yield
criterion contain all the solutions of the Tresca yield criterion, the von
Mises yield criterion, the twin-shear yield criterion and other possible
yield criteria adopted for those materials with the same yield stress in
tension and in compression?
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Problem 8.6 Write a paper regarding the plastic analysis of an oblique
plate with different l1, l2 and θ using the unified yield criterion.

Problem 8.7 Can you introduce a unified plastic solution for an oblique
plate with different l1, l2 and θ using the unified strength theory? The
ratio of tensile strength σt to compressive strength σc is α = σt/σc = 0.8.

Problem 8.8 A high-strength alloy has the strength ratio in tension and
compression α = 0.9. Find the unified solution for a square plate made
of this alloy.

Problem 8.9 A high-strength alloy has the strength ratio in tension and
compression α = 0.9. Find the unified solution for a rectangular plate
made of this alloy.

Problem 8.10 A high-strength alloy has the strength ratio in compression
and tension α = 0.9. Find the unified solution for a rhombic plate made
of this alloy.

Problem 8.11 A high-strength alloy has the strength ratio in compression
and tension α = 0.9. Find the unified solution for an oblique plate made
of this alloy.

Problem 8.12 Compare the plastic solutions of a square plate using the
unified yield criterion and the unified strength theory with α = 0.8.

Problem 8.13 Compare the plastic solutions of a rectangular plate using
the unified yield criterion and the unified strength theory with α = 0.8.

Problem 8.14 Compare the plastic solutions of a rhombic plate using the
unified yield criterion and the unified strength theory with α = 0.8.

Problem 8.15 Compare the plastic solutions of an oblique plate using the
unified yield criterion and the unified strength theory with α = 0.8.
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9

Plastic Limit Analysis of Pressure Vessels

9.1 Introduction

Thin-walled vessels and thick-walled cylinders are applied widely in industry
as pressure vessels, pipes, gun barrels, cylinders of rockets, etc. The limit
analyses of thick-walled hollow spheres and cylinders under internal pressure
were discussed in detail by Hill (1950), and Johnson and Mellor (1962). Fur-
ther studies on this subject were reported by Derrington and Johnson (1958),
Johnson and Mellor (1962), Tuba (1965), and Zyczkowski (1981). The Tresca
yield criterion or the Huber-von Mises yield criterion is usually applied for
the design of thin-walled pressure vessels. The result using the Huber-von
Mises yield criterion for a spherical vessel is similar to that using the Tresca
yield criterion. These solutions are applicable only for non-SD materials. It
can be seen in the textbook of plasticity.

For SD materials two-parameter failure criteria have to be used (Drucker,
1973; Richmond et al. 1980). The limit pressure of a thick-walled hollow
cylinder with material, following the Mohr-Coulomb strength theory, was
discussed by Xu and Liu (1995). The limit pressures of the thick-walled hollow
sphere and cylinder with material following the twin-shear strength theory
were reported by Ni et al. (1998) and Zhuang (1998). Application of the twin-
shear strength theory in the strength-calculation of gun barrels was given by
Liu et al. (1998) and Li et al. (2007).

The elastic limit and plastic limit of the thin-walled vessel and thick-
walled cylinder were studied with respect to the unified strength theory by
Wang and Fan (1998), a series of unified solutions of limit loads for pressure
vessels were given (Wang and Fan, 1998). Zhao et al. (1999), Feng et al.
(2004a; 2004b) and recently Li et al. (2007) also give some results of unified
solutions for pressure vessels. The unified strength theory is also applied to
the unified limit load solution for fiber-reinforced concrete cylinder taking
into consideration the strain softening of material by Chen et al. (2006). The
effects of failure criterion on the elastic limit and plastic limit loads of the
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thin-walled pressure vessel and thick-walled pressure vessel were summarized
by Yu (2004).

In most of the applications the thickness of the cylinder is constant and
the cylinder is subjected to a uniform internal pressure p. The deformations
of the cylinder are symmetrical with respect to the symmetric axis of the
cylinder. The deformations at a cross section sufficiently far from the junc-
tion of the cylinder and its end caps are independent of the axial coordinate z.
In particular, if the cylinder is open-ended (no end caps) and unconstrained,
it undergoes axisymmetric deformations due to pressure p which is indepen-
dent of z. If the deformation of cylinder is constrained by end caps, the
displacements and stresses at cylinder cross sections near the end cap junc-
tions differ from those at sections far away from the end cap junctions, if
axially symmetrical loads and constraints are considered. Thus the solution
is axisymmetrical; the solutions are functions of the radial coordinate r only.
In the case of a thin-walled cylinder, the difference in stresses at the inner
wall and outer wall is small if the thickness t is much less than the vessel di-
ameter. The internal stresses can then be assumed to be independent of the
radial coordinate r. Relationships between the internal pressure p, the dimen-
sions of the thin-walled vessel, circumferential and axial stresses in a pressure
vessel, can be found in textbooks of Mechanics of Materials or Strength of
Materials.

The systematic results of elastic and plastic limit loads for thin-walled
and thick-walled pressure vessels will be described in this chapter.

9.2 Unified Solution of Limit Pressure of Thin-walled
Pressure Vessel

Considering the stresses in a thin-walled pressure vessel subjected to an inter-
nal pressure as shown in Fig.9.1, the pressure incurs a circumferential stress
(or hoop stress) σ1 and a longitudinal stress σm or σ2 that can be expressed
as

σ1 =
pD

2t
, σ2 = σm =

pD

4t
, σ3 = 0. (9.1)

Based on the unified strength theory,

F = σ1 − α

1 + b
(bσ2 + σ3) = σt, when σ2 � σ1 + ασ3

1 + α
, (9.2a)

F ′ =
1

1 + b
(σ1 + bσ2)− ασ3 = σt, when σ2 � σ1 + ασ3

1 + α
. (9.2b)

The stresses of a thin-walled vessel satisfy the inequity condition σ2 =
1
2 (σ1+σ3) � σ1+ασ3

1+α , therefore the first formula of the unified strength theory
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Fig. 9.1. Stresses in thin-walled pressure vessel

Eq.(9.2a) is valid for the yield condition of the vessel. Substituting Eq.(9.1)
into Eq.(9.2a), the yield condition for a thin walled cylinder obeying the
unified strength theory is obtained

F = σ1 − α

1 + b
(bσ2 + σ3) =

pD

2t
− αb

1 + b

pD

4t
= σt. (9.3)

The elastic limit pressure can be derived as

pe =
1 + b

2 + 2b − αb

4t
D

σt. (9.4)

If the material has an allowable tensile stress of [σ] = σt/n, where n is
the factor of safety, the allowable limit pressure is

[p] =
1 + b

2 + 2b − αb

4t
D
[σ]. (9.5)

If the internal pressure p and allowable stress [σ] are given, the wall thick-
ness should satisfy

t � 2 + 2b+ αb

1 + b

pD

4[σ]
. (9.6)

The relationship between the limit pressure and wall thickness and the
unified strength theory parameter b are illustrated in Fig.9.2 and Fig.9.3,
respectively.

The unified solution with b = 0 and α �= 1 is with respect to the Mohr-
Coulomb material and the solution for the Tresca material is a special case
of the unified solution with b = 0 and α = 1. The unified solution with b = 1
and α �= 1 corresponds to the generalized twin-shear criterion (Yu, 1983), and
the unified solution with b = α = 1 is the same as the solution of the twin-
shear stress criterion (Yu, 1961) or the maximum deviatoric stress criterion
(Haythorthwaite, 1960). Other solutions are new which can be applied to
different materials. Therefore the unified solution can be adopted for analysis
of structures made of various materials.

It is worth noting that:
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Fig. 9.2. Elastic limit pressure versus the unified strength theory parameter b

Fig. 9.3. Minimum wall thickness versus the unified strength theory parameter b

(1) The traditional solution is a single solution (with respect to b = 0
in the unified strength theory), which can be adopted only for one kind of
material. The unified solution, however, gives a serial solution, which can be
adopted for various materials and structures.

(2) The solution for Tresca material (b = 0 and α = 1) is identical to the
solution for the Mohr-Coulomb material (b = 0 and α �= 1). It means that the
SD effect of materials (α �= 1) cannot be considered by the Mohr-Coulomb
strength theory in this case.

(3) All the solutions of the bearing capacity of structures with b > 0 are
higher than the solution of the traditional Tresca or Mohr-Coulomb criterion.
All the solutions of the required wall thickness of pressure vessels with b >
0 are lower than the solution of the traditional Tresca or Mohr-Coulomb
criterion.
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(4) The application of the unified strength theory and the unified solutions
are more economical in terms of the effective use of materials and energy.

Example 9.1 Design of Space Shuttle
The satellite carrier rockets launched by the United States, Europe and

China have very large diameters, for example the diameter of a satellite carrier
rocket is 3.5 m with a pressurized body length of 15 m. Under an internal
pressure p, the stresses of the rocket wall are

σ1 =
pD

2t
, σ2 =

pD

4t
, σ3 = 0.

The stresses of a thin-walled vessel satisfy the inequity condition,

σ2 =
1
2
(σ1 + σ3) � σ1 + σ3

2
.

Therefore any one of the two expressions of the unified yield criterion
Eq.(9.2a) or Eq.(9.2b) is valid for the yield condition of the vessel. The cal-
culated formulas of thickness of a missile body under inner pressure is

t � 2 + 2b+ αb

1 + b

pD

4[σ]
(for SD materials),

t � 2 + 3b
1 + b

pD

4[σ]
(for non-SD materials).

From the above results, for a specific allowable stress [σ], factor of safety n,
internal pressure p and diameterD, the required wall thickness of the pressure
vessels depends on the parameter b in the unified yield criterion. When b =
0 which corresponds to the single shear criterion, the required thickness is
the largest; when b = 1 with respect to the twin shear stress criterion, the
thickness is the smallest. The difference between the two required thicknesses
is 33.3%.

A carrier rocket is a tool to launch a satellite and itself is not the target
to be launched and positioned in space. Given the certain capacity of the
launching system, a reduction in the rocket’s selfweight is beneficial for in-
creasing the satellite weight. Based on Zhang (1998) and Xia (1999), the cost
of launching a satellite per ton mass is as high as tens of thousands of US
dollars. The transportation cost per unit effective mass is about US$22,000
even if the satellite is positioned on a lower track (Xia, 1999; Zhang, 1998).

The application of new materials is an effective way of reducing the self-
weight of the rocket. A new ultra-high-strength Al-Cu-Li 2195 alloy has been
successfully used to fabricate large-scale tanks for the space shuttle, and the
weight of the tanks decreases by 3405 kg.

On the other hand, using a more accurate analysis method may be an
alternative way of making a cost-effective design of the carrier rocket. The
current design of the rocket strength is based on the Tresca criterion which
is a single shear criterion. If the unified yield criterion for b = 1 or b = 1/2
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is adopted, the required wall thickness of the rocket can be reduced by more
than 16.5%. A rough estimation shows that the body weight of the rocket may
reduce by 440 kg if the wall thickness is 1 mm thinner. Thus the economic
benefit is as high as US$9.2 million if the unified yield criterion with b = 1 is
used.

9.3 Limit Pressure of Thick-walled Hollow Sphere

If a thick-walled sphere with inner radius ra and outer radius rb is subjected
to an internal pressure p, as shown in Fig.9.4. The sphere will deform sym-
metrically about the center; the radial and any two orthogonal tangential
directions will be the principal directions.

Fig. 9.4. Thick-walled sphere shell

The three corresponding principal strains are εr, εθ, εϕ and εθ = εϕ. The
equilibrium equation is

dσr

dr
= 2

σθ − σr

r
. (9.7)

The elastic stress-strain relations are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εr =
1
E
(σr − 2νσθ),

εθ =
1
E
[(1− ν)σθ − νσr)].

(9.8)

or
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σθ = σϕ =
E

(1 + ν)(1− 2ν)
(εθ + νεr),

σr =
E

(1 + ν)(1− 2ν)
[(1− ν)εr + 2νεθ.

(9.9)

The compatibility equation has the form of

dεθ

dr
+

εθ − εr

r
= 0. (9.10)

9.3.1 Elastic Limit Pressure of Thick-walled Sphere Shell

The Lame solutions of the elastic stress distribution had been given (Johnson
and Mellor, 1962) as follows:

σr =
pr3a
r3

(r3b
(r3a

−r3

−r3b

)
)
, (9.11)

σθ = σϕ =
pr3a
2r3

(2r3 + r3b )
(r3b − r3a)

. (9.12)

For convenience of formulation, the following dimensionless quantities are
introduced:

K =
rb

ra
, ρ =

r

ra
, α =

σt

σc
, (9.13)

where σt is the yield strength in uniaxial tension.
The stress expressions can then be written as

σr =
ρ3 − K3

ρ3(K3 − 1)
p , σθ = σϕ =

2ρ3 +K3

2ρ3(K3 − 1)
p. (9.14)

The magnitude of these stresses in elastic range is limited by the yield
criterion. When the unified strength theory Eq.(9.2a) and Eq.(9.2b) are used,
because σθ = σϕ > σr, i.e., σ1 = σθ (or σϕ), σ2 = σϕ (or σθ), σ3 = σr, τ12 = 0,
τ13 = τ23, there is

σ2 � σ1 + ασ3
1 + α

.

Thus Eq.(9.2b) should be used as the yield condition when the unified
strength theory is applied. The inner surface of the spherical shell yields first
at the elastic limit pressure. Substituting the stress components at the inner
surface into Eq.(9.2b), the elastic limit pressure pe in terms of the unified
strength theory is derived as
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pe =
K3 − 1

(1− α) +K3( 12 + α)
σt. (9.15)

The relation of elastic limit pressure with the ratios of the outer radius to
the inner radius K = rb/ra is shown in Fig. 9.5. It is worth noting that, as K
approaches infinity, the elastic limit pressure approaches a specific value. If
α = 1, this pressure is equal to 2/3 of the yield stress σy. When the ratio K
is larger than 2, the increment of the limit pressure is the minimum in spite
of different α.

Fig. 9.5. Relation of elastic limit pressure of sphere shell to K = rb/ra

The elastic limit pressure for non-SD materials are a special case in Eq.
(9.15) with α =1,

pe =
2
3

K3 − 1
K3

σy. (9.16)

This result is identical with the previous result (Johnson and Mellor,
1962), which is a special case for results obtained based on the unified yield
criterion.

The limit pressure of a thick-walled hollow sphere is independent of the
strength parameter b. The reason is that the stress state of a spherical shell
is spherically symmetrical about the center, and the three principal stresses
satisfy σ1 = σ2 > σ3. All the limit loci of the unified strength theory with
different parameter b intersect each other for this stress state.

9.3.2 Plastic Limit Pressure of Thick-walled Sphere Shell

When the internal pressure p reaches the elastic limit pressure pe, the inner
surface of the hollow sphere shell yields. As the internal pressure increases,
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the plastic zone spreads towards the outer surface. Denoting the outer radius
of the plastic zone as rp, and assuming the material is perfectly plastic, the
failure condition of the unified strength theory for the spherical shell can be
simplified as

σθ − ασr = σt. (9.17)

The stresses in the plastic region (ra � r � rp) can then be derived
from the equilibrium equation (Eq.(9.9)) with application of the boundary
condition of r = ra, σr = −p,

⎧⎪⎪⎨
⎪⎪⎩

σp
r =

σt

1− α

[
1−

(ra

r

)2(1−α)
]
− p

(ra

r

)2(1−α)

,

σp
θ = σp

ϕ =
σt

1− α

[
1− α

(ra

r

)2(1−α)
]
− αp

(ra

r

)2(1−α)

.

(9.18)

Since no stress-strain relation is required to derive the stresses, it is a
statically determinate problem.

At the plastic zone boundary of r = rp, the radial stress σp
r can be cal-

culated by substituting the boundary condition into Eq.(9.18). The elastic
part of the sphere is then considered as a new sphere with an inner radius of
rp and an outer radius of rb with an internal pressure of σp

r at r = rp. The
stresses in the elastic region (rp � r � rb) can be written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
σe

r =
r3p(1− r3b

r3 )

r3p(1− α) + r3b (
1
2 + α)

σt,

σe
θ = σe

ϕ =
r3p(1 +

r3b
2r3 )

r3p(1− α) + r3b (
1
2 + α)

σt.

(9.19)

The pressure at the elastic-plastic boundary and the radius of the plastic
zone can be derived from the stress continuous condition at the elasto-plastic
boundary,

pep =

⎧⎪⎨
⎪⎩− 1

1− α

[(
rp

ra

)2(1−α)

− 1

]
+

(r3b − r3p)
(

rp

ra

)2(1−α)

r3p(1− α) + r3b (
1
2 + α)

⎫⎪⎬
⎪⎭ σt. (9.20)

When rp is equal to the outer radius of the sphere rb, the sphere shell is
completely plastic. The plastic limit of the internal pressure pp can be derived
as

pp =
σt

1− α
(K2(1−α) − 1). (9.21)
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Eq.(9.21) is the same as the result based on the twin-shear strength theory
(Zhuang, 1998) and the result obtained by using the Mohr-Coulomb strength
theory. The relationship of the plastic limit pressure with different ratios of
the outer radius to the inner radius K = rb/ra is shown in Fig.9.6. The plastic
limit pressure increases with the increase of the ratio.

The plastic limit pressure of a thick-walled hollow sphere shell of non-SD
materials can be calculated from Eq.(9.21) with α =1,

pp = 2 lnK. (9.22)

Eq.(9.22) is the same as the result based on the Tresca criterion (Johnson
and Mellor, 1962).

The stresses in the plastic region (rp � r � rb) can be expressed as

σp
r =

σt

1− α

[
1−

(rb

r

)2(1−α)
]

, (9.23)

σp
θ = σp

ϕ =
σt

1− α

[
1− α

(rb

r

)2(1−α)
]

. (9.24)

Fig. 9.6. Relation of plastic limit pressure of sphere shell to the ratio of K = rb/ra

9.4 Unified Solution of Elastic Limit Pressure of
Thick-walled Cylinder

Considerable works on elasto-plastic analysis for a thick-walled cylinder under
internal pressure have been reported by Turner (1909), Nadai (1931), Man-
ning (1945), Allen and Sopwith (1951), and Crossland and Bones (1958). Dis-
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cussions in depth on this subject can also be found in the books by Hill (1950),
Johnson and Mellor (1962), Mendelson (1968), and Chakrabarty (1987).

The twin-shear yield criterion proposed by Yu (1961; 1983) was applied
to study the limit pressure of a thick-walled cylinder by Li (1998), Huang and
Zeng (1989). The generalized twin-shear strength theory (Yu et al., 1985) was
also used to derive the limit pressure of a thick-walled cylinder and hollow
sphere shell by Zhuang (1998), Zhao et al. (1999), and Ni et al. (1998). It was
also applied to gun barrels by Liu et al. (1998). The elastic limit pressure,
plastic limit pressure, and autofrettage pressure in an autofretted gun barrel
were reported by Liu et al. (1998).

Nowadays, gun barrels are made of high-strength steel having different
strength in tension and compression. Therefore, the results with respect to
the generalized twin-shear strength theory, which takes into account the SD
effect of materials, should be more appropriate. The unified yield criterion
(Yu and He, 1991) was used to drive the limit pressure for thick-walled tubes
with different end conditions, e.g., the open-end condition, the closed-end
condition, and the plane strain condition (Wang and Fan, 1998). For pressure-
sensitive materials, a failure criterion should take into account the SD effect
of material. The unified strength theory takes all the stress components into
account and is suitable for both non-SD and SD materials. In this chapter the
effects of yield criteria on elastic and plastic limit pressures for thick-walled
tubes using the unified strength theory are summarized and discussed.

Considering a thick-walled cylinder with the inner and outer radii of the
cylinder ra and rb under an internal pressure p and a longitudinal force P ,
the radius of the cylinder is assumed to be so large that the plane transverse
sections remain on the plane during the expansion. It implies that the longi-
tudinal strain εz is independent of the radius. Since the stresses and strains
in a cross-section that is sufficiently far away from the ends do not vary along
the length of the cylinder, the equation of equilibrium can be written as

dσr

dr
=

σθ − σr

r
. (9.25)

It should be mentioned that the z axis of the cylindrical coordinates (r,
θ, z) is the longitudinal axis of the tube. Based on the generalized Hooke’s
law, the longitudinal stress in the elastic state can be written as

σz = Eεz + ν(σr + σθ), (9.26)

where E is Young’s modulus and ν the Poisson’s ratio. The radial strain εr

and the circumferential strain εθ are

εr = −νεz +
1 + ν

E
[(1− ν)σr − νσθ] , (9.27a)
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εθ = −νεz +
1 + ν

E
[(1− ν)σθ − νσr] . (9.27b)

The compatibility equation is d
dr (σr+σθ) = 0, which indicates that σr+σθ

have constant values at each stage of the elastic expansion. Integrating Eq.
(9.25) and applying the boundary conditions of σr = 0 at r = rb, and σr = −p
at r = ra, the stresses are given as

σr = −p

⎛
⎝ r2b

r2 − 1
r2b
r2a

− 1

⎞
⎠ , σθ = p

⎛
⎝ r2b

r2 + 1
r2b
r2a

− 1

⎞
⎠ . (9.28)

This is Lame’s solution given by Lame (1852). If the resultant longitudinal
load is denoted by P , the axial stress σz is P/

[
π(r2b − r2a)

]
since this stress is

constant over the cross section. In particular, p = 0 represents an open-end
condition and P = πr2ap represents a closed-end condition. For a plane strain
condition (εz = 0), σz can be directly derived from Eqs.(9.26) and (9.28),

σz =
p

K2 − 1
, closed end, (9.29a)

σz = 0, open end, (9.29b)

σz =
2νp

K2 − 1
. plane strain. (9.29c)

The corresponding axial strains are

εz =
(1− 2ν)p
(K2 − 1)E

, closed end, (9.30a)

εz = 0, open end, (9.30b)

εz =
−2νp

(K2 − 1)E
, plane strain. (9.30c)

In all the three cases, σz is the intermediate principal stress. For the
closed-end condition, σz is the average or the mean value of the other two
principal stresses. If the material is assumed to be incompressible in both the
elastic and plastic ranges, σz of the plane strain condition is identical to that
of the closed-end condition. There are σ1 = σθ, σ2 = σz, σ3 = σr, and

σ2 =
1
2
(σ1 + σ3) � σ1 + ασ3

1 + α
. (9.31)

Thus the first equation of the unified strength theory should be applied
as the yield conditions,

σ1 − α

1 + b
(bσ2 + σ3) = σt. (9.32)
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Substituting Eq.(9.31) into Eq.(9.32), the yield condition in the case of
thick-walled cylinder with closed-end and plane strain condition can be ex-
pressed as

2 + (2− α)α
2(1 + b)

σθ − α(2 + b)
2(1 + b)

σr = σt. (9.33)

For on open-end cylinder it is

σθ − α

1 + b
σr = σt. (open end) (9.34)

Substituting Eq.(9.28) into Eqs.(9.33) and (9.34), we get

[2 + (2− α)b]
p

K2 − 1

(
r2b
r2

+ 1
)
+ α(2 + b)

p

K2 − 1

(
r2b
r2

− 1
)
= 2(1 + b)σt.

(9.35)
The elastic limit pressure in terms of the unified strength theory can be

derived as

pe =
(1 + b)(K2 − 1)σt

K2(1 + b+ α) + (1 + b)(1− α)
, closed end (9.36)

pe =
(1 + b)(K2 − 1)σt

(1 + b)(K2 + 1) + α(K2 − 1)
, open end (9.37)

pe =
(1 + b)(K2 − 1)σt

K2(1 + b+ α) + (1 + b)(1− α)
. plane strain (9.38)

The limit pressure for the closed-end cylinder based on the Mohr-Coulomb
strength theory (single-shear theory) is

pe =
K2 − 1

(1 + α)K2 + (1− α)
σt. (Mohr-Coulomb strength theory) (9.39)

The limit pressure of a thick-walled cylinder in terms of twin-shear
strength theory was reported by Zhuang (1998) and Ni et al. (1998) as

pe =
2(K2 − 1)

(2 + α)K2 + 2(1− α)
σt. (twin shear strength theory) (9.40)

These limit pressures are specific cases of the solutions in terms of the
unified solution with b = 0 and b = 1 respectively.

For non-SD materials, i.e., α = 1 or σt = σc = σy, Eqs.(9.36)∼(9.38) are
simplified as
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pe =
(1 + b)(K2 − 1)

K2(2 + b)
σy, closed end (9.41)

pe =
(1 + b)(K2 − 1)
K2(2 + b) + b

σy, open end (9.42)

pe =
(1 + b)(K2 − 1)

K2(2 + b) + b(1− 2ν)
σy. plane strain (9.43)

These results are identical to the solutions with Yu unified yield criterion
(Wang and Fan, 1998).

The elastic limit pressure for the Tresca material at closed end, open end,
and plane strain conditions can be obtained from Eqs.(9.41)∼(9.43) with
α = 1, b = 0. The solutions for different conditions are identical,

pe =
K2 − 1
2K2

σy. (9.44)

The elastic limit pressure for the Huber-von Mises material can be ap-
proximately derived from the unified solution with α = 1, b=1/2,

pe =
3(K2 − 1)

5K2
σy, closed end (9.45)

pe =
3(K2 − 1)

5K2 + (1− 2ν)
σy. plane strain (9.46)

The classical solutions for Huber-von Mises material are

pe =
K2 − 1√
3K2

σy, closed end (9.47)

pe =
K2 − 1√
3K4 + 1

σy, open end (9.48)

pe =
K2 − 1√

3K4 + (1− 2ν)2
σy. plane strain (9.49)

The percentage difference between the approximated elastic limit pressure
with regard to the unified solution with α = 1, b = 1/2, and the exact solution
based on the Huber-von Mises criterion is as low as 0.38%.

The elastic limit pressure in terms of the twin-shear yield criterion can
be derived from the unified solution with α = 1, b = 1,

pe =
2(K2 − 1)

3K2
σy, closed end (9.50)

pe =
2(K2 − 1)
3K2 + 1

σy, open end (9.51)
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pe =
2(K2 − 1)

3K2 + (1− 2ν)
σy. plane strain (9.52)

The percentage difference of the solutions between the Tresca material
and the twin-shear material is as high as 33.4%.

It can be noted from the above derivation that all the solutions with
regard to the prevailing yield criteria can be approximated or deduced from
the unified solution in view of the unified strength theory with specific values
of α and b. The variations of the unified solution regarding different values
of α and b are illustrated in Figs.9.7 and 9.8.

Fig. 9.7. Relation of elastic pressure with K = rb/ra

The results of the elastic limit pressures of a thick-walled cylinder for
closed end and open end in view of different yield criteria are summarized in
Table 9.1 and Table 9.2.

When a uniform pressure p is applied externally to a thick-walled cylinder
with wall ratio rb/ra, the elastic stress distribution of σr and σθ can be derived
from Eq.(9.28) by exchanging the positions of ra and rb in the formulation.
In this case both the stresses are compressive, and the magnitude of σθ is
higher than that of σr.
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Fig. 9.8. Relation of elastic pressure with the unified strength theory parameter b

Table 9.1. Summary of elastic limit pressures for closed end

Materials Elastic limit pressures Failure criterion used

1 SD material pe =
(1+b)(K2−1)σt

K2(1+b+α)+(1+b)(1−α)
Unified strength theory

α �= 1
2 SD material pe =

K2−1
(1+α)K2+(1−α)

σt Unified strength theory

α �= 1 b = 0, Mohr-Coulomb

3 SD material pe =
2(K2−1)

K2(2+α)+2(1−α)
σt Unified strength theory

α �= 1 b = 1, twin-shear theory

4 α = 1 materials pe =
(1+b)(K2−1)

K2(2+b)
σy Unified yield criterion

5 α = 1 materials pe =
K2−1
2K2 σy Unified yield criterion

b = 0, Tresca criterion

6 α = 1 materials pe =
K2−1√
3K2 σy von Mises yield criterion

7 α = 1 materials pe =
3(K2−1)

5K2 σy Unified yield criterion

b = 1/2

8 α = 1 materials pe =
2(K2−1)

3K2 σy Unified yield criterion

b = 1, twin-shear criterion

9.5 Unified Solution of Plastic Limit Pressure of
Thick-walled Cylinder

9.5.1 Stress Distribution

When the internal pressure exceeds pe, a plastic zone starts at the inner
surface and spreads towards the outer surface. If the outer radius of the
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Table 9.2. Summary of elastic limit pressures for open end

Materials Elastic limit pressures Failure criterion used

1 SD material pe =
(1+b)(K2−1)σt

(1+b)(K2+1)+α(K2−1) Unified strength theory

α �= 1
2 SD material pe =

K2−1
(1+α)K2+(1−α)

σt Unified strength theory

α �= 1 b = 0, Mohr-Coulomb

3 SD material pe =
2(K2−1)

K2(2+α)+2(1−α)
σt Unified strength theory

α �= 1 b = 1, twin-shear theory

4 α = 1 materials pe =
(1+b)(K2−1)
K2(2+b)+b

σy Unified yield criterion

5 α = 1 materials pe =
K2−1
2K2 σy Unified yield criterion

b = 0, Tresca criterion

6 α = 1 materials pe =
K2−1√
3K4+1

σy von Mises yield criterion

7 α = 1 materials pe =
3(K2−1)
5K2+1

σy Unified yield criterion

b = 1/2

8 α = 1 materials pe =
2(K2−1)
3K2+1

σy Unified yield criterion

b = 1, twin-shear criterion

elastic-plastic boundary is denoted as rc, in the elastic region (rc � r � rb),
the radial and circumferential stresses can be derived from Lame’s equations
with application of the boundary conditions of σr = 0 at r = rb, and the
stresses at r = rc satisfying the yield conditions. The pressure reaches its
maximum value when the plastic zone reaches the outer surface of the thick-
walled tube.

The elastic part of the elastic-plastic thick-walled tube can be considered
as a new tube with the inner radius rc, outer radius rb and an internal pressure
pe. The stress distribution in the elastic region for incompressible material
can be written as

σθ =
per

2
c

r2b − r2c

(
1 +

r2b
r2

)
, (9.53)

σr =
per

2
c

r2b − r2c

(
1− r2b

r2

)
, (9.54)

σz =
ν

2
(σθ + σr), (9.55)

where
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pe =
2(1 + b)(r2b − r2c )

(2 + 2b − αb)(r2b + r2c ) + α(2 + b)(r2b − r2c )
σt. (9.56)

9.5.2 Plastic Zone in the Elasto-plastic Range

In the plastic zone, for elastic-perfectly-plastic material, the stress state sat-
isfies Eq.(9.2a) or Eq.(9.2b) when the unified strength theory is adopted.
According to the stress state condition of Eq. (9.3a), the first equation of
the unified strength theory, i.e., Eq. (9.2a), should be applied as the yield
condition,

2 + (2− α)b
2(1 + b)

σθ − α(2 + b)
2(1 + b)

σr = σt. (9.57)

Substituting Eq.(9.57) into the equilibrium equation in Eq.(9.25), we get

dσr

dr
+
2(1 + b)(1− α)
2 + (2− α)b

σr

r
− 2(1 + b)
2 + (2− α)b

σt

r
= 0. (9.58)

The general solution to this differential equation is

σr =
c

r 2(1+b)(1−α)
2+(2−α)b

+
σt

1− α
. (9.59)

The integration constant can be determined by the boundary condition
of r = ra, σr = −p as −p = c

ra
2(1+b)(1−α)
2+(2−α)b

+ σt

1−α , which gives

c = (−p − σt

1− α
)A

2(1+b)(1−α)
2+(2−α)b . (9.60)

Therefore, the stress distribution in the plastic region (ra � r � rc) is

σr = −
(

p+
σt

1− α

) (ra

r

) 2(1+b)(1−α)
2+(2−α)b

+
σt

1− α
, (9.61)

σθ =
2(1 + b)σt

2 + (2− α)b
− α(2 + b)
2 + (2− α)b

[(
p+

σt

1− α

) (ra

r

) 2(1+b)(1−α)
2+(2−α)b

+
σt

1− α

]
,

(9.62)

σz =
1
2
(σr + σθ). (9.63)

Eqs.(9.61)∼(9.63) give the stresses of a thick-walled cylinder at the plastic
region. Since no stress-strain relation is required to derive the stresses, the
problem is considered statically determinate.
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9.5.3 Plastic Zone Radius in the Elasto-plastic Range

The pressure on the elastic and plastic zone boundary satisfies Eq.(9.57) of
the elastic zone solution. Assuming that the radius of the plastic zone is rc,
for a given internal pressure p, the plastic zone radius rc can be determined
from Eq.(9.57). When pressure increases, the plastic zone radius rc increases
gradually from ra to rb.

The stress continuity of radial stress σr across r = rc gives

σr=rc
(elastic zone) = σr=rc

(plastic zone).
Substituting the radial stress in Eq.(9.55) and the radial stress in Eq.(9.60)

into the stress continuity condition, the relation of pressure p to plastic zone
radius is derived,

p =
(

rc

ra

) 2(1+b)(1−α)
2+(2−α)b

[
2(1 + b)(r2b − r2c )

(2 + 2b − αb)(r2b + r2c ) + α(2 + b)(r2b − r2c )

+
1

1− α

]
σt − σt

1− α
.

(9.64)

As an example, the relation of pressure versus the plastic zone radius is
illustrated schematically in Fig.9.9 for the ratio of the external radius rb to
the internal radius ra, K = rb/ra = 2.

Fig. 9.9. Plastic zone radius versus internal pressure for different α (K = 2, b = 1.0)

9.5.4 Plastic Limit Pressure

9.5.4.1 Plastic Limit Pressure for SD Materials

When rc is equal to rb, the thick-walled tube is completely plastic. The plastic
limit pressure for the thick-walled cylinder is
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pp =
σt

1− α

(
K

2(1+b)(1−α)
2+2b−αb − 1

)
. (9.65)

The solution in Eq.(9.65) is for a thick-walled cylinder with closed end or
plane strain conditions. It can be referred to as the unified solution of plastic
limit pressure for thick-walled cylinder.

When b = 0, the plastic limit pressure in terms of the Mohr-Coulomb
theory is deduced from the unified solution,

pp =
σt

1− α
(K(1−α) − 1). (9.66)

When b = 1, the unified solution becomes the plastic limit pressure in
terms of the twin-shear strength theory,

pp =
σt

1− α
(K

4(1−α)
4−α − 1). (9.67)

9.5.4.2 Plastic Limit Pressure for Non-SD Materials

The unified solution for non-SD materials can be derived from the unified
solution with α = 1. The plastic limit pressure of a thick-walled cylinder
based on the unified yield criterion can be expressed as

pp =
2(1 + b)σt

2 + b
lnK. (9.68)

The limit pressure in terms of the Tresca yield criterion can be derived
from the unified solution with b = 0,

pp = σt lnK, (9.69)

which is identical to the classical solution based on the Tresca yield criterion.
The plastic limit pressure in terms of the linear Huber-von Mises yield

criterion can be approximately obtained with the unified solution with b =
1/2,

pp =
6
5
σt lnK. (9.70)

The plastic limit pressure in terms of the twin-shear yield criterion can
be obtained from the unified solution with b = 1,

pp =
4
3
σt lnK. (9.71)

Eqs.(9.70) and (9.71) are identical to the plastic limit pressure based on
the twin-shear strength theory (Zhuang, 1998).
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The relation of the plastic limit pressure with respect to the different
parameter b and different thickness of cylinder (K = rb/ra = 1.8, K = 2.0,
K = 2.5, K = 3.0) are shown in Fig.9.10 to Fig.9.13. From these figures the
effect of failure criteria is prominent.

Fig. 9.10. Relation of plastic limit pressure to the unified strength theory param-
eter b when K = 1.8

Fig. 9.11. Relation of plastic limit pressure to the unified strength theory param-
eter when K = 2.0

From Figs.9.13, 9.14 and Table 9.3, the elastic limit pressure in terms of
the unified strength theory increases monotonically with increasing b for all
the three end conditions.
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Fig. 9.12. Relation of plastic limit pressure to the unified strength theory param-
eter when K = 2.5

Fig. 9.13. Relation of plastic limit pressure to the unified strength theory param-
eter when K = 3.0

The elastic limit pressure in terms of the Tresca criterion is equal to that
of the unified strength theory with b = 0 and α = 1. The elastic limit pressure
in terms of the von Mises criterion is equal to that of the unified strength
theory with b 
 4. Therefore it can be concluded that the Huber-von Mises
and the Tresca criteria are encompassed in the unified strength theory with
regard to the elastic limit pressure. The maximum elastic limit pressure in
terms of the twin-shear yield criterion is obtained with b = 1. It is 33.4% and
15.5% higher than those obtained from the Tresca criterion and the Huber-
von Mises criterion respectively. It was also found that the higher values
obtained from the unified strength theory were insensitive to the variations
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Fig. 9.14. Relation of pp/σt and re/ri with different b and α

of the inner-to-outer-radius ratio regardless of the different end conditions.
For the plastic limit pressure, similar statements can be made.

The results of plastic limit pressures of a thick-walled cylinder under the
closed end condition in terms of different yield criteria are summarized in
Table 9.3.

The elastic limit pressure and plastic limit pressure, two important param-
eters in the design of a cylinder, have been derived using the unified strength
theory. It was found that the percentage difference of the elastic-plastic limit
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Table 9.3. Summary of elastic limit pressures for open end

Materials Elastic limit pressures Failure criterion used

1 SD material pp =
σt
1−α

(K
2(1+b)(1−α)
2+2b−αb − 1) Unified strength theory

α �= 1
2 SD material pp =

σt
1−α

(K(1−α) − 1) Unified strength theory

α �= 1 b = 0, Mohr-Coulomb

3 SD material pp =
σt
1−α

(K
4(1−α)
4−α − 1) Unified strength theory

α �= 1 b = 1, twin-shear theory

4 α = 1 materials pp =
2(1+b)σt

2+b
lnK Unified yield criterion

α = 1

5 α = 1 materials pp = σt lnK Tresca yield criterion

α = 1, b = 0

6 α = 1 materials pp =
6
5
σt lnK Unified yield criterion

b=1/2

7 α = 1 materials pp =
4
3
σt lnK Twin-shear yield criterion

α = 1, b = 1

pressures derived from different criteria could differ from one from another as
much as 33.4%. If the unified strength criterion is used in the design instead
of the Tresca or the Huber-von Mises criterion, it could lead to a substantial
saving of material.

9.6 Summary

The limit analysis of the thick-walled hollow sphere and cylinder under pres-
sure was discussed in detail in literature. The Tresca yield criterion or the
Huber-von Mises yield criterion has been applied for analysis and design pur-
poses. The solution is adopted only for one kind of material.

In the last decade the elastic limit and plastic limit of thin-walled ves-
sels and thick-walled cylinders were studied by researchers with respect to
the unified strength theory. Unified limit solutions for a thick-wall cylinder
subject to external and internal pressure are given. The unified solution is a
series of results which can be adopted for more materials. They are described
in this chapter.

The application of the unified strength theory is also extended from ideal
elasto-plastic materials to hardening material. The unified limit analysis of a
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Fig. 9.15. Relation of plastic limit pressure with the thickness of cylinder

thick-wall cylinder of linearly strengthened material is derived by Ma (2004).
It was also extended recently to brittle materials such as concrete or rock.
Based on Yu unified strength theory with a material’s strain softening prop-
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erty considered, a unified strength criterion for strain softening materials has
also been proposed to find out the bearing capacity of a thick-walled cylinder
subject to external pressure.

A unified solution for a cylinder is generalized to take into account the
strain softening material, elasto-brittle-plastic materials and fiber-reinforced
concrete. The bearing capacity analysis for a thick walled cylinder, take into
account elasto-brittle-plastic and strain softening, is presented by Xu and Yu
(2004), Chen et al. (2006a; 2006b).

9.7 Problems

Problem 9.1 Derive the elastic limit pressure equation for a spherical shell
under internal pressure in terms of the Mohr-Coulomb theory.

Problem 9.2 Derive the elastic limit pressure equation for a spherical shell
under internal pressure in terms of the twin-shear strength theory.

Problem 9.3 Explain why we would expect the Mohr-Coulomb strength
theory, the twin-shear strength theory and the unified strength theory to
coincide in the case of a spherical shell with spherical symmetry.

Problem 9.4 Derive the elastic limit pressure equation for a thick-walled
cylinder under internal pressure using the Mohr-Coulomb theory

pe =
K2 − 1

K2(1 + α)(1− α)
σt, K = rb/ra.

Problem 9.5 Derive the elastic limit pressure equation for a thick-walled
cylinder under internal pressure by using the twin-shear strength theory

pe =
K2 − 1

K2(1 + α/2)(1− α)
σt, K =

rb

ra
.

Problem 9.6 Compare the results of Problem 9.4 with those of Problem
9.5.

Problem 9.7 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the elastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the Mohr-Coulomb strength theory.

Problem 9.8 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the elastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the twin-shear strength theory.

Problem 9.9 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
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where σθ is more compressive than σr. Introduce the plastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the unified strength theory.

Problem 9.10 Compare the results obtained for Problems 9.7, 9.8 and 9.9.
Problem 9.11 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the elastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the Mohr-Coulomb strength theory.

Problem 9.12 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the plastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the twin-shear strength theory.

Problem 9.13 A uniform pressure p is applied externally to a thick-walled
cylinder of wall ratio rb/ra. In this case both the stresses are negative,
where σθ is more compressive than σr. Introduce the plastic limit exter-
nal pressure equation for a thick-walled cylinder under external pressure
using the unified strength theory.

Problem 9.14 Compare the results obtained in Problems 9.11, 9.12 and
9.13.

Problem 9.15 Explain why we have to determine the stress state condition
σ2 � σ1+ασ3

1+α or σ2 � σ1+ασ3
1+α using the unified strength theory.

Problem 9.16 How do you choose between the two equations in the unified
strength theory?

Problem 9.17 What is the result if you use the second equation of the
unified strength theory for the stress state of σ2 � σ1+ασ3

1+α ?
Problem 9.18 What is the result if you use the first equation of the unified
strength theory for the stress state of σ2 � σ1+ασ3

1+α ?
Problem 9.19 Complete discussions of the effects of pressure and temper-
ature on yielding of thick-walled spherical shells given by Johnson and
Mellor (1962), Mendelson (1968), and Chakrabarty (1987). The Tresca
yield criterion was used in these studies. Can you obtain a more complete
study on this subject using the unified yield criterion (α = 1)?

Problem 9.20 A complete discussion of the effects of pressure and tempera-
ture on yielding of thick-walled spherical shells was given by Johnson and
Mellor (1962), Mendelson (1968), and Chakrabarty (1987). The Tresca
yield criterion was used in these studies. Can you obtain a more complete
study on this subject using the unified strength theory (α �= 1)?

Problem 9.21 Complete discussions of the effects of pressure and temper-
ature on yielding of thick-walled cylinder given by Johnson and Mellor
(1962), Mendelson (1968), and Chakrabarty (1987). The Tresca yield cri-
terion was used in these studies. Can you obtain a more complete study
on this subject using the unified yield criterion (α = 1)?
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Problem 9.22 Complete discussions of the effects of pressure and temper-
ature on yielding of thick-walled cylinder given by Johnson and Mellor
(1962), Mendelson (1968), and Chakrabarty (1987). The Tresca yield cri-
terion was used in these studies. Can you obtain a more complete study
on this subject using the unified strength theory (α �= 1)?

Problem 9.23 The unified yield criterion can be used in many fields. Write
an article regarding the application of the unified yield criterion.

Problem 9.24 The unified strength theory can be used in many fields.
Write an article regarding the application of the unified strength theory.
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10

Dynamic Plastic Response of Circular Plate

10.1 Introduction

The dynamic elastic response of plates and beams has been studied thor-
oughly. On the other hand, it is complicated to derive a dynamic plastic
response for structures because of the plastic constitutive model. The first
solution to the dynamic response of a rigid and simply supported circular
plate was derived by Hopkins and Prager in 1954. Over the past fifty years
very many research efforts have been concentrated on this subject by con-
sidering various boundary, loading conditions, and plastic flow assumptions
(Florence, 1977; Jones and Oliveira, 1980; Jones, 1968; 1971; Stronge and
Yu, 1993). Membrane mode solutions for impulsively loaded circular plates
were derived by Symonds and Wierzbicki (1979). The dynamic response and
failure of fully clamped circular plates under impulsive loading was studied
by Shen and Jones (1993).

So far most of the studies are based on the Tresca yield criterion or the
maximum stress criterion. Little attention has been paid to the influence of
different yield criteria on the dynamic plastic behavior of structures. In fact
strength behavior varies from material to material. A yield criterion with a
single material parameter is not effective for materials with SD effect, such
as stainless and refractory steels of high strength, high strength aluminum
alloys, rocks and concrete materials (Casey and Sulivan, 1985; Chait, 1972;
Drucker, 1973).

The unified yield criterion (UYC), a special case of the unified strength
theory (UST) was adopted by Ma et al. (1998) to analyze the dynamic plas-
tic responses of simply supported circular plates under moderate partial uni-
formly distributed impulsive loading. The UYC unifies the yield criteria with
a single material parameter that is suitable for the non-SD materials.

Unified solutions of dynamic plastic response for the clamped circular
plate and simply supported circular plate under moderate partial uniformly
distributed impulsive loading applying the unified strength theory (UST)



206 10 Dynamic Plastic Response of Circular Plate

were reported by Wei et al. (2001) and Wang et al. (2005). The results based
on UYC, the static and dynamic results from the Tresca, the Huber-von Mises
yield criteria and the twin-shear yield criterion are special cases of the unified
solutions. A series of new solutions are also given.

Analyses of the dynamic plastic response of structures are useful for the
design of vehicles, engines and various structures sustaining an impact load.
The unified solutions to dynamic plastic load-bearing capacities, moment
fields and velocity fields of a simply supported circular plate are introduced in
this chapter. The strength difference in tension and compression and the effect
of different yield criteria are taken into account by application of the unified
strength theory. Upper bound and lower bound plastic responses of the plate
under moderate partial-uniformly distributed impulsive loading are derived.
Static and kinetic admissibility of the dynamic plastic solutions are discussed.
The unified solutions of static plastic load-bearing capacities, moment fields
and velocity fields of a simply supported circular plate can also been derived
from the dynamic solutions using the unified strength theory. The solutions
are suitable for many materials, with or without strength difference in tension
and compression, and they are able to reflect the effect of the intermediate
principal stress.

The solutions based on the Tresca, the Huber-von Mises, the Mohr-
Coulomb theory, the twin-shear strength theory, and the unified yield cri-
terion are special cases of the present unified solutions. The influence of the
unified strength theory parameter b and the tension-to-compression strength
ratio α on the dynamic and static solutions are discussed. It is shown that
the effects of unified strength theory parameter b and the strength ratio α on
the load-bearing capacity of the plate in the dynamic plastic limit state are
more significant than in the static plastic limit state.

10.2 Dynamic Equations and Boundary Conditions of
Circular Plate

For a simply supported circular plate, as shown in Fig.10.1, with radius of a,
the thickness of h and the mass per unit area of μ̃, we denote R the radial
distance from the plate center.

Fig. 10.1. Simply supported circular plate under rectangular impulsive loading
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The generalized stresses are Mr, Mθ, Qrz; M0 is the ultimate bending
moment; W is the bending deflection response. Mr and Mθ are the radial and
circumferential bending moments respectively; Qrz is the transverse shear
force. The impulsive rectangular load is assumed to have a peak value of P
with a duration of τ .

If the circular plate is made of an elastic-perfectly-plastic material, the
ultimate bending moment M0 can be derived as

M0 =
σth

2

2(1 + α)
. (10.1)

For convenience of derivation, the following dimensionless variables are
defined:

r = R/a, mθ = Mθ/M0, mr = Mr/M0, p = Pa2/M0,

q = Qrza/M0, μ = μ̃a3/M0, w = W/a.

Assume that the plate is subjected to a rectangular impulsive loading
P (t) = P (Ps � P � 2Ps, where Ps is the static plastic limit load) with the
duration of τ . The analysis can be divided into two phases, i.e., 0 � t � τ
and τ � t � T , where T is the duration of the plate response. The motion
equations of a circular plate using the dimensionless variables can be written
as

∂(rmr)/∂r − mθ − rq = 0, (10.2)

∂(rq)/∂r + rp − μrẅ = 0, (10.3)

where p is a dimensionless impulsive loading. Equations of geometry are

k̇r = −∂2ẇ/∂r2, (10.4a)

k̇θ = −(∂ẇ/∂r)/r. (10.4b)

In the first phase it satisfies

p =

{
p0, 0 � r � rp,

0, rp � r � 1,
(10.5)

where rp is the dimensionless loading radius and rp = Rp/a.
In the second phase the impact load vanishes,

p = 0. (10.6)

Fig.10.2 shows the yield loci of UST expressed with the generalized
stresses mr and mθ.
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Fig. 10.2. Yield loci of UST in generalized stresses mr-mθ space (α=1)

In the plastic limit state the moments of the plate center (r = 0) satisfy
mr = mθ = 1 (point A in Fig.10.2), the simply supported edge (r = 1)
satisfies mr = 0 (point C in Fig. 10.2). Bending moments of all the points in
the plate are located on segments AB and BC. The mathematical expression
of the yield conditions with respect to AB and BC are

mθ = aimr + bi (i = 1, 2), (10.7)

where i = 1 for AB, and i = 2 for BC. ai and bi are constants and there are
a1 = −b, b1 = 1 + b, a2 = αb/(1 + b), b2 = 1.

According to the associated flow rule,

k̇r = λ̇∂F/∂mr, k̇θ = λ̇∂F/∂mθ, (10.8)

where F is the plastic potential function, being the same as the yield function,
thus

k̇r = −aik̇θ. (10.9)

Eqs.(10.2), (10.3) and (10.7) give the moment governing equation,

∂2(rmr)/∂r2 − ai∂mr/∂r = −rp+ μrẅ. (10.10)

Governing equation of the velocity is derived by substituting Eqs.(10.4a)
and (10.14b) into Eq.(10.9),

∂2ẇ/∂r2 + ai∂ẇ/(r∂r) = 0. (10.11)
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10.2.1 First Phase of Motion (0 � T � τ )

In the first phase of motion the plate is subjected to a constant loading p0
in the inner region 0 � r � tp. Integrating Eq.(10.11) twice with respect to r
gives the velocity equations,

ẇ = ẇ1

{
c11r

1−a1 + c21 0 � r � r1

c12r
1−a2 + c22 r1 � r � 1,

(10.12)

where c1i and c2i (i=1, 2) are integration constants, r1 is the dividing radius
where the internal moments mr and mθ correspond to point B in Fig. 10.2,
ẇ1 is the velocity of the plate center which is a function of time t.

The continuity and boundary conditions of the velocity variable can be
expressed as: (1) ẇ(r = 0) = ẇ1; (2) dẇ/dr(r = r1) and dẇ (r = r1)
are continuous; (3) ẇ(r = 1) = 0. With reference to these conditions, the
integration constants can be derived,

c11 = − (1 + b − αb)r
− b2+b+αb

1+b

1

(1 + b)2 − b(1 + b+ α)r
1+b−αb
1+b

1

, c21 = 1,

c12 = −c22 = − (1 + b)2

(1 + b)2 − b(1 + b+ α)r
1+b−αb
1+b

1

.

There are two regions of the moment response (rp � r1 and rp � r1)
during the first phase of motion as shown in Fig.10.3.

Fig. 10.3. Two regions of the moment response
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The continuity and boundary conditions for the moment responses are: (4)
mr(r = 0)=1; (5) mr(r = r1) is continuous and equal to (1+b)(1+b+α); (6)
∂mr/∂r(r = r1) is continuous; (7) mr (r = rp) is continuous; (8) ∂mr/∂r(r =
rp) is continuous; (9) mr (r=1)=0.
Region 1 (rp � r1)
As shown in Fig.10.3(a), the plate is subjected to a rectangular impulsive
loading p0 within the range of rp. The moment response field can be derived
as

mr1 =
−p0 + μẅ1c21
2(3− a1)

r2 +
μẅ1c11

(3− a1)(4− 2a1)
r3−a1

+ c31r
−1+a1 + c41 (0 � r � rp),

(10.13a)

mr2 =
μẅ1c21
2(3− a1)

r2 +
μẅ1c11

(3− a1)(4− 2a1)
r3−a1

+ c32r
−1+a1 + c42 (rp � r � r1),

(10.13b)

mr3 =
μẅ1c22
2(3− a2)

r2 +
μẅ1c12

(3− a2)(4− 2a2)
r3−a2

+ c33r
−1+a2 + c43 (r1 � r � 1),

(10.13c)

where c3i and c4i (i = 1, 2, 3) are integration constants and they are derived
from the continuity and boundary conditions,

c31 = 0, c41 = 1, c32 =
p0r

3−a1
p

(1− a1)(3− a1)
, c42 = 1− p0r

2
p

2(1− a1)
,

c33 =
(

μẅ1c21
(3− a1)(a2 − 1)

− μẅ1c22
(3− a2)(a2 − 1)

)
r3−a2
1 +

μẅ1c11r
4−a1−a2
1

(4− 2a1)(a2 − 1)

− μẅ1c12r
4−2a2
1

(4− 2a2)(a2 − 1)
+

a1 − 1
a2 − 1

c32r
a1−a2
1 ,

μẅ1 =
(3− a1)(4− 2a1)

(2− a1)r21 + c11r
3−a1
1

[
− α

1 + b+ α
+

p0r
2
p

2(1− a1)
− p0r

3−a1
p r−1+a1

1

(1− a1)(3− a1)

]
,

(10.14)

where r1 satisfies
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μẅ1c22
2(3− a2)

+
μẅ1c12

(3− a2)(4− 2a2)
+ c33 + c43 = 0. (10.15)

For a given rectangular impulsive loading p0 and loading radius rp, r1 can
be calculated from Eqs.(10.15) and (10.14) in the range of (rp, 1).
Region 2(rp � r1)
With reference to Fig.10.3(b), the moment response field is expressed as

mr1 =
−p0 + μẅ1c21
2(3− a1)

r2 +
μẅ1c11

(3− a1)(4− 2a1)
r3−a1

+ c31r
−1+a1 + c41 (0 � r � r1),

(10.16a)

mr2 =
−p0 + μẅ1c22
2(3− a2)

r2 +
μẅ1c12

(3− a2)(4− 2a2)
r3−a2

+ c32r
−1+a2 + c42 (r1 � r � rp),

(10.16b)

mr3 =
μẅ1c22
2(3− a2)

r2 +
μẅ1c12

(3− a2)(4− 2a2)
r3−a2

+ c33r
−1+a2 + c43 (rp � r � 1),

(10.16c)

where c3i and c4i (i = 1, 2, 3) are integration constants. According to the
continuity and boundary conditions, the integration constants are derived as

c31 = 0, c41 = 1,

c32 =
( −p0 + μẅ1c21
(3− a1)(a2 − 1)

− −p0 + μẅ1c22
(3− a2)(a2 − 1)

)
r3−a2
1

+
μẅ1c11r

4−a1−a2
1

(4− 2a1)(a2 − 1)
− μẅ1c12r

4−2a2
1

(4− 2a2)(a2 − 1)
,

c42 =
1 + b

1 + b+ α
− c32r

−1+a2
1 − −p0 + μẅ1c22

2(3− a2)
r21 −

μẅ1c12
(3− a2)(4− 2a2)

r3−a2
1 ,

c33 =
p0r

3−a2
p

(1− a2)(3− a2)
+ c32,

c43 = c42 + c32r
−1+a2
p − p0r

2
p

2(3− a2)
− c33r

−1−a2
p ,

μẅ1 =
(2 + b)(1 + b+ α)p0r21 − 2α(3 + b)(2 + b)
(2 + b)(1 + b+ α)r21 + (1 + b+ α)c11r3+b

1

, (10.17)
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where r1 satisfies

μẅ1c22
2(3− a2)

+
μẅ1c12

(3− a2)(4− 2a2)
+ c33 + c43 = 0. (10.18)

For a given rectangular impulsive loading p0 and loading radius rp, r1
can be calculated from Eqs.(10.17) and (10.18) in the range of (0, rp). The
moment fields are then determined.

For a impulsive loading p0 satisfying the static and kinetic admissibility,
there is a critical state between the two cases. The corresponding radius is
the critical dividing radius r1p, which satisfies r1p = rp = r1. Compared with
the actual loading radius rp, if rp � r1p, the moment response fields are
calculated using the equation for Region 1, and if not, then using those for
Region 2.

Eqs.(10.15) and (10.17) show that μẅ1 is a constant during the first phase
of motion. The displacement and velocity at the end of the phase for both
regions are

w = ẅ1τ
2(c1ir1−ai + c2i)/2 (i = 1, 2), (10.19)

ẇ = ẅ1τ(c1ir1−ai + c2i) (i = 1, 2). (10.20)

Eq.(10.20) gives kinetic energy absorbed during the first phase,

ke =

2π∫
0

1∫
0

1
2
μM0aẅ2rdθdr = μM0aẅ21τ

2

⎛
⎝ r1∫
0

(c11r1−a1 + c21)2rdr

+

1∫
r1

(c12r1−a2 + c22)2rdr

⎞
⎠ = μM0aẅ21τ

2K,

(10.21)

where

K =
c211

4− 2a1
r4−2a11 +

2c11c21
3− a1

r3−a1
1 +

c221
2

r21 +
c212

4− 2a2
(1− r4−2a21 )

+
2c12c22
3− a2

(1− r3−a2
1 ) +

c222
2
(1− r21),

and ke is the kinetic energy consumed during the second phase.

10.2.2 Second Phase of Motion (τ � t � T )

The circular plate is unloaded during this phase of motion and therefore p = 0
on the whole plate. The plastic deformation continues to spread on the plate.
The velocity profile during this phase has the same form as that of the first
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phase. The velocity response can be obtained by replacing r1 in Eq.(10.12)
with r2. Similar to the first phase of motion, the moment response field can
be derived as

mr1 =
μẅ2c21
2(3− a1)

r2 +
μẅ2c11

(3− a1)(4− 2a1)
r3−a1

+ c31r
−1+a1 + c41 (0 � r � r2),

(10.22a)

mr2 =
μẅ2c22
2(3− a2)

r2 +
μẅ2c12

(3− a2)(4− 2a2)
r3−a2

+ c32r
−1+a2 + c42 (r2 � r � 1).

(10.22b)

The boundary and continuity conditions can be put as mr(r = 0) = 1;
mr (r = r2) is continuous and equals (1+b)(1+ b+α); mr (r = 1) = 0. With
reference to these conditions, the integration constants are calculated as

c31 = 0, c41 = 1,

c32 =
(

μẅ2c21
(3− a1)(a2 − 1)

− μẅ2c22
(3− a2)(a2 − 1)

)
r3−a2
2

+
μẅ2c11r

4−a1−a2
2

(4− 2a1)(a2 − 1)
− μẅ2c12r

4−2a2
2

(4− 2a2)(a2 − 1)
,

c42 =
1 + b

1 + b+ α
− c32r

−1+a2
2 − μẅ2c22

2(3− a2)
r22 −

μẅ2c12
(3− a2)(4− 2a2)

r3−a2
2

μẅ2 =
−2α(3 + b)(2 + b)

(2 + b)(1 + b+ α)r22 + (1 + b+ α)c11r3+b
2

, (10.23)

where r2 satisfies

μẅ2c22
2(3− a2)

+
μẅ2c12

(3− a2)(4− 2a2)
+ c32 + c42 = 0.

Eq.(10.23) implies that μẅ2 remains constant during the second phase of
motion.

Since μ and ẅ2 are constants, the velocity and displacement responses at
the plate center with the assumption of ẅ2 = c1 can be written as

ẇ2 =

t∫
τ

c1dt = c1(t − τ) + c2;w2 =

t∫
τ

ẇ2dt =
1
2
c1(t − τ)2 + c2(t − τ) + c3.

(10.24)
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According to the velocity and displacement conditions at t = τ , the inte-
gration constants are obtained as c2 = ẇ1, c3 = w1. Therefore,

w2 =
1
2
ẅ2(t − τ)2 + ẇ1(t − τ) + w1. (10.25)

Since ẅ1 is also a constant with reference to Eq.(10.17), the velocity and
displacement responses at the plate center during the first phase with the

assumption of ẅ1 = c4 are ẇ1 =
t∫
0

c4dt = c4t + c5, w1 = 1
2c4t

2 + c5t + c6,

respectively.
According to the initial conditions, i.e., ẇ1=0 and w1= 0 when t=0, the

integration constants are obtained as c5 = c6 = 0. There are ẇ1 = ẅ1t,
w1 = 1

2 ẅ1t
2. The displacement response at the plate center is derived by

substituting ẇ1 = ẅ1τ , w1 = 1
2 ẅ1τ

2 into Eq.(10.25) at t = τ ,

w2 =
1
2
ẅ2(t − τ)2 +

1
2
ẅ1τ(2t − τ), (10.26)

and the velocity response is

ẇ2 = ẅ2(t − τ) + ẅ1τ, (10.27)

where ẅ1 and ẅ2 are constants determined by Eqs.(10.17) and (10.23) re-
spectively.

Denoting the duration of response T , and T = ητ , there is ẇ2 = 0 at
t = T . Eq.(10.27) gives

η = 1− ẅ1
ẅ2

, (10.28)

where η is the response time factor. The transverse displacement is obtained
from Eqs.(10.25) and (10.12) by replacing r1 with r2,

wf = −1
2
ẅ2τ

2η(η − 1)2(c1ir1−ai + c2i) (i = 1, 2). (10.29)

10.3 Static and Kinetic Admissibility

If the impulsive time is sufficiently long, and the acceleration ẅ1 at the plate
center during the first phase is equal to 0, the dynamic solutions degenerate
to static plastic limit solutions. The static limit loadings are derived from
Eqs.(10.14) and (10.17) with reference to ẅ1 = 0,
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ps =
2α(1 + b)(3 + b)

(1 + b+ α)
[
(3 + b)− 2

(
rp

rs

)1+b
]

r2p

(10.30)

and

ps =
2α(3 + b)

(1 + b+ α) r2s
, (10.31)

where ps is the dimensionless static limit load, rs is the dividing radius at
which the moments mr and mθ correspond to point B in Fig.10.2. rs is
calculated from Eq.(10.15) or (10.18) with reference to ẅ1 = 0 for a static
case. There is a critical state between the two cases with the dividing radius
rsp satisfying rsp = rp = rs, if rp � rsp, rs and ps are calculated from
Eqs.(10.15) and (10.30); otherwise, from Eqs.(10.18) and (10.31). The critical
radius can be derived from Eq.(10.30) or (10.31) by substituting ẅ1 = 0 and
rsp = rp = rs into Eq.(10.15) or (10.18),

rsp =
(

2α
(2 + b)α − (1 + b)

) 1+b
αb−1−b

. (10.32)

A circular plate can sustain a short duration pressure that well exceeds
the static plastic limit loading, but it is necessary to demonstrate that the
foregoing theoretical solutions do not violate the yield condition and are
therefore statically admissible. According to the yield conditions shown in
Fig.10.2, the radial moment field is a decreasing function from point A to
point B, and then to C. In order to avoid a yield violation at r = 0 and r = 1
in the bending moment distribution, at r = 0 there should be,

∂(mr)/∂r � 0, ∂2(mr)/∂r2 � 0, (10.33)

and at r = 1,

∂(mr)/∂r � 0, ∂2(mr)/∂r2 � 0. (10.34)

For the first phase of motion, Eq.(10.33) is satisfied automatically at the
plate center. Thus we need to check only if ∂2mr/∂r2 � 0 at r = 0. Differenti-
ating Eq.(10.13a) or Eq.(10.16a) twice with respect to r, the static admissible
dynamic loading at r = 0 should satisfy

−p0 + μẅ1 � 0, (10.35)

which gives the maximum dynamic impulsive loading pd1 with reference to
Eqs.(10.14) and (10.15) or Eqs.(10.17) and (10.18).
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Since ∂2mr/∂r2 � 0 at r = 1 is satisfied automatically, the following
equation is derived according to Eq.(10.13c) or Eq.(10.16c) with reference to
∂mr/∂r at r = 1

μẅ1c22
(3− a2)

+
μẅ1c12
(4− 2a2)

+ (−1 + a2)c33 = 0. (10.36)

The maximum dynamic impulsive loading pd2 can be calculated from
Eqs.(10.14) and (10.15) or Eqs.(10.17) and (10.18) with reference to Eq.(10.36).

During the second phase of motion mr is independent of p0. Thus the
static admissible loading should satisfy the inequality of

ps � p0 � pd = min(pd1 , pd2), (10.37)

where pd is the maximum statically admissible impulsive loading.
Given β = p0/ps, βd = pd/ps, Eq.(10.37) can be rewritten as

1 � β � βd, (10.38)

where β is defined as the statically admissible loading factor and βd is the
maximum statically admissible loading factor.

The response acceleration during both the first phase of motion and the
second one is independent of time. The displacement, velocity and accel-
eration are continuous during the entire response time. Thus the dynamic
solutions are kinetically admissible. The aforementioned theoretical analysis
is statically admissible under the condition of 1 � β � βd. Therefore the
above solutions are the exact solutions throughout the entire response for a
rigid-perfectly-plastic circular plate.

10.4 Unified Solution of Dynamic Plastic Response of
Circular Plate

Considering the special case of uniformly distributed impulsive loading for
the plate, i.e., rp = 1, the static solutions can be derived from the dynamic
solutions. The relationship of the static plastic limit loading ps to the unified
strength theory parameters b and α is shown in Fig.10.4.

For a given value of α, the limit loading reaches the minimum value when
b = 0 and maximum value when b = 1. The relationship of static plastic limit
moment field to parameters α and b is shown in Fig.10.5.

The relationship of dynamic plastic limit loading to parameters α and b
is shown in Fig.10.6.

Similarly, the dynamic plastic limit loading reaches the minimum value
when b = 0 and maximum value when b = 1 for a given value of α. For a
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Fig. 10.4. Relations of static plastic limit loading ps to unified strength theory
parameters b and α

Fig. 10.5. Moment fields of static plastic limit

given value of b the limit loading increases with the increase of α (except for
b = 0). Figs.10.4 and 10.6 demonstrate that the effect of the unified strength
theory parameter b on the dynamic limit loading (70% increase from b = 0
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Fig. 10.6. Relationship of dynamic plastic limit loading pd to unified strength
theory parameters b and α

to b = 1 when α=1) is more significant than that on the static limit loading
(35% increase from b = 0 to b = 1 when α=1).

Figs.10.7 and 10.8 show the variation of dynamic plastic limit moment
fields versus parameters α and b during the first and second phases of motion
respectively.

The plastic moment field during the first phase of motion is a function of
the impulsive loading. On the other hand, it is independent of the impulsive
loading during the second phase of motion. It is shown that the effect of
the variation of unified strength theory parameter b on the circumferential
bending moment is higher than that on the radial bending moment. The
parameter α has a significant influence on both circumferential and radial
bending moments.

Figs.10.9 and 10.10 show the displacement and velocity responses at the
plate center when subjected to dynamic limit loading with varying α and b
respectively. It is seen that α affects both displacement and velocity responses.
For a given value of α, the displacement and velocity responses at the plate
center increase with increasing unified strength theory parameter b.

Fig.10.11 shows the permanently deformed displacements of the circular
plate subjected to dynamic limit loading. From Fig.10.11, both α and b have
apparent influences on the plastic deformed displacement. For a given value of
α, the plastic displacement increases with increasing unified strength theory
parameter b and for a given value of b, the permanent displacement decreases
with decreasing α.

Fig.10.12 shows the permanent displacements versus the parameter b for
different α with the dynamic load p0 = 12. It is seen that the variation of
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Fig. 10.7. Dynamic plastic limit moment fields during the first phase of motion

plastic deformed displacement is independent of α. The maximum permanent
displacement at the plate center is obtained with b = 0 and the minimum
one with b = 1.

The results of the dynamic limit loading, velocity, displacement time his-
tories and moment responses with α=1 are exactly the same as those derived
by Ma et al. (1998) for non-SD materials.

When α=1 the UST degenerates to UYC. The UYC becomes the Tresca
yield criterion when b = 0 and the twin-shear yield criterion (Yu, 1961; 1983)
when b = 1. The Huber-von Mises yield criterion can be approximated with
b = 0.5. As seen from Figs.10.4, 10.6 and 10.12, the maximum displacement
response and minimum static and dynamic plastic limit loadings with respect
to the Tresca yield criterion are the lower bound responses. The minimum
displacement response and the maximum static and dynamic plastic limit
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Fig. 10.8. Dynamic plastic limit moment fields during the second phase of motion

Fig. 10.9. Displacement responses at the center of plate

Fig. 10.10. Velocity responses at the center of plate

loadings with respect to the twin shear stress criterion are the upper bound
responses.
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Fig. 10.11. Permanently deformed displacements of plate

10.5 Special Cases of the Unified Solutions

The solutions with respect to the Tresca criterion and the twin shear stress
criterion (Yu, 1961; 1983) can be obtained from the current unified solution
with a specific value of unified strength theory parameter b. Solutions with
the Huber-von Mises criterion fall between those from the Tresca criterion
and the twin shear stress criterion and can be approximated by the solution
by using UYC with b = 0.5. For a given impulsive loading radius rp and the
pulse force p0 satisfying static admissibility, r1 and r2 can be calculated from
Eq.(10.15) or Eq.(10.18) for the first phase of motion, and from Eq.(10.24)
for the second phase of motion. Substituting r1 and r2 into the equations
for the integration constants and response quantities, moment, velocity, then
the displacement response fields of the plate are derived for the two motion
phases.
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Fig. 10.12. Permanently deformed displacements of plate

Figs.10.13 and 10.14 show the moment fields for the two phases of motion
for a plate subjected to a uniformly impulsive loading (rp = 1) with respective
load factors α = 1 and α = αd regarding three different yield criteria.

Fig. 10.13. Moment fields during the first phase of motion (α = 1)



10.5 Special Cases of the Unified Solutions 223

Fig. 10.14. Moment fields during the first phase of motion (α = αd)

Fig.10.15 shows the moment fields during the second phase of motion
which is independent of the loading radius rp and loading factor α.

Fig. 10.15. Moment fields during the second phase of motion
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Fig. 10.16. Permanently deformed transverse displacements (rp = 1, α = αd)

Figs.10.16 to 10.18 illustrate the permanently deformed transverse dis-
placements, displacement and velocity responses of the plate center with re-
spect to three criteria when rp = 1, α = αd.

Fig. 10.17. Displacement responses at the plate center (rp = 1, α = αd)

Figs.10.19 to 10.21 show the moment and velocity profiles for the first
phase of motion and the permanently deformed transverse displacements for
a plate subjected to a concentrated impulsive load with rp = 0.01. The mo-
ment fields are singular at the plate center because the shear force at the
center is infinite. The statically admissible impulsive load pd is close to the
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Fig. 10.18. Velocity responses at the plate center (rp = 1, α = αd)

static plastic limit load ps. Thus we need to apply the assumption shown
in Fig.10.13 (b) for a fully rigid-plastic circular plate subjected to concen-
trated load. Although the moment and velocity fields are quite different with
different yield criteria, the static plastic limit load PT = πr2pP 2a for the con-
centrated load is equal to PT = 2πM0 regardless of the different parameter b
(Ma et al., 1998).

Fig. 10.19. Moment profiles of the first phase of motion (α = αd, rp = 0.01)

The profile of deformed transverse displacement converges to the profile
for the case of fully uniformly distributed loading. During the second phase of
motion it is independent of loading radius rp. Unified yield criterion, except
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Fig. 10.20. Velocity profiles of the first phase of motion (α = αd, rp = 0.01)

Fig. 10.21. Permanently deformed transverse displacement (α = αd, rp = 0.01)

for the special case of b = 0 or the Tresca criterion, leads to smooth velocity
distribution at the plate center. The velocity profile varies with the differ-
ent loading radius rp. The Tresca criterion, as a special case of the unified
yield criterion, leads to linear velocity profiles. The velocity fields experience
singularity at the plate center regardless of rp.

The maximum statically admissible loading factor αd versus loading ra-
dius rp is plotted in Fig.10.22. It shows the two loading action regions re-
sponding to the two statically admissible shown in Figs.10.11(a) and 10.11(b)
with respect to the three yield criteria. The relationship of the response de-
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laying time factor η (Fig.10.23) has an outline very close to that in Fig.10.22.
However, it completely overlaps those from the Tresca criterion. It leads to
αd = 2 and η = 2 for the case of fully uniformly distributed impulsive load-
ing when b = 0, which is the same as the results with respect to the Tresca
criterion reported by Hopkins and Prager (1954).

Fig. 10.22. Curves of αd to rp

Fig.10.24 shows that the effect of different yield criteria on the dynamic
solution is higher than that in the static plastic limit state.

Fig. 10.23. η versus rp
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Fig.10.25 shows that the Tresca criterion gives the maximum permanent
transverse displacement, which has been proved greater than the reported
experimental results (Jones, 1968).

Fig. 10.24. pd and ps versus unified strength theory parameters b (rp = 1)

Fig. 10.25. Permanently deformed transverse displacement (rp = 1, p0 = 12)
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10.6 Summary

The unified strength theory is applied to derive the dynamic responses for
a simply supported circular plate subjected to moderate partial uniformly
distributed impulsive loading. For dynamic plastic limit loadings, the moment
and velocity fields of the plate are obtained based on the kinematical and
static admissibility. A series of limit solutions based on the single-shear failure
criteria (Tresca criterion and Mohr-Coulomb criterion), the twin-shear yield
criterion (Yu, 1961; 1983), the Mohr-Coulomb strength theory and the twin-
shear strength theory (Yu et al., 1985) are encompassed in the current unified
solutions with specific parameters α and b.

(1) Since the current solutions satisfy both static admissibility and kine-
matical admissibility, they are the exact solutions of the response for a rigid-
perfectly-plastic circular plate.

(2) Parameter and the unified strength theory parameter b have great
influence on dynamic moment fields, displacement, and velocity responses.
The influences on dynamic limit loading are higher than those on static limit
loading. In particular when α = 1, the percentage difference for static limit
loadings with b = 0 and b = 1 is 14%, while it is 70% for dynamic limit
loadings.

(3) The unified solutions are suitable for both SD and non-SD materials.
When α = 1, the unified strength theory degenerates to the unified yield cri-
terion (UYC). The solutions with regard to UYC reported by Ma et al.(1999)
are the special cases of the current unified solutions with α = 1.

(4) Both the Tresca criterion and the Mohr-Coulomb strength theory ig-
nore the effect of the intermediate principal stress, and thus the corresponding
results deviate from experimental data. The strength theory with b > 0 may
reflect the strength behavior of a broad range of materials and the load-
bearing capacity more properly. It can be applied for proper reduction in the
weight of structures, which may be of great significance for the optimization
of aerospace structure.
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11

Limit Angular Speed of Rotating Disc and
Cylinder

11.1 Introduction

A rotating disc and cylinder, as shown in Fig.11.1, are often used as vane
wheel and rotating axle of a propeller in many branches of engineering. When
disc and cylinder rotate at an angular speed ω about their central axis, the
stress and displacement caused by the centrifugal force are axisymmetric, i.e.,
σr, σθ and radial displacement ur are related to radius r only. The rotating
disc is in the generalized plane stress state, and rotating cylinder is in the
generalized plane strain state.

Fig. 11.1. Rotating disc and cylinder

Plastic limit analyses of disc and cylinder have been made by many re-
searchers (Heyman, 1958; Save and Massonnet, 1972; Chakrabarty, 1987).
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The Tresca yield criterion, which is a single-shear yield criterion, is usually
used for elasto-plastic analysis of a rotating disc. It is understood that the
analytic solution for the elasto-plastic field of the disc cannot be derived from
the Huber-von Mises criterion because of the nonlinearity in its mathematical
expression. The Tresca yield criterion, however, ignores the effect of the inter-
mediate principal stresses. The unified yield criterion has also been applied
to the plastic analysis of rotating disc and cylinder by Ma et al. (1995; 2001).
A series of plastic limit speeds of rotating disc and cylinder were derived.

A rotating disc is a kind of rotational symmetrical plate that is loaded with
inplane body force due to angular speed. The stress distributions and plastic
limit angular velocity in terms of the Tresca criterion were reported by Lenard
and Haddow (1972), Güven (1992; 1994), Gamer (1983), and Chakrabarty
(1987).

Plastic limit analysis of rotating solid or annular discs with variable thick-
ness based on Yu unified yield criterion (UYC) will be presented in this chap-
ter. Stress distributions of the discs in plastic limit state corresponding to dif-
ferent yield curves are derived. Upper and lower bounds of the plastic limit
solutions are derived by selecting proper values of parameter b in the unified
yield criterion. The limit angular speed as well as the stress distributions
with respect to three criteria, namely the Tresca criterion, the Huber-von
Mises criterion (closed form solution), and the twin-shear yield criterion are
derived and compared. The influences of different yield criteria as well as the
thickness of the plastic limit solution of a rotating disc will be demonstrated
and discussed.

11.2 Elastic Limit of Discs

When considering a circular disc with a uniform thickness rotating with a
gradually increasing angular speed around its central axis, the thickness of
the disc is assumed small enough for the disc to be considered in plane stress
state. The stress state of each point satisfies σ1 = σθ, σ2 = σr, σ3 = σz = 0.
The radial equilibrium of an element of the rotating disc has the form of
(Timoshenko and Goodier, 1951)

dσr

dr
+

σr − σθ

r
+ ρω2r = 0, (11.1)

where ω is the angular speed and ρ is the density of the material of the disc.
Denoting the radial displacement with u, the relevant stress-strain equa-

tions can be written as

εr =
du
dr

=
1
E
(σr − νσθ), εθ =

u

r
=

1
E
(σθ − νσr). (11.2)

With reference to Eq.(11.1), Eq.(11.2) leads to the compatibility equation
of
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d
dr
(σr + σθ) = −(1 + ν)ρω2r, (11.3)

which is readily integrated to give (σr + σθ). The equilibrium equation then
furnishes

σr = A − 3 + ν

8
ρω2r2, (11.4a)

σθ = A − 1 + 3ν
8

ρω2r2, (11.4b)

where A is a parameter depending on ω only. The boundary condition σr = 0
at r = a gives

A = (3 + ν)ρω2a2/8. (11.5)

The stress distribution for the solid disc becomes

σr =
1
8
ρω2(3 + ν)(a2 − r2), (11.6a)

σθ =
1
8
ρω2[(3 + ν)a2 − (1 + 3ν)r2]. (11.6b)

We can see from the above equations that both the stresses are tensile
and σθ � σr. σθ = σ holds only at r = 0 where the stress has the largest
magnitude. Yielding will therefore start at the center of the disc where σr =
σθ = σy. The yield loci of the unified yield criterion in plane stress state
are shown in Fig.11.2. From Fig.11.2, the Tresca criterion, the Huber-von
Mises criterion, the twin-shear yield criterion and the unified yield criterion
intersect at point A. Thus the elastic limit rotating speed ωe based on these
criteria is the same as

ωe =
1
2

√
8σy

(3 + ν)ρ
. (11.7)

11.3 Elasto-plastic Analysis of Discs

If the speed of rotation is further increased, the disc will consist of an inner
plastic zone surrounded by an outer elastic zone as shown in Fig.11.3. Within
the plastic region, which is assumed to extend to a radius d, the stresses satisfy
the equilibrium equation of Eq.(11.1) and the unified yield criterion, which
can be expressed as follows (see Chapter 3):
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σ1 − αb

1 + b
σ2 = σt, σ2 − αb

1 + b
σ1 = σt,

1
1 + b

σ1 +
b

1 + b
σ2 = σt,

1
1 + b

σ2 +
b

1 + b
σ1 = σt,

σ1 − α

1 + b
σ2 = −σt, σ2 − α

1 + b
σ1 = −σt,

1
1 + b

σ1 − ασ2 = −σt,
1

1 + b
σ2 − ασ1 = −σt,

− α

1 + b
(bσ1 + σ2) = σt, − α

1 + b
(bσ2 + σ1) = σt,

b

1 + b
σ1 − ασ2 = σt,

b

1 + b
σ2 − ασ1 = σt.

Fig. 11.2. Yield loci of the unified yield criterion in plane stress state

When the rotating disc is in an elasto-plastic state, stresses satisfy σθ �
σr � σz = 0, the stress state in the plastic region corresponds to either the
side of AB or BC in Fig.11.2, and there are two possible cases of plasticity:

a) when the radius of the plastic zone is small as shown in Fig.11.3, the
stress state of the entire plastic zone lies on the side AB (in Fig.11.2), and
stresses in the elastic region satisfy Eq.(11.1);

b) when the radius of the plastic zone is larger than a specific value of r0,
as shown in Fig.11.4, the stress state of the plastic zone lies on the sides AB
and BC, where G corresponds to point B in Fig.11.2. Stresses in the elastic
region also satisfy equilibrium Eq.(11.1) while, in the plastic zone, the yield
criterion is satisfied.
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In the special case that point E and point G intersect, the first case and
the second case are the same. That is the demarcating state of the two cases.

Fig. 11.3. Radius of plastic zone is smaller

Fig. 11.4. Radius of plastic zone is bigger

Equations for yield conditions of the segments AB, BC are

AB :
1

1 + b
σr +

1
1 + b

σθ = σy, (11.8a)

BC : σθ − 1
1 + b

σr = σy. (11.8b)

Boundary and continuity conditions corresponding to the first case are:
1. σr |r=a= 0 at point D;
2. σr |r=d and σθ |r=d are continuous at point E;
3. σr |r=0 is a definite value at point F .
Boundary and continuity conditions corresponding to the second case are:
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4. σr |r=a= 0 at point D;
5. σr |r=d and σθ |r=d are continuous at point E;
6. σr |r=0 is a definite value at point F ;
7. σr |r=r0 and σθ |r=r0 are continuous at point G;
8. σθ |r=0= 2σr |r=0 at point G.

11.4 Elasto-plastic Stress Field of Rotating Disc

For the first case shown in Fig.11.3, with reference to the plastic region from
Eq.(11.1), the limit condition of Eq.(11.8) and boundary conditions 1∼3, the
stresses in the elastic region are derived as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σr = σy − ρω2

3 + b
r2,

σθ = σy +
bρω2

3 + b
r2,

when 0 � r � d, (11.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σr = σy − ρω3(C1d2 + C2
d4

r2
+ C3r

2),

σθ = σy − ρω2(C1d2 − C2
d4

r2
+ C4r

2),

when d � r � a, (11.10)

where

C1 =
1− b

6 + 2b
− 1 + ν

4
, C2 =

1 + b

6 + 2b
− 1− ν

8
,

C3 =
3 + ν

8
, C4 =

1 + 3ν
8

.

For specific parameter b and Poisson’s ratio ν, C1, C2, C3 and C4 can
be determined. The stresses in the elastic region are then derived from
Eq.(11.10), and the rotating speed ω in Eqs.(11.9) and (11.10) satisfies

pa2

ω2σy
= C2

(
d

a

)4
+ C1

(
d

a

)2
+ C3. (11.11)

Similarly for the second case shown in Fig.11.4, with reference to equi-
librium equation (Eq.(11.1)), the limit condition in Eqs.(11.8a) and (11.8b),
and boundary conditions 4∼8, the stresses are deduced from
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⎪⎪⎪⎪⎪⎪⎩

σr

σy
= 1− 1

2 + b

(
r

r0

)2
,

σθ

σy
= 1 +

b

2 + b

(
r

r0

)2
,

when 0 � r � r0, (11.12)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σr

σy
= C5 − C6

(r0
r

) 1
1+b − C7

(
r

r0

)2
,

σθ

σy
= C5 − bC6

1 + b

(r0
r

) 1
1+b − bC7

1 + b

(
r

r0

)2
,

when r0 � r � d, (11.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σr

σy
= C5 − C8

(
r
r0

)2
− C9

(
r0
d

) 1
1+b + C12

(
d
r0

)2
− C10

(
d
r

)2 (
r0
d

) 1
1+b + C11

(
d
r0

)2 (
d
r

)2
,

σθ

σy
= C5 − C13

(
r
r0

)2
− C9

(
r0
d

) 1
1+b + C12

(
d
r0

)2
+ C10

(
d
r

)2 (
r0
d

) 1
1+b − C11

(
d
r0

)2 (
d
r

)2
,

when d � r � a.

(11.14)
When d � r � a, the limit rotating speed ω can be obtained as

ω =

√
3 + b

2 + b

σy

ρ

1
r0

, (11.15)

where r0 satisfies

f(r0) =
3 + b

2 + b
C11

(
d

a

)4
− C14

(r0
d

) 1
1+b

(
d

a

)2 (r0
a

)2
+ C15

(r0
a

)2

+
2 + b

3 + b
C1

(
d

a

)2
− C16

(r0
d

) 1
1+b

(r0
a

)2
− C3,

(11.16)

and

C5 = 1 + b, C6 =
2b(1 + b)
3 + 2b

, C7 =
(1 + b)(3 + b)
(3 + 2b)(2 + b)

, C8 =
3 + ν

8
2 + b

3 + b
,

C9 =
b(1 + 2b)
3 + 2b

, C10 =
b

3 + 2b
, C11 =

(
1− ν

8
− 1
6 + 4b

)
2 + b

3 + b
,

C12 =
(
1 + ν

4
− 1 + 2b
6 + 4b

)
3 + b

2 + b
, C15 =

(1 + b)(2 + b)
3 + b

, C16 =
b(1 + 2b)(2 + b)
3(3 + 2b)(3 + b)

.
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11.5 Solution Procedure and Results

The solution of the stress field contains the following two steps. Firstly the
radius of plastic zone d0 for the special state that demarcates the two different
cases is determined. In this state points E and G overlap and d0 = d = r0.
Assuming f0(d0) = f(r) |r=r0 , d0 satisfies

f0(d0) =
(
1− ν

8
− 1 + b

6 + 2b

) (
d0
a

)4
+

[
1 + ν

4
+
3(1 + b)
2(3 + b)

](
d0
a

)2
−3 + ν

8
= 0.

(11.17)
In the second step, for the case that d � d0, the limit rotating speed ω

and σr, σθ can be deduced from Eqs.(11.9) and (11.10). For d0 � d � a,
r0 can be determined from Eq.(11.14). Substituting r0 into Eqs.(11.8) and
(11.9), σr, σθ, and the elasto-plastic limit rotating speed ω can be derived
from Eqs.(11.12) and (11.13).

The procedure for solving the limit rotating speed and the stress fields is
illustrated in Fig.11.5.

The deduction process can converge quickly to carry out the elasto-plastic
limit rotating speed and centrifugal stress field. Figs.11.6 to 11.9 show the
stress field of different radii of the plastic zone. From these figures the results
with b = 0 conform to that based on the Tresca yield criterion. The result
with b = 0.5 approximates to the results in terms of the von Mises yield
criterion. And the result with b = 1 is the same as that obtained from the
twin-shear yield criterion.

Fig.11.10 shows the relation of the angular speed to the plastic zone ra-
dius. Fig.11.11 demonstrates the relation of the plastic limit angular speed
ωp of circular disc to the parameter b. In the elasto-plastic state, the stress
distribution over the disc depends on the unified yield criterion parameter b.
When b = 0 (Tresca criterion), the derived stress is the smallest, and when
b = 1 (corresponding to the twin-shear stress yield criterion), the stress is
the largest. σθ is consistently equal to σy in the plastic zone of the derived
elasto-plastic stress field when b = 0. When b �= 1, σθ in the plastic part
of elasto-plastic stress field derived from the unified yield criterion and the
Huber-von Mises criterion is bigger than σy. The larger the plastic zone, the
stronger the effect of the parameter b on the stress fields.

From Figs.11.10 and 11.11, a series of plastic solutions can be obtained
with the unified yield criterion. They can be adopted for all metallic non-SD
materials. The solution based on the unified yield criterion with b = 0 is
the same as the result from the Tresca criterion (Save and Massonnet, 1972;
1997; Chakrabarty, 1987).

The plastic solutions of rotating disc in terms of the twin-shear yield
criterion were reported by Li (1988), Huang and Zeng (1989). It is also a
special case for the current unified solution.
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Fig. 11.5. Solution procedure of elasto-plastic analysis of circular disc

11.6 Unified Solution of Plastic Limit Analysis of
Rotating Cylinder

Elastic stresses of a rotating cylinder can be written as
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Fig. 11.6. Stress fields under elastic limit state d = 0

Fig. 11.7. Stress field for plastic zone with d = 0.5a

Fig. 11.8. Stress fields for plastic zone with d = 0.75a
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Fig. 11.9. Stress fields for plastic zone with d = a

Fig. 11.10. Relation of angular speed to the radius of plastic zone

⎧⎪⎨
⎪⎩

σr = σθ =
1
2
ρω2(a2 − r2),

σz =
1
2
ρω2(

1
2
a2 − r2).

(11.18)

From Eq.(11.18), σ1 = σ2 = σr = σθ, σ3 = σz. The unified yield criterion
is independent of the parameter b and the yield condition has the form of

σθ − σz = σy. (11.19)

Substituting Eq.(11.19) into Eq.(11.18), we obtain

ωp = ωe =
2
a

√
σy

ρ
. (11.20)

Eq.(11.20) implies that when the elastic limit rotating speed is equal to the
plastic limit rotating speed for a circular cylinder, each point in the cylinder
yields simultaneously. The limit velocities in view of the Tresca criterion, the
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Fig. 11.11. Plastic limit angular speed ωp versus the unified strength theory pa-
rameter b

Huber-von Mises criterion and the twin shear stress yield criterion are the
same.

Substituting ωe into Eq.(11.18), the similar centrifugal stress field is de-
rived,

⎧⎪⎪⎨
⎪⎪⎩

σr = σθ = 2σy

(
1− r2

a2

)
,

σz = 2σy

(
1
2
− r2

a2

)
.

(11.21)

11.7 Limit Analysis of a Solid Disc with Variable
Thickness

For convenient formulation, dimensionless variables, r = R/a, σr = σ̃r/σ0,
σθ = σ̃θ/σ0 and Ω2 = ρω2a2

/
σ0 are defined, where a is the radius of a

rotating disc; R is radius variable in a range between 0 and a; σ̃r, σ̃θ, σ0
are the radial, circumferential and yield stresses respectively; ρ is the mass
density; ω is the plastic limit angular speed of the rotating disc. The two
dimensionless principal stresses σr and σθ approximately satisfy the plane
stress condition when the ratio of the disc diameter to the disc thickness is
very high.

The equilibrium equation of a circular rotating disc with variable thickness
is

d(hrσr)/dr − hσθ = −hΩ2r2. (11.22)

For a solid rotating disc, radial stress σr at the centre (r = 0) is equal
to 1, which corresponds to the yield point A on the yield curves as shown
in Fig.11.2; and σr = 0 at the outer edge (r = 1) corresponds to the yield
point C on the yield curve. Stresses at any other points on the disc lie on the
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yield lines AB and BC according to the normality requirement of plasticity
(Chakrabarty, 1987). The unified yield criterion can be expressed in terms of
σr and σθ as

σθ = aiσr + bi (i = 1, ..., 12), (11.23)

where ai and bi are constants corresponding to the twelve line segments of
the yield loci in Fig.11.2.

If the two yield constants of line AB are denoted as a1, b1, there are
a1 = −b and b1 = 1+ b. Similarly, if the constants of line BC are denoted as
a2 and b2, there are a2 = b/(1+b) and b2 = 1. The radial stress corresponding
to the yield pointB is dependent on the parameter b, and it has the expression
of d1 = (1 + b)/(2 + b).

Substituting Eq.(11.23) into Eq.(11.22) and then integrating Eq.(11.22),
σr on the two lines can be derived,

σr = e− ∫
fi(r)dr

[∫
e
∫

fi(r)drgi(r)dr + ci

]
(i = 1, ..., 12), (11.24a)

where

fi(r) =
(hr)′

hr
− ai

r
, gi(r) =

bi − Ω2r2

r
(i = 1, 2), (11.24b)

and ′ denotes differentiation with respect to r. The integration constants
ci (i = 1, 2) in Eq.(11.24) can be determined by continuous and boundary
conditions.

If the thickness of the disc is expressed as

h =
∞∑

j=1

hjr
j−1, (11.25)

the radial stress can then be derived by substituting Eqs.(11.24b) and (11.25)
into Eq.(11.24a),

σr = h−1

⎡
⎣bi

∞∑
j=1

hj
rj−1

j − ai
− Ω2

∞∑
j=1

hj
rj+1

j + 2− ai

⎤
⎦+ cir

−1+aih−1 (i = 1, 2),

(11.26)
Eq.(11.26) indicates that the radial stress σr covers two regions with re-

spect to the two yield lines AB and BC. Assuming that r0 is the radius of
a ring where the stresses correspond to the point B in Fig.11.2, the continu-
ity and boundary conditions can be expressed as: (1) σr = 1 at r = 0; (2)
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σr = d1 at r = r0; (3) σr = 0 at r = 1. Applying these conditions, the two
integration constants c1 and c2 are obtained

c1 = 0, c2 = −
⎡
⎣b2

∞∑
j=1

hj

j − a2
− Ω2

∞∑
j=1

hj

j + 2− a2

⎤
⎦ , (11.27)

and the plastic limit angular speed Ω is derived

Ω2 =
b1

∞∑
j=1

hj

j−a1
rj−1
0 − d1

∞∑
j=1

hjr
j−1
0

∞∑
j=1

hj

j+2−a1
rj+1
0

, (11.28)

where the radius r0 is the demarcating radius that divides the disc into two
regions. r0 has the expression of

d1

∞∑
j=1

hjr
j−1
0 =−

⎡
⎣b2

∞∑
j=1

hj

j − a2
− Ω2

∞∑
j=1

hj

j + 2− a2

⎤
⎦ r−1+a2

0

+

⎡
⎣b2

∞∑
j=1

hjr
j−1
0

j − a2
− Ω2

∞∑
j=1

hjr
j+1
0

j + 2− a2

⎤
⎦ .

(11.29)

For a specific formulation of thickness h(r), r0 in Eq.(11.29) can be solved
by half interval search method in the interval of (0, 1). Substituting the
calculated r0 into Eqs.(11.27), (11.28) and (11.26), the plastic limit angular
speed as well as the stress distribution is determined.

It should be mentioned that the dimensionless radial stress at any point of
the disc cannot exceed 1 based on the assumption of σθ � σr (Chakrabarty,
1987) or the stability of the rotating disc. The derived limit stresses in the
disc is subjected to examination to see that the yield condition of Fig.11.2
is satisfied. In some cases the radial stress calculated from Eq.(11.26) may
violate the yield condition in the central area of the disc with the dimen-
sionless radial stress exceeding the maximum value 1 (σr > 1) (Fig.11.12).
To avoid the violation and ensure the stability of the rotating disc, stress
redistribution to release the overfloated stress must be performed. In the re-
gion where the stress state violates the yield condition, there is ∂σr/∂r at
the location where the maximum radial stress appears. Assuming that the
maximum radial stress occurs at r = rm, there exists ∂σr/∂r = 0 at r = rm.
Differentiating Eq.(11.26) at r = rm, the following equation is derived:
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Fig. 11.12. Stress violation in the central area

σr

∞∑
j=2

hj(j − 1)rj−2
m = b1

∞∑
j=2

hj(j − 1)
rj−2
m

j − a1

− Ω2
∞∑

j=1

hj(j + 1)
rj
m

j + 2− a1
.

(11.30)

The unknown rm in Eq.(11.30) can be derived by iterative method.
To implement stress redistribution for the central area, it is reasonable

to assume that stresses in this area correspond to the yield point A, and
stresses in the outer area correspond to the yield lines AB and BC. The
boundary and continuity conditions are changed to be (1) σr = 1 at r = r1;
(2) ∂σr/∂r = 0 at r = r1; (3) σr = d1 at r = r2; (4) σr = 0 at r = 1, where r1
and r2 are the demarcating radii corresponding to the yield points A and B
in Fig.11.2. With reference to the above continuity and boundary conditions,
the constants in Eq.(11.26) are derived,

c1 =

⎛
⎝ ∞∑

j=1

hjr
j−1
1 − b1

∞∑
j=1

hj
rj−1
1

j − a1
+Ω2

∞∑
j=1

hj
rj+1
1

j + 2− a1

⎞
⎠ r1−a1

1 , (11.31)

c2 = −
⎡
⎣b2

∞∑
j=1

hj

j − a2
− Ω2

∞∑
j=1

hj

j + 2− a2

⎤
⎦ , (11.32)

and r1 and r2 satisfy the equations
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∞∑
j=2

hj(j − 1)rj−2
1 = b1

∞∑
j=2

hj
(j − 1)rj−2

1

j − a1
− Ω2

∞∑
j=1

hj
(j + 1)rj

1

j + 2− a1

+ c1(−1 + a1)r−2+a1
1 ,

(11.33)

d1

∞∑
j=1

hjr
j−1
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j=1
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rj+1
2

j + 2− a1
+ c1r

−1+a1
2 . (11.34)

The plastic limit angular speed then has the expression

Ω2 =
d1

∞∑
j=1

hjr
j−1
2 − b2

∞∑
j=1

hj
rj−1
2

j−a2
+ b2r

−1+a2
2
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j=1

hj

j−a2

r−1+a2
2
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j=1

hj

j+2−a2
−

∞∑
j=1

hjrj+1
2

j+2−a2

(11.35)

Eqs.(11.33), (11.34) and (11.35) can be solved with the iterative method.
r1 can be obtained by half interval search method in the interval of (0, r0)
from Eqs.(11.31) and (11.33); r2 is then searched similarly in the interval
(r1, 1) from Eq.(11.34). Ω2 can be calculated directly from Eq.(11.35) when
r2 is determined. The calculated value of Ω2, r1, and r2 are adopted to
calculate new values again. The iteration cycle continues until a convergence
solution with sufficient accuracy is achieved. To start the iteration process,
the calculated limit angular speed before stress redistribution is adopted as
the initial value of Ω2.

11.8 Limit Analysis of an Annular Disc with Variable
Thickness

For an annular disc at a constant angular speed ω, the stress fields of the entire
disc satisfy the inequality σθ � σr � 0, implying that the stress components
σr and σθ are located on the two segments CB and BA in Fig.11.2. The
boundary condition of the inner edge becomes σr = 0 at r = β, where β is
the radius of the inner edge. It should be noted that since a dimensionless
variable of radius is used, β is actually the ratio of the inner radius to the outer
radius of the annular disc. Stresses at the both edges lie at the yield point C
in Fig.11.2. The varying trajectory of stress components σr and σθ along the
radial direction has two possible cases according to the unified yield criterion,
namely (1) C → B → C when the ratio of inner to outer radius β is higher
than a specific or critical radius (Fig.11.13(a)); (2) C → B → A → B → C
when β is lower than the critical radius (Fig.11.13(b)). The critical radius
demarcating the two cases corresponds to β0 in Figs.11.13(a) and 11.13(b).
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Fig. 11.13. Case (1) with β � β0

11.8.1 Case (1) (1 > β � β0)

When the ratio of inner radius to outer radius is higher than the critical ratio
β0, the stresses on the entire disc lie on the yield line CB in Fig.11.13 (a). The
radial stress can be obtained by direct integration of Eq.(11.22). Using the
boundary conditions at the outer and inner edges, the integration constant
is derived,

c1 = −
⎡
⎣b2

∞∑
j=1

hj

j − a2
− Ω2

∞∑
j=1

hj

j + 2− a2

⎤
⎦ , (11.36)

and the angular speed is obtained

Ω2 =

b2

[
∞∑

j=1

hj

j−a2
− β1−a2

∞∑
j=1

hjβj−1

j−a2

]
∞∑

j=1

hj

j+2−a2
− β1−a2
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j=1

hjβj+1

j+2−a2

. (11.37)

Substituting Eq.(11.36) and Eq.(11.37) into Eq.(11.26), the stress field of
Case (1) is then derived. The radial stress σr should have a maximum value
corresponding to a yield point on CB where the radial stresses return to the
yield point C. As the radius ratio β decreases, the radial stress σr extends
towards the yield line BA, which leads to the second case. For the critical
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case of β = β0, the maximum radial stress is exactly at the yield point B in
Fig.11.2, and there exists

∂σr

∂r
= 0 and σr = d1 at r = r0, (11.38)

or

d1
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0
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⎤
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(11.39)

and
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hjr
j−1
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0 +

⎡
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hjr
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0
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− Ω2
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j=1

hjr
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0

j + 2− a2

⎤
⎦ , (11.40)

where c1 and Ω2 are given by Eq.(11.36) and Eq.(11.37) respectively; r0
denotes the radius where the radial stress σr reaches its maximum value d1
in the critical case.

β0 and r0 satisfying both Eq.(11.39) and Eq.(11.40) can be solved with a
numerical iterative method by specifying an initial value of β0 (for example
0.3). r0 can be calculated from Eq.(11.39) with a half interval search method.
β0 is then recalculated from Eq.(11.39) using the updated r0. The iterative
process continues until satisfactory convergence is reached.

11.8.2 Case (2) (0 < β � β0)

When the radius ratio β � β0, the stresses σr and σθ will extend to the
line BA in Fig.11.13 (b). σr can be derived by integrating Eq.(11.22) with
reference to the yield condition of Eq.(11.23),
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σr =
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(11.41)

where r1 and r2 are the demarcating radii where the stresses fall on the point
B in Fig.11.13 (b). c1, c2 and c3 are integration constants. Six unknown vari-
ables of c1, c2, c3, Ω2, r1, and r2 in Eq.(11.41) can be numerically calculated
from six boundary and continuity conditions, namely, (1) σr (r = β)= 0; (2)
σr(r = r1, β � r � r1)=d1; (3) σr (r = r1, r1 � r � r2)=d1; (4) σr (r = r2,
r1 � r � r2)=d1; (5) σr (r = r2, r2 � r � 1)=d1; (6) σr (r=1)=0. According
to these conditions, Eq.(11.41) leads to
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, (11.45)
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Substituting Eq.(11.45) into Eqs.(11.46) and (11.47), two equations with
respect to r1 and r2 are obtained, r1 is in the range of (0, r0), and r2 is in the
range of (r1, 1). The two demarcating radii can be calculated by half interval
search method from Eqs.(11.46) and (11.47) until the required accuracy is
reached. The plastic limit angular speed and stresses can then be calculated
with the calculated values of r1 and r2 from Eqs.(11.41)∼(11.45).

Similar to the results derived for the solid disc, the stresses may also
violate yield criterion as the combination of stresses exceeds the yield point
A in Fig.11.13 (b). The location for the maximum radial stress σr(r = rm)
can be determined from the following equation:

σr

∞∑
j=2

hj(j − 1)rj−2
m = b1

∞∑
j=2

hj(j − 1)
rj−2
m
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− Ω2
∞∑
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hj(j + 1)
rj
m

j + 2− a1
+ c2(−1 + a1)r−2+a1

m .

(11.48)

Stress redistribution is necessary if the maximum radial stress σr at r =
rm exceeds 1. The entire disc can then be divided into five parts by four
demarcating radii denoted as r1, r2, r3 and r4. The corresponding boundary
and continuity conditions are (1) σr = 0 at r = β; (2) σr(r = r1, β � r �
r1) = d1; (3) σr(r = r1, r1 � r � r2) = d1; (4) σr(r = r2, r1 � r � r2) = 1;
(5) σr(r = r3, r3 � r � r4) = 1; (6) σr(r = r4, r3 � r � r4) = d1; (7)
σr(r = r4, r4 � r � 1) = d1; (8) σr(r = 1) = 0; (9) ∂σr/∂r(r = r2, r1 � r �
r2) = 0 or ∂σr/∂r(r = r3, r3 � r � r4) = 0. The nine conditions lead to nine
equations which determine the nine constants of c1, c2, c3, c4, r1, r2, r3, r4,
and Ω2. Since the derivative of σr vanishes at either r = r2 or r = r3, two
possible Ω2 can be derived. The above conditions (1)∼(4) and (9) can be used
to determine c1, c2, r1, r2, and Ω2; and the conditions (5)∼(8) and (9) can
be used to determine c3, c4, r3, r4, and Ω2. The smaller Ω2 derived from the
two cases is the actual plastic limit angular speed, and the corresponding case
leads to the actual stress redistribution pattern. Once Ω2 is determined, the
other eight constants can be determined according to the conditions (1)∼(8).
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11.9 Special Case of b = 0

The unified yield criterion becomes the Tresca criterion when the parameter b
is equal to zero. The following context demonstrates that the solutions based
on the Tresca criterion are the special cases of the present solutions.

For a rotating solid disc, the stresses σr, σθ, and Ω2 with b = 0 can be
calculated from Eqs.(11.6)∼(11.9),
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(11.49)

Eq.(11.49) will converge to the following expression if the disc has a uni-
form thickness:

σr = 1− r2, σθ = 1 and Ω2 = 3, (11.50)

which are identical to the solutions based on the Tresca criterion (Lenard
and Haddow, 1972; Güven, 1992; Gamer, 1983).

For an annular disc, the two cases in Fig.11.13(a) and Fig.11.13(b) result
in the same solution when the unified yield criteria parameter b is equal to
0, which is the exact solution based on the Tresca criterion. The stresses are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(11.51)

and the corresponding plastic limit angular speed becomes
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∞∑
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j − β
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. (11.52)
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For the particular case of uniform thickness, the above equations give

σr = (1− r−1)− r2 − r−1

β2 + β + 1
, σθ = 1, (11.53)

and

Ω2 =
3

β2 + β + 1
, (11.54)

which are again identical to the results based on the Tresca criterion (Lenard
and Haddow, 1972; Chakrabarty, 1987). However, it should be mentioned
that the solution based the Tresca criterion may lead to meaningless plas-
tic strain at the disc center if the associated flow rule is applied (Gamer,
1984). To derive a reasonable displacement distribution of a rotating disc,
a non-associated flow rule or special processes for the singularity should be
considered (Gven, 1994; Gamer, 1984; Berman and Pai, 1972).

11.10 Results and Discussion

Fig.11.14 shows the stress distributions of a solid disc with uniform thickness
in terms of three special yield criteria. It can be seen that both the radial
stress σr and circumferential stress σθ are the smallest when b is zero, or
when the Tresca criterion is used. The twin-shear yield criterion leads to
the largest stresses with the maximum σθ at the center (r = r0). The stress
distributions with respect to the Mises criterion can be approximated with
UYC of b = 0.5, which go between those from the other two yield criteria.

From Fig.11.14, the effect of different yield criteria on radial stress σr is
minimal, while it is remarkable on σθ. Fig.11.15 illustrates the stress violation
to the yield criterion in the central area of the disc if the thickness is reduced
along the disc radius (h = 3− 2r). The redistributed stress fields are plotted
in Fig.11.16, where the inner area (r < r1) corresponds to the yield point A
in Fig.11.2. σr and σθ are constant in this area.

If the thickness increases with increasing radius r, yield criteria will not
be violated and the stress distribution is shown in Fig.11.17. Compared with
Fig.11.16, the location of the maximum σθ in Fig.11.17 is closer to the disc
center, indicating that the stress distributions strongly depend on the disc
thickness variation.

Figs.11.18(a) and 11.18(b) show the effects of different yield criteria on
the plastic limit angular speed of a rotating solid disc. It can be seen that
Ω2 increases from 9.8% to 14.0% with b varying from 0 to 1 when the thick-
ness function is a decreasing function of radius(Fig.11.18(a)). Ω2 increases
from 14.0% to 17.5% when the thickness function is an increasing function of
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Fig. 11.14. Stress distribution of solid disc (h = 1)

Fig. 11.15. Stress distributions of solid disc with violation of yield condition in
central area (h = 3− 2r)

radius(Fig.11.18(b)). It indicates that Ω2 also depends on the thickness vari-
ation function of the disc. The distribution of stresses derived in the present
study is helpful in understanding the response characteristics of a rotating
disc. Economical design can be achieved for mechanical machines according
to the current limit angular velocities.

For a rotating annular disc, the stress distributions in the plastic limit
state are quite different from those of a rotating solid disc. Figs.11.19 and
11.20 illustrate the stress distributions of a uniform thickness disc when β =
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Fig. 11.16. Stress distribution of solid disc after redistribution of stress (h = 3−2r)

Fig. 11.17. Stress distribution of solid disc (h = 1 + 2r)

0.1 (Case 2) and β = 0.5 (Case 1) respectively. The circumferential stress has
two peaks in Case 2; while it has one in Case 1. The circumferential stress
varies along the radius for both cases.

The influence of different yield criteria becomes more and more prominent
with an increasing inner radius. Figs.11.21 and 11.22 show the stress distri-
butions when the disc has a small hole at the center for the two opposite
types of thickness function.

It is seen that near the small hole the stresses change rapidly. There is
no stress violation when the disc thickness increases with the radius. When
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Fig. 11.18. Limit angular speed of solid disc

Fig. 11.19. Stress distribution of annular disc (h = 1, β = 0.1)

the disc thickness decreases with the radius, on the other hand, the violation
to yield criterion occurs in the middle area in the disc as seen in Fig.11.22
instead of the center area for the case of the solid disc. It indicates that a
small hole at the disc center will change the distribution of stress drastically.
Constant distribution of σθ based on the Tresca criterion may not predict
the stress distributions of an annular disc with variable thickness.

Fig.11.23 shows the plastic limit angular speed with respect to the three
yield criteria and various thickness functions for the cases of β = 0.1 and
β = 0.5. It shows that Ω2 increases with the increase of unified yield criterion
parameter b.
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Fig. 11.20. Stress distribution of annular disc (h = 1, β = 0.5)

Fig. 11.21. Stress distribution with yield condition violation (h = 3− 2r, β = 0.1)

The effect of the ratio of inner radius to outer radius on the plastic limit
angular speed is illustrated in Fig.11.24(a) for uniform thickness disc and
Fig.11.24(b) for disc with linearly varying thickness. It is seen that with the
increase of ratio β, the effect of yield criteria becomes less significant. For a
thin rotating ring, Ω2 is equal to 1 and independent of yield criterion. When
β approaches 0, the limit angular speed approaches that for a solid disc. It
implies that a small hole at the disc center does not affect the plastic limit
angular speed significantly, instead it affects stress distributions drastically.

It should be mentioned that the plane stress condition in a rotating disc
with variable thickness is not exactly satisfied. However, if the disc thickness
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Fig. 11.22. Stress distribution of annular disc (h = 1 + 2r, h=1, β = 0.1)

Fig. 11.23. Limit angular speed of annular disc with different unified strength
theory parameter b

is small enough compared to the diameter of a solid disc or the difference
between the outer and inner radii of an annular disc is small enough, the
plane stress assumption is approximately valid. When the inner radius of an
annular disc is very close to the outer radius, e.g., β > 0.8, the limit angular
speed is almost independent of the yield criterion and the thickness variation
function as illustrated in Fig.11.24. Thus the present solution based on plane
stress assumption is more suited to a thin rotating disc in fully plastic state.



258 11 Limit Angular Speed of Rotating Disc and Cylinder

Fig. 11.24. Limit angular speed verses ratio of inner radius to outer radius

11.11 Summary

A series of elastic limits and plastic solutions for rotating discs and cylin-
ders based on the unified yield criterion are presented. The unified solution
encompasses the existing solutions based on the Tresca criterion and the
Huber-von Mises criterion as special cases. The current unified solutions for
the elasto-plastic stress field and elasto-plastic rotating speed of a rotating
disc are useful in engineering applications. The different yield criterion pa-
rameter b has no effect on the elastic limit rotating speed of a rotating disc
and cylinder, while it affects the plastic limit speed.

The percentage difference between the maximum plastic limit rotating
speed derived from the twin-shear stress criterion (b=1) and that using the
Tresca criterion (b=0) is 14%. Therefore it is important to choose proper
yield criterion in order to obtain an economical and optimal design.

The unified yield criterion is applicable for metallic non-SD materials. It
is a special case of the Yu unified strength theory (Yu, 1991; 2004).

11.12 Problems

Problem 11.1 Try your hand at an application of the unified yield criterion
for non-SD materials.

Problem 11.2 Why does the solution obtained by using the unified yield
criterion contain all the solutions of the Tresca yield criterion, the von
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Mises yield criterion, the twin-shear yield criterion and other possible
yield criteria adopted for those materials with the same yield stress in
tension and in compression?

Problem 11.3 Write a paper concerning the plastic analysis of rotating
annular discs using the unified yield criterion.

Problem 11.4 Try your hand at an application of the unified yield criterion
for SD materials.

Problem 11.5 Try to obtain the unified solution of plastic analysis of a
rotating hollow cylinder.

Problem 11.6 Can you introduce a unified solution for a plastic rotating
disc using the unified strength theory? The ratio of tensile strength σt to
compressive strength σc is α = σt/σc = 0.8.

Problem 11.7 A high-strength alloy has the strength ratio in tension and
compression α = 0.9. Find the unified solution of a rotating disc made of
this alloy.

Problem 11.8 Compare the plastic solutions of rotating discs using the
unified yield criterion and the unified strength theory with α = 0.8.

Problem 11.9 The plastic limit rotating speeds of solid cylinders is de-
scribed in literature. Compare their results with the unified solution.

Problem 11.10 The plastic limit rotating speeds of hollow cylinders is
described in literature. Compare their results with the unified solution.
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12

Projectile Penetration into Semi-infinite
Target

12.1 Introduction

A lot of research work has been conducted on impact and penetration anal-
ysis. The penetration studies include various lab and field tests, analytical
derivations and numerical simulations. Early works were mainly experimen-
tal studies. In the last three decades, analytical and numerical tools have
been used increasingly as a substitute for costly experiments. The critical is-
sue in an analytical penetration model is to formulate properly the resultant
penetration resistance force applied on the missile by the target medium.
The most well-known resistance function is based on the so-called dynamic
cavity expansion theory. The theory was pioneered by Bishop et al. (1945),
who developed the equations for the quasi-static expansion of cylindrical
and spherical cavities and estimated forces on conical nose punches pushed
slowly into metal targets. Later Hill (1950) and Hopkins (1960) derived and
discussed the dynamic and spherically symmetric cavity-expansion equations
for an incompressible target material.

The cavity expansion theory was further developed by Luk and Forrestal
(1987), Forrestal and Tzou (1997), and Mastilovic and Krajcinovic (1999) to
model the penetration of projectiles through soil, porous rock, ceramic and
concrete targets. An overview on projectile penetration into geological targets
was given by Heuze (1990). Li QM (2005) summarized the recent progress in
the penetration mechanics of a hard missile and extended Forrestal’s concrete
penetration model to missiles of general nose shapes.

By comparison with the analytical results derived from the cylindrical and
spherical cavity expansion theories, it is found that the cylindrical assump-
tion gives closer results to test data for low and medium velocity impacts.
Tresca criterion and Huber-von Mises criterion were often used for penetra-
tion problems of metallic targets, and the Mohr-Coulomb strength theory
was used for penetration problems of geomaterials (Longcope and Forrestal,
1983). The selection of failure criteria is of great importance (Zukas et al.,
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1982). To reflect the strength difference effect and the effect of failure criteria,
the unified strength theory (Yu, 1992; 2004) has been adopted in penetration
analysis for both metallic and geological targets (Li and Yu, 2000; Li, 2001;
Wei and Yu, 2002; Wei, 2002; Wang et al., 2004; 2005).

The present chapter firstly presents the spatial axisymmetric form of the
unified strength theory as the failure condition of target materials in Section
12.2. The governing differential equations for concrete targets are summarized
in Section 12.3. The cylindrical cavity expansion model is then applied to
incompressible and compressible materials in Sections 12.4. Explicit forms
of the pressure on the cavity expansion surface and the cavity expansion
velocity are derived in Section 12.5. Section 12.6 gives the resistance force
on different nose shapes of the projectile, which is simplified as a rigid body.
The penetration depth of the projectile is obtained and compared with test
results available in the published literature in Section 12.7.

12.2 Spatial Axisymmetric Form of Unified Strength
Theory

There are four stress components σr, σθ, σz and τrz in a spatial axisymmetric
problem. The other components, namely, τrθ and τθz, are zero. According to
the spatial axisymmetric unified characteristics line theory (Yu et al., 2001),
the stress σ2 can be expressed as

σ2 = σ3 +m

(
σ1 + σ3

2
− σ3

)
, (12.1)

where m is a parameter and 0 � m � 2. When m=0 and m =2, Eq.(12.1) is
the Haar-von Karman complete plastic condition. If we define

P =
σ1 + σ3

2
, R =

σ1 − σ3
2

, (12.2)

then

σ1 = P +R, σ2 = P + (m − 1)R, σ3 = P − R. (12.3)

The non-zero stress components of an axisymmetric problem can be ex-
pressed as

σr = P +R cos 2θ, σz = P − R cos 2θ,
τrz = R sin 2θ, σθ = P + (m − 1)R,

(12.4)

where θ is the angle between the directions of the maximum principal stress
and axis r.
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Since m−1 � sinϕ0, that is σ2 � P −R sinϕ0, the unified strength theory
(UST) has an expression with respect to the internal friction angle ϕ0 and
cohesion C0,

F = σ1 − 1− sinϕ0
(1 + b)(1 + sinϕ0)

(bσ2 + σ3) =
2C0 cosϕ0
1 + sinϕ0

,

when σ2 � 1
2
(σ1 + σ3) +

sinϕ

2
(σ1 − σ3),

(12.5a)

F ′ =
1

1 + b
(σ1 + bσ2)− 1− sinϕ

1 + sinϕ
σ3 =

2C0 cosϕ0
1 + sinϕ0

,

when σ2 � 1
2
(σ1 + σ3) +

sinϕ

2
(σ1 − σ3).

(12.5b)

Then, there is

R = − 2(1 + b) sinϕ0
2(1 + b) +mb(sinϕ0 − 1)

P +
2(1 + b)C0 cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
. (12.6)

The above equation can be rewritten as (Yu et al., 1997; 2001)

R = −P sinϕuni + Cuni cosϕuni, (12.7)

where the unified strength parameters Cuni and ϕuni were proposed and de-
rived by Yu et al. in 1997 and 2001. These two parameters are referred as
the unified cohesion and unified internal friction angle corresponding to the
UST respectively. Their relations to the material constants C0 and ϕ0 can be
written as (Yu et al., 1997; 2001)

sinϕuni =
2(1 + b) sinϕ0

2(1 + b) +mb(sinϕ0 − 1)
, (12.8)

Cuni =
2(1 + b)C0 cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
· 1
cosϕuni

. (12.9)

Denoting compressive stress as P , Eq.(12.7) can be expressed as (Yu et
al., 1997; 2001)

R = P sinϕuni + Cuni cosϕuni. (12.10)

12.3 Fundamental Equations for Concrete Targets

12.3.1 Conservation Equations

In cylindrical coordinates, the conservation equations of momentum and mass
for the target materials can be expressed as
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∂v

∂r
+

v

r
= −1

ρ

dρ
dt

, (12.11)

∂σr

∂r
+

σr − σθ

r
= −ρ

dv
dt

, (12.12)

where υ is the radial velocity of a particle in the target material and υ is
positive if it is in the outward direction.

12.3.2 Relation between Pressure and Bulk Strain

If the material is compressive, the relation between pressure and bulk strain
can be expressed as

P = Kη = K(1− ρ0
ρ
), (12.13)

where η is the bulk strain, K is the bulk modulus, P is the hydrostatic
pressure and can be written as

P =
1
3
(σr + σθ + σz). (12.14)

For the problem of cavity expansions, the relation among stresses is

σz = ν (σr + σθ) in elastic zone, (12.15a)

σz =
1
2
(σr + σθ) in plastic zone. (12.15b)

Eqs.(12.15a) and (12.15b) are applied respectively for the elastic zone and
plastic zone when material is compressible, while only Eq. (12.15b) is used
when material is incompressible.

12.3.3 Failure Criterion Expressed by σr and σθ

The UST is used as the failure condition for the target material in this chap-
ter. According to the axisymmetric stress state of the target material im-
pacted and penetrated by a long rod, Eq.(12.10) has another form of

σr − σθ = Auniσr +Buni, (12.16)

where

Auni =
2 sinϕuni
1 + sinϕuni

, Buni =
2Cuni cosϕuni
1 + sinϕuni

.
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12.3.4 Interface Conditions

The target medium can be divided into four zones during the cavity expan-
sion, i.e., a plastic zone, a radial cracked zone, an elastic zone and an undis-
turbed zone. At the two interfaces between the plastic and radial cracked
zones, radial cracked and elastic zones, the Hugoniot jump conditions are
valid. According to the conservation of mass and momentum across the in-
terface, there are

[ρ(v − cJ)] = 0, (12.17)

[σr + ρv(v − cJ)] = 0, (12.18)

where the expression [G] = G+−G− stands for the magnitude of the discon-
tinuity of the square-bracketed variable across the wave front (interface) that
propagates with an interface velocity of cJ . The above equations can also be
rewritten as

ρ1(v1 − cJ) = ρ2(v2 − cJ), (12.19)

σ2 − σ1 = ρ1(cJ − v1)(v2 − v1). (12.20)

12.4 Cylindrical Cavity Expansion Analysis

A cylindrical symmetric cavity expands with velocity vr from an initial radius
of zero when the target is impacted and penetrated by a long rod (Fig.12.1).
In Fig.12.2, c is the interface velocity between the plastic and radial cracked
zones; c1 is the interface velocity between the radial cracked and elastic zones;
cd is the elastic dilatation velocity. The stress in the plastic zone (vrt � r � ct)
has reached the yield surface of the unified strength theory. Because geoma-
terials are always very weak in tension, radial cracks adjacent to the plastic
zone are often observed in a penetration process for targets made of geoma-
terials. The formation and the magnitude of the area for a cracked zone or
a damaged zone depend on the circumferential tensile stress. If the circum-
ferential stress exceeds the tensile strength of the target material, a radial
cracked zone forms. The range of the radial cracked zone can be represented
by ct < r � c1t. The elastic zone is in the range of c1t < r � cdt; and the
undisturbed zone is in the range of r > cdt. Defining a dimensionless variable
of ξ = r/ct, the four different zones can be categorized in Fig.12.3.
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Fig. 12.1. Penetration by a long rod

Fig. 12.2. Different zones of target material

12.4.1 Elastic Zone (c1t � r � cdt, β1/β � ξ � 1/α)

In the elastic zone, the target materials satisfy the linear stress-strain rela-
tions. According to the generalized Hooke’s law,

σr = − E

(1− 2ν)(1 + ν)

[
(1− ν)

∂u

∂r
+ ν

u

r

]
, (12.21)

σθ = − E

(1− 2ν)(1 + ν)

[
ν

∂u

∂r
+ (1− ν)

u

r

]
, (12.22)

where E and ν are the modulus of elasticity and Poisson’s ratio; u is the radial
displacement. The normal stresses are positive in compression for convenient
formulation.

The conservation equation of momentum can be expressed as
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Fig. 12.3. Dimensionless expression of the four zones

Fig. 12.4. Dimensionless expression of the three zones

∂σr

∂r
+

σr − σθ

r
= −ρ

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.23)

Substituting Eqs.(12.21) and (12.22) into Eq.(12.23), we obtain

∂2u

∂r2
+
1
r

∂u

∂r
− u

r2
=

1
c2d

d2u
dt2

, (12.24)

where cd is the elastic wave velocity in the semi-infinite medium and

cd =

√
E(1− ν0)

(1 + ν0)(1− 2ν0)ρ0
. (12.25)

Defining

u =
ū

ct
, (12.26)
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Eq.(12.24) can be rewritten as

(1− α2ξ2)
d2ū
dξ2

+
1
ξ

dū
dξ

− 1
ξ2

ū = 0, (12.27)

where α = c/cd.
Defining

z = αξ, ū = zφ, F =
dφ
dz

, (12.28)

then ⎧⎪⎪⎨
⎪⎪⎩
dū
dξ

= αφ+ αzF,

d2ū
dξ2

= 2α2F + α2z
dF
dz

.

(12.29)

Eq.(12.27) can be simplified into a first-order differential equation with
reference to Eq.(12.29). Integrating Eq.(12.27), we obtain

ū = Aαξ +

[
αξ

2
ln
1 +

√
1− α2ξ2

αξ
−

√
1− α2ξ2

2αξ

]
· B, (12.30)

where A and B are integration constants that can be determined by consid-
ering the following boundary conditions:

ū(ξ =
1
α
) = 0, (12.31)

σθ(ξ =
β1
β
) = −σt, (12.32)

where Eq.(12.31) indicates that the radial displacement is zero at the interface
of the elastic and undistributed zones; Eq.(12.32) indicates that the circum-
ferential stress reaches the tensile strength at the interface of the elastic and
radial crack zones.

With reference to Eq.(12.30) and Eq.(12.31),

A = 0. (12.33)

The displacement distribution in the elastic zone is then derived as

ū =

[
αξ

2
ln
1 +

√
1− α2ξ2

αξ
−

√
1− α2ξ2

2αξ

]
· B. (12.34)
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From Eq.(12.34),

ū

ξ
=

[
α

2
ln
1 +

√
1− α2ξ2

αξ
−

√
1− α2ξ2

2αξ2

]
· B, (12.35)

∂ū

∂ξ
=

[
α

2
ln
1 +

√
1− α2ξ2

αξ
+

√
1− α2ξ2

2αξ2

]
· B. (12.36)

Defining

σ̄r =
σr

K
, σ̄θ =

σθ

K
, σ̄t =

σt

K
, (12.37)

the dimensionless circumferential stress and radial stress in the elastic zone
can be derived from Eqs.(12.21) and (12.22),

σ̄θ = − 3
1 + ν

[
α

2
ln
1 +

√
1− α2ξ2

αξ
− (1− 2ν)

√
1− α2ξ2

2αξ2

]
· B, (12.38)

σ̄r = − 3
1 + ν

[
α

2
ln
1 +

√
1− α2ξ2

αξ
+
(1− 2ν)

√
1− α2ξ2

2αξ2

]
· B. (12.39)

The integration constant B can be obtained from Eq.(12.32) with refer-
ence to Eq.(12.38),

B =
1 + ν

3
σt

⎡
⎣α

2
ln
1 +

√
1− α2 (β1/β)2

α (β1/β)
−
(1− 2ν)

√
1− α2 (β1/β)2

2α (β1/β)2

⎤
⎦

−1

.

(12.40)
Defining a dimensionless radial velocity as

ν̄(ξ) =
ν̄

c
, (12.41)

Eq.(12.34) yields

ν̄(ξ) =

[
−

√
1− α2ξ2

αξ

]
· B. (12.42)

At the interface of elastic-radial cracked zones, i.e., ξ = β1/β, the radial
stress, the circumferential stress and the velocity in the elastic zone are
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σ̄r1 = − 3
1 + ν

⎡
⎣α

2
ln
1 +

√
1− α2 (β1/β)2

α (β1/β)
+
(1− 2ν)

√
1− α2 (β1/β)2

2α (β1/β)2

⎤
⎦ · B,

(12.43)

σ̄θ1 = − 3
1 + ν

⎡
⎣α

2
ln
1 +

√
1− α2 (β1/β)2

α (β1/β)
−
(1− 2ν)

√
1− α2 (β1/β)2

2α (β1/β)2

⎤
⎦ · B,

(12.44)

ν̄1(ξ) =

⎡
⎣−

√
1− α2 (β1/β)2

α (β1/β)

⎤
⎦ · B. (12.45)

12.4.2 Interface of Elastic-cracked Zones (r = c1t, ξ = β1/β)

Defining at the interface the dimensionless radial stress and radial velocity in
the cracked zone as σ̄r2 and ν̄2, respectively, with reference to the Hugoniot
jump condition,

ρ1

(
ν̄1 − β1

β

)
= ρ2

(
ν̄2 − β1

β

)
, (12.46)

σ̄r2 = σ̄r1 +
ρ1
ρ0

β2
(

β1
β

− ν̄1

)
(ν̄2 − ν̄1) , (12.47)

where ρ1 and ρ2 are the density of materials in the elastic and crack zones
respectively.

According to the pressure-bulk strain relation, in the elastic zone,

(1 + ν)σr + (2− ν)σθ

3
= K

(
1− ρ0

ρ

)
. (12.48)

Since the circumferential stress is zero in the cracked zone, the above
equation can be rewritten as

1 + ν

3
σr = K

(
1− ρ0

ρ

)
. (12.49)

At the interface, the circumferential stress in the elastic zone reaches the
tensile strength, which implies

σ̄θ1 = −σ̄t. (12.50)

Substituting the above equation into Eq.(12.48), the radial stress in the
elastic zone near to the interface can be expressed as
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σ̄r1 =
2− ν

1 + ν
σ̄t +

3
1 + ν

(
1− ρ0

ρ1

)
. (12.51)

From Eq.(12.49), the radial stress in the cracked zone near to the interface
can be derived as

σ̄r2 =
3

1 + ν

(
1− ρ0

ρ2

)
. (12.52)

Substituting Eq.(12.51) into Eq.(12.47),

σ̄r2 = σ̄r1 +
3(β1 − βν̄1)(βν̄2 − βν̄1)
3− (1 + ν)(σ̄r1 − σ̄t)

. (12.53)

Putting the expression of ρ1 and ρ2 from Eqs.(12.51) and (12.52) into
Eq.(12.46),

βν̄2 = β1 +
3− σ̄r2(1 + ν)

3− (σ̄r1 − σ̄t)(1 + ν)
(βν̄1 − β1). (12.54)

12.4.3 Radial Cracked Zone (ct � r � c1t, 1 � ξ � β1/β)

When the circumferential stress reaches the tensile strength, the radial cracks
occur. Once the radial cracks occur, σθ diminishes immediately to zero. The
conservation equations of mass and momentum can be expressed as

∂ν

∂r
+

ν

r
= −1

ρ

dρ
dt

, (12.55)

∂σr

∂r
+

σr

r
= −ρ

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.56)

According to the pressure-bulk strain relation,

P =
1 + ν

3
σr = K

(
1− ρ0

ρ

)
= Kη. (12.57)

Putting Eq.(12.57) into Eqs.(12.55) and (12.56) respectively,

∂ν

∂r
+

ν

r
= − 1 + ν

3K(1− η)
dσr

dt
, (12.58)

∂σr

∂r
+

σr

r
= − ρ0

1− η

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.59)

Because the bulk strain is very small, there is 1 − η ≈ 1. The above
equations can be rewritten as
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⎪⎪⎩
dν̄
dξ

+
ν̄

ξ
=
1 + ν

3
ξ
dσ̄r

dξ
,

dσ̄r

dξ
+

σ̄r

ξ
= β2ξ

dν̄
dξ

.

(12.60)

Integrating Eq.(12.60), we obtain

σ̄r(ξ) = −D1

ξ
+D2, (12.61)

ν̄(ξ) = − D2

β2ξ
+
1 + ν

3
D1, (12.62)

where D1 and D2 are the integration constants that can be determined with
application of boundary conditions.

At the interface of the cracked and plastic zones (r = ct, ξ = 1), defining
radial stress and radial velocity in the cracked zone σ̄r3 and ν̄3, respectively,
the boundary conditions can be expressed as

r = ct(ξ = 1),
{

σ̄r(ξ = 1) = σ̄r3 = B̄t

1−At
,

ν̄(ξ = 1) = ν̄3,
(12.63)

r = c1t(ξ = β1/β),

⎧⎨
⎩

σ̄r(ξ = β1/β) = σ̄r2,

ν̄(ξ = β1/β) = ν̄2.
(12.64)

From Eqs.(12.61) and (12.63),

−D1 +D2 =
B̄t

1− At
. (12.65)

The radial stress and the radial velocity in the cracked zone adjacent to
the interface of the cracked and elastic zones (r = c1t, ξ = β1/β) can be
expressed as

σ̄r2 = − D1

β1/β
+D2, (12.66)

ν̄2 = − D2

β1β
+
1 + ν

3
D1, (12.67)

the integration constants D1, D2 can then be expressed as

D1 =
3β1(σ̄r2 + β1βν̄2)
β[β21(1 + ν)− 3]

, (12.68)

D2 =
β21(1 + ν)σ̄r2 + 3β1βν̄2

β21(1 + ν)− 3
. (12.69)
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Putting Eqs.(12.68) and (12.69) into Eq.(12.65),

B̄t

1− At
= −3β1(σ̄r2 + β1βν̄2)

β[β21(1 + ν)− 3]
+

β21(1 + ν)σ̄r2 + 3β1βν̄2
β21(1 + ν)− 3

. (12.70)

The velocity in the cracked zone adjacent to the cracked-elastic zones
interface can be written as

ν̄3 = − 1
β2

β21(1 + ν)σ̄r2 + 3ββ1ν̄2
β2(1 + ν)− 3

+
β1(1 + ν)(σ̄r2 + ββ1ν̄2)

β[β21(1 + ν)− 3]
. (12.71)

12.4.4 Interface of the Plastic and Cracked Zones (r = ct, ξ = 1)

Defining σ̄r4 and ν̄4 the radial stress and velocity, respectively, in the plastic
zone adjacent to the interface, with reference to the Hugoniot jump condition,

ρ4 (ν̄4 − 1) = ρ3 (ν̄3 − 1) , (12.72)

σ̄r4 = σ̄r3 +
ρ3
ρ0

β2 (1− ν̄3) (ν̄4 − ν̄3) , (12.73)

where ρ4 and ρ3 are the density in the plastic and cracked zones adjacent to
the interface respectively.

From Eq.(12.63),

σ̄r3 =
B̄uni

1− Auni
. (12.74)

According to the pressure-bulk strain relation, the following expression
can be obtained: (

1− ρ0
ρ3

)
=
1 + ν

3
B̄uni

1− Auni
. (12.75)

Putting Eq.(12.75) into Eq.(12.73),

σ̄r4 = σ̄r3 +
3(1− Auni)β2 (1− ν̄3) (ν̄4 − ν̄3)

3(1− Auni)− (1 + ν)B̄uni
. (12.76)

Based on the unified strength theory, the material in the plastic zone
satisfies

σ̄r − σ̄θ = Auniσ̄r + B̄uni, (12.77)

where
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Auni =
2 sinϕuni
1 + sinϕuni

, Buni =
2Cuni cosϕuni
1 + sinϕuni

.

Cuni and ϕuni are the unified internal friction angle and unified cohesion,
respectively, corresponding to the unified strength theory and they have the
form of

sinϕuni =
2(1 + b) sinϕ0
2 + b+ b sinϕ0

, (12.78)

Cuni =
2(1 + b)c0 cosϕ0
2 + b+ b sinϕ0

· 1
cosϕuni

. (12.79)

At the interface, Eq.(12.77) can be rewritten as

σ̄r4 − σ̄θ4 = Auniσ̄r4 + B̄uni. (12.80)

According to the pressure-bulk strain relation,

1
2
(σ̄r4 + σ̄θ4) = 1− ρ0

ρ4
. (12.81)

From the above equations it derives

ρ4 =
2ρ0

2− (2− Auni)σ̄r4 + B̄uni
. (12.82)

Putting Eq.(12.82) into Eq.(12.72), then there is

ν̄4 = 1 +
ρ3(2 + B̄uni)(ν̄3 − 1)

2ρ0
− ρ3(2− Auni)σ̄r4(ν̄3 − 1)

2ρ0
. (12.83)

From Eqs.(12.83) and (12.76), we can get

σ̄r4 = n̄σ̄r3 + n̄
ρ3
ρ0

β2(ν̄3 − 1)2
[
1− ρ3(2 + B̄uni)

2ρ0

]
, (12.84)

where

n̄ =
2ρ20

2ρ20 − ρ23β
2(1− ν̄3)2(2− Auni)

.
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12.4.5 Plastic Zone (vrt � r � ct, δ � ξ � 1)

The mass and momentum equations in Eqs.(12.55) and (12.56) are still valid
in the plastic zone. The boundary stress and velocity conditions in the plastic
zone can be expressed as

r = vrt, ν̄(ξ = δ) = δ, (12.85)

r = ct,

{
σ̄r(ξ = 1) = σ̄r4,
ν̄(ξ = 1) = ν̄4.

(12.86)

According to the pressure-bulk strain relation,

(σr + σθ) = 2K
(
1− ρ0

ρ4

)
= 2Kη. (12.87)

The material in the plastic zone satisfies the unified strength theory,

σr − σθ = Atσr +Bt. (12.88)

From Eqs.(12.87) and (12.88),

η =
(2− At)σ̄r − B̄t

2
. (12.89)

Putting Eqs.(12.87) and (12.88) into the mass and momentum conserva-
tion equations, the following differential equations can be derived,

∂ν

∂r
+

ν

r
= − 2− At

2K(1− η)

(
∂σr

∂t
+ ν

∂σr

∂r

)
, (12.90)

∂σr

∂r
+

Atσr +Bt

r
= − ρ0

1− η

(
∂ν

∂t
+ ν

∂ν

∂r

)
. (12.91)

The dimensionless expressions of the above equations are

dν̄
dξ

+
ν̄

ξ
= −2− Auni

2(1− η)
(ξ − ν̄)

dσr

dξ
, (12.92)

dσ̄r

dξ
+

Auniσ̄r + B̄uni
ξ

=
β2

1− η
(ξ − ν̄)

dν̄
dξ

. (12.93)

Eqs.(12.92) and (12.93) can be rewritten as

dσ̄r

dξ
=
2(1− η)

[
βν̄(βξ − βν̄) + (1− η)(Auniσ̄r + B̄uni)

]
ξ[(2− Auni)(βξ − βν̄)2 − 2(1− η)2]

, (12.94)
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d (βν̄)
dξ

=
(1− η)

[
(2− Auni)(Auniσ̄r + B̄uni)(βξ − βν̄) + 2βν̄(1− η)

]
ξ[(2− Auni)(βξ − βν̄)2 − 2(1− η)2]

.

(12.95)
Eqs.(12.94) and (12.95) can be solved using the Runge-Kutta method.

Defining y1 = σ̄r and y2 = ν̄, the boundary conditions can be written as
y1(0) = σ̄r4 and y2(0) = ν̄4. When the stress and velocity in the plastic zone
are deduced, Eqs.(12.94) and (12.95) can be expressed in the form{

y′
1 = f(ξ, y1, y2), y1(0) = σr4,

y′
2 = g(ξ, y1, y2), y2(0) = ν̄4.

(12.96)

The integral domain borders the plastic-cracked zones interface (ξ = 1)
and the cavity surface (ξ = δ). According to the boundary conditions, when
ξn = 1− nΔξ, y2n = ξn. The radial stress and velocity at the cavity surface
can be obtained when δ = ξn and y1(n) = σ̄r(δ).

The detailed procedures for solving the differential equations are given as
follows:

Step 1. Substituting Eqs.(12.43), (12.45), (12.53), and (12.54) into Eq.
(12.70), the relation between β1 and β is deduced.

Step 2. Assuming an initial value for β1, β can be calculated with reference
to the relations between β1 and β deduced in Step 1.

Step 3. σ̄r1 and ν̄ are calculated from Eqs.(12.43) and (12.45) with ref-
erence to β1 and β. Putting σ̄r1 and ν̄1 into Eqs.(12.53), (12.54), (12.68),
(12.69), and (12.71), σ̄r2 and ν̄2, the integration constants D1 and D2, and
ν̄3 are determined. Putting the above quantities into Eqs.(12.74) and (12.75),
σ̄r3 and ρ̄3 are obtained.

Step 4. Substituting σ̄r3, ρ̄3, and ν̄3 into Eqs.(12.84) and (12.83), σ̄r4 and
ν̄4 are determined.

Step 5. Based on boundary conditions, the differential equation in Eq.(12.
96) is solved from ξ = 1 to ξ = δ. The stress and velocity distribution in the
plastic zone is then calculated. With application of the boundary conditions,
the radial stress and the expansion velocity are obtained.

When the bulk strain is zero, i.e., η = 0, and ρi = ρ0 (i = 1, ..., 4), the
solutions for incompressible materials can be deduced from Eqs.(12.21) to
(12.96). If the interface velocities c and c1 are the same, the radial cracked
zone disappears and there are only plastic, elastic, and undisturbed zones in
the materials.

12.5 Cavity Expansion Pressure and Velocity

With application of the concrete parameters given by Forrestal (1997), i.e.,
bulk modulus K of 6.7 GPa, compressive strength Y of 130 MPa, elastic
modulus E of 11.3 GPa, Poisson’s ratio ν of 0.22, tensile strength σt = 13
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MPa, density ρ0 = 2260 kg/m3, according to the derived equations based
on the cylindrical cavity expansion theory, the material is considered to be
incompressible or compressible. The response of the target can be elastic-
plastic or elastic-crack-plastic, respectively.

12.5.1 Incompressible Material

Fig.12.5 illustrates the relation between the radial stress at the cavity surface
and the cavity expansion velocity for the elastic-plastic response of the target.
From Fig.12.5, the radial stress increases with increasing cavity expansion
velocity, the radial stress and the unified strength theory parameter b.

Fig. 12.5. Radial stress versus cavity expansion velocity (incompressible material,
elastic-plastic response)

Figs.12.6 and 12.7 plot the curves of the plastic-crack interface velocity
c and the elastic-crack interface velocity c1 versus the cavity expansion ve-
locity vr for incompressible material for b = 1.0 and b = 0, respectively. It
is shown that for a given velocity vr, c1 is higher than c. When b = 1.0 and
vr/(Y/ρ0)1/2 = 0.82, the curves of c1 and c intersect, i.e., the cracked zone
vanishes at this cavity expansion velocity and there are only elastic and plas-
tic zones in the material. When b = 0 and vr/(Y/ρ0)1/2 = 0.7, the curves of c1
and c also intersect, the response of material shifts from elastic-crack-plastic
to elastic-plastic. The current solution with b = 0 conforms to the result re-
ported by Forrestal (1997), who applied the spherical cavity expansion theory
and discovered that the cracked zone disappears when vr/(Y/ρ0)1/2 = 0.71.

Fig.12.8 illustrates schematically the relation between the radial stress in
the cavity surface and the cavity expansion velocity for incompressible mate-
rials under elastic-crack-plastic response for b = 0 and b = 1.0, respectively.
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Fig. 12.6. Cavity expansion velocity versus interface velocity (incompressible ma-
terial, elastic-crack-plastic response, b = 1.0)

Fig. 12.7. Cavity expansion velocity versus interface velocity (incompressible ma-
terial, elastic-crack-plastic response, b = 0)

The radial stress for b = 1.0 is higher than that for b = 0. The radial stress
increases with increasing cavity expansion velocity. The quasi-static cavity
expansion pressure is the radial stress at the cavity surface when vr = 0.

Compared with the results given by Forrestal (1997) which are based on
the spherical cavity expansion theory, the radial stress derived based on the
cylindrical cavity expansion theory is smaller when the impact velocity is
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relatively low. However, it is higher when the impact velocity is relatively
high. It agrees with the statements by Forrestal (1997).

Fig.12.9 compares the radial stresses between the elastic-plastic response
and the elastic-crack-plastic response for incompressible material. From Fig.
12.9, the stress is higher for the elastic-plastic response when the velocity
is lower. When the velocity increases, the stress of the elastic-crack-plastic
response gradually transfers to that of elastic-plastic response. Finally, the
curves of the two responses intersect.

Fig. 12.8. Radial stress at cavity surface versus cavity expansion velocity (incom-
pressible material, elastic-crack-plastic response)

Fig.12.10 shows the curves of elastic-crack interface velocity c1 versus
plastic-crack interface velocity c during the cavity expansion. The curves are
different for different parameter b. Fig.12.11 plots the curves of the cavity
expansion velocity vr versus the plastic-crack interface velocity c for incom-
pressible material. Fig.12.12 plots the curves of the radial stress versus the
radius for incompressible material under the elastic-crack-plastic response.
Fig.12.12 shows that the stress at the cavity surface is the highest and re-
duces gradually with the increasing radius.

12.5.2 Compressible Material

Figs.12.13 and 12.14 compare the cavity expansion stress of compressible ma-
terials with that of incompressible materials under elastic-plastic response for
b = 0 (Single-shear theory) and b = 1.0 (Twin-shear theory) respectively. It
is seen that for a given cavity expansion velocity, the cavity expansion surface
pressure of incompressible materials is much higher than that of compressible
materials.
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Fig. 12.9. Comparison of radial stress for elastic-plastic and elastic-crack-plastic
responses (incompressible material)

Fig. 12.10. Curves of c1 versus c for incompressible material

Fig.12.15 illustrate the curves of cavity expansion velocity vr versus the
plastic-crack interface velocity c. From Fig.12.15, for a given vr, c is the
highest when b = 0, while it is the lowest when b = 1.0. Fig.12.16 plots
the relations between the cavity expansion velocity, plastic-crack interface
velocity c and plastic-crack interface velocity c1 for compressible materials
with b = 0.5. Similar to the incompressible materials, for a given vr the
elastic-crack interface velocity c1 is higher than the plastic-crack interface
velocity c, where f(ξ, y1, y2) and g(ξ, y1, y2) correspond with Eqs.(12.94)
and (12.95). The curves of c1 and c intersect at the point when vr/(Y/ρ0)1/2 =
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Fig. 12.11. Curves of vr versus c for incompressible material

Fig. 12.12. Radial stress versus radius for incompressible material

1.05, where the cracked zone disappears and the response of the material is
elastic-plastic.

Figs.12.17 and 12.18 compare the cavity expansion pressures between the
elastic-plastic and elastic-crack-plastic responses for compressible materials
for b = 1.0 (Twin-shear theory), b = 0.5 (Median theory) and b = 0 (Single-
shear theory), respectively.

From Figs.12.17, 12.18, and 12.19, the cavity expansion pressure for
elastic-crack-plastic response is lower when the expansion velocity is lower.
With the increase of the cavity expansion velocity, the cracked zone disap-
pears and the response of the target becomes elastic-plastic.
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Fig. 12.13. Comparison of radial stress between incompressible and compressible
materials (b = 0)

Fig. 12.14. Comparison of radial stress between incompressible and compressible
materials (b = 1.0)

For compressible materials the curves of the cavity expansion pressure
versus cavity expansion velocity can be expressed as a quadric parabola,

σr/K = A1 +B1

(
vr

cp

)2
, (12.97)

where vr is the cavity expansion velocity; A1 is the quasi-static cavity expan-
sion pressure.
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Fig. 12.15. vr versus c for elastic-crack-plastic response (incompressible materials)

Fig. 12.16. Cavity expansion velocity versus interface velocity (compressible ma-
terials, b = 0.5)

The coefficients in Eq.(12.97) are listed in Table 12.1 for the elastic-
plastic and elastic-crack-plastic responses, respectively, with different unified
strength theory parameter b.
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Fig. 12.17. Comparison of cavity expansion velocities between elastic-plastic and
elastic-crack-plastic responses (compressible materials, b = 1.0)

Fig. 12.18. Comparison of cavity expansion velocities between elastic-plastic and
elastic-crack-plastic responses (compressible materials, b = 0.5)

12.6 Penetration Resistance Analysis

The capabilities of penetration and destruction of a long rod projectile are
much higher than those of the old-style armor-piercing projectile since the
long rods have a higher length-diameter ratio. The long rod projectiles can
be divided into straight-shank type and cone-shank type. According to the
shape of warhead the long rod can be categorized into a spherical, ogive, and
conical warhead nose, respectively, as shown in Fig.12.20.
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Fig. 12.19. Comparison of cavity expansion velocities between elastic-plastic and
elastic-crack-plastic responses (compressible materials, b = 0)

Table 12.1. Curve fitting of cavity expansion pressure for compressible materials
under elastic-plastic response

Response Material strength A1 B1

parameter b

1.0 0.044 1.80

Elastic-plastic 0.5 0.045 1.83

0.0 0.046 1.87

1.0 0.029 2.90

Elastic-crack-plastic 0.5 0.030 3.02

0.0 0.031 3.10

Because a long rod impacts and penetrates a target with an impact ve-
locity V0 and a penetration velocity Vz, the coordination xOz of the target
is established as shown in Fig.12.21. The origin is the impacting point of
the long rod, the positive z axial is downwards vertically, and the x axial
is horizontal. The resistance on the long rod includes the resistance on the
warhead and that on the surface of the shank. The resistance on the shank
surface is very small and can be omitted because the velocity of the impact
and penetration is low (Jones et al., 1993; Bless et al., 1987).

The tractions that resist the penetration are the normal force Fn, and the
tangential force Ft. The resistance is analyzed in the following context for
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Fig. 12.20. Different head shapes of straight long rods

Fig. 12.21. Rod-target system

Fig. 12.22. Resistance on the long rod

the ogive-nose projectile. The resistances for other nose shape projectiles can
be similarly derived.

For an ogive-nose projectile as shown in Fig.12.20(b) with radius of s,
central angle of θ0,

θ0 = sin−1
(

s − a

s

)
. (12.98)
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The normal force on the tiny surface of the warhead is

dFn = 2πs2
[
sin θ −

(
s − a

s

)]
σrdθ. (12.99)

The tangential force on the tiny surface of the warhead is

dFt = 2πs2
[
sin θ −

(
s − a

s

)]
μσrdθ, (12.100)

where σr is the principal stress on the warhead, which is also the radial
stress on the cavity surface using the cavity expansion theory. μ is the friction
coefficient. The value of μ depends on the penetration depth, velocity and the
material properties of the rod and the target. Its linear experiential formula
is proposed by Bowden and Tabor (1966),

μ =

⎧⎨
⎩

μd, Vz � Vd,

μs − μs − μd

Vd
Vz, Vz � Vd,

(12.101)

where Vd is the critical penetration velocity which can be obtained by trial-
and-error; μs and μd are friction parameters of the targets, which are related
to the penetration velocity. For the geomaterials, there are Vd = 300 m/s,
μs = 0.5, μd = 0.08 (Bowden and Tabor, 1966).

The radial stress can be written as

σr/K = A1 +B1

(
νr

cp

)2
. (12.102)

The relation between the cavity expansion velocity and the penetration
velocity is

Vr = Vz cos θ, (12.103)

where θ is the angle between the surface normal and the rod axial directions.
Putting Eq.(12.103) into Eq.(12.102),

σr/K = A1 +B1

(
Vz cos θ

cp

)2
. (12.104)

The total resistance on the warhead is

Fz = 2πs2
∫ π

2

θ0

[(
sin θ − s − a

s

)
(cos θ + μ sin θ)

]
σrdθ. (12.105)

Integrating Eq.(12.102) with reference to Eq.(12.105),
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Fz = αs + βsV
2
z , (12.106)

where

αs = π a2KA1[1 + 4μψ2(π/2− θ0)− μ(2ψ − 1)(4ψ − 1)1/2], (12.107)

βs = π a2ρB1

[
(8ψ − 1)
24ψ2

+ μψ2(π/2− θ0)

−μ(2ψ − 1)(6ψ2 + 4ψ − 1)(4ψ − 1)1/2

24ψ2

]
.

(12.108)

The resistance on rods of other shapes can also be deduced similarly with
the replacement of different geometry shape functions based on the shapes
of the nose of the rod.

12.7 Analysis and Verification of Penetration Depth

Assuming a long rod is non-deformable during the penetration, with reference
to the Newton’s second law,

mp
dVz

dt
= mpVz

dVz

dz
= −Fz = −(αs + βsV

2
z ), (12.109)

where αs and βs are the shape parameters of the nose; mp is the mass of the
rod.

Integrating Eq.(12.109) with reference to the initial and final conditions,
the penetration depth can be deduced,

Zmax =
mp

2βs
ln

[
1 +

βsV
2
0

αs

]
. (12.110)

The parameters for the target material in Section 12.5 are also applied
for the current problem. The parameters used for the long rod are mp=1.6
kg, s=91.5 mm, a=15.25 mm.

Based on the results of the cavity expansion pressure for compressible
materials in Section 12.5, the final penetration depth can be derived for the
target material impacted by an ovate straight long rod with a velocity of 300
sim 1100 m/s. The analytical results from the current penetration model
agree very well with the test data (Forrestal et al., 1996) when the initial
velocity is low.
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The penetration depths are illustrated schematically in Fig.12.23 for the
friction parameters μ = 0.1 and μ = 0.2 respectively. From Fig.12.23 the fric-
tion parameter has great influence on the penetration depth. The penetration
depth for μ = 0.1 is closer to the test results (Forrestal et al., 1996).

Fig. 12.23. Comparison of penetration depths

Fig.12.24 shows the influence of rod mass on the penetration depth. It is
seen that the heavier the rod, the greater the penetration capability.

Fig. 12.24. Influence of the rod mass on the penetration depth

The penetration depths are solved for the ovate and spherical warheads
with the same shank diameter as that for the ogive-nose projectile as shown
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Fig.12.25. It can be seen that the ovate-warhead rod can penetrate deeper
than the spherical warhead rod.

Fig. 12.25. Influence of different shapes of warhead on penetration depth

12.8 Summary

Based on the cylindrical cavity-expansion theory, the unified strength theory
is applied as the failure condition for penetration analysis. The cavity ex-
pansion pressure is deduced from the elastic-plastic and elastic-crack-plastic
responses for incompressible and compressible materials. Assuming the long
rods are rigid during the penetration, the penetration depths of rods are ob-
tained and are compared with the test results. The following conclusions are
derived:

(1) It is convenient to use the unified strength theory for penetration
problems.

(2) When the cavity expansion velocity is low, the target response is
elastic-crack-plastic. When the cavity expansion velocity increases to a certain
value, the cracked zone disappears and the target responds elastic-plastically.
It agrees with the results reported by Forrestal (1997).

(3) The cavity expansion pressure and the penetration depth are different
when the different parameter b is used, which represents a different failure
criterion. The penetration depth is higher for b = 0 than that for b = 1.
The current solutions agree well with test results in the published literature
for low impact velocity cases (Forrestal et al., 1996). However, the predicted
penetration depth is smaller than that in the test results when the impact
velocity is larger than 1000 m/s.
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(4) For a given shape and dimension, the higher the rod mass or the
density of the rod material, the deeper the penetration. This may be the
underlying reason why those high-density metals are used as warheads for
modern weapons.

(5) The shape of a warhead has a significant influence on the penetration
depth. When the shank diameter is the same, the ovate-warhead rod can
penetrate deeper than the spherical warhead.
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13

Plastic Analysis of Orthogonal Circular Plate

13.1 Introduction

Many plates used in practical engineering are strengthened by stiffeners to
achieve high strength and low structural weight. Stiffeners are usually placed
along the orthogonal directions. Thus a plate strengthened with stiffeners will
exhibit structural plane orthotropy with two orthogonal axes of symmetry
(Tsai, 1968; Daniel and Ishai, 1994).

Material orthotropy may also arise from the cold forming process, so that
yield stresses in different directions are different. Regardless of the source,
the orthotropy can be described with a proper yield criterion that has been
verified by experimental evidence. A pioneering work that investigated the
plastic limit behavior of an orthotropic circular plate was carried out by
Markowitz and Hu (1965), who employed a modified Tresca criterion. Save
et al. (1985; 1997) summarized the plastic limit solutions for an orthotropic
circular plate. Plastic limit analysis of orthotropic circular plates using the
unified yield criterion was derived by Ma et al. (2002). A series of new results
were given.

In the following context an orthotropic yield criterion which is the exten-
sion of the unified yield condition (UYC) will be explored. The normality law
is assumed for the yield condition. The directions of the principal stresses and
the orthotropy are assumed to be the radial and circumferential directions.

13.2 Orthotropic Yield Criteria

The unified yield criterion (UYC) may represent or approximate various dif-
ferent yield criteria, e.g., the single-shear stress criterion (Tresca criterion,
1864), octahedral shear stress criterion (Huber-von Mises criterion, 1904-
1913) and twin-shear stress criterion (1961; 1983). However, it is applicable
to isotropic materials only. Proper modification to the criteria should be made
if it is applied to orthotropic materials or orthotropic structures.
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For an anisotropic plate, if it is assumed that the UYC is still valid, the
piecewise linear mathematical formula of the unified yield criterion in terms
of the moment Mr and Mθ may take another form of

Mθ

M0
= ai

Mr

M0
+ bi, (i = 1, ..., 12), (13.1)

where Mr and Mθ are the actual radial and circumferential moments respec-
tively; M0 is the yield moment that is independent of the orientations; ai and
bi (i=1, ..., 12), are parameters corresponding to the 12 segments of the yield
loci determined by the unified yield criterion parameter b.

For an orthotropic circular plate with the principal stress directions coin-
ciding with the radial and circumferential directions, the unified yield crite-
rion in generalized stresses form can be expressed as

Mθ

Mθ0
= ai

Mr

Mr0
+ bi, (i = 1, ..., 12), (13.2)

where Mr0 and Mθ0 are the yield moments in the radial and circumferential
directions respectively.

With the normalized quantities of κ = Mθ0/Mr0, mθ = Mθ/Mr0, and
mr = Mr/Mr0, Eq.(13.2) can be rewritten as

mθ = Aimr +Bi, (i = 1, ..., 12), (13.3)

where Ai = aiκ, Bi = biκ (i=1, ..., 12). κ is the ratio of the circumferential
yield moment to the radial yield moment, called orthotropy coefficient. κ = 1
corresponds to the special case of isotropy, while κ > 1 or κ < 1 represents
the circumferential or radial strengthening of the plate.

Similarly, the Huber-von Mises yield criterion can be rewritten with the
normalized quantities as

M2
θ

M2
θ0

− MθMr

Mθ0Mr0
+

M2
r

M2
r0

= 1. (13.4)

In terms of the dimensionless variables, Eq.(13.4) becomes

m2
θ − κmθmr + κ2m2

r = κ2. (13.5)

It is seen that Eq.(13.5) is nonlinear with respect to the two variables mr

and mθ, which makes it not straightforward for the plastic limit analysis of
plates.

The yield loci with different orthotropic ratios of the modified unified
yield criterion (UYC) defined in Eq.(13.3) are plotted in Figs.13.1(a)∼(c)
with respect to b=0, 1, 0.5. Fig.13.1(d) illustrates the modified Mises criterion
defined in Eq.(13.5).
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Fig. 13.1. Orthotropic yield criteria

The orthotropic yield criteria are compared in Fig.13.2 with different or-
thotropic ratios, i.e., κ = 2, κ = 0.5, and the isotropic case of κ = 1. It shows
again that even in orthotropic conditions, the Huber-von Mises criterion can
be approximately represented by the UYC with b = 0.5. Thus, it is possi-
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ble to obtain an approximate plastic limit solution to an orthotropic circular
plate in terms of the Huber-von Mises yield criterion.

The moments at the corners on the yield loci in Fig.13.2 can be derived
by solving the equations for the two intersecting lines which have the forms
of

mr(i−j) = −Bi − Bj

Ai − Aj
,mθ(i−j) =

AiBj − AjBi

Ai − Aj
,

(i = 1, ..., 11, j = i+ 1; i = 12, j = 1),
(13.6)

mr(i−j) = − bi − bj

ai − aj
mθ(i−j) =

aibj − ajbi

ai − aj
κ,

(i = 1, ..., 11, j = i+ 1; i = 12, j = 1),
(13.7)

where the line with i = 1 corresponds to line AB, and i increases from 1 to
12 in anti-clockwise order. Thus, i = 12 corresponds to line LA. The symbol
(i − j) denotes the corner intersected by line i and line j.

The values of the parameters ai and bi (i=1, ..., 12) are listed in Table
13.1. The moments at the 12 corners are listed in Table 13.2. The moment and

Table 13.1. Constants ai and bi in the modified unified yield criterion

AB BC CD DE EF FG

(i = 1 ) (i = 2 ) (i = 3) (i = 4) (i = 5) (i = 6)

ai −b b
1+b

1
1+b

1 + b 1+b
b

− 1
b

bi 1 + b 1 1 1 + b 1+b
b

− 1+b
b

GH HI IJ JK KL LA

(i = 7) (i = 8) (i = 9) (i = 10) (i = 11) (i = 12)

ai −b b
1+b

1
1+b

1 + b 1+b
b

− 1
b

bi 1 + b 1 1 1 + b 1+b
b

− 1+b
b

velocity fields, the plastic limit loads of orthotropic circular plates with differ-
ent orthotropic ratios and boundary conditions with respect to the modified
anisotropic yield criteria will be presented in the following sections.

13.3 General Solutions

For clear notification, dimensionless variables p and r, i.e., p = Pa2/Mr0 and
r = R/a are defined for an orthotropic plate with uniform thickness, where
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Table 13.2. Moments at corners

Node A B C D E F

mθ κ 2(1+b)
2+b

κ κ 1+b
2+b

κ 0 − 1+b
2+b

κ

mr 1 1+b
2+b

0 − 1+b
2+b

−1 − 2(1+b)
2+b

Node G H I J K L

mθ −κ − 2(1+b)
2+b

κ −κ − 1+b
2+b

κ 0 1+b
2+b

κ

mr −1 − 1+b
2+b

0 1+b
2+b

1 2(1+b)
2+b

P is the uniformly distributed load, a is the outer radius of the plate and R
is the radius variable in the range of 0 to a. For an axisymmetric loading,
any two orthogonal directions at the central point are principal directions for
stresses and orthotropy. Hence the plate is locally isotropic at the center and
there exists Mr = Mθ or mr = mθ. Any stress profile should be symmetric
about that point, which corresponds to point A′ in Fig.13.2.

Point A′ may be located on different line segments, namely lines with
i = 11, 12, 1, or 2, according to the orthotropic ratio κ. If κ = 1, A′ coincides
with the corner point A. When κ > 1, A′ falls on line KL (i = 11) or LA
(i = 12), while A′ falls on line AB (i = 1) or BC (i = 2) when κ < 1.

For a simply supported circular plate in a fully plastic limit state, the
moment at the outer edge satisfies the yield point C in Fig.13.2. The moments
in the whole plate correspond to the yield segments from A′ to C in anti-
clockwise order. The total number of the segments could be 4 when A′ is on
line KL, and could be reduced to 1 when A′ is on line BC. On the other
hand, the edge of a fixed supported circular plate corresponds to a yield point
on line EF , which has been discussed in Chapter 3 and Chapter 4. In the
present study, the moments at the edge are assumed to exactly correspond
with the corner point F in Fig.13.2. Thus the total number of the segments
regarding the fixed supported circular plate varies from 4 to 7 with reference
to the different orthotropic ratio κ.

According to the piecewise linear yield criterion in Eq.(13.3), the radial
moment can be integrated as

mr =
Bi

1− Ai
− pr2

2(3− Ai)
+ Cir

−1+Ai , (13.8)

where i represents each valid segment of the yield loci; ci are integration
constants, which could be determined by continuity and boundary conditions.

In a general case where the moments in the plate cover total n seg-
ments on the yield loci, e.g., if κ > 1, the yield moments are on segments
A′A,AB,BC (n = 3) or on segments A′L,LA, AB,BC (n = 4) with the
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Fig. 13.2. Comparison of the modified yield criteria

moments varying from A′ to C with r increasing from 0 to 1, the continuity
and boundary conditions of the radial moment will yield

B(1)

1− A(1)
− pr20
2(3− A(1))

+ C1r
−1+A(1)
0 = mr(0), (13.9a)

B(1)

1− A(1)
− pr21
2(3− A(1))

+ C1r
−1+A(1)
1 = mr(1), (13.9b)

B(2)

1− A(2)
− pr21
2(3− A(2))

+ C2r
−1+A(2)
1 = mr(1), (13.9c)

B(2)

1− A(2)
− pr22
2(3− A(2))

+ C2r
−1+A(2)
2 = mr(2), (13.9d)



13.3 General Solutions 299

B(i)

1− A(i)
− pr2i−1
2(3− A(i))

+ Cir
−1+A(i)
i−1 = mr(i−1), (13.9e)

B(i)

1− A(i)
− pr2i
2(3− A(i))

+ Cir
−1+A(i)
i = mr(i), (13.9f)

B(n)

1− A(n)
− pr2n−1
2(3− A(n))

+ Cnr
−1+A(n)
n−1 = mr(n−1), (13.9g)

B(n)

1− A(n)
− pr2n
2(3− A(n))

+ Cnr
−1+A(n)
n = mr(n), (13.9h)

where the subscript i of the parameters A(i) and B(i) denotes the ith valid
segment from A′ on the yield loci in Fig. 13.2. The subscript i of the radial
moment mr(i) represents the ith corner point from A′, e.g., mr(0) corresponds
to the yield moment on point A′, whilemr(n) corresponds to the yield moment
at the corner point C.

Defining α1 = r1/r2, α2 = r2/r3, αi = ri/ri+1 and αn−1 = rn−1, there
then exist r1 = α1α2 · · · αn−1, r2 = α2α3 · · · αn−1, ri = αi · · · αn−1 and
rn−1 = αn−1. With reference to the continuity and boundary conditions,
Ci (i = 1, ..., n) in Eq.(13.9a) to Eq.(13.9h) are determined,

C1 = 0, (13.10a)

C2 =
[
−

(
B(2)

1− A(2)
− mr(1)

)
+

(
B(1)

1− A(1)
− mr(1)

)
3− A(1)

3− A(2)

]
(r1)

1−A(2) ,

(13.10b)

Ci =
[
−

(
B(i)

1− A(i)
− mr(i−1)

)
+

(
B(1)

1− A(1)

− mr(1)

) 3− A(1)

3− A(i)
(α1α2 · · ·αi−2)

−2
]
(ri−1)

1−A(i) ,

(13.10c)

Cn =
[
−

(
B(n)

1− A(n)
− mr(n−1)

)
+

(
B(1)

1− A(1)

− mr(1)

) 3− A(1)

3− A(n)
(α1α2 · · ·αn−2)

−2
]
(rn−1)

1−A(n) ,

(13.10d)

where the ratios κ1, κ2, · · ·, κi, · · ·, κn−2 are given by
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B(2)

1− A(2)
− mr(2) −

(
B(1)

1− A(1)
− mr(1)

)
3− A(1)

3− A(2)
α−2
1

+
[
−

(
B(2)

1− A(2)
− mr(1)

)
+

(
B(1)

1− A(1)
− mr(1)

)
3− A(1)

3− A(2)

]
α
1−A(2)
1 = 0,

(13.11a)

B(i)

1− A(i)
− mr(i) −

(
B(1)

1− A(1)
− mr(1)

)
3− A(1)

3− A(i)
(α1α2 · · ·αi−1)

−2

+
[
−

(
B(i)

1− A(i)
− mr(i−1)

)
+

(
B(1)

1− A(1)

− mr(1)

) 3− A(1)

3− A(i)
(α1α2 · · ·αi−2)

−2
]

α
1−A(i)
i−1 = 0.

(13.11b)

B(n)

1− A(n)
− mr(n) −

(
B(1)

1− A(1)
− mr(1)

)
3− A(1)

3− A(n)
(α1α2 · · ·αn−1)

−2

+
[
−

(
B(n)

1− A(n)
− mr(n−1)

)
+

(
B(1)

1− A(1)

− mr(1)

) 3− A(1)

3− A(n)
(α1α2 · · ·αn−2)

−2
]

α
1−A(n)
n−1 = 0.

(13.11c)

The above simultaneous equations can be solved by numerical iteration
method, such as a half interval search method. When αi (i=1, ..., n − 1) is
derived, the demarcating radius ri (i=1, ..., n − 1) is then obtained.

The plastic limit load can be derived from Eq.(13.9b) with reference to
Eq.(13.10a),

p =
[

B(1)

1− A(1)
− mr(1)

]
2(3− A(1))

r21
. (13.12)

Substituting the integration constants Ci (i=1, ..., n), ri(i=0, ..., n), and
the plastic limit load p into Eq.(13.8), the radial moment field mr of the
whole plate is then obtained.

The velocity field of the plate can be integrated from the compatible
conditions and the associated plastic flow conditions, which are the same as
that for the isotropic case,

ẇ = ẇ0
(
c1ir

1−A(i) + c2i
)
, ri−1 � r � ri, (i = 1, ..., n), (13.13)

where c1i and c2i (i=1, ..., n) are the integration constants corresponding to
the n valid segments on the yield loci. ri (i=0, ..., n) are the demarcating
radii, where the moments are located at the corner points of the yield loci.
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The continuity and boundary conditions of the velocity field in the current
condition gives: (1) ẇ(r = 0) = ẇ0; (2) ẇ and dẇ/dr (r = ri, i = 1, ..., n−1)
are continuous; (3) ẇ(r = 1) = 0. With reference to these conditions, the
constants c1i and c2i in Eq.(13.13) can be derived,

c21 = 1, (13.14a)

c11r
1−A(1)
1 + c21 = c12r

1−A(2)
1 + c22, (13.14b)

(1− A(1))c11r
−A(1)
1 = (1− A(2))c12r

−A(2)
1 , (13.14c)

c1ir
1−A(i)
i + c2i = c1(i+1)r

1−A(i+1)
i + c2(i+1), (13.14d)

(1− A(i))c1ir
−A(i)
i = (1− A(i+1))c1(i+1)r

−A(i+1)
i , (13.14e)

c1(n−1)r
1−A(n−1)
n−1 + c2(n−1) = c1(n)r

1−A(n)
n−1 + c2n, (13.14f)

(1− A(n−1))c1(n−1)r
−A(n−1)
n−1 = (1− A(n))c1nr

−A(n)
n−1 , (13.14g)

c1nr
1−A(n)
n + c2n = 0. (13.14h)

The 2n constants c1i and c2i (i=1, ..., n) can be solved directly from the
above 2n simultaneous linear equations.

Substituting these integration constants into Eq.(13.13), the velocity field
of the circular plate is then obtained.

13.4 Simply Supported Orthotropic Circular Plate

For a simply supported circular plate with orthotropic ratio κ, there are four
possible cases, namely point A′ where the moment corresponding to the plate
center is on segments KL, LA, AB or BC (Fig.13.2). The following sections
will discuss the four cases with reference to κ < 1 and κ > 1.

13.4.1 Case I: Point A′ Falls on Segment KL

When κ > 1, the circumferential yield moment mθ0 is less than the radial
yield moment mr0. Point A′ may be located on either KL or LA. Considering
the case when point A′ coincides with point L, there are



302 13 Plastic Analysis of Orthogonal Circular Plate⎧⎪⎨
⎪⎩

mθ = κa11mr + κb11,

mθ = κa12mr + κb12,

mθ = mr.

(13.15)

The orthotropic ratio κ in this case is derived as

κ =
b11 − b12

a12b11 − a11b12
. (13.16)

When κ > b11−b12
a12b11−a11b12

, point A′ falls on segment KL. The four seg-
ments (n = 4) of A′L,LA, AB, and BC are valid. Because of the rotational
symmetry of the moments at the plate center, the radial moment at r = 0
corresponding to point A′ and mr = mθ is derived,

mr0 =
B11

1− A11
or mr0 =

κb11
1− κa11

, (13.17)

which is determined by the unified yield criterion parameter b and the or-
thotropic ratio κ.

13.4.2 Case II: Point A′ Falls on Segment LA

When b11−b12
a12b11−a11b12

� κ > 1, pointA′ falls on segment LA. The valid segments
are A′A,AB and BC with the radial moment mr varying from point A′ to
C on the yield loci when r increases from 0 to 1. The radial moment at point
A′ has the form of

mr0 =
B12

1− A12
or mr0 =

κb12
1− κa12

. (13.18)

13.4.3 Case III: Point A′ Falls on Segment AB

When 1 � κ > b1−b2
a2b1−a1b2

, the moments in the whole plate correspond to
the two yield segments of A′B and BC. The radial moment mr at the plate
center is

mr0 =
B1

1− A1
or mr0 =

κb1
1− κa1

. (13.19)

13.4.4 Case IV: Point A′ Falls on Segment BC

when κ � b1−b2
a2b1−a1b2

, point A′ locates on BC. The moments in the whole
plate correspond to the yield segment BC. The valid segment is A′C and the
radial moment at the plate center is

mr0 =
B2

1− A2
or mr0 =

κb2
1− κa2

. (13.20)
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13.4.5 Moment, Velocity Fields and Plastic Limit Load

The moments at other corner points and the parameters A(i) and B(i) are
listed in Table 13.3, in which mr(i−j) is given by Eqs.(13.6) and (13.7).

Table 13.3. Yield moments at corner points and the corresponding A(i) and B(i)

i 1 2 3 4

Case I mr(i) mr(11−12) mr(12−1) mr(1−2) mr(2−3)

(n = 4) A(i) A11 A12 A1 A2

B(i) B11 B12 B1 B2

Case II mr(i) mr(12−1) mr(1−2) mr(2−3) mr(3−4)

(n = 3) A(i) A12 A1 A2 A3

B(i) B12 B1 B2 B3

Case III mr(i) mr(1−2) mr(2−3) mr(3−4) mr(4−5)

(n = 2) A(i) A1 A2 A3 A4

B(i) B1 B2 B3 B4

Case IV mr(i) mr(2−3) mr(3−4) mr(4−5) mr(5−6)

(n = 1) A(i) A2 A3 A4 A5

B(i) B2 B3 B4 B5

Fig.13.3(a) to Fig.13.3(c) illustrate the moment fields in terms of the or-
thotropic unified yield criterion with respect to κ = 2, κ = 1, and κ = 0.5
respectively. The three figures correspond to Case II, Case III and Case IV
respectively. From Fig.13.3, when κ �= 1 or the plate has different yield mo-
ments in the radial and circumferential directions, both the moment distri-
bution profiles and the moment state at the plate centre in terms of different
parameter b (b=0, b=0.5 and b=1) in the modified unified yield criterion are
quite different.

The yield loci with b = 0, which is the same as the Tresca criterion, gives
the lowest yield moment at the plate center. When the Tresca criterion is
applied, the circumferential moment mθ keeps constant on the whole plate
for Case III and Case IV, while it is constant only in the range of r1 � r � 1
for Case II. Although it is unreasonable, the solutions with reference to the
Tresca criterion are generally preferred in practical engineering.

Based on the modified unified yield criterion on the other hand, the mo-
ment distribution of an orthotropic plate with varying yield properties can
also be conveniently derived.
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Fig. 13.3. Moment fields of orthotropic simply supported circular plate

The velocity fields from different cases are shown in Fig.13.4. The Tresca
criterion (b = 0) gives a linear line (Fig.13.4(b) and Fig.13.4(c) or piecewise
linear lines in Fig.13.4(a)) for velocity distributions with different orthotropic
ratios. The criteria with b = 0.5 and b = 1, which represent approximately the
modified Huber von-Mises criterion and the Yu criterion respectively, yield
smooth and orthotropic ratio dependent velocity distributions.
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Fig. 13.4. Velocity fields of orthotropic simply supported circular plate

The unified yield criterion parameter b is the key factor in unifying dif-
ferent yield criteria. The curve of plastic limit load versus the parameter b
is plotted in Fig.13.5(a) for three orthotropic ratios of κ = 2, κ = 1 and
κ = 0.5. It is seen that for all the three cases, the plastic limit load increases
monotonically with the increase of the parameter b. The plastic limit load
when κ = 2 is much higher than those with κ = 1 and κ = 0.5. This indicates
that a higher plastic limit load can be achieved when the plate is stiffened
along the circumferential direction (κ > 1) instead of the radial direction.

Denoting a difference ratio ρ as
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ρ =
p − pTresca

pTresca
× 100%. (13.21)

It is convenient to compare the effect of different yield criteria on the
plastic limit load. Fig.13.5(b) gives the difference ratio versus the parameter b.
It is found that the difference ratio increases monotonically with the increase
of parameter b. The difference ratio is as much as 7.1% and 12.6% when
κ = 2; 8.1%, 14.0% when κ = 1, and 13.3% and 22.2% when κ = 0.5 with
b = 0.5 and 1 respectively. This implies that the plastic limit loads based
on different yield criteria are very different, which is helpful in the optimal
design of an orthotropic circular plate.

Fig. 13.5. Effects of the unified yield criteria parameter b

The effect of the orthotropic ratio on the plastic limit load is shown in
Fig.13.6(a). It can be seen that the plastic limit load increases monotonically
and sharply with the increase of the orthotropic ratio κ, which indicates
that the strengthening along the circumferential direction does improve the
load bearing capacity of a plate. The curve of difference ratio versus the
orthotropic ratio with respect to two values of the unified yield criterion
parameter, i.e., b = 0.5 and b = 1, is plotted in Fig.13.6(b). The maximum
difference occurs at κ = 0.56 with percentage differences of 13.8% and 22.9%
with respect to b = 0.5 and b = 1.

The percentage difference is almost constant when κ > 1 and they are
about 7% and 13% corresponding to, respectively, b = 0.5 and b = 1. This
indicates again that different yield criteria affect the plastic limit load signif-
icantly for a wide range of orthotropic ratios.
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Fig. 13.6. Effect of orthotropic ratio for simply supported plate

13.5 Fixed Supported Circular Plate

For the fixed supported circular plate, there also exist four possible cases,
namely point A′ falls on KL, LA, AB, or BC corresponding to the differ-
ent orthotropic ratio κ. The moments in the whole plate correspond to the
segments from A′ to F in anti-clockwise order.

13.5.1 Case I: Point A′ Falls on Segment KL

When κ > 1 and κ > b11−b12
a12b11−a11b12

, point A′ locates on the segment KL.
There are in total seven valid segments (n = 7), namely, A′L, LA, AB, BC,
CD, DE, and EF , on the yield surface. Because of the rotational symmetry
of the moments about the plate center, the radial moment at r = 0 corre-
sponding to point A′ where mr = mθ is the same as that in Eq.(13.17).

13.5.2 Case II: Point A′ Falls on Segment LA

When b11−b12
a12b11−a11b12

� κ > 1, pointA′ falls on segment LA. The valid segments
are A′A,AB,BC,CD,DE, and EF with the radial moment mr varying from
point A′ to C on the yield loci when r increases from 0 to 1. The radial
moment at A′ is the same as that in Eq.(13.18).

13.5.3 Case III: Point A′ Locates on Segment AB

When 1 � κ > b1−b2
a2b1−a1b2

, point A′ falls on the yield segment AB and the
moments in the whole plate correspond to the yield segments A′B, BC, CD,
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DE, and EF . The radial moment mr at the plate center is the same as that
in Eq.(13.19).

13.5.4 Case IV: Point A′ Falls on Segment BC

When point A′ falls on segment BC with κ � b1−b2
a2b1−a1b2

, the moments in the
whole plate correspond to the yield segments of BC, CD, DE and EF . The
valid segment is A′C and the radial moment at plate center is the same as
that in Eq.(13.20).

13.5.5 Moment Fields, Velocity Fields, and Plastic Limit Load

The moments at the corner points in different cases and the parameters A(i)
and B(i) in Eqs.(13.9) to (13.14) are listed in Table 13.4.

Table 13.4. Yield moments at corner points and the corresponding A(i) and B(i)

i 1 2 3 4 5 6 7

Case I mr(i) mr(11−12) mr(12−1) mr(1−2) mr(2−3) mr(3−4) mr(4−5) mr(5−6)

(n = 7) A(i) A11 A12 A1 A2 A3 A4 A5

B(i) B11 B12 B1 B2 B3 B4 B5

Case II mr(i) mr(12−1) mr(1−2) mr(2−3) mr(3−4) mr(4−5) mr(5−6)

(n = 6) A(i) A12 A1 A2 A3 A4 A5

B(i) B12 B1 B2 B3 B4 B5

Case III mr(i) mr(1−2) mr(2−3) mr(3−4) mr(4−5) mr(5−6)

(n = 5) A(i) A1 A2 A3 A4 A5

B(i) B1 B2 B3 B4 B5

Case IV mr(i) mr(2−3) mr(3−4) mr(4−5) mr(5−6)

(n = 4) A(i) A2 A3 A4 A5

B(i) B2 B3 B4 B5

The moment fields of the fixed circular plate with different orthotropic ra-
tios, namely κ = 2, κ = 1 and κ = 0.5, are shown in Fig.13.7(a) to Fig.13.7(c)
respectively. Fig.13.7(a) covers 6 valid yield segments, and Fig.13.7(b) and
Fig.13.7(c) cover 5 and 4 yield segments respectively. It is seen that when
κ �= 1 or the plate has different yield moments in the radial and circumfer-
ential directions, the moment distribution profiles and the moment state at



13.5 Fixed Supported Circular Plate 309

Fig. 13.7. Moment fields of orthotropic fixed supported circular plate

the plate center, with reference to different values of parameter b, i.e., b = 0,
b = 0.5 and b = 1, of the unified yield criterion are quite different.
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The velocity fields of the fixed plate for different cases are shown in
Fig.13.8. The Tresca criterion (b = 0) gives a linear line (Fig.13.8(b) and
Fig.13.8(c)) when κ = 1 and κ = 0.5. The criteria with b = 0.5 and b = 1,
which represent approximately Huber-von Mises criterion and Yu criterion
respectively, derive the smooth and orthotropic ratio dependent velocity dis-
tributions.

Fig. 13.8. Velocity fields of orthotropic fixed supported circular plate
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The curves of plastic limit load and the difference ratio versus the uni-
fied yield criterion parameter b for the fixed circular plate are plotted in
Fig.13.9(a) with the three different orthotropic ratios κ = 2, κ = 1, and
κ = 0.5.

The plastic limit loads again increase monotonically with the increase
of the parameter b and are much higher than their counterparts from the
simply supported circular plate. The orthotropic ratio influences the plastic
limit load very much so that the plastic limit load when κ = 2 is much higher
than the plastic limit loads corresponding to κ = 1 and κ = 0.5.

The percentage differences are:
10.8% (from b = 0 to b = 0.5) to 18.3% (from b = 0 to b = 1) when κ = 2;
13.0% (from b = 0 to b = 0.5) to 21.7% (from b = 0 to b = 1) when κ = 1;
16.4% (from b = 0 to b = 0.5) to 27.3% (from b = 0 to b = 1) when

κ = 0.5.
They are higher than the counterparts from the simply supported circular

plate, which indicates that the yield criterion influences the plastic limit
load of fixed circular plates more significantly than for the simply supported
circular plate.

Fig. 13.9. Effect of the unified yield criteria parameter b

The effect of a different orthotropic ratio on the plastic limit load is shown
in Fig.13.10. The plastic limit load increases again monotonically with the
increase of the orthotropic ratio κ.
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On the other hand, the difference ratio decreases with the increase of
orthotropic ratio. The difference is about 10% and 17% when the value of
the unified yield criterion parameter b varies from b = 0 to b = 0.5 and from
b = 0 to b = 1.0.

Fig. 13.10. Effect of orthotropic ratio for fixed supported plate

13.6 Summary

A unified piecewise linear orthotropic yield criterion is suggested. A unified
solution employing the unified piecewise linear orthotropic yield criterion is
derived for orthotropic circular plates in simply and fixed supported edge
conditions.

It is found that the plastic limit load increases significantly with the in-
crease of the orthotropic ratio. Different yield criterion affects the plastic
limit load, moment and velocity fields.

For the simply supported orthotropic circular plate, the difference ratio
depends on the orthotropic ratio and it is 7.1% and 12.6% when κ = 2, 13.3%
and 22.2% when κ = 0.5 with respect to the modified Mises criterion and the
modified Yu criterion respectively. The different ratio is about 7% and 13%
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with respect to the modified Mises criterion and the modified Yu criterion
when κ > 1.

For the fixed supported orthotropic circular plate, the difference ratio
decreases with the increase of the orthotropic ratio. It is about 10% and 17%
with respect to the von Mises criterion and the Yu twin-shear stress criterion
respectively, when the orthotropic ratio is greater than 1.
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14

Unified Limit Analysis of a Wellbore

14.1 Introduction

A wellbore structure is usually used for underground engineering. The well-
bore should be kept stable as it is subjected to earth stress in the mining
engineering. A petroleum wellbore sustains the earth stress around the rock
as well as the internal pressure of the oil. The stability of the wellbore is of
great importance for the successful drilling.

Wellbore stress study in rock and soil engineering usually employs the
expansion theory for a thick cylinder. One main aspect of wellbore stability
analysis is the selection of an appropriate rock failure criterion, as indicated
by Al-Ajmi and Zimmerman (2006), and Al-Ajmi (2006). The commonly used
criterion for brittle failure of rocks is the Mohr-Coulomb criterion. This cri-
terion involves only the maximum and minimum principal stresses, σ1 and
σ3, and therefore assumes that the intermediate principal stress has no influ-
ence on rock strength. In contrast to the predictions of the Mohr-Coulomb
criterion, much evidence has been accumulating to suggest that intermediate
principal stress σ2 does indeed have a strengthening effect. Wellbore-stability
prediction by use of a modified Lade criterion was reported by Ewy (1999).
The stability analysis of vertical boreholes using the Mogi-Coulomb failure
criterion was presented by Al-Ajmi and Zimmerman (2006). A detailed report
is given by Al-Ajmi (2006). Luo and Li (1994) used the twin-shear strength
theory (Yu, 1985) to derive the gradually damaged behavior for thick bores
in rock and soil. Jian and Shen (1996) used the unified strength theory (Yu,
1991; 1994; 2004) to analyze the expansion trait by considering the strain-
softening characteristic of rock and soil. A unified solution for stability anal-
ysis of vertical boreholes was derived by Li and Yu (2001; 2002), Xu et al.
(2004), and Xu and Hou (2007).

In this chapter the unified strength theory is applied to analyze the stress
distribution of rock around wellbore and the limit load of the wellbore.
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14.2 Unified Strength Theory

The unified strength theory (Yu et al., 1991; 1992; 2004)

F = σ1 − 1
1 + b

(bσ2 + σ3) = σt when σ2 � σ1 + ασ3
1 + α

, (14.1a)

F ′ =
1

1 + b
(σ1 + bσ2)− σ3 = σt when σ2 � σ1 + ασ3

1 + α
, (14.1b)

can be expressed as

F =
[
σ1 − 1

1 + b
(bσ2 + σ3)

]
+

[
σ1 +

1
1 + b

(bσ2 + σ3)
]
sinϕ0

= 2c0 cosϕ0,

when σ2 � σ1 + σ3
2

+
σ1 − σ3

2
sinϕ0,

(14.2a)

F ′ =
[

1
1 + b

(σ1 + bσ2)− σ3

]
+

[
1

1 + b
(σ1 + bσ2) + σ3

]
sinϕ0

= 2c0 cosϕ0,

when σ2 � σ1 + σ3
2

+
σ1 − σ3

2
sinϕ0,

(14.2b)

where the unified strength theory parameter b (0 � b � 1)) is a yield criterion
parameter to reflect the relative effect of the intermediate principal stress
σ2. c0 and ϕ0 are the internal cohesion and the angle of internal friction
respectively.

The relations of c0 and ϕ0 to other commonly used material parameters
are

α =
1− sinϕ0
1 + sinϕ0

, σt =
2c0 cosϕ0
1 + sinϕ0

,

where α is the tensile and compressible strength ratio of a material, i.e.,
α=σt/σc.

For plane strain problems a coefficient m (0 < m � 1) should be intro-
duced. When the considered material is incompressible, m is approximately 1.
For simplicity, m is defined as 1 in the following analysis. The yield function
can be expressed as
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σ1 − σ3
2

= − 2(1 + b) sinϕ0
2(1 + b) +mb(sinϕ0 − 1)

σ1 + σ3
2

+
2(1 + b)c0 cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
.

(14.3a)
It can be rewritten as (Yu et al., 1997; 2001)

σ1 − σ3
2

= −σ1 + σ3
2

sinϕuni + Cuni cosϕuni, (14.3b)

where the unified strength parameters Cuni and ϕuni were proposed by Yu et
al. in 1997 and 2001.

These two unified strength parameters are referred to as the unified ef-
fective cohesion and unified effective internal friction angle respectively, with
regard to the unified strength theory (UST). Their relations to the material
constants C0 and ϕ0 can be written as (Yu et al., 1997; 2001; 2006)

sinϕuni = − 2(1 + b) sinϕ0
2(1 + b) +mb(sinϕ0 − 1)

,

Cuni =
2(1 + b) cosϕ0

2(1 + b) +mb(sinϕ0 − 1)
· C0
cosϕuni

,

(14.4)

where Cuni and ϕuni are the unified internal cohesion and the unified angle of
internal friction, Eq.(14.3) gives the failure criterion for plane strain problems
(Yu et al., 1997; 2006).

14.3 Equations and Boundary Conditions for the
Wellbore

The plan of a wellbore is shown in Fig.14.1. The cylindrical coordinate system
is used, where the z-axis is along the wellbore axis.

Assuming that the wellbore radius is R0, the internal liquid pressure is p0,
R∞ (R∞ >> R0) represents an infinite radius at which the liquid pressure is
p∞ and the rock lateral pressure is σr∞. The parameter β is the effective void
ratio, k is the seepage ratio, E is the elastic modulus, and ν is the Poisson’s
ratio. De and Dp represent the elastic and plastic zones of the surrounding
rock respectively. The radius r = Rd gives the boundary of the elastic and
plastic zones.

14.3.1 Strength Analysis for Wellbore

The stress state of the rock around the wellbore is plane strain and axi-
symmetrical. It is assumed that the lateral stress σr∞ around the rock is a
constant and the rock is isotropic. The normal stresses σr, σθ, and σz in the
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Fig. 14.1. Wellbore subjected to the pore pressure and seepage

radial, circumferential and axial directions are the principal stresses, and the
associated shear stress components are zero.

For the present plane strain problem, σz = ν(σr + σθ) and there is σ3 =
σr � σz � σθ = σ1.

When the drilling is finished, the rock around the wellbore is softened.
The modulus, internal cohesion, and angle of internal friction will decrease.
Denoting that c1 and ϕ1 are the softened internal cohesion and the angle of
internal friction respectively, and providing that the rock obeys the failure
criterion given in Eq.(14.3), in the initial stage of drilling there is

σr − σθ

2
= −σr + σθ

2
sinϕt0 + ct0 cosϕt0, (14.5a)

where

sinϕt0 =
2(1 + b) sinϕ0
2 + b+ b sinϕ0

, ct0 =
2(1 + b)c0 cosϕ0
2 + b+ b sinϕ0

· 1
cosϕt0

.

The parameters ct0 and ϕt0 represent the effective internal cohesion and
the effective angle of internal friction respectively in the original stage with
regard to the unified strength theory. When the drilling is finished, the failure
condition is

σr − σθ

2
= −σr + σθ

2
sinϕt1 + ct1 cosϕt1, (14.5b)

where

sinϕt1 =
2(1 + b) sinϕ1
2 + b+ b sinϕ1

, ct1 =
2(1 + b)c1 cosϕ1
2 + b+ b sinϕ1

· 1
cosϕt1

,

and ct1 and ϕt1 represent the corresponding effective internal cohesion and
effective angle of internal friction in the softening stage.
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14.3.2 Pore Pressure Analysis

According to the Darcy’s law, the pore pressure distribution along the radius
is

q =
2πrk

η

dp
dr

, (14.6)

where η is the liquid viscosity, r is the radius of the wellbore, p is the pressure
at the inner surface of the wellbore, q is the liquid flux per unit length in the
wellbore, and k is the seepage.

The boundary conditions are p |r=R0= p0 and p |r=R∞= p∞. The pressure
distribution along the radius direction is derived as

p = p0 + (p0 − p∞)
(
ln

r

R0
/ ln

R0
R∞

)
, R0 � r � R∞. (14.7)

Equilibrium equation for the rock by considering the seepage effect is

dσr

dr
− χ

dp
dr

+
σr − σθ

r
= 0. (14.8)

At the inner surface of the wellbore, the stress boundary condition is

σr|r=R0
= σr0 = −p0(1− χ). (14.9a)

At R∞,

σr|r=R∞ = σr∞ = σk + χp∞, (14.9b)

σz|r=R∞ = σz∞ = p∞b + χp∞, (14.9c)

where χ is the effective void ratio, p∞b and σ∞ are the vertical pressure and
horizontal stress caused by the above rock weight.

14.4 Elastic and Plastic Analysis

14.4.1 Elastic Phase

In the elastic stage the stress distribution can be obtained from Eqs.(14.7),
(14.8) and (14.9),
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σr = σr∞ + (σr∞ − σr0)
R20

R2∞ − R20

(
1− R2∞

r2

)
− χ(p0 − p∞)

2(1− μ)

×
[

R20
R2∞ − R20

(
R20
r2

− 1
)
+

(
ln

R0
r

)
/

(
ln

R0
R∞

)]
,

(14.10a)

σθ = σr∞ + (σr∞ − σr0)
R20

R2∞ − R20

(
1 +

R2∞
r2

)
− χ(p0 − p∞)

2(1− ν)

×
[
− R20

R2∞ − R20
(
R20
r2

+ 1) +
(
ln

R0
r
+ 1− 2ν

)
/

(
ln

R0
R∞

)]
.

(14.10b)

Based on the plane strain assumption, i.e., εz = 0, the following expression
can be obtained

σz = ν(σr + σθ), (14.10c)

where σr and σθ are expressed in Eqs.(14.10a) and (14.10b).

14.4.2 Plastic Limit Pressure

When the pressure p0 increases to the elastic limit, the rock material around
the wellbore falls into the plastic stage. In the plastic zone Dp where R0 <
r < Rd, from Eq.(14.5) the relation of σr and σθ to ct1 and ϕt1 is derived as

σθ − σr

2
= (ct1 cotϕt1 − σr)

sinϕt1

1 + sinϕt1
. (14.11)

From Eqs.(14.11), (14.7), (14.8) and the boundary condition in Eq.(14.9),
the pressure at the elastic-plastic boundary can be determined as

pd = p0 + (p0 − p∞)ln
Rd

R0

/
ln

R0
R∞

, (14.12)

and the stress distribution in the plastic region Dp can be obtained as

σr = −(1− χ)p0

(
r

R0

)− 2 sinϕt1
1+sinϕt1

+
(

ct1 − D
2 sinϕt1

1 + sinϕt1

)
×

⎡
⎣1− (

r

R0

)− 2 sinϕt1
1+sinϕt1

⎤
⎦ ,

(14.13a)

σθ =
2ct1 cosϕt1

1 + sinϕt1
+
1− sinϕt1

1 + sinϕt1
σr, (14.13b)

where
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D = χ(p0 − p∞)
/
ln

R0
R∞

.

If R0 is substituted by Rd in Eq.(14.10a) and Eq.14.10(b), the elastic
stress distribution in the elastic zone De (r > Rd) can be obtained from
Eq.(14.10a) and Eq.14.10(b).

14.4.3 Elastic-plastic Boundary

With R∞ >> R0 and R∞ >> Rd, substituting σr0, R0 and p0 in Eqs.(14.10a)
and (14.10b) with σrd, Rd and pd, the stress distribution can be deduced from
Eqs.(14.12) and (14.13) at the elastic-plastic boundary of r = Rd,

σrd = −[(1− χ)p0 + ct1 cotϕt1]
(

Rd

R0

)− 2 sinϕt1
1+sinϕt1

+ ct1 cotϕt1, (14.14a)

σθd = 2σr∞ − σrd + χ
p0 − p∞
1− ν

. (14.14b)

The relation of pressure p0 at the wellbore surface to the plastic damaged
radius Rd is

− [(1− χ)p0 + ct1 cotϕt1]
(

Rd

R0

)− 2 sinϕt1
1+sinϕt1

+ ct1 cotϕt1

= (1 + sinϕt0)
[
σr∞ +

χ(p0 − p∞)
2(1− ν)

]
+ ct0 cotϕt0.

(14.15)

When the wellbore surface goes into the plastic yield stage, that is
Rd = R0, the maximum radial pressure for retaining the wellbore elastic
stabilization can be deduced from Eq.(14.15),

pe0 = −
(1 + sinϕt0)

[
σr∞ + χ(p0−p∞)

2(1−ν)

]
+ ct0 cotϕt0

1− χ 1−sinϕt0−2ν
2(1−ν)

. (14.16)

When b = 0, the elastic limit pressure for the Mohr-Coulomb strength
theory can be obtained from Eq.(14.16).

When the rock material is completely in a plastic state, i.e., Rd >> R0,
the maximum radial pressure for the retaining wellbore stabilization can be
obtained from Eq.(14.15),

pp0 = −2(1− μ)(σr∞ + ct0 cosϕt0 − ct1 cosϕt1)
χ(1 + sinϕt0)

+ p∞. (14.17)
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When b = 1, the limit load pp0 derived from Eq.(14.17) is the limit plastic
load based on the Mohr-Coulomb criterion reported by Li (1998). The max-
imum plastic radius Rd can be obtained from Eqs.(14.15) and (14.17) with
reference to the stability of the wellbore.

14.4.4 Example

For an oil drilling wellbore (Li and Li, 1997; Liu et al., 1995) with the radius
and the oil pressure of R0 and p0, at R∞ (R∞ >> R0), the void pressure p∞
in the rock is 5 MPa, the radial stress σr∞ is 43.4 MPa, the effective void
ratio χ is 25%, the seepage ratio k is 100×10−3μm2, the elastic modulus E is
1300 MPa, the Poisson’s ratio ν is 0.15. The initial yield internal cohesion c0
and angle of internal friction ϕ0 are 0.179 MPa and 31.4◦ respectively. The
softened internal cohesion c1 and angle of internal friction ϕ1 are 0.154 MPa
and 25.2◦, respectively.

According to the above derivation, the relation of oil pressure on the
surface of the wellbore to the plastic radius is shown in Fig.14.2. The elastic
and plastic limit pressure for the stability of the oil wellbore are given in
Fig.14.3 and Fig.14.4, where p̄0 = p0/p∞, p̄e0 = pe0/p∞, p̄p0 = pp0/p∞.

Fig. 14.2. Relation curves of p0 to Rd

It is shown that the unified strength parameter b influences the plastic
radius and the limit pressures. Fig.14.2 shows that the plastic radius increases
with the increase of oil pressure in the wellbore, which means that more rock
material around the wellbore will enter the plastic phase when the oil pressure
on the wellbore surface increases. For a given oil pressure on the wellbore
surface, the plastic radius increases with the increase of the parameter b.
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Fig. 14.3. Relation of pe0 to the unified strength theory parameter b

Fig. 14.4. Relation of pp0 to the unified strength theory parameter b

Figs.14.3 and 14.4 show the elastic and plastic limit pressures versus the
unified strength theory parameter b.

14.4.5 Limit Depth for Stability of a Shaft

Analysis of the stability of a shaft (Fig.14.5) taking into consideration the
effect of intermediate principal stress is presented by Xu and Hou (2007).

On the basis of the unified strength theory, a stability analysis of a circular
shaft was carried out. The stability formula for the limit depth of the shaft
can be expressed as

Zmax =
2 + 2b
2 + b

· cosϕ
1− sinϕ

· c

γ
. (14.18)

It can be seen from Eq.(14.18) that the influence of the unified strength
theory parameter b and friction angle ϕ (i.e. the intermediate principal stress
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Fig. 14.5. Scheme of a shaft under internal pressures

effect and the strength-differential effect) on the limit depth of the shaft are
given. A special case for b = 0 can be obtained from Eq.(14.18) as

Zmax =
cosϕ

1− sinϕ
· c

γ
. (14.19)

It is the same as the result of the Mohr-Coulomb single-shear theory. The
serial results for limit depth Zmaxγ/c are listed in Table 14.1, which can also
be found in Fig.14.6.

Table 14.1. The limit depth of the shaft with the unified strength theory parameter
b and ϕ

ϕ◦ b = 0 b = 1/4 b = 1/2 b = 3/4 b = 1

0◦ 1.00 1.11 1.20 1.27 1.33

15◦ 1.30 1.45 1.56 1.66 1.74

20◦ 1.43 1.59 1.71 1.82 1.90

25◦ 2.09 2.13 2.16 2.18 2.20

30◦ 2.53 2.54 2.55 2.55 2.56

35◦ 2.81 2.82 2.83 2.83 2.84
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Fig. 14.6. The limit depth of the shaft with the parameters b and ϕ

The results show that the limit depth of the shaft will increase when
the strength-differential effect and the intermediate principal stress effect are
considered.

14.5 Summary

Based on the unified strength theory, the elastic and plastic analysis has been
carried out for the rock material around the wellbore. The stress distribution
of the rock, the elastic and plastic limit loads for the stability of the wellbore
and the maximum plastic radius are obtained. The analysis of the stability
of a shaft taking into consideration the effect of intermediate principal stress
is also discussed.

The analysis results show that the plastic radius increases with the in-
crease of the pressure on the wellbore and the unified strength theory param-
eter b. It influences the elastic and plastic limit pressures and limit stability
depth of the shaft. The analysis results can cover the solutions obtained by
other traditional failure conditions, such as the Mohr-Coulomb criterion, the
twin shear strength theory.

14.6 Problems

Problem 14.1 Compare the solutions of the elastic and plastic limit pres-
sures of the wellbore.

Problem 14.2 Determine the elastic and plastic limit pressures of the well-
bore by using the Mohr-Coulomb criterion (b = 0).

Problem 14.3 Determine the elastic limit pressures of the wellbore by using
the Mohr-Coulomb criterion (b = 0).
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Problem 14.4 Determine the elastic limit pressures of the wellbore by using
the unified strength theory with b = 0.5.

Problem 14.5 Determine the elastic limit pressures of the wellbore by using
the unified strength theory with b = 0.8.

Problem 14.6 Determine the elastic limit pressures of the wellbore by using
the unified strength theory with b = 1.0.

Problem 14.7 Determine the plastic limit pressures of the wellbore by
using the Mohr-Coulomb criterion (b = 0).

Problem 14.8 Determine the plastic limit pressures of the wellbore by
using the unified strength theory with b = 0.5.

Problem 14.9 Determine the plastic limit pressures of the wellbore by
using the unified strength theory with b = 0.8.

Problem 14.10 Determine the plastic limit pressures of the wellbore by
using the unified strength theory with b = 1.0.

Problem 14.11 Compare the solutions of limit depth of the shaft with
different criteria.

Problem 14.12 Determine the limit depth of the shaft using the unified
strength theory with b = 0.5.

Problem 14.13 Determine the limit depth of the shaft using the Mohr-
Coulomb criterion (b = 0).

Problem 14.14 Determine the limit depth of the shaft using the unified
strength theory with b = 0.8.

Problem 14.15 Determine the limit depth of the shaft using the unified
strength theory with b = 1.0.
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15

Unified Solution of Shakedown Limit for
Thick-walled Cylinder

15.1 Introduction

Correct prediction of the load-bearing capacity of structures is a crucial task
in the analysis and design of engineering structures. The plastic limit load
of structures from limit analysis or slip-line analysis is usually used as an
index of the load-bearing capacity of the structure, subjected to a monotonic
loading. When the loading is a repeated loading, the structures fail at a load
which is lower than the plastic limit load. This is due to gradual deterioration
caused by the alternating plasticity or by the incremental plasticity instead
of sudden collapse.

If the load does not exceed the critical value, the structure subjected to
the repeated loading may behave plastically at first and then elastically. No
further plastic deformation takes place in the structure. The structure shakes
down due to the repeated loading. If the load exceeds the critical value the
structure does not shake down and fails due to the alternating plasticity or
the incremental plasticity. This critical load level is called the shakedown
load. The shakedown load is usually regarded as the load-bearing capacity of
the structure subjected to the repeated loading.

Many engineering structures or components are subjected to mechani-
cal or other loads varying with time. The shakedown condition should be
guaranteed for the safety of such kinds of structures.

Shakedown theory of structures is usually applied for such kinds of prob-
lems. A structure in a non-shakedown or inadaptation condition under vary-
ing loads may fail by one of two failure modes, namely alternating plasticity
or incremental plastic collapse. The structure will shake down if neither of the
failure modes occurs (Symonds, 1951; Hodge, 1954; Kachanov, 1971; Martin,
1975; Zyczkowski, 1981; Chakrabarty, 1987, Mroz et al., 1995).

The concept and methods of shakedown analysis were initially addressed
in the 1930s and developed in the 1950s. The pioneering works of shakedown
include those by Bleich (1932), Melan (1936). Koiter (1956) proved two cru-
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cial shakedown theorems, i.e., the static shakedown theorem (Melan’s theo-
rem, the first shakedown theorem, or the lower bound shakedown theorem),
and the dynamic shakedown theorem (Koiter’s theorem, the second shake-
down theorem, or the upper bound shakedown theorem), which constitute
the fundamentals in the shakedown theory of elasto-plastic structures.

Accordingly, numerous existing methods for shakedown analysis can be
divided into two classes, i.e., the static and the dynamic shakedown analysis
methods. Shakedown theory has become a well-established branch of plastic-
ity theory.

In recent years shakedown analysis of elasto-plastic structures has increas-
ingly attracted attention from engineers due to the requirements of modern
technologies such as in nuclear power plants, chemical industry, the aeronau-
tical and astronautical, electrical and electronic industries. Shakedown theory
has been applied with success in a number of engineering problems such as
the construction of nuclear reactors, highways and railways and employed
as one of the tools for structural design and safety assessment in some de-
sign standards, rules, and regulations. A study of the plastic shakedown of
structures was made by Polizzotto (1993), and of some issues in shakedown
analysis by Maier (2001) and Maier et al. (2000).

Long thick-walled cylinders are very often used as gun barrels and pres-
sure vessels in engineering. They are usually subjected to repeated internal
pressure. It is necessary to conduct shakedown analysis in order to determine
the shakedown load of the cylinder. The solution to shakedown problem of
cylinder is readily available in textbooks of the classical plasticity, and the
analytical solution can be found in some published literature and in the Pres-
sure Vessel Code, such as Cases of ASME Boiler and Pressure Vessel Code.
However, the solution is based on the Tresca yield criterion, and the analyt-
ical solution based on the Huber-von Mises criterion is not readily derivable
in most cases due to the nonlinear expression of the criterion. As we have
discussed, the Tresca yield criterion considers the effects of only the first
and the third principal stresses and ignores the compressive-tensile strength
difference (SD) effect of materials. Thus, this classical solution can only be
applied to the cylinder made of non-SD materials where the intermediate
principal stress effect is negligible. It is of great importance to develop a new
approach to cover the SD effect and the intermediate principal stress effect
for more general applications. The influence of different strengths in tension
and compression for the shakedown of thick-walled cylinders was studied by
Feng and Liu (1995). A series of results were given by Feng et al. (1993-1999).
An elasto-plastic model incorporating the Yu unified strength theory (UST)
was suggested for shakedown analysis of a thick-walled cylinder by Xu and
Yu (2005). A closed-form solution of shakedown load for cylinders will be pre-
sented in this chapter. The solutions involve the two parameters of Yu unified
strength theory m and b and can reflect both the effect of intermediate prin-
cipal stress and the SD effect in a quantitative manner. It is referred to as
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the unified solution including serial solutions. By choosing proper values for
m and b, the solution is applicable to cylinders made of different materials.
In addition, by applying the solution based on Yu unified strength theory,
the effects of SD and the intermediate principal stress on the shakedown load
of the thick-walled cylinder are evaluated.

15.2 Shakedown Theorem

Many engineering structures or components are subjected to mechanical or
other loads varying with time. In many cases only the loading range within
which the loads change can be estimated, while the loading path is unknown.
It is important to guarantee the shakedown condition for the safety of such
kinds of structures.

15.2.1 Static Shakedown Theorem (Melan’s Theorem)

The static or Melan’s shakedown theorem (Melan, 1936; Kachanov, 1971;
Martin, 1975) indicates the necessary condition for the occurrence of shake-
down: there exist time-independent fields of residual stresses σij such that
the sum (σij+ σe

ij) is admissible, where σe
ij are the elastic components of

stresses. It implies that the stress field (σij+ σe
ij) is safe if no arbitrary load-

variation in the prescribed limits causes the yield surface f(σij+ σe
ij) to be

reached, i.e.,

f(σij + σe
ij) < 0. (15.1)

The necessary condition is not obtained if there is no distribution of resid-
ual stresses for which f (σij+ σe

ij)<0, and so shakedown cannot occur.
On the contrary, shakedown occurs if there is a fictitious residual stress

field σij that is independent of time. For any variations of loads within the
prescribed limits, the sum of this field with the stress field σe

ij in a perfectly
elastic body is safe (sufficient condition).

The residual stress field is expediently chosen such that the region of
admissible load variation is the greatest. Melan’s theorem serves as a low
bound of the limit load.

15.2.2 Kinematic Shakedown Theorem (Koiter Theorem)

Koiter’s theorem (1956), also called the kinematic inadaptation theorem, can
be regarded as an extension of the upper bound theorem in limit analysis.
The theorem is framed in terms of an admissible plastic strain rate cycle
ε̇kp

ij (s, t) for 0 < t < T . In view of the principle of virtual work, the statement
of Koiter’s theorem can be interpreted as showing that if the external power
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of any admissible plastic strain rate cycle ε̇kp
ij (s, t) can be found to exceed the

power dissipated in the structure, i.e.,

T∫
0

dt
∫∫
ST

pj u̇
k
jdS >

T∫
0

dt
∫∫
ST

σk
ij ε̇

kp
ij dV , (15.2)

shakedown will not occur, where σk
ij is the stress field associated with ε̇kp

ij (s, t);
u̇k

j is the velocity field for a cycle by the loads pj .
It should be noted that the static shakedown theorem and the kinematic

non-shakedown theorem determine the lower and the upper bounds to the
permissible loading range for the shakedown of a structure.

15.3 Shakedown Analysis for Thick-walled Cylinders

When considering a plane strain thick-walled cylinder under uniform internal
pressure p with internal and external radii of ri and re, respectively, for sim-
plicity it is assumed that the material is incompressible and elastic-perfectly
plastic with negligible Bauschinger effect. If the pressure p is moderate, the
thick-walled cylinder is in an elastic state. The stress field of the cylinder is
given by the Lame solutions,

σr =
r2i p

r2e − r2i
(1− r2e

r2
), (15.3a)

σθ =
r2i p

r2e − r2i
(1 +

r2e
r2
), (15.3b)

σz =
r2i p

r2e − r2i
. (15.3c)

From Eqs.(15.3a), (15.3b), and (15.3c), σθ is the major principal stress,
σz the intermediate principal stress, σr the minor principal stress, and they
satisfy

σz � mσθ + σr

m+ 1
. (15.4)

Therefore, the unified strength theory can be expressed as

σθ − 1
m(1 + b)

(bσz + σr) = σt, (15.5)

where m is the ratio of material strength in compression and in tension, for
non-SD materials m =σc/σt=1.
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From Eq.(15.5) the maximum value for σθ − (bσz + σr)/(m+mb) occurs
on the internal wall of the cylinder. Yielding starts from the internal wall of
the cylinder when the internal pressure reaches

pe =
m(1 + b)(r2e − r2i )

(m+ 1 +mb)r2e + (m − 1)(1 + b)r2i
σt, (15.6)

where pe is the elastic limit pressure of the cylinder.
When the internal pressure exceeds pe, a plastic zone spreads out from

the inner radius. If the plastic zone reaches the radius rp, the cylinder can
be divided into two parts: a plastic zone in the range of ri � r � rp, and a
elastic zone of rp � r � re. Using the Lame solution, the boundary condition
σr = 0 at r = re and at r = rp, the yield condition in Eq.(15.5) is satisfied.
The stress components in the elastic zone are derived as

σr =
r2ppp

r2e − r2p

(
1− r2e

r2

)
, (15.7a)

σθ =
r2ppp

r2e − r2p

(
1 +

r2e
r2

)
, (15.7b)

σz =
r2ppp

r2e − r2p
, (15.7c)

where

pp =
m(1 + b)(r2e − r2p)

(m+ 1 +mb)r2e + (m − 1)(1 + b)r2p
σt

is the associated radial pressure on the elasto-plastic interface under the
internal pressure p.

According to the equilibrium equation

dσr

dr
+

σr − σθ

r
= 0, (15.8)

the yield condition in Eq.(15.5), the boundary condition of σr = p at r = ri,
the incompressible condition of materials, then the stress components in the
plastic zone are derived as

σr = −
(

p+
mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt, (15.9a)

σθ = − (2 + b)
2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(1+b)(m−1)
2m+2mb−b

+
m

m − 1
σt, (15.9b)
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σz = − 1 +m+mb

2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(1+b)(m−1)
2m+2mb−b

+
m

m − 1
σt. (15.9c)

With reference to the continuity of σr across r = rp, the relationship be-
tween the internal pressure p and the radius of the plastic zone rp is obtained

p =
mσt

m − 1

[
(2m+ 2mb − b)r2e

(m+ 1 +mb)r2e + (m − 1)(1 + b)r2p
(rp/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]
.

(15.10)
With the increase of the pressure p, the plastic zone expands further

and the elastic-plastic interface moves gradually to the external wall of the
cylinder. Setting rp = re in Eq.(15.10), the internal pressure becomes

ps =
mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]
, (15.11)

which is the plastic limit pressure of the cylinder.
If pe < p < ps, the cylinder is partially plastic. When the cylinder is

unloaded there will be residual stress. If p is small the unloading process is
purely elastic and the residual stress is derived by superposition of the elastic
unloading stress and the elastic-plastic loading stress. The expressions for
the residual stresses in the zone adjacent to the internal wall of the cylinder
(ri � r � rp) can be written as

σr
r = −

(
p+

mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt

− r2i p

r2e − r2i

(
1− r2e

r2

)
,

(15.12a)

σr
θ = − (2 + b)

2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt − r2i p

r2e − r2i
(1 +

r2e
r2
),

(15.12b)

σr
z = − 1 +m+mb

2m+ 2mb − b

(
p+

mσt

m − 1

) (ri

r

) 2(m−1)(1+b)
2m+2mb−b

+
m

m − 1
σt − r2i p

r2e − r2i
.

(15.12c)

Given r = ri, the residual stresses on the internal wall of the cylinder are



15.3 Shakedown Analysis for Thick-walled Cylinders 333

σr
r = 0, (15.13a)

σr
θ = −

[
(2 + 2b)

2m+ 2mb − b
+

r2e + r2i
r2e − r2i

]
p+

(2 + 2b)m
2m+ 2mb − b

σt, (15.13b)

σr
z = −1

2
·
[

(2 + 2b)
2m+ 2mb − b

+
r2e + r2i
r2e − r2i

]
p+

(1 + b)m
2m+ 2mb − b

σt. (15.13c)

It is seen that σr
r , σr

z , and σr
θ on the internal wall are the major princi-

pal stress, the intermediate principal stress, and the minor principal stress
respectively, and the intermediate principal stress σr

z � (mσr
r + σr

θ)/(m+1).
Therefore, the unified strength theory on the internal wall is

1
1 + b

(σr + bσz)− σθ

m
= σt. (15.14)

From Eqs.(15.13) and (15.14), the internal wall of the cylinder yields when
the internal pressure reaches

pmax =
2m(m+ 1)(1 + b)(b+ 2)/(2m+ 2mb − b)/(2− mb+ 2b)

(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )
σt.

(15.15)
If p < pmax, a secondary yielding does not take place at the internal wall of

the unloaded cylinder. It can be demonstrated that the residual stress induced
by the cycle of loading-unloading will not yield any new plastic deformation
in the whole cross-section of the cylinder. Therefore the shakedown condition
for a thick-walled cylinder under repeated loading and unloading is that the
internal pressure p is less than the critical value pshakedown or pplastic, i.e.,

pmax,shakedown =

min
{
2m(m+ 1)(1 + b)(2 + b)/(2m+ 2mb − b)/(2− mb+ 2b)

(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )
σt

}
,

(15.16a)

pmax,plastic = min
{

mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]}
, (15.16b)

which is the shakedown load of the thick-walled cylinder. Setting m=1 and
b=0 in Eq.(15.16b), the shakedown load of the thick-walled cylinder has the
form of

pmax = min
{
σt(1− r2i

/
r2e), σt ln (re/ri)

}
, (15.17)
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which is in agreement with the shakedown load of a cylinder from the classical
plasticity based on the Tresca criterion.

The shakedown load given by Eq.(15.16a) is correlated with the compres-
sive tensile strength ratio m, and the unified yield criterion parameter b. It
can be said the present approach has the capability to reflect the SD ef-
fects and intermediate principal stress on the shakedown load of the cylinder
quantitatively, which is ignored in the classical solution.

15.4 Unified Solution of Shakedown Pressure of
Thick-walled Cylinders

In order to demonstrate the SD effects and intermediate principal stress on
the shakedown load of a thick-walled cylinder, the results from the derived
closed-form solution are depicted in Fig.15.1, in which the abscissa denotes
the wall ratio of the cylinder re/ri, and the ordinates is the shakedown load
pmax/σt.

From Fig.15.1, the effect of the intermediate principal stress on the shake-
down load for non-SD materials (m=1) is obvious.

Fig. 15.1. Shakedown load for different values of the unified strength theory pa-
rameter b (m=1.0)

The curve (1) in Fig.15.1 (b=0 and m=1.0) is suitable for materials with-
out both the SD and the intermediate principal stress effects, which is exactly
the result of the classical solution based on the single-shear yield criterion.
The present solution with m=1 and b=0.5 (curve (3) in Fig.15.1) is a close
approximation to the result from the Huber-von Mises criterion. The curve
(5) in Fig.15.1 (b=1.0 and m=1) is the same as the result from the twin-shear
stress yield criterion.
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Fig.15.2 (m=1.1) and Fig.15.3 (m=1.2) show the shakedown pressure for
materials with SD effect. It is seen from these figures that the shakedown
load is related to the unified strength theory parameter b which reflects the
effect of the intermediate principal stress on material strength. The higher
the parameter b, the higher the shakedown load pmax. Consequently, for a
given compressive-tensile strength ratio m, that of b=0 corresponding to the
Tresca criterion or the Mohr-Coulomb criterion gives the lowest value of pmax,
that of b=1 corresponding to the twin-shear yield criterion or the generalized
twin-shear criterion gives the highest value. Therefore, the shakedown load
of the cylinder may be underestimated when the effect of the intermediate
principal stress of materials is neglected, or an improper yield condition is
applied.

Fig. 15.2. Shakedown load for different values of the unified strength theory pa-
rameter b (m=1.1)

Fig.15.4 shows the SD effect on the shakedown load of a cylinder. The
results with respect to b=0 are shown in Fig.15.4, which is the same as the
result based on the Mohr-Coulomb criterion. It is suitable for materials with
negligible intermediate principal stress effect. The curve (1) in Fig.15.4 (b=0
and m=1) is the result of the classical solution based on the Tresca criterion.

Fig.15.5 (corresponding to b = 0.5 of the unified strength theory) and
Fig.15.6 (corresponding to b = 1.0, i.e., the twin-shear strength criterion) are
suitable for materials with the intermediate principal stress effect.

From analysis and schematical illustrations of the results, the shakedown
load depends on the compressive-tensile strength ratio m and the shakedown
load will increase with increasing parameter m. Thus, the shakedown load
of the cylinder may be underestimated when the SD effect of materials is
ignored. The SD effect of materials on the shakedown load of the cylinder is
insignificant when the wall ratio is small, whereas it is prominent when the
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Fig. 15.3. Shakedown load for different values of the unified strength theory pa-
rameter b (m=1.2)

Fig. 15.4. Shakedown load for different values of parameter m (b=0)

wall ratio is high. Therefore, the SD effect of materials should be taken into
account in shakedown analysis of the cylinder especially for a high wall ratio
of the cylinder.

15.5 Connection between Shakedown Theorem and
Limit Load Theorem

Based on the unified strength theory, shakedown analysis of a thick-walled
cylinder under internal pressure is carried out and the unified analytical solu-
tion of shakedown load for a cylinder is derived in this chapter. This solution
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Fig. 15.5. Shakedown load for different values of parameter m (b=0.5)

Fig. 15.6. Shakedown load for different values of parameter m (b=1.0)

includes not only the existing classical solution as its special case but gives a
series of new results.

It is noted that this solution consists of two parts (Eqs.(15.16a) and
(15.16b)): the limit pressure and shakedown pressure (Xu and Yu, 2004a;
2005b), i.e.,

pmax,shakedown =

min
{
2m(m+ 1)(1 + b)(2 + b)/(2m+ 2mb − b)/(2− mb+ 2b)

(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )
σt

}
,

(15.18a)

pmax,plastic = min
{

mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]}
. (15.18b)
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The relation between the shakedown pressure and the plastic limit pres-
sure are shown in Fig.15.7 for different parameter b.

Fig. 15.7. Shakedown load and plastic limit load when m=1.5

It is seen that the two curves will intersect when the limit pressure equals
the shakedown pressure, i.e.,
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mσt

m − 1

[
(re/ri)

2(m−1)(1+b)
2m+2mb−b − 1

]
=

2m(m+ 1)(1 + b)(2 + b)/(2m+ 2mb − b)/(2− mb+ 2b)
(2 + b)/(2m+ 2mb − b) + (r2e + r2i )/(r2e − r2i )

σt. (15.19)

The current unified solution consists of the two parameters m and b to
reflect both the SD and the intermediate principal stress effects of materials.
With the variation of m and b, the present solution gives a series of values
for the shakedown load that can be applied to materials with or without the
SD and the intermediate principal stress effects.

In order to demonstrate more clearly the SD effects and intermediate
principal stress on the shakedown load, the analytical solution is illustrated
schematically. This shows that both the SD and the intermediate principal
stress have influences on the shakedown load, and the more pronounced the
two effects, the higher the shakedown load. Therefore, for the cylinder made
of materials with the SD and/or the intermediate principal stress effect, the
classical solution underestimates the shakedown load. It is therefore of sig-
nificance for the shakedown analysis to take into account their effects.

It is worth mentioning that besides SD and intermediate principal stress,
other important properties such as the Bauschinger effect, the strain-hardening
effect, etc., should also be considered when their effects are prominent.

15.6 Shakedown Pressure of a Thick-walled Spherical
Shell

Shakedown analysis of a thick-walled spherical shell was derived by Liu et
al.(1997) using the Mohr-Coulomb criterion and Xu and Yu (2005b) using
the UST. The shakedown limit pressure of a thick-walled spherical shell for
SD material is

pmax,shakedown

= min

{
m

m − 1

[(
re

ri

) 2m−2
m

− 1

]
σt,

m(m+ 1)(r3e − r3i )
(m − 1)r3i + (0.5m+ 1)r3e

σt

}
.

(15.20)

This result is the same as the solution obtained by using the Mohr-
Coulomb strength criterion obtained by Feng and Liu (1995) and Liu et al.
(1997) and the twin-shear strength criterion. The relationship of the shake-
down limit pressure to the ratio of the strength of material in tension and
compression is illustrated in Fig.15.8.
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Fig. 15.8. Relationship of shakedown limit pressure to the ratio of material
strength in tension and compression

15.7 Summary

The unified strength theory is used to derive unified solutions of the plas-
tic limit and shakedown limit of a thick-walled cylinder. These results are
applicable for a wide range of materials and engineering structures.

In the current solutions, the SD effect and the effect of intermediate prin-
cipal stress acting on the plastic limit loads and shakedown loads of a thick-
walled cylinder under uniform internal pressure are presented. By changing
the two parameters mα and b (or m and b), a series of values for limit loads
and shakedown loads can be obtained from the current solution, which in-
cludes both the results from classical plasticity and a series of new results.
These solutions are suitable for materials with the SD effect and the inter-
mediate principal stress effect.

Finally, the illustrations of alternatives to the analytical solution are pre-
sented to demonstrate graphically to examine the effects of strength difference
and intermediate principal stress on the limit loads and the shakedown loads.
They show that the limit loads and the shakedown loads depend on both the
strength difference in tension and compression and the effect of intermediate
principal stress. The limit loads and shakedown loads may be grossly un-
derestimated if these two effects are simply neglected. The unified strength
theory gives us a basic theory for use in the strength design of engineering
structures. It also provides a tool for estimating accurately the admissible
loads with an in-depth understanding of the material strength behavior so
that a more economical and optimized design of structures can be achieved.

15.8 Problems

Problem 15.1 Compare the solutions of limit analysis and shakedown anal-
ysis.



15.8 Problems 341

Problem 15.2 Determine the shakedown load of a pressure cylinder by
using the Tresca yield criterion (m=1 and b=0).

Problem 15.3 Determine the shakedown load of a pressure cylinder by
using the Mohr-Coulomb strength theory(b=0).

Problem 15.4 Determine the shakedown load of a pressure cylinder by
using the twin-shear yield criterion (m=b=1).

Problem 15.5 Determine the shakedown load of a pressure cylinder by
using the twin-shear strength theory (b=1).

Problem 15.6 Determine the shakedown load of a cylinder under inter-
pressure by using the unified strength theory with b=0.6.

Problem 15.7 Determine the shakedown load of a cylinder under tension
and inter-pressure by using the twin-shear strength theory (b=1).

Problem 15.8 Determine the shakedown load of a cylinder under tension
and inter-pressure by using the unified strength theory with b=0.6.
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16

Unified Solution of Shakedown Limit for
Circular Plate

16.1 Introduction

The static shakedown theorem (Melan’s theorem, the first shakedown theo-
rem, or the lower bound shakedown theorem, Melan, 1936) and the dynamic
shakedown theorem (Koiter’s theorem, the second shakedown theorem, or the
upper bound shakedown theorem, Koiter, 1953; 1956; 1960) and the unified
solution of shakedown limit for a thick-walled cylinder have been described
in Chapter 15. In this chapter we will deal with the shakedown analysis for
a simply supported circular plate and a clamped circular plate. The unified
solutions are given for non-SD materials.

Circular plates are used widely in many branches of engineering. They
are often subjected to repeated transverse load. Hence it is necessary to con-
duct the shakedown analysis in order to determine the shakedown load of the
plate. Under the varying load the circular plate will deform in elastic and
plastic states. The elasto-plastic response of a circular plate to varying loads
is a complicated process (Symonds, 1951; König, 1987). The previous shake-
down analysis is based on Koiter’s upper bound shakedown theorem with the
Tresca and Huber-von-Mises yield criteria (Kachanov, 1971; Gokhfeld and
Cherniavski, 1980; König, 1978; 1987; Pham, 1996; 1997; 2003). By using
numerical methods and based on the static shakedown theorem, the shake-
down analysis of perfectly plastic, different kinematic hardening materials is
carried out by Stein et al. (1993), Polizzotto (1982; 1993), Ponter and Carter
(1997), Maier et al. (2000; 2001).

As discussed by Pham (1997), the shakedown limit will depend on the
different yield criteria. From the previous studies we know that the limit
load analysis should use different yield criterion for different materials. The
Yu unified yield criterion (UYC) will be used in this chapter to investigate
the shakedown limit when the circular plates suffer from quasi-static recycle
loadings. If the load does not exceed the critical value, the circular plate
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will behave plastically at first and then elastically and the structure will
shakedown due to the repeated loading.

The elastic, plastic and shakedown analysis of a circular plate, which
is simply supported or clamped at the edges, will be carried out in this
chapter. By choosing proper values for unified yield criterion parameter b, the
solution can be applicable to plates made of different materials. In addition,
by applying the solution based on the unified yield criterion, the effects of
the yield criterion on the shakedown load of the plate are evaluated.

16.2 Unified Solution of Shakedown Limit for Simply
Supported Circular Plate

A circular plate with radius a and thickness h is subjected to a uniformly
distributed transverse load P , as shown in Fig.16.1, the only non-zero stresses
are σr, σθ and τrz = τzr in the plate. The generalized stresses can be expressed
as

Mr =
∫ h/2

−h/2
σrzdz, Mθ =

∫ h/2

−h/2
σθzdz,

Qrz =
∫ h/2

−h/2
τrzzdz, M0 =

∫ h/2

−h/2
σ0zdz = σ0h

2/4,
(16.1)

where Mr, Mθ and M0 are the radial, tangential and ultimate (fully plastic)
bending moments, respectively, and Qrz is the transverse shear force which
is assumed not to influence the plastic yielding.

Defining dimensionless variables, r = R/a, mr=Mr/M0, mθ=Mθ/M0 and
p=Pa2/M0, the equilibrium equation of a circular plate subjected to a con-
stant uniform load is

d(rmr)
dr

− mθ = −pr2

2
. (16.2)

When subjected to a uniformly distributed transverse load P , the plate
will deform and be in an elastic state, elastic-plastic state and a completely
plastic state.

16.2.1 Elastic State

The deformation and the stress state of the plate are in an elastic state when
the load p is not big. The dimensionless radial and tangential bending mo-
ments mr andmθ for a simply supported plate can be written as (Timoshenko
and Woinowsky-Krieger, 1959)

mr =
3 + ν

16
p(1− r2), mθ =

p

16
[
(3 + ν)− (1 + 3ν)r2

]
. (16.3)
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The elastic limit load pe can be calculated from Eq.(16.3),

pe =
16

3 + ν
. (16.4)

16.2.2 Elastic-plastic State

The center of the plate (r = 0) will firstly go into yield state when p > pe.
The plate is in plastic state ranges from 0 to re and the plate is in elastic
state ranges from re to 1. In the plastic zone, if the UYC is chosen as the
yield function, the expression of UYC can be written as a piecewise linear
function

mθ = aimr + bi (i = 1, ..., 12), (16.5)

where the values of parameters ai and bi are shown in Table 5.1.
Substituting Eq.(16.5) into Eq.(16.2) and then integrating Eq.(16.2), mr

falling on the segments Li (the lines shown in Fig.5.3) is obtained as follows:

mr =
bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai (i = 1, ..., 5), (16.6)

where ci are the constants and can be derived from the continuous and bound-
ary conditions. For a simply supported circular plate going into a plastic
state, the bending moments at every point in the plate are located on the
sides AB and BC for the normality requirement of plasticity (Ma et al.,
1999). Therefore, i should be 1 and 2 in the plastic zone when the plate is in
an elastic-plastic state (Fig.16.1).

In elastic zone, the bending moments can be expressed as (Timoshenko
and Woinowsky-Krieger, 1959)

mr =
B

r2
− C − 3 + ν

16
pr2, mθ = −B

r2
− C − 1 + 3ν

16
pr2, (16.7)

where B and C are the constants. They can be derived from the continuous
and boundary conditions.

The boundary and continuous conditions are:
(a) mr (r = 0) = mθ (r = 0) = 1;
(b) mr (r = r1) and mθ (r = r1) are continuous, and mr (r = r1) = (1 +

b)/(2+b), where r1 is the non-dimensional radius of a ring where the moments
correspond to point B in Fig.5.2 where UYC is expressed by generalized
stresses;
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Fig. 16.1. Elastic-plastic state for a simply supported circular plate

(c) mr (r = r2) and mθ (r = r2) are continuous, where r2 is the non-
dimensional radius of plastic zone;

(d) mr (r = 1) = 0.
The integration coefficients ci (i = 1, 2) can be derived from Eqs.(16.5)

and (16.6) and the boundary and continuous conditions as follows:

c1 = 0, c2 =
2(1 + b)
3 + 2b

r
1

1+b

1 , (16.8)

and the relation between load p and r1 is

p =
6 + 2b
2 + b

1
r21

. (16.9)

The relations between B, C, r2 and r1 are obtained from Eq.(16.5) to
Eq.(16.7) and the boundary and continuous conditions (c) and (d) as follows:

B

r22
− C = (1 + b) +

(
3 + ν

8
· 3 + b

1 + b
− 3 + b

2 + b
· 1 + b

3 + 2b

) (
r2
r1

)2

− 2b(1 + b)
3 + 2b

(
r1
r2

) 1
1+b

,

(16.10)

B − C =
3 + ν

8
· 3 + b

2 + b

1
r21

, (16.11)

B

r22
(1 + 2b) + C +

[
(1 + 3ν)(1 + b)(3 + b)

8(2 + b)
− (3 + ν)b(3 + b)

8(1 + b)

](
r2
r1

)2
+ (1 + b) = 0.

(16.12)

The constants B, C, and plastic zones r2 and r1 can be derived from
Eq.(16.8) to Eq.(16.11). Then the moment field in elastic and plastic zones
can be obtained for a given load p.
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16.2.3 Completely Plastic State

If the plate goes completely into a plastic state, r2 will equal 1, and the plastic
limit load pp derived from Eq.(16.9) is

pp =
6 + 2b
2 + b

1
r21

, (16.13)

where r1 satisfies the following equation:

−(3 + 2b)(2 + b) + (3 + b)r−2
1 + 2b(2 + b)r1/(1+b)

1 = 0. (16.14)

16.2.4 Shakedown Analysis

If the circular plate is unloaded from the initial elastic-plastic state, i.e. p →
0, it will be left with residual stresses. Here we assume that the residual
stresses will not produce inverse yielding. In that case the unloading process
is purely elastic. So from the elastic solution of the circular plates, we obtain
the changes in mr and mθ as

Δmr = − p

16
(3 + ν)(1− r2), Δmθ = − p

16
[
(3 + ν) + r2(1 + 3ν)

]
. (16.15)

The residual stresses in the plate are

mr
r =

bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai − p

16
(3 + ν)(1− r2),

mr
θ = aimr + bi − p

16
[(3 + ν) + r2(1 + 3ν)], (i = 1, 2).

(16.16)

Observing the residual stress, it can be seen that the reverse yielding
would begin first at the center of the plate, that is,

mr
r|r=0 = mr

θ|r=0 = −1. (16.17)

Eqs.(16.16) and (16.17) lead to the minimum uniformly distributed trans-
verse load ps for reverse yielding to occur in the plate

ps =
32

1 + ν
= 2pe. (16.18)

Evidently, as long as the applied transverse load p does not exceed ps, the
residual stresses will not result in reverse plastic deformation in the circular
plate.

When the transverse load p, not exceeding the original value, acts on the
circular plate and is then removed, the loading-unloading process will not
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result in a new plastic deformation in the plate. From the above analysis
it can been found that if a simply supported circular plate is subjected to
cyclic pressure that ranges from 0 → p → 0 → p → 0 → · · ·, and p does not
exceed pp (for the first loading from 0 → p) and 2pe (for the other loading
from p → 0 → p → 0 → · · ·), yielding will not occur in the circular plate
during the loading-unloading process and the circular plate is safe. When this
happens the circular plate is said to be in shakedown. Hence the shakedown
limit for a circular plate subjected to a load p is

ps = min{2pe, pp}. (16.19)

16.2.5 Discussion

There is always 2pe > pp in Eq.(16.19) for ν and parameter b. So ps is equal to
pp or (6+2b)/(2+b)/r21, where r1 is satisfied with Eq.(16.14). The parameter
b shows the effect of intermediate principal stress and the difference of various
yield criteria. The influences of parameter b on the shakedown limit ps and
r1 are analyzed. Figs.16.2 and 16.3 indicate that the unified yield criterion
parameter b will influence both ps and r1. The shakedown limit ps is the
smallest for b=0 (corresponding to the Tresca criterion) and is the biggest
for b=1.0 (corresponding to the twin-shear yield criterion). The difference of
ps for these two cases of b=0 and b=1.0 is about 14%. Fig.16.3 shows that
the radius of mθmax decreases with the increase in the unified yield criterion
parameter b.

Fig. 16.2. Unified solution of shakedown limit ps for simply supported circular
plate
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Fig. 16.3. Effect of the unified strength theory parameter b on the radius of mθmax

16.3 Unified Solution of Shakedown Limit for Clamped
Circular Plate

16.3.1 Elastic State

In an elastic state the moment fields of a clamped circular plate satisfy mr=
mθ at the center of the plate (r =0), mθ = νmr at the clamped edge and
mθ > mr at other points on the plate. The dimensionless radial and tan-
gential bending moments mr and mθ for a clamped plate can be written as
(Timoshenko and Woinowsky-Krieger, 1959)

mr =
p

16
[(1 + ν)− r2(3 + ν)], mθ =

p

16
[(1 + ν)− r2(1 + 3ν)], (16.20)

the elastic limit load pe can be calculated from Eq.(16.20),

pe =
16

1 + ν
. (16.21)

16.3.2 Elastic-plastic State

When the plate is in an elastic-plastic state, the boundary and continuous
conditions are

(a) mr (r = 0) = mθ (r = 0) = 1;
(b) mr (r = rj) are continuous, where j = 1, ..., 4;
(c) mr (r = re) and mθ (r = re) are continuous, where re is the dimen-

sionless radius of plastic zone and rj < re;
(d) mr = mθ/ν at r = 1.
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In the plastic zone (0 � r � re) the generalized stresses satisfy the UYC
and have the same form of Eq.(16.6). The moment fields of the entire clamped
plate lie on the five sides corresponding to AB, BC, CD, DE and EF (Ma
et al., 1999).

In the elastic zone (re � r � 1) the generalized stresses can be expressed
as the same form of Eq.(16.7), where r ranges from re to 1 and the constants
B and C can be derived from the continuous and boundary conditions (c)
and (d).

16.3.3 Completely Plastic State

When the plate is in a completely plastic state, there is re = 1 and mr( r = 1)
= mθ/ν = −(1 + b)/(1 + b − νb). The load-carrying capacity of a clamped
plate in this state has been obtained by Ma et al. (1999),

pp =
6 + 2b
2 + b

1
r21

, (16.22)

where r1 can be solved from the boundary and continuous conditions.

16.3.4 Shakedown Analysis

Using the similar analyzing method, the residual stresses can be obtained
when the plate is unloaded from the initial load of the elasto-plastic state to
zero, i.e. p → 0.

mr
r =

bi

1− ai
− pr2

2(3− ai)
+ cir

−1+ai − p

16
[(1 + ν)− r2(3 + ν)],

mr
θ = aimr + bi − p

16
[
(1 + ν)− r2(1 + 3ν)

]
, (i = 1, ..., 5).

(16.23)

Observing the residual stress, it can be seen that the reverse yielding
would begin first at the center of the plate, that is,

mr
r|r=0 = mr

θ|r=0 = −1. (16.24)

Eqs.(16.23) and (16.24) lead to the minimum uniformly distributed trans-
verse load ps for reverse yielding to occur in the plate

ps =
32

1 + ν
= 2pe. (16.25)

So the shakedown limit for a clamped circular plate subjected to a load
p is

ps = min{2pe, pp}. (16.26)
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16.3.5 Discussion

There is always 2pe > pp in Eq.(16.26) for every ν and parameter b. So
ps is equal to pp or (6 + 2b)/(2 + b)/r21. When b = 0, the UYC becomes
the Tresca criterion and the load-bearing capacity of the circular plate with
respect to the Tresca criterion is 11.258 in the case of ν=0.25 which is in
good agreement with the analyzing result ps=11.26 (ν=0.25) in the reference
(Pham, 1997) with error at approximately 0.018%. In the same case of the
Poisson’s ratio, the shakedown solution using UYC is 12.23 when b=0.5 (near
to the von-Mises criterion), while the shakedown result using Mises material
(Pham, 1997) is 12.23 with M0 being substituted by 2/30.5M0. The difference
between these two results is only about 7.3%.

The relations between the unified strength theory parameter b with the
shakedown limit ps and the radius r1 of mθmax are illustrated in Fig.16.4
and 16.5. Both the figures show that the parameter b affects the values of
shakedown limit ps and the radius r1. It can be seen in Fig.16.4 that for a
given kind of Poisson’s ratio, the shakedown limit ps is the smallest in the
case of b=0, and ps is the biggest in the case of b=1. For three kinds of
Poisson’s ratio, the ps-b curve increases most slowly when ν=0.

Fig. 16.4. Effect of the unified strength theory parameter b on shakedown limit ps

When b=1, the difference of the shakedown limit ps for the case of ν=0
and ν=0.5 is about 1.631. For a given Poisson’s ratio in Fig.16.5, the radius
of mθmax decreases with an increase in the unified strength theory parameter
b. For a given parameter b, the shakedown limit ps for ν=0.5 is the biggest,
while ps for ν=0 is the smallest.
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Fig. 16.5. Effect of the unified strength theory parameter b on the radius of mθmax

16.4 Comparison between Shakedown Solution and
Limit Results

Based on the unified yield criterion, a shakedown analysis of a circular plate
under a uniformly distributed transverse load is carried out and the unified
solution of a shakedown load for a circular plate is derived in this chapter.
The solution encompasses the existing classical solution as a special case and
a series of new results.

From the above analysis it is noted from Eqs.(16.19) and (16.26) that the
shakedown solutions for simply supported and clamped plates are almost the
same, that is, both are the minimum of the twice elastic limit load and the
plastic limit load,

ps = min{2pe, pp}.
Because the unified strength parameter b ranges from 0 to 1 and the

Poisson’s ratio is from 0 to 0.5 no matter what the value of parameter
b and the Poisson’s ratio, there is always 2pe > pp. Therefore the shake-
down solution ps of a circular plate is equal to its plastic limit load pp; i.e.
ps=pp=(6+2b)/(2+b)/r21, which is related to the parameter b for the simply
supported circular plate and both the parameter b and the Poisson’s ratio for
the clamped circular plate, as shown in Figs.16.2 and 16.4.

It is also found that the special solutions for shakedown analysis of cir-
cular plates when b=0 are equal to the plastic limit load of the Tresca cri-
terion; i.e. ps=6.0 for the simply supported circular plate and ps=11.258 for
the clamped circular plate. Meanwhile, when b=0 the shakedown solution of
clamped circular plate is the same as the result in the references. Besides
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the shakedown solution for b=0, the other solutions for different parameter
b when it ranges from b > 0 to b=1 can also be calculated, as can be seen
in Fig.16.2 and Fig.16.4. The following table shows the shakedown limit load
for both the simply supported and clamped plates when the unified yield
criterion parameter b changes.

Table 16.1. Shakedown limit load pp with the changes in parameter b

b 0 0.3 0.5 0.6 0.8 1.0

Simply supported plate 6.0 6.31 6.49 6.57 6.71 6.8

Clamped plate (ν=0.25) 11.26 11.9 12.23 12.37 12.63 12.85

16.5 Summary

The unified yield criterion is used to analyze the shakedown limit of a circular
plate. The results are applicable for a wide range of materials and structures.
The shakedown analysis of the circular plate shows the effect of yield criterion
on the plastic limit loads and shakedown loads.

For both a simply supported and a clamped circular plate, the shakedown
limit ps increases with the growth of the unified yield criterion parameter b
and the shakedown limit ps for the simply supported plate is smaller than that
for the clamped plate. When b=0, the analyzed result is in good agreement
with the result in the references. The study also shows that the radius of
mθmax decreases with the growth of the unified yield criterion parameter b.
The shakedown limit ps for the clamped circular plate is influenced by the
Poisson’s ratio, while ps for the simply supported circular plate will not be
affected by the Poisson’s ratio.

By comparison with the limit load, the shakedown solutions ps of the
simply supported and clamped circular plates are both equal to the plastic
limit load. ps of the simply supported circular plate varies only with the
unified yield criterion parameter b, while ps of the clamped circular plate
changes with the unified yield criterion parameter b and the Poisson’s ratio.

16.6 Problems

Problem 16.1 Compare the solutions of limit analysis and shakedown anal-
ysis.

Problem 16.2 Compare the solutions of shakedown analysis of a simply
supported and a clamped circular plate.

Problem 16.3 Determine the shakedown load of a simply supported circu-
lar plate by using the Tresca yield criterion (b=0).
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Problem 16.4 Determine the shakedown load of a clamped circular plate
by using the Tresca yield criterion (b=0).

Problem 16.5 Determine the shakedown load of a simply supported circu-
lar plate by using the twin-shear yield criterion (b=1).

Problem 16.6 Determine the shakedown load of a clamped supported cir-
cular plate by using the twin-shear yield criterion (b=1).

Problem 16.7 Determine the shakedown load of a simply supported circu-
lar plate by using the unified yield criterion with b=0.5.

Problem 16.8 Determine the shakedown load of a clamped circular plate
by using the unified yield criterion with b=0.5.

Problem 16.9 Determine the shakedown load of a simply supported circu-
lar plate by using the unified yield criterion with b=0.8.

Problem 16.10 Determine the shakedown load of a clamped circular plate
by using the unified yield criterion with b=0.8.
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17

Shakedown Analysis of Rotating Cylinder and
Disc

17.1 Introduction

Rotating cylinders are a commonly-used component in engineering. When
they rotate at a constant velocity the centrifugal force is the main loading
applied on the cylinders. Elasto-plastic analyses are needed for the cylinders
under static loadings and the shakedown of cylinders should be taken into
account when subjected to cyclic-variation loading. The shakedown theorem
and analysis of structures were described in the literature (Kachanov, 1971;
Martin, 1975; Zyczkowski, 1981; König, 1987; Mroz et al., 1995; Weichert et
al., 2000). Limits to shakedown loads were discussed by Zouain and Silveira
(2001), Feng and Yu (1994) and others.

Elasto-plastic cylinders have been analysed in detail in the classical elasto-
plastic theory (Hodge and Balaban 1962; Chakrabarty 1987). These studies
are based on the Tresca criterion and have not considered the intermediate
principal stress. Ma et al. (1995) employed the unified yield criterion to inves-
tigate the effect of intermediate principal stress for the first time and obtained
the unified elasto-plastic solution to the rotating disc and cylinder. The uni-
fied solution of the limit angular velocity of an annular disc was obtained by
Ma and Hao (1999). Limit angular speeds of rotating disc and cylinder for
non-SD materials (identical strength both in tension and compression) have
been described in Chapter 11.

Shakedown analysis of rotating disks and hollow rotating discs have been
presented for non-SD materials (Liu et al., 1988) and (Liu and Wang, 1990).
As to materials with different tensile and compressive strengths, Xu and
Yu (2004; 2005) used the unified strength theory to discuss the effect of
tensile and compressive strength variation as well as the effect of intermediate
principal stress on the plasticity and shakedown of cylinders. It is indicated
that the unified solution is applicable for both non-SD materials with identical
tensile and compressive strength and SD materials with different strengths
in compression and in tension.
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Elasto-plastic analyses of hollow rotating circular bars, shakedown anal-
yses of hollow rotating circular bars, elasto-plasticity and shakedown of solid
rotating circular bars, elasto-plasticity and shakedown analyses of rotating
circular bars, elastic and plastic limit analyses of hollow rotating discs by
using the Yu unified strength theory are all described in this chapter. The
unified solutions of these problems are adopted for both non-SD materials
and SD materials.

17.2 Elasto-plastic and Shakedown Analyses of Rotating
Cylinder and Disc

The displacement and stress caused by centrifugal force are symmetrical when
the cylinders rotate at a constant velocity and σr, σθ, σz are principal stresses.
For discs with identical thickness it can be regarded as an axisymmetric plane
stress problem and for rotating circular bars it can be solved as an axisymmet-
ric plane strain problem. In this section we will discuss the elasto-plasticity
and shakedown of circular bars, and the rotating discs will be studied in
the next section. For the sake of simplicity the materials are assumed to be
incompressible and elasto-plastic.

When circular bars rotate at a constant velocity, the tangent centrifugal
applied on the circular bar is

f = ρω2r, (17.1)

where ρ is the density of materials. The equilibrium equation is

dσr

dr
+

σr − σθ

r
+ ρω2r = 0. (17.2)

17.2.1 Elastic Analyses of Hollow Rotating Circular Bars

There is a hollow circular bar with inner radius a and outer radius d. With the
increase of rotating velocity, circular bars will transfer to the elasto-plastic
state. When the angular velocity is small, the circular bar is in the elastic
state and the stress is

σr = c1 +
c2
r2

− 3− 2ν
8(1− ν)

ρω2r2, (17.3a)

σθ = c1 − c2
r2

− 1 + 2ν
8(1− ν)

ρω2r2, (17.3b)

σz = c1 − 1
4(1− ν)

ρω2r2. (17.3c)
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If ν = 0.5, the general solution for incompressible hollow rotating circular
bar stress is

σr = c1 +
c2
r2

− 1
2
ρω2r2, (17.4a)

σθ = c1 − c2
r2

− 1
2
ρω2r2, (17.4b)

σz = c1 − 1
2
ρω2r2, (17.4c)

where the integration constants c1, c2 are determined by boundary conditions.
When both the inner and outer surfaces are free, i.e.,

σr = 0, r = a,

σr = 0, r = d,
(17.5)

we can obtain

σr =
1
2
ρω2(d2 + a2 − a2d2/r2 − r2), (17.6a)

σθ =
1
2
ρω2(d2 + a2 + a2d2/r2 − r2), (17.6b)

σz =
1
2
ρω2(d2 + a2 − r2). (17.6c)

Apparently σr is the minimum principal stress and σθ the maximum prin-
cipal stress. Therefore the yield condition of circular bars is

2m+ 2mb − b

2m(1 + b)
σθ − 2 + b

2m(1 + b)
σr = σt. (17.7)

For convenience the variables m′ and σ′
t are introduced here as

m′ =
2m+ 2mb − b

2 + b
, σ′

t =
2m(1 + b)

2m+ 2mb − b
σt. (17.8)

Hence, Eq.(17.7) can be rewritten as

σθ − 1
m′ σr = σ′

t. (17.9)

It is seen that when the rotating velocity reaches a certain value, the inner
boundary of circular bars will yield first. Substituting r = a into Eqs.(17.4)
and (17.9), the limit elastic rotating velocity can be obtained,
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ωel =

√
σ′

t/ρ

d
. (17.10)

Substituting Eq.(17.10) into Eq. (17.6), we can obtain the yield stress of
rotating circular bars

σr =
1
2
σ′

t(1 + a2/d2 − a2/r2 − r2/d2), (17.11a)

σθ =
1
2
σ′

t(1 + a2/d2 + a2/r2 − r2/d2), (17.11b)

σz =
1
2
σ′

t(1 + a2/d2 − r2/d2). (17.11c)

17.2.2 Elasto-plastic Analyses of Hollow Rotating Circular Bars

When ω > ωel, the plastic deformation will appear near the inner boundary
and then a plastic area is formed. Let c denote the radius of the plastic area,
Eqs.(17.2) and (17.9) are solved together with consideration of the boundary
condition

σr =
m′

m′ − 1

[
1− (a/r)

m′−1
m′

]
σ′

t

− m′

3m′ − 1

[
r2 − a2(a/r)

m′−1
m′

]
ρω2,

(17.12a)

σθ =
1

m′ − 1

[
1− (a/r)

m′−1
m′

]
σ′

t

− 1
3m′ − 1

[
r2 − a2(a/r)

m′−1
m′

]
ρω2 + σ′

t,

(17.12b)

σz =
m′ + 1
m′ − 1

[
1− (a/r)

m′−1
m′

]
σ′

t/2

− m′ + 1
3m′ − 1

[
r2 − a2(a/r)

m′−1
m′

]
ρω2 + σ′

t/2.
(17.12c)

Based on Eq.(17.4), the stress of circular bars in the elastic area is

σr = c′
1 +

c′
2

r2
− 1
2
ρω2r2, (17.13a)

σθ = c′
1 −

c′
2

r2
− 1
2
ρω2r2, (17.13b)

σz = c′
1 −

1
2
ρω2r2, (17.13c)
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where c′
1 and c′

2 are integration constants. According to the continuous con-
ditions of the interface surface between elastic and plastic areas, they should
satisfy the following equation:

2c′
1 =

[
2m′

m′ − 1
− m′ + 1

m′ − 1
(a/c)

m′−1
m′

]
σ′

t

− m′ + 1
3m′ − 1

[
c2 − a2(a/c)

m′−1
m′

]
ρω2 + ρω2c2,

and

2c′
2

c2
= −(a/c)

m′−1
m′ − m′ − 1

3m′ − 1

[
c2 − a2(a/c)

m′−1
m′

]
ρω2, (17.14)

with the boundary condition of outer surface r = d, σr = 0, we then have

c′
1 +

c′
2

d2
− 1
2
ρω2d2 = 0, (17.15)

and with the substitution of constants c′
1 and c′

2 into Eq.(17.15) we obtain
the relation between the rotating velocity ω and radius of plastic area c as

[
2m′

m′ − 1
− m′ + 1

m′ − 1
(a/c)

m′−1
m′

]
σ′

t −
m′ + 1
3m′ − 1

[
c2 − a2(a/c)

m′−1
m′

]
ρω2

+ ρω2c2 − (a/c)
m′−1

m′ σ′
t

c2

d2
− m′ − 1
3m′ − 1

[
c2 − a2(a/c)

m′−1
m′

]
ρω2

c2

d2

− ρω2d2 = 0,

(17.16)

Apparently the rotating velocity ω and radius of plastic area c can be
determined by the above equation. In particular, when c = d, the limit plastic
rotating velocity can be obtained as

ωpl =

[
3m′ − 1
m′ − 1

1− (a/d)
m′−1

m′

d2 − a2(a/d)
m′−1

m′

σ′
t

ρ

]1/2
. (17.17)

Substituting Eq.(17.17) into Eq.(17.12) we can obtain the stress of rotat-
ing circular bars in the limit plastic state,

σr =
m′ − 1

m′
[
1− (a/r)

m′−1
m′

]
σ′

t

− m′ − 1
m′

[
r2 − a2(a/r)

m′−1
m′

] 1− (a/d)
m′−1

m′

d2 − a2(a/d)
m′−1

m′
σ′

t

√
b2 − 4ac,

(17.18a)
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σθ =
1

m′ − 1

[
1− (a/r)

m′−1
m′

]
σ′

t

− 1
m′ − 1

[
r2 − a2(a/r)

m′−1
m′

] 1− (a/d)
m′−1

m′

d2 − a2(a/d)
m′−1

m′
σ′

t + σ′
t,

(17.18b)

σz =
m′ + 1
m′ − 1

[
1− (a/r)

m′−1
m′

]
σ′

t/2

− m′ + 1
m′ − 1

[
r2 − a2(a/r)

m′−1
m′

] 1− (a/d)
m′−1

m′

d2 − a2(a/d)
m′−1

m′

σ′
t

2
+

σ′
t

2
.

(17.18c)

17.2.3 Shakedown Analyses of Hollow Rotating Circular Bars

When the rotating velocity is the range of ωel < ω < ωpl, the circular bar
is in the elasto-plastic state, and then if the loading is unloaded completely,
there will appear residual stress in the circular bars. The unloaded stress
can be calculated according to the elastic solution when the unloading is
considered elastic. Based on Eq.(17.6), we can find the stress variation of
rotating circular bars in the unloading

Δσr = −1
2
ρω2

(
d2 + a2 − a2d2/r2 − r2

) −b ±√
b2 − 4ac

2a
, (17.19a)

Δσθ = −1
2
ρω2

(
d2 + a2 + a2d2/r2 − r2

)
, (17.19b)

Δσz = −1
2
ρω2

(
d2 + a2 − r2

)
. (17.19c)

The residual stress is the superposition of loading stress and unloading
stress. For elastic loading there is no residual stress after unloading; i.e., the
rotating circular bar is in the zero stress state. For elasto-plastic loading there
exists residual stress in the circular bars. Summating Eqs.(17.19) and (17.12)
with Eq.(17.13) respectively, the residual stress of the plastic area is obtained
as

σr
r =

m

m′ − 1

[
1− (a/r)

m−1
m

]
σ′

t −
m

3m′ − 1

[
r2 − a2(a/r)

m−1
m

]
ρω2

− 1
2
ρω2

(
d2 + a2 − a2d2/r2 − r2

)
,

(17.20a)

σr
θ =

1
m′ − 1

[
1− (a/r)

m−1
m

]
σ′

t −
1

3m′ − 1

[
r2 − a2(a/r)

m−1
m

]
ρω2 + σ′

t

− 1
2
ρω2

(
d2 + a2 + a2d2/r2 − r2

)
,

(17.20b)
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σr
z =

m+ 1
m′ − 1

[
1− (a/r)

m−1
m

]
σ′

t/2−
m+ 1
3m′ − 1

[
r2 − a2(a/r)

m−1
m

] ρω2

2
+

σ′
t

2

− 1
2
ρω2

(
d2 + a2 − r2

)
,

(17.20c)

and the residual stress of the elastic area is

σr
r = c′

1 +
c′
2

r2
− 1
2
ρω2r2 − 1

2
ρω2

(
d2 + a2 − a2d2/r2 − r2

)
, (17.21a)

σr
θ = c′

1 −
c′
2

r2
− 1
2
ρω2r2 − 1

2
ρω2

(
d2 + a2 + a2d2/r2 − r2

)
, (17.21b)

σr
z = c′

1 −
1
2
ρω2r2 − 1

2
ρω2

(
d2 + a2 − r2

)
. (17.21c)

It is seen that when the rotating velocity reaches a certain value, the inner
surface will appear as an inverse yield first. From Eq.(17.20) the residual stress
at r = a should be

σr
r
= 0, (17.22a)

σr
θ = σ′

t − ρω2d2, (17.22b)

σr
z = (σ′

t − ρω2d2)/2. (17.22c)

In order to ensure that no inverse yield will appear when the circular bar
is unloaded, the residual stress at the inner surface should satisfy

σr
r − 1

m′ σ
r
θ � σ′

t. (17.23)

Substituting the residual stress at the inner surface into Eq.(17.23), the
maximum rotating velocity ωs which will not cause inverse yield is

ωs =
1
d

√
m′ + 1

m′
σ′

t

ρ
. (17.24)

It is seen that if the rotating velocity ω � [(m′+1)σ′
t/(m

′ρ)]1/2/d satisfies
the first loading, no plastic deformation will come into being in the opposite
direction when unloaded completely. If loaded again after that, new plastic
deformation will not appear until ω > [(m′+1)σ′

t/(m
′ρ)]1/2/d due to the ex-

istence of residual stress. It can be concluded that when the rotating velocity
varies in the range of 0 ∼ [(m′+1)σ′

t/(m
′ρ)]1/2, the circular bar will be in the

elastic state, i.e., shakedown state, except for one plastic deformation. How-
ever it should be noted here that only centrifugal force caused by velocities
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is taken into account, neglecting that caused by accelerations. In addition,
the velocity in Eq.(17.24) cannot exceed the limit plastic rotating velocity
of circular bars. Therefore, to keep the circular bars in the shakedown state
when subject to repeated loads, the rotating velocity should satisfy

ω < ωs =

(
1
d

√
m′ + 1

m′
σ′

t

ρ
, ωpl

)
, (17.25)

where ωs is the limit rotating velocity of circular bars in shakedown state.

17.2.4 Elasto-plasticity and Shakedown of Solid Rotating Circular
Bars

In this section the solid rotating circular bars will be studied. The general
solution of stress for circular bars in the elastic stage is as shown in Eq.(17.3).
Thus, considering the boundary conditions at r = 0 and r = d for solid
rotating circular bars, we can obtain the stress solution of solid rotating
circular bars

σr =
3− 2ν
8(1− ν)

ρω2(d2 − r2), (17.26a)

σθ =
3− 2ν
8(1− ν)

ρω2(d2 − 1 + 2ν
3− 2ν

r2), (17.26b)

σz =
3− 2ν
8(1− ν)

ρω2(d2 − 2
3− 2ν

r2). (17.26c)

For incompressible circular bars we have

σr =
1
2
ρω2(d2 − r2), (17.27a)

σθ =
1
2
ρω2(d2 − r2), (17.27b)

σz =
1
2
ρω2(d2 − r2). (17.27c)

Apparently, σr is the minimum principal stress and σθ the maximum
principal stress. It is known that the centre of circular bars will yield first
when the rotating velocity reach a certain value. Substituting r = 0 into
Eq.(17.27) and then Eq.(17.9), the limit elastic rotating velocity of circular
bars is obtained as

ωel =

√
2σ′

tm
′/(m′ − 1)/ρ

d
. (17.28)
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When ω > ωel, the plastic deformation will appear near the inner bound-
ary and then a plastic area is formed. Let c denote the radius of the plastic
area the Eqs.(17.2) and (17.9) are solved together with consideration of the
boundary condition at r = 0, and then the stress of the plastic area is ob-
tained as

σr =
m′

m′ − 1
σ′

t −
m′

3m′ − 1
ρω2r2, (17.29a)

σθ =
1

m′ − 1
σ′

t −
1

3m′ − 1
ρω2r2 + σ′

t, (17.29b)

σz =
m′ + 1
m′ − 1

σ′
t/2−

m′ + 1
3m′ − 1

ρω2r2/2 + σ′
t/2. (17.29c)

Based on Eq.(17.4), the stress of elastic area is

σr = c′
1 +

c′
2

r2
− 1
2
ρω2r2, (17.30a)

σθ = c′
1 −

c′
2

r2
− 1
2
ρω2r2, (17.30b)

σz = c′
1 −

1
2
ρω2r2. (17.30c)

According to the continuous conditions of the interface surface between
elastic and plastic areas, they should satisfy the following equation:

c′
1 =

m′σ′
t

m′ − 1
+

m′ − 1
3m′ − 1

ρω2c2, c′
2 =

1− m′

3m′ − 1
ρω2c2.

Further noting the boundary condition of the outer surface r = d, σr = 0,
we have

m′

m′ − 1
σ′

td
2 +

m′ − 1
3m′ − 1

ρω2c2d2 − m′ − 1
2(3m′ − 1)

ρω2c4 − 1
2
ρω2d4 = 0. (17.31)

The rotating velocity and radius of plastic area c can be determined by the
above equation. In particular, when c = d the limit plastic rotating velocity
can be obtained as

ωpl =

√
(3m′ − 1)σ′

t

(m′ − 1)ρd2
. (17.32)

Substituting Eq.(17.32) into Eq.(17.29), we can get the stress of rotating
circular bars in the limit plastic state,
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σr =
m′

m′ − 1
σ′

t(1− r2/d2), (17.33a)

σθ =
1

m′ − 1
σ′

t(1− r2/d2) + σ′
t, (17.33b)

σz =
1
2

m′ + 1
m′ − 1

σ′
t(1− r2/d2) + σ′

t/2. (17.33c)

The shakedown of rotating circular bars is investigated as follows. It is
assumed that the circular bar is unloaded in the plastic limit state and the
unloading is elastic. According to Eqs.(17.32) and (17.27) the unloaded stress
is obtained as

Δσr = −1
2
3m′ − 1
m′ − 1

σ′
t(1− r2/d2), (17.34a)

Δσθ = −1
2
3m′ − 1
m′ − 1

σ′
t(1− r2/d2), (17.34b)

Δσz = −1
2
3m′ − 1
m′ − 1

σ′
t(1− r2/d2). (17.34c)

Summating Eq.(17.34) with Eq.(17.33), the residual stress is obtained as

σr
r
= −σ′

t + σ′
tr
2/d2, (17.35a)

σr
θ = σ′

tr
2/d2, (17.35b)

σr
z = σ′

tr
2/d2 − σ′

t/2. (17.35c)

Apparently the residual stress satisfies

σr
θ − 1

m′ σ
r
r � σ′

t. (17.36)

Hence, when the solid rotating circular bar is unloaded from the plastic
limit state, there is no inverse yield. It is indicated that the solid rotating
circular bar is in shakedown within the range of the plastic limit.

17.3 Summary of Elasto-plasticity and Shakedown
Analyses of Rotating Circular Bars

From the above elasto-plastic and shakedown analyses for the rotating cir-
cular bars with a constant velocity, the calculation expression for the stress,
radius of plastic area and elastic limit rotating velocity as well as shakedown
limit rotating velocity are presented. Fig.17.1 shows the relation of the non-
dimensional elastic limit rotating velocity of hollow rotating circular bars
Ωel = ωel/[σt/(ρd2)]1/2 with respect to the unified strength theory parame-
ter b at different values of the ratio of material strength in compression and
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in tension m. Fig.17.2 gives the relation of non-dimensional plastic limit ro-
tating velocity of hollow rotating circular bars Ωpl = ωpl/[σt/(ρd2)]1/2 with
respect to the unified strength theory parameter b at different values of m.
Fig.17.3 presents the relation of non-dimensional shakedown limit rotating
velocity of hollow rotating circular bars Ωs = ωs/[σt/(ρd2)]1/2 with respect
to the thickness d/a at different values of m. Fig.17.4 indicates the relation
of shakedown limit rotating velocity Ωs with respect to the thickness d/a at
different values of the unified strength theory parameter b.

Fig. 17.1. Relation of elastic limit rotating velocity of hollow rotating circular bars
with respect to unified strength theory parameter b and m

It is seen from these figures that the loading capability of hollow circular
bars will increase when the effect of compressive and tensile strength varia-
tion and intermediate principal stress are taken into account. And a similar
conclusion can be drawn for the solid circular bars.

17.4 Elasto-plastic and Shakedown Analyses of Rotating
Disc

Rotating discs will be studied in this section. Similar to rotating circular bars,
rotating discs are axisymmetric as well and σr, σθ, σz are principal stresses.
But the rotating discs are in the state of plane stress, i.e., σz = 0. The
unified strength theory will be employed to investigate the elasto-plasticity
and shakedown of rotating discs.
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Fig. 17.2. Relation of plastic limit rotating velocity of hollow rotating circular bars
with respect to unified strength theory parameter b and m

17.4.1 Elastic Analyses of Hollow Rotating Discs

It is assumed that the hollow discs with inner radius a and outer radius d
rotate with the angel velocity ω. Several non-dimensional variables are cited
for the sake of convenience.

R =
r

d
, σr =

σr

σt
, σθ =

σθ

σt
, Ω2 =

ρω2d2

σt
, β =

a

d
.

The equilibrium equation of rotating discs is the same as that of rotating
circular bars, i.e., Eq.(17.2). Substituting the above non-dimensional variables
into Eq.(17.2), we have

dσr

dR
+

σr − σθ

R
+Ω2R = 0. (17.37)

The elastic stress solutions of hollow rotating discs are

σr = c1 +
c2
R2

− 7
16

Ω2R2, (17.38a)

σθ = c1 − c2
R2

− 5
16

Ω2R2, (17.38b)

where c1, c2 are integration constants. For the discs with free inner and outer
boundaries we have
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Fig. 17.3. Relation of shakedown limit rotating velocity of hollow rotating circular
bars with respect to m(b = 0.5)

σr =
7
16

Ω2
(
1 + β2 − β2/R2 − R2

)
, (17.39a)

σθ =
7
16

Ω2
(
1 + β2 + β2/R2 − 5R2/7

)
. (17.39b)

The yield condition of rotating discs is

σθ = aiσr + bi, (17.40)

where ai, bi are constants. Fig.17.5 presents the yield loci of the unified
strength theory in the σr-σθ stress state.

The stresses of rotating discs should satisfy σ̄θ > σ̄r � σ̄z = 0, therefore
the curves corresponding to the stress of the plastic area are lines AB and
BC in Fig.17.5. The function of line AB is

σθ = a1σr + b1, (17.41a)

where a1 = −b, b1 = 1 + b.
The function of line BC is

σθ = a2σr + b2, (17.41b)
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Fig. 17.4. Relation of shakedown limit rotating velocity of hollow rotating circular
bars with the unified strength theory parameter b (m = 1.2)

Fig. 17.5. Yield loci of the unified strength theory in plane stress state

where a2 = b/(m + mb), b2 = 1. It is seen that the inner boundary of discs
will yield first when the rotating velocity reaches a certain value. Substituting
r = a into Eqs.(17.39) and (17.41b), the limit elastic rotating velocity can be
obtained

Ωel =
√
8/(7 + β2). (17.42)
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Thus the stresses of discs in the elastic state are

σr =
7

2(7 + β2)
(
1 + β2 − β2/R2 − R2

)
, (17.43a)

σθ =
7

2(7 + β2)
(
1 + β2 + β2/R2 − 5R2/7

)
. (17.43b)

17.4.2 Plastic Limit Analyses of Hollow Rotating Discs

The inner surface arrives at the plastic state when the rotating velocity Ω =
Ωel, and the plastic area expands with the increase in velocity. WhenΩ = Ωpl,
the complete area of discs is in the state of the plastic area, namely the plastic
limit state, and is called the plastic limit rotating velocity of discs.

When the discs are in the plastic limit state, the stresses still satisfy
σ̄r > σ̄θ � σ̄z = 0. According to Fig.17.5, there are two possible cases for the
plastic limit stress state of hollow discs: (1) the stress state is in line BC; (2)
the stress state is in lines AB and BC. Both cases are discussed in detail as
follows.

Case 1
When the ratio of the inner and outer radius β is over a critical value βcr,

the plastic stress state of discs corresponds to line BC. Solving Eq.(17.38) and
yield condition Eq.(17.41b) together and considering the boundary conditions
R = 1, σ̄r = 0, the stress distributions of discs are obtained

σr =
m+mb

m+mb − b

(
1− R− m+mb−b

m+mb

)
− (m+mb)Ω2

pl

3m+ 3mb − b

(
R2 − R− m+mb−b

m+mb

)
,

(17.44a)

σθ =
b

m+mb − b

(
1− R− m+mb−b

m+mb

)
− bΩ2

pl

3m+ 3mb − b

(
R2 − R− m+mb−b

m+mb

)
+ 1.

(17.44b)

When R = β, σ̄r = 0. Hence the plastic limit rotating velocity of discs in
Case 1 is obtained

Ωpl =

[
(3m+ 3mb − b)(1− β− m+mb−b

m+mb )

(m+mb − b)(β2 − β− m+mb−b
m+mb )

]1/2
. (17.45)

Assuming that at R = R0 the radial stress σ̄r reaches the maximum, then
we have

dσr

dR
(R = R0) = 0, (17.46)

where σ̄r (R = R0) � (m+mb)/(m+mb+ 1) and we obtain
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(
1− m+mb − b

3m+ 3mb − b
Ω2
pl

)
R

− 2m+2mb−b
m+mb

0 − 2m+ 2mb

3m+ 3mb − b
Ω2
plR0 = 0. (17.47)

The stress state of the maximum radial stress should correspond to point
B in Fig.17.5 when β = βcr and we have

σr(R = R0; β = βcr) =
m+mb

m+mb+ 1
. (17.48)

Solving Eq.(17.44) to Eq.(17.48) together, the critical value βcr can be
determined.

Case 2
When β is smaller than the critical value βcr, the stress state of discs is

in lines AB and BC of Fig.17.5. Based on the yield condition and boundary
conditions, the discs can be divided into three areas: plastic area I (β � R �
R1); plastic area II (R1 � R � R2); plastic area III (R2 � R � 1) (refer to
Fig. 17.6), where R1 and R2 are the radii of plastic areas I and II, respectively.
The stress state of plastic areas I and III corresponds to line BC in Fig.17.5,
and the stress state of plastic area II corresponds to line AB.

Fig. 17.6. Distribution of plastic areas of hollow rotating discs

Solving Eq.(17.38) and yield condition Eq.(17.41), the stress solution of
three plastic areas can be derived. Here the radial stresses of the plastic area
are listed as,

Plastic area I:

σr =
b2

1− a2
− Ω2

pl

3− a2
R2 + d1R

−1+a2 . (17.49)

Plastic area II:
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σr =
b1

1− a1
− Ω2

pl

3− a1
R2 + d2R

−1+a1 , (17.50)

Plastic area III:

σr =
b2

1− a2
− Ω2

pl

3− a2
R2 + d3R

−1+a2 , (17.51)

where d1, d2 and d3 are integration constants. With consideration of boundary
conditions and continuous conditions, the relations of d1, d2, d3 and R1, R2,
Ωpl are as follows:

b2
1− a2

− Ω2
pl

3− a2
β2 + d1β

−1+a2 = 0, (17.52)

b2
1− a2

− Ω2
pl

3− a2
R21 + d1R

−1+a2
1 =

m+mb

m+mb+ b
, (17.53)

b1
1− a1

− Ω2
pl

3− a1
R21 + d2R

−1+a1
1 =

m+mb

m+mb+ b
, (17.54)

b1
1− a1

− Ω2
pl

3− a1
R22 + d2R

−1+a1
2 =

m+mb

m+mb+ b
, (17.55)

b2
1− a2

− Ω2
pl

3− a2
R22 + d3R

−1+a2
2 =

m+mb

m+mb+ b
, (17.56)

b2
1− a2

− Ω2
pl

3− a2
+ d3 = 0. (17.57)

Substituting the radial stresses of the plastic area into yield condition
Eq.(17.41), the tangent stresses can be determined.

17.4.3 Shakedown of Hollow Rotating Discs

The shakedown of rotating hollow discs subject to repeated loadings will be
studied in this section. For convenience b is taken as zero and the effect of the
tensile and compressive strength vibration of materials on the shakedown of
rotating discs is mainly discussed here.

On the basis of the above analyses, the plastic limit rotating velocity of
hollow rotating discs when b = 0 is easily obtained as

Ωpl =
√
3/(1 + β + β2), (17.58)

and the elastic limit rotating velocity is still expressed by Eq.(17.42). When
the loading is increased to Ωel < Ω < Ωpl, the disc is in the elasto-plastic
state, and its internal part is a plastic area while its external part is an
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elastic area. Assuming that the radius of the plastic area is c corresponding
to a certain value of Ω, then the yield condition can be simplified as

σθ = 1. (17.59)

Solving Eqs.(17.2) and (17.57) together, and considering boundary con-
dition R = β, σ̄r = 0, the stresses of the plastic area are obtained

σr = 1− β/R − 1
3
Ω2R2

[
1− (β/R)3

]
, (17.60a)

σθ = 1. (17.60b)

According to Eq.(17.36), the stresses of the elastic area are

σr = c′
1 +

c′
2

R2
− 7
16

Ω2R2, (17.61a)

σθ = c′
1 −

c′
2

R2
− 5
16

Ω2R2, (17.61b)

where c′
1 and c′

2 are integration constants. Based on the stress continuous
conditions on the interface between elastic and plastic areas, we obtain

2c′
1 = 2− β

c
+

5
12

Ω2c2 +
1
3
Ω2β3/c, (17.62a)

2c′
2

c2
= −β

c
− 5
24

Ω2c2 +
1
3
Ω2β3/c. (17.62b)

Taking into account the boundary condition of the outer surface R = 1,
σ̄r = 0, we have

c′
1 + c′

2 −
7
16

Ω2 = 0, (17.63)

Substituting integration constants c′
1 and c′

2 into Eq.(17.63), the relation
between rotating velocity Ω and the radius of the plastic area c is obtained
as

Ω2 =
24(2c − βc2 − β)

21c − 8β3c2 − 10c3 + 5c5 − 8β3
. (17.64)

If c = β, c = 1, we can obtain easily Eqs.(17.42) and (17.58). When the
rotating velocity decreases to zero, i.e., unloaded completely, there will be
residual stress in the discs. Assuming that the unloading is elastic, the stress
variation of discs can be derived on the basis of Eq.(17.39),
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Δσr = − 7
16

Ω2
(
1 + β2 − β2/R2 − R2

)
, (17.65a)

Δσθ = − 7
16

Ω2
(
1 + β2 + β2/R2 − 5R2/7

)
. (17.65b)

Summating the above equations with Eqs.(17.60) and (17.61) respectively,
the residual stresses of the plastic area after unloading are obtained as

σr
r = 1− β/R − 1

3
Ω2R2

[
1− (β/R)3

] − 7
16

Ω2
(
1 + β2 − β2/R2 − R2

)
,

(17.66a)

σr
θ = 1− 7

16
Ω2

(
1 + β2 + β2/R2 − 5R2/7

)
, (17.66b)

and the residual stresses of the elastic area are

σr
r = c′

1 +
c′
2

R2
− 7
16

Ω2R2 − 7
16

Ω2
(
1 + β2 − β2/R2 − R2

)
, (17.67a)

σr
θ = c′

1 −
c′
2

R2
− 5
16

Ω2R2 − 7
16

Ω2
(
1 + β2 + β2/R2 − 5R2/7

)
. (17.67b)

It is seen that when the rotating velocity reaches a certain value, the
residual stresses of the discs will result in the inverse yield of discs. It will
appear at the inner surface first. It is known from Eq.(17.66) that σr

r = 0,
σr

θ = 1−Ω2Ω2
el < 0 at the inner surface. Therefore the yield condition of the

inner surface is

σr
r −

σr
θ

m
= σt. (17.68)

Substituting the stress at the inner surface into the above equation, the
maximum rotating velocity which will not cause the inverse yield when the
discs are unloaded is obtained as

Ωs =
√
8(1 +m)/(7 + β2). (17.69)

Takeing into account the consideration that the maximum rotating veloc-
ity of discs should not exceed the plastic limit rotating velocity, the shakedown
limit velocity is thus obtained

Ωs = min
(√

8(1 +m)/(7 + β2),
√
3/(1 + β + β2)

)
. (17.70)
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17.5 Elasto-plastic and Shakedown Analyses of Solid
Rotating Discs

Similarly, the elasto-plastic and shakedown analyses of solid rotating discs
can be carried out in the same way. Here we neglect the detailed derivation
and give the main solution for solid rotating discs.

Elastic stresses

σr =
7
16

Ω2
(
1− R2

)
, (17.71a)

σθ =
7
16

Ω2 − 5
16

Ω2R2, (17.71b)

and the elastic limit rotating velocity

Ωel =
√
7/16. (17.72)

The plastic areas of the plastic limit state can be divided into two parts:
the plastic area I in the central part (0 � R < R1) and the plastic area II
in the surrounding part (R1 � R < 1) (refer to Fig.17.7). The stress state
of plastic area I corresponds to line AB in Fig.17.5 and the stress state of
plastic area II corresponds to line BC, where R1 is the critical radius between
plastic areas I and II. The stresses of plastic area I are

σr =
b1

1− a1
− Ω2

pl

3− a1
R2, (17.73a)

σθ = a1σr + b1. (17.73b)

Fig. 17.7. Distribution of plastic areas for solid rotating discs
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The stresses of plastic area II are

σr =
b2

1− a2
− Ω2

pl

3− a2
R2 + d1R

−1+a1 , (17.74a)

σθ = a2σr + b2, (17.74b)

where d1, Ωpl and R1 are determined by the following equation:

b1
1− a1

− Ω2
pl

3− a1
R21 =

m+mb

m+mb+ b
, (17.75)

b2
1− a2

− Ω2
pl

3− a2
R21 + d1R

−1+a2
1 =

m+mb

m+mb+ b
, (17.76)

b2
1− a2

− Ω2
pl

3− a2
+ d1 = 0. (17.77)

17.6 Summary of Elastic and Plastic Analyses of
Rotating Discs

Elasto-plastic and shakedown analyses have been conducted for the rotating
discs. It is seen that the elastic limit rotating velocity is neither related to
the effects of the intermediate principal stress of materials, nor to the tensile
and compressive strength variation, while the plastic limit rotating velocity
is related to them.

Fig.17.8 gives the relation of plastic limit rotating velocity Ωpl with re-
spect to the ratio of compressive and tensile strength m as well as the unified
strength theory parameter b. Parameter b is also the parameter for the effect
of the intermediate principal stress.

It is seen from Fig.17.8 that the plastic limit rotating velocity will increase
with the increase in b and the effect of m on Ωpl is related to the value of b.
When b = 0 (the Mohr-Coulomb strength theory), m has no effect on plastic
limit rotating velocity Ωpl, and with the increase in b the influence of m is
more and more obvious.

Fig.17.9 presents the relation of shakedown rotating velocity Ωs with re-
spect to the ratio of inner and outer radii of the discs a/d at various values
of m. It is indicated that the effect of m on the shakedown rotating velocity
Ωs is related to a/d. When a/d is large, m has no effect on Ωs, and when
a/d is small, and m has a significant effect on Ωs.
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Fig. 17.8. Relation of plastic limit rotating velocity of hollow rotating discs with
respect to unified strength theory parameter b and m (β = 0.5)

Fig. 17.9. Relation of shakedown limit velocity of hollow rotating discs with respect
to β and m

17.7 Summary

In this chapter the elasto-plastic and shakedown analyses for the rotating
circular bars and discs are carried out using the unified strength theory. The
closed solution of the elasto-plastic stress, elastic limit rotating velocity, plas-
tic limit rotating velocity and shakedown limit rotating velocity of rotating
circular bars and discs are derived. With these solutions, the effects of ten-
sile and compressive strength variation and intermediate principal stress on
those limit rotating velocities are researched. The unified solution obtained
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by using the unified strength theory gives a series of results. The following
conclusions are drawn:

(1) The elastic limit rotating velocity, plastic limit rotating velocity and
shakedown limit rotating velocity of rotating circular bars increase with the
increase of intermediate principal stress coefficient, and the effect of tensile
and compressive strength variation is related to the value of the intermediate
principal stress.

(2) The elastic limit rotating velocity of rotating discs is not related to
the tensile and compressive strength variation. For the hollow rotating discs,
the plastic limit rotating velocity increases with the intermediate principal
stress coefficient and the ratio of compressive and tensile strength. The effect
of the ratio of compressive and tensile strength m on the shakedown limit
velocity of discs Ωs is related to the ratio of the inner and outer radii a/d.
When a/d is large m has no effect on Ωs and when a/d is small m has a
significant effect on Ωs.

The unified strength theory has been applied to various problems of struc-
tural plasticity. A series of new results are presented. Comments on the unified
strength theory are given by Shen (2004), Teodorescu (2006), and Altenbach
and Kolupaev (2008). Applications of the unified strength theory in plastic
limit analysis and shakedown analysis for different structures are still devel-
oping. It is expected that the unified strength theory will have more and more
applications in the future in addition to the plastic analysis of structures. We
hope that the Chinese idiom “throwing out a brick to attract a piece of jade”
becomes real and this book can serve as a solid brick.

Applications of the unified strength theory in computational plasticity
are still to be explored. We will study them in the next monograph: Compu-
tational Plasticity: with Emphasis on the Application of the Unified Strength
Theory.
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cavity expansion pressure and velocity,

276
circular plate, 4, 206, 344
clamped circular plate, 108, 112
clamped circular plates, 112
clamped circular plates for SD

materials, 112
compatibility equations, 25
completely plastic state, 348, 351
compressible material, 279
conventional yield criteria, 33
cylindrical cavity expansion, 265

deviatoric plane, 34, 35, 155
deviatoric stress tensor, 18
Drucker-Prager criterion for SD

materials, 38
dynamic plastic limit, 206
dynamic plastic response, 205
dynamic plastic response for the

clamped circular plate, 205

dynamic shakedown theorem, 344

edge moment and partial-linear load,
93

edge moment and partial-uniform load,
91

effect of intermediate principal stress,
35, 340, 357

elastic limit of discs, 232
elastic limit pressure of thick-walled

sphere shell, 181
elastic limit pressures, 189
elastic state, 345, 350
elastic-plastic boundary, 320
elastic-plastic state, 346, 350
elasto-plastic analysis of discs, 233
equations of equilibrium, 24, 331

fixed supported circular plate, 307

generalized Hooke’s Law, 24
generalized stress, 75, 127
generalized twin shear criterion, 335
generalized yield criterion, 96
geomaterial, 32
governing equations for plane stress

problems, 26
governing equations in polar coordi-

nates, 27

Huber-von Mises criterion, 32, 74
Huber-von Mises criterion for non-SD

materials, 36
Huber-von Mises yield criterion, 55
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incompressible material, 277
interface of elastic-cracked zones, 270
interface of the plastic and cracked

zones, 273

Karman complete plastic condition, 262
kinematic shakedown theorem, 329
Koiter’s theorem, 329, 344

limit analysis, 136
limit angular speed, 232
limit angular speed of rotating disc and

cylinder, 231
limit depth for stability of a shaft, 322
Limit elastic rotating velocity of

circular bars, 364
limit load of rectangular plates, 163
limit load of rhombic plates, 162
Limit load of the wellbore, 314
limit load theorem, 336
limit plastic rotating velocity, 361
limit pressure, 175
limit pressure of thick-walled hollow

sphere, 180
limit theorem, 68
linearly distributed load, 102
load-bearing capacity, 70
lower-bound theorem, 67

mathematical expression of the unified
strength theory, 48

mathematical modeling, 33
mathematical modelling of the unified

strength theory, 47
maximum normal stress criterion, 33
maximum shear stress-based criteria,

33
mechanical model, 36
mechanical model of the unified

strength theory, 46
Melan’s shakedown theorem, 329, 344
Mohr-Coulomb criterion, 35
Mohr-Coulomb criterion for SD

materials, 35
Mohr-Coulomb strength theroy, 35, 229
multiaxial stress, 17, 33

non-convex criteria, 55
non-SD materials, 32, 75, 175

oblique plate, 154
oblique, rhombic, rectangular plates,

154
octahedral model, 36
octahedral shear stress, 21, 36
octahedral shear stress criterion, 37
octahedral shear stress-based criteria,

36
orthogonal octahedral model, 47
orthotropic fixed supported circular

plate, 309
orthotropic simply supported circular

plate, 304
orthotropic yield criteria, 293

partial-uniform load, 97
penetration depth, 262
penetration resistance, 261
penetration resistance analysis, 284
pentahedron element, 47
perfectly plastic solid, 66
plane stress state, 35, 232
plastic limit analysis, 64, 136, 232
plastic limit load, 2, 296
plastic limit pressure, 185, 332
plastic limit pressure for non-SD

materials, 194
plastic limit pressure for SD materials,

193
plastic limit pressure of thick-walled

sphere shell, 182
plastic limit rotating velocity of discs,

371
plastic limit rotating velocity of hollow

rotating discs, 379
polyaxial stress, 17
pore pressure analysis, 318
pore pressure distribution, 318
power of dissipation, 66
pressure vessel, 175
principal deviatoric stresses, 19
principal shear stress, 19
principal strain, 23
principal stress, 17
projectile penetration, 261

rectangular plate, 154
regular octahedral model, 36
residual stresses, 329, 332
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rhombic dodecahedral element, 40
rhombic plate, 162
rotating circular bars, 358
rotating cylinder, 357
rotating cylinder and disc, 231, 357
rotating disc, 231
rotating disc with variable thickness,

256

SD effect, 136, 328
semi-infinite target, 261
shakedown analysis, 348, 357
shakedown analysis of a thick-walled

spherical shell, 339
shakedown analysis of structures, 7, 379
shakedown limit load for the clamped

circular plate, 354
shakedown limit load for the simply

supported plate, 354
shakedown limit velocity of hollow

rotating discs, 377
shakedown of rotating discs, 367
shakedown of rotating hollow discs, 373
shakedown pressure of thick-walled

cylinders, 334
shakedown theorem, 329, 336
simply supported circular plate, 74
simply supported circular plate for

non-SD materials, 76
simply supported circular plate for SD

materials, 95
simply supported orthotropic circular

plate, 301
single-shear model, 36
single-shear strength theory, 155
single-shear theory, 33
solid disc with variable thickness, 242
space shuttle, 179
spatial axisymmetric form of unified

strength theory, 262
spatial equipartition, 49
spherical cavity expansion theory, 261
spherical shell, 181
spherical stress, 19
spherical stress tensor, 18
square plate, 168
static and kinetic admissibility, 206
static shakedown theorem, 328
strain components, 16, 22

strength analysis for wellbore, 316
stress components and invariants, 16
stress distribution, 190
stress tensor, 17
stress tensor invariants, 17

tension cutoff, 48
tensor invariants, 18
thick-walled cylinder, 175, 184, 330
thick-walled sphere shell, 180
thin-walled pressure vessel, 175
three-shear theory, 36
Tresca criterion, 33
triaxial stress, 17
twin-shear model, 40
twin-shear orthogonal octahedral

model, 43
twin-shear pentahedron element, 49
twin-shear strength criterion, 32
twin-shear strength theory, 42, 155
twin-shear strength theory for SD

materials, 42
twin-shear stress-based criterion, 40
twin-shear theory, 40
twin-shear yield criterion, 41, 136, 206

unified cohesion, 263
unified internal friction angle, 263
unified solution of dynamic plastic

response of circular plate, 216
unified solution of elastic limit pressure

of thick-walled cylinder, 184
unified solution of limit analysis of

simply supported oblique plates,
159

unified solution of limit pressure of
thin-walled pressure vessel, 176

unified solution of plastic limit analysis
of rotating cylinder, 239

unified solution of plastic limit pressure
of thick-walled cylinder, 190

unified solutions of annular plate for
non-SD materials, 142

unified solutions of clamped circular
plate for non-SD materials, 112

unified solutions of clamped circular
plate for SD materials, 127

unified solutions of limit load of annular
plate for SD materials, 145
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unified solutions of simply supported
circular plate for non-SD
materials, 76

unified solutions of simply supported
circular plate for SD materials, 95

unified strength theory, 2, 145, 262
unified strength theory for SD

materials, 45
unified strength theory in plane stress

state, 369
unified strength theory in spatial

axisymmetric form, 262
unified strength theory in the plane

stress state, 52
unified strength theory with the tension

cutoff, 48
unified yield criterion (UYC), 32, 112

unified yield criterion for metallic
materials (non-SD materials), 44

uniformly distributed load, 78, 112
upper-bound theorem, 68

wellbore, 314

yield condition, 32
yield condition for a thin walled

cylinder, 177
yield criterion, 2, 32
yield loci, 34, 48
yield surface, 34
yield surfaces, 48
Yu twin-shear model, 46, 49
Yu unified strength theory, 258, 328
Yu unified yield criterion, 3, 232
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