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Preface

The principal aim of the book is to give a comprehensive account of the variety
of approaches to such an important and complex concept as Integrability. Devel-
oping mathematical models, physicists often raise the following questions: whether
the model obtained is integrable or close in some sense to an integrable one and
whether it can be studied in depth analytically. In this book we have tried to cre-
ate a mathematical framework to address these issues, and we give descriptions of
methods and review results.

In the Introduction we give a historical account of the birth and development of
the theory of integrable equations, focusing on the main issue of the book – the
concept of integrability itself. A universal definition of Integrability is proving to be
elusive despite more than 40 years of its development. Often such notions as “ex-
act solvability” or “regular behaviour” of solutions are associated with integrable
systems. Unfortunately these notions do not lead to any rigorous mathematical def-
inition. A constructive approach could be based upon the study of hidden and rich
algebraic or analytic structures associated with integrable equations. The require-
ment of existence of elements of these structures could, in principle, be taken as a
definition for integrability. It is astonishing that the final result is not sensitive to
the choice of the structure taken; eventually we arrive at the same pattern of equa-
tions. The relationship between the different approaches is often far from obvious
and needs to be understood better.

Integrable equations possess hidden symmetries and actually possess infinite hi-
erarchies of local symmetries. This property is taken as a definition of integrability
in the symmetry approach. A detailed introduction and review of the modern state
of the symmetry approach is given in Chap. 1, written by A.V. Mikhailov and V.
Sokolov. The symmetry approach provides powerful necessary conditions for the
existence of local higher symmetries and/or conservation laws for systems of differ-
ential equations. For a given system of equations these conditions are easily verifi-
able and eventually can serve as a criterion of integrability. Chapter 1 also contains
an account of classification results obtained and an extensive bibliography.

For evolutionary equations whose right-hand side is a homogeneous differential
polynomial, the symbolic representation and powerful results of number theory al-
low us to achieve global classification results (Chap. 2, written by J. Sanders and
J.P. Wang). One of the most spectacular results of this theory can be formulated as
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follows: any scalar integrable evolutionary equation whose right-hand side is a ho-
mogeneous differential polynomial (with a positive weight) belongs to one of the
infinite hierarchies of equations of order 2,3 or 5 and all these integrable hierarchies
are explicitly listed. It is shown that for a scalar evolutionary equation the existence
of one higher symmetry implies the existence of an infinite hierarchy of hidden
symmetries and therefore the integrability of the equation. For systems of equations
a similar statement is not valid: there are examples of systems which have only a
finite number of higher local symmetries. Chapter 2 is an excellent introduction to
the symbolic method and contains relevant number theory results in applications to
the theory of integrable equations.

In Chap. 3, written by S.P. Novikov, the phenomenon of integrability is asso-
ciated with hidden symmetries of linear spectral problems. Darboux and Laplas
transformations for one- and two-dimensional Schrödinger operators are famous
examples of the spectral symmetries. The proper discretisation of these operators,
the corresponding discrete Darboux and Laplas transformations and their relation
to integrable equations and finite gap solutions are discussed. Chapter 4, written by
A. Shabat is devoted to a detailed study of continuous and discrete spectral sym-
metries in the one-dimensional case. A connection of these symmetries with the
famous list of Painlevé equations and with dressing chains is discussed.

Chapters 5 and 6 explore perturbative and asymptotic aspects of integrable equa-
tions. The concept of approximate integrability, approximate symmetries and con-
servation laws are discussed in Chap. 5, written by Y. Hiraoka and Y. Kodama. It
is an attempt to extend the classical theory of normal forms to the case of partial
differential equations. If the main approximation is given by an integrable equa-
tion, the higher order corrections often violate integrability and give rise to new
effects, such as inelasticity in soliton interaction, creation of new solitons as a result
of soliton collisions, etc. Chapter 6, written by A. Degasperis, addresses multiscal-
ing expansion and universal equations, i.e. nonlinear equations which determine
the leading term in the asymptotic expansion. Francesco Calogero gave a simple
explanation for why integrable equations, which are rather exceptional, are widely
applicable. Universal equations have a good chance to be integrable, since the multi-
scaling expansion preserves the main attributes of integrability, such as symmetries,
local conservation laws, etc. The analysis of higher order corrections in a multiscale
expansion of a given system provides necessary conditions for integrability of the
system.

In the analytical theory of differential equations we study the structure of singu-
larities of the solutions. The absence of movable critical singularities can be taken
as a criteria for isolation of integrable systems. This is at the heart of the Painlevé
approach and its generalisations described in Chap. 7 written by A. Hone.

Chapter 8, written by J. Hietarinta, describes the modern development of the
Hirota approach and bi-linear representation of integrable equations. This kind of
representation proved to be very useful for construction and analysis of explicit
multi-soliton solutions. It can also be used for a classification of integrable equations
of special form.



Preface vii

Quantum integrability is a separate and well-developed subject. It deserves a sep-
arate volume. We include lectures of T. Miwa (Chap. 9) in order to give a flavour of
quantum integrability and to highlight the symmetry aspects of quantum integrable
systems in the example of XXZ model.

This book is a unique collection of articles which could serve as the core mate-
rial for a number of graduate lecture courses. The chapters in the book are indepen-
dent and self-contained. They can be read in any order. Chapter 1 is probably more
pedagogical than others and can be recommended for those wishing to become ac-
quainted with the subject. The book was specifically designed to be accessible to
graduate students and post-docs.

Leeds, UK, Alexander V. Mikhailov
September 2008
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Introduction

A.V. Mikhailov

In the introduction I would like to give a brief historical background and some
aspects of the modern development of the theory of integrable systems with main
focus on the problem of integrability of partial differential equations. I have been
a witness to this development since 1972 when I joined Zakharov’s seminar in
Novosibirsk and later on working in L.D. Landau Institute for Theoretical Physics. I
had been very lucky indeed to be in the right place at the right time. My account here
does not intend to be complete – its only purpose is to give a general background
of, motivations for and a smooth introduction to the topics covered in this book.

Inverse Scattering Transform and Integrable Equations

There is no doubt that the modern theory of integrable systems was inspired by
the discovery of the inverse transform method. Over 40 years ago, Gardner, Green,
Kruskal and Miura [33] proposed a method for solving the initial value problem for
the Korteweg–de Vries (KdV) equation

ut +uxxx−6uux = 0 (1)

using the inverse scattering problem for the Schrödinger operator

L =− d2

dx2 +u(x, t)−λ 2 .

At that time it looked like a miracle or simply a trick. It was not at all clear
whether such a trick could be applied to any other nonlinear differential equation
(partial or ordinary). In 1968, Lax gave [53] an elegant and neat interpretation of re-
sults in [33] by representing the KdV equation in terms of two commuting operators

A.V. Mikhailov (B)
School & Mathematics, University of Leeds, Leeds LS2 9JT, UK,
A.V.Mikhailov@leeds.ac.uk

Mikhailov, A.V: Introduction. Lect. Notes Phys. 767, 1–18 (2009)
DOI 10.1007/978-3-540-88111-7 0 c© Springer-Verlag Berlin Heidelberg 2009



2 A.V. Mikhailov

[
d
dx
−A,L

]
= 0, A = 4

d3

dx3 −3

(
u

d
dx

+
d
dx

u

)
,

which we now call a Lax pair. This observation opened the way to many further
generalisations and applications of the method.

The breakthrough was the discovery by Zakharov and Shabat in 1971 [88]: the
nonlinear Schrödinger (NLS) equation

iψt = ψxx +2|ψ|2ψ (2)

can be solved by the inverse transform method. The Lax operator L corresponding
to Eq. (2) is a Dirac-type operator. Soon after, Ablowitz, Kaup, Newell and Segur
(the famous AKNS group from the Clarkson University, NY) made a number of
extensions of the method to other equations including the sine-Gordon equation [2]

utt −uxx + sinu = 0 . (3)

Then there was an entire avalanche of discoveries of integrable equations. People
were “fishing” for integrable equations by commuting different types of operators,
often without any clear idea about which equation will emerge as the result of the
commutation.

Gradually the original Lax pair and spectral transform have been replaced by a
more general approach based on a zero-curvature representation

Ut −Vx +[U,V ] = 0

or a compatibility condition for two linear problems [89]

LΨ = 0, MΨ = 0, where L =
d
dx
−U, M =

d
dt
−V,

where U = (x, t,λ ),V = V (x, t,λ ) are N×N matrices (or elements of a Lie algebra)
depending on the spectral parameter λ in a certain way (i.e. polynomial, rational, el-
liptic or even meromorphic functions of λ ). I remember, after the paper of D. Kaup
[42] (which we discussed in Zakharov’s seminar in Novosibirsk), where he proposed
replacing the spectral problem by a more general problem with a polynomial depen-
dence on the spectral parameter,1 that I added a simple idea to control the Lorentz
invariance of the resulting equations and discovered the Lax representation [59] for
the two-dimensional massive Thirring model

iγμ∂μψ +mψ + γμψ(ψ̄γμψ) = 0

and the proof of its integrability [52]. More general rational dependence on the
spectral parameter (of the Lax operator) enabled us to integrate the two-dimensional
principal chiral field model [85]

1 Later on I have realised that a polynomial dependence on the spectral parameter and even zero-
curvature type representations had been introduced earlier by S. P. Novikov [72] in the context of
the finite gap integration.
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∂ μ(g−1∂μg) = 0, g(x, t) ∈ G,

for various Lie groups G [69] and its Grassmanian reductions

[P,Pξη ] = 0. g = I−2P, P2 = P.

Elliptic dependence on the spectral parameter was inherented from the quan-
tum Yang–Baxter theory and applied to integration of the classical Landau–Lifshitz
equation describing anisotropic ferromagnets by Sklyanin [77]. A straightforward
extension of λ dependence to rational functions on algebraic curves of higher genus
meets certain obstacles due to the Riemann–Roch theorem (see discussion in [86]),
but here there has been some recent promising progress [48]. A generalisation to a
nonisospectral setup enables us to integrate the Ernst equation (a reduction of the
Einstein equations of gravitation) and a number of other systems [11, 14].

The range of integrable systems was rapidly extending. The inverse transform
method has been applied to differential difference equations, such as the Toda lattice

d2vn

dt2 = exp(vn+1)− exp(vn−1) ,

the Volterra chain and the differential difference nonlinear Schrödinger equation
[3, 28, 41, 57]. The Lax representation has been found and thus the complete integra-
bility has been proven for the N-dimensional Euler top [58] (in 2006, Manakov and
Sokolov were awarded the Kowalewskii prize for their achievements in the study
of integrable tops). A number of important integro-differential equations and totally
discrete systems proved to be integrable by the inverse transform method. The in-
verse transform method has been extended to multi-dimensional equations. Maybe
the most famous examples are the Kadomtsev–Petviashvili equation [22, 89]

(ut +uxxx +6uux)x =±uyy, (4)

the Veselov–Novikov equation [79]

ut +uxxx +uyyy +(uv)x +(uw)y = 0, vy = ux, wx = uy

and the (anti) self-dual Yang–Mills equation [10]

Fμν =±F∗μν , Fμν = ∂μAν −∂νAμ +[Aμ ,Aν ] .

Simultaneously the methods of solutions were developing too. They are based on
the solution of the inverse scattering problems for the corresponding Lax operators.
Inverse scattering problems (or more generally, inverse spectral transforms) were
vastly generalised. Zakharov and Shabat proposed the “dressing method” [89, 90].
They expressed solutions of integrable equations in terms of solutions of a ma-
trix Riemann–Hilbert problem. In scattering theory soliton solutions correspond to
reflectionless potentials (the Bargman potentials in the case of the Schrödinger op-
erator L). In the dressing method exact multisoliton solutions can be found via a
solution of a rational matrix Riemann–Hilbert problem. The latter can be tackled
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using linear algebra alone and therefore bypassing the need to use the full machinery
of the inverse problem. The inverse transform based on the nonlocal Riemann–
Hilbert problem [84] and the ∂̄ -problem [1] was developed for integration of multi-
dimensional equations (i.e. the Kadomtsev–Petviashvili equation (4)).

Methods of algebraic geometry have been brought to the theory of integrable
equations by S. P. Novikov [72]. He constructed a new class of solutions correspond-
ing to algebraic spectral curves. Novikov has discovered quasi-periodic potentials,
the continuous spectrums of which have a finite number of forbidden gaps. These
potentials are useful and fruitful generalisation of the reflectionless (or Bargman)
potentials in quantum scattering theory. That was a huge boost to the theory of inte-
grable equations and likewise it has set a number of new pithy problems in classical
algebraic geometry.

Self-similar solutions of integrable partial differential equations are solutions of
ordinary differential equations satisfying the Painlevé property [5]. In particular, all
six Painlevé equations can be obtained as symmetry reductions of integrable PDEs.
The theory of iso-monodromic deformations, based on the Lax representation, en-
ables us to find connection formulas for asymptotics of the Painlevé transcendents.

Gradually it has been becoming clear that the theory of integrable systems has
many relations with almost all parts of mathematics. The inverse transform and the
Gel’fand–Levitan–Marchenko equation are related to functional analysis. The ma-
trix Riemann–Hilbert problem and the ∂̄ -problem are related to complex analysis.
The theory of integrable systems uses methods of the theory of Lie algebras and
representation theory, group theory, algebraic geometry, commutative and noncom-
mutative algebra, number theory, etc. Dressing transformations, which add solitons
to a solution, are known in differential geometry as Bäcklund transformations; on
the level of the corresponding Lax operators it is Darboux transformations [75].
Darboux and Laplace transformations can be viewed as discrete spectral symme-
tries of Lax operators, while integrable hierarchies correspond to continuous spec-
tral symmetries. Lectures of Novikov (Chap. 3) and Shabat (Chap. 4) give a seminal
introduction to this area of research.

Hirota has discovered a quite simple and surprisingly very effective method for
construction of exact multisoliton solutions of integrable equations [38, 39]. His
method was based on the observation that KdV, NLS, sine-Gordon and other in-
tegrable equations can be rewritten in a special bi-linear form. Then the problem
can be split, and partial “multisoliton” solutions correspond to special solutions (a
finite sum of exponentials) of linear partial differential equations with constant co-
efficients. Moreover, many nonintegrable equations can be re-cast into the Hirota
bi-linear form, but in the latter case the method is guaranteed to produce exact two-
soliton solutions only. Later on the Hirota method received a deep mathematical
interpretation in terms of the τ-function and representation theory [18]. Lectures of
Hietarinta (Chap. 8) give a comprehensive introduction to the Hirota method and
its applications. There is a very interesting recent development. Chakravarty and
Kodama have given a classification of multisoliton solutions for the Kadomtsev–
Petviashvili equation (4) relating the τ-function with the Schubert decomposition
and totally nonnegative Grassmanian cells [17].

Initially the quantum field theory of exactly solvable models was develop-
ing rather independently from the theory of integrable equations. Currently many
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concepts from the theory of integrable systems have found their quantum analog
and are well understood on the quantum level. The joint development of the quantum
and classical theories of integrable systems proved to be very fruitful for both. We
have already mentioned that some important classical integrable systems, such as
the Landau–Lifshitz equation, have been inherited from the quantum theory. The re-
duction group describing the discrete symmetries of the Lax representation [60–62]
helped to find new solutions of the Yang–Baxter equation [9], etc. The quantum the-
ory of integrable systems is a big and well-established area of research. We do not
plan to cover this area of research in this book–this topic deserves a separate issue
of the Lecture Notes. Lectures of T. Miwa (Chap. 9), though, give a flavour of the
quantum theory of integrable systems and show some links with the classical theory.
We believe it is a useful complement to the main part of the book.

Testing for Integrability and Classification

How do we test whether a given system is integrable and if so, how can we integrate
it? What are the integrability conditions? Can we describe all integrable systems of a
certain type (classification problem)? Can we give a complete picture of all possible
integrable systems of all orders (global classification)? To answer these challenging
questions we ought to decide what integrability is. In order to classify equations we
have to define the equivalence relation and ideally give a method to check whether
two given equations are equivalent or not.

In the previous section we related integrability with the Lax representations (or
their generalisations). Unfortunately the problem of whether a given equation has a
Lax representation is still unsolved. A useful development in this direction was due
to H. D. Wahlquist and F. B. Estabrook [80]. They proposed a theory of pseudo-
potentials which in certain cases could lead to a construction of a Lax representa-
tion for a given equation. Their method is based on a number of assumptions on
the structure of the Lax operator L and leads to a quite nontrivial, but purely Lie
algebraic problem to find a representation of a Lie algebra with a given subset of
commutation relations. The representation should nontrivially depend on a spectral
parameter and satisfy some technical conditions. If the assumptions were correct
and we have managed to represent the algebra, then we get the Lax representation.
Actually, many useful equations have been shown to be integrable and the corre-
sponding Lax representations have been found using this method. For example the
Landau–Lifshitz equation for magnetics with uni-axial anisotropy has been inte-
grated in this way [13] (see [66] for other examples). The Wahlquist–Estabrook
approach, when it works, gives sufficient conditions for integrability (by the inverse
transform method) for a given equation. A good introduction into this method and
discussion can be found in [71]. Another idea would be to classify all possible Lax
representations (of a particular type) and their reductions. That would provide us
with a rather long (and complete in a certain sense) list of integrable equations, but
would not answer the above questions for a given system.
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Partial differential equations integrable by the inverse transform method (1+1
dimensional, like the KdV or NLS) enjoy one exceptional property – they all possess
an infinite hierarchy of local conservation laws. By a local conservation law we
mean that there exists a function of the dependent variables and their derivatives
(called a conserved density) which, when differentiated in time, results in a total
spatial derivative of another function of the dependent variables and their derivatives
(sometime called a flux) (accurate definitions will be given in Chap. 1). For example,
the first three local conservation laws for the Korteweg–de Vries equation (1) are

ut +
(
uxx−3u2)

x = 0, (u2)t +
(
2uuxx−u2

x−4u3)
x = 0,

(u2
x +2u3)t +

(
2uxxxux−u2

xx +6u2uxx−12uu2
x−9u4)

x = 0,

where the first simply restates the KdV equation (1) in conserved form. The fourth
and fifth conservation laws were found by Kruskal and Zabusky before the discovery
of the inverse transform method. Using the Lax representation for the KdV it is
easy to derive a recursion relation for an infinite hierarchy of conservation laws.
Shabat told me that nontrivial local conservation laws for the nonlinear Schrödinger
equation (2) were found before the discovery of the Lax representation for the NLS
equation.

Thus, the existence of nontrivial local conservation laws is a good indicator of
integrability and can even be taken as a definition of integrability. There were a few
attempts to classify equations which possess extra (beyond momentum and energy)
conservation laws. Maybe the first one was due to Kulish [51]. He listed all nonlinear
Klein–Gordon type equations

utt −uxx +a1u+a2u2 +a3u3 + · · · , a1 �= 0,

which possess a conserved density of order four. He has shown that any nonlinear
equation satisfying this property can be reduced to the sine-Gordon equation (3) by
a linear transformation. That is a correct result, but one integrable Klein–Gordon
type equation

utt −uxx + eu− e−2u = 0 (5)

has been missed. Equation (5) has been missed because it does not possess a con-
served density of order four. Its first nontrivial conserved density is of order six.
Nontrivial conservation laws for this equation have been found by Bullough and
Dodd [19] in their attempt to study equations with higher conservation laws, but in
the paper there is a wrong statement: that Eq. (5) possesses only a finite number of
local conservation laws and thus is not integrable! The Lax representation for (5)
has been found in [60] and it has been shown [62] that Eq. (5) has local conserved
densities of orders 6n−4 and 6n, n∈N. The first indication that Eq. (5) is integrable
was due to Zhiber and Shabat [91] in their development of the Symmetry Approach
to classification of integrable equation (see the discussion of this approach later in
this chapter and also in Chap. 1). Digging around in the literature it was found that
Eq. (5) has been known in differential geometry for some time: it was derived and
studied by Tzitzeica [78] almost a century ago. Thus we call it now the Tzitzeica



Introduction 7

equation. Possible gaps in the sequence of conservation laws together with certain
technical problems make it difficult to develop a classification theory for equations
possessing only a few nontrivial conserved densities. If we assume the existence of
an infinite hierarchy of local conservation laws, then we can get a more advanced
theory which is insensitive to the gaps in the sequence. This theory enables us to
produce a classification of integrable systems (see for example [66, 68]). It is a part
of the Symmetry Approach, which we will discuss later in this section, as well as in
Chap. 1.

Every integrable equation possesses a rich Lie algebra of symmetries. By sym-
metries we mean infinitesimal transformations which map solutions of the equation
into solutions. The symmetries are generated by the flows commuting with the equa-
tion (for a precise definition see Chap. 1). For example the KdV equation (1) has
symmetries generated by

utG = 1+6tux, utS = 2u+ xux +3tut , uτ1 = ux, uτ3 = ut ,

uτ5 = uxxxxx−10uuxxx−20uxuxx +30u2ux .

The first four transformations correspond to classical continuous Lie point sym-
metries of the KdV equation, namely the Galilean, scaling transformations and shifts
in space and time:

tG : u(x, t) �→ u(x+6λ t, t)+λ , tS : u(x, t) �→ e−2λu
(

eλ x,e3λ t
)

,

τ1 : u(x, t) �→ u(x+λ , t), τ3 : u(x, t) �→ u(x, t +λ ), λ ∈ R.

The transformation generated by uτ5 does not correspond to any classical (point
or contact) symmetry. It is called a higher symmetry and the KdV equation possesses
infinitely many higher symmetries. Having symmetries one can study symmetry-
invariant solutions. Scaling-invariant solutions are self-similar and satisfy the
Painlevé property, as we mentioned above (see also the end of this section and
the discussion in Chap. 7). According to S. P. Novikov, solutions of the KdV
equation invariant with respect to higher symmetries satisfy completely integrable
finite-dimensional dynamical systems which can be solved in terms of hyperelliptic
Θ-functions and correspond to finite gap spectral curves.

There are partial differential equations which can be related to linear equations
by a differential substitution (a transformation which is not invertible in the classical
sense). F. Calogero proposed to call such equations C-integrable, while equations in-
tegrable by means of the inverse transform method he proposed to call S-integrable.
Maybe the most famous example of a C-integrable equation is the Burgers equation

ut = uxx +2uux , (6)

which can be related to the linear heat equation vt = vxx by the Cole–Hopf sub-
stitution u = vx/v. The Burgers equation has only one local conserved density, but
possesses infinitely many symmetries. Symmetries of (6) can be easily found from
the symmetries of the heat equation generated by vτn = ∂ n

x v and the Cole–Hopf



8 A.V. Mikhailov

transformation. Thus existence of symmetries is a common property of both “C”-
and “S”-integrable equations.

Symmetries of integrable equations can be found using the Lax representation
[53]. Another elegant way is to construct symmetries with the help of a recursion
operator (or Lenard’s recursion operator). Acting on a generator of a symmetry the
recursion operator produces a new generator of a symmetry and thus a hierarchy
of symmetries. In the case of the KdV equation (1) the recursion operator is of the
form

Λ = D2
x−4u−2uxD−1

x , (7)

where Dx is the operator of total derivative in x and D−1
x is the inverse total derivative

(which is well defined on the image space of Dx). Starting from the seed symmetry
f1 = ux, which is a total derivative and a generator of a spatial shift we can construct
an infinite sequence of generators f2k+1 = Λk(ux):

f3 = Λ(ux) = uxxx−6uux,

f5 = Λ2(ux) = uxxxxx−10uuxxx−20uxuxx +30u2ux, . . . .

In 1974 there were two publications [2] and [34]. In the last section of [34] there
is a construction attributed to Lenard (as a private communication) which gives an
elegant way to generate higher symmetries of the KdV equation. The recursion
operator (7) is not written out explicitly, but it is obvious from the construction.
Lenard’s scheme has had a great impact on the theory of integrable equations. It
is the corner stone of the bi-Hamiltonian (multi-Hamiltonian) theory, the frame-
work of which has been laid down in the fundamental works of F. Magri [55], I. M.
Gel’fand and I. Ya. Dorfman [20, 36] and then developed in hundreds of publica-
tions and a few monographs. There is a very interesting article [74] where a letter
from Andrew Lenard is reproduced. According to Lenard himself, in 1967 he made
his construction when he tried to answer a question from Kruskal in the common
room discussion in Princeton and it took “only fifteen minutes or so”. Lenard writes
that he never published anything nor concerned himself with the subject since. In
[2] the authors have constructed recursion operators for the nonlinear Schrödinger,
modified KdV, sine-Gordon equations and operator (7) for the KdV equation. Their
construction has not been related to any multi-Hamiltonian splitting, but originated
from known Lax operators and squares of their eigenfunctions. Three years later,
in 1977, Olver [73] arrived at the concept of recursion operator in a symmetry
algebraic setup, not related to a bi-Hamiltonian splitting nor to a Lax representa-
tion. He coined the name recursion operator, re-proved the result of Lenard (7)
and some results of [2] and found a recursion operator for the Burgers equation (6)
(Eq. (6) is not Hamiltonian nor does it have a Lax representation). Recently it has
become clear that recursion operators may have other splittings, suitable for non-
Hamiltonian equations [67]. For C-integrable systems the recursion operator can be
found using the linearising differential substitution. For S-integrable systems, when
the Lax representation is known, there is a neat construction which helps to find it
purely algebraically [37]. For multi-dimensional integrable equations the concept of
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the recursion operator and Lenard’s scheme have to be considerably modified (see
discussion in [21, 32, 56]).

Existence of a nontrivial (or higher order) symmetry can be taken as another
definition of integrability. This idea has been put forward by A. S. Fokas [29, 30].
He applied it to the classification of KdV-type equations of the form

ut = uxxx + f (u,ux) .

Moreover, in his paper he stated a folklore conjecture that the existence of one
higher symmetry implies infinitely many. In the case of homogeneous differential
polynomial equations this conjecture has been proven by Sanders and Wang. It has
been disproved for systems of equations: there are systems of two equations with
only one or two higher symmetries (see discussion and references in Chap. 2).

From a technical point of view it is easier to study the existence of symmetries
than local conservation laws, but both approaches have the same weakness – the se-
quence of higher symmetries, similar to the sequence of higher conservation laws,
may have lacunae, which are not known in advance. This problem has been over-
come in the Symmetry Approach proposed by Shabat with his group and co-authors.
It has been shown (see Theorem 24, Chap. 1) that if an evolutionary equation

ut = f (u,ux, . . . ,∂ n
x u), n > 1, (8)

possesses symmetries of arbitrarily high order, then there exists a formal recursion
operator, i.e. a formal series

Λ = a1Dx +a0 +a−1D−1
x +a−2D−2

x + · · ·

with local coefficients ak (i.e. functions of u and its derivatives), satisfying the equa-
tion

Λt = [ f∗,Λ] , (9)

where f∗ is the differential operator corresponding to the Fréchet derivative of f .
The same is true if the evolutionary equation possesses two local conservation laws
of arbitrarily high order (see Theorem 32, Chap. 1). If the order of symmetries or
conservation laws is high, but not arbitrarily high, then Eq. (9) has an approximate
solution (i.e. a few first coefficients of formal series Λ are guaranteed to be local).
The Lenard recursion operator (7) satisfies equation (9).

The concept of a formal recursion operator proved to be a very flexible and pow-
erful tool for testing for integrability and for classification of integrable systems (see
Chap. 1). Necessary conditions for the existence of a formal recursion operator can
be formulated in a simple and useful form of a sequence of canonical densities for
the evolutionary equation (8). The first necessary condition states that the function
(the first canonical density)

ρ =
(

∂ f

∂u(n)

)− 1
n

, u(n) = ∂ n
x u,
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must be a conserved density (trivial or nontrivial) for Eq. (8). Higher canonical
densities can be found recursively. If they are nontrivial, then they are local conser-
vation laws for the equation. If almost all canonical densities are trivial (i.e. total
x-derivatives), it indicates that the equation is likely to be C-integrable. Existence of
a formal recursion operator does not guarantee integrability but provides us with a
tight test for integrability.

Thinking about a classification of integrable equations we have to decide which
equations we consider to be equivalent, what is the equivalence relation and how to
verify in practice whether two given equations belong to the same equivalence class
or not. Obviously, equations related by classical invertible transformations (point
or contact) should be treated as equivalent in our algebraic approach. Some ana-
lytical properties of solutions (such as the Painlevé property) may not survive with
invertible transformations, but local conservation laws, symmetries, recursion and
Lax operators can be easily transformed. In the Symmetry Approach based on the
existence of a formal recursion operator the integrability conditions are invariant
with respect to invertible changes of variables. There are some “weakly” noninvert-
ible differential substitutions, such as potentiation (i.e. introduction of a potential)
and the inverse potentiation and their generalisations which respect symmetries and
conservation laws.

For example the potential version of the Korteweg–de Vries equation

vt + vxxx−3v2
x = 0 (10)

can be reduced to the KdV equation (1) by a substitution u = vx. The generators of
the infinite hierarchy of KdV symmetries are total derivatives, they can be pulled
back and give us generators of the potential KdV. Conserved densities of the poten-
tial KdV can be found from the conserved densities of KdV using the substitution
directly. The recursion operator Λ̂ for potential KdV can be found from the Lenard
recursion operator (7) in an obvious way

Λ̂ = D−1
x ·Λ|u→vx ·Dx .

R. Miura has discovered a remarkable nonlinear differential substitution [70]

u = wx +w2 (11)

which maps solutions of the modified KdV equation

wt +wxxx−6w2wx = 0

into solutions of the KdV equation (1). The Miura transformation can also be used
for re-calculation of symmetries and conserved densities.

Thus there are several levels of equivalence relation and corresponding classifi-
cation. We consider equations to be equivalent if they are related by

(i) classical invertible transformations;
(ii) the above in composition with potentiation and inverse potentiation;

(iii) all of the above in composition with Miura-type transformations.
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For example,

1. All C-integrable equations of the form

ut = F(u,ux,uxx,x, t)

by transformations (i) can be reduced to a list of four nonlinear equations or a
linear equation (see Sect. 5.2, Chap. 1); by transformations (ii) they all can be
linearised.

2. All S-integrable equations of the form

ut = uxxx +F(u,ux,uxx)

by transformations (ii) can be reduced to a list of five equations (see Theorem 73,
Chap. 1) and by transformations (iii) to a list of two equations, namely either to
the Korteweg–de Vries equation (1) or to the Krichever–Novikov [47] equation.

The sequence of canonical conserved densities carry valuable information on the
class that particular equation belongs to and helps to find transformations between
equivalent equations. Similarly, it is also true for systems of integrable equations
(see [66, 68] and references therein).

It has become possible to study the global structure of integrable hierarchies
using the symbolic method and some results from Number Theory [81]. In the sym-
bolic representation (the Gel’fand–Dikii symbolic calculus [35]) the existence of an
infinite hierarchy of higher symmetries can be related to common factors for an in-
finite sequence of commutative multi-variate polynomials (see Chap. 2). Periodicity
of the factors in the sequence of polynomials (originally studied in 1836 by Cauchy
and Liouville [16])

Gn = (x+ y)n− xn− yn

explains the lacunae in hierarchies of symmetries of integrable evolutionary equa-
tions. Using the symbolic method it has been shown that (under certain technical
conditions, which I believe can be relaxed) there are only a finite number of inte-
grable hierarchies of evolutionary equations (see Sect. 4.2, Chap. 2 and [76, 81]) and
it is sufficient to study integrable equations of orders 2,3 and 5: all other equations
with nontrivial symmetries are members of their hierarchies. Thus, one nontrivial
symmetry implies infinitely many. The latter in general is not true for systems of
equations: there are examples of systems of two equations which possess only one
or two higher symmetries (the proof is number-theoretical and based on the p-adic
analysis, see Chap. 2). The symbolic method can be extended to nonevolutionary,
nonlocal, multi-component and multi-dimensional systems [12, 63–65]. I think that
the symbolic method has great potential for development.

In the analytic theory of ordinary differential equations there is an important class
of equations which enjoy the property that the location of any algebraic, logarithmic
or essential singularity of their solutions is independent of the initial conditions.
Sofia Kowalevsi was the first to test this (what we now call Painlevé) property to
isolate the integrable case of a system describing a heavy top with a fixed point
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[45, 46]. Classification of second-order nonlinear equations with these properties
was studied in exhaustive detail by Painlevé (see [40] and references).

In 1977, Ablowitz and Segur [5] noted that classical symmetry reductions of in-
tegrable equations, such as the KdV (1), mKdV (10) and sine-Gordon equations,
result in ordinary differential equations which can be transformed to ones on the
Painlevé list. Together with Ramani they formulated a conjecture [4] that all or-
dinary differential equations derived from completely integrable partial differential
equations have the Painlevé property. In 1983, Weiss, Tabor and Carnevale [82] pro-
posed an extension of the Painlevé approach to partial differential equations without
any use of symmetry reductions or the Painlevé classification results. The obvious
advantage of the Painlevé test is its simplicity. The test is very useful and can be
applied to a rather wide class of equations. A disadvantage is that the result may
depend on the choice of the dependent variables. If an equation does satisfy the
test, the Painlevé approach in general does not tell us how to integrate the equa-
tion. Chapter 7 serves as a good introduction to the Painlevé theory of ordinary and
partial differential equations and its relation to the problem of integrability.

Asymptotic Expansions and Normal Forms

Why are certain nonlinear PDEs both widely applicable and integrable? That is
the title of the paper [15], where Francesco Calogero pointed out the universality
of the Korteweg–de Vries, nonlinear Schrödinger and other integrable equations.
These equations are widely applicable because they represent a dominant balance
in a multi-scaling expansion. Asymptotic expansions preserve the property of in-
tegrability, so the dominant balance is likely to be integrable (see the discussion
in Chap. 6). Trying to resolve the Fermi–Pasta–Ulam paradox [27], Zabusky and
Kruskal used a long wave asymptotic expansion to reduce the nonlinear chain of
oscillators

d2yn

dt2 =− ∂
∂yn

N−1

∑
k=0

U(yk+1− yk), U(x) =
x2

2
+α

x4

4
, y0 = yN = 0 (12)

to the Korteweg–de Vries equation (1), which was known to be “universal” and
widely applicable in hydrodynamics, plasma physics, etc. [49, 50, 83]. That was
the motivation to study the Korteweg–de Vries equation which led to remarkable
discoveries of solitons, nontrivial conservation laws, the inverse transform method
and opened up the whole new and rich area of research – the theory of integrable
equations.

The FPU nonlinear chain (12) is not an integrable system, but for relatively small
amplitudes of oscillations, in the continuous limit (N → ∞) together with a long
wave asymptotic expansion it leads to the Korteweg–de Vries equation which rep-
resents the dominant balance. Thus, the non-integrable effects, such as a stochasti-
sation of the chain, are hidden in the corrections to the integrable dominant balance.
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In the asymptotic theory we can define a group of asymptotically invertible near-
identity transformations and use them to transform the corrections to a simple and
managable form. That is very similar to the main idea of the classical normal form
theory for finite-dimensional dynamical systems. Analysing the higher corrections
to an integrable dominant balance we can find obstacles to (asymptotic) integrabil-
ity which could serve as the integrability test for the system and help to estimate the
time required for nonintegrable effects to become visible.

The multi-scale asymptotic theory for partial differential equations depends on
the class of initial data (or expected solutions). There are three consistent choices:

(i) the small amplitude limit: the dominant balance is represented by a linear sys-
tem;

(ii) nonlinear terms and linear dispersion are of the same order: the dominant bal-
ance is a nonlinear “soliton” equation;

(iii) the hydrodynamic limit: the dominant balance is a hydrodynamic-type equa-
tion,

which lead to three different normal form theories.
In the first case (i) it is a generalisation of the Poincare–Dulac theory of normal

forms or of the Birkhoff theory for the Hamiltonian systems. It originates from
a seminal work of Zakharov and Schulman [87] and has received further rigorous
development in [7, 8]. In this case the terms in the asymptotic expansion are ordered
according the power of the dependent variable (and its derivatives) and perturbation
theory is an adequate tool. In the application to the FPU chain (12) in the long wave
approximation this case would correspond to solutions with |yk+1− yk| � N−3 or
smaller.

In the second case (ii), the corresponding normal form theory aims to account
for effects of nonintegrability on the soliton properties and soliton interaction [43].
The dominant balance is a nonlinear homogeneous equation which is assumed to
be integrable. If the first correction is a symmetry of the dominant balance, or
can be transformed into a symmetry, then the correction does not violate integra-
bility at that level of the asymptotic approximation. Obstacles to transforming a
correction to a symmetry of the principal balance are obstacles to integrability, so
they could serve for testing of integrability [44]. Some interesting further devel-
opment and applications of the Kodama theory of normal forms can be found in
[26, 31].

To illustrate it in the example of the FPU chain (12) we should assume that
|yk+1− yk| � N−2. In this case the nonlinear term and a (“numerical”) dispersion
are of the same order. Taking the continuous limit and performing a long wave
asymptotic expansion we would get

uτ = αuux +
1

24
uxxx

+ N−2
(

uxxxxx

1920
+

α
24

uuxxx +
5α
48

uxuxx−
α2

2
u2ux

)
+O(N−4) ,
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where τ = N−3t. Thus for t�N5 the system is well approximated by the Korteweg–
de Vries equation and demonstrates integrable regular behaviour. The first correction
is not a symmetry of the principal balance, but it can be transformed to a symmetry
by a near-identity transformation (see Theorem 10 and its proof in Chap. 5). Thus,
corrections of order N−2 will not result in nonintegrable effects and the system will
demonstrate integrable behaviour for t � N7. The next correction (of order N−4)
cannot be transformed to a symmetry and is an obstacle to integrability (it is easy to

check that the invariant of the transformation μ(2)
1 �= 0, in the notation of Chap. 5). It

leads to an inelasticity in soliton collisions and eventual stochastisation of the chain.
The time scale corresponding to the first nonintegrable correction is t � N7, where
N is the number of particles in the chain (12) (N = 64 in [27]).

The third case (iii) corresponds to Dubrovin’s normal form theory [23–25, 54].
It is a very recent development and not covered in this book. For “big” ampli-
tudes the dominant balance of the multi-scale asymptotic expansion is often of
the hydrodynamic type and is integrable. In the case of one dependent variable the
hydrodynamic-type equation can be written in the Riemann form

vt = vvx . (13)

The corrections are polynomials in derivatives of the dependent variable with
smooth coefficients and the order of a term is defined as the total number of deriva-
tives

ut = uux + ε(b1(u)uxx +b2(u)u2
x)+ ε2(b3(u)uxxx +b4(u)uxuxx +b5(u)u3

x)+ · · · .
(14)

For example, in the case of the FPU chain (12), assuming |yk+1− yk| � N−1 in the
continuous limit and for long simple waves we get

ut = αuux +O(N−1) .

One of the remarkable results is that any equation (14) can be transformed in the
“normal form” (13) by a near-identity transformation (invertible in the asymptotic
sense) [54]. Such transformations generalise the famous Miura transformations (11)
and are thus called the quasi-Miura transformations. For example the Korteweg–de
Vries equation

ut = uux +
ε2

12
uxxx

can be transformed to the form (13) (+O(ε6)) by the transformation [6]:

v = u+
ε2

24

(
u2

2

u2
1

− u3

u1

)
+

ε4

24 ·240
D2
(

5
u4

u2
1

−9
u2u3

u3
1

+4
u3

2

u4
1

)
+O(ε6).

Another remarkable observation is that near a gradient catastrophe point of solutions
of the Riemann equation (13) the corresponding solutions of (Hamiltonian) Eq. (14)
have a universal behaviour (the Dubrovin Conjecture [23]).
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Chapter 1
Symmetries of Differential Equations
and the Problem of Integrability

A.V. Mikhailov and V.V. Sokolov

1.1 Introduction

The goal of our lectures is to give an introduction to the symmetry approach to
the problems of integrability. The basic concepts are discussed in the first two
chapters where we give definitions and formulate statements in a simple way with
complete proofs. In the other chapters we attempt to make a brief account of the
results obtained in more than 20 years of the development and give references
to original articles as well as to comprehensive review papers. We illustrate the
achievements in the description and classification of integrable equations and dis-
cuss a variety of the problems associated with the Symmetry Approach and modern
trends.

Many people have contributed to the development of the Symmetry Approach.
The main credits here have to be given to Alexei Shabat whose pioneer works often
determined principal directions of the research. The major results in the solution of
specific classification problems had been obtained by Serguei Svinolupov with his
remarkable abilities to exercise and structuralize very complex algebraic computa-
tions. We would also like to mention significant contributions of Ravil Yamilov and
Anatoli Zhiber and others. We are very grateful to the above-mentioned colleagues
for numerous discussions and mutual collaborations which casted our understanding
and vision of the Symmetry Approach to the testing and classification of integrable
equations.

In our lecture course we do not include the recent works of V. Adler, V. Marikhin,
A. Shabat and R. Yamilov related to integrable chains, Bäcklund transformations
and Lagrangian aspects of the Symmetry Approach (see [1] and references), nor the
works of I. Habibullin devoted to a symmetry approach to initial-boundary problems
for integrable equations (see for instance [23]).
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1.2 Symmetries and First Integrals of Finite-Dimensional
Dynamical Systems

We will consider differential equations in the spirit of elementary differential alge-
bra. In this approach the derivations associated with differential equations become
the central objects of the theory and such notions as symmetries, first integrals,
transformations, etc. can be naturally defined in their terms. The derivations are
usually represented by vector fields. While for ordinary differential equations these
vector fields are finite dimensional, in the case of partial differential equations they
become infinite dimensional and certain accuracy is required for formulation of cor-
rect definitions. We found that the usage of vector fields proved to be more suitable
for actual computations than the dual approach based on the theory of differential
forms.

1.2.1 Dynamical Systems and Vector Fields

In this section we remind the standard definition of finite-dimensional vector fields
and list some of their properties. One of the purposes of this section is to make the
book self-contained. From the other side we prepare the ground for less standard
consideration of infinite-dimensional vector fields in the theory of partial differential
equation.

Suppose we have a dynamical system

d ui

dt
= Fi(u1, ... ,un), i = 1, ... ,n . (1.1)

Using the chain rule any function G(u1, ... ,un) can be differentiated in time in virtue
of the system (1.1)

d G
dt

=
n

∑
k=1

Fk(u1, ... ,un)
∂G
∂uk

. (1.2)

Now we can forget that u1, ...,un are functions of time t and regard them as the
set of independent variables. In order to emphasize the independence of symbols
u1, ...,un we call them the dynamical variables. We denote the set of all functions1

of dynamical variables as F .
The expression (1.2) defines a derivation, i.e. a linear map Dt : F →F , which

satisfies the Leibnitz rule Dt(ab) = Dt(a)b + aDt(b) (usually the derivation Dt is
called the operator of total t-derivative). This linear map can be represented by a
vector field

DF =
n

∑
k=1

Fk
∂
∂uk

. (1.3)

1 In what follows we need F to have the structure of a differential field. The field of locally
meromorphic functions is suitable in many cases.
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Definition 1. Linear homogeneous differential operator of the form

X =
n

∑
k=1

Xk
∂
∂uk

, Xi ∈F , (1.4)

is called a vector field on F .

The most important operation on vector fields is their Lie brackets. If X ,Y are
vector fields

X =
n

∑
k=1

Xk
∂
∂uk

,

Y =
n

∑
k=1

Yk
∂
∂uk

,

then their Lie bracket [X ,Y ] is defined as the commutator of the differential opera-
tors:

[X ,Y ] = X ◦Y −Y ◦X . (1.5)

It is easy to verify that [X ,Y ] is a first-order differential operator of the form (1.3).
Indeed,

X ◦Y ( f ) = X

(
n

∑
k=1

Yk
∂ f
∂uk

)
=

n

∑
k=1

X(Yk)
∂ f
∂uk

+
n

∑
k,m=1

XkYm
∂ 2 f

∂uk∂um
,

Y ◦X( f ) = Y

(
n

∑
k=1

Xk
∂ f
uk

)
=

n

∑
k=1

Y (Xk)
∂ f
uk

+
n

∑
k,m=1

YkXm
∂ 2 f

∂uk∂um
,

The second derivatives cancel out and the result of commutation is a first-order
homogeneous differential operator, i.e. a vector field

[X ,Y ] = Z, Z =
n

∑
k=1

Zk
∂
∂uk

,

where
Zk = X(Yk)−Y (Xk). (1.6)

It follows from definition (1.5) that the Lie bracket has the following properties:

• Bilinearity
[X ,αY +βZ] = α[X ,Y ]+β [X ,Z], (1.7)

• Skew-Symmetry
[X ,Y ] =−[Y,X ], (1.8)

• Jacobi Identity
[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0, (1.9)
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where X ,Y,Z are vector fields and α,β ∈K are constants. The above identities
(1.7), (1.8), (1.9) mean that the set of vector fields form a Lie algebra over the
field of constants K .

Apart from the Lie bracket, there is yet another important operation, namely a
multiplication of vector fields on functions from F from the left. It is easy to see
that for any vector fields X ,Y and a ∈F the following identity

[X ,aY ] = X(a)Y +a[X ,Y ]

holds.
Let us consider a transformation to a new set (û1, ..., ûn) of dynamical variables

given by
û1 = φ1(u1, ... ,un) , ... , ûn = φn(u1, ... ,un) . (1.10)

We assume that transformation (1.10) is locally invertible, i.e. the corresponding
Jacobi matrix

Ji, j =
∂ ûi

∂u j
(1.11)

is not singular det(J) �= 0. The inverse transformation can be written in the form

u1 = φ̂1(û1, ... , ûn) , ... ,un = φ̂n(û1, ... , ûn) . (1.12)

Transformation (1.12) defines a map σ : F → F̂ , where F̂ is a set of all functions
of dynamical variables û1, ... , ûn. The map is given by

σ : a(u1, ... ,an)→ a(φ̂1(û1, ... , ûn), ... , φ̂n(û1, ... , ûn))

for any a(u1, ... ,un) ∈F . Similarly, transformation (1.10) defines the inverse map
σ−1 : F̂ →F by

σ−1 : b(û1, ... , ûn)→ b(φ1(u1, ... ,un), ... ,φn(u1, ... ,un)) ,

for any b(û1, ... , ûn) ∈ F̂ . The meaning of σ is obvious: in arguments of all func-
tions we simply express u1, ...,un in terms of new variables.

If we have an operator A : F →F , then the corresponding operator σ(A) : F̂ →
F̂ is defined by

σ(A) = σ ◦A◦σ−1 , (1.13)

and ◦ means the composition.
It follows from (1.13) that for any operators A,B

σ(A◦B) = σ(A)◦σ(B) ,

and in particular, for the commutator of vector fields on F

σ([X ,Y ]) = [σ(X),σ(Y )] .
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Lemma 2. Let X be a vector field of the form (1.4) on F . Then

σ(X) =
n

∑
k=1

X̂k
∂
∂ ûk

is a vector field on F̂ with
X̂k = σ(X(φk)) . (1.14)

Proof. It follows from the chain rule for a differentiation of the composition of
functions that

σ
(

∂
∂uk

)
=

n

∑
j=1

σ
(
∂φ j

∂uk

)
∂
∂ û j

.

Therefore σ(X) is a vector field of the form

σ(X) =
n

∑
k=1

σ(Xk)σ
(

∂
∂ ûk

)
=

n

∑
k, j=1

σ(Xk)σ
(
∂φ j

∂uk

)
∂
∂ û j

=
n

∑
j=1

σ(X(φ j))
∂
∂ û j

.

�
Let us denote that the coefficients X̂ = (X̂1, ... , X̂n) of the transformed vector field

(1.14) are nothing but JX with a subsequent re-expression of u1, ... ,un via (1.12) and
J is the Jacobi matrix (1.11) of the transformation. Obviously, the coefficients of the
vector field X̂F give the right-hand side for the system (1.1) in new variables.

The following statement is one of the basic theorems in the theory of ODEs (see,
for example, Proposition 1.29 in Olver [49]).

Theorem 3. Suppose at some point u0
1, ...,u

0
n the vector field XF �= 0, then there

exists a nonsingular transformation of the form (1.12) such that in an open vicinity
of this point the transformed vector field takes the form X̂ = ∂/∂u1.

Unfortunately this theorem does not provide a constructive way to find this trans-
formation in a closed form. The situation changes dramatically if we have exactly n
linearly independent over F vector fields X1, ... ,Xn such that [Xi,X j] = 0 for all i
and j. In this case there exists a transformation of the form (1.12) such that in new
variables X̂ i = ∂/∂ ûi. Moreover this transformation can be found in quadratures.
In other words all n corresponding dynamical systems can be simultaneously inte-
grated and the answer can be written in quadratures. We shall discuss the issue of
integrability of dynamical systems in quadratures and prove the above statement.

One of the most important notion in the local theory of differential equations is
the notion of linearized equations. Suppose u = (u1, ... ,un) satisfies equation (1.1).
Let us replace u in (1.1) by u+εv and assuming ε→ 0 find the equation for v in the
first order of ε. It has the form

vt = F∗v,

where F∗ is a matrix with entries

F∗i, j =
∂Fi

∂u j
. (1.15)



24 A.V. Mikhailov and V.V. Sokolov

The matrix F∗ is called the Fréchet derivative of the vector-function F = (F1, ... ,Fn).
Formal definition of the Fréchet derivative in more general situations will be given
later.

With any vector field (1.4) on F we can assign a similar matrix2 X∗ of the form

X∗i, j =
∂Xi

∂u j
. (1.16)

If Z = [X ,Y ], then it follows from (1.6) that

Z∗ = X(Y∗)−Y (X∗)+ [X∗,Y∗],

where [X∗,Y∗] = X∗Y∗ −Y∗X∗ is a commutator of the matrices.
Under the change of variables the transformation rule for X∗ (1.16) is given by

X̂∗ = JX∗J
−1 +X(J)J−1,

where in the right-hand side we have to re-express u in terms of û according to
(1.12).

1.2.2 First Integrals

First integrals of a dynamical system can be defined as elements of the kernel space
for the corresponding vector field.

Definition 4. A function I = I(u1, ... ,un) ∈ F is a first integral of the dynamical
system (1.1) if XF(I) = 0.

Any function of first integrals is a first integral. It is important to count only
functionally independent first integrals.

Definition 5. First integrals φk(u1, ... ,un), k = 1, ... ,m, are called functionally in-
dependent if the Jacobi matrix

D(φ1, . . . ,φm)
D(u1, · · · ,un)

=

∣∣∣∣∣∣∣∣∣∣

∂φ1

∂u1
· · · ∂φ1

∂un
...

...
∂φm

∂u1
· · · ∂φm

∂un

∣∣∣∣∣∣∣∣∣∣
has the maximal rank.

2 As a matter of fact the matrix X∗ defines the action of the vector field on the cotangent space.
Namely, it follows from the standard definition X(adb) = X(a)db + ad(X(b)) that X(duk) =
∑n

m=1 X∗kmdum.
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Example 6. The Euler–Poinsot equations for a rigid body with a fixed point can be
written in the form ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ṗ1 = (c−b)p2 p3 + zq2− yq3

ṗ2 = (a− c)p1 p3 + xq3− zq1

ṗ3 = (b−a)p1 p2 + yq1− xq2

q̇1 = cq2 p3−bq3 p2

q̇2 = aq3 p1− cq1 p3

q̇3 = bq1 p2−aq2 p1,

(1.17)

where a,b,c,x,y,z are constant parameters of the problem. For any values of these
parameters, equation (1.17) has the following first integrals

I1 = ap2
1 +bp2

2 + cp2
3 +2xq1 +2yq2 +2zq3 , (1.18)

I2 = q1 p1 +q2 p2 +q3 p3 , (1.19)

I3 = q2
1 +q2

2 +q2
3 . (1.20)

It is easy to see that the corresponding Jacobi matrix

J =

⎛
⎜⎝

2ap1 2bp2 2cp3 2x 2y 2z

q1 q2 q3 p1 p2 p3

0 0 0 2q1 2q2 2q3

⎞
⎟⎠

has rank 3 in a generic point (p1, p2, p3,q1,q2,q3), and therefore these first integrals
are functionally independent.

Making the change of variables (1.10) we have to replace u1, ... ,un by φ̂1, ... , φ̂n

in first integrals:

Î(û1, ... , ûn) = σ (I(u1, ... ,un)) = I
(
φ̂1, ... , φ̂n

)
. (1.21)

Function Î belongs to the kernel space of the vector field X̂ . Indeed, it follows from
(1.13) and (1.21) that

X̂(Î) = σ(X(σ−1(σ(I)))) = σ(X(I)) = 0 .

The existence of functionally independent first integrals follows immediately
from Theorem 3.

Proposition 7. Let the coefficients of the vector field XF be continuous and con-
tinuously differentiable functions which do not vanish simultaneously at a point
u0

1, . . . ,u
0
n. Then in some neighbourhood of this point there exist n− 1 functionally

independent first integrals for the corresponding dynamical system (1.1).

Proof. It follows from Theorem 3 that there exist such new variables that X̂F =
∂/∂ û1. In this variables û2, û3, ... , ûn are n− 1 functionally independent first inte-
grals for the vector field X̂F . In the old variables (1.10), functions φ2(u1, ... ,un), ... ,
φ2(u1, ... ,un) are n−1 independent first integrals for (1.1).

�
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1.2.3 Symmetries

Another fundamental concept of the local theory of nonlinear ODEs is the infinites-
imal symmetry.

Definition 8. A vector field

XG =
n

∑
k=1

Gk(u1,u2, . . . ,un)
∂
∂uk

is called (infinitesimal) symmetry of dynamical system (1.1) iff

[XF , XG] = 0. (1.22)

Condition (1.22) is equivalent to the fact that the dynamical systems (1.1) and

d ui

dτ
= Gi(u1, ... ,un), i = 1, ... ,n, (1.23)

are compatible. It means that for any initial data u0 there exists a common solution
u(t,τ) of systems (1.1) and (1.23) such that u(0,0) = u0.

Sometimes the dynamical system (1.23) itself is called a symmetry (instead of
the corresponding vector field XG). Notice also that identity (1.22) can be rewritten
in the following two equivalent forms:

dG
dt

= F∗ (G) (1.24)

or
F∗ (G)−G∗ (F) = 0.

Relation (1.24) means that the vector-function G satisfies the linearization of dy-
namical system (1.1).

Example 9. Let us consider the system

du1

dt
= 1,

du2

dt
= 0, . . . ,

dun

dt
= 0. (1.25)

The corresponding vector field is XF = ∂
∂u1

and condition (1.22) is equivalent to

XG =
n

∑
k=1

Gk(u2, . . . ,un)
∂
∂uk

.

According to Theorem 3 a generic symmetry for arbitrary dynamical system (1.1)
also depends on n functions of (n−1) dependent variables.
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1.2.4 Lie’s Theorem

Both first integrals and symmetries are very useful if we want to integrate dynamical
system (1.1) by quadratures. Suppose we know n−1 functionally independent first
integrals I1, . . . , In−1 of (1.1). Making a change of variables

û1 = φ1(u1, ... ,un) , û2 = I1(u1, ... ,un) , ... , ûn = In−1(u1, ... ,un) ,

for any φ1, we get a system of the form

dû1

dt
= f̂1(û1, ... , ûn),

dû2

dt
= 0, . . . ,

dûn

dt
= 0,

which can be easily integrated in quadratures.
The procedure of integrating (1.1) if n−1 symmetries

X1 =
n

∑
k=1

G1
k
∂
∂uk

, X2 =
n

∑
k=1

G2
k
∂
∂uk

, . . . , Xn−1 =
n

∑
k=1

Gn−1
k

∂
∂uk

(1.26)

are given is not so standard. For an efficient use of symmetries (1.26) we have
to impose some restrictions on the structure of the Lie algebra generated by the
vector fields Xi. The simplest version of a statement of such a sort reads as
follows.

Theorem 10. Suppose dynamical system (1.1) has (n− 1) symmetries (1.26) such
that

• the matrix ⎛
⎜⎜⎜⎝

F1 F2 . . . Fn

G1
1 G1

2 . . . G1
n

· · · · · · · · · · · ·
Gn−1

1 Gn−1
2 . . . Gn−1

n

⎞
⎟⎟⎟⎠ (1.27)

is nondegenerate
• and

[Xi, Xj] = 0, 1≤ i, j ≤ n−1.

Then (1.1) can be integrated in quadratures.

Proof. It turns out that we can explicitly find a transformation (1.10) such that

σ(XF) =
∂
∂ û1

, σ(Xi) =
∂
∂ ûi

, i = 1, . . . ,n−1.

Indeed, it follows from (1.14) that the unknown functions φi(u1, ... ,un) must sat-
isfy the following system of equations
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XF(φ1) = 1, XF(φi) = 0, i > 1,

Xi(φ j) = δ i
j.

In particular, the function φ1 satisfies the following conditions

XF(φ1) = 1, X1(φ1) = 0, . . . ,Xn−1(φ1) = 0.

Let us consider these relations as a system of algebraic linear equations with respect

to unknowns zi =
∂φ1

∂ui
. Since the determinant of matrix (1.27) is not zero, the system

has a unique solution. It follows from the Frobenious theorem that
∂ z j

∂ui
=

∂ zi

∂u j
. Now,

to reconstruct the function φ1 one has to perform a sequence of integrations with re-
spect to variables u1,u2, . . . ,un. In a similar way we can find the functions φ2, . . . ,φn.
Thus we can bring our system to the canonical form (1.25), solve (1.25) and perform
the inverse transformation (1.12) in order to find the general solution of the initial
dynamical system (1.1). �

A more general statement which involves both first integrals and symmetries can
be formulated as follows:

Theorem 11. Suppose dynamical system (1.1) has k symmetries of the form (1.26)
and (n− k−1) functionally independent first integrals I1, . . . , In−k−1 such that

• the matrix ⎛
⎜⎜⎜⎝

F1 F2 . . . Fn

G1
1 G1

2 . . . G1
n

· · · · · · · · · · · ·
Gk

1 Gk
2 . . . Gk

n

⎞
⎟⎟⎟⎠

has the maximal rank;
•

[Xi, Xj] = 0, 1≤ i, j ≤ n−1;

• and
Xi(I j) = 0, 1≤ i≤ k, 1≤ j ≤ n− k−1.

Then (1.1) can be integrated in quadratures.

Proof. Under assumptions of Theorem 11 all symmetries can be restricted to the
surface of the common level of all first integrals Ii = ci and we can apply Theo-
rem 10. �

Notice that the above statements are local and do not give us any information
about the global behaviour of solutions, Liouville tori, etc. But on the local level
Theorem 11 is a very useful generalization of the famous Liouville theorem from the
Hamiltonian mechanics. In this theorem n = 2m and the m−1 integrals I1, . . . , Im−1,
which are in involution with respect to the corresponding nondegenerate Poisson
bracket {·, ·}, automatically provide m−1 symmetries of the form
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d ui

dτ j
= {ui, I j}, i = 1, ... ,n, j = 1, ... ,m−1. (1.28)

Taking together with the Hamiltonian H, they form a set of integrals and symmetries
satisfying the conditions of Theorem 11 and provide the integrability of dynamical
system (1.1) in quadratures.

1.2.5 Classification Problems in Rigid Body Dynamics

Let us consider the Euler–Poinsot equations (1.17) from the viewpoint of Theorem
11. These equations are Hamiltonian. One of the possible Hamiltonian structures is
defined by the following Poisson brackets:

{pi, p j}= εi jk pk, {pi,q j}= εi jk qk, {qi,q j}= 0, (1.29)

where εi jk is the signum of the permutation (i, j,k) if i, j,k are distinct and εi jk = 0
otherwise. The Poisson brackets between any two functions f (p1, p2, p3, q1,q2,q3)
and f (p1, p2, p3,q1,q2,q3) is defined by

{ f , g}=∑{pi, p j}
∂ f
∂ pi

∂g
∂ p j

+∑{pi, q j}
∂ f
∂ pi

∂g
∂q j

+∑{qi, q j}
∂ f
∂qi

∂g
∂q j

.

The function H = I1 defined by formulas (1.18) is the Hamiltonian for (1.17). Inte-
grals I2 and I3 are the Casimirs for brackets (1.29) and therefore they produce trivial
symmetries (1.28). Thus, for generic equations (1.17) we need only one additional
first integral I4 such that {H, I4}= 0. This integral provides one more symmetry and
Theorem 11 could be applied.

Note that Eqs. (1.17) are homogeneous if we assign the weight 1 to variables pi,
weight 2 to qi and weight 1 to t-derivation. Let us try to find an additional homoge-
neous polynomial first integrals for (1.17).

The simplest classification problem is to find all possible sets of constants
a,b,c,x,y,z such that function

I4 = λ1 p1 +λ2 p2 +λ3 p3

is the first integral. A trivial calculation leads to the following system of bilinear
equations:

λ1(b− c) = λ2(a− c) = λ3(a−b) = 0,

xλ2− yλ1 = xλ3− zλ1 = yλ3− zλ2 = 0.

For example we can choose a = b �= c and λ3 �= 0. Then x = y = 0 and we get the
Lagrange case with additional integral I4 = p3.

It is not difficult to verify that an additional integral of weight 2 exists only for the
Euler case for which a,b,c are arbitrary and x = y = z = 0. The additional integral
has the form I4 = p2

1 + p2
2 + p2

3.
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Further computations can be performed with the help of special software for
study of overdetermined systems of algebraic equations. It turns out that there are
no cases with additional integral of weight 3 and there exists only one case with
additional integral of weight 4. This is the famous Kowalewski case defined by
relations a = b = 1, c = 2 and z = 0. The additional integral has the form

I4 =
(

p2
1− p2

2−2xq1 +2yq2
)2

+4(p1 p2− yq1− zq2)
2 .

It has been shown in [26] that there are no more cases with polynomial additional
integrals. Moreover, if (1.17) possesses a single-valued meromorphic integral, then
it belongs to one of the above three cases [82].

The classification of integrable cases for the Kirchhoff equations describing the
motion of a rigid body in an ideal fluid is much more complicated. These equa-
tions are Hamiltonian with respect to the same Poisson brackets (1.29), but here
the Hamiltonian function is a generic second-degree homogeneous polynomial of
variables pi,qi:

H =< P, A(P) > + < P, B(Q) > + < Q, C(Q) >,

where P = (p1, p2, p3), Q = (q1,q2,q3). Without loss of generality we can assume
that the matrices A = {ai j} and C = {ci j} are symmetric. Together with an arbitrary
matrix B = {bi j} there are 21 parameters in the Hamiltonian. To reduce the number
of parameters we have to use linear transformations which preserve the Poisson
brackets. Such transformations are called canonical. The canonical transformations
for brackets (1.29) form a six-parameter Lie group consisting of

• orthogonal transformations P̂ = S(P), Q̂ = S(Q), where SST = E;
• transformations of the form q̂i = qi,

p̂1 = p1−μ1q2 +μ2q3, p̂2 = p2 +μ1q1 +μ3q3, p̂3 = p3−μ2q1−μ3q2,
(1.30)

where μi are arbitrary parameters.

Using the orthogonal transformations one can bring the matrix A to the diagonal
form:

A =

⎛
⎜⎝

a1 0 0

0 a2 0

0 0 a3

⎞
⎟⎠ .

With the help of (1.30) we can transform the matrix B to the symmetric (or to the
upper triangular) form.

There are classical integrable cases found by Kirchhoff, Clebsch and Steklov–
Lyapunov [63]. For all these cases the matrices B and C are diagonal and the Hamil-
tonian is of the form

H = a1 p2
1 +a2 p2

2 +a3 p2
3 +2b11 p1q1 +2b22 p2q2 +2b33 p3q3

+ c11q2
1 + c22q2

2 + c33q2
3.
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The Kirchhoff case is described by the relations

a1 = a2, b11 = b22, c11 = c22.

This the only case with a linear additional integral I4 = p3.
For the Clebsch and Steklov–Lyapunov cases the coefficients ai are arbitrary and

the remaining parameters satisfy the following conditions:

b11 = b22 = b33,

c11− c22

a3
+

c33− c11

a2
+

c22− c33

a1
= 0

and

b11−b22

a3
+

b33−b11

a2
+

b22−b33

a1
= 0,

c11−
(b22−b33)2

a1
= c22−

(b33−b11)2

a2
= c33−

(b11−b22)2

a3
,

respectively. For each of these cases there exists an additional quadratic integral. It
can be proven that for the case ai > 0 any Kirchhoff equations with an additional
quadratic integral are equivalent (up to linear canonical transformations) to one of
these two cases.

Very recently a new integrable case [57] has been found with the Hamiltonian

H = p2
1 + p2

2 +2 p2
3 +2(μ1q1 +μ2q2) p3− (μ2

1 +μ2
2 )q2

3. (1.31)

The additional integral I4 is of fourth degree and can be written in a factorized form
I4 = k1 k2, where the factors are given by k1 = p3 and

k2 =
(

p2
1 + p2

2 + p2
2

)
p3 +2 (μ1 p1 +μ2 p2) (p1q1 + p2q2)

+2 (μ1q1 +μ2q2) p2
3 +(μ1q1 +μ2q2)2 p3

−
(
μ2

1 +μ2
2

)
(2p1q1 +2p2q2 + p3q3) q3.

It turns out that both k1 and k2 are invariant relations:

k̇1 = 2(μ2q1−μ1q2)k1, k̇2 =−2(μ2q1−μ1q2)k2.

According to a classification theorem from [57], the Kirchhoff equations with
Hamiltonian (1.31) is the only integrable case with a1 = a2 �= a3 and an additional
first integral of fourth degree.

It turns out that there exists a remarkable nonhomogeneous integrable combina-
tion of the Kowalewski Hamiltonian and the Hamiltonian (1.31):

H̃ = p2
1 + p2

2 +2 p2
3 +2ε (μ1q1 +μ2q2) p3− ε2(μ2

1 +μ2
2 )q2

3 +2λ (μ2q1−μ1q2).
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One can check that in this case there also exists an additional integral of fourth
degree. If we put ε = 0 then the Hamiltonian reduces just to the Kowalewski case.
The case λ = 0 coincides with (1.31).

1.3 Basic Concepts of the Symmetry Approach

1.3.1 Dynamical Variables for Partial Differential Equations

The case of single ODE of nth order can be regarded as a particular case of general
dynamic system (1.1) considered in the previous section. We identify equation

un = f (x, u, ux, . . . , un−1) (1.32)

with the vector field

D =
∂
∂x

+
n−2

∑
i=0

ui+1
∂
∂ui

+ f
∂

∂un−1
.

This vector field acts on the set of all functions depending on dynamical variables
x,u,u1 = ux, . . . ,un−1. Usually D is called a derivation in virtue of Eq. (1.32) or total
derivative operator with respect to x.

Suppose we have an evolution partial differential equation

ut = F(u,u1, . . . ,un,x, t) , n≥ 2, (1.33)

where u0 = u(x, t),u1 = ux(x, t),u2 = uxx(x, t), ... ,un = ∂ n
x u(x, t) and F is an analytic

function (often a polynomial) of its arguments. Following Sophus Lie, we shall
assume the variables u = u0,u1, ... ,un, ... to be independent and will call them the
dynamical variables. In these variables the vector field

D =
∂
∂x

+u1
∂
∂u0

+u2
∂
∂u1

+u3
∂
∂u2

+ · · · (1.34)

represents the total derivative operator with respect to x.
We will apply the operator D to functions of finite number of dynamical variables

and therefore only a finite number of terms in the sum (1.34) is required.
The most adequate to this viewpoint is the language differential algebra where it

is assumed that all functions such as F belong to a proper differential field F [30]
generated by u and the derivation D (1.34). We shall assume that C ∈F . Evolution
partial differential equation (1.33) defines another derivation of the field F

Dt =
∂
∂ t

+F0
∂
∂u0

+F1
∂
∂u1

+F2
∂
∂u2

+ · · · , Fk ∈F ,
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where

F0 = F(u, ... ,un,x, t), F1 = D(F0), ..., Fn = Dn(F0), ... .

The vector field Dt represents the total derivative with respect to time t due to evo-
lutionary equation (1.33). Derivations Dt and D commute:

[Dt ,D] = ∑
s=0

(Dt(us+1)−D(Fs))
∂
∂us

= ∑
s=0

(Fs+1−D(Fs))
∂
∂us

= 0 .

Equation (1.33) can be represented by two compatible infinite-dimensional dy-
namical systems

D(us) = us+1 , Dt(us) = Fs , s = 0,1,2, ... . (1.35)

Example 12. For the Korteweg–de Vries equation

ut = uxxx +6uux, (1.36)

function F0 = u3 + 6uu1 and first few equations of the system (1.35) are of
the form

D(u) = u1 , Dt(u) = u3 +6uu1,

D(u1) = u2 , Dt(u1) = u4 +6uu2 +6u2
1,

D(u2) = u3 , Dt(u2) = u5 +6uu3 +18u1u2,

· · ·

1.3.2 Fréchet Derivative, Euler’s Operator and Formal
Pseudo-differential Series

Definition 13. For any element a ∈F the Fréchet derivative is defined as a linear
differential operator of the form

a∗ =∑
k

∂a
∂uk

Dk .

The order of function a is defined as the order of the differential operator a∗ (i.e.
the maximal power of D). We denote a+

∗ the formally conjugated operator

a+
∗ =∑

k

(−1)kDk ◦ ∂a
∂uk

.

Definition 14. The Euler operator or the variational derivative of a ∈ F is de-
fined as
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δa
δu

=∑
k

(−1)kDk
(

∂a
∂uk

)
= a+

∗ (1) .

If function a is a total derivative a = D(b),b ∈F (we say that a ∈ Im(D), and
Im(D) is defined as the image D : F → Im(D) of the derivation D) then the vari-
ational derivative vanishes. Moreover the vanishing of the variational derivative is
almost a criteria that the function belongs to Im(D) [21]:

Theorem 15. For a ∈F the variational derivative vanishes

δa
δu

= 0

if and only if a ∈ Im(D)+C.

Here we list a few useful identities:

(ab)∗ = ab∗+ba∗ , (1.37)

(D(a))∗ = D◦a∗ = D(a∗)+a∗ ◦D , (1.38)

(Dt(a))∗ = Dt(a∗)+a∗ ◦F∗ , (1.39)

(a∗(b))∗ = Db(a∗)+a∗ ◦b∗ , (1.40)
(
δa
δu

)
∗
=
(
δa
δu

)+

∗
, (1.41)

δ
δu

(Dt(a)) = Dt

(
δa
δu

)
+F+
∗

(
δa
δu

)
, (1.42)

which are valid for any a,b,F ∈F .
For further consideration we will need formal pseudo-differential series, which

for simplicity we shall call formal series (of order m = ordA)

A = amDm +am−1Dm−1 + · · ·+a0 +a−1D−1 +a−2D−2 + · · · , ak ∈F . (1.43)

The product of two formal series is defined by

aDk ◦bDm = a
(

bDm+k +C1
k D(b)Dk+m−1 +C2

k D2(b)Dk+m−2 + · · ·
)

, (1.44)

where k,m ∈ Z and C j
n is the binomial coefficient

C j
n =

n(n−1)(n−2) · · ·(n− j +1)
j!

.

This product is associative.
A conjugated formal series A+ is defined as

A+ = (−1)mDm ◦ am + · · ·+a0−D−1 ◦ a−1 +D−2 ◦ a−2 + · · · .
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Example 16. Let

A = uD2 +u1D, B =−u1D3, C = uD−1,

then

A+ = D2 ◦u−D◦u1 = A, B+ = D3 ◦u1 = u1D3 +3u2D2 +3u3D+u4 ,

C+ =−D−1 ◦u =−uD−1 +u1D−2−u2D−3 + · · · .

Formal series form a skew-field. For any element (1.43) we can find uniquely the
inverse element

B = b−mD−m +b−m−1D−m−1 + · · · , bk ∈F ,

such that A◦B = B◦A = 1. Indeed, multiplying A and B and equating the result to
1 we find that amb−m = 1, i.e. b−m = 1/am, then at D−1 we have

mamD(b−m)+amb−m−1 +am−1b−m = 0

and therefore

b−m−1 =−am−1

a2
m
−mD

(
1

am

)
, etc.

First k coefficients of the series B can be uniquely determined in terms of the first k
coefficients of A.

Moreover we can find the mth root of the series A (1.43), i.e. a series

C = c1D+ c0 + c−1D−1 + c−2D−2 + · · ·

such that Cm = A and if we know first k coefficients of the series A we can find the
first k coefficients of the series C.

Example 17. Let A = D2 +u. Assuming

C = c1D+ c0 + c−1D−1 + c−2D−2 + · · ·

we compute (using (1.44))

C2 = C ◦C =
(
c1D+ c0 + c−1D−1 + · · ·

)
◦
(
c1D+ c0 + c−1D−1 + · · ·

)
=

c2
1D2 +(c1D(c1)+ c1c0 + c0c1)D+ c1D(c0)+ c2

0 + c1c−1 + c−1c1 + · · · ,

and compare the result with A. At D2 we find c2
1 = 1 or c1 =±1. Let us choose the

positive root c1 = 1. Now at D we have 2c0 = 0, i.e. c0 = 0. At D0 we have 2c−1 = u,
at D−1 we find c−2 =−u1/4, etc.

C = D+
u
2

D−1− u1

4
D−2 + · · · .

We can easily find as many coefficients of C as required.
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Definition 18. The residue of a formal series A = ∑k≤n akDk, ak ∈F , is the coeffi-
cient at D−1

res(A) = a−1 .

The logarithmic residue of A is defined as

res logA =
an−1

an
.

For any two formal series A,B of order n and m, respectively, the logarithmic
residue satisfies the following identity:

res log(A◦ B) = res log(A)+ res log(B)+nD(log(bm)) .

For any derivation Dt of the field F and any formal series A we have

Dt(res log(A)) = res(Dt(A)◦A−1) . (1.45)

We will use the following important Adler’s Theorem [10].

Theorem 19. For any two formal series A,B the residue of the commutator belongs
to Im(D):

res[A,B] = D(σ(A,B)),

where

σ(A,B) =
p+q+1>0

∑
p≤ord(B), q≤ord(A)

Cp+q+1
q

p+q

∑
s=0

(−1)sDs(aq)Dp+q−s(bq) .

1.3.3 Infinitesimal Symmetries of Evolution PDEs

Here we will give a few equivalent definitions of infinitesimal symmetries of
Eq. (1.33). The definition of symmetries for PDEs is very similar to the definition
for ODEs (compare with Sect. 1.3).

Traditionally symmetries of equations are defined as transformations which map
solutions of the equation into solutions. Suppose u is an arbitrary solution of
Eq. (1.33). Let us consider an infinitesimal transformation

û = u+ τG(u, ... ,um,x, t) (1.46)

which depends on small parameter τ . We say that the transformation (1.46) defines
an infinitesimal symmetry of Eq. (1.33) if û satisfies equation

ût = F(û, ... , ûn,x, t)+O(τ2) .

If we substitute û (1.46) in (1.33) and request the cancellation of terms of order τ ,
we receive
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Dt(G(u, ... ,um,x, t)) = F∗(G(u, ... ,um,x, t)) , (1.47)

where F∗ denotes the Fréchet derivative of F .
The generator of a symmetry of Eq. (1.33) can be defined as a function G(u, ... ,

um,x, t) which satisfies the corresponding linearized equation (1.47).
A symmetry of Eq. (1.33) can also be defined as a derivation

X = g0
∂
∂u0

+g1
∂
∂u1

+g2
∂
∂u2

+ · · · , gk ∈F , (1.48)

of F , which commutes with the derivations D and Dt (compare with Sect. 2.1). It
follows from [D,X ] = 0 that gk = Dk(g0).

We call derivation (1.48) which commutes with D evolutionary. Any evolution-
ary derivation has the following form:

DG = G
∂
∂u0

+D(G)
∂
∂u1

+D2(G)
∂
∂u2

+ · · · , Gk ∈F , (1.49)

for some function G ∈F . We call this function G generator of evolutionary deriva-
tion (1.49). All evolutionary derivations form a Lie algebra with respect to the stan-
dard commutator

DK = DG ◦DH −DH ◦DG (1.50)

of vector fields. The generator K of the commutator is given by

K = H∗(G)−G∗(H). (1.51)

Formula (1.51) defines a Lie bracket on our differential field F .
Suppose we have two symmetries DG and DH , then the commutator (1.50) com-

mutes with Dt due to the Jacobi identity for vector fields and therefore also corre-
sponds to a symmetry. A linear combination of symmetries with constant coeffi-
cients is also a symmetry. In other words, infinitesimal symmetries of an equation
form a Lie algebra over C, which is a subalgebra of the Lie algebra of all evolution-
ary derivations.

It is easy to verify that the condition [Dt ,DG] = 0 is equivalent to (1.47). Since
Dt = ∂

∂ t + DF we see that DF is a symmetry for Eq. (1.33) iff the function F does
not depend on t explicitly.

There is one-to-one correspondence between the evolutionary derivations and
evolution partial differential equations. The derivation DG (1.49) corresponds to
equation

uτ = G(u, ... ,um,x, t) . (1.52)

Since Dt and DG commute, Eqs. (1.33) and (1.52) are compatible. Often evolution
equations (1.52) which are compatible with (1.33) are called symmetries. The order
of a symmetry is the order of its generator G.

The new time τ in (1.52) plays the role of a group parameter. In order to find
a one-parameter family u(x, t,τ) of solutions including a given solution u(x, t) of
Eq. (1.33), we have to solve Eq. (1.52) with initial data u(x, t).
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Example 20. For the KdV equation (1.36) we have obvious symmetries with
generators

G1 = u1, G3 = ut = u3 +6uu1

of order 1 and 3 which correspond to the shifts in space and time. The Galilean and
scaling transformations are generated by

Gg = 1+6tu1 , Gs = 2u+ xu1 +3t(u3 +6uu1).

There are infinitely many high-order symmetries for the KdV equation; the first
nontrivial one has order 5 and is of the form

G5 = u5 +10uu3 +20u1u2 +30u2u1 .

It is easy to verify that all these functions are indeed generators of symmetries ac-
cording to the definitions given above.

Symmetries of PDEs help a lot to find partial solutions. Suppose Eq. (1.33)
has a symmetry with a generator G(u, ... ,um,x, t). There is a subclass of solu-
tions of (1.33) which is invariant with respect to this symmetry, i.e. correspond-
ing symmetry transformation (1.46) does not change the solution, or in other words
G(u, ... ,um,x, t) = 0 for such solutions. The condition G = 0 preserves with time;
indeed, function G satisfies linear equation (1.47) and G = 0 is the obvious so-
lution and if the condition G = 0 was true at initial time it remains to be true at
any time. The condition G = 0 allows us to reduce the PDE or the corresponding
infinite-dimensional dynamical system (1.35) to an ODE (a finite-dimensional dy-
namical system). In order to do the corresponding symmetry reduction we should
resolve equation G = 0 and express the highest derivative um in terms of the lower
derivatives um = g(u,u1, ... ,um−1,x, t). Now we have only m-independent dynami-
cal variables u, ... ,um−1 and all other variables can be expressed in their terms. For
example

um+1 = D(um) = D(g) = gx +
m−2

∑
k=0

uk+1
∂g
∂uk

+g
∂g

∂um−1
.

After such reduction the system (1.35) gives two compatible m-dimensional dynam-
ical systems.

1.3.4 Formal Recursion Operator

For simplicity here and in the sequel we assume that the right-hand side of equation

ut = F(u, ... ,un,x) , n≥ 2, (1.53)
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and also its symmetries and conservation laws do not depend on time explicitly. Our
theoretical constructions are based on the fundamental concept of formal recursion
operator,3 which is in the core of the Symmetry Approach.

Definition 21. A formal series

Λ = l1D+ l0 + l−1D−1 + · · · , lk ∈F , (1.54)

is called a formal recursion operator for Eq. (1.53) if it satisfies equation

Dt(Λ)− [F∗,Λ ] = 0 . (1.55)

Here we have to make one important stipulation that in our approach we will
never consider Λ as an operator, i.e. we will never act by Λ to any function. Relation
(1.55) is regarded as an infinite system of equations for the coefficients li. In the
cases when the formal series (1.54) or its power is finite or can be summed up
and represented in the form of a pseudo-differential operator, it gives us a recursion
operator which maps symmetries of Eq. (1.53) into symmetries. Indeed, if the action
of Λ is properly defined on a symmetry generator G (i.e. Λ(G) ∈ F ), then H =
Λ(G) satisfies Eq. (1.47):

Dt(H) = Dt(ΛG) = Dt(Λ)(G)+ΛDt(G)
= [F∗,Λ ](G)+ΛF∗(G) = F∗Λ(G) = F∗(H)

and according to our definition H is a generator of a symmetry.

Proposition 22. If Λ is a recursion operator for Eq. (1.53), then any power Λ̃ =Λ k

also satisfies Eq. (1.55). In particular,

Λ̂ = c1Λ + c0 + c−1Λ−1 + c−2Λ−2 + · · ·

is a formal recursion operator for (1.53) for any ck ∈ C.

The coefficients of the formal recursion operator can be found from Eq. (1.55).

Example 23. Let us consider equations of the KdV type

ut = u3 + f (u1,u) (1.56)

and find a few coefficients l1, l0, ... of the formal recursion operator Λ . We substitute

F∗ = D3 +
∂ f
∂u1

D+
∂ f
∂u

, L = l1D+ l0 + l−1D−1 + · · ·

in (1.55) and collect coefficients at D3,D2, . . . .

3 In our previous publications [42, 45, 55] we called it a formal symmetry. We think that the term
formal recursion operator is more adequate for many reasons.
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We obtain

D3 : 3D(l1) = 0; D2 : 3D2(l1)+3D(l0) = 0;

D : D3(l1)+3D2(l0)+3D(l−1)+ ∂ f
∂u1

D(l1) = (l1)t + l1 D
(

∂ f
∂u1

)
.

From the first equation it follows that l1 is a constant and we set l1 = 1. Now,
from the second equation, it follows that l0 is a constant and we choose l0 = 0 (any
constant is a trivial solution of Eq. (1.55)). It follows from the third equation that

D(l−1) = D

(
1
3

∂ f
∂u1

)
,

and therefore

l−1 =
1
3

∂ f
∂u1

+ c−1 , c−1 ∈ C .

The constant of integration c−1 can be set equal to zero without loss of generality
(Proposition 22). Therefore

Λ = D+
1
3

∂ f
∂u1

D−1 + · · · . (1.57)

The concept of formal recursion operator is very universal in the theory of inte-
grable equations. If Eq. (1.53) possesses an infinite hierarchy of symmetries [28] or
conservation laws [69] of arbitrary high order or can be linearized by a differential
substitution [70] the formal series Λ satisfying Eq. (1.55) exists and the sequence
of its coefficients l1, l0, ... ∈ F can be found explicitly. Below we formulate and
illustrate some main results of the theory, the details of proofs one can be found in
original papers or in reviews [42, 45, 55].

Theorem 24. If Eq. (1.53) possesses an infinite hierarchy of higher symmetries of
infinitely increasing order then it has a formal recursion operator.

The main idea of the proof of Theorem 24 and the relation between the structure
of the formal recursion operator and symmetries can be illustrated by the following
consideration. Suppose Eq. (1.53) has a symmetry with a generator G. Function G
satisfies Eq. (1.47). Let us compute the Fréchet derivative from this equation. Using
identities (1.37), (1.39), (1.40) we get equation

Dt(G∗)+G∗F∗ = DG(F∗)+F∗G∗,

which can be rearranged in the form

Dt(G∗)− [F∗,G∗] = DG(F∗) . (1.58)

Now let us assume that the order of Eq. (1.53) is fixed, say n = 3 (i.e. F =
F(u,u1,u2,u3,x) in (1.53)), and the symmetry G has a very high order (say, for ex-
ample, m = 125, i.e. G = G(u,u1, ... ,u125,x)). Equation (1.58) for operators (the
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Fréchet derivative is a differential operator) is understood as equations for the co-
efficients of the operators at each power Dk. In the right-hand side of Eq. (1.58)
we have operator DG(F∗) of order 3 (or less, if the leading coefficient of F∗ is
a constant). The product F∗G∗ in the left-hand side of the equation has the order
n+m = 3+125 = 128. It means that in first 128−3 = 125 equations the right-hand
side does not contribute and first 124 terms of operator G∗ satisfy the same equation

(1.55) as the formal recursion operator Λ . We can use G1/125
∗ as an approximate for

Λ or, more precisely,

Λ = (G∗)1/m + l̃−123D−123 + l̃−124D−124 + · · · . (1.59)

If Eq. (1.53) has an infinite hierarchy of symmetries Gs and the order of symmetries
is going to infinity as s→ ∞ then one can show that there exists a formal series Λ ,
such that Eq. (1.55) is satisfied at any order Dk , k = n,n− 1, ... ,0,−1, ... . That is
the basic idea for the proof of Theorem 24.

1.3.5 Conservation Laws

In contrast to symmetries, the notion of first integrals cannot be generalized to the
case of PDEs. It is replaced by the concept of local conservation laws, which can
also be related to constants of motion.

Definition 25. A function ρ ∈F is called a density of a local conservation law of
Eq. (1.33) if there exists a function σ ∈F such that

Dt(ρ) = D(σ). (1.60)

Equation (1.60) is evidently satisfied if ρ = D(h) for any h ∈ F . In this case
σ = Dt(h). We call such “conservation laws” trivial.

Definition 26. Two conserved densities ρ1,ρ2 are called equivalent ρ1 ∼ ρ2 if the
difference ρ1−ρ2 is a trivial density (i.e. ρ1−ρ2 ∈ Im(D)).

Definition 27. The order ord(ρ) of a conserved density ρ is defined as the order of
the differential operator

R =
(
δρ
δu

)
∗
.

For trivial densities δρ/δu = 0 (see Theorem 15) and therefore equivalent den-
sities have the same order. For example, densities ρ1 = u2

1 + u3 and ρ2 = −uu2 are
equivalent and according to our Definition 27, we have ord(ρ1) = ord(ρ2) = 2. In
literature the order of a conserved density ρ is often defined as the minimal order
of densities equivalent to ρ. Using this definition we get ord(ρ1) = 1. It is easy to
prove that for the scalar equations (1.33) the latter order always differs by a factor
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2 from ours. We prefer our definition because it is more suitable for the systems of
evolution equations.

A linear combination of conserved densities with constant coefficients is also a
conserved density. Therefore the set of conserved densities forms a linear space,
actually a factor space over Im(D).

Example 28. Functions ρ1 = u, ρ2 = u2, ρ3 = −u2
1 + 2u3, ρ̂3 = uu2 + 2u3 are con-

served densities of the Korteweg–de Vries equation (1.36). Indeed,

Dt(u) = D
(
u2 +3u2) , Dt(u2) = D

(
2uu2−u2

1 +4u3) ,
Dt(ρ3) = D

(
9u4 +6u2u2 +u2

2−12uu2
1−2u1u3

)
.

Densities ρ3 and ρ̂3 are equivalent, ρ̂3− ρ3 = D(u1). Densities ρ1,ρ2 are of zero
order, ordρ3 = ord(ρ̂3) = 2. Function u3 is not a density of a conservation law
for the Korteweg–de Vries equation. Indeed, Dt(u3) = 3u2u3 + 18u3u1. In order to
check that the right-hand side is not a total derivative we apply the Euler operator
(Theorem 15)

δ
δu

(
3u2u3 +18u3u1

)
=−18u1u2 �= 0 .

If u is a periodic (in x) function with period L, then Ik =
∫ L

0 ρk dx do not depend on
time and are constants of motion.

If we substitute a density of a conservation law in the identity (1.42) we find that
δρ
δu is a co-symmetry (i.e. it satisfies the equation conjugated to (1.47)):

Dt

(
δρ
δu

)
+F+
∗

(
δρ
δu

)
= 0 . (1.61)

Theorem 29. Evolution equation of even order

ut = F(u,u1, ... ,u2n,x) (1.62)

cannot have a conserved density ρ of order higher than 2n.

Proof. We prove the theorem by a contradiction. Let us assume that Eq. (1.62) has
a conserved density ρ and ord(ρ) = k > 2n. The variational derivative of ρ satisfies
Eq. (1.61). Let us compute the Fréchet derivative from Eq. (1.61) using identities
(1.37), (1.38), (1.39). The result can be represented as

Dt(R)+R◦F∗+F+
∗ ◦R = Q, (1.63)

where

R =
(
δρ
δu

)
∗
, Q =−

2n

∑
k−1

(−1)kDk ◦
(
δρ
δu

(Fk)∗

)

and Fk are the coefficients of the Fréchet derivative

F∗ = F2nD2n +F2n−1D2n−1 + · · ·+F0 , F2n �= 0.
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It is easy to see that the differential operator Q has order 4n or less. Order of R◦F∗
and F+

∗ ◦R is equal to k + 2n. Substituting R = rkDk + rk−1Dk−1 + · · · (rk �= 0) in
(1.63) and collecting terms at Dk+2n we get a contradiction

2rkF2n = 0 .

�
The proof of Theorem 29, and in particularly relation (1.63), motivates the fol-

lowing definition:

Definition 30. A formal series

S = smDm + sm−1Dm−1 + · · ·+ s0 + s−1D−1 + · · · , sm �= 0, (1.64)

is called a formal symplectic operator of order m for Eq. (1.33) if it satisfies
equation

Dt(S)+S◦F∗+F+
∗ ◦S = 0 . (1.65)

Notice that if Eq. (1.33) has a Hamiltonian structure, then the symplectic operator
(inverse to the Hamiltonian operator) satisfies Eq. (1.64) [13]. It is easy to verify
that the ratio S−1

1 S2 of any two solutions of (1.65) satisfies Eq. (1.55) for the formal
recursion operator.

Identity (1.63) is a key point in the proof [69] of the following statements:

Theorem 31. If Eq. (1.33) possesses an infinite hierarchy of conserved densities of
infinitely increasing order, then it has a formal symplectic operator.

Theorem 32. If Eq. (1.53) possesses an infinite hierarchy of higher conserved den-
sities of infinitely increasing order, then it has a formal recursion operator.

1.3.6 Canonical Densities and Necessary Integrability Conditions

In this section we formulate necessary conditions for the existence of high-order
symmetries or conservation laws. These conditions are formulated in terms of a
sequence of canonical conservation laws.

For Eq. (1.53) with formal recursion operator Λ we define a sequence of canon-
ical densities.

Definition 33. The functions

ρi = res(Λ i), i =−1,1,2, . . . , and ρ0 = res log(Λ)

are called canonical densities for Eq. (1.53).
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Theorem 34. If Eq. (1.53) has a formal recursion operator, then canonical densities

ρi = res(Λ i), i =−1,1,2, . . . , and ρ0 = res log(Λ)

are defined local conservation laws

Dt(ρi) = D(σi), σi ∈F , i =−1,0,1,2, . . . , (1.66)

for Eq. (1.53).

Proof. If a formal series Λ satisfies Eq. (1.55), so does a formal series Λ k, k =
−1,1,2,3, ... . Using Adler’s Theorem 19 we get

Dt(ρk) = Dt(res(Λ k) = res([F∗,Λ k]) = D(σk) ∈ Im(D) , k =−1,1,2,3, ... .

It follows from identity (1.45) and Theorem 19 that

Dt(ρ0) = res(Dt(Λ)Λ−1) = res([F∗,Λ ]Λ−1)

= res([F∗Λ−1,Λ ]) = D(σ0) ∈ Im(D) .

�
Theorem 35. Under the assumptions of Theorem 32 all even canonical densities
ρ2 j are trivial.

Example 36. The Korteweg–de Vries equation ut = u3 +6uu1 has a recursion oper-
ator

Λ̂ = D2 +4u+2u1D−1 ,

which satisfies Eq. (1.55). The formal recursion operator for the Korteweg–de Vries
equation can be represented as Λ = Λ̂ 1/2. The infinite hierarchy of commutative
symmetries of KdV can be obtained as

G2k+1 = Λ̂ k(u1) . (1.67)

The first five canonical densities for the KdV equation (Example 36) are

ρ−1 = 1, ρ0 = 0, ρ1 = 2u, ρ2 = 2u1, ρ3 = 2u2 +u2.

Example 37. The Burgers equation ut = u2 + 2uu1 has the (formal) recursion oper-
ator

Λ = D+u+u1D−1 .

Functions Gn = Λ n(u1) are generators of symmetries of the Burgers equation. The
canonical densities for the Burgers equation are

ρ−1 = 1, ρ0 = u, ρ1 = u1, ρ2 = u2 +2uu1, . . . .

Since ρ0 is not trivial, the Burgers equation cannot possess an infinite series of
conservation law. This fact also follows from Theorem 29.
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Thus, if we have an equation of the form (1.53) and know the (formal) recur-
sion operator, we can construct a sequence of canonical densities, which gives us a
sequence of conservation laws (some of them, or even all, may be trivial).

Question 38. How to check that for a given equation (1.53) a formal recursion oper-
ator exists? What are the obstacles for the existence of a formal recursion operator
for a given equation?

The coefficients of a formal recursion operator Λ can be found directly from the
linear equation (1.55). First n− 1 coefficients l1, l0, ... , l3−n of Λ coincide with the
first n−1 coefficients of the formal series (F∗)1/n. Indeed, since the right-hand side
F of Eq. (1.53) does not depend on time explicitly, it generates a symmetry (a time
shift) and we can use the ansatz

Λ = (F∗)1/n + l̃2−nD2−n + l̃1−nD1−n + · · ·

(compare with (1.59)).
Having first n− 1 coefficients of Λ we can find n− 1 canonical densities

ρ−1,ρ0, ... ,ρn−2 explicitly (in terms of the coefficients Fi = ∂F
∂ui

of the Fréchet

derivative F∗= FnDn +Fn−1Dn−1 + · · ·+F0). Equating coefficients at D in Eq. (1.55)
it can be shown that the first unknown coefficient l2−n of Λ can be found (as element
of F ) if and only if the first canonical density

ρ−1 = F
− 1

n
n (1.68)

is a density of a local conservation law for Eq. (1.53), i.e. there exists such func-
tion σ−1 ∈ F that Dt(ρ−1) = D(σ−1). Coefficient l2−n can be expressed explic-
itly in terms of the coefficients Fn, ... ,F0 and σ−1. If Dt(ρ−1) �∈ Im(D), which we
can easily verify applying the Euler operator and checking that δDt(ρ−1)/δu �= 0
(Theorem 15), then the formal recursion operator does not exist and consequently
Eq. (1.53) cannot have infinite hierarchy of higher symmetries or conservation laws.
Similarly the next coefficient l1−n can be found (as element of F ) if and only if the
canonical density ρ0 is conserved; then l1−n can be explicitly expressed in terms of
Fn, ... ,F0,σ−1,σ0, etc. In such a way we could obtain as many coefficients of the
formal recursion operator Λ as we wish, unless we meet an obstacle: it may happen
that we find a canonical density ρk such that it does not define a conservation law,
i.e. Dt(ρk) �∈ Im(D), and therefore element σk ∈F , such that Dt(ρk) = D(σk) does
not exist!

Example 39. Let us consider evolution equations of second order

ut = F(x,u,u1,u2). (1.69)

Computations described above show that the densities of three first canonical con-
servation laws (1.66) can be written in the form
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ρ−1 =
(
∂F
∂u2

)−1/2

,

ρ0 =
(
∂F
∂u2

)−1/2

σ−1−
(
∂F
∂u2

)−1( ∂F
∂u1

)
,

ρ1 = ρ−1
∂F
∂u
− ρ2

0

4ρ−1
+

ρ0σ−1

2
− ρ−1σ0

2
.

1.3.7 Simple Classification Problems

It follows from Theorem 24 or 32 that canonical conservation laws provide nec-
essary conditions for the existence of higher symmetries or conservation laws. We
shall call the fact that the function ρi is a density of a local conservation law ith
integrability condition for Eq. (1.53). Using these conditions we can prove noninte-
grability of given equations.

Example 40. It is known that partial differential equations

ut = unun, n = 2,3, (1.70)

are integrable (i.e. possesses infinitely many symmetries). The question is: whether
any equation of such type is integrable for n > 3? For Eq. (1.70) we have (1.68)

ρ−1 =
1
u

.

Let us verify the condition that ρ−1 is a conserved density. The right-hand side of
expression

Dt(ρ−1) =−un−2un

should be a total derivative of a function from F , i.e. belong to Im(D). Thus, if
we apply the Euler operator (i.e. take the variational derivative) δ/δu, we should
receive zero. The result is

δ
δu

(
un−2un

)
= (−1)nDn (un−2)+(n−2)un−3un .

It is zero for n = 2,3 and different from zero for any n > 3. Conclusion: for n > 3
Eq. (1.70) does not pass the test for integrability and therefore it cannot possess
higher symmetries or a hierarchy of conservation laws.

Let us consider equations of the KdV type (1.56) and find restrictions on the
function f (u1,u) which follows from first two nontrivial integrability conditions.

It follows from (1.57) that the first nontrivial canonical density is

ρ1 = l−1 =
1
3
∂ f
∂u1

.
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Thus for any integrable equation of the KdV type (1.56) we should have

Dt

(
∂ f
∂u1

)
= D(σ1) , σ1 ∈F . (1.71)

Example 41. For the mKdV equation ut = u3 +3u2u1 we have

ρ1 = u2

and it is indeed a conserved density

Dt(u2) = 2uDt(u) = 2u(u3 +3u2u1) = D

(
2u2−u2

1 +
3
2

u4
)

.

Applying the Euler operator δ/δu to (1.71) we find an explicit form

0 =
δ
δu

Dt

(
∂ f
∂u1

)
= 3u4

(
u2

∂ 4 f

∂u4
1

+u1
∂ 4 f

∂u3
1∂u

)
+ · · ·

of the first integrability condition. The identity

u2
∂ 4 f

∂u4
1

+u1
∂ 4 f

∂u3
1∂u

= 0

gives rise to
f (u1,u) = λu3

1 +A(u)u2
1 +B(u)u1 +C(u),

where λ is a constant.
For such f the first condition turns out to be equivalent to

λA′ = 0, B′′′+8λB′ = 0,

(B′C)′ = 0, AB′+6λC′ = 0.

The second integrability condition for the KdV-type Eq. (1.56) has the form

Dt

(
∂ f
∂u

)
= D(σ2).

Using this fact we can derive a few more differential relations between A(u), B(u),
C(u). Solving them all together we obtain the following list of equations:

ut = uxxx +
(
c1u2 + c2u+ c3

)
ux ,

ut = uxxx + c1u3
x + c2u2

x + c3ux + c4 ,

ut = uxxx−
1
2

u3
x +
(
c1e2u + c2e−2u + c3

)
ux ,
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where c1,c2,c3,c4 are arbitrary constants. In the latter equation we normalize λ to
−1/2 by a scaling. Only these equations (of type (1.56)) have passed through the
first two necessary integrability conditions (Dt(ρ1),Dt(ρ2) ∈ Im(D)). Actually all
these equations are integrable, i.e. possess infinitely many commuting symmetries,
higher conservation laws, have Lax’s representations, etc. In this particular case the
first two integrability conditions proved to be sufficient for the classification.

1.3.8 Almost Invertible Transformations and Differential
Substitutions of Miura Type

The first two equations from the above list are related in the following way. Let us
differentiate equation

ut = u3 + c1u3
1 + c2u2

1 + c3u1 + c4

with respect to x and denote
û = ux.

Then
ût = û3 +3c1û2û1 +2c2ûû1 + c3û1.

Obviously, the same transformation can be applied to any equation

ut = F(u1,u2, . . . ,un) (1.72)

with right-hand side, which does not depend on u.
In order to give an invariant description of such transformations we note that the

initial equation (1.72) is invariant with respect to a one-parameter group of shifts
u→ u + τ . The invariants of the group are t,x,u1,u2, . . . and we simply take the
simplest three invariants as new variables t̂, x̂ and û.

The Cole–Hopf transformation

û =
ux

u

between the heat equation ut = u2 and the Burgers equation ût = û2 + 2ûû1 admits
the same algebraic interpretation. In this case the one-parameter symmetry group of
the initial equation is the scaling group u→ τ u.

We shall call such type of transformations related to a one-parameter group of
symmetries the transformation of differentiation.

The inverse transformation can be applied if the right-hand side of the equation
is a total x-derivative. Consider, for example, the equation

ut = u3 +3c1u2u1 +2c2u1 + c3u1 = D(u2 + c1u3 + c2u2 + c3u).
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Integrating the equation with respect to x and introducing a new variable û such that
D(û) = u, we get

ût = û3 + c1û3
1 + c2û2

1 + c3û1 + c4.

Notice that the initial equation has the form of a conservation law ρt = D(σ),
where ρ = u, and we introduce the potential û such that D(û) = ρ and
(û)t = σ .

It is clear that if the equation has a conserved density of zero order ρ = s(u)
then the new variable û = D−1(ρ) satisfies an equation of the form (1.72). We call a
transformation related to a conserved density the potentiation. If two equations can
be related via a finite chain of differentiations and potentiations, we say that these
equations are equivalent up to almost invertible transformations.

The almost invertible transformations are extremely important in the theory of
integrable equations. For example, using the fact that for any integrable equation the
function (1.68) is a conserved density, we can prove the following general statement
[55]:

Theorem 42. Any integrable equation of the form

ut = f (u)u3 +F(u2,u1,u), f ′(u) �= 0,

can be reduced by a potentiation and point transformations to the form

ut = u3 +G(u2,u1).

Proof. First, we make the point transformation ũ = f (u)−1/3. It brings the equation
to the form

ũt =
ũ3

ũ3 + F̃(ũ2, ũ1, ũ).

It follows from (1.68) that ρ−1 = ũ. According to Theorem 34, the function ũ
is a conserved density for any integrable equation of this form and therefore the
equation can be written as

ũt = D

(
ũ2

ũ3 +Ψ(ũ1, ũ)
)

. (1.73)

The next step is the potentiation û = D−1(ũ). As the result we get

ût =
û3

û3
1

+Ψ(û2, û1).

The last step is the point transformation

t̂ = t, x̂ = u, û = x. (1.74)

For any point transformation we have the following expressions for new
derivations:
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D̂t̂ = f1Dt + f2D, D̂ = f3Dt + f4D

for some functions fi ∈ F . In the case of transformations t̂ = t, x̂ = p(x,u), û =
q(x,u) applying these relations to t ′ = t, we get f1 = 1, f3 = 0 and hence

D̂t̂ = Dt + f2D, D̂ = f4D.

For transformation (1.74) we have 0 = Dt(u)+ f2u1, 1 = f4u1. This implies

f2 =− ut

u1
, f4 =

1
u1

and

û1 = D̂(û) = f4D(x) =
1
u1

, û2 = D̂(û1) =−u2

u3
1

,

û3 = D̂(û2) =−u3

u4
1

+
3u2

2

u5
1

, ût = D̂t(û) =− ut

u1
.

Using these formulas we find that any equation

ût =
û3

û3
1

+Ψ(û2, û1)

transforms to an equation of the form

ut = u3 +G(u2,u1).

�

Example 43. For the Harry–Dim equation ut = u3u3 we have to take ũ =
1
u

. Equation

(1.73) is given by

ũt = D

(
ũ2

ũ3 −
3ũ2

1

2ũ4

)
.

After the potentiation we get

ût =
û3

û3
1

− 3û2
2

2û4
1

.

Transformation (1.74) brings the latter equation to

ut = u3−
3u2

2

2u1
.

Note that this so-called Schwartz–KdV equation admits a group of classical sym-
metries

u→ αu+β
γu+δ

.

The simplest three differential invariants of this group are t,x, u3
u1
− 3u2

2
2u2

1
. The corre-

sponding differential substitution
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t̂ = t, x̂ = x, û =
u3

u1
− 3u2

2

2u2
1

reduces the Schwartz–KdV equation to the KdV equation û = û3 +3ûû1.

A different example of a differential substitution gives us the famous Miura trans-
formation [47]

û = u1−u2,

which links the mKdV equation ut = u3 − 6u2u1 and the KdV equation ût =
û3 + 6ûû1. Differential substitutions of Miura type are well known in the theory
of integrable evolution PDEs (see [47]).

A relation
û = P(x,u,u1, . . . ,uk) (1.75)

is called a differential substitution of order k from the equation

ut = f (x,u,u1, . . . ,un) (1.76)

to the equation
ût = g(x, û, û1, . . . , ûn) (1.77)

if for any solution u(x, t) of Eq. (1.76) the function (1.75) satisfies (1.77).

Theorem 44. If Eqs. (1.76) and (1.77) are related via a differential substitution
(1.75) and Eq. (1.77) possesses the formal recursion operator, them Eq. (1.76) also
possesses the formal recursion operator.

To prove this theorem it suffices to verify that if R̂ is a formal recursion operator
for Eq. (1.77), then

Λ = P−1
∗ σ(Λ̂)P∗,

where σ denotes the substitution ûi → Di(P), is a formal recursion operator for
(1.76).

Proposition 45. Let ρi and ρ̂i be the canonical densities of Eqs. (1.76) and (1.77)
defined by the formal recursion operators Λ and Λ̂ . Then

ρi ∼ σ(ρ̂i), i =−1,0,1,2, . . . .

Corollary 46. If Eq. (1.76) is related to a linear equation

ût =
n

∑
k=0

ckûk , ck ∈ C,

by a differential substitution (1.75), then Eq. (1.76) has the formal recursion opera-
tor and all its canonical densities are trivial.

A relation between special nonlocal symmetries of Eq. (1.76) and differential
substitutions of first order has been discovered in [56]. Using this observation, in
[80, 81] a classification of first-order substitutions has been done.
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1.4 Modifications and Generalizations

1.4.1 Systems of Partial Differential Equations

All objects defined above can be easily extended to the case of system of equations.
Let us consider a system of N evolutionary partial differential equations of the form

ut = F(u,u1, ... ,un,x, t) , (1.78)

u =
(
u1, ... ,uN) , uk = ∂ k

x (u), F =
(
F1, ... ,FN) .

Each entry Fs of the vector-function F belongs to F , where F is a differential field
generated by components of vector u and derivation

D =
∂
∂x

+
∞

∑
k=0

N

∑
s=1

us
k+1

∂
∂us

k
.

Equation (1.78) defines another derivation

Dt =
∂
∂ t

+
∞

∑
k=0

N

∑
s=1

Fs
k

∂
∂us

k
,

where Fk
s = Ds(Fk).

For any vector-function a the Fréchet derivative is a differential operator with
matrix coefficients

a∗ =∑
k

∂a
∂uk

Dk ,

(
∂a
∂uk

)
i j

=
∂ai

∂u j
k

.

The definition of symmetries and conservation laws for system of equations is
exactly the same as in the scalar case. We note only that in this case the generator
of symmetry is a vector function whereas the conserved density is still a scalar
object.

Formal series
A = anDn +an−1Dn−1 + · · ·

and recursion operators also have matrix-valued coefficients. In the definition of the
residue we have to add the trace operation:

res(A) = trace (a−1) .

With such a definition of the residue Adler’s Theorem 19 is valid.
If the leading coefficient an of the series A is nonsingular (det(an) �= 0), then we

can find the inverse series B such that AB = BA = I.
Equation (1.55), which defines the formal recursion operator, can be rewritten in

the form
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[Dt −F∗, Λ ] = 0. (1.79)

If the eigenvalues μ1, ... ,μN of the leading matrix coefficient Fn of operator F∗ are
pair-wise distinct μi �= μ j, we can transform both operators Dt −F∗ and Λ from
(1.79) to a diagonal form [40, 45].

Theorem 47. Suppose the leading matrix coefficient Fn of the Fréchet derivative

F∗ = FnDn +Fn−1Dn−1 + · · ·+F0 , Fk =
(

∂F
∂uk

)
,

has pair-wise distinct eigenvalues μ1, ... ,μN (μi �= μ j), then there exists an unique
formal series

T = T0(I + t1D−1 + t2D−2 + · · ·)
such that all matrices tk are off-diagonal,

Fn = T−1
0 diag(μ1, ... ,μN)T0 ,

and all coefficients Φk of the formal series

Φ = T ◦F∗ ◦T−1 +Dt(T )◦T−1 = (1.80)

diag(μ1, ... ,μN)Dn +Φn−1Dn−1 +Φn−2Dn−2 + · · ·

are diagonal. Moreover, if Λ is a formal recursion operator satisfying Eq. (1.79)
then

Λ̂ = T ◦Λ ◦T−1

is a formal series with diagonal coefficients which satisfies equation

Dt(Λ̂) = [Φ , Λ̂ ] .

Example 48. Let us consider the following system of equations

ut = uxx + f (u,v,ux,vx)
−vt = vxx +g(u,v,ux,vx)

, F =

(
u2 + f (u,v,u1,v1)
−v2−g(u,v,u1,v1)

)
.

The leading matrix diag(1,−1) of the corresponding Fréchet derivative

F∗ =

(
1 0

0 −1

)
D2 +

(
∂ f /∂u1 ∂ f /∂v1

−∂g/∂u1 −∂g/∂v1

)
D+

(
∂ f /∂u ∂ f /∂v

−∂g/∂u −∂g/∂v

)

has distinct eigenvalues and is already in the diagonal form. Therefore T0 = I. We
rewrite Eq. (1.80) in the form

Φ ◦T = T ◦F∗+Dt(T ) , Φ = diag(F̂,−Ĝ),
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where
T = I + t−1D−1 + t−2D−2 + t−3D−3 + · · · ,
F̂ = D2 +F1D+F0 +F−1D−1 + · · · ,
Ĝ = D2 +G1D+G0 +G−1D−1 + · · · ,

and collect the coefficients at Dk,k = 1,0,−1, . . . . We obtain

t−1 =
1
2

(
0 ∂ f /∂v1

∂g/∂u1 0

)
,

F1 =
∂ f
∂u1

, G1 =
∂g
∂v1

, F2 =
∂ f
∂u
− 1

2
∂ f
∂v1

∂g
∂u1

, G2 =
∂g
∂v
− 1

2
∂ f
∂v1

∂g
∂u1

.

The formal diagonalization (Theorem 47) reduces the problem to find a formal
recursion operator with matrix coefficients to a set of N scalar problems, simpli-
fying computations, and enables to prove some nontrivial statements for integrable
systems of equations (such as Theorem 50 below).

In the study of integrability for systems of equations we have to be more careful
and exclude some degenerated cases of “partial” integrability. Consider for example
that the following system consists of two de-coupled equations:

ut = uxxx +6uux,
vt = vxxx + v3vx.

One of these equations is integrable (KdV) and therefore possesses an infinite hier-
archy of symmetries (1.67), but the second equation does not have any high-order
symmetry. Such a “system” has an infinite hierarchy of symmetries of the form
G = (G2k+1,0), where Gi are symmetries of the KdV equation. This system will
also have a degenerated recursion operator. This example may look trivial, but after
a change of variables one could receive a system and the corresponding hierarchy of
symmetries which is difficult to recognize. Therefore we have to give an invariant
definition of nondegenerate symmetry.

Definition 49. A symmetry G(u,u1, ... ,um) of order m of Eq. (1.78) is called non-
degenerate if the leading term of its Fréchet derivative is nonsingular

det

(
∂G
∂um

)
�= 0 .

For simplicity, let us restrict ourselves by considering nondegenerate systems

ut = Aun +F(u,u1, ... ,un−1) , n≥ 2, (1.81)

with constant diagonal matrix A = diag(a1, ... ,aN), where ai �= a j, ai �= 0. High-
order symmetries of Eq. (1.81), if they exist, have a similar form

uτ = Bum +G(u,u1, ... ,um−1) , m≥ 2, B = diag(b1, ... ,bN). (1.82)

This symmetry is nondegenerate iff bi �= 0 , i = 1, ... ,N.
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Theorem 50. Suppose the system of equations (1.81) possesses an infinite hierar-
chy of nondegenerate symmetries (1.82) of arbitrary high order, then Eq. (1.79) for
formal recursion operator Λ has a solution

Λ = l1D+ l0 + l−1D−1 + · · ·

for any constant diagonal matrix l1.

This statement shows that any system (1.81) possessing a hierarchy of nonde-
generate symmetries has N different formal recursion operators corresponding to
l1 = diag(1,0,0... ,0), . . . , l1 = diag(0,0, ...0,1).

1.4.2 Integrable Polynomial Systems and Nonassociative Algebraic
Structures

A complete classification of integrable cases for systems of evolution equations
(1.78) becomes a very difficult problem even in the case N = 2. For N > 2 the
general classification problem looks hopeless.

The only possibility here is to consider some specific classes of systems, which
are interesting for applications and/or for pure mathematics. For example, some
classes of polynomial N-component systems generalizing well-known integrable
scalar models can be studied.

In the case of polynomial equations, integrability conditions yield an overde-
termined system of algebraic equations for coefficients of the right-hand side. As
a rule, it is very difficult to understand how many solutions such a system may
have. Moreover, one should expect that the classification problem for N-component
polynomial systems contains, as a sub-problem, a classical “unsolvable” classi-
fication problem of algebra, such as the description of all finite-dimensional Lie
algebras.

However, the usage of the algebraic language usually allows us to reformulate
the answer in componentless terms. After that we have a chance to use nontrivial al-
gebraic classification results such as the classification of simple Lie algebras, simple
Jordan algebras, etc.

In order to illustrate all the above points, let us consider Svinolupov’s result [67]
concerning multi-component generalizations

ui
t = ui

xxx +Ci
jku juk

x (1.83)

of the Korteweg–de Vries equation. Here and below we assume that the summation
is carried out over repeated indices. Since any linear transformation of u preserves
the class (1.83), the description of integrable cases is to be invariant under these
transformations.

To solve the problem of complication of computations, let us interpret Ci
jk as the

structural constants of an (noncommutative and nonassociative) algebra J. Recall
that if e1, . . . ,eN be a basis of J, then the multiplication rule is uniquely defined by
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the formula ei ◦ e j = Ci
jk ek. The constants Ci

jk are called the structural constants of
the algebra J.

The formula

X ◦Y = λ < X ,C > Y +μ < Y,C > X +ν < X ,Y > C, (1.84)

where < , > is the standard scalar product in a vector space J and C is a given
vector, gives us for different constants λ ,μ ,ν a number of interesting examples of
nonassociative algebras. The so-called vector-integrable differential equations are
closely related to those.

Using the notation u = uiei, we can rewrite (1.83) in the form

ut = uxxx +u◦ux, (1.85)

where u(x, t) is a J-valued function. It is easy to see that equations related by linear
transformations correspond to isomorphic algebras.

Now the main question is: for which algebras Eq. (1.85) is integrable.

Theorem 51. Suppose Ci
jk = Ci

k j or, in other words, J is commutative. Then (1.85)
possesses an infinite sequence of higher symmetries of the form

ui
τ = ui

n +Pi(u,ux, . . . ,un−1)

iff J is a Jordan algebra.

Definition 52. A commutative algebra J is said to be Jordan if the following identity
is fulfilled:

AS(X ◦X , Y, X) = 0,

where AS(X ,Y,Z) means the associator:

AS(X ,Y,Z) = (X ◦Y )◦Z−X ◦ (Y ◦Z).

It is well known that the set of all matrices is a Jordan algebra with respect to the
anticommutator operation

X ◦Y =
1
2
(XY +Y X). (1.86)

Another example of Jordan multiplication is given by

X ◦Y =< X ,C > Y+ < Y,C > X−< X ,Y > C. (1.87)

This operation turns a N-dimensional vector space J to a (simple) Jordan algebra.
Although there is no description of all the Jordan algebras this theorem allows

one

i) to check the integrability of a given system (1.83);
ii) to classify all integrable cases for small dimensions;

iii) to construct the most interesting examples of an arbitrary high dimension.



1 Symmetries and Integrability 57

Let us explain what the term “most interesting” means. A system of equations
(1.83) is called irreducible if it cannot be reduced to the block-triangular form by
an appropriate linear transformation (in the case of the block-triangular system, the
functions u1, . . . ,uM (M < N) satisfy an autonomous system of the form (1.83), and
remaining equations are linear in uM+1, . . . ,uN). It turns out that irreducible systems
are associated with the simple algebras. Thus, one can use a well-known algebraic
result [29], namely the exhaustive description of all the simple Jordan algebras, to
construct all irreducible systems. They are nothing but so-called vector and matrix
Korteweg–de Vries equations [3, 58].

The matrix KdV equation, corresponding to the simple Jordan algebra (1.86), has
the following form:

Ut = Uxxx +3(UUx +UxU), (1.88)

where U(x, t) is an unknown N×N-matrix. The simplest higher symmetry of this
equation can also be written in the matrix form:

Uτ = Uxxxxx +5(UUxxx +UxxxU)+

10(UxUxx +UxxUx)+10(U2Ux +UUxU +UxU
2).

It is obvious that the reduction UT = U , where superscript “T” stands for matrix
transpose, is compatible with the structure of matrix equation (1.88). This reduction
corresponds to another series of simple Jordan algebras.

One more interesting example is related to operation (1.87) which gives rise to
the following vector KdV equation [58]:

ut = uxxx+ < C,u > ux+ < C,ux > u−< u,ux > C. (1.89)

Usually (see [3]), one refers to the system

ut = uxxx+ < C,u > ux+ < C,ux > u (1.90)

as the vector KdV equation. However, the system (1.90) is reducible. Indeed, us-
ing an orthogonal transformation of the vector u we can bring the vector C to
(1,0, . . . ,0). After that the first equation in the system becomes separate. In con-
trast, system (1.89) is irreducible.

The description of simple Jordan algebras shows that only one exceptional simple
Jordan algebra of dimension 27 leads to an irreducible integrable system (1.83) that
essentially differs from (1.88) and (1.89).

It turns out that besides Jordan algebras such well-known nonassociative alge-
braic structures as the left-symmetric algebras, Jordan triple systems and Jordan
pairs are closely connected to polynomial multi-component integrable systems. This
connection allows one to clarify the nature of known vector and matrix generaliza-
tions (see, for instance [3, 18, 19]) of classical scalar integrable equations and to
construct some new examples of this kind [58, 65, 66].
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The left-symmetric algebras are related to systems of the form

ui
t = ui

xx +2ai
jku juk

x +bi
jkmu jukum, i = 1, . . . ,N. (1.91)

Definition 53. An algebra J is called left-symmetric if

AS(X ,Y,Z)−AS(Y,X ,Z) = 0.

Any associative algebra is left-symmetric one. The formula

X ◦Y =< X ,C > Y+ < X ,Y > C (1.92)

give us an example of left-symmetric algebra of the type (1.84).

Theorem 54. System(1.91) has higher symmetries iff it can be written as

ut = uxx +2u◦ux +u◦ (u◦u)− (u◦u)◦u, (1.93)

where ◦ denotes the multiplication in a left-symmetric algebra A.

Let us consider two simplest examples of the systems (1.93).

Example 55. The set of all the quadratic matrices forms an associative (and, there-
fore, left-symmetric) algebra. The corresponding equation (1.93) is the matrix Burg-
ers equation

Ut = Uxx +2U Ux.

Example 56. The left-symmetric algebra (1.92) generates the following vector Burg-
ers equation

ut = uxx +2 < u,ux > C +2 < u,C > ux +‖u‖2 < u,C > C−‖C‖2‖u‖2u.

Multi-component equations of the nonlinear Schrödinger type and of the mKdV
type are related to so-called Jordan triple systems.

Definition 57. A triple system {X ,Y,Z} is said to be Jordan if

{X ,Y,Z}= {Z,Y,X}

and

{X ,{Y,Z,V},W}−{W,V,{X ,Y,Z}}+{Z,Y,{X ,V,W}}−{X ,V,{Z,Y,W}}= 0.

The set of n×n-matrices equipped with the operation

{X ,Y,Z}=
1
2
(XY Z +ZY X) (1.94)

is a Jordan triple system. The vector space of all n×m-matrices is a Jordan triple
system with respect to operation
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{X ,Y,Z}=
1
2
(XYtZ +ZYtX),

where “t” stands for transposition. The following operations

{X ,Y,Z}=< X ,Y > Z+ < Y,Z > X−< X ,Z > Y (1.95)

and
{X ,Y,Z}=< X ,Y > Z+ < Y,Z > X (1.96)

define two “vector” (cf. (1.84)) simple Jordan triple systems.

Theorem 58. For any Jordan triple system the equation

ut = uxx +2{u,v,u}, vt =−vxx−2{v,u,v}

possesses higher symmetries.

Theorem 59. For any Jordan triple system the equation

ut = uxxx +{u,u,ux}

possesses higher symmetries.

Theorem 60. For any Jordan triple system the equation

ut = uxx +2{v,u,v}x, vt =−vxx−2{u,v,u}x

possesses higher symmetries.

The formulas (1.94), (1.95), (1.96) yield the following examples of correspond-
ing integrable matrix and vector equations:

the matrix NLS equation

Ut = Uxx +2U V U, Vt =−Vxx−2V U V ;

the vector NLS equation (S. Manakov)

ut = uxx+ < u, v > u, vt = vxx−< u, v > v;

a different vector NLS equation

ut = uxx +2 < u, v > u−< u, u > v,

vt =−vxx−2 < u, v > v+ < v, v > u;

the matrix mKdV equation

Ut = Uxxx +U2Ux +UxU
2;

the vector mKdV equation



60 A.V. Mikhailov and V.V. Sokolov

ut = uxxx+ < u, u > ux; (1.97)

a different vector mKdV equation

ut = uxxx+ < u, u > ux+ < u, ux > u. (1.98)

Different results establishing relationships between multi-component integrable
systems and nonassociative algebras are described in Sect. 5.

1.4.3 Integrable Nonabelian and Vector Equations

In the previous section we have seen that the most interesting examples of inte-
grable systems, which come from general algebraic considerations, have very par-
ticular structure. They are matrix- or vector-integrable equations. In the next section
we consider so-called nonabelian equations, which are natural generalization of the
matrix equations.

1.4.3.1 Nonabelian Equations

In order to formalize the concept of matrix equations, let us consider evolution equa-
tions on free associative algebra F . In the case of one-field non-abelian equations
the generators of F are

U, U1 = Ux, . . . , Uk, . . . , (1.99)

and the equation is of the form

Ut = F(U, U1, . . . , Un), (1.100)

where F is a (noncommutative) polynomial. All definitions can be easily generalized
to the case of several nonabelian variables.

Since F is assumed to be a free algebra no algebraic relations for the generators
(1.99) are allowed. It is not true if we consider, for example, Eq. (1.100) for 2× 2
matrix U . But if we want Eq. (1.100) to be integrable for the matrix U of arbitrary
size, the assumption about absence of algebraic relations becomes adequate to the
problem.

Actually, this formula does not mean that we consider an element of non-
associative algebra depending on time t. As usual, (1.100) defines a derivation Dt of
F which commutes with

D =
∞

∑
0

Ui+1
∂
∂Ui

.

It is easy to check that this derivation is defined by the vector field

Dt =
∂
∂ t

+
∞

∑
0

Di(F)
∂
∂Ui

.
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The generalization of the symmetry approach to differential equations on as-
sociative algebras requires proper definitions for such concepts as symmetry, first
integral, Fréchet derivative and formal recursion operator.

As in the scalar case, the symmetry is an evolution equation

Uτ = G(U, U1, . . . , Um),

such that the vector field

DG =
∞

∑
0

Di(G)
∂
∂ui

commutes with Dt . The polynomial G is called symmetry generator.
The condition [Dt ,DG] = 0 is equivalent to Dt(G) = DG(F). The latter relation

can be rewritten as
G∗(F)−F∗(G) = 0, (1.101)

where the Fréchet derivative H∗ for any H ∈F is defined in the following standard
way.

For any a∈F we denote by La and Ra the operators of left and, correspondingly,
of right multiplication by a:

La(X) = aX , Ra(X) = X a, X ∈F .

The associativity of F is equivalent to the identity [La,Rb] = 0 for any a and b.
Moreover,

Lab = La Lb, Rab = Rb Ra, La+b = La +Lb, Ra+b = Ra +Rb.

Definition 61. We denote by O the associative algebra generated by all operators
of left and right multiplication by elements (1.99). This algebra is called algebra of
local operators.

Let us extend the set of generators (1.99) by additional symbols V0,V1, . . . and
define D(Vi) = Vi+1.

Given H(U,U1,U2, . . . ,Uk) ∈F we find

LH =
∂
∂ε

H(U + εV0, U1 + εV1, U2 + εV2, . . .)
∣∣
ε=0

and represent this expression as H∗(v), where H∗ is a linear differential operator of
order k, whose coefficients belong to O . For example, (U2 +U1)∗ = D2 + LU D +
RU1 .

In contrast to the definition of the symmetry, which is a straightforward general-
ization of the corresponding scalar notion, the definition of conserved density has to
be essentially modified.

Recall (see Sect. 3) that in the scalar case the conserved density is a function
ρ ∈ F such that Dt(ρ) = D(σ) for some σ ∈ F . It is supposed that the equiv-
alent densities define the same conservation law. Here the equivalence relation is
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defined as follows: ρ1 ∼ ρ2 iff ρ1−ρ2 = D(s), s ∈F . In others, the density is an
equivalence class in F such that Dt takes it to zero equivalence class.

This definition is motivated by the fact that if ρ is a polynomial such that
ρ(0) = 0, then the functional

∫ ∞
−∞ρ(u,ux, . . .)dx, where u(x) is a rapidly decreasing

function, does not depend on the choice of a representative from the equivalence
class. If ρ is a conserved density then the functional applying to a solution u(x, t) of
our evolution equation does not depend on t.

In the nonabelian case we hold the same line. The following elementary opera-
tions define an equivalence relation:

1. addition of elements of the form D(s), s ∈F to the polynomial ρ ∈F ;
2. the cyclic permutation of factors in any monomial of the polynomial ρ .

Two polynomials ρ1 and ρ2 related to each other through a finite sequence of
the elementary operations are called equivalent. It is clear that in abelian case this
definition coincides with the standard one.

A motivation of the definition is that in the matrix case the functional
∫ ∞

−∞
trace(ρ(u,ux, . . .))dx

is correctly defined on the equivalence classes.
At least for nonabelian equations of the form

Ut = Un + f (U, U1, . . . , Un−1) (1.102)

all definitions and results concerning the formal recursion operator (see Sect. 3.4)
can be easily generalized.

Definition 62. A formal series

Λ = D+ l0 + l−1D−1 + · · · , lk ∈O, (1.103)

is called a formal recursion operator for Eq. (1.102) if it satisfies the equation

Dt(Λ)− [F∗,Λ ] = 0 . (1.104)

Notice that now coefficients of both F∗ and Λ belong to the associative algebra O of
local operators (see Definition 61 above).

For example, in the case of nonabelian Korteweg–de Vries equation (1.88) one
can take Λ = R1/2, where R is the recursion operator for (1.88):

R = D2 +2(LU +RU )+(LUx +RUx)D−1 +(LU −RU )D−1 (LU −RU )D−1.

In the abelian case this recursion operator coincides with the standard one (see
Sect. 3.4).

The analogs of Theorems 24, 31, 32 can be proved by similar reasoning as the
original statements.
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1.4.3.2 Vector Equations

Let us consider equations of the form

Ut = fn Un + fn−1 Un−1 + · · ·+ f1 U1 + f0 U, (1.105)

where U(x, t) is unknown vector, and fi are scalar functions4 of variables

u[i, j] =< Ui, Uj >, i≤ j, (1.106)

where 0 ≤ i, j ≤ n. Here and in the sequel, < ·, · > stands for the standard scalar
product in a vector space V . We denote the set of all such functions by F .

It is clear that any equation (1.105) is invariant with respect to arbitrary or-
thogonal transformations of the vector U . Equations of the form (1.105) are called
isotropic vector equations.

Variables (1.106) are regarded as independent. The algebraic independence of
u[i, j] is a crucial requirement in all computations. Note that if V is finite dimensional
and the dimension N is fixed, we cannot suppose that. For instance, if N = 3, then the
determinant of the matrix with entries ai j = u[i, j], i, j = 1,2,3,4 identically equals
to zero.

In other respects our considerations are formal. The signature of the scalar prod-
uct is inessential for us. Furthermore, the assumptions that the space V is finite
dimensional and the constant field is R are also unimportant. For instance, U could
be a function of t,x and y and the scalar product be

< U, V >=
∫ ∞

−∞
U(t,x,y)V (t,x,y)dy.

In such a way, our formulas and statements are valid also for this particular sort of
1+2-dimensional nonlocal equations.

The vector-modified Korteweg–de Vries equations (1.97) and (1.98) give us ex-
amples of integrable isotropic equation.

In this section we establish an infinite consequence of necessary conditions for
the existence of higher symmetries and/or conserved densities for Eq. (1.105). These
conditions have the following form:

Dt ρi = Dθi, i = 0,1,2, . . . , ρi,θi ∈F .

Here ρi, θi can be recursively found in terms of the coefficients fi of Eq. (1.105).
These conditions are very close to the canonical conservation laws from Sect. 3.3

by spirit but do not coincide with them. Our componentless conditions are more
convenient for classification problems related to Eq. (1.105) since they are much
simpler than the standard canonical densities for multi-component systems.

4 In contrast with the nonabelian case we do not assume that functions under consideration are
polynomials.
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Theorem 63. If Eq. (1.105) possesses an infinite series of commuting flows of the
form

Uτ = gm Um +gm−1 Um−1 + · · ·+g1 U1 +g0 U, gi ∈F ,

then

(i) there exists a formal series

L = a1 D+a0 +a−1 D−1 +a−2 D−2 + · · · , ai ∈F ,

satisfying the operator relation

Lt = [A, L], A =
n

∑
0

fi Di. (1.107)

Here fi are the coefficients of Eq. (1.105).
(ii) The following functions

ρ−1 =
1
a1

, ρ0 =
a0

a1
, ρi = resLi, i ∈ N, (1.108)

are conserved densities for Eq. (1.105).
(iii) If Eq. (1.105) possesses an infinite series of conserved densities depending on

variables (1.106), then there exists a series L satisfying (1.107), and a series S
of the form

S = s1 D+ s0 + s−1 D−1 + s−2 D−2 + · · · , si ∈F ,

such that
St +AT S +SA = 0, ST =−S,

where the superscript T stands for a formal conjugation.
(iv) Under the conditions of item (iii) densities (1.108) with i = 2k are of the form

ρ2k = Dx(σk) for some functions σk ∈F .

Comment. In Sect. 4.1 the notion of the formal symmetry has been generalized
to the case of systems of evolution equations. However, in these papers the formal
symmetry is a series with matrix coefficients that satisfies (1.101). In Theorem 63
both the operators A and L are scalar objects and of course A does not coincide with
the Frechét derivative F∗ of the right-hand side of the system.

Equation (see [22])

Ut =
(

Uxx +
3
2

< Ux, Ux > U

)
x
+

3
2

< U, R(U) > Ux, < U, U >= 1,

(1.109)
give us an example of integrable anisotropic vector equation. Here R is an arbitrary
symmetric operator. Equations of such type can also be classified in the framework
of our componentless approach. To do that we assume that the coefficients fi of Eq.
(1.105), besides (1.106), depend on additional variables
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v[i, j] =< Ui, R(Uj) >, i≤ j, (1.110)

0≤ i, j≤ n. We assume variables (1.110) to be independent both with each other and
in respect of variables (1.106). Theorem 63 remains to be valid for such anisotropic
vector equations.

1.4.4 Nonlocal Integrable Equations and the Symmetry Approach
in the Symbolic Representation

1.4.4.1 Symbolic Representation

The aim of this section is to formulate a perturbative version of the symmetry ap-
proach in the symbolic representation and to generalize it in order to make it suitable
for study of nonlocal and nonevolution equations. We illustrate this theory on the
example of Camassa–Holm type equations.

In what follows we shall consider equations for which the right-hand side is a
differential polynomial or can be represented in the form of a series

F(un, ... ,u1,u0) = F1[u]+F2[u]+F3[u]+ · · · , (1.111)

where Fk[u] is a homogeneous differential polynomial, i.e. a polynomial of variables
un, ... ,u1,u0 with complex constant coefficients satisfying the condition Fk[λu] =
λ kFk[u],λ ∈ C, linear part F1[u] = L(u0) and L is a linear operator (ord(L)≥ 2)

L =
n

∑
k=0

rkDk , rk ∈ C.

For such equations we develop here a perturbative method to construct formal
recursion operator and test for integrability. For simplicity we shall consider the
case when function F is a differential polynomial, i.e. the series (1.111) contains
a finite number of terms. The generalization to the case of infinite series will be
obvious.

Differential polynomials over C form a differential ring R(u,D) which has a
natural gradation

R(u,D) =
⊕
n≥1

Rn(u,D) , (1.112)

where Rn(u,D) is a set of homogeneous differential polynomials of degree n. The
condition n ≥ 1 in (1.112) means that 1 �∈ R(u,D). In order to develop a pertur-
bation theory and for further generalization of the approach to nonlocal cases it is
convenient to introduce a symbolic representation of this ring.

Symbolic representation (or symbolic method) was used in mathematics since
the middle of the nineteenth century. It was successfully applied to the theory of
integrable equations by I.M. Gel’fand and L.A. Dikii [20] in 1975 and also by V.E.
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Zakharov and E.I. Schulman [77]. Recently the power of this method has been
demonstrated again in the series of works of J. Sanders and Jing Ping Wang (see
for example [53, 76]) where they have given ultimate description of integrable hier-
archies of polynomial homogeneous evolution equations.

Actually the symbolic representation is a simplified form of notations and rules
for formal Fourier images of dynamical variables un, differential polynomials and
formal series (1.43) with coefficients from the ring R(u,D)⊕C.

Let û(κ, t) denote a Fourier image of u(x, t)

u(x, t) =
∫ ∞

−∞
û(κ, t)exp(iκx)dκ ,

then we have the following correspondences: u0 → û, u1 → iκ û, ..., um → (iκ)m

û, ... . The Fourier image of a monomial unum can obviously be represented as

unum =
∫ ∫ ∫

δ (κ1 +κ2−κ)(iκ1)n(iκ2)mû(κ1, t)û(κ2, t)exp(iκx)dκ1 dκ2 dκ

and can be rewritten in a symmetrized form

unum =
∫ ∫ ∫

δ (κ1 +κ2−κ)·

[(iκ1)n(iκ2)m +(iκ2)n(iκ1)m]
2

û(κ1, t)û(κ2, t)exp(iκx)dκ1 dκ2 dκ ,

therefore unum→
∫ ∫

δ (κ1 +κ2−κ)
[(iκ1)n(iκ2)m +(iκ2)n(iκ1)m]

2
û(κ1, t)û(κ2, t)dκ1 dκ2 .

We shall simplify notations further omitting the integration, the delta function, re-
placing iκn by ξn and û(κ1, t)û(κ2, t) by u2. Thus we shall represent the monomial
unum by a symbol

unum→ u2a(ξ1,ξ2), where a(ξ1,ξ2) =
[ξ n

1 ξ
m
2 +ξ n

2 ξ
m
1 ]

2

is a symmetric polynomial of its arguments. Following this rule we shall represent
any differential monomial un0

0 un1
1 · · ·u

nq
q by the symbol

un0
0 un1

1 · · ·u
nq
q → um 〈ξ 0

1 · · ·ξ 0
n0
ξ 1

n0+1 · · ·ξ 1
n0+n1

ξ 2
n0+n1+1 · · ·ξ 2

n0+n1+n2
· · ·ξ q

m

〉

where m = n0 +n1 + · · ·+nq and the brackets 〈〉 mean the symmetrization over the
group of permutation of m elements (i.e. permutation of all arguments ξ j)

〈 f (ξ1,ξ2, ... ,ξm)〉= 1
m! ∑

σ∈Σm

f (σ(ξ1),σ(ξ2), ... ,σ(ξm)) .
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For example

un→ uξ n
1 , u2

3→ u2ξ 3
1 ξ

3
2 , u3u2→ u4 ξ 2

1 +ξ 2
2 +ξ 2

3 +ξ 2
4

4
.

We want to emphasize that the symmetrization over the permutation group is
important and it is the symmetrization that makes the symbol defined uniquely.
Equality of symbols implies the equality of the corresponding differential
polynomials.

The symbolic representation R̂(u,η) of the differential ring R(u,D) can be de-
fined as follows. The sum of differential monomials is represented by the sum of the
corresponding symbols. To the multiplication of monomials f and g with symbols
f → upa(ξ1, ... ,ξp) and g→ uqb(ξ1, ... ,ξq) corresponds the symbol

f g→ up+q〈a(ξ1, ... ,ξp)b(ξp+1, ... ,ξp+q)〉 .

Here the symmetrization is taken over the group of permutation of all p + q
arguments ξ1, ..., ξp+q. The derivative D( f ) of a monomial f with the symbol
upa(ξ1, ... ,ξs) is represented by

D( f )→ us(ξ1 +ξ2 + · · ·+ξp)a(ξ1, ... ,ξs) .

The following rules are motivated by the theory of linear pseudo-differential op-
erators in Fourier representation and are nothing but abbreviated notations. To the
operator D (1.34) we shall assign a special symbol η and the following rules of
action on symbols:

η(una(ξ1, ... ,ξn)) = una(ξ1, ... ,ξn)
n

∑
j=1

ξ j

and the composition rule

η ◦una(ξ1, ... ,ξn) = una(ξ1, ... ,ξn)

(
n

∑
j=1

ξ j +η

)
.

The latter corresponds to the Leibnitz rule D◦ f = D( f )+ f D. Now it can be shown
that the composition rule (1.44) can be represented as follows. Let we have two oper-
ators f Dq and gDs such that f and g have symbols uia(ξ1, ... ,ξi) and u jb(ξ1, ... ,ξ j),
respectively. Then f Dq→ uia(ξ1, ... ,ξi)ηq,gDs→ u jb(ξ1, ... ,ξ j)ηs and

f Dq ◦gDs→ ui+ j

〈
a(ξ1, ... ,ξi)

(
η +

i+ j

∑
m=i+1

ξm

)q

b(ξi+1, ... ,ξi+ j)ηs

〉
. (1.113)

Here the symmetrization is taken over the group of permutation of all i + j argu-
ments ξ1, ..., ξi+ j and the symbol η is not included in this set. In particular it follows
from (1.113) that Dq ◦Ds→ ηq+s. The composition rule (1.113) is valid for positive
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and negative exponents q,s. In the case of positive exponents it is a polynomial in
η and the result is a Fourier image of a differential operator. In the case of nega-
tive exponents one can expand the result on η at η → ∞ in order to identify it with
(1.44). In the symbolic representation instead of formal series (1.43) it is natural to
consider formal series of the form

B = b(η)+ub1(ξ1,η)+u2b2(ξ1,ξ2,η)+u3b3(ξ1,ξ2,ξ3,η)+ · · · , b(η) �= 0.
(1.114)

Using the composition rule (1.113) one can compute the square of the series B

B2 = b2(η)+u(b(η +ξ1)b1(ξ1,η)+b1(ξ1,η)b(η))

+u2
(

1
2

b1(ξ1,η +ξ2)b1(ξ2,η)+
1
2

b1(ξ2,η +ξ1)b1(ξ1,η)

+ b(η +ξ1 +ξ2)b2(ξ1,ξ2,η)+b2(ξ1,ξ2,η)b(η)
)

+ · · · ,

any integer power Bk, the inverse series B−1, etc.
Let f Dq → uia(ξ1, ... ,ξi)ηq then the symbolic representation for the formally

conjugated operator is

(−1)qDq ◦ f → uia(ξ1, ... ,ξi)

(
−η−

i

∑
n=1

ξn

)q

.

The symbolic representation of the Fréchet derivative of the element f → una(ξ1,
... ,ξn) is

f∗ → nun−1a(ξ1, ... ,ξn−1,η) .

For example, let F = u3 +6uu1, then F → uξ 3
1 +3u2(ξ1 +ξ2) and

F∗ → η3 +6u(ξ1 +η) .

It is interesting to notice that the symbol of the Fréchet derivative is always sym-
metric with respect to all permutations of arguments, including the argument η .
Moreover, the following obvious, but useful proposition holds:

Proposition 64. A differential operator is a Fréchet derivative of an element of
R(u,D) if and only if its symbol is invariant with respect to all permutations of
its argument, including the argument η .

The variational derivative δ f /δu of f → uma(ξ1, ... ,ξm) can be represented as

δ f
δu
→ mum−1a

(
ξ1, ... ,ξm−1,−

m−1

∑
i=1

ξi

)
.

The symbolic representation has been extended and proved to be very useful in
the case of noncommutative differential rings [52]. It can be easily generalized to
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the case of many dependent variables [7], suitable for study of system of equations.
Here we are going to extend it further to the case of nonlocal and multi-dimensional
equations.

Let the right-hand side of Eq. (1.53) be a differential polynomial or can be rep-
resented in the form of a series (1.111). In the symbolic representation it can be
written as

ut = uω(ξ1)+
u2

2
a1(ξ1,ξ2)+

u3

3
a2(ξ1,ξ2,ξ3)+

u4

4
a3(ξ1,ξ2,ξ3,ξ4)+ · · ·= F ,

(1.115)
where ω(ξ1),an(ξ1, ... ,ξn+1) are symmetrical polynomials and degω(ξ1)≥ 2. Ac-
cording to the previous section the Fréchet derivative of the right-hand side is of the
form

F∗ = ω(η)+ua1(ξ1,η)+u2a2(ξ1,ξ2,η)+u3a3(ξ1,ξ2,ξ3,η)+ · · · .

Symmetries of Eq. (1.115), if they exist, can be found recursively:

Proposition 65. Suppose Eq. (1.115) has a symmetry

uτ = uΩ(ξ1)+ ∑
j≥1

u j+1

j +1
A j(ξ1, ... ,ξ j+1) = G,

then functions A j(ξ1, ... ,ξ j+1) of the symmetry are related to functions ai(ξ1,
... ,ξi+1) of the equation by the following formulae:

A1(ξ1,ξ2) =
Nω(ξ1,ξ2)
NΩ (ξ1,ξ2)

a1(ξ1,ξ2),

Am(ξ1, ... ,ξm+1) =
Nω(ξ1, ... ,ξm+1)
NΩ (ξ1, ... ,ξm+1)

am(ξ1, ... ,ξm+1)+Nω(ξ1, ... ,ξm+1)

×
〈

m−1

∑
j=1

m+1
m− j +1

A j(ξ1, ... ,ξ j,ξ j+1 + · · ·+ξm+1)am− j(ξ j+1, ... ,ξm+1)

−
m−1

∑
j=1

m+1
j +1

am− j(ξ1, ... ,ξm− jξm− j+1 + · · ·+ξm+1)A j(ξm− j+1, ... ,ξm+1)

〉
,

where

Nω(ξ1, ... ,ξm) =
(
ω
(

m
∑

n=1
ξn

)
−

m
∑

n=1
ω(ξn)

)−1

,

NΩ (ξ1, ... ,ξm) =
(
Ω
(

m
∑

n=1
ξn

)
−

m
∑

n=1
Ω(ξn)

)−1

.

For any function F of the form (1.115) we can solve the linear operator equation
(1.55) to find a formal recursion operator Λ .
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Proposition 66. Operator Λ is a solution of Eq. (1.55) if its symbol is of the form

Λ = φ(η)+uφ1(ξ1,η)+u2φ2(ξ1,ξ2,η)+u3φ3(ξ1,ξ2,ξ3,η)+ · · · ,
where φ(η) is an arbitrary function and φm(ξ1, ... ,ξm,η) are determined recur-
sively:

φ1(ξ1,η) = Nω(ξ1,η)a1(ξ1,η)(φ(η +ξ1)−φ(η)),

φm(ξ1, ... ,ξm,η) =

{
(φ(η +ξ1 + · · ·+ξm)−φ(η))am(ξ1, ... ,ξm,η)+

m−1

∑
n=1

〈
n

m−n+1
φn(ξ1, ... ,ξn−1,ξn + · · ·+ξm,η)am−n(ξn, ... ,ξm)+

φn(ξ1, ... ,ξn,η +ξn+1 + · · ·+ξm)am−n(ξn+1, ... ,ξm,η)−

am−n(ξn+1, ... ,ξm,η +ξ1 + · · ·+ξn)φn(ξ1, ... ,ξn,η)

〉}
Nω(ξ1, ... ,ξm,η).

We immediately see the advantage of the perturbative approach. Now we are able
to obtain explicit recursion relations for determining the coefficients of a symme-
try and a formal recursion operator while in the standard Symmetry Approach the
corresponding problem was quite difficult.

Existence of a symmetry means that all coefficients Am(ξ1, ... ,ξm+1) are polyno-
mials (not rational functions). In other words the symbols

um+1Am(ξ1, ... ,ξm+1) ∈ R̂(u,η)

and correspond to differential polynomials in the standard representation. This re-
quirement can be used for testing for integrability and even for complete classifica-
tion of integrable equations (see [52, 53, 76]).

In the standard Symmetry Approach the integrability, i.e. the existence of infinite
hierarchies, of local symmetries or conservation laws implies (Theorems 24,32) that
all coefficients ln are local and belong to the corresponding differential field or ring.
In the symbolic representation it suggests the following definition.

Definition 67. We say that the function bm(ξ1, ... ,ξm,η), m ≥ 1, is k-local if the
first k coefficients βmn(ξ1, ... ,ξm), n = ns, ... ,ns + k of its expansion at η → ∞

bm(ξ1, ... ,ξm,η) =
∞

∑
n=sn

βmn(ξ1, ... ,ξm)η−n

are symmetric polynomials. We say that the coefficient bm(ξ1, ... ,ξm,η) of a formal
series (1.114) is local if it is k-local for any k.

Theorem 68. Suppose Eq. (1.115) has an infinite hierarchy of symmetries

uti = uΩi(ξ1)+ ∑
j≥1

u j+1

j +1
Ai j(ξ1, ... ,ξ j+1) = Gi , i = 1,2, ...,
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where Ωi(ξ1) are polynomials of degree mi = deg(Ωi(ξ1)) and m1 < m2 < · · · <
mi < · · · . Then the coefficients φm(ξ1, ... ,ξm,η) of the formal recursion operator

Λ = η +uφ1(ξ1,η)+u2φ2(ξ1,ξ2,η)+ · · ·

are local.

The symmetry approach in symbolic representation suggests the following test
for integrability of equations of the form (1.115):

• Find a first few coefficients φn(ξ1, ... ,ξn,η).
• Expand these coefficients in series of 1/η

φn(ξ1, ... ,ξn,η) = ∑
s=sn

Φns(ξ1, ... ,ξn)η−s (1.116)

and find the corresponding functions Φns(ξ1, ... ,ξn).
• Check that functions Φns(ξ1, ... ,ξn) are polynomials (not rational functions).

As an example of application we consider equations of the form

ut = uω(ξ1)+∑
i≥1

ui+1

i+1
ai(ξ1, ... ,ξi+1), (1.117)

where ω(ξ1) is a polynomial on ξ1 of the degree deg(ω(ξ1)) = n ≥ 2 and ai(ξ1,
... ,ξi+1) are symmetric polynomials on its arguments of degree deg(ai(ξ1, ... ,
ξi+1))≤ n−2. The following propositions are valid.

Proposition 69. If Eq. (1.117) is integrable, then ω(0) = 0, i.e. the polynomial
ω(ξ1) can be factorized ω(ξ1) = ξ1 f (ξ1), where f (ξ1) is a polynomial.

Proposition 70. Suppose n is even and a1(ξ1,ξ2) ≡ 0 or n is odd and a1(ξ1,ξ2) ≡
0,a2(ξ1,ξ2,ξ3)≡ 0. Then Eq. (1.117) is not integrable.

The statement of proposition 70 in the homogeneous case was proved in the
works of J. Sanders and J.P. Wang [53].

1.4.4.2 Nonlocal and Nonevolutionary Integrable Equations

In order to deal with nonlocal or nonevolutionary equations we have to extend the
differential ring properly. Here we illustrate the construction of the extension and
the corresponding generalization of the symmetry approach on two examples.

The first example is the generalized Camassa–Holm–Degasperis–Procesi equa-
tion, which can be written as a scalar nonlocal evolution equation5

ut = (1−D2)−1(u3− (c+1)u1−uu3 +(c+1)uu1− cu1u2) , c �= 0 , (1.118)

5 If we apply operator 1−D2 to Eq. (1.118) we obtain local, but non-evolutionary equation.
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where Δ = (1−D2)−1. It is well known that Eq. (1.118) is integrable if c = 2,3
(see [8, 11, 12]). For these values of c Eq. (1.118) has an infinite hierarchy of higher
symmetries. The higher symmetries contain nested operator Δ . In order to be able to
consider such symmetries we need to extend the differential ring R(u,D) (c.f.[46]).
We shall build the following sequence of ring extensions:

R0
Δ ⊂R1

Δ ⊂R2
Δ ⊂R3

Δ ⊂ ·· · ⊂RΔ ,

where

R0
Δ = R(u,D) , R1

Δ = R0
Δ
⋃

Δ(R0
Δ ) , Rn+1

Δ = Rn
Δ
⋃

Δ(Rn
Δ ) .

Here the over-line denotes the ring closure, index n in Rn
Δ denotes the depth of the

nesting for the operator Δ and RΔ = limn→∞Rn
Δ . Symbolic representation of oper-

ator Δ is Δ → 1
1−η2 . For example if A is an element from R0

Δ with corresponding

symbol una(ξ1, ... ,ξn) then Δ(A) has a symbol un a(ξ1,... ,ξn)
1−(ξ1+···+ξn)2 .

The way of testing for integrability of a given equation is the one described in
the previous section. The only difference is that we have to replace the requirement
of locality for the coefficients of the formal recursion operator by quasi-locality, i.e.
we have to require that the coefficients Φns in the expansion (1.116) correspond to
the symbolic representation of elements from RΔ .

Let us illustrate the application of this test to the Camassa–Holm–Degasperis–
Procesi type equations.

Theorem 71. Equation (1.118) is integrable only if c = 2 or c = 3.

Proof. In the symbolic representation Eq. (1.118) has the form

ut = uω(ξ1)+
u2

2
a(ξ1,ξ2) = F,

where

ω(k) =
k3− (c+1)k

1− k2 ,

a(ξ1,ξ2) =
(c+1)(ξ1 +ξ2)− (ξ 3

1 +ξ 3
2 )− cξ1ξ2(ξ1 +ξ2)

1− (ξ1 +ξ2)2 .

Calculating first two coefficients of the corresponding formal recursion operator

Λ = η +uφ1(ξ1,η)+u2φ2(ξ1,ξ2,η)+ · · · ,

we find that the first coefficient

φ1(ξ1,η) =
(ξ 2

1 −1)(η2−1)(ξ 2
1 +η2−ξ1η−1+ c(ξ1η−1))

cη(η2 +ξ 2
1 +ξ1η−3)
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is local because all the coefficients of its expansion in 1/η are polynomials on ξ1.
For the second coefficient φ2(ξ1,ξ2,η) we have the following expansion:

φ2(ξ1,ξ2,η) = Φ21(ξ1,ξ2)η +Φ20(ξ1,ξ2)+Φ2,−1(ξ1,ξ2)η−1+

+Φ2,−2(ξ1,ξ2)η−2 +Φ2,−3(ξ1,ξ2)η−3 + · · · ,

where coefficients Φ21(ξ1,ξ2), ... ,Φ2,−2(ξ1,ξ2) are polynomials on their arguments
(we do not present here the explicit expressions for Φ21(ξ1,ξ2), ... , Φ2,−2(ξ1,ξ2) –
they are quite large and complex), while the coefficient Φ2,−3 has the form

Φ2,−3(ξ1,ξ2) =
f (ξ1,ξ2)
1−ξ1ξ2

and f (ξ1,ξ2) is a polynomial. If the numerator f (ξ1,ξ2) does not have 1−ξ1ξ2 as a
factor, then the symbol u2Φ2,−3 does not correspond to any element of our extended
ring RΔ and hence it is not quasi-local. It is easy to check that the polynomial
f (ξ1,ξ2) can be divided by 1−ξ1ξ2 if and only if the condition

(c−2)(c−3) = 0

is satisfied and in these cases the coefficient Φ2,−3(ξ1,ξ2) is a polynomial. Therefore
conditions c = 2 or c = 3 are necessary for the integrability (i.e. existence of higher
quasi-local symmetries) of Eq. (1.118).

1.5 Short Description of Solved Classification
Problems and References

1.5.1 Hyperbolic Equations

The first classification result [78] in the frame of the symmetry approach was as
follows:

Theorem 72. Nonlinear hyperbolic equation of the form

uxy = F(u)

possesses higher symmetries iff (up to scalings and shifts)

F(u) = eu, F(u) = eu + e−u or F(u) = eu + e−2u.

In [79] all integrable hyperbolic systems of the form

ux = p(u,v), vy = q(u,v)
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have been described. Notice that in the nondegenerate case ∂ p
∂v �= 0, such a system

is equivalent to a second-order hyperbolic equation of the form

uxy = A1(u,ux)uy +A2(u,ux).

The complete classification of integrable hyperbolic equations of the form

uxy = F(x, y, u, ux, uy) (1.119)

is an open problem till now. The following examples show that the depen-
dence of the right-hand side F on the derivatives ux and uy can be rather
complicated.

Example:

uxy = S(u)
√

1−u2
x

√
1−u2

y , where S′′ −2S3 +λ S = 0,

uxy = S(u)b(ux) b̄(uy), where

S′′ −2S′ −4S3 = 0, (ux−b)(b+2ux)2 = 1, (uy− b̄)(b̄+2uy)2 = 1.

In [80] all Darboux integrable equations (1.119) have been listed.

1.5.2 One Component Evolution Equations

1.5.2.1 Second-Order Equations

All nonlinear integrable equations of the form

ut = F(u2, u1, u, x, t)

were listed in [64] and [59]. The answer is

ut = u2 +2uux +h(x),

ut = u2u2−λxu1 +λu,

ut = u2u2 +λu2,

ut = u2u2−λx2u1 +3λxu.

This list is complete up to contact transformations of the form

t̂ = χ(t), x̂ = ϕ(x,u,u1), û = ψ(x,u,u1),

ûi =
(

1
D(ϕ)

D

)i

(ψ),
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where the contact condition

D(ϕ)
∂ψ
∂u1

= D(ψ)
∂ϕ
∂u1

is satisfied.
Three first equations of the list possess local symmetries and form a list obtained

in [64]. The latter equation has so-called weekly nonlocal symmetries (see [59, 71]).

1.5.2.2 Third-Order Equations

All equations of the form
ut = u3 +F(u1, u)

possessing higher symmetries have been obtained in [16, 17, 27] (see Sect. 3.7).
All equations of the form

ut = u3 +F(u2, u1, u, x)

possessing higher conservation laws or higher symmetries were found in [69, 70].
In order to derive all integrable equations the following four necessary integrability
conditions have been used:

Dt

(
∂F
∂u2

)
= D(σ1),

Dt

(
3
∂F
∂u1
−
(
∂F
∂u2

)2
)

= D(σ2),

Dt

(
9σ1 +2

(
∂F
∂u2

)3

−9

(
∂F
∂u2

) (
∂F
∂u1

)
+27

∂F
∂u

)
= D(σ3),

Dt (σ2) = D(σ4).

An analysis of the answer of the classification problem shows that any equation that
satisfies these conditions is really integrable. Thus to verify the integrability of a
given equation, it suffices to check the four conditions presented above.

Using transformations of different types, one can reduce any integrable equation
to one of the canonical forms contained in [45, 69, 70].

Theorem 73. A complete list (up to “almost invertible” transformations) of nonlin-
ear equations with infinite hierarchy of conservation laws can be written as

ut = uxxx +uux,

ut = uxxx +u2 ux,

ut = uxxx−
1
2

u3
x +(αe2u +βe−2u)ux,
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ut = uxxx−
1
2

Q′′ ux +
3
8

(
Q−u2

x

)2
x

ux (Q−u2
x)

,

ut = uxxx−
3
2

u2
xx +Q

ux
,

where Q = c4u4 + c3u3 + c2u2 + c1u+ c0.

The first and the latter equations (i.e. the Korteweg–de Vries and the Krichever–
Novikov equations) form a complete list of integrable equations (see [73]) up to
differential substitutions.

Third-order equations of more general form have been considered in [25, 45].

1.5.2.3 Fifth-Order Equations

All equations of the form

ut = u5 +F(u4, u3, u2, u1, u)

possessing higher conservation laws were found in [15] (see also [45]).

Example: Well-known equations:

ut = u5 +5uu3 +5u1u2 +5u2u1,

ut = u5 +5uu3 +a f rac252u1u2 +5u2u1,

ut = u5 +5(u1−u2)u3 +5u2
2−20uu1u2−5u3

1 +5u4u1.

A new equation:

ut = u5 +5(u2−u2
1 +λ1e2u−λ 2

2 e−4u)u3

−5u1u2
2 +15(λ1e2u +4λ 2

2 e−4u)u1u2 +u5
1

−90λ 2
2 e−4u u3

1 +5(λ1e2u−λ 2
2 e−4u)2 u1.

1.5.3 Two-Component Systems of Evolution Equations

The most significant work has been done in [40–42, 54] where all systems of the
form

ut = u2 +F(u, v, u1, v1), ut =−v2 +G(u, v, u1, v1) (1.120)

possessing higher conservation laws were listed and studied.

Example: Well-known NLS equation is in the form (1.120)

ut = u2 +u2v, vt =−v2− v2u.
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The Boussinesq equation can be written in this form (1.120):

ut = u2 +(u+ v)2, vt =−v2− (u+ v)2.

The Landau–Lifshitz equation

Ṡ = S×Sxx +S× ĴS, Ĵ = diag(J1,J2,J3), (S ·S) = 1

in proper coordinates can be rewritten in the form (1.120)

ut = u2−
2u2

1

u+ v
− 4(p(u,v)u1 + r(u)v1)

(u+ v)2 ,

vt =−v2 +
2v2

1

u+ v
− 4(p(u,v)v1 + r(−v)u1)

(u+ v)2 ,

where r(y) = c4y4 + c3y3 + c2y2 + c1y+ c0 and

p(u,v) = 2c4u2v2 + c3(uv2− vu2)−2c2uv+ c1(u− v)+2c0.

That are examples of equations in a very long list of integrable systems given in
[42, 43, 45].

Quasilinear systems of the form

ut = λ1u2 +A1(u,v)u1 +A2(u,v)v1 +A3(u,v),
vt = λ2v2 +B1(u,v)u1 +B2(u,v)v1 +B3(u,v),

where λ1 �= −λ2, λ1 �= λ2, λi �= 0, that have higher symmetries were considered
in [5]. All quasilinear systems of the above form with λ1 = −λ2 having higher
symmetries were found in [60]. In the case λ1 �= −λ2,λ1λ2 �= 0 all homogeneous
differential polynomial systems with higher symmetries have been found in [7].

In a recent paper [31] the following very interesting example of integrable system
of the form

ut = u2 +A(u,v)v2 +F(u, v, u1, v1), ut = v2 +G(u, v, u1, v1)

has been found:

ut = D(u1−2v1 +uv2−u2), vt = D(vx−2uv+ v3).

Third-order integrable systems of the form

ut = λ1u3 + f (u,v,u1,v1,u2,v2),
vt = λ2v3 +g(u,v,u1,v1,u2,v2)

were studied by A. Meshkov [32, 33]. Almost all known integrable systems of this
kind are related by differential substitutions to examples of such systems found in
[14].
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Nonevolutionary equations of Boussinesq type

utt = K(u,ux,uxx, · · · ,∂ n
x u,ut ,ut x,ut xx, · · · ,∂m

x ut) (1.121)

can always be replaced by a system of two evolutionary equations
{

ut = v,
vt = K(u,ux,uxx, ... ,∂ n

x u,v,vx,vxx, ... ,∂m
x v).

If K = Dr
x(G(u,ux,uxx, · · · ,∂ n−r

x u,ut ,ut x,ut xx, · · · ,∂m−r
x ut)) then Eq. (1.121) has

also representation
{

ut = ∂ r
x v,

vt = G(u,ux,uxx, ... ,∂ n−r
x u,v,vx,vxx, ... ,∂m−r

x v).

Integrable systems of these types have been studied in [38, 48].
In the case of systems of two (or more) evolutionary equations

ut = λ1(n)un +F(u, v, ...un−1, vn−1), (1.122)

ut = λ2(n)vn +G(u, v, ...un−1, vn−1),

the ratio λ1(n)/λ2(n) is invariant with respect to point transformations, which we
call the spectrum of the system (or dispersion law). The spectrum of integrable
systems and higher symmetries is not arbitrary. Here we present two new and rather
nontrivial examples of integrable systems which have been found recently [39] using
the symbolic method. System
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut =
(
9−5

√
3
)

u5 +Dx
{

2
(
9−5

√
3
)

uu2 +
(
−12+7

√
3
)

u2
1

}
+2
(
3−
√

3
)

u3v+2
(
6−
√

3
)

u2v1 +2
(
3−2

√
3
)

u1v2

−6
(
1+
√

3
)

uv3 +Dx
{

2
(
33+19

√
3
)

vv2 +
(
21+12

√
3
)

v2
1

}

+
4
5

(
−12+7

√
3
)

u2u1 +
8
5

(
3−2

√
3
)(

vuu1 +u2v1
)

+
4
5

(
24+13

√
3
)

v2u1 +
8
5

(
36+20

√
3
)

uvv1−
8
5

(
45+26

√
3
)

v2v1,

vt =
(
9+5

√
3
)

v5 +Dx
{

2
(
33−19

√
3
)

uu2 +
(
21−12

√
3
)

u2
1

}
−6
(
1−
√

3
)

u3v+2
(
3+2

√
3
)

u2v1 +2
(
6+
√

3
)

u1v2

+2
(
3+
√

3
)

uv3 +Dx
{

2
(
9+5

√
3
)

vv2−
(
12+7

√
3
)

v2
1

}

−8
5

(
45−26

√
3
)

u2u1 +
8
5

(
36−20

√
3
)

vuu1 +
4
5

(
24−13

√
3
)

u2v1

+
8
5

(
3+2

√
3
)(

v2u1 +uvv1
)
− 4

5

(
12+7

√
3
)

v2v1

possesses an infinite-dimensional algebra of higher symmetries with
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λ2 (m)
λ1 (m)

=

(
1+ exp

(πi
6

))m

1+ exp
(

mπi
6

) , m≡ 1,5,7,11mod 12.

System
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut =−5
3

u5−10vv3−15v1v2 +10uu3 +25u1u2−6v2v1

+6v2u1 +12uvv1−12u2u1,

vt = 15v5 +30v1v2−30v3u−45v2u1−35v1u2−10vu3

−6v2v1 +6v2u1 +12u2v1 +12vuu1

possesses symmetries of orders m≡ 1,5mod 6 with

λ2(m)
λ1(m)

=
(1+ exp(πi

3 ))m

1+ exp(mπi
3 )

.

There is a reduction v = 0 to the Kaup–Kupershmidt equation.

1.5.4 Nonpolynomial Multi-component Systems

Several classes of nonpolynomial integrable systems are related to deformations of
nonassociative structures [24, 61, 72]. Let {X ,Y,Z} be a Jordan triple system, φ(u)
be a solution of the following overdetermined consistent system of PDEs:

∂φ
∂uk =−{φ , ek, φ},

k = 1, . . . ,N. Denote

αu(X ,Y ) = {X ,φ(u),Y}, σu(X ,Y,Z) = {X ,{φ(u),Y,φ(u)},Z}.

For any given u, αu and σu define a Jordan algebra and a Jordan triple system,
correspondingly.

It turns out the following systems possess higher symmetries:

uxy = αu(ux,uy),

ut = uxxx−3αu(ux,uxx)+
3
2
σu(ux,ux,ux),

vt = vxxx−
3
2
αvx(vxx,vxx),

ut = uxx−2αu+v(ux,ux), vt =−vxx +2αu+v(vx,vx).
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The explicit formulas for φ(u) for triple Jordan systems (1.94), (1.95), and (1.96)
(see [72]) provide examples of matrix- and vector-integrable nonpolynomial sys-
tems. For instance, in the matrix case (1.94) we have φ(U) = U−1 and the above
formulas give rise to the following matrix-integrable systems

Uxy =
1
2

(Ux U−1 Uy +Uy U−1 Ux),

Ut = Uxxx−
3
2

Ux U−1 Uxx−
3
2

Uxx U−1 Ux +
3
2

Ux U−1 Ux U−1 Ux,

Ut = Uxxx−
3
2

Uxx U−1
x Uxx,

Ut = Uxx−2Ux (U +V )−1 Ux, Vt =−Vxx +2Vx (U +V )−1 Vx.

1.5.5 Nonabelian Evolution Equations

Integrable nonabelian polynomial homogeneous evolution equations having higher
symmetries have been considered in [50, 51].

In many interesting examples, the right-hand side of an integrable evolution equa-
tion turns out to be a homogeneous differential polynomial with respect to some
weighting of its constituent monomials. We introduce a weighting scheme by as-
signing a weight m = degu to the dependent variable and n = degx to the inde-
pendent variable, so that the kth order derivative of u with respect to x has weight
m + kn. Without loss of generality, we assume that n = 1. It was proved in [52, 53]
that for any integrable homogeneous equation with m > 0 the number m belongs to
the set {1/2, 1, 2}.

For example, the weighting for the mKdV equation ut = u3 + 6u1 is: degu =
1, degx = 1. All integrable nonabelian equations Ut = U3 + P(U2, U1, U) of the
mKdV weighting belong to the following list:

Ut = U3 +3UU2 +3U2
1 +3U2U1,

Ut = U3 +3U2U +3U2
1 +3U1U2,

Ut = U3 +3U2U1 +3U1U2,

Ut = U3 +3UU2−3U2U−6UU1U,

Ut = U3 +3U2
1 .

Second-order nonabelian homogeneous systems of NLS and DNLS types (see
also [74]) were also listed and several new integrable models were found.

Example:

Ut = U2 +2(U +V )U1, Vt =−V2 +2V1 (U +V );
Ut = U2 +2U1 V U, Vt =−V2 +2V U V1.



1 Symmetries and Integrability 81

1.5.6 Nonabelian Ordinary Differential Equations

Polynomial nonabelian ODEs have been considered in [44]. Some partial classifica-
tion results have been obtained.

For example the following system

Ut = V 2, Vt = U2

possesses infinitely many symmetries of the form

Uτi = Pi(U, V ), Vτi = Qi(U, V )

and first integrals (the definition of the first integral for nonabelian ODEs is similar
to the definition of conserved density from Sect. 4.2.1).

There exists two basic integrable nonabelian equations containing arbitrary con-
stant element C:

Ut = CU2−U2C (1.123)

and
Ut = UCU2−U2CU.

Different reductions of these equations give rise to known integrable multi-
component ODEs. For example, let M and C in (1.123) be represented by matri-
ces of the form

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 u1 0 0 · 0

0 0 u2 0 · 0

· · · · · ·
0 0 0 0 · uN−1

uN 0 0 0 · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · 0 1

1 0 0 · 0 0

0 1 0 · 0 0

· · · · · ·
0 0 0 · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then it follows from Eq. (1.123) that uk, k = 1, . . . ,N, satisfy the Volterra chain

d
dt

uk = uk (uk+1−uk−1), where uN+1 = u1, u0 = uN .

The following nonabelian Painlevé equations [4]

Uxx +3U2 = xE +C,

Uxx +2U3 + xU = λE,

Uxx +
1
x

Ux = UxU
−1Ux,

where E is the unity and λ is arbitrary constant, can be derived from integrable
nonabelian PDEs by means of the symmetry reductions.
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1.5.7 Integrable Isotropic Evolution Equations
on the N-Dimensional Sphere

The following class of vector equations

Ut = U3 + f2 U2 + f1 U1 + f0 U, (1.124)

where functions fi depend on

u[i, j] =< Ui, Uj >,

0 ≤ i ≤ j ≤ 2, was considered in [34]. Under additional assumption < U, U >= 1
the following complete list of integrable equations

Ut = Uxxx−3
u[1,2]

u[1,1]
Uxx +

3
2

(
u[2,2]

u[1,1]
+

u2
[1,2]

u2
[1,1] (1+au[1,1])

)
Ux, (1.125)

Ut = Uxxx +
3
2

(
a2 u2

[1,2]

1+au[1,1]
−a(u[2,2]−u2

[1,1])+u[1,1]

)
Ux +3u[1,2]U, (1.126)

Ut = Uxxx−3
u[1,2]

u[1,1]
Uxx +

(
3
2

u[2,2]

u[1,1]

)
Ux, (1.127)

Ut = Uxxx−3
(q+1) u[1,2]

2qu[1,1]
Uxx +3

(q−1) u[1,2]

2q
U

+
3
2

(
(q+1)u[2,2]

u[1,1]
−

(q+1)au[1,2]
2

q2u[1,1]
+u[1,1] (1−q)

)
Ux,

(1.128)

where a is arbitrary constant, q = ε
√

1+au[1,1], ε2 = 1, has been obtained.

Remark 74. The constant a can be reduced to a = 0 or to a = 1 by an appropriate
scaling of x and t. Thus in fact, the list contains many non-equivalent equations. In
particular, Eq. (1.128) with a = 0 and ε =−1 reads as

Ut = Uxxx +3u[1,1]Ux +3u[1,2]U.

Equation (1.126) with a = 0 coincides with (1.109), where R = 0. If a = 0 and ε = 1,
then Eq. (1.128) becomes

Ut = Uxxx−3
u[1,2]

u[1,1]
Uxx +3

u[2,2]

u[1,1]
Ux.

Remark 75. Equation (1.127) on R
N has arisen in the papers [24, 58, 69]. This equa-

tion is related to vector triple Jordan systems. It is a vector generalization of well-
known Schwartz–KdV equation
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vt = vxxx−
3
2

v2
xx

vx
.

Remark 76. In the case N = 2 Eqs. (1.125) and (1.126) with a = 0 can be reduced
to the potential KdV equation

vt = vxxx + v3
x

by the stereographic projection and some point-wise transformations. Equations
(1.125) with a =−1 and (1.126) with a =−1 come to

vt = vxxx−
1
8

Q′′ vx +
3
32

((Q−4v2
x)x)2

vx (Q−4v2
x)

, (1.129)

where Q(v) = (v2 +1)2. The last equation is a special case of the generic Calogero–
Degasperis equation (see [10]), which can also be written in the form (1.129) but
with Q(v) being arbitrary polynomial of fourth degree. Our particular case corre-
sponds to a trigonometric degeneration of Jacobi’s elliptic sine implicitly involved
in (1.129).

1.5.8 Integrable Anisotropic Evolution Equations
on the N-Dimensional Sphere

The anisotropic equations (1.124) with

fi = fi(u[1,1], u[1,2], u[2,2], v[0,0], v[0,1], v[1,1])

were also considered in [34]. Here the variables v[i, j] are given by (1.110). The
following complete list of integrable equations was obtained:

Ut = U3 +
(

3
2

u[1,1] + cv[0,0]

)
U1 +3u[1,2]U0, (1.130)

Ut = U3−3
u[1,2]

u[1,1]
U2 +

3
2

(
u[2,2]

u[1,1]
+

u2
[1,2]

u2
[1,1]

+
cv[1,1]

u[1,1]

)
U1, (1.131)

Ut = U3−3
u[1,2]

u[1,1]
U2 + (1.132)

3
2

(
u[2,2]

u[1,1]
+

u2
[1,2]

u2
[1,1]
−

(v[0,1] +u[1,2])2

(u[1,1] + v[0,0] +a)u[1,1]
+

v[1,1]

u[1,1]

)
U1.

Equation (1.130) coincides with (1.109). In the case N = 2, after the trigonomet-
ric parametrization of the circle
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u1 =
tan2(s)−1
tan2(s)+1

, u2 =
2tan(s)

tan2(s)+1
,

both Eqs. (1.131) and (1.130) become

st = sxxx +2 s3
x +

3
4

(c1 + c2 cos(4s)) sx.

The last equation is well known in the theory of integrable PDEs [10, 17].
The parametrization

u1 =
v2−1
v2 +1

, u2 =
2v

v2 +1

brings Eq. (1.132) with N = 2 to the form (1.129), where Q has the form Q =
α v4 + β v2 +α with arbitrary parameters α and β . Thus (1.132) is an integrable
vector generalization of generic Calogero–Degasperis equation (1.129).

Some lists of both isotropic and anisotropic equations on R
N can be found in

[6, 9, 35, 62, 75].

1.5.9 Nonlocal Integrable PDEs

Recently the first results on classification of integrable nonlinear integro-differential
equations have been obtained [36, 37]. Using the perturbative symmetry approach
in symbolic representation, described in Sect. 1.4.4, the complete classification of
integrable Benjamin–Ono type equations have been obtained. The Benjamin–Ono
equation, which is known to be integrable, can be written in the form

ut = iH(u2)+2uu1, (1.133)

where H( f ) denotes the Hilbert transform

H( f ) =
1
πi

∫ ∞

−∞

f (y)
y− x

dy . (1.134)

Its higher symmetries and conservation laws are even more nonlocal, i.e. have nest-
ing Hilbert transform and we have to define the adequate extension RH of the ring
of differential polynomials. The construction of the extension is similar to RΔ in
Sect. 1.4.4.2, the only difference is that we have to replace the operator Δ by the
Hilbert transform operator H (1.134).

We call equations of the form

ut = Ĥ(u2)+ c1uu1 + c2Ĥ(uu1)+ c3uĤ(u1) (1.135)

+ c4u1Ĥ(u)+ c5Ĥ(uĤ(u1))+ c6Ĥ(u)Ĥ(u1),
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where c j are complex constants, the Benjamin–Ono type equations. That is a natural
generalization of Eq. (1.133) and has the same scaling properties. We have applied
the approach formulated in Sect. 4.4 and isolated all cases with quasi-local (i.e. from
RH ) higher symmetries. The result can be formulated as follows:

Theorem 77. Equation of the form (1.135) is integrable if and only if it is up to the
point transformations of the form u→ au+bĤ(u), a2−b2 �= 0 coincides with one
of the list

ut = Ĥ(u2)+D

(
1
2

c1u2 + c2uĤ(u)+
1
2

c1Ĥ(u)2
)

, (1.136)

ut = Ĥ(u2)+D

(
1
2

c1u2 +
1
2

c2Ĥ(u2)− c2uĤ(u)
)

, (1.137)

ut = Ĥ(u2)+uu1± Ĥ(uu1)∓uĤ(u1)∓2u1Ĥ(u)+ Ĥ(uĤ(u1)), (1.138)

ut = Ĥ(u2)+ Ĥ(uu1)+u1Ĥ(u)± Ĥ(uĤ(u1))± Ĥ(u)Ĥ(u1). (1.139)
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Chapter 2
Number Theory and the Symmetry
Classification of Integrable Systems

J.A. Sanders and J.P. Wang

2.1 Introduction

The theory of integrable systems has developed in many directions, and although the
interconnections between the different subjects are clearly suggested by the similar-
ity of the results, they are not always so easy to prove or even formulate. Of the
various methods used to characterize integrable differential equations, including ex-
istence of infinitely many symmetries and/or conservation laws, soliton solutions,
linearization by inverse scattering or differential substitution, Bäcklund transforma-
tion, Painlevé property, bi-Hamiltonian structure, recursion operator, formal sym-
metry of infinite rank, etc. [35], the most fruitful for systematic classification and
discovery of new systems has been the characterization of integrable systems by the
existence of a sufficient number of higher order symmetries. The main questions in
this respect are the following:

• Can we decide, given an equation, whether there exists a generalized symmetry
(the recognition problem)?

• And if so, can we answer the question whether this leads to infinitely many sym-
metries (the symmetry-integrability problem)?

• Given a class of equations with arbitrary parameters, possibly functions of given
type, can we completely classify this class with respect to the existence of sym-
metries (The classification problem)?

As it turns out, these three questions are strongly related. In certain cases, they
can be effectively and completely analyzed by an adaptation of the symbolic method
of classical invariant theory [22], after which powerful number-theoretic results on
factorizability of polynomials based on Diophantine approximation theory [2] are
applied to complete the classification.

The history of the subject experienced two developmental periods. In the first,
following the discovery of the Korteweg–de Vries (KdV) equation, a surprisingly
large number of other integrable hierarchies, including mKdV, Sawada–Kotera,
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Kaup–Kupershmidt, were soon found. However, the second period was more dis-
appointing in this respect, as the integrable well quickly dried up, at least in the
most basic case that scalar, polynomial evolution equations are linear in the highest
order derivative. This led to the conjecture that all integrable systems of this partic-
ular form had been found. In this chapter, we describe rigorous classification results
for both commutative and noncommutative systems [24, 27, 28, 33], including a
proof of this particular conjecture and a discussion of the general methods by which
such complete classification results are established, cf. Sect. 2.4.

To do so, we prove that symmetry-integrability of an equation of the form

ut = un + f (u, · · · ,un−1), where un = Dn
xu (2.1)

with f a formal power series starting with terms that are at least quadratic, is deter-
mined by

• the existence of one generalized symmetry,
• the existence of approximate symmetries.

This led to the proof of the remark made in [7]

Another interesting fact regarding the symmetry structure of evolution equations is that in all
known cases the existence of one generalized symmetry implies the existence of infinitely
many. (However, this has not been proved in general.)

under fairly relaxed conditions. In particular, for homogeneous scalar evolution
equations, to prove the integrability of an equation of order 2 we need a symme-
try of order 3; for an equation of order 3 we need a symmetry of order 5; for an
equation of order 5 we need a symmetry of order 7; and for an equation of order 7
we need a symmetry of order 13; this enables us to give the complete list of inte-
grable homogeneous equations. The result also confirms the remark made in [10]:

It turns out from practice that if the first integrability conditions [...] are fulfilled, then often
all the others are fulfilled as well.

However, the conjecture

the existence of one symmetry implies the existence of (infinitely many) others

has been disproved using the example in [1]. This example does not contradict our
theorem, since it proves the nonexistence of certain quadratic terms, the existence of
which is one of the conditions in our theorem. In this chapter, we give the strict proof
that Bakirov’s example has only one symmetry using p-adic analysis, cf. Sect. 2.6.

We should remark that the modified conjecture made in [8]

... Similarly for n-component equations one needs n symmetries

has also been disproved in [11, 12], where the authors found a two-component sys-
tem that has only two symmetries.

This theory was soon successfully applied to noncommutative evolution equa-
tions of the form (2.1) in which the field variable u takes its values in an associative,
non-commutative algebra [24]. In this manner, it was rigorously proved that the list
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of integrable evolution equation in [23] is complete. These equations can be re-
garded as quantizing classical integrable systems; see [6], where the authors treated
the Korteweg–de Vries equation.

The classification problem has been noticed and studied since the 1960s. The
group consisting of A.B. Shabat, A.V. Mikhailov, V.V. Sokolov, S.I. Svinolupov,
R.I. Yamilov and co-workers, cf. [19, 25], was successful in giving the complete
classification for equations of fixed order, allowing for much bigger equivalence
classes. We only work with homogeneous equations and transformations that do not
change the weight of the dependent variables, but this restriction enables us, at least
in the scalar case, to obtain results for all orders of the evolution equation.

2.2 The Symbolic Method

2.2.1 Basic Definitions

The symbolic method was first introduced by Gel’fand-Dikiı̌ [9] and used in [32] to
show (as an example) that the symmetries of the Sawada–Kotera equation have to be
of order 1 or 5 (mod 6). The basic idea of the symbolic method is simply to replace
ui, where i is an index – in our case counting the number of derivatives – by uξ i,
where ξ is now a symbol. We see that the basic operation of differentiation, i.e. re-
placing ui by ui+1, is now replaced by multiplication with ξ , as is the case in Fourier
transform theory. For higher degree terms with multiple us, one uses different sym-
bols to denote differentiation; for example, the noncommutative binomial uiu j has
symbolic form u2ξ i

1ξ
j

2 . In the commutative case, one needs to average over permu-
tations of the differentiation symbols so that uiu j and u jui have the same symbolic
form. However, in the noncommutative case, this is no longer necessary. In other
words, the noncommutative symbolic method works with general tensors, while in
the commutative case one restricts to (multi)-symmetric tensors, or polynomials for
short.

Usually one replaces ui by ξ i, but this leads to confusion for the expressions like
un since the distinction between the powers disappears.

With this method one can readily translate solvability questions into divisibility
questions and we can use generating functions to handle infinitely many orders at
once. While this does not mean that the questions are much easier to answer, we
do now have the whole machinery which has been developed in number theory
available, and this makes a crucial difference.

For simplicity, we restrict our attention to the case of a single independent vari-
able x and a single dependent field variable u. Extensions of the basic ideas to several
(noncommutative) dependent variables are immediate, see Sect. 2.5, and to several
commutative independent variables can be found in [34].

A differential monomial takes the form uI = ui1 ui2 · · ·uik . We call k the degree of
the monomial, #I = i1 + · · ·+ ik the index, and max(i j, j = 1, · · · ,k) the order. For
brevity, [u] is used to denote the set of arguments u,u1,u2, . . ..
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We denote by U k
n the set of differential polynomials in [u] of degree k + 1 and

index n. Let U k =
⊕

n U k
n , and U =

⊕
k≥0 U k, the algebra of all differential poly-

nomials. Notice that we consider k ≥ 0 that excludes the constant case, i.e. 1 /∈U .
The order of a differential polynomial is the maximum of the orders of its con-
stituent monomials.

The symbolic transform defines a linear isomorphism between the space U k of
(non)-commutative differential polynomials of degree k + 1 and the space A k =
R[ξ1, . . . ,ξk+1] of algebraic polynomials in k+1 variables. It is uniquely defined by
its action on monomials.

Definition 1. The symbolic form of a differential monomial is defined as

ui1 ui2 · · ·uik �−→ uk < ξ i1
1 ξ i2

2 · · ·ξ
ik
k >

=

⎧⎪⎨
⎪⎩

ukξ i1
1 ξ i2

2 · · ·ξ
ik
k (noncommutative);

uk

k! ∑π∈Sk

ξ i1
π(1)ξ

i2
π(2) · · ·ξ

ik
π(k) (commutative),

where S
k is the permutation group of k elements.

In general, in analogy with Fourier transforms, we denote the symbolic form of P ∈
U k, whether it is commutative or not, by P̂. The transform has two basic properties:

D̂xP(ξ1, . . . ,ξk+1) = (ξ1 + · · ·+ξk+1) P̂(ξ1, . . . ,ξk+1),

∂̂P
∂ui

(ξ1, · · · ,ξk) =
1
i!

1
k +1

k+1

∑
j=1

∂ i+1P̂
∂u(∂ξ j)i (ξ1, · · · ,ξ j−1,0,ξ j, · · · ,ξk).

(2.2)

The following key result is a consequence of these formulae.

Proposition 2. Let K ∈ U m and Q ∈ U n. Then DK(Q) ∈ U m+n, where DK is the
Fréchet derivative of K, and

D̂K [Q] =
1

m+1

m+1

∑
τ=1

×
〈
∂ K̂
∂u

(
ξ1, . . . ,ξτ−1,

n

∑
κ=0

ξτ+κ ,ξτ+n+1, . . . ,ξm+n+1

)
Q̂(ξτ , . . . ,ξτ+n)

〉
.

Proof. Using (2.2), we compute

D̂K(Q) =

〈
∑

i

∂̂K
∂ui

D̂i
xQ

〉

=

〈
∑

i

1
i!

1
m+1

m+1

∑
τ=1

∂ i+1K̂
∂u(∂ξτ)i (ξ1, · · · ,ξτ−1,0,ξτ , · · · ,ξm)

×(ζ1 + · · ·+ζn+1)iQ̂(ζ1, · · · ,ζn+1)

〉
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=
1

m+1

m+1

∑
τ=1

〈
∂ K̂
∂u

(
ξ1, · · · ,ξτ−1,

n+1

∑
κ=1

ζκ ,ξτ , · · · ,ξm

)
Q̂(ζ1, · · · ,ζn+1)

〉

and the conclusion follows. ��

For any K,Q ∈U , we define [K,Q] = DQ(K)−DK(Q). This bracket makes U into
a graded Lie algebra.

The following polynomials play a critical role in the analysis.

Definition 3. The G-functions are the (commutative) polynomials

G(m)
k = ξ k

1 + · · ·+ξ k
m+1−

(
ξ1 + · · ·+ξm+1

)k
.

The key fact is the following formula for the bracket of a differential polynomial
with a linear differential polynomial:

[̂uk,Q] = G(m)
k Q̂, whenever Q ∈U m. (2.3)

This follows directly from Proposition 2 and the fact that uk has symbolic form ûk =
u ξ k

1 . An immediate application is the known result that the space of the symmetries
of linear evolution equations ut = un with n > 1 is U 0, as shown in the following:

Proposition 4. Consider the linear evolution equation ut =∑p
j=1λ ju j, where the λ j

are constants and λp �= 0. The space of its symmetries is

• U iff p = 1;
• U 0 iff p > 1.

Proof. Let Q ∈U and Q = ∑Qi, where Qi ∈U i. Since U is a graded Lie algebra,
Q is a symmetry of this equation iff [∑p

j=1λ ju j, Qi] = 0 for any i≥ 0. Formula (2.3)
leads to

p

∑
j=1

λ jG
(i)
j = 0.

Under the assumption, this holds iff either p = 1 or p �= 1 and i = 0. ��

The crucial step is the following result [2] on the divisibility properties of the G-
functions. The proof relies on sophisticated techniques from diophantine analysis.

Proposition 5. The symmetric polynomials G(k)
n can be factorized as

G(k)
n = tk

ng(k)
n ,where (g(k)

n ,g(k)
m ) = 1, for all n < m,

and tk
n is one of the following polynomials:

• k = 1 :

– m = 0 (mod 2) : ξ1ξ2

– m = 3 (mod 6) : ξ1ξ2(ξ1 +ξ2)
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– m = 5 (mod 6) : ξ1ξ2(ξ1 +ξ2)(ξ 2
1 +ξ1ξ2 +ξ 2

2 )
– m = 1 (mod 6) : ξ1ξ2(ξ1 +ξ2)(ξ 2

1 +ξ1ξ2 +ξ 2
2 )2

• k = 2 :

– m = 0 (mod 2) : 1
– m = 1 (mod 2) : (ξ1 +ξ2)(ξ1 +ξ3)(ξ2 +ξ3)

• k > 2 : 1

Proof. For k = 1, this was proved by F. Beukers using diophantine approximation
theory [2]; for k = 2, see Appendix 2.8; and k > 2 is a special case of Theorem
16. ��

Despite the innocent look of the polynomials involved, we have not been able to

find a simpler proof for k = 1. It is conjectured that the g(1)
m are Q[ξ ]-irreducible.

2.2.2 Computational Example: Fifth-Order Symmetry of KdV

To illustrate how the symbolic method works, we give the symbolic calculation for
the fifth-order symmetry of the Korteweg–de Vries equation. When one computes
a symmetry, the natural approach is to do this degree by degree. So for instance, if
we have the equation

ut = K = K0
3 +K1

1 = u3 +uu1 (KdV)

then we try a symmetry

S5 = S0
5 +S1

3 + · · ·= u5 +a1uu3 +a2u1u2 + · · · ,

where K j
i ,S j

i ∈U j
i . We have to solve [K0

3 ,S1
3]+ [K1

1 ,S0
5] = 0, i.e.

D3
xS1

3 +uDxS0
5 +u1S0

5

= D5
xK1

1 +a1uD3
xK0

3 +a1u3K0
3 +a2u1D2

xK0
3 +a2u2DxK0

3 .

Translating this to the symbols, we have

(ξ1 +ξ2)
3 Ŝ1

3 +
(
ξ 5

1 +ξ 5
2

)
K̂1

1

= (ξ1 +ξ2)
5 K̂1

1 +
(
ξ 3

1 +ξ 3
2

)
Ŝ1

3,

where K̂1
1 = u2

2 (ξ1 +ξ2). We can now (formally) express Ŝ1
3 in terms of K̂1

1 :

Ŝ1
3 =

(ξ1 +ξ2)5−ξ 5
1 −ξ 5

2

(ξ1 +ξ2)3−ξ 3
1 −ξ 3

2

K̂1
1 .
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By Definition 3, this can be rewritten as Ŝ1
3 = G(1)

5

G(1)
3

K̂1
1 . This is a real solution if Ŝ1

3

turns out to be a polynomial. Thus we have translated our problem into the question

whether the polynomials G(1)
5 and G(1)

3 have common factors.
The symbolic method brings the possibility to apply the invariant theory of the

permutation group to attack the classification problem.
Let us introduce ξ0 by requiring that ξ0 +ξ1 +ξ2 = 0. For odd n, we have

G(1)
n =

2

∑
i=0

ξ n
i ,

that is, the G(1)
n are S

3-invariants, where S
3 permutes the ξ -indices. Let

cn =
2

∑
i=0

ξ n
i , n = 2,3. (2.4)

The invariants of S
3 are generated by c2 and c3. This implies that G(1)

3 ≡ c3 and

G(1)
5 ≡ c2c3 up to multiplication by constants, since there is only one way in which

we can write 5 as an additive combination of 2 and 3. Therefore Ŝ1
3 ≡ c2K̂1

1 . To be
explicit,

Ŝ1
3 =

5
3

(
ξ 2

1 +ξ1ξ2 +ξ 2
2

)
K̂1

1 =
5
6

(
ξ 3

1 +2ξ 2
1 ξ2 +2ξ1ξ 2

2 +ξ 3
2

)
u2.

Let us compute S2
1 by solving [S1

3,K
1
1 ]+ [S2

1,K
0
3 ] = 0. By Proposition 2, this leads to

Ŝ2
1 =

5
6

(ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3)(ξ1 +ξ2 +ξ3)
(ξ1 +ξ2 +ξ3)3−ξ 3

1 −ξ 3
2 −ξ 3

3

u3 =
5

18
(ξ1 +ξ2 +ξ3)u3.

Note that [S2
1,K

1
1 ] = 0 in the next degree. Thus, the fifth-order symmetry is

S5 = S0
5 +S1

3 +S2
1 = u5 +

5
3

uu3 +
10
3

u1u2 +
5
6

u2u1,

the well-known Lax equation.
This illustrates both the simplification induced by the symbolic method as well

as the role of the G-functions in the whole analysis. The fact that the fifth-order
integrable equations like Kaup–Kupershmidt and Sawada–Kotera have hierarchies
with period 6 can now be explained by the invariant group S

3.

2.2.3 The Higher Order Symmetries of KdV

What do we need in order to show that there exists a symmetry at every odd order
for the Korteweg–de Vries equation? Let us sketch the computation for a higher
order symmetry
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S2k+1 = S0
2k+1 +S1

2k−1 + · · ·= u2k+1 +a1uu2k−1 +a2u1u2k−2 + · · · .

First we have to solve [K0
3 ,S1

2k−1]+ [K1
1 ,S0

2k+1] = 0. If we translate this to the sym-
bols, by Definition 3 we obtain

G(1)
3 Ŝ1

2k−1−G(1)
2k+1K̂1

1 = 0.

We can now (formally) express Ŝ1
2k−1 in terms of K̂1

1 as

Ŝ1
2k−1 =

G(1)
2k+1

G(1)
3

K̂1
1 ,

and this is a real solution if Ŝ1
2k−1 turns out to be a polynomial. Since the invariants

of S
3 are generated by c2 and c3, cf. (2.4), that is, G(1)

2k+1 is a polynomial in these two,

we must have c3|G(1)
2k+1. Therefore, Ŝ1

2k−1 is polynomial. Note that the whole argu-
ment is completely independent from the fact that we started with the Korteweg–de
Vries equation; it only depends on the equation being third order. This means in
general that there are no obstructions to be expected in computing the quadratic
terms of an odd-order symmetry for third-order equation. The first obstructions do
occur in the computation of the cubic terms.

2.3 An Implicit Function Theorem

In this section we formulate a theorem that leads to the proof that the existence of
one generalized symmetry implies infinitely many under fairly relaxed condition.
The theorem itself, stated in the context of graded (or filtered) Lie algebras, is not
difficult to prove. Its difficulty lies in formulating and checking some technical con-
ditions, which derive immediately from the symbolic formulation. Here we give the
theorem in graded Lie algebra version so that the reader can understand it better.
The filtered Lie algebra version is put in Appendix 2.9.

Consider a graded Lie algebra g = ∏∞
i=0 gi and let V be a graded g-module

∏∞
i=0 V i, where the action of g on V is such that if Xi ∈ gi and v j ∈ V j, then

Xi · v j ∈V i+ j.

Example 6. A typical example is g j = V j = U j, the set of differential polynomials
of degree j +1, and the action of g on V is the usual adjoint action given by the Lie
bracket.

Definition 7. We call K0 ∈ g0 nonlinear injective if KerK0 · ⊂V 0.

For Example 6, any element in g0 is nonlinear injective unless it is a multiple of u1,
cf. Proposition 4.

Definition 8. We call S0 ∈ g0 relatively l-prime with respect to K0 ∈ g0 if S0 ·X j ∈
ImK0⇒ X j ∈ ImK0 for all j ≥ l.
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We know from formula (2.3) that the Lie bracket of a differential polynomial with
an element in g0 equals the multiplication with a G-function, cf. Definition 3. In
this case, this definition can be checked by answering whether the corresponding
G-functions of S0 and K0 have common factors.

Theorem 9. Let K = ∑k
i=0 Ki and S = ∑s

i=0 Si, where Ki,Si ∈ gi and 0 < k,s ∈ N.
Suppose there exists Q j ∈V j, j = 0, · · · , l−1 such that

• [K,S] = 0,
• K0 is nonlinear injective,
• S0 is relatively l-prime with respect to K0,
• ∑p

i=0 Ki ·Qp−i = 0 for p = 0, · · · , l−1 and S0 ·Q0 = 0.

Then there exists a unique Q = ∑∞
i=0 Qi, Qi ∈V i, such that K ·Q = S ·Q = 0.

Proof. First we prove that ∑ j
i=0 S j−i ·Qi = 0 for all 0≤ p < l by induction.

For p = 0 this is true by assumption. Suppose it is true for all j ≤ p < l− 1.
Now we show it is also true for p + 1. We know that the action of a Lie algebra on
a module is [K,S] · = K ·S · −S ·K · and that the assumption that [K,S] = 0 implies
that ∑q

j=0[K
j,Sq− j] = 0, for any q ∈ N. It follows

K0 ·
p+1

∑
i=0

Sp+1−i ·Qi =
p+1

∑
i=0

[
K0,Sp+1−i] ·Qi +

p+1

∑
i=0

Sp+1−i ·K0 ·Qi

= −
p+1

∑
i=0

p+1−i

∑
j=1

[
K j,Sp+1−i− j] ·Qi−

p+1

∑
i=0

Sp+1−i ·
i

∑
j=1

K j ·Qi− j

= −
p+1

∑
j=1

p+1− j

∑
i=0

[
K j,Sp+1−i− j] ·Qi−

p+1

∑
j=1

p+1

∑
i= j

Sp+1−i ·K j ·Qi− j

= −
p+1

∑
j=1

p+1− j

∑
i=0

(
[K j,Sp+1−i− j] ·Qi +Sp+1−i− j ·K j ·Qi)

= −
p+1

∑
j=1

K j ·
p+1− j

∑
i=0

Sp+1−i− j ·Qi =−
p

∑
j=0

K p− j+1 ·
j

∑
i=0

S j−i ·Qi = 0.

By the nonlinear injectiveness of K0, we obtain that ∑p+1
i=0 Sp+1−i ·Qi = 0.

Next we suppose that there exists ∑p−1
j=0 Q j satisfying ∑ j

i=0 K j−i ·Qi = 0 and

∑ j
i=0 S j−i ·Qi = 0 for j = 0, . . . , p−1.
For p = l, this follows from the previous.

K0 ·
p−1

∑
i=0

Sp−i ·Qi =
p−1

∑
i=0

[
K0,Sp−i] ·Qi +

p−1

∑
i=0

Sp−i ·K0 ·Qi

= −
p−1

∑
i=0

p−i

∑
j=1

[
K j,Sp−i− j] ·Qi−

p−1

∑
i=0

Sp−i ·
i

∑
j=1

K j ·Qi− j
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= −
p

∑
j=1

p− j

∑
i=0

[
K j,Sp−i− j] ·Qi−

p

∑
j=1

p−1

∑
i= j

Sp−i ·K j ·Qi− j

= −
p

∑
j=1

(
p− j

∑
i=0

[
K j,Sp−i− j] ·Qi +

p−1− j

∑
i=0

Sp−i− j ·K j ·Qi

)

= −
p

∑
j=1

K j ·
p− j

∑
i=0

Sp−i− j ·Qi +S0 ·
p

∑
j=1

K j ·Qp− j = S0 ·
p

∑
j=1

K j ·Qp− j.

We have ∑p
j=1 K j ·Qp− j ∈ ImK0 since S0 is relatively l-prime with respect to K0.

So we can uniquely define Qp by

K0 ·Qp =−
p

∑
j=1

K j ·Qp− j .

We then automatically have ∑p
i=0 K p−iQi = 0. That ∑p

i=0 Sp−iQi = 0 follows from
the first part of the proof. Again by induction on p, we prove that Q can always be
extended such that all graded parts of K ·Q and S ·Q vanish. ��

If one thinks of the application of this theorem to the computation of symmetries
of evolution equations, cf. Example 6, then this proves (at least up till the existence
of ∑l

i=0 Qi) the long-held belief that one nontrivial symmetry S of the equation K is
enough for integrability. With such a strong result one has to inspect the conditions.
The strangest of them seems to be the relative prime condition. In the next sections,
however, we show that for scalar equations with linear part ut = uk any symmetry
S starting with us,s �∈ {1,k} satisfies the conditions of the theorem with l = 2 when
K1 �= 0 and l = 3 when K1 = 0 and K2 �= 0.

2.4 Symmetry-Integrable Evolution Equations

2.4.1 Symmetries of λ -Homogeneous Equations

In this section we give the complete classification for homogeneous scalar commu-
tative and noncommutative evolution equations. A key result is that it suffices to
compute the linear and quadratic terms, or cubic if the quadratic terms are zero,
of a nontrivial odd-order symmetry in order to guarantee its existence. This speeds
up the classification process, since any obstructions to the existence of symmetries
have to show up early in the computation.

The differential equation (2.1) is said to be λ -homogeneous of weight μ if it
admits the one-parameter group of scaling symmetries

(x, t,u) �−→ (a−1x,a−μ t,aλu), a ∈ R
+.
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For example, the Korteweg–de Vries equation ut = uxxx + uux is homogeneous of
weight 3 for λ = 2.

Two evolution equations ut = K and ut = Q are symmetries of each other if and
only if [21]

[K, Q] = 0. (2.5)

An equation is called (symmetry-)integrable if it has infinitely many linearly inde-
pendent higher order symmetries.

Any λ -homogeneous evolution equation of order n can be broken up into its
homogeneous components, and so it takes the form

ut = K = ∑
i≥0

Ki
n−λ i,

(
Ki

n−λ i ∈U i
n−λ i

)
. (2.6)

We assume that K0
n = un, n ≥ 2, and 0 < λ ∈ Q. When iλ /∈ N, Ki

n−iλ = 0. This
reduces the number of relevant λ to a finite set.

For λ = 1, this describes the family of Burgers-like equations and for λ = 2 the
family of KdV-like equations.

Let S ∈ U be a symmetry of order m of the evolution equation (2.6). We break
up the bracket condition [S,K] = 0 into its homogeneous summands, leading to the
series of successive symmetry equations

∑
i+ j=r

[
S j

m−λ j,K
i
n−λ i

]
= 0, for r = 0,1,2, . . . . (2.7)

According to Proposition 4, S must have nontrivial linear term, S0
m �= 0, and we

can set S0
m = um without loss of generality. Clearly we have [S0

m,K0
n ] = 0. The next

equation to be solved is
[
S0

m,K1
n−λ
]
+
[
S1

m−λ ,K0
n

]
= 0. (2.8)

Condition (2.8) is trivially satisfied if K has no quadratic terms: K1
n−λ = 0. Let us

concentrate on the case K1
n−λ �= 0. We use (2.3) and Proposition 5 to rewrite (2.8) in

symbolic form:

K̂1
n−λ =

Ŝ1
m−λ

G(1)
m

G(1)
n = u2 p(ξ1,ξ2)

ξ1ξ2(ξ1 +ξ2)
G(1)

n , (2.9)

where limξ1+ξ2→0 p(ξ1,ξ2) exists. We next set r = 2 in (2.7) and find

Ŝ2
m−2λ =

K̂2
n−2λG(2)

m + M̂

G(2)
n

, (2.10)

where M̂ is the symbolic form of the commutator

M =
[
S1

m−λ ,K1
n−λ
]

(2.11)
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between the quadratic terms.
We use the notation q|p to indicate that the polynomial q divides the polynomial

p. Consider the set

I = { p(ξ1,ξ2) : (ξ1 +ξ2)|p(ξ1,ξ2) or ξ1ξ2|p(ξ1,ξ2) }

consisting of bivariate polynomials p(ξ1,ξ2) that have either ξ1 + ξ2 or ξ1ξ2 as a
factor.

Proposition 10. Suppose m and n are both odd. Let M̂ and p be given by (2.11) and
(2.9), respectively. Then (ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3) divides M̂ iff p ∈I .

Proof. Using formula (2.9), we compute M̂ to be

M̂ = u3
〈

p(ξ1 +ξ2,ξ3)p(ξ1,ξ2)Fξ2,ξ3
(ξ1 +ξ2)

ξ1ξ2ξ3(ξ1 +ξ2)2(ξ1 +ξ2 +ξ3)

〉

+ u3
〈

p(ξ1,ξ2 +ξ3)p(ξ2,ξ3)Fξ2,ξ1
(ξ2 +ξ3)

ξ1ξ2ξ3(ξ2 +ξ3)2(ξ1 +ξ2 +ξ3)

〉
,

where

Fξi,ξ j
(η) = G(1)

n (η ,ξ j)G(1)
m (η−ξi,ξi)−G(1)

m (η ,ξ j)G(1)
n (η−ξi,ξi) .

Here we only write out the analysis for noncommutative case. For the commutative
case, the expression of M̂ needs to be symmetrized. However, the proof is quite
similar, cf. [27].

Notice that ξ1 + ξ3 is a factor of M̂. We now prove that limξ1+ξ2→0 M̂ = 0. The
second summand has

lim
ξ1+ξ2→0

Fξ2,ξ1
(ξ2 +ξ3)

= G(1)
n (−ξ2,ξ2 +ξ3)G(1)

m (ξ2,ξ3)−G(1)
m (−ξ2,ξ2 +ξ3)G(1)

n (ξ2,ξ3)

=−G(1)
n (ξ2,ξ3)G(1)

m (ξ2,ξ3)+G(1)
m (ξ2,ξ3)G(1)

n (ξ2,ξ3) = 0.

As for the first part, a straightforward computation shows that

Fξ2,ξ3
(0) = 0 =

d
dη

Fξ2,ξ3
(0).

Moreover,

d2

dη2 Fξ2,ξ3
(0) = 2

(
d

dη
G(1)

n (ξ3,η)
d

dη
G(1)

m (η−ξ2,ξ2)

− d
dη

G(1)
n (η−ξ2,ξ2)

d
dη

G(1)
m (ξ3,η)

) ∣∣
η=0

= 2nm
(
ξm−1

3 ξ n−1
2 −ξ n−1

3 ξm−1
2

)
�= 0.
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This implies that

lim
ξ1+ξ2→0

Fξ2,ξ3
(ξ1 +ξ2)

(ξ1 +ξ2)2 �= 0

and therefore (ξ1 +ξ2) � | M̂ unless (ξ1 +ξ2)|p(ξ1 +ξ2,ξ3)p(ξ1,ξ2) or, equivalently,
(ξ1 + ξ2)|p(ξ1,ξ2) or ξ1|p(ξ1,ξ2). Similarly, when we deal with factor ξ2 + ξ3,
we obtain (ξ2 + ξ3) � | M̂ unless (ξ1 + ξ2)|p(ξ1,ξ2) or ξ2|p(ξ1,ξ2). Therefore, the
statement of the proposition follows. ��

Corollary 11. Assume m and n are odd. Then (ξ1 + ξ2)(ξ2 + ξ3)(ξ1 + ξ3) divides

K̂2
n−2λG(2)

m + M̂ if and only if K̂1
n−λ (ξ1,ξ2) ∈I .

We next state a result that says the symmetry algebra of a commutative or non-
commutative polynomial evolution equation is commutative. Moreover, every sym-
metry is uniquely determined by its quadratic terms.

Theorem 12. Suppose the evolution equation (2.6) has a nonzero symmetry S of
order m≥ 2 . Suppose Q1

q−λ is a nonzero quadratic differential polynomial (q≥ λ ),
where q �∈ {m,n}, and q is odd if n is odd, which satisfies the leading order symmetry
condition [K0

n ,Q1
q−λ ]+[K1

n−λ ,Q0
q] = 0, cf. (2.8). Then there exists a unique symmetry

of the form Q = ∑i≥0 Qi
q−iλ . Moreover, the symmetries Q and S commute.

Proof. For even n or m, this follows from Theorem 9, since S0
m is relatively 2-prime

with respect to K0
n .

We conclude from the existence of S that (ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3) divides

K̂2
n−2λG(2)

m +
[
Ŝ1

m−λ , K̂1
n−λ

]
(2.12)

for odd n and m. In other words, K̂1
n−λ (ξ1,ξ2) ∈I .

Since S is a symmetry, i.e. [K, S] = 0, we have

[K, [S, Q]] = [S, [K, Q]]

from Jacobi identity. We break it up into its homogeneous summands leading to

g(2)
n

([
Ŝ1, Q̂1

]
+
[
Ŝ2, Q̂0

])
= g(2)

m

([
K̂1, Q̂1

]
+
[
K̂2, Q̂0

])
.

We know that (g(2)
m ,g(2)

n ) = 1, and (by exactly the same argument as for S)

(ξ1 +ξ2)(ξ2 +ξ3)(ξ1 +ξ3)
∣∣([K̂1, Q̂1

]
+
[
K̂2, Q̂0

])
.

This implies that G(2)
n divides [K̂1, Q̂1]+ [K̂2, Q̂0]. Therefore,

Q̂2
q−2λ =

[Q̂1, K̂1]+ [Q̂0, K̂2]

G(2)
n
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is well defined. Since the G(k)
n are relative prime for k > 2, this means that K0

m is
relatively 2-prime and we can apply Theorem 9 to draw the conclusion that there
indeed exists a symmetry Q commuting with S. ��

We make a very interesting observation. Suppose Q is a nontrivial qth odd-order
symmetry of (2.6) with odd n, whose quadratic terms, cf. (2.9), have the following
symbolic expression:

Q̂1
q−λ =

K̂1
n−λ

(
ξ 2

1 +ξ1ξ2 +ξ 2
2

)s−s′
g(1)

q

g(1)
n

.

Proposition 5 implies that λ ≤ 3+2min(s,s′), where s′ = n+3
2 (mod 3) and s = q+3

2
(mod 3). Then Theorem 12 implies that

Q̂1
2s+3−λ =

K̂1
n−λ

(
ξ 2

1 +ξ1ξ2 +ξ 2
2

)s−s′
g(1)

2s+3

g(1)
n

gives rise to a symmetry Q = Q0
2s+3 + Q1

2s+3−λ + · · · of the original equation. (Of
course, one can use this argument to generate an entire hierarchy of symmetries.)
This implies that the evolution equations defined by Q and K have the same symme-
tries, so instead of considering K we may consider the equation given by Q, which is
of order q = 2s+3 for s = 0,1,2. It follows that we only need to find the symmetries
of λ -homogeneous equations (with λ ≤ 7) of order ≤ 7 in order to obtain the com-
plete classification of symmetries of λ -homogeneous scalar polynomial equations
starting with linear terms.

A similar observation can be made for even n > 2. Suppose we have found a
nontrivial symmetry with quadratic term

Q̂1
q−λ =

K̂1
n−λG(1)

q

ξ1ξ2 g(1)
n

.

This immediately implies λ ≤ 2. Then Q̂1
2−λ = 2K̂1

n−λ
/

g(1)
n gives rise to a symmetry

Q = Q0
2 + Q1

2−λ + · · · of the original equation. Therefore, we only need to find the
symmetries of equations of order 2 to get the complete classification of symmetries
of λ -homogeneous scalar polynomial equations (with λ ≤ 2) starting with an even
linear term.

Finally, we must analyze the case when K has no quadratic terms. Assume that
Ki

n−λ i = 0 for i = 1, . . . , j−1, and K j
n−λ j �= 0 for some j > 1. In place of (2.8), we

now need to solve the leading order equation

[S0
m,K j

n− jλ ]+ [S j
m− jλ ,K0

n ] = 0.

Using (2.3), the symbolic form of this condition is
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Ŝ j
m− jλ =

K̂ j
n− jλG( j)

m

G( j)
n

. (2.13)

Proposition 5 implies that this polynomial identity has no solutions when j ≥ 3,

or when j = 2 and n is even, since G( j)
m and G( j)

n have no common factors, and
the degree of K j

n− jλ is n− jλ < n, which is the degree of G( j)
n . Thus there are no

symmetries for such equations. When j = 2 and n is odd, the equation can only have
odd-order symmetries. If Eq. (2.13) can be solved for any m, it can also be solved
for m = 3.

By now, we have proved the following

Theorem 13. A nontrivial symmetry of a λ -homogeneous equation with λ > 0 is
part of a hierarchy starting at order 3,5 or 7 in the odd case, and at order 2 in the
even case.

2.4.2 The List of Symmetry-Integrable Equations

Only an equation with nonzero quadratic or cubic terms can have a nontrivial sym-
metry. For each possible λ > 0, we must find a third-order symmetry for a second-
order equation, a fifth-order symmetry for a third-order equation, a seventh-order
symmetry for a fifth-order equation with quadratic terms and the thirteenth-order
symmetry for a seventh-order equation with quadratic terms. The last case can be
easily reduced to the case of fifth-order equations by determining the quadratic terms
of the equation. The details of this final symbolic computation are completed as in
the commutative case described in [26].

2.4.2.1 Commutative Case

We list all integrable hierarchies which are λ -homogeneous, with λ ≥ 0. For λ = 0,
details can be found in [28]. For λ > 0 the equivalence transformations are just
scalings u �→ αu, while for λ = 0 we allow arbitrary change of variables u �→ h(u).
The classification theorem states that every λ -homogeneous evolution equation with
linear leading term is equivalent, modulo homogeneous transformations in u, to an
equation lying in one of the following hierarchies.

Korteweg–de Vries
ut = u3 +uu1

Kaup–Kupershmidt

ut = u5 +10uu3 +25u1u2 +20u2u1
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Sawada–Kotera
ut = u5 +10uu3 +10u1u2 +20u2u1

Burgers
ut = u2 +uu1

Potential Korteweg–de Vries

ut = u3 +u2
1

Modified Korteweg–de Vries

ut = u3 +u2u1

Potential Kaup–Kupershmidt

ut = u5 +10u1u3 +
15
2

u2
2 +

20
3

u3
1

Potential Sawada–Kotera

ut = u5 +10u1u3 +
20
3

u3
1

Kupershmidt Equation [19, 4.2.6]

ut = u5 +5u1u3 +5u2
2−5u2u3−20uu1u2−5u3

1 +5u4u1

Ibragimov–Shabat [5]

ut = u3 +3u2u2 +9uu2
1 +3u4u1

Potential Burgers/Heat Equation

ut = u2 ∼ ut = u2 +u2
1

Potential modified Korteweg–de Vries

ut = u3 +u3
1

Potential Kupershmidt Equation

ut = u5 +5u2u3−5u2
1u3−5u1u2

2 +u5
1

2.4.2.2 Noncommutative Case

Recently, the analysis of integrable evolution equations in which the field variable
u takes its values in an associative, noncommutative algebra, such as matrix, op-
erator, Clifford and group algebras, has attracted attention. A complete classifica-
tion for λ > 0 homogeneous equations with linear leading term was established in
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[24]. (The case λ = 0 poses considerable technical difficulties.) There are only five
noncommutative hierarchies, each generalizing one of the preceding commutative
hierarchies.

Korteweg–de Vries
ut = u3 +uu1 +u1u

Burgers
ut = u2 +uu1, ut = u2 +u1u

Potential Korteweg–de Vries

ut = u3 +u2
1

Modified Korteweg–de Vries I

ut = u3 +u2u1 +u1u2

Modified Korteweg–de Vries II

ut = u3 +uu2−u2u− 2
3

uu1u

Interestingly, whereas the mKdV has two inequivalent noncommutative versions,
there is no noncommutative generalization of the Sawada–Kotera, Kaup-Kupers-
hmidt, Kupershmidt, or Ibragimov–Shabat hierarchies.

2.5 Evolution Systems with k Components

In this section, we use a simple geometric fact to prove that homogeneous evolution
systems with positive weights of order larger than 1 and their linear parts with dis-
tinct nonzero eigenvalues are not symmetry-integrable without quadratic and cubic
terms.

As we mentioned in Sect. 2.2, the generalization of the symbolic method to more
dependent variables is straightforward. We introduce a symbol for each of dependent
variables, like u and v, for instance ξ and η . Thus the symbolic expression for u1u2v3

is 1
2ξ1ξ2η3

1 (ξ1 +ξ2)u2v, symmetric with respect to ξ1 and ξ2, the symbols from us,
and with respect to η1, the symbol from v. If we would not carry along the u’s and
v’s, information would be lost: consider the expressions uv and u2. The alternative
would be to keep the zeroth power of any symbol, so that uv would go to ξ 0η0, but
this is very awkward in actual polynomial computations.

Consider evolutionary vectorfields with two components u and v. Let U
(i, j)

m de-
note a set of differential polynomial vectorfields with index m, total number of x-

derivatives, and degree i in u and j in v. This degree can be −1: ∂
∂u ∈U

(−1,0)
0 .

Assume the weights of u and v are λ1 and λ2, respectively, and λ2 ≥ λ1 > 0. So
any nth-order homogeneous system can be written:
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ut
∂
∂u

+ vt
∂
∂v

= K =∑
i, j

K(i, j)
n−iλ1− jλ2

, K(i, j)
l ∈U

(i, j)
l , i, j ≥−1. (2.14)

Only when n− iλ1− jλ2 < n ∈N does the term K(i, j) make sense and can appear in

the system. The linear part of the system can be written as K(0,0)
n +K(−1,1)

n−λ2+λ1
, where

K(0,0)
n = a1un

∂
∂u +a2vn

∂
∂v , K(−1,1)

n−λ2+λ1
= a3vn−λ2+λ1

∂
∂u , and ai ∈ C.

Assumption 14. We assume that the linear part of the system equals

K(0,0)
n = a1un

∂
∂u

+a2vn
∂
∂v

, a1a2 �= 0, a1 �= a2, n≥ 2. (2.15)

Since the linear part is diagonal, it will act semisimply on polynomial vectorfields.
This simplifies the analysis considerably. Let us compute the action of the diagonal
linear part on vectorfields of Q(i, j) using the symbolic method:

̂
[

Q(i, j),

(
a1un

a2vn

)]
=

(
f (i, j)
u;n (a1,a2;ξ ;η) 0

0 f (i, j)
v;n (a1,a2;ξ ;η)

)
Q̂(i, j)(ξ ;η),

where Q̂(i, j)(ξ ;η) is the symbolic expression of Q(i, j) and

f (i, j)
u;n (a1,a2;ξ ;η) = a1

(
i+1

∑
l=1

ξl +
j

∑
k=1

ηk

)n

−a1

i+1

∑
l=1

ξ n
l −a2

j

∑
k=1

ηn
k ;

(2.16)

f (i, j)
v;n (a1,a2;ξ ;η) = a2

(
i

∑
l=1

ξl +
j+1

∑
k=1

ηk

)n

−a1

i

∑
l=1

ξ n
l −a2

j+1

∑
k=1

ηn
k .

These are two important polynomials corresponding to the G-functions in scalar
case, cf. Definition 3, and related by

f (i, j)
u;n (a1,a2;ξ ;η) = f ( j,i)

v;n (a2,a1;η ;ξ ). (2.17)

This calculation immediately leads to the following result (cf. Proposition 4):

Proposition 15. The space of the symmetries of a linear system of the form of (2.15)
is U (0,0) =

⊕
m U

(0,0)
m .

We are now in the position to do the same analysis as in Sect. 2.4. However,
since we do not have the neat results on functions (2.16) as in Proposition 5 for
the G-functions, the analysis is more complicated and difficult, for details see [31],
where we did complete classification for second-order evolution equations with two
components.

Let S be a symmetry of order m of system (2.14). Its linear part is in U (0,0).

Without loss of generality, we set S(0,0)
m = b1um

∂
∂u + b2vm

∂
∂v . The next equation to

be solved is
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[
S(0,0)

m ,K(i, j)
n−iλ1− jλ2

]
=
[
K(0,0)

n ,S(i, j)
m−iλ1− jλ2

]
, i+ j = 1. (2.18)

Assume that system (2.14) has no quadratic and cubic terms, that is,

K(i, j)
n−iλ1− jλ2

= 0, 1≤ i+ j ≤ 2.

We then need to solve (2.18) for i+ j = 3. Translating this to the symbolic language,
we need to study

(
f (i, j)
u;n (a1,a2;ξ ;η), f (i, j)

u;m (b1,b2;ξ ;η)
)

, i+ j = 3.

If they have no common factors, system (2.14) has no such symmetry.
The following theorem is due to Frits Beukers.

Theorem 16. For any positive integer m the polynomial

hc,m = (ξ1 +ξ2 +ξ3 +ξ4)m− cm−1
1 ξm

1 − cm−1
2 ξm

2 − cm−1
3 ξm

3 − cm−1
4 ξm

4 ,

where Π 4
i=1ci �= 0, is irreducible over C.

Proof. Suppose that ha,m = A ·B with A,B polynomial of positive degree. Then the
projective hypersurface Σ given by ha,m = 0 consists of two components ΣA,ΣB

given by A = 0 and B = 0, respectively. ΣA
⋂
ΣB consists of an infinite number of

points, which should be singularities of Σ since

dha,m

dξi
=

dA
dξi
·B+A · dB

dξi
|ΣA

⋂
ΣB = 0.

Thus it suffices to show that Σ has finitely many singular points.
We compute the singular points by setting the partial derivatives of hc,m equal to

zero, i.e.

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c1ξ1)m−1 = 0,

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c2ξ2)m−1 = 0,

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c3ξ3)m−1 = 0,

(ξ1 +ξ2 +ξ3 +ξ4)m−1− (c4ξ4)m−1 = 0.

From these equations it follows in particular that

ξ1 = ζ1/c1, ξ2 = ζ2/c2, ξ3 = ζ3/c3, ξ4 = ζ4/c4,

where ζm−1
i = 1 and ζ1/c1 + ζ2/c2 + ζ3/c3 + ζ4/c4 = 1. For given ci, i = 1, · · · ,4,

we get finitely many singular points. ��

In two-component case, the ci are determined by a1 and a2. The condition
Π 4

i=1ci �= 0 is automatically satisfied due to the assumption that a1a2 �= 0. This
implies that when system (2.14) has no quadratic and cubic terms, i.e. K(i, j) = 0
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(1 ≤ i + j ≤ 2), it is not integrable. One can even make the stronger statement that
it has no nontrivial generalized symmetries at all!

We can draw the similar conclusion to k-component systems from this theorem
that homogeneous evolution systems with positive weights of order large than 1 and
their linear parts with distinct nonzero eigenvalues cannot have nontrivial general-
ized symmetries without quadratic and cubic terms.

2.6 One Symmetry Does not Imply Integrability

As we proved in Sect. 2.4, scalar evolution equations are integrable once one non-
trivial generalized symmetry exists. However, this cannot be generalized to multi-
component systems. The first example was found by Bakirov [1] (see also [21, p.
381], exercise 5.15 and [3]) that the system

{
ut = u4 + v2

vt = 1
5 v4

(2.19)

has one symmetry of order 6, but no others were found up till order 53. In this
section, we prove that indeed no other symmetries exist for this system. Further
classification and recognition of integrable such type of equations can be found in
[13].

2.6.1 The Symbolic Interpretation of Bakirov’s Example

We rewrite system (2.19) as (u4 + v2) ∂
∂u + 1

5 v4
∂
∂v . Its symbolic form is

(
ξ 4

1 u+ v2) ∂
∂u

+
1
5
η4

1 v
∂
∂v

Since the system satisfies Assumption 14, from Proposition 15, its symmetry of a
given order m has to start with aum

∂
∂u +bvm

∂
∂v , i.e.

aξm
1 u

∂
∂u

+bηm
1 v

∂
∂v

.

At first sight we are losing some candidates (for being a symmetry) here, since
we implicitly assume the vectorfield to be polynomial. As is shown in [1], however,
this is not a restriction.

Computing the commutator of the quadratic part of system (2.19) with this linear
part of the (potential) symmetry, we have

[
η0

1 +η0
2

2
v2 ∂
∂u

,aξm
1 u

∂
∂u

+bηm
1 v

∂
∂v

]
= (a(η1 +η2)m−b(ηm

1 +ηm
2 ))v2 ∂

∂u
.
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Notation 17. Let F(n)
a = a(η1 +η2)n− (ηn

1 +ηn
2 ) and F̄(n)

a = a(x+1)n− (xn +1).

We now construct the quadratic terms of the symmetry. Provided b �= 0, we compute
[(
ξ 4

1 u+ v2) ∂
∂u

+
1
5
η4

1 v
∂
∂v

,
(
aξm

1 u+ Âv2) ∂
∂u

+bηm
1 v

∂
∂v

]

=
(

bF(m)
a/b −

1
5

ÂF(4)
5

)
v2 ∂
∂u

.

Let Â = 5 b F(m)
a/b /F(4)

5 . If Â is polynomial in η1,η2, then

(
aξ p

1 u+ Âv2) ∂
∂u

+bη p
1 v

∂
∂v

is a symmetry of system (2.19).
Therefore, the question about the existence of symmetries of an evolution system

of the form (2.19) is translated into:

Question 18. Given a,n, for which b ∈ C and m ∈ N does F(n)
a divide F(m)

b ?

This can be answered by the following results.

Theorem 19. Let a∈C\{0,1} and n∈N≥2. We consider F̄(n)
a . Suppose that at least

one of the following conditions holds:

1. n≥ 6,
2. n = 4,5 and F̄(n)

a has two zeros α,β �= 0,−1 such that α/β ,(1+α)/(1+β ) or
αβ ,(1+α)/(1+1/β ) are not simultaneously roots of unity.

Then there exist at most finitely many pairs b∈C,m∈N such that F̄(n)
a divides F̄(m)

b .

This theorem will be proved in Sect. 2.6.2.

Remark 20. • For n = 2 or 3, it is easy to check that there are infinitely many such
pairs. Condition 2 in the theorem is violated only in seven cases including a = 1,
see [4] for details.

• Since there is one-to-one correspondence between F(n)
a and F̄(n)

a , we can trans-

late the results on F̄(n)
a to those on F(n)

a , and further back on symmetries of the
evolution systems.

In particular given a,n it is often possible to compute the complete set of b,m
explicitly. This will be done for the example a = 5,n = 4 in Sect. 2.6.3, which is
precisely Bakirov’s example. Here we only give the result.

Theorem 21. Suppose F(4)
5 divides F(m)

b . Then (b,m) equals (5,4) or (11,6).

In the first case, it leads to the system itself. For (b,n) = (11,6), we find Â = 25
22 η

2
2 +

20
11 η1η2 + 25

22 η
2
1 . We now translate these results back to results on symmetries of

system (2.19).
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Corollary 22. The system

{
ut = u4 + v2,
vt = 1

5 v4

has one and only one nontrivial symmetry:
(

u6 +
5

11

(
5vv2 +4v2

1

)) ∂
∂u

+
1
11

v6
∂
∂v

.

2.6.2 The Lech–Mahler Theorem

In this section we prove Theorem 19 by using the Lech–Mahler theorem from num-
ber theory.

First we realize that F̄(n)
a has double zeros for some values of a, which is impor-

tant for our analysis later on.

Lemma 23. Suppose that F̄(n)
a has a multiple zero. Then this is given by an (n−1)th

root of unity ζ and a = 1/(ζ +1)n−1. Together with 1/ζ these are the only multiple
zeros and they have multiplicity two.

Proof. We solve the simultaneous equations F̄(n)
a = dF̄(n)

a /dx = 0. Explicitly, a(x+
1)n = xn +1 and a(x+1)n−1 = xn−1. Multiply the second by x+1 and subtract the

equations. We obtain 0 = 1− xn−1. Hence the roots of F̄(n)
a , denoted by X , are an

n−1th root of unity and from the second equation we get a = 1/(1+X)n−1. Since

d2F̄(n)
a

dx2

∣∣
X = n(n−1)

(
a(x+1)n−2− xn−2)∣∣

X = n(n+1)
(

1
X +1

− 1
X

)
�= 0,

the root X is a double zero. Suppose we have a second (n−1)th root of unity Y such
that a(1+Y )n−1 = 1. In particular we find that |1+Y |= |1+X | and |X |= |Y |. This
implies that either X = Y or X = Y = 1/Y . This proves our lemma. ��

For the proof of Theorem 19 we shall use the following theorem from number
theory [14].

Theorem 24 (Lech, Mahler). Let A1,A2, . . . ,An ∈ C be nonzero complex numbers
and similarly for a1,a2, . . . ,an. Suppose that none of the ratios Ai/A j with i �= j is a
root of unity. Then the equation

a1Ak
1 +a2Ak

2 + · · ·+anAk
n = 0

in the unknown integer k has finitely many solutions.

Repeatedly applying this theorem, we obtain the following corollary:
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Corollary 25. Let A,B,C,D ∈ C be nonzero complex numbers. Suppose that the
equation

Ak +Bk = Ck +Dk

has infinitely many integers k with Ak +Bk �= 0 as solution. Then at least one of the
pairs A/C,B/D or A/D,B/C consists of roots of unity.

Proof of Theorem 19. Let α,β be complex zeros of F̄(n)
a not equal to 0,−1 such

that condition (2) of Theorem 19 is satisfied.
For n = 4 or 5 such zeros exist by assumption. For n≥ 6 we shall prove that such

zeros also exist.
Suppose that α/β ,(1+α)/(1+β ) are roots of unity. Then we have |α|= |β | and

|1+α|= |1+β |. Hence β lies on the intersection of the circles |z|= |α| and |z+1|=
|1+α| which implies β = α or β = α . Similarly if αβ and (1+α)/(1+1/β ) are
roots of unity then β = 1/α or β = 1/α . As a consequence of the statement, we

need to prove there exists a root of F̄(n)
a such that it is not in a set of the form

Vα = {0,−1,α,1/α,α ,1/α}. If F̄(n)
a has multiple zeros then, according to Lemma

23, the multiple zero is an (n−1)th root of unity, which we may assume to be equal
to α . Together with 1/α these are the only multiple zeros and they have multiplicity

two. Whether G(m)
a has multiple zeros or not, it is clear that if a �= 1 and m≥ 6, F̄(m)

a

has a zero outside Vα .
Note that α,β being zeros of F̄(n)

a implies

(αn +1)/(α +1)n = (β n +1)/(β +1)n = a,

that is, (
1

1+1/α

)n

+
(

1
α +1

)n

=
(

1
1+1/β

)n

+
(

1
β +1

)n

.

Suppose F̄(n)
a divides F̄(m)

b for some b ∈ C,m ∈ N. Then we also have

(
1

1+1/α

)m

+
(

1
α +1

)m

=
(

1
1+1/β

)m

+
(

1
β +1

)m

.

Suppose there are infinitely many such pairs (b,m). Then, according to Corollary
25, the ratios

1+1/α
1+1/β

,
1+α
1+β

or
1+1/α

1+β
,

1+α
1+1/β

are roots of unity. Let us assume the first. Then we see that the ratios α/β and (1+
α)/(1+β ) are roots of unity. This was excluded by our assumptions. We deal sim-
ilarly with the second case. ��
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2.6.3 Skolem’s Method

In this section we prove Theorem 21. We assume that the reader is familiar with the
concept of p-adic numbers. The set of p-adic numbers is denoted by Qp and the set
of p-adic integers by Zp.

Lemma 26. (Skolem’s method) Suppose p is an odd prime. Let A,B,C,D ∈ Zp and
suppose they are not zero modulo p. Write

Ap−1 = 1+ pα, Bp−1 = 1+ pβ , Cp−1 = 1+ pγ, Dp−1 = 1+ pδ ,

where α,β ,γ,δ ∈ Zp. Denote for every k ∈ Z, Hk = Ak +Bk−Ck−Dk.
Suppose that Hk �≡ 0 (mod p). Then Hk+r(p−1) �= 0 for all r ∈ Z.
Suppose Hk = 0 and αAk + βBk − γCk − δDk �≡ 0 (mod p). Then, for r ∈ Z,

Hk+r(p−1) = 0 implies r = 0.

Proof. Note that by Fermat’s little theorem,

Hk+r(p−1) = Ak+r(p−1) +Bk+r(p−1)−Ck+r(p−1)−Dk+r(p−1)

≡ Ak +Bk−Ck−Dk ≡ Hk (mod p).

Since Hk �≡ 0 (mod p) we conclude that Hk+r(p−1) �≡ 0 (mod p) for all r ∈ Z and
our first statement follows.

Suppose Hk+r(p−1) = 0 and assume r ≥ 0. Then

0 = Ak+r(p−1) +Bk+r(p−1)−Ck+r(p−1)−Dk+r(p−1)

= Ak(1+ pα)r +Bk(1+ pβ )r−Ck(1+ pγ)r−Dk(1+ pδ )r

=
r

∑
i=1

(
r
i

)
pi
(

Akα i +Bkβ i−Ckγ i−Dkδ i
)

.

Suppose that r �= 0. Dividing by pr and using the fact that

1
r

(
r
i

)
=

1
i

(
r−1
i−1

)
,

we obtain

0 = Akα +Bkβ −Ckγ−Dkδ +
r

∑
i=2

(
r−1
i−1

)
pi−1

i

(
Akα i ++Bkβ i−Ckγ i−Dkδ i

)
.

The summation is of course empty when r = 1. Since p ≥ 3 the number pi−1

i has
p-adic valuation less than 1/p. So after reduction modulo p we obtain

0≡ Akα +Bkβ −Ckγ−Dkδ (mod p)
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which contradicts our assumption. Hence we conclude r = 0. When r < 0 we can
repeat the above proof with A−1,B−1,C−1,D−1 instead of A,B,C,D. ��
Proof of Theorem 21. When F(4)

5 divides F(m)
b this means in particular that the zeros

of f = F̄(4)
5 are a subset of the zeros of F̄(m)

b . This holds true in any field, also p-adic

fields. Let r,s be two zeros of f . Then clearly, (r+1)4

r4+1
= (s+1)4

s4+1
. Suppose f divides

F̄(m)
b for some b,m. Then we also have (r+1)m

rm+1 = (s+1)m

sm+1 and hence

((r +1)s)m +(r +1)m− ((s+1)r)m− (s+1)m = 0.

Note that when modulo 181 we have the factorisation

f ≡ 4(x−66)(x−139)(x−96)(x−56) (mod 181).

Since 181 does not divide the discriminant of f , this implies that f has four roots in
Q181. They are

66+13 ·181, 139+29 ·181, 96+93 ·181, 56+44 ·181 (mod 1812).

We now apply Lemma 26 with p = 181 and A = (r+1)s,B = r+1,C = r(s+1),D =
s+1. We take r,s to be the first two roots. Then, using modulo 1812, we get

A≡ 67+13 ·181, B≡ 82, C ≡ 140+29 ·181, D≡ 9+165 ·181 (mod 1812).

We also compute modulo 181,

α ≡ 33, β ≡ 46, γ ≡ 40, δ ≡ 140 (mod 181).

A straightforward computation shows that Hk ≡ 0 (mod 181) and 0 ≤ k < 180
yields k = 0,1,4,6. Lemma 26 now implies that Hk+180r �= 0 for all r when
k �= 0,1,4,6. When k = 0,1,4 or 6 we easily check that Hk = 0 and

αAk +βBk− γCk−δDk �≡ 0 (mod 181).

Again, application of Lemma 26 shows that Hk = 0⇒ k = 0,1,4,6. When k = 6 we
check that b = r6+1

(r+1)6 = 11 and f divides indeed 11(x+1)6−x6−1. ��
We finally remark that the method sketched in this section works also for other

cases. When (a,b,n,m) = (29,3599,4,10) we can take p = 491. When (a,b,n,m) =
(11,14867171,4,28) or (a,b,n,m) = (17/3,78719/81,4,16) we can take p = 101.

2.7 Concluding Remarks, Open Problems
and Further Development

We have shown in this chapter that the symbolic method, combined with the im-
plicit function theorem for filtered Lie algebras, gives us a powerful technique,
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which translates our classification questions into questions about divisibility. To at-
tack these, we have at our disposal the results of centuries of mathematics, ranging
from number theoretical methods as diophantine approximation theory and p-adic
methods, to algebraic geometry. Still not all problems have been solved, and the
two- and three-variable version of Theorem 16 would be very welcome, even in
some restricted form with relations between the parameters. Nevertheless, all this
seems to be within range, and we may hope that further results along these lines
will enable us to completely classify evolution systems under certain conditions.

We have not discussed here the application of these methods to for instance the
classification of co-symmetries. In principle the same techniques apply, but there
are two difficulties. First of all, the G-functions do not belong to the same class
now, and we have to look at the quotient of a regular G-function and a dual G-
function. This complicates the analysis and makes the results less regular than for
symmetries. The second problem arises when the system does not have a symmetry.
In this case we cannot apply the implicit function theorem for filtered Lie algebras
and we have to go back to ad hoc techniques. These issues are discussed in [26, 29].
Similar remarks apply to the classification of other objects like recursion operators
or formal symmetries.

One can also start, once partial classification results are available, to apply larger
transformation ‘groups’ to the integrable equations, to see which can be transformed
into one another. The introduction of canonical densities as new coordinates can lead
to remarkable simplification of the results, and smaller lists, as was pointed out to
us by Prof. V.V. Sokolov and A. Meshkov.

Further development has shown that symbolic representation can be extended
to differential [30] and pseudo-differential operators [15]. It has been a suitable
tool to study integrability of nonevolutionary [15, 17, 18, 20], nonlocal (integro-
differential) [16] and multi-dimensional equations [34].

2.8 Some Irreducibility Results by F. Beukers

The results in this appendix are obtained by F. Beukers, Mathematical Department,
University of Utrecht and are published here with his kind permission.

Theorem 27. Consider the polynomial G(2)
k = ξ k

1 + ξ k
2 + ξ k

3 + (−ξ1 − ξ2 − ξ3)k.

Then G(2)
k is absolutely irreducible if k is even. When k is odd it factors as

(ξ1 +ξ2)(ξ1 +ξ3)(ξ2 +ξ3)g
(2)
k , where g(2)

k is absolutely irreducible.

Proof. Consider the projective curve C defined by G(2)
k = 0. Suppose that G(2)

k =
A ·B, where A and B are two polynomials of positive degree. Geometrically the curve
C now consists of two components C1,C2 given by A = 0,B = 0, respectively. The
curves C1 and C2 intersect in at least one point, which implies that the curve C has
a singularity.
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Let us now determine the singularities of C , i.e. the projective points (ξ1,ξ2,ξ3)
where all partial derivatives of G(2)

k vanish. Hence

kξ k−1
1 − k(−ξ1−ξ2−ξ3)k−1 = 0,

kξ k−1
2 − k(−ξ1−ξ2−ξ3)k−1 = 0,

kξ k−1
3 − k(−ξ1−ξ2−ξ3)k−1 = 0.

We see that ξ k−1
1 = ξ k−1

2 = ξ k−1
3 = ξ k−1

0 where ξ0 = −ξ1− ξ2− ξ3. By taking
ξ3 = 1, say, we can assume that ξ1,ξ2,ξ0 are (k− 1)th roots of unity such that
ξ0 + ξ1 + ξ2 + 1 = 0. Note that four complex numbers of the same absolute value
can only add up to zero if they form the sides of a parallelogram with equal sides.
Hence one of the ξ1,ξ2,ξ3 is−1 and the others are opposite. Suppose without loss of
generality that ξ0 =−1 and ξ1 =−ξ2. If k is even we see that 1 = ξ k−1

3 =−(−1) =
−ξ k−1

0 , contradicting ξ k−1
3 = ξ k−1

0 . Hence C is nonsingular if k is even. In particular
C is irreducible in this case.

Now suppose that k is odd. Then we have 3k − 6 singular points, namely
(ζ ,−ζ ,1), (ζ ,−1,1), (−1,ζ ,1) where ζ k−1 = 1. Note that we have a priori
3k− 3 singular points, but some of them coincide. Consider such a singular point,
say (ζ ,−ζ ,1). We study the singular point locally by introducing the coordi-
nates ξ1 = ζ + u,ξ2 = −ζ + v. Up to third-order terms we find the local equation
(ζ (u+v)− (u−v))(u+v)+ · · ·. Since the quadratic part factors in two distinct fac-
tors the singularity is simple, i.e. there are two distinct tangent lines through the

point. Consider now the curves (ξ1 +ξ2)(ξ1 +ξ3)(ξ2 +ξ3) = 0 and g(2)
k = 0. These

curves intersect in 3(k−3) points. Moreover, the first curve has three singularities.

This accounts for the 3k−6 singular points we found. Hence g(2)
k = 0 cannot have

any singular points and in particular it is irreducible. ��

2.9 The Filtered Lie Algebra Version of the Implicit
Function Theorem

We give a filtered Lie algebra version of the implicit function theorem in Sect. 2.3.
The proof is quite neat, but more abstract.

Consider a filtered Lie algebra F = F 0 ⊃F 1 ⊃ ·· · ⊃F n ⊃ ·· · and let V be a
filtered F -module V = V 0 ⊃ V 1 ⊃ ·· · ⊃ V n ⊃ ·· · (with

⋂∞
i=0 V j = 0), where the

action of F on V is such that if Xi ∈F i and v j ∈ V j, then Xi · v j ∈ V i+ j.

Definition 28. We call K ∈F nonlinear injective if for all Xl ∈ V l , l > 0, K ·Xl ∈
V l+1⇒ Xl ∈ V l+1.

The nonlinear injectiveness of K ∈F implies that K (mod F 1) �= 0.

Definition 29. We call S ∈F relatively l-prime with respect to K ∈F if S ·X j ∈
ImK (mod V j+1)⇒ X j ∈ ImK|V j (mod V j+1) for all j ≥ l and X j ∈ V j.
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Theorem 30. Let K,S ∈F be linearly independent. Suppose there exists some Q̄ ∈
V such that

• [K,S] = 0,
• K is nonlinear injective,
• S is relatively l-prime with respect to K

and there exists some Q̄ ∈ V such that

• K · Q̄ ∈ V l and S · Q̄ ∈ V 1.

Then there exists a unique Q = Q̄+Ql ,Ql ∈ V l such that

K ·Q = S ·Q = 0.

Proof. We use the fact that we have an action of a Lie algebra on a module, i.e.
[K,S] · = K ·S · −S ·K · . It follows that

K ·S · Q̄ = S ·K · Q̄

By the nonlinear injectiveness of K it follows that S · Q̄ ∈ V l .
Now we prove by induction on p that there exists Q̃ satisfies that K · Q̃ ∈ V p and

S · Q̃ ∈ V p, p≥ l. For p = l we can take Q̃ = Q̄. We have

K ·S · Q̃ = S ·K · Q̃

and therefore S ·K ·Q̃∈ im K (mod V p+1). It follows from the relatively l-primeness
that K · Q̃ ∈ ImK|V p (mod V p+1). So we can define Qp ∈ V p by

K ·Qp =−K · Q̃.

By construction Q̂ = Q̃+Qp obeys K · Q̂ = 0 (mod V p+1). It then follows from the
nonlinear injectiveness of K that S · Q̂ ∈ V p+1. Therefore there exists a convergent
(in the filtration topology) sequence with limit Q = Q̃ +∑∞

p=l+1 Qp such that K ·Q
and S ·Q vanish. Uniqueness follows from the assumption that

⋂∞
p=0 V p = 0. This

proves the statement. ��
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Chapter 3
Four Lectures: Discretization and Integrability.
Discrete Spectral Symmetries

S.P. Novikov

3.1 Introduction

In these lectures I am going to consider the integrability phenomenon as a by-
product of the hidden symmetry of the spectral theory of some famous linear oper-
ators. Our objective is to apply it to the spectral theory of these operators. This
approach (not pretending to be universal) has indeed worked well since 1974 when
the so-called finite-gap 1D periodic and quasi-periodic Schrodinger operators and
corresponding solutions of KdV were discovered (see [1]). Recently we developed
a theory based on the discrete symmetries of the continuous and discrete 1D and
2D Schrodinger operators (see [2, 3]). Some results for the 1D Schrodinger oper-
ators were obtained in the works [4–7, 14]. New direction was developed by the
present author in collaboration with I. Dynnikov in 2002–2008 years extending re-
sults of the last lecture dedicated to the Black and White Triangle Operators on
triangulated manifolds. It involves completely new discretization of complex analy-
sis on the equilateral triangle lattice of the euclidean plane R2 and on the hyperbolic
(Lobatchevski) plane H2. We also developed completely new approach to discretiza-
tion of the nonabelian differential-geometrical GLn-connections – see the authors’
homepage www.mi.ras.ru/snovikov (click publications, items 159,163).

Going back to the famous discovery of the so-called inverse scattering trans-
form for the KdV equation ut = 6uux− uxxx in 1967 (see [8]), we know that it is
based, in fact, on the interpretation of KdV as an isospectral deformation for the 1D
Schrödinger operator Lt = LA−AL,L = −∂ 2

x + u(x, t) (see [9] where an infinite-
dimensional commutative group of such deformations was found; people call it the
KdV hierarchy).

We call this KdV hierarchy a continuous spectral symmetry group for the 1D
Schrödinger operator L.

For the rapidly decreasing (“soliton-type”) class of functions u(x, t)→ 0 when
x→±∞, the inverse scattering problem was solved many years ago by Gel’fand,

S.P. Novikov (B)
University of Maryland, College Park, Maryland 20742-2431, USA;
L.D.Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117334, Russia,
novikov@ipst.umd.edu, novikov@itp.ac.ru
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119–138 (2009)
DOI 10.1007/978-3-540-88111-7 3 c© Springer-Verlag Berlin Heidelberg 2009
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Levitan, Marchenko and others. Therefore, the inverse scattering transform was con-
sidered as an application of this theory for solving the KdV equation.

However, for the x-periodic functions u(x, t), no good solution of the inverse
spectral problem was known before. The approach started in [1] was based on the
connection of the 1D Schrödinger operator to KdV-type systems (“higher KdV”),
generating a KdV hierarchy. It led to the effective solution of inverse spectral prob-
lems for the so-called “finite-gap” Schrödinger operators L and to the exact solutions
of the nonlinear KdV equation. The spectral theory of finite-gap operators, its con-
nection with Riemann surfaces and completely integrable Hamiltonian systems are
(at least) as important as the solutions of KdV. So the continuous spectral symmetry
group certainly played a fundamental role here.

During the last decade we started to study discrete spectral symmetries. In fact,
some of these symmetries were known for many years. For example, the substi-
tutions called today “Darboux transformations” for the 1D Schrödinger operator L
were invented by Euler in 1742. There analogs for the 2D Schrödinger operators
were found by Laplace. The association of the Darboux transformations with KdV
was realized in the early 1970s under the name “Bäcklund transformations”. The
interesting conjecture concerning the connection of cyclic chains of such transfor-
mations with finite-gap periodic potentials was formulated in the work [4] in the
1980s.

However, the studies of the remarkable spectral properties of the low-dimensional
Schrödinger operators based on the discrete spectral symmetries started only in
1990s. One can say that these investigations have roots also in the studies of the fa-
mous quantum physicists of 1930s and 1940s (Dirac and Schrödinger) who started
to work with such transformations in the modern algebraic way and to use some
examples of that kind for very important goals.

3.2 Continuous and Discrete Spectral Symmetries of 1D Systems
and Spectral Theory of Operators. 1D Continuous
Schrödinger Operator and Its Discrete Analogue

Let us consider a one-dimensional Schrödinger operator L =−∂ 2
x +u. For the con-

struction of the Darboux transformation Bc depending on the constant c, we factorize
L in the form

L+ c = QQ+ =−(∂x +a)(∂ −a). (3.1)

Such a factorization requires a solution for the Riccati equation

u+ c = ax +a2. (3.2)

For the real and bounded function u(x) we can always find a constant c big enough
such that this factorization is possible. We call it strong factorization. It depends
on the parameter c and also on the solution of the Riccati equation.
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Any strong factorization generates a Darboux transformation L̃ = Bc(L) of the
operator L by the formula

L̃ = Q+Q,L+ c = QQ+. (3.3)

Lemma 1. For any solution of the spectral equation Lψ = λψ , the new function
Q+ψ = ψ̃ is a solution of the new spectral equation L̃ψ̃ = (λ + c)ψ̃ .

The proof of this lemma is trivial. Let us formulate some useful conclusions:

1. On the formal (local) level, the operator L̃ has “almost” the same eigenfunctions
as L except maybe one function: the operator Q+ has a kernel Q+ψ0 = 0 or
ψ0

x = aψ0.
2. Let us assume that we are dealing with Hilbert space L2(R). The function ψ0

belongs to this space (i.e., it is square integrable on the real line) if and only if
the spectrum of the operator L starts from the point −c, i.e., λ ≥−c, and ψ0 is a
ground state. Therefore there is only one choice of the constant c if operator L is
semibounded.

Example 2. Let L =−∂ 2
x +x2 is a quantum oscillator. We have a strong factorization

here

L+1 =−(∂x− x)(∂x + x);Q+ = ∂x + x;ψ0 = exp{−x2/2} ∈ L2(R).

In this case we have also the famous relations QQ+−Q+Q =−2. All basic eigen-
functions ψn for this operator can be obtained by the iterations ψn = Qnψ0 with
eigenvalues Lψn = (2n+1)ψn.

As we can see for the opposite operator L′ = Q+Q where Q′ = Q+, the equation
Qψ = 0 leads in this case to the function ψ ′0 = exp{x2/2} which does not belong to
the space L2(R). The operator L′ is positive and strongly factorized but its spectrum
does not start from 0 because the “instanton equation” Q+ψ = 0 has no proper
solutions.

As has been well known for many years in the Theory of Solitons, Darboux
transformations generate multisoliton solutions and a more general class of “soli-
tons on the given background”. However, only recently their connection with pe-
riodic and quasi-periodic finite-gap solutions and finite-gap Schrödinger operators
was revealed. Consider now a chain of Darboux transformations

. . . ,Lk,Lk+1,Lk+2, . . . ;Lk+1 = Bck Lk = L̃k. (3.4)

We call chain periodic of the period N if LN +∑ck = L0. These chains were studied
in the work [4] assuming all ck = 0. In particular, an interesting conjecture was
formulated that for the odd values of N = 2M + 1 the operators Lk in the periodic
chain are the finite-gap ones. This conjecture was proved in the stronger form in [5]:
Let N = 2M +1,∑ck = 0. Then the operator Lk is an algebraic operator, i.e., there
exists a differential operator A of the order 2M +1 such that [L,A] = 0. According to
the result of [1], such operators are finite gap in the sense of the spectral theory if the



122 S.P. Novikov

coefficients are smooth periodic or quasi-periodic. For the case N = 2M +1,∑ck =
c �= 0 it was proved in [5] that there is a differential operator A of the order 2M +1
such that

LA−AL = cA. (3.5)

If all operators Lk in the cyclic chain are smooth, then the spectrum of all of
them is equal to the union of N arithmetic progressions with the same difference.
We can say that these operators are analogous to the quantum oscillator. For N = 3
we get new examples of operators with such remarkable properties of the spectrum.
The equation for finding potential reduces in this case to the Painlevé’ equation.
Numerical calculations made by V. Adler in his PhD show that it really has such
nonsingular solutions.

Our conclusion is that even these simple discrete symmetries of the 1D Schröd-
inger operator on the line lead to new interesting results in the spectral theory.

For the even values of N = 2M we do not know of any classification of periodic
Darboux chains. This problem is open.

The discrete analog of the “soliton-type” theory for the 1D Schrödinger operator
appeared many years ago in the theory of the so-called Toda chain and discrete KdV
systems (see [10–12]). The operator L here acts on the functions of the discrete
variable ψk,k ∈ Z. It has a form (for the Toda chain) in terms of the unitary shift
operators T = exp{∂x},T : n→ n+1,T + = T−1

L = cnT + cn−1T−1 + vn;Lψn = cnψn+1 + cn−1ψn−1 + vnψn = λψn (3.6)

and reduction vn = 0 for the discrete KdV [11, 12].
It is interesting to point out that the reduction to standard classical discretiza-

tion cn = 1,n ∈ Z, cannot be recognized in terms of the inverse spectral (scattering)
data. It is noninvariant under the time dynamics of any nontrivial isospectral sys-
tem. As we shall see, it is noninvariant also under the discrete Darboux transfor-
mations B±c . Therefore we come to the following important conclusion: in order
to construct a right (“good”) discretization of the 1D Schrödinger operator
L =−∂ 2

x +u(x), we need to replace derivative ∂x by the “covariant shift” oper-
ator ckT = exp{∂ + s(x)} instead of standard shift operator T = exp{∂}; other-
wise the class of discretized operators will not have discrete (and continuous as
well) spectral symmetry transformations.

Let us construct them using the strong factorization of the first or of the second
type.

The first-type discrete Darboux transformation B+
c has a form

L = QQ+ + c;Q = an +bnT ;Q+ = an +bn−1T−1; L̃+ = Q+Q. (3.7)

The second type B−c is defined in the same way but the role of T and T−1 are
reversed:

L = RR+ + c′;R = un + vnT−1,R+ = un + vn+1T ; L̃− = R+R. (3.8)

The second-type transformations are inverse to the first ones.
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These transformations were studied in the works [6] and [2], Appendix 2. In par-
ticular, we proved that any cyclic sequence of the first-type transformations such
that ∑ck = 0 leads to the finite-gap (algebra-geometric) discrete operators with
Riemann surfaces of the genus no more than half of the period of the chain.
However, if both types are involved, the classification of cyclic chains remains un-
clear. This problem is analogous to the classification of the periodic Darboux chains
of the even length for the continuous Schrödinger operator.

Let us present here two interesting examples of the discrete 1D operators dis-
cussed from the algebraic point of view in the works [6, 7] and also in [2], Appendix
2 from the viewpoint of the spectral theory.

Example 3. Let L = QQ+ + c and QQ+−Q+Q = const. The operators Q,Q+ can
be easily found in the form

Q = 1+
√

a+bnT ;Q+ = 1+
√

a+b(n−1)T−1.

However, these operators cannot be real and adjoint to each other on the whole
lattice Z because linear function a+bn cannot be positive for all n ∈ Z. We require
the “quantization condition” a/b = m∈ Z and positivity a > 0,b > 0. Consider these
operators acting on the subspace H+ in the Hilbert space L2(Z) such that ψn = 0 for
n≤m. Let n = m+k and k > 0. The operators Q,Q+,L are well defined on the space
H+. The ground state Q+ψ0 = 0 is such that

(ψ0
k )2 =

b−k+1

(k−1)!
.

We can see that it is a Poisson distribution. The eigenfunctions ψ l = Qlψ0 are equal
to the so-called Charlet polynomials in the discrete variable k multiplied by the
ground state ψ0

k . Our formula gives a good definition of these polynomials on the
half-lattice Z+ orthogonal corresponding to the Poisson weight. As far as I know,
this discrete realization of the Dirac harmonic oscillator is not mentioned in the
traditional literature in quantum mechanics. The eigenvalues, of course, are the same
as in the standard realization of the commutation relations: λl = lb, l ∈ Z.

Example 4. Consider now a family of operators Lc = QcQ+
c + const where Qc =

1+ canT , the constant a �= 0 is fixed, c �= 0. We have the following relations:

a2Q+
c Qc = Qc′Q

+
c′ +D,D = a2−1,c′ = ca2, (3.9)

where a is the same for all operators involved.

Theorem 5. For a > 1 the operator L = Q+Q acting in the Hilbert space L2(Z) has
a discrete spectrum λn = 1−a−2n,n≥ 0, for λ < 1.

For a < 1 the operator L = Q+Q has a discrete spectrum λn = 1−a2n,n > 0, for
λ < 1.

In both cases the spectrum is continuous for λ ≥ 1
The investigation of the spectrum of this operator for λ ≥ 1 is not done yet.
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For the proof of this theorem, we solve equations Qcψ0 = 0 and Q+
c ψ0 = 0 for

all c �= 0. Selecting the cases when our solution belongs to the space L2(Z), we
apply the “creation operators” Qca−2 and get higher states for all values of c but
the actual value of c is shifted every time when we apply the creation operator:

ψ0
k = (−1)kc−ka−(k−1)(k/2,k ∈ Z, (3.10)

ψ l = QcQca2 Qca4 . . .Qca2l−2ψ0. (3.11)

3.3 2D Schrödinger Operator. Discrete Spectral Symmetries,
Spectral Theory of the Selected Energy Level and
Space/Lattice Discretization

Already in the eighteenth century Laplace invented the transformations which we
are going to use later as discrete spectral symmetries associated with one spectral
level only. Let us consider a hyperbolic Laplace equation on the plane x,y:

Lφ = φxy +Aφx +Bφy +Cφ = 0, (3.12)

where A,B,C are some known functions. We can present it in the form (a weak
factorization of the first type)

Lφ = (Q1Q2 +2W )φ = {(∂x +A)(∂y +B)+2W}φ = 0, (3.13)

where 2W = C−AB−Bx, or in the opposite form (a weak factorization of the
second type)

Lφ = (Q2Q1 +2V )φ = {(∂y +B)(∂x +A)+2V}φ = 0, (3.14)

where 2V −AB−Ay = C. So we have 2V − 2W = Ay−Bx = 2H(x,y) = [Q1,Q2].
We call the quantity H a magnetic field or a curvature for the operator L. There
are natural gauge transformations for this operator

L→ e f Le− f ,φ → e f φ (3.15)

for any function f (x,y). The quantities W (or V ) and H are only invariants of the
gauge transformations.

By the Laplace transformation we call the following map

L→ L̃ = WQ2W−1Q1 +2W,φ → φ̃ = Q2φ . (3.16)

By the opposite Laplace transformation we call the following map

L→ L̃′ = V Q1V−1Q2 +2V, φ̃ ′ = Q1φ . (3.17)



3 Discretization and Integrability 125

Lemma 6. For any solution Lψ = 0 we have L̃ψ̃ = 0 and L̃′ψ̃ ′ = 0. These transfor-
mations are inverse to each other modulo gauge transformation. For the case of the
strong factorization W = const or V = const these transformations transform every
eigenfunction Lψ = λψ of the operator L into the eigenfunction ψ̃ or ψ̃ ′ for the
operator L̃ or L̃′, correspondingly.

The proof of this lemma is almost obvious: the equation Lψ = 0 implies Q1ψ̃ =
−2Wψ by definition. Therefore we have W−1Q1ψ̃ = −2ψ . Applying Q2 to both
sides and multiplying by W after that, we get the desired result. Our lemma is proved
for the first type. For the second type the proof is similar. Let us prove now that they
are inverse to each other: Performing the second type after the first one, we come
to the operator ˜̃L′ = WLW−1. Taking W = exp{ f} we get a gauge equivalence if
W �= 0. The lemma is proved.

Lemma 7. The Laplace transformations are gauge invariant. In terms of the gauge-
invariant quantities, they can be written in the form

W̃ = W + H̃; H̃ = H +1/2∂x∂y logW. (3.18)

Let us demonstrate this here by following a simple but important theorem (in fact,
known already in the nineteenth century to Darboux).

Theorem 8. Let an infinite Laplace chain be given:

. . . ,Lk,Lk+1, . . . : Lk+1 = L̃k. (3.19)

Then this chain can be described by the 2D Toda lattice system and vice versa.

Proof. Let W = e f . When we have

e fk+1 = e fk +Hk+1,

Hk+1 = Hk +1/2∂x∂y fk

as a definition of the Laplace chain in terms of gauge-invariant quantities. So we
exclude magnetic field using the first equation:

Hk+1 = e fk+1 − e fk .

After substitution of this expression into the second equation and making change
of the dependent variables fk = gk+1−gk, we come exactly to the famous 2D Toda
lattice system

1/2∂x∂ygk = egk+1−gk − egk−gk−1 . (3.20)

�
People in soliton theory found the complete integrability of this system (see [13])
but did not know about its connection with the 2D Schrödinger equation (or Laplace
equation in hyperbolic case).

Already in the nineteenth century, geometers like Darboux with his pupils and
others started to use hyperbolic Laplace transformations for the needs of the the-
ory of surfaces imbedded in the euclidean space R3. They also considered Laplace
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chains and periodic chains in particular. Simple calculations show that for the period
N = 2 where L2 = L0, we come to the equation

∂x∂yG(x,y) =−8sinh{G(x,y)}. (3.21)

For the period N = 3 assuming that the magnetic field is equal to zero L0 = L3 =
∂x∂y +2W (x,y), we come to the equation

∂x∂yG = eG− e−2G. (3.22)

Both of these systems are well known in the theory of completely integrable sys-
tems and were obtained in completely different way, with no relationship to the 2D
(linear) Schrödinger operator.

We are going to apply these ideas to the spectral theory of the 2D Schrödinger op-
erator. Let us consider now the elliptic Schrödinger operator written in the weakly
factorized form through the complex derivatives ∂ = ∂x− i∂y, ∂̄ = ∂x + i∂y:

L = (−∂ +A)(∂̄ +B)+2W. (3.23)

We call operator L physical if magnetic field H = 1/2(Az̄−Bz) and potential W =
exp{ f} both are real. We call the operator periodic if both of them are smooth and
double-periodic on the plane R2. We call the periodic operator topologically trivial
if the magnetic flux [H] through the elementary cell K is equal to zero:

[H] = H̄|K|=
∫ ∫

K
H(x,y)dxdy = 0. (3.24)

We call the operator quantized if [H] ∈ 2πZ. From the formulas for the Laplace
transformations written through the gauge-invariant quantities above, we deduce
the following:

Lemma 9. For the smooth physical double-periodic operators we have for the fluxes
through the elementary cell

[H̃] = [H]; [W̃ ] = [W ]+ [H]. (3.25)

These changes lead only to the replacement of the operators ∂x,∂y by the complex
ones ∂ , ∂̄ in all formulas above for the Laplace transformations and Laplace chains.
All formal calculations remain unchanged. However, the equations responsible for
the periodicity property of chains became elliptic. In the global double-periodic
problems on the plane R2, this fact led to the important conclusions (see[2]):

Theorem 10. Let a periodic elliptic Laplace chain be given such that all 2D
Schrödinger operators Lk in this chain are smooth periodic in R2 and physical. Then
all these operators are topologically trivial. All of them have a family of Bloch–
Floquet solutions Lψ = 0 parametrized by the points of some Riemann surface of
finite genus with two marked points (“infinities”). These solutions can be found ex-
plicitly. This family contains a subfamily of the bounded functions on R2 providing
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a basis for the spectral (i.e., energy) level λ = 0 in the Hilbert space L2(R2). This
class of 2D Schrödinger operators was invented in the work [15] in 1976.

Nothing like that exists in the hyperbolic case. The reason for this is that in the
smooth elliptic case any nonlinear system on compact manifold (2-torus here) may
have only a finite-dimensional family of global solutions. For the 1+1-dimensional
completely integrable systems describing the periodicity property of Laplace chains,
this fact leads to the linear dependence of the higher flows in the corresponding
hierarchy and finally to the Riemann surfaces of finite genus, exactly as it was found
for KdV in 1974 (see in [16]).

Example 11. Let N = 2 be the period. We come to the equation

Δ f0 =−8sinh{ f0};W0 = e f0 ; f0 =− f1;H0 = 2sinh{ f0}. (3.26)

Exactly this equation appeared in the theory of the toroidal surfaces in R2 with
constant mean curvature k1 + k2 = const (see in [17] the details and the authors
of this discovery). It was observed in this theory that all of them can be obtained
from the Riemann surfaces of finite genus like in the periodic theory of solitons.
Our theorem can be considered as a natural extension of that technical result with a
completely different interpretation.

We also introduced a notion of semi-cyclic chain L0, . . . ,LN satisfying the
identity:

L0 = LN +C. (3.27)

The most interesting new class of Laplace chains L0, . . . ,LN leading to the opera-
tors with very specific anomalous spectral properties is the class of the quasi-cyclic
chains L0, . . . ,LN , such that the boundary operators are strongly factorizable (all
factorizations on the boundary are assumed to be of the first type, and the Laplace
transformations are assumed to be of the second type):

L0 =−(∂ +A)(∂̄ +B),LN = (∂ +A′)(∂̄ +B′)+CN , (3.28)

where C = const.

Lemma 12. Both semi-cyclic and quasi-cyclic Laplace chains of the length equal to
one N = 1 lead to the Landau operator QQ+ with magnetic field equal to constant
H0 = const and W0 = 0,V0 = H0. Let H0 > 0. Its spectrum consists of the infinite
number of highly degenerate Landau levels Λk,k≥ 0,λk = kH0, isomorphic to each
other by the operator Q:

Q = ∂ +A(z, z̄) : Λk→Λk+1, (3.29)

where Q+Λ0 = 0 and Q+ = ∂̄ +B(z, z̄).

Let a quasi-cyclic chain of the length N be given, H0 > 0 and all operators Lk =
Q+

k Qk + 2Vk in the chain are smooth physical and double-periodic on the plane R2
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where Qk = (∂ +Ak) and Q+ = (∂̄ +Bk). It is convenient sometimes in the physical
case to choose gauge conditions such that Q and −Q+ are adjoint to each other, i.e.,
Ā =−B. We have always

V0−1/2Δ logV0 +H0 = V1;H1 = H0−1/2Δ logV0

for the second-type Laplace transformation.

Theorem 13. The operator LN −CN = QNQ+
N has a highly degenerate space of

ground states
Q+

Nψ
0 = 0;λ0 = 0

isomorphic to the Landau level Λ0. It has also a second highly degenerate level
ΛN ;λN = CN = N[H0], isomorphic to the Landau level. The second level can be
obtained from the solutions Q+

0 φ
0 = 0 belonging to the space L2(R2), by the formula

ψ = (∂ +AN−1) . . .(∂ +A0)φ 0.

The exact elliptic formulas for the functions φ 0 and ψ0 can be extracted from the
work [2] for the case where the magnetic flux is quantized. This formula is based
on the result of [18] for the strongly factorized Schrödinger operators where these
eigenfunctions of the ground level were calculated. The result itself remains true in
the case of the irrational fluxes as well, because we may use a completely localized
basis in the space of groundstates instead of the magnetic Bloch functions used in
these works.

Example 14. Consider the case N = 2. The condition of the strong factorization of
the boundary operators leads to the equation

Δg(z, z̄) = 4eg−2C2;V0 = H0 = exp{g}. (3.30)

We have also C2 = W2 = V1 and H2 = H1 = H0−1/2Δg = C2−H0. We can see that
this equation has a lot of periodic smooth solutions depending on one variable. It
is not hard to prove that it has a lot of smooth double-periodic solutions essentially
dependent on both variables x,y.

3.4 Discretization of the 2D Schrödinger Operators and Laplace
Transformations on the Square and Equilateral Lattices

In the continuous case all formal calculations for the hyperbolic and elliptic cases
were identical. The difference between them originated in the global properties only.
For the difference operators these cases look completely different even on the formal
level.

I. Let us start with the hyperbolic case. The discrete Schrödinger (or Laplace)
equation is defined for the function ψn where n = (n1,n2) on the square lattice n∈ Z2
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on the plane by the formula

0 = Lψn = anψn +bnψn+T1 + cnψn+T2 +dnψn+T1+T2 , (3.31)

where n + T1 = (n1 + 1,n2);n + T2 = (n1,n2 + 1). The operator L is well-defined
modulo gauge transformations

L→ fnLgn;ψn→ g−1
n ψn, (3.32)

where fn,gn are nonzero functions.
There exists a unique weak factorization of this operator written in the form

L = fn[(1+unT1)(1+ vnT2)+wn] = fn[Q1Q2 +wn] (3.33)

(this is a first-type factorization). It generates a (first-type) Laplace transformation

L→ L̃ = wnQ2w−1
n Q1 +wn; ψ̃ = Q2ψ (3.34)

up to gauge transformation. As in the continuous case, the coefficients un,vn,wn can
be easily found by elementary algebraic formulas. It was observed, in fact, in 1985
(see [19]) that the equation Lψ = 0 on the square lattice (above) has a nice family of
algebra-geometric exactly solvable cases. Such solvable cases and discrete spectral
symmetries normally appear exactly for the same classes of operators.

There are many orthonormal bases T ′1 ,T
′

2 equivalent to each other in the square
lattice. We can take any one of them: (T ′1 ,T

′
2) = (T±1

i ,T±1
j ) where i =�= j and i, j =

1,2. Any choice of basis defines a Laplace transformation

L→ L̃′; ψ̃ ′ = Q′2ψ

through the weak first-type factorization of the form

L = f ′n[Q
′
1Q′2 +w′n];Q′1 = 1+u′nT ′1;Q′2 = 1+ v′nT ′2 . (3.35)

We have a total number of eight for the Laplace transformations defined in this way.

Lemma 15. The Laplace transformations defined above generate a group with four
generators B±,± corresponding to the bases T ′1 = T±1

1 ,T ′2 = T±1
2 . The Laplace trans-

formations correspondent to the basis T ′1 ,T
′

2 are inverse to the Laplace transforma-
tion correspondent to the basis T ′2 ,T

′
1 modulo gauge transformations.

This statement can be checked by elementary calculation.
As in the continuous case, we have gauge-invariant quantities.

Lemma 16. A pair of gauge-invariant quantities (the “discrete curvatures”) is de-
fined as

K1n =
bncn+T1

dnan+T1

,
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K2n =
cnbn+T2

dnan+T2

.

All other gauge invariants, including the potential wn, can be expressed through
them. In particular, the potential wn has a form K1n = (1 + wn)−1. A “magnetic
field”

Hn =
vnun+T2

unvn+T1

can be expressed through the quantities K1,K2. They can also be expressed in terms
of wn,Hn.

As in the continuous case, it is convenient to write Laplace transformation in terms
of wn,Hn:

Lemma 17. The Laplace transformation can be written in the form

1+ w̃n+T1 = (1+wn+T2)
wnwn+T1+T2

wn+T1wn+T2

H−1
n ,

H̃n =
1+wn+T2

1+ w̃n+T2

.

For the infinite Laplace Chain

H̃k = Hk+1, w̃k = wk+1,

we can express Hk through wk,wk+1 as in the continuous case. It leads to the com-
pletely discrete 2D Toda lattice (it is a discrete 3D system found by Hirota many
years ago from completely different ideas)

(
1+wk+2

n+T1

)(
1+wk+1

n+T2

)
(

1+wk+1
n+T1

)(
1+wk

n+T2

) =
wk

n+T1
wk

n+T2

wk
nwk

n+T1+T2

.

Its reduction for the periodic Laplace chains of the length N = 2 leads to the nice
analog of the sinh-Gordon equation (see [3]). In the discrete case we have a big
group of Laplace transformations generated by the four generators (above). This
group has not been studied yet.

II. The elliptic case is especially interesting. It turns out that in this case the
right discretization of the second-order elliptic real self-adjoint operators (i.e., op-
erators of the form L = −Δ +U(x,y)) admitting Laplace transformations should
be constructed on the equilateral triangle lattice. So in this case even the form of
discretized elliptic operators has nothing to do with the hyperbolic case described
above.

For the equilateral triangle lattice we have a basis T1,T2 such that the shift oper-
ator T1T−1

2 has the same length. Therefore any vertex n = (n1,n2) in the lattice has
exactly six closest neighbors n+T ′ where T ′= T±1

1 or T ′= T±1
2 or T ′= (T1T−1

2 )±1.
We write a real self-adjoint operator in the form
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L = an +bnT1 + cnT2 +dn−T2T1T−1
2 +ad joint.

We consider the zero-level gauge transformations preserving a form of the opera-
tor and a zero spectral level Lψ = 0:

L→ fnL fn,ψn→ f−1
n ψn.

Lemma 18. Any real self-adjoint operator of this form with nonzero coefficients
bn,cn,dn can be presented in the weakly factorized form of the first type

L = QQ+ +wn;Q = xn + ynT1 + znT2,

where T +
i = T−1

i , i = 1,2;(AB)+ = B+A+. This form is unique if the coefficients
c,b,d,x,y,z are positive.

Any equivalent basis T ′1 ,T
′

2 with angle equal to 2π/3 defines the analogous
Laplace transformation. There is no difference between the pairs T ′1 ,T

′
2 and T ′2 ,T

′
1 in

this factorization. So we have six different pairs:

(T1,T2) ,
(
T2,T2T−1

1

)
,
(
T2T−1

1 ,T−1
1

)
,
(
T−1

1 ,T−1
2

)
,
(
T−1

2 ,T1T−1
2

)
,
(
T1T−1

2 ,T−1
2

)
.

Lemma 19. For the nonzero potential wn a Laplace transformation is defined as

L̃ = w1/2
n Q1w−1

n Q2w1/2 +wn; ψ̃ = w−1/2Q1ψ

and the operator L̃ is real self-adjoint. The Laplace transformations correspondent
to the inverse bases T1,T2 and T−1

1 ,T−1
2 are inverse to each other. Therefore the

group of Laplace transformations is generated by three generators.

In the work [3] we calculated how these three generators can be expressed through
the first one and rotations of the lattice. Therefore there is essentially one Laplace
transformation only in this case.

Let us consider now a special class of the purely factorizable operators in the
strong sense:

L = QQ+ + const

(“white factorization”) or
L = Q+Q+ const,

(“black factorization”) where Q = xn + ynT1 + znT2. Especially interesting here is
the case when the white triangle equation

Q+ψ = 0 (3.36)

for the first case, or the black triangle equation

Qψ = 0 (3.37)

for the second case, has nontrivial solutions belonging to the space L2(Z2).
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Example 20. Let Qc,d = 1 + cel1(n)T1 + del2(n)T2 where l1, l2 are the linear forms in
the variables n1,n2 with real coefficients

li =∑
j

li jn j; i, j = 1,2;n j ∈ Z. (3.38)

Theorem 21. The black triangle equation Qψ = 0 has an infinite-dimensional sub-
space of solutions belonging to the space L2(Z2), if one of the following conditions
is satisfied

(a) lii > 0, i = 1,2; l11l22− l2
12 > 0,

(b) lii > 0, i = 1,2; l11l22− l2
21 > 0,

(c′) l11 > 0; l11l22− l2
12 > l11(l21− l12),

(c′′) l22 > 0; l11l22− l2
21 > l22(l21− l12).

The operator L = Q+Q has a zero point λ = 0 as a point of discrete spectrum in
these cases, such that its multiplicity is infinite.
There is also a similar statement for the white triangle equation.

For the proof of the theorem, we make a substitution

ψn = e−K2(n)ηn,

where K2(n) is a quadratic form in the variables n1,n2. After that we assume that
coefficients of the equation for the quantity ηn either depend on the variable n1 only
(this is the case (a) above) or depend on the variable n2 only (this is the case (b)
above) or depend on the variable n1 + n2 only (this assumption leads to the cases
(c’) or (c”) above).

In case (a) we are looking for the solutions of the form

ηn = wn2φn1 .

Let l21 > l12. We choose the value of w = wq such that φn1 = 0 for n1 > q;q ∈ Z.
This assumption leads to the solutions belonging to the space L2(Z2). Other cases
can be considered in a similar way – see details in [3].

Consider now a special subcase of this example where

2l11 = 2l22 = l12 +121. (3.39)

Lemma 22. The operators Q,Q+ satisfy the following relations

Qc,dQ+
c,d−1 = u−2(Q+

c′,d′Qc′,d′ −1), (3.40)

where u = el11 ,v = el12 ,c′ = u2c,d′ = u2d.
Using these relations and the groundstates found before, we come to the following:

Theorem 23. The spectrum of operators L = QQ+ and L̃ = Q+Q under the condi-
tions above is discrete for λ < 1 and can lie in the following points only:
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(a) λ j = 1−u2 j, j ≥ 0,u < 1,

(b) λ j = 1−u−2 j,u > 1.

In the following cases the spectrum of operator L occupies all these points, and the
spectrum of operator L̃ occupies all these points except λ0 = 0:

u−3 > v−1 > u−1 > 1,

u−1 > max(v,v−1)≥ 1.

The replacement u→ u−1 in these conditions leads to the interchange between L and
L̃ in the theorem. All these levels are infinitely degenerate (“The discrete analogs of
Landau levels”).

Nothing is known about the spectrum for λ ≥ 1. It is certainly continuous. The
interesting multi-dimensional analogs of the operators satisfying the relation above
were found in the work [3] for the multi-dimensional analogs of the equilateral
lattice, but their spectrum is not found yet.

In the special case u = 1 of the example above, we have

Qc,dQ+
c,d = Q+

c,dQc,d .

Here we should consider both (white and black triangle equations) simultaneously:

Qψ = 0;Q+ψ = 0.

This situation can be naturally extended to the more general pair of equations (black
and white):

Q1ψ = 0;Q2ψ = 0.

This pair leads to the “discrete curvature” making an obstacle for the local existence
of solutions around every vertex. These ideas were developed in [3] in a much more
general situation.

3.5 2D Manifolds with the Colored Black–White Triangulation.
Integrable Systems on a Trivalent Tree

In the work [3] a theory of Laplace transformations was developed on the 2D mani-
folds with the colored “black–white triangulation”. We assume that a color (black
or white) is assigned to every triangle in the triangulation such that any triangles
with common edge should have opposite colors. The black triangle operator Q can
be defined by the field associating number bP:T to the pair P,T where T is a black
triangle and P is its vertex P ∈ T . We define operator Q by the formula

ψ̃T = QψT =∑
P

bP:TψP:T .
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It maps the space of functions on the set of vertices into the space of functions on
the set of black triangles. The factorized operators have a form L = Q+Q; their zero
modes satisfy the black triangle equation

QψT = 0.

This structure permits to define combinatorial geodesics consisting of edges
and passing every vertex “as a straight line” (i.e., the numbers of triangles from
both its sides should be equal to each other). The right (left) horocycles are such
lines that there is exactly three triangles from the right (left) side of it in every
vertex. The right (left) curvature of the combinatorial line is measured by the number
of triangles from the left (right) side of it in the vertices. This structure imitates
somehow conformal geometry. In particular, the black (or white) triangle equation
can be considered as reasonable discrete analogs of the complex (covariant) ∂ + A
and ∂̄ + B operators: they factorize the second-order elliptic operators (it does not
matter that complex numbers are not involved in their definition); they are “more
elliptic” than any other first-order discrete operators known until now.

Example 24. Let bP:T = 1 for the operator Q. The operator L = Q+Q can be com-
pared with Laplace–Beltrami operator L0 = dd∗ where d is a standard boundary
operator and d∗ is a coboundary operator. If RP is the number of triangles entering
the vertex P, we have

L0ψP =−∑
P′
ψPP′ +RPψP,

LψP =∑
P′
ψPP′ +RPψP.

Therefore we conclude that there is an equality

L =−L0 +2RP.

The case RP = 6 corresponds to euclidean geometry. In principle, a quantity like RP

corresponds to something like the scalar curvature.

Boundary problems of the Dirichlet type for the triangle equations can be posed
for the bounded simply connected domains on the plane with the black–white tri-
angulation. However, careful analysis of the admissible boundary functions is re-
quired.

Example 25. Let me remind here that in the euclidean plane with equilateral lattice
Z2 the black triangles have a form n,n+T1,n+T2 for all n∈ Z2. Consider any lattice
straight line Z′ dividing Z2 into the parts

Z2 = R+
⋃

R−;R+
⋂

R− = Z′,

where R+ touches its boundary Z′ by the black triangles. Starting with arbitrary
data φn,n ∈ Z′, we can always find unique solution to the black triangle equation
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Qψn = 0 in the domain n ∈ R+ such that ψ = φ on the boundary. This initial value
problem is hyperbolic. However, the initial value problem in the other direction R−
is parabolic: for finding a solution in the domain R− to the black triangle equation
Qψ = 0 such that ψn = φn for n ∈ Z′ we should require some decay for the Cauchy
data φn on the line Z′. The operator expressing the solution ψ on any line parallel to
R through the initial value φ became nonlocal in this domain: you have to integrate
along the whole line Z′.

Now let us consider a plane R2 with a colored black–white triangulation.
Studying the Dirichlet-type boundary problems, we start with some simply con-
nected bounded triangulated sub-domain D in it with the thin boundary polygon
Γ = ∂D. It means that there are no triangles in D whose vertices all belong to the
polygon Γ . We call a boundary edge white if its white side lies inside of the domain
D, otherwise we call a boundary edge black. We have

|Γ |= Γb +Γw,

where Γb and Γw are exactly the number of black (white) boundary edges in Γ .
The elliptic-type Dirichlet boundary problem is to find a solution to the black

triangle equation Qψ = 0 in the domain D such that ψP = φP on the boundary
P ∈ ∂D =Γ . It turns out that for the correct solution of this problem we should start
with the boundary function φ given in some part of the boundary only:

1. The total number of known values φP,P ∈ Γ , should be equal to the number
V−Tb where V is the number of vertices in D, Tb (Tw) is the number of black (white)
triangles and Tb +Tw = T, Tw = Tb +Δ by definition.

Lemma 26.

Δ =−(Γb−Γw)/3,

V −Tb = 1+(|Γ |+Δ)/2.

The proof of this statement follows easily from the topology of the plane. Let us
denote by the letters V,E,T = 2Tb + Δ the numbers of vertices, edges, triangles
and black triangle Tb correspondingly in the domain D. From the Euler identity and
elementary combinatorics we have

V −E +T = 1;E = 3/2T + |Γ |/2;Δ =−(Γb−Γw)/3.

The total number of unknown quantities is equal to V . The number of equations is
equal to Tb where T = Tb +Tw, Tw = Tb +Δ . So the number Q of independent data
should be equal to

Q = V −Tb = 1+(|Γ |+Δ)/2.

The lemma is proved.
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2. For the “elliptic-type” boundary problems the set of known values should never
contain both boundary vertices P1∪P2 = ∂ l of any black edge l on the curveΓ = ∂D.
We are going to develop this subject in the next work.

III. Let us consider now a trivalent tree following the work [20]. Many people
studied the second-order (Laplace–Beltrami) difference operators on the trees, but
nothing like hidden integrability of the soliton type was found for them. We are
going to consider graphs (one-dimensional simplicial complexes) with the natural
geodesic metric such that the length of every edge d(PP′) is equal to one, and every
edge has exactly two vertices PP′ . There are no cycles in the trees by definition.

The operator L acting on the functions of vertices

LψP =∑
Q

bPQψQ

is real if all coefficients are real. It has an order k equal to the maximal diameter of
the interaction domain in the vertices P, i.e., k = maxPd(Q1Q2) such that bPQ1 �=
0,bPQ2 �= 0. The real operator is symmetric or self-adjoint if bPQ = bQP. A self-
adjoint operator should have an even order k = 2l, l = 0,1,2, . . .. For the second- and
fourth-order cases we frequently numerate the highest order coefficients by the pair
of adjusting edges bPP′′ = bRR′ and the second-order terms by one edge bPP′ = bR.
Consider now the set of all fourth-order real self-adjoint operators L on the trivalent
tree such that the highest order coefficients are always positive:

bPP′′ > 0;d(P,P′′) = 2,

LψP =∑bPP′′ψP′′ +bPP′ψP′ +wPψP,

where d(PP′′) = 2,d(PP′) = 1. Let me remind that in 1976 the so-called L–A–B-
triples were invented and studied in the works [15, 21] as completely integrable
soliton systems associated with the zero level of the 2D Schrödinger operator on
the Euclidean plane R2. Their discretization on the regular lattices Z2 was discussed
above.

Trivalent tree Γ has a geodesic structure analogous to the 2D hyperbolic (noneu-
clidean) plane. As we shall see, nontrivial L− A− B triples appear here for the
fourth-order self-adjoint operators. Nothing like that exists here for the second-order
difference operators.

Theorem 27. There exists a nontrivial time dynamics of the form

Lt = LA−BL,

where the difference operators A,B have second order and B = At

AψP =∑cPP′ψP′ .

The coefficients cPP′ for the edges R = PP′ can be calculated by the following for-
mula. Fix some “initial” point P0 ∈Γ ; for every point P∈Γ there is a unique simple
path γ = [P0, . . . ,P] consisting of the edges R0, . . . ,Rk and joining the initial point
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with point P. We introduce a multiplicative one-cocycle Ψ(R) whose value for the
oriented edge R = Q1Q2 can be described in the following way. Let the edges R′1,R

′
2

enter the first vertex Q1, and the edges R′′1 ,R
′′
2 come out of the second vertex Q2, not

one of these edges coincides with R. We define this cocycle and the coefficients c

Ψ(R) =−
bRR′′1

bRR′′2
bR′1RbR′2R

,

cR =− 1
bR′1R′2

(
∏
Ri∈γ

Ψ(Ri)

)
,

where R = PP′.

There is nothing surprising here that this expression is nonlocal: let me remind that
for the best-known hierarchy (the so-called “Novikov–Veselov” hierarchy [22, 23])
associated with the 2D Schrödinger operator L, such nonlocality is also presented.
It is presented also in the famous KP hierarchy, so it always appears for the 2 + 1-
systems.

Theorem 28. The generic real fourth-order operator L on the trivalent tree Γ ad-
mits a one-parametric family of factorizations through the second-order operators

L = QtQ+uP,

where QψP = ∑Q dPQψQ + vPψP and dPQ > 0,

bPP′′ = dP′PdP′P′′ ;bPP′ = dP′PvP′ +dPP′vP,

wP = v2
P +∑

P′
d2

P′P +uP.

Therefore the Laplace transformation are defined for this class of operators.

Recently in the work [24] these results were extended to all trees: the last theorem is
not true anymore for the generic operators, but for the subclass of factorizable real
self-adjoint fourth-order operators L the analog of the first theorem remains true.
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Chapter 4
Symmetries of Spectral Problems

A. Shabat

Abstract Deriving abelian KdV and NLS hierarchies, we describe non-abelian sym-
metries and “pre-Lax” elementary approach to Lax pairs. Discrete symmetries of
spectral problems are considered in Sect. 4.2. Here we prove Darboux classical the-
orem and discuss a modern theory of dressing chains.

4.1 Lie-Type Symmetries

4.1.1 Cross-Differentiation

We discuss below the consistency of the spectral problem

ψxx = U(x,λ )ψ, U(x,λ ) = λm +u1(x)λm−1 + · · ·+um(x), (4.1)

with the evolutionary linear equation of the general form

Dt(ψ) def= ψt +λtψλ = A(x,λ )ψx +B(x,λ )ψ. (4.2)

The spectral parameter λ does not depend on x and therefore we assume that

λt = k(λ ).

Proper forms of k(λ ) will be defined using necessary conditions of compatibility of
Eqs. (4.1) and (4.2) for a single function ψ = ψ(x, t,λ ).

The action of Dt on the potential U is defined by the equations

Dt(U) = Ut +λtUλ = Bxx +2AxU +AUx, 2Bx =−Axx. (4.3)

In order to derive these we have to differentiate (4.1) with respect to time t. If there
is a common solution ψ(x, t,λ ) of (4.1), (4.2) then (ψx)t = (ψt)x and, therefore,

A. Shabat (B)
L.D. Landau Institute for Theoretical Physics, Kosygina 2, Moscow 117334, Russia,
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Dt(ψx) = Axψx +Aψxx +Bxψ +Bψx = A1ψx +B1ψ,

where A1 = Ax + B and B1 = Bx + AU. Equating now the terms with ψx and ψ,
respectively, in the equation

Dt(ψxx) = A2ψx +B2ψ = Dt(U)ψ +UDt(ψ)

one obtains (4.3). Hereafter, we exclude B and rewrite (4.2) and (4.3) as follows:

Dt(ψ) = ψt +λtψλ = Aψx−
1
2

Axψ, (4.4)

2(Ut + k(λ )Uλ ) = 4UAx +2UxA−Axxx. (4.5)

We shall consider the polynomial (in λ ) case

A = A(x, t;λ ) = a0(x, t)λ n +a1(x, t)λ n−1 + · · ·+an(x, t)

and try to define coefficients of A and the function k(λ ) = λt by equating different
powers in λ in Eq. (4.5).

The consistency condition (4.5) has numerous unexpected applications. To high-
light the general procedure we begin with a description of obvious symmetries of
the classical linear Schrödinger equation

ψxx = (u−λ )ψ. (4.6)

in terms of (4.4).

Example 1. Let U = u−λ , A≡ a in (4.5). Then

2ut −2k(λ ) = 4(u−λ )ax +2uxa−axxx ⇒ λt = ε1λ + ε0, axx = 0.

In the generic case we find

a = x, λt = 2λ ⇒ ψt +2λψλ = xψx, ut = 2u+ xux.

In order to integrate these first-order PDEs one can use the corresponding system of
characteristic differential equations

dt
1

=
dλ
2λ

=−dx
x

=
du
2u

. (4.7)

Thus one obtains the underlying scaling transformation

ψ (x,λ ) �→ ψ
(

x̂, λ̂
)

, x̂ = x/q, û = q2u, λ̂ = q2λ .

Other obvious transformations

ψ (x,λ ) �→ ψ
(

x̂, λ̂
)

, x̂ = x+ τ, û = u+ ε, λ̂ = λ + ε
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which leave the Schrödinger spectral problem invariant correspond to the case
ax = 0. In particular,1

a = 1, λt = 0 ⇒ ψt = ψx, ut = ux.

In this case the characteristic differential equations (cf. (4.7)) define the vector field

D = ∂x +ux∂u +uxx∂ux + . . . ,

which we call the operator of total differentiation with respect to x. Analogous vec-
tor field in the case (4.7)

D̂ = 2λ∂λ − x∂x +2u∂u +3ux∂ux + . . .

satisfies the commutation relation as follows: [D̂,D] = D.

Much more intriguing applications are related to the case

U = λ 2 +u1(x)λ +u2(x), A(x,λ ) = a0(x)λ +a1(x). (4.8)

Equation (4.5) yields in this case

λt = k(λ ) = ε0λ 2 + ε1λ + ε2, a0,x = ε0, (2a1 +a0u1)x = 2ε1, (4.9)

u1,t + ε1u1 +2ε2 = a1u1,x +2u1a1,x +a0u2,x +2u2a0,x, (4.10)

u2,t + ε2u1 = a1u2,x +2u2a1,x−
1
2

a1,xxx. (4.11)

Now, let us consider the potentials u1,t = u2,t = 0 which are invariant under the
t-evolution. In this case the first two of the above equations allow to find u1, u2

in terms of a1 and the last one can be reduced to the second-order ODE for a1.
Choosing in (4.9)

k(λ ) = 1, λ , λ 2, λ (λ −λ0),

we get, respectively, the list of Painlevé equations as follows:

yxx = 2y3 + xy+α, (4.12)

yxx =
y2

x

2y
+

3y3

2
+4xy2 +2(x2−α)y+

β
y

, (4.13)

yxx =
y2

x

y
− yx

x
+

αy2 +β
x

+ γy3 +
δ
y
, (4.14)

yxx =
(

1
2y

+
1

y−1

)
y2

x−
yx

x
+

2
x2 (y−1)2

(
αy+β

y

)
+

γy
x

+
δy(y+1)

y−1
. (4.15)

For instance, in the case k(λ ) = 1 we find by a0 = 1

1 Any spectral problem (4.1) possesses this symmetry.
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u1 =−2a1 + c1, u2 = 2x+3a2
1 +2c1a1 + c2,

where c1, c2 are constants of integration. The Painlevé equation P2 in the canonical
form (4.12) is now obtained from (4.11) by appropriate rescaling.

One can, thus, reformulate results about zero-curvature representations for
Painlevé equations P1–P5 known in literature as the Garnier theorem. Namely,

the list above corresponds to the Lax pairs

k(λ )ψλ = A(x,λ )ψx−
1
2

Ax(x,λ )ψ, ψxx = U(x,λ )ψ,

where the general form of A, U is shown in (4.8). The Painlevé equation P1:

yxx = 6y2 + x, (4.16)

which is absent in the above list, corresponds to the Lax pair as follows:

ψλ = (4λ +2u)ψx−uxψ, ψxx = (u(x)−λ )ψ

and describes stationary solutions of the evolutionary equation

ut +uxxx = 6uux +1.

In general, the compatibility condition (4.5) for Schrödinger spectral problem (4.6)
with A = a0λ +a1 describes degenerated cases of Painlevé equations with the van-
ishing of some parameters in the above list (see [5]). In particular, in the case of
Example 1 potentials of spectral problem (4.6) which are invariant under scaling are
as follows:

xux +2u = 0 ⇔ u(x) = αx−2.

It should be noticed that when λt = 0, A = λ +a(x) stationary equations (4.10),
(4.11) with u1,t = u2,t = 0 are reduced to the first-order ODE as follows:

a2
x = ε4a4 + ε3a3 + ε2a2 + ε1a+ ε0.

Thus, invariant potentials in this case are just elliptic functions.
Closing this terse introduction of the theory of symmetries we have to define the

Lie bracket for t-derivations defined by (4.4). Namely, for any two symmetries of
the spectral problem (4.1)

Dl(ψ) = Al(x,λ )ψx−
1
2

Al,x(x,λ )ψ, Dl(λ ) = kl(λ ), l = i, j,

we introduce Di j = [Di,D j] as follows

Di j(ψ) = A(x,λ )ψx−
1
2

Ax(x,λ )ψ = (DiD j−D jDi)ψ,
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where

A = Di(A j)−D j(Ai)+A jAi,x−AiA j,x, Di j(λ ) = ki j(λ ) = k j,λ ki−ki,λ k j. (4.17)

It is straightforward yet not easy to check out that the compatibility condition (4.5)
for Di j follows from ones for Di and D j.

4.1.2 Isospectral Symmetries

The basic role further on will play the bilinear form of the spectral problem (4.1).
Namely, if ψ1, ψ2 are linear independent solutions (4.1) then

β (λ ) = 〈ψ1,ψ2〉= ψ1ψ2,x−ψ1,xψ2 = const

and

A = ψ1ψ2 ⇒
β
A

= f2− f1,
Ax

A
= f2 + f1, f j =

ψ j,x

ψ j
.

In virtue of the Riccati equation

fx + f 2 = U, f = ψ−1ψx

and the above formulae for f j in terms of A we find that the function A(x,λ ) =ψ1ψ2

satisfies the equation as follows:

−2AAxx +A2
x +4UA2 = α(λ ) (4.18)

with α = β 2. Thus for a given solution A of (4.18) using the formulae for f1 and
f2 we can find ψ1 and ψ2 by quadratures. One has to notice that we can normalize
the right-hand side of Eq. (4.18) by multiplication of solutions upon appropriate
function on λ .

Definition 2. We shall call the nth degree polynomial A in λ an isospectral symme-
try of order n of the spectral problem (4.1) iff deg(4UAx +2UxA−Axxx) < deg(U).

The aim of this definition is to eliminate ambiguity in the process of defining the
polynomial A(x,λ ) by Eq. (4.5) using the isospectrality constraint Dt(λ ) = 0. Thus
the evolutionary differentiation Dt acts now as follows:

2Dt(U) = 4UAx +2UxA−Axxx, Dt(ψ) = Aψx−
1
2

Axψ. (4.19)

We shall show that the isospectrality constraint cancels the explicit x-dependence of
the coefficients of the polynomial A (cf. Sect. 1.1).

Definition 3. We shall call the generating function (of isospectral symmetries) of
spectral problem (4.1) the formal power series in 1/λ :

Y (x,λ ) = 1+
∞

∑
k=1

(λ )−kyk(x), (4.20)
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which is defined by the equation

−2YxxY +Y 2
x +4UY 2 = 4λm. (4.21)

Equation (4.21) yields 2y1 + u1 = 0 by equating coefficients by λN−1. One can
similarly extract from Eq. (4.21) the exact recurrency formula for coefficients y j in
terms of yk, k < j. For example, in the quadratic case U = λ 2 +u1λ +u2 we find

2y1 +u1 = 0, 2y2 +u2 = 3y2
1, 4(y3−3y1y2 +2y3

1) = y1,xx, . . . . (4.22)

For any spectral problem (4.1), we can assume that coefficients yk in (4.20) are
defined using (4.21) in terms of the potential U and, thus, are given as differential
polynomials in u1, . . . ,uN . Obviously,

−Yxxx +4UYx +2UxY = 0 (4.23)

and after multiplication by λ n we obtain readily

Lemma 4. For any n = 0, 1, 2, . . . the formula

An = λ n + y1λ n−1 + · · ·+ yn ≡ (λ nY )+ (4.24)

defines the nth order isospectral symmetry of corresponding spectral problem.

It follows from Definition 2 that the sum of two isospectral symmetries is symme-
try as well and it is easy to see that leading coefficient a0 of any nth order symmetry
A = a0λ n + · · ·+an has to be constant. Invoking Lemma 4 and induction in n we see
that polynomials (4.24) form a basis in the linear space of isospectral symmetries.
These polynomials An in λ are homogeneous in the sense that

D̂(An) = nAn, (4.25)

where D̂ is a vector-field related to the scaling symmetry of spectral problem (4.1)
(cf. Sect. 1.1). For instance, in the quadratic case U = λ 2 +u1λ +u2

D̂ = λ∂λ +u1∂u1 +2u2∂u2 +2u1,x∂u1,x +3u2,x∂u2,x + · · · .

Using (4.25), one can prove (see also [3])

Theorem 5. The Lie algebra of isospectral symmetries of the spectral problem (4.1)
with the bracket (4.17) is abelian and symmetries (4.24) define the basis of this
algebra.

Proof. Let Ai and A j be two isospectral symmetries (4.24). Then the formula (4.17)
yields an isospectral symmetry A and we have

D̂(Ai) = iAi, D̂(A j) = jA j ⇒ D̂(A) = (i+ j)A.

In the case A �= 0 it is (i+ j)th order isospectral symmetry and hence A = a0λ i+ j +
· · ·+ai+ j, where a0 �= 0. Yet the formula (4.17) yields a0 = 0. Therefore A = 0. �
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In the next subsection we will discuss examples of isospectral symmetries of
basic spectral problems. But let us consider now an interesting generalization of the
theory which gives rise to a universal model irrelevant to specific properties of the
spectral problem (4.1). Roughly speaking it corresponds to evolutionary equations
(4.19) rewritten in terms of coefficients yk of the generating function (4.20). The
governing equations of this model are as follows (n = 0, 1, 2, . . .):

Dn(Y ) =< λ n + y1λ n−1 + · · ·+ yn, Y >, < a,b >
def= abx−bax . (4.26)

It is easy to see that

Y = ψ1ψ2, ψ j,t = Aψ j,x−
1
2

Axψ j ⇒ Yt =< A,Y > .

In that sense equations Dn(Y ) =< An,Y >, An = (λ nY )+ can be considered as corol-
lary of Lemma 4.

Particularly, we have D0yk = yk,x and denoting D1 = ∂t we get in virtue of (4.26)
the infinite system of equations

y1,t = y2,x, y2,t = y3,x+ < y1,y2 >, y3,t = y4,x+ < y1,y3 >,. . . . (4.27)

The consistency with similar equations for Dn, n > 1, can be stated now as follows:

Theorem 6. Defined by (4.26) evolutionary derivations Dn, n = 1, 2, . . . , in the set
of functions of variables y1, y2, . . . mutually commutate.

Proof. It is sufficient to prove (as in Theorem 5) that for any i, j

Di(A j)−D j(Ai) =< Ai,A j > (4.28)

and that follows now straightforwardly from the formulae

Dn(ym) =
k=m

∑
k=1

< ym−k,yn+k >, n≥ 1, y0
def= 1,

which are equivalent with (4.26). �

The analogue of non-isospectral symmetries (4.8), (4.9) considered in Sect. 1.1
can be introduced by the evolutionary derivation Dτ , [Dτ ,D0] = 0 such that

Dτ(Y ) = (xD1−λ 2∂λ − y1)Y.

It yields

Dτ(y j) = xD1(y j)+( j +1)y j+1− y1y j, j = 1, 2, . . . , (4.29)



146 A. Shabat

and one can prove that [Dτ , D1] = 2D2. In other words the vector-field (4.29) is
master-symmetry (see for example [5]) for the system (4.27) of the first-order PDEs.
At least in principle, it allows to reconstruct by the recurrence [Dτ , Dn] = 2Dn+1 the
whole hierarchy of Eqs. (4.26).

The hierarchy of derivations Dn, n = 0, 1, . . . , exhibits an interesting type of sym-
metry transformations [9]. First, we introduce new derivations

D̂i
def= Di− yiD0, i≥ 1, (4.30)

which commutate since (4.28) implies

Di(y j)−D j(yi) = 〈yi,y j〉. (4.31)

Second, we define the new wronskian 〈a,b〉1 def= aD̂1(b)−bD̂1(a) and find that

< yi, y j >1= yiy j+1,x− y jyi+1,x.

Now, it is easy to verify that Eq. (4.26) can be rewritten as follows:

D̂nY = 〈(λ n−1Y )+,Y 〉1, i≥ 1, (4.32)

and, thus, kept invariant.
If Y =Y (λ ;x, t), t = (t1, t2, . . .) is a solution of (4.26), then we can define solution

Y ′ = Y ′(λ ;x′, t′), x′ = t1, t′ = (t2, t3, . . .) as follows:

Y ′
(
λ ;x′, t′

)
= Y

(
λ ;X(x′, t′),x′, t′

)
, (4.33)

where X = X(x′, t′) = X(t1, t2, . . .) is a solution of the associated with (4.26) system
of differential equations

Di(X)+ yi(X , t1, t2, . . .) = 0, i≥ 1. (4.34)

Equations (4.31) provide compatibility conditions for it.

Proposition 7. Let Y = Y (λ ;x, t) satisfy

2YxxY −Y 2
x −4UY 2 +4λm = 0, U(λ ,x) := λm +

m−1

∑
i=0

λ iui(x). (4.35)

Then, the transformed function Y ′ = Y ′(λ ;x′, t′) is a solution of

2Y ′x′x′Y
′ − (Y ′x′)

2−4U ′Y
′2 +4λm+2 = 0, (4.36)

where

U ′ = λ 2U− 1
2
(λy1,xx + y2,xx− y1y1,xx)+

1
4

y2
1,x.
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Proof. One finds

Yx =
1
λ

(Y ′x′ + y1,x Y ′),

Yxx =
1
λ 2

(
Y ′x′x′ + y1,xY

′
x′ +(λy1,xx + y2,xx− y1y1,xx)Y ′

)
.

Substituting these formulae in (4.35) we get (4.36). �

The proposition means that the transformation Y → Y ′ establishes some re-
lationships between different energy-dependent Schrödinger problems (see also
[8]). In particular, this result proves that the whole family of hierarchies of in-
tegrable models associated with spectral problems (4.1) can be generated from
its two first members, namely the KdV hierarchy (m = 1) and NLS hierarchy
(m = 2).

We shall consider besides (4.20) the modified generating functions which are
formal series Ỹ = α(λ )Y where

α(λ ) = 1+
α1

λ
+

α2

λ 2 + . . .

are formal series with arbitrary constant coefficients. Obviously, Eqs. (4.26) imply
that

Dn(Ỹ ) =< An, Ỹ >, Ỹ = 1+
ỹ1

λ
+

ỹ2

λ 2 + · · · , An = (λ nY )+ (4.37)

and we shall define the N-polynomial reduction of (4.26) by the condition that λNỸ
has to be polynomial in λ for some N > 0. Since ỹk = 0, k > N in the case of
polynomial reduction derivations Dn, n ≥ N, can be expressed as linear combina-
tion of Dn, n < N, and thus (4.37) is reduced to a finite system of first-order PDEs
(cf. [6]). For instance, in the case N = 2 Eqs. (4.37) are reduced to the system as
follows:

ỹ1,t = ỹ2,x, ỹ2,t = ỹ1ỹ2,x− ỹ2ỹ1,x, Dt
def= D1 +α1Dx. (4.38)

It can be shown that in the case of N-polynomial reduction the corresponding
system of equations for u = (u1, . . . ,uN), ui = ỹi can be integrated in quadratures.
Namely, introducing the vector-field ux = X0(u) one gets readily N vector-fields
X0, . . . ,XN−1 using (4.37) and we rewrite it as follows:

D0(u) = X0(u), D1(u) = X1(u), . . . , DN−1(u) = XN−1(u). (4.39)

The problem of commutativity2

[Xi,Xj] = 0, ∀i, j,

2 It is equivalent to equating mixed derivatives.
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can be effectively resolved in this case (4.26) (see next section and [7]). Com-
mutativity conditions guarantee, as is known, the existence of the function u =
u(x, t1, . . . , tN−1) of N independent variables satisfying (4.39). That allows to rewrite
Eqs. (4.39) in a “differential form”:

du = dsP(u), ds def= (dx,dt1, . . . ,dtN−1),

where components of vector-fields Xk constitute N×N matrix P = P(u). Thus, we
get the famous formula from Liouville’s theorem:

ds = duQ(u), Q = (qi j) = P−1. (4.40)

The main point is

[Xi, Xj] = 0 ⇒ ∂u j qki = ∂uiqk j, ∀ i, j,k,

and thus all N differential forms dx, dt1, . . . ,dtN−1 defined by the right-hand side
of (4.40) are closed ones. These differential forms generate N time-dependent
Liouville’s first integrals of (4.39). For instance,

dx = q11du1 +q21du2 + · · ·+qN1duN ⇔ x−q(u) = const,

where the first derivatives of the function q are just q11, . . . ,qN1. It is easy to see also
that for this function D0(q) = 1, Di(q) = 0, i > 0.

4.1.3 Differential Constraints

Examples. Reformulating results about N-phase solutions of KDV by the classi-
cal paper [6] (see also [7, 10]) we can see that these solutions correspond to N-
polynomial reduction of (4.27). In accordance with cited papers (see also [12]) we
shall use besides coefficients ỹi, i = 1, . . . ,yN , zeros γ = −(γ1, . . . ,γN) of modified
generating function Ỹ :

Ỹ (λ ) = α(λ )Y (λ ) =
(

1+
γ1

λ

)
· · ·
(

1+
γN

λ

)
. (4.41)

Putting λ =−γ j in (4.37) it is easy to rewrite these in the form of dynamical systems
for γ. In particular, in the case (4.38) we readily get

γ1,t = γ2γ1,x, γ2,t = γ1γ2,x, (4.42)

where ỹ1 = γ1 + γ2, ỹ2 = γ1γ2.

Remark 8. In general case (4.37), (4.41) it can be proved (cf. [7, 10]) that γ are
riemannian invariants of systems of first-order PDEs under consideration. In turn
that allows to realize the integrating scheme (4.40) more constructively.
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In order to highlight interesting possibilities provided by Eqs. (4.37), (4.41) let
us find differential constraints

y1,x = h(y1,y2), (4.43)

which are compatible with the system of first-order PDEs

y1,t = y2,x, y2,t = y1y2,x− y2y1,x,

and Eqs. (4.42) related to these by the change of variables y1 = γ1 + γ2, y2 = γ1γ2.
Following the scheme of separation of variables outlined in the end of Sect. 1.2
we have to find for (4.42) two functions fi(γ1,γ2), i = 1, 2, such that the pair of
dynamical systems

γ1,x = f1, γ2,x = f2; γ1,t = γ2 f1, γ2,t = γ1 f2

satisfies the condition [Dx,Dt ] = 0. The latter yields

(γ1− γ2)∂γ2 f1 = f1, (γ2− γ1)∂γ1 f2 = f2

and therefore f1 = a1/γ12, f=a2/γ21 where functions a1 = a1(γ1) and a2 = a2(γ2)
are arbitrary and γi j = γi− γ j. Thus

y1,x = γ1,x + γ2,x =
a1(γ1)−a2(γ2)

γ1− γ2

and if a2(γ) = a1(γ) it is symmetrical in γ1, γ2 and, hence, can be rewritten in the
form (4.43). In that case Eqs. (4.42) are reduced to scalar Burgers-type equations

ut = F(u,ux,uxx), u≡ y1 = γ1 + γ2,

which possess solutions described by formulae (4.40):

dt =
dγ1

a(γ1)
+

dγ2

a(γ2)
, −dx =

γ1dγ1

a(γ1)
+

γ2dγ2

a(γ2)
. (4.44)

The simplest choice a(γ) = γ3 leads to Burgers equation ut = uxx + 2uux. The next
choice a(γ) = γ4 gives rise to the following equation:

ut =
(ux +β

u
+

1
2

u3
)

x

with a rich family of exact solutions defined by (4.44). Although essentially the
same formulae (4.44) give two-phase solutions of solitonic equations, almost all
built up Burgers-type equations do not correspond to any spectral problem (4.1) and
are non-integrable.

The above enlargement of the class of nonlinear evolution equations with stan-
dard form of two-phase solutions appears very intriguing. The next example
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ut =
(uxx

u
+

2
3

u2
)

x
, u≡ y1 = γ1 + γ2,

corresponds to the constraint of the form y1,xx = αy1y2 + βy3
1 compatible with

(4.42). It suggests future developments and generalizations of the above scheme
of integration of “non-integrable” equations. First of all, it concerns three-phase so-
lutions corresponding to differential constraints compatible with the equations

γ1,t = (γ2 + γ3)γ1,x, γ2,t = (γ3 + γ1)γ2,x, γ3,t = (γ1 + γ2)γ3,x.

Most important problems, it appears, are related with generalizations of the basic
system (4.26) into multi-dimensional case.

In conclusion, we describe tersely KDV and NLS hierarchies corresponding to
the basic spectral problems (4.1) with m = 1, 2. In the case of linear Schrödinger
equation (4.6) we find, using (4.5), that KdV equation

ut = 6uux−uxxx (4.45)

corresponds to the Lax pair

ψt = (4λ +2u)ψx−uxψ, ψxx = (u−λ )ψ.

On the other hand, a straightforward substitution of u from the second equation into
the first one yields

φt +φxxx−6λφx = 2φ 3
x , φ = logψ. (4.46)

Solutions of this modified KDV equation generate solutions of (4.45) by the Miura
transformation:

u = φxx +φ 2
x +λ .

I think there is interesting possibility to define λ properties of ψ directly from (4.46)
using general solvability theory for the specific boundary value problem under con-
sideration.

Coming back to our universal model (4.26) we find using (4.21) the differential
constraint (cf. (4.43)) related to KDV hierarchy

y1,xx = 6y2
1−4y2, u = 2y1. (4.47)

Obviously, the equation y1,t = y2,x coincides now with (4.45) up to scaling. Compati-
bility of this constraint with N-polynomial reductions of (4.27) follows by Lemma 4
and the general formula (4.40) can be used for defining N-phase solutions of KDV
(cf. [6]).

In case (4.6) the third-order equation (4.23) for the generation function implies
that

4y j+1,x = (−D3 +4uD+2ux)y j, j = 1,2, . . . .
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These additional constraints, it appears, have to be corollaries of the first one (4.47)
and Eqs. (4.27). On the other hand, in the case m = 2 in virtue of (4.22), the con-
straint looks as follows:

y1,xx = 4
(
y3−3y1y2 +2y3

1

)
. (4.48)

Thus, both basic hierarchies (m = 1, m = 2) correspond to particular choices of
differential constraints of the form

y1,xx = h(y1,y2,y3)

and that gives rise to the question: do there exist, different from (4.43), (4.48), con-
straints of such kind? In any case the problem of constraints compatible with N-
polynomial reductions of (4.27) seems to be a well-posed mathematical problem.

Few interesting solitonic models are closely related with the constraint (4.48).
We start with variational problem

δ
∫

dt dxΦ(qt ,qxx,qx,q) = 0 (4.49)

for the potential qx = 2y1, qt = 2y2. It is easy to see that this variational problem
with

Φ = q2
t −qtq

2
x +

1
4

(
q2

xx +q4
x

)
represents the first two equations (4.27) closed by constraint (4.48). Rewriting (4.49)
in the Hamiltonian form

qt =
δH[p,q]

δ p
, pt =−δH[p,q]

δq
(4.50)

we can use common formulae

H = qtΦqt −Φ , Φ = pHp−H, (p = Φqt ),

which link Hamiltonian density H with density Φ of the Lagrangian. Noticing that
the rescaling of p and substitution

p→ p+αqxx

keep the original q-equation invariant we arrive at

H = pxqx + p2 + pq2
x .

At last, differentiating with respect to x the first of corresponding equations (4.50)
we can rewrite it in a more symmetrical form

zt =
(
2p+ z2− zx

)
x , pt = (2zp+ px)x, z≡ qx = 2y1. (4.51)
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The above-described change of variables (y1,y2)→ (z, p) corresponds to trans-
formation of the spectral problem (4.1) with quadratic in λ potential into the fol-
lowing one:

ψxx +(z(x)−2λ )ψx + p(x)ψ = 0. (4.52)

Indeed, the cross-differentiation with

ψt = (z(x)+2λ )ψx− p(x)ψ (4.53)

yields (4.51) and the substitution

ψ → eλx√vψ, (logv)x + z = 0

transforms (4.52) into (4.1) with

U(x,λ ) = λ 2−λ z(x)+ρ(x), ρ =
1
4

z2 +
1
2

zx− p.

In a certain sense (4.51) plays the role of Korteveg–de Vries equation (4.45) and
in order to get the modified version of (4.51) similar to (4.46) one can introduce
“projective” coordinates as follows:

a = i
ϕ
ψ

, b = i
ϕx

ψx
.

Here ϕ and ψ are two solutions of (4.52), (4.53) with non-vanishing wronskian
〈ϕ,ψ〉= ϕψx−ψϕx. This yields

at −4λax = axx−2
a2

x

a−b
, bt −4λbx =−bxx−2

b2
x

a−b
. (4.54)

Using the stereographic projection

S = S(a,b) =
1

a−b
(1−ab, i+ iab,a+b), (4.55)

one can now prove that

St +4λSx = i[S,Sxx], S2
1 +S2

2 +S2
3 = 1. (4.56)

This is a complexified form of the well-known isotropic Landau–Lifshitz model.
Last, not the least, the nonlinear Schrödinger equation (NLS)

iut −uxx = u2v, ivt + vxx = v2u (4.57)

is related to the Hamiltonian dynamical system (4.50), (4.51) by a triangular point
transformation v = Q(q), u = P(q, p) and the substitution ∂t→ i∂t . This corresponds
to a transition from (4.52) to the Zakharov–Shabat spectral problem

ψ1
x −λψ1 = uψ2, ψ2

x +λψ2 = vψ1 (4.58)
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with
z = qx =−(logv)x, p =−uv.

Namely, rewriting Eqs. (4.58) in the following terms

ϕ = e−λxψ1, ψ = eλxψ2

one gets
ϕx = ue−2λxψ, ψx = ve2λxϕ

and thus we find (cf. (4.52))

ϕxx =
(ux

u
−2λ

)
ϕx +uvϕ, ψxx =

(vx

v
+2λ

)
ψx +uvψ. (4.59)

Summing up, we can see that, formulated at the very beginning, ansatz (4.8) de-
scribes important solitonic models (4.56), (4.57) as well as the list of Painlevé ODEs
(4.12), (4.13), (4.14), (4.15). In order to highlight the more deep interconnection we
can rewrite equations for y1, y2 in (4.29) in terms of z, p variables used in (4.51).
That yields

zτ +(xz)xx =
[
x
(
2p+ z2)]

x +2p, pτ = (xp)xx +[2xzp]x + px +2zp.

On the one hand it represents the master-symmetry (4.29) in terms of coefficients
of spectral problem (4.52) and on the other hand it corresponds to non-isospectral
symmetries with λτ = 4λ 2 in Sect. 1.1. Furthermore, the cross-differentiation with

(4.51) and the formula [Dτ ,Dt ]
def= Dt2 (cf. Sect. 1.2) results in

Dt2(z) =
(
6pz+ z3 + zxx−3zzx

)
x , Dt2(p) =

(
3zpx +3z2 p+ pxx +3p2)

x . (4.60)

In terms of z, p it represents the next (after (4.51)) member of NLS hierarchy
(Theorem 5) and corresponds to D2 in the hierarchy (4.26) (Theorem 6). Finally,
we notice that reductions

p = 0, z = 0

transform the system of equations (4.60) into Burgers and KdV equations, respec-
tively. Obviously, the spectral problem (4.1) with U = λ 2 +u2 (or (4.52) with z = 0)
is equivalent to (4.6) and, thus, KDV-hierarchy could be considered as the reduction
of NLS-hierarchy.

4.2 Discrete Symmetries

4.2.1 Matrix Representations

Considering discrete symmetries of spectral problems (4.1) we choose as starting
point the formula analogous to (4.2):
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ψ̂ = A(x,λ )ψx +B(x,λ )ψ, (4.61)

where
ψxx = U(x,λ )ψ, ψ̂xx = Û(x,λ )ψ̂.

Similar to Sect. 1.1 we get

ψ̂x = (Ax +B)ψx +(Bx +UA)ψ

and further differentiation yields

Û = U +
Axx

A
+2

Bx

A
, Bxx +2AxU +AUx = B

(
Û−U

)
. (4.62)

Definition 9. We shall call by Darboux transformation (or shortly DT) the linear
mapping ψ �→ ψ̂ defined by (4.61), (4.62) and call the potential U DT-invariant if
there exists DT (4.61) with A, B polynomial in λ such that Û = U.

Theorem 10. DT-invariant potentials are stationary points for corresponding iso-
spectral Lie symmetries.

Proof. Let U be DT-invariant with respect to (4.61) and operator Dt defined by
(4.19) with same coefficient A. Since Û = U in (4.62) we have

2Bx =−Axx, Bxx +2AxU +AUx = 0 ⇒ −Axxx +4UAx +2UxA = 0.

Therefore Dt is the isospectral symmetry and Dt(U) = 0. �

Let us now consider Eqs. (4.62) with Û �= U. In the case

U = u−λ , Û = û−λ , ψ̂ = a(x)ψx +b(x)ψ,

these equations imply that ax = 0 and putting a = 1 one obtains

bx−b2 +u = μ , û−u = 2bx, (4.63)

where μ is the constant of integration. Thus, in order to define DT one has to solve
the Riccati equation for Schrödinger spectral problem (4.6) for some value μ of the
spectral parameter λ . That is “bad” news in comparison with the analogous example
of Lie-type symmetry considered in Sect. 1.1. The “good” news is that starting with
trivial potential u = 0 we can build up non-trivial ones solving this Riccati equation
(4.63).

The definition implies that DT superposition is Darboux transformation as well.
In order to define this operation explicitly we can rewrite the formula (4.61) in
matrix form as follows:[

ψ̂
ψ̂x

]
=
[

B, A
Bx +UA, Ax +B

][
ψ
ψx

]
. (4.64)
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Obviously, the DT superposition is realized now as matrices multiplication. More-
over, since wronskians of solutions of spectral problem (4.1) are x-independent the
same is true for the determinant of the matrix in (4.64):

χ(λ )≡ χ(λ ;A,B) def= A2U +ABx−BAx−B2. (4.65)

The Darboux transformation corresponding to the matrix
[

Ax +B, −A
−Bx−UA, B

]
.

can be seen as inverse transformation Û →U (c.f. (4.61)).
For example, in the case (4.63) we find χ(λ ) = μ−λ and

ψ̂ = ψx +bψ ⇔ (λ −μ)ψ = bψ̂− ψ̂x.

The theory of Darboux transformations will be based upon an idea of factoriza-
tion of the matrix in (4.64) in the product of simplest ones corresponding to DT like
(4.63). We shall now find these elementary DT for our basic spectral problem (4.1)
with m = 2. The “gauged” form of it indicated in Sect. 1.3 by (4.52) appears most
convenient and, rectifying notations, we rewrite it as follows:

ψxx +(z(x)−λ )ψx + p(x)ψ = 0. (4.66)

Lemma 11. For Eq. (4.66) there exist two elementary Darboux transformations

ψ �→ fψx +gψ

such that f and g do not depend on λ :

T : ψ �→ ψ̃ = ψx/p, z̃− z = (log p)x, p̃− p = z̃x, (4.67)

T̂ : ψ �→ ψ̂ = ψ +ψx/a, ẑ− z = (loga)x, p̂− p = bx, (4.68)

where b = p/a and a is a solution of the Riccati equation

ax = a2 +(μ− z)a+ p, a+(logϕ(μ)))x = 0. (4.69)

Here ϕ(μ) denotes a fixed solution of (4.52) at λ = μ .

Proof. We have
ψ̂ = fψx +gψ, ψ̂x = Fψx +Gψ, (4.70)

where
F = fx +g+ f (λ − z), G = gx− p f .

Let us consider the wronskian of two arbitrary linear independent solutions ϕ and
ψ of (4.52)

w = ψxϕ−ψϕx, wx = (λ − z)w, ŵ = hw,
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where ŵ denotes the wronskian of ψ̂, ϕ̂ . Thus

h = Fg−G f = Aλ +B, A = f g, B = fxg−gx f +g2 + p f 2− z f g

and
ẑ− z+(logh)x = 0 ⇒ f g = 0, or B = μA, μ = const .

In the case f = 0 it is easy to see that g = const and the case g = 0 yields (4.67) with
w̃ = w/p.

In the case f g �= 0 the condition B = μA yields the Riccati equation (4.69) for
a = g/ f and one finds further on that (a f )x = 0 by collecting the terms with λψ in
the transformed equation for ψ̂. �

The given solution a of Riccati equation (4.69) allows to build up in addition to
T̂ another Darboux transformation

S : ψ �→ ψ† = (λ̂ −a)ψ−ψx, λ̂ = λ −μ . (4.71)

In this case
p† = p−ax, z† = z− [log(a− z−μ)]x.

Lemma 12. The DT relationship T̂ = T S = ST is equivalent to the following con-
ditions:

z = a+T−1b+μ , T̂ z = a+b+μ ; p = ab, T̂ p = bTa. (4.72)

Proof. Let Ψ denote the vector with components ψ, ψx and T̂Ψ = AΨ , SΨ =
BΨ , TΨ = CΨ where A, B and C are corresponding matrices:

A =
1
a

(
a, 1

−ab, λ̂ −b

)
, B =

(
λ̂ −a, −1

aT−1(b), T−1(b)

)
, C =

1
p

(
0, 1
−p, λ −T (z)

)
,

where λ̂ = λ − μ . Since STΨ = T (B)CΨ and T SΨ = S(C)BΨ we get (4.72) as a
result of corresponding matrices multiplication. �

We now consider a few primary applications of elementary DTs concentrating on
the simplest one denoted by T . Notice that the picture here is richer in comparison
with the case of Schrödinger spectral problem and this transformation T is well
defined in terms of the coefficients z, p of (4.52) (i.e. does not invoke the solution
of Riccati equation (4.63)). Considering iterations T j, j ∈ Z, we discuss the case
T N = E related with Theorem 10.

First, we notice that in order to define T−1 it is sufficient, like in the case (4.63),
to differentiate (4.67). Thus, we obtain3

ψ̃x +(z̃−λ )ψ̃ +ψ = 0, ψx = pψ̃.

3 This coupled system of equations is gauge equivalent to the spectral problem (4.58).
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It is easy to verify now that

T−1T = T T−1 = E ⇔ (pT +T−1 + z−λ )ψ = 0

and hence we can rewrite the above equations for T−1 and T as follows:

pTψ +(z−λ )ψ +T−1ψ = 0, ψx = pT (ψ). (4.73)

Second, revising our stand we will consider the pair of equations above as the
basis of theory. From this point of view, the first of equations (4.73) is now the basic
spectral problem and the second one is the Lie-type symmetry of it. Compatibility
condition (cf. Sect. 1.1) of this Lax pair yields the equations from Lemma 4:

zx = p−T−1 p, (log p)x = T z− z (4.74)

and original spectral problem (4.66) is the corollary of (4.73) as well (cf. Footnote
3). In order to support this new point of view let us find the modified version of
Eqs. (4.74) similar to (4.46). Denoting φ =− logψ we find by (4.73)

p =−φxeTφ−φ , z−λ = φx− eφ−T−1φ . (4.75)

Direct substitution of these formulae into (4.66) results in the modified version of
(4.74):

φxx +φx(eTφ−φ − eφ−T−1φ ) = 0. (4.76)

Considering the periodic closure T N = E of the system of equations (4.74) we

shall use lower indices a j
def= T j(a), j ∈Z, for the discrete variable related to powers

of T. Thus, we have 2N-dimensional dynamical system

z j,x = p j− p j−1, p j,x = p j(z j+1− z j), j ∈ ZN , (4.77)

which describes DT-invariant potentials under consideration. This system possesses
two obvious first integrals

z1 + z2 + · · ·+ zN = const, p1 p2 · · · pN = const

and in order to get more we can use the Lax pair (4.73). Rewriting it in the matrix
form

p jψ j+1 = B jψ j, ψ j,x = Ujψ j, (4.78)

where

ψ j =
(

ψ j

ψ j−1

)
, B j =

(
λ − z j, −1
p j, 0

)
, Uj =

(
λ − z j, −1
p j−1, 0

)
,

we get
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Proposition 13. The generating function P(λ ) = PN(λ ) for first integrals of (4.77)
is an Nth degree polynomial in λ as follows:

PN(λ ) = traceBNBN−1 · · ·B1 =
N

∏
i=1

(I− pi ∂i∂i+1)

(
N

∏
k=1

(λ − zk)

)
, (4.79)

where ∂i = ∂/∂ zi.

Sketch of Proof. The Lax pair (4.78) implies

B j,x = Vj+1B j−B jVj, Vj
def= Uj + z j I,

where I denotes identity matrix. Thus

(B2B1)x = V3B2B1−B2B1V1 . . . GN,x = VN+1GN −GNV1,

where GN = BN · · ·B1. Since VN+1 = V1 we have

d
dx

PN(λ ) = trace(V1GN −GNV1) = 0

and thus it is proved that the coefficients of PN(λ ) are first integrals of (4.77) indeed.
In order to obtain the exact expression of the generation function in terms of

dynamical variables one can use induction in N. More exactly, one has to prove
by induction in N the more general formula for all four components of the matrix
GN = BN · · ·B1:

GN =
(

1+ pN∂N∂1, ∂1

−pN∂N , −pN∂N∂1

)
(PN).

Here it is assumed that PN is defined by the right-hand side of (4.79). �
Generally, Eqs. (4.77) correspond by Theorem 10 to polynomial in λ solutions

(4.18), and integrating scheme (4.40) involves hyperelliptic integrals. But now the
dynamical system (4.77) allows to formulate explicitly the constraint p(kN) = 0, k∈
Z, which yields solutions in terms of rational functions in exponents. We shall call
this type of reductions solitonic ones.

Example 14. In the case N = 2 the formula (4.79) yields

P(λ ) = (λ − z1)(λ − z2)− p1− p2 = (λ −β )2− γ2.

The solitonic reduction p(2) = 0 gives yx +y2 = γ2 where z1,2 = β ±y, p1 = yx and

y(x) = γ tanhγ(x− x0).

On the other hand the quasi-periodic closure of (4.74) with

T 2(z) = z− ε, T 2(p) = p

leads to dynamical system for z1, p1, z2, p2 like (4.77). It can be reduced to ODE
for y = p1 as follows:
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yyxx− y2
x +2y3 = 2yR(x), R′+ εR = 0, p1 p2 = R(x).

This equation is equivalent to degenerated Painlevé equation (4.14) from Sect. 1.1
with

α =−2ε−2, β = 2ε−2, γ = δ = 0.

In the case of Schrödinger spectral problem and elementary Darboux transfor-
mation T defined by (4.63) one obtains similar to (4.73)

T 2ψ +( f T +T f )ψ = (μ−λ )ψ, ψx = (T + f )ψ, (4.80)

where f = −b, fx + f 2 + μ = u. Although in this case DT is implicit (one cannot
resolve the Riccati equation for f ) it gives rise to the discrete analog of Schrödinger
spectral problem (4.6), and (4.80) yields dressing chain

f j,x + f j+1,x = f 2
j − f 2

j+1 +α j, j ∈ Z. (4.81)

Here
α j

def= μ j+1−μ j, f j,x + f 2
j +μ j = u j.

This chain contains in itself all needed information (cf. Sect. 2.2) about Darboux
transformations of Schrödinger spectral problem (4.6). Since f j(x) = (logψ j)x

where ψ j,xx = (u j − μ j)ψ j the dressing chain can be considered as modified ver-
sion, like (4.76), of the equations as follows:

(q j+1 +q j)x +(q j+1−q j)2 = μ j, u j = q j,x, f j = q j+1−q j. (4.82)

In the case of N-periodic closure related with DT-invariant potentials of Schrödi-
nger operator the dressing chain (4.81) provides the system of differential equations
for f1, . . . , fN with the left-hand matrix E +T where T

T =

⎛
⎜⎜⎜⎜⎜⎝

0 1

. . .
. . .

. . . 1

1 0

⎞
⎟⎟⎟⎟⎟⎠

.

For odd N this system is well defined since the matrix E +T is non-singular:

T N = E ⇒ (E +T )(E−T +T 2−·· ·−T N−1) = 2E.

In order to build up first integrals of dressing chain we have to rewrite Lax pair
(4.80) in the matrix form similar to (4.78):

ψ j,x +Ujψ j = 0, ψ j+1 = B jψ j, B j =
(

g j λ j

1 0

)
, Uj =

(
f j, λ j

1, − f j

)
. (4.83)
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Here
ψ j = (ψ j+1, ψ j)τ , g j = f j + f j+1, λ j

def= μ j−λ .

Slight difference in comparison with (4.78) is not important for proving this and like
in the above-considered case (4.77) we have

Proposition 15. The formula

PN(λ ) = traceBNBN−1 · · ·B1 =
N

∏
i=1

(I +λi ∂i−1∂i)

(
N

∏
k=1

gk

)
, (4.84)

where ∂i = ∂/∂gi yields the generating function PN(λ ) for first integrals of ZN

closure of (4.81) with fi+N = fi if

γ = α1 + · · ·+αN = 0. (4.85)

The general case with γ �= 0 is considered in [5]. It has been proved that the corre-
sponding spectra of Schrödinger operators are constituted by collection of arithmetic
progressions.

Example 16. The periodic Z3 closure equations (4.81) reduces these to dynamical
system for three functions g j = f j + f j+1, j ∈ Z3:

g1,x = g1(g3−g2)+α1, g2,x = g2(g1−g3)+α2, g3,x = g3(g2−g1)+α3.
(4.86)

The obvious first integral

g1 +g2 +g3 = a(x), a′ = γ = α1 +α2 +α3

reduces the order of the system and any of functions g j, j = 1,2,3, satisfies the
second-order equation as follows:

2g jg j,xx−g2
j,x = g2

j

(
3g2

j −4ag j +a2 +2α j+2 +2α j+1
)
−α2

j . (4.87)

In the general case, that corresponds to Painlevé ODE (4.13) with full set of
parameters.

By g3 = 0 Eqs. (4.86) are reduced to Riccati equation

gx +g2 = γxg+α,

where g ≡ g2, α ≡ α2 and g1 = γx− g. By g2 = g3 = 0 we have g1,x = γ what
corresponds to quantum harmonic oscillator. At last, in the case γ = 0 this system
of equations (4.86) has additional first integral (4.84)

g1g2g3 +g1 μ3 +g2 μ1 +g3 μ2

and the solution can be expressed in terms of elliptic functions.
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4.2.2 Wronskian Determinants and Dressing Chains

In the case of Darboux transformations as well as in the case of Lie-type symmetries
(Sect. 1.2) there is a universal model. It is based upon identity

〈ϕ1, . . . ,ϕk〉= ϕ1〈ϕ̂2, . . . , ϕ̂m〉, ϕ̂ j = (D− f1)ϕ j, f1 = D logϕ1, (4.88)

where ϕ j, j = 1, . . . ,k are arbitrary smooth functions and

〈ϕ1, . . . ,ϕl〉
def= det

(
∂ k−1

x (ϕ j)
)

, j,k = 1, . . . , l.

We are going to prove that any DT is a superposition of transformations ϕ �→ ϕ̂
defined by this identity (4.88).

Instead of spectral problems (4.1) with λ -dependent potentials we consider now
spectral problems Lψ = λψ where L is higher order scalar differential operator

L = Dm +u1Dm−1 +u2Dm−2 + · · ·+um−1D+um, D≡ d/dx. (4.89)

Generalizing (4.63) we prove the next lemma.

Lemma 17. For differential operators (4.89) with u1 = 0 the elementary DT ψ �→ ψ̂
is defined as follows:

ψ̂ = a(x)ψx +b(x)ψ = ψx− fψ = (D− f )ψ,

where f = D logϕ, Lϕ = μϕ.

Proof. Let M = aD+b then, since L̂ψ̂ = λψ̂, we have

(L̂M−ML)ψ = 0

for all ψ such that Lψ = λψ. Since the differential operator L̂M−ML has finite-
dimensional null space it is possible only if

ML = L̂M. (4.90)

This operator equation implies that

Mψ = 0, ψ̃ = Lψ ⇒ Mψ̃ = 0 ⇒ ψ̃ = μψ

since a null space KerM is one-dimensional. Thus, KerM is generated by an eigen-
function of L which is denoted by ϕ and, thus,

M = a(D− f ), f = D logϕ, Lϕ = μϕ.

On the other hand, equating leading coefficients in (4.90) we find

a(û1−u1)+max = 0,
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where m is the order of operators L, L̂ and û1 denotes the coefficient by Dm−1 in L̂.
By conditions of the lemma u1 = û1 = 0 and, therefore, ax = 0. �

The “universal” model for Darboux transformations is based upon the well-
known formula

〈ϕ1, . . . ,ϕn,ψ〉
〈ϕ1, . . . ,ϕn〉

= Mψ, (4.91)

which is valid for any differential operator M of order n with unitary leading coeffi-
cient. The functions ϕ1, . . . ,ϕn here build up the basis in KerM. The identity (4.88)
and formula (4.91) imply the factorization formula as follows:

Proposition 18. Let M be a nth order operator with unitary leading coefficient and
functions ϕ1, . . . ,ϕn constitute basis in Ker M. Then

M = (D− fn) · · ·(D− f1), f j = D log
〈ϕ1, . . . ,ϕ j〉
〈ϕ1, . . . ,ϕ j−1〉

. (4.92)

Generally speaking, an application of Proposition 18 to the operator L and the
transpositions of factors in the corresponding L formula (4.92) describe Darboux
transformations of this operator. Namely, by conditions of Lemma 17 the direct
application of formulae (4.91), (4.88) to the operator L−μ yields L−μ = L̃(D− f )
and thus we find

L̂−μ = (D− f ) L̃ = (D− f )(L−μ)(D− f )−1, f = D logϕ, Lϕ = μϕ. (4.93)

Considering iteration of this transformation L �→ L̂ and introducing lower indices
for numbering of iterations we can rewrite the above formula as follows:

(D− f j)L j = L j+1(D− f j). (4.94)

In essence, these two formulae are equivalent and the latter one expresses in a very
terse form the “polynomial” approach to Darboux transformations. In particular, in
the case of Schrödinger operator L = u−D2 the formula (4.93) yields

L̂−μ = ( f −D)( f +D), L−μ = ( f +D)( f −D)

and one can verify that Eqs. (4.94) are equivalent to dressing chain (4.81) considered
in Sect. 2.1.

We have to now notice that in the case of Schrödinger spectral problem (4.6)

ψ̂ = Aψx +Bψ ⇔ ψ̂ = M(ψ),

where the differential operator M is uniquely defined by the polynomials A, B in λ
and the formulae

λ kψ = (u−D2)kψ, λ kψx = D(u−D2)kψ.

That connects the next definition with Definition 9 of Darboux transformation.
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Definition 19. The differential operator M is called Darboux transformation opera-
tor (or transformation operator L �→ L̂) if ML = L̂M.

It follows from the proof of Lemma 17 that transformation operators M : L �→ L̂
of the first order are defined by formula (4.93). The condition of Lemma 17 is that
the coefficients by Dm−1 in L, L̂4 should vanish. This condition is not restrictive
since a simple gauge transformation L �→ a−1La allows to kill the coefficient u1 in
(4.89).

Theorem 20. Transformation operator M : L �→ L̂ of order n > 1 can be represented
as superposition of n elementary one

M = (D− fn) · · ·(D− f2)(D− f1).

It is assumed that the coefficients by Dm−1 in L, L̂ (see Footnote 4) vanish.

Proof. Since ML = L̂M the operator L maps V = KerM into itself and defines
n-dimensional operator L̃ = L

∣∣
V . There is, due to a linear algebra, eigenfunction

ϕ1 such that L̃ϕ1 = μ1ϕ1. Let f1 = D logϕ1. We have

Mϕ1 = 0 ⇒ M = M1(D− f1),

where M1 is a differential operator of order n−1. That yields (cf. (4.93))

(D− f1)L = L1(D− f1), M1L1 = M1L̂.

Therefore, M1 : L1 �→ L̂ is the Darboux transformation operator of the order n− 1
and one can apply an induction procedure. �

In order to build up a transformation operator M of nth order for given operator
L it is sufficient (see the proof of Theorem 20) to choose the basis ϕ1, . . . ,ϕn in
n-dimensional vector space V invariant under action of L and apply the formula
(4.91). In a generic case5 it is sufficient to fix n linearly independent solutions
ϕ j, j = 1, . . . ,n, of the spectral problem under consideration:

Lϕ j = μ jϕ j, j = 1, . . . n.

Example 21. In the case L =−D2, n = 2 denoting

a(y) = ey + e−y, b(y) = ey− e−y, y = k(x− τ)

we obtain
〈ϕ1,ϕ2〉= (k2− k1)a(y1 + y2)+(k1 + k2)b(y1− y2), (4.95)

where 0 < k1 < k2,

4 m denotes the order of operators L, L̂.
5 One can use “eigenfunctions” in the basis of the invariant space V.
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ϕ1 = a(y1), ϕ2 = b(y2); y j = k j(x− τ j), ϕ j,xx +μ jϕ j = 0, μ j =−k2
j .

Thus, using the formulae for f j from (4.92), we obtain for the potential û of trans-
formed operator L̂ =−D2 + û the explicit formula as follows:

û =−2( f1 + f2)x =−2D2 log(〈ϕ1,ϕ2〉).

This formula describes, as one can verify, smooth reflectionless potentials û(x)→
0, x→ ±∞ with two eigenvalues λ = μ j = −k2

j , j = 1, 2. Dynamics in t of this
potential, corresponding to KdV equation (4.45), are defined by KdV Lax pair ϕ j,t =
4μ jϕ j,x (see Sect. 1.3) which yields

y j = k j(x− k2
j t− x0

j). (4.96)

A direct generalization of (4.95) looks as follows:

< ϕ1, . . . ,ϕn >= 〈a(y1) ,b(y2) ,a(y3), ...〉=∑
ε
|αε | a(εnyn + ...+ ε1y1), (4.97)

where y j are defined by (4.96) and a(y) = ey + e−y. The summation goes over the
set of vectors {εεε = (ε1, ...,εn) , εi = ±1}. Vectors εεε and ε̃̃ε̃ε = −εεε are considered as
identical, so we have 2n−1 different terms in this sum. The formula (4.97) represents
sum of the elementary wronskians

〈exp(ε1y1),exp(ε2y2), ...〉= αε exp(ε1y1 + ...+ εnyn),

where εi =±1 and
αε =∏

i> j
(εiki− ε jk j).

We are now going to discuss dressing chains for spectral problems Lψ = λψ for
operators L of the order m > 2. The point is that classical formulae (4.91), (4.92)
leave open the problem of choice of “eigenfunctions” ϕ1, . . . ,ϕn of the initial spec-
tral problem Lϕ j = μ jϕ j. On the other hand in the case m = 2 we have solved this
problem (Sect. 2.1) using the notion of DT invariance and rewriting formulae (4.94)
in terms of the dressing chain equations (4.81) for f j. That allowed us to consider
(see Example 14) finite-gap and Painlevé-type potentials as well. Generally speak-
ing, the change of variables from ϕ j to f j which is linked by (4.92) reminds, in
certain sense, the transition to Euler-type equations in fluid mechanics instead of
Lagrange ones referred to initial state of the flow.

We reformulate the DT-invariance property (see Definition 9) in terms of Defini-
tion 19 as follows

ML = (L+ γ)M ⇔ [M, L] = γM. (4.98)

One can verify that in Example 14 the proper DT-invariance corresponds to [M,L] =
0 and the case γ �= 0 gives rise to Painlevé-type potentials. Our discussion below will
be concentrated upon operators L of order m = 3.
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In the case m = 2 the dressing chain (4.81), as it was mentioned before, is equiva-
lent to the basic DT relation (4.94). Similar to the case m = 3 and L j = D3 +u jD+v j

it yields

u j+1−u j = 3 f j,x, v j+1− v j =
(

3 f j,x +
3
2

f 2
j +u j

)
x
,

f j,xx +3 f j f j,x + f 3
j +u j f j + v j = μ j. (4.99)

The exclusion of potentials u and v leads to the dressing chain
(
q j−1 +q j +q j+1

)
xx = 3

(
q j−q j−1

)
q j−1,x−3

(
q j+1−q j

)
q j+1,x

+
(
q j−q j−1

)3 +
(
q j−q j+1

)3 +α j, (4.100)

where
α j = μ j−μ j−1, u j = 3q j,x, f j = q j+1−q j.

Namely, the last two formulae resolved the first of Eq. (4.99) and allowed to express
v in terms of q by the third one which plays the role of Riccati equation in the case
L = D3 +uD+ v.

In order to derive Lax pair for this dressing chain (4.100) one can start with the
general form of difference operator (cf. (4.80))

Lψ def=
(
T 3 +aT 2 +bT + c

)
ψ = μ(λ )ψ, ψx = (T + f )ψ.

We are going to prove that cx = 0. By x-differentiation of the difference spectral
problem Lψ = μψ and equating the terms with T 2ψ, Tψ, ψ we find, respectively,

ax = a(A+ f − f2)+b1−b, b1 = T (b), f2 = T 2( f ),
bx = b(A+ f − f1)+ c1− c+μ−μ1, μ1 = T (μ),
cx = (μ− c)A, A = a−a1 + f3− f .

Since μ is λ -dependent, A = 0 and hence cx = 0. Redefining μ in the right-hand
side of the spectral problem we put c = 0 and obtain

μ = μ(λ ,n) = ε(λ )−β (n), a = f + f1 + f2.

At last the consistence of two spectral problems Lψ = μψ and Lψ = λψ yields
ε(λ ) = λ .

Rewriting the above equations in the final form we get

Lψ def= (T 3 +aT 2 +bT )ψ = (λ −μ)ψ, ψx = (T + f )ψ, (4.101)⎧⎪⎪⎨
⎪⎪⎩

a j = f j + f j+1 + f j+2, f j
def= T j( f ),

a j,x = a j( f j− f j+2)+b j+1−b j,

b j,x = b j( f j− f j+1).

(4.102)
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The equation for a in terms of f yields
(
1+T +T 2)( f j,x) = (1−T )

(
f 2

j + f j f j+1 + f 2
j+1−b j

)

and we find that

f j = q j+1−q j ⇒ b j =
(
1+T +T 2)(q j,x)+ f 2

j + f j f j+1 + f 2
j+1.

It is easy to now see that these formulae for a and b and (4.101) provide the Lax
pair for the dressing chain (4.100) in the case m = 3. It has been shown by [4] that
Lax pair for dressing chains for operators of order m > 3 looks like (4.101) and, for
example, in the case m = 4 we have

Lψ def= (T 4 +aT 3 +bT 2 + cT )ψ = (λ −μ)ψ, ψx = (T + f )ψ.

The corresponding dressing chain in terms of coefficients of L looks quite similar
to (4.102): ⎧⎪⎨

⎪⎩
a j,x = a j( f j− f j+3)+b j+1−b j,

b j,x = b j( f j− f j+2)+ c j+1− c j,

c j,x = c j( f j− f j+1),

where a j = f j + f j+1 + f j+2 + f j+3. The missing coefficient of L at T 0 corresponds
to vanishing u1 = 0 coefficient of (4.89) which are both responsible for wronskian
conservation laws for Lψ = (λ −μ)ψ and Lψ = λψ, respectively.

We now discuss Z2-closure of (4.100):

(2q1 +q2)xx = 6q1,x (q2−q1)+2(q2−q1)
3 +α1,

(2q2 +q1)xx = 6q2,x (q1−q2)+2(q1−q2)
3 +α2.

The first integral

(q1 +q2)x +(q1−q2)2 = a(x), 3a′ = γ = α1 +α2

allows to reduce this system to Painlevé ODE (4.12) for y = q2−q1:

yxx = 2y3−6a(x)y+α2−α1, f1 = y.

In order to apply the general formulae (4.98) let us consider a chain of operators
L j = D3 +u jD+ v j, j = 1, 2, 3, linked by Eqs. (4.93), (4.99):

(D− f1)L1 = L2(D− f2), (D− f2)L2 = L3(D− f2) ⇒ ML1 = L3M,

where M = (D− f2)(D− f1) is the second-order transformation operator. In virtue
of the periodicity q3 = q1 and thus f2 = q3− q2 = − f1 = −y. Coefficients of the
operators L1, L2 and L3 can be defined directly in terms of q1, q2 and using (4.99)
one finds that
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M = (D+ y)(D− y), L3 = L1 + γ, L j = D3 +3q j,xD+
3
2

q j,xx, j = 1, 2.

Summing up, we see that Zk-closures of dressing chains (k = 3 for m = 2 and
k = 2 for m = 3) describe solutions of equations as follows:

AB−BA = αA+βB,

where the order of differential operators A and B is two and three, respectively. The
case β �= 0, related with ODE (4.12), has been discussed above; the case β = 0 is
related with ODE (4.13) and with periodic closure of dressing chain for Schrödinger
operator. A systematic study of spectral problems (4.52) DT-invariant up to the shift
of spectral parameter λ has been fulfilled by [5]. DT-invariance has appeared more
efficient in comparison with Lie-type symmetries from Sect. 1.1. In particular, it
was shown that the missed general Painlevé sixth equation in Sect. 1.1 can be char-
acterized by the condition S2T̂ 2 = E where T̂ and S are Darboux transformations
(4.68) and (4.71), respectively.

4.2.3 Symmetry Approach

In conclusion we are going to derive, in certain sense, a complete list of chain
equations

qn,xx = A(qn+1,x,qn,x,qn−1,x,qn+1,qn,qn−1) (4.103)

related with elementary Darboux transformations for the spectral problem (4.52)
introduced in Sect. 2.1. These chain equations play the role of models in mathemat-
ical theory of solitons and have few important applications. The classical example
(going up to Darboux) of so-called Toda chain can be written as follows:

qn,xx = f (qn+1−qn)− f (qn−qn−1), f ′ = α f . (4.104)

It corresponds to (4.67) and is just another form of Eqs. (4.74) considered in
Sect. 2.1.

The starting point here is not the spectral problems but a rather general varia-
tional problem

δ
∫

dt dxΦ(qt ,qxx,qx,q) = 0 (4.105)

and its dual Hamiltonian coupled dynamical system of equations

qt =
δH[p,q]

δ p
, pt =−δH[p,q]

δq
, (4.106)

where
H = qtΦqt −Φ , Φ = pHp−H, p = Φqt .
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In most of the examples below the Lagrangian density Φ is quadratic in qt and,
hence the transformation qt ↔ p is well defined. Proper definition (see below) of
the notion of discrete symmetries directly in terms of variational problems (4.105)
will allow us to reveal the universal form of chain equations which goes out of
domain of applications of the spectral problem (4.52).

Primarily, we will address ourselves to

H = pxqx + ε0 p2q2
x + ε1 pq2

x + ε2 p2qx + ε3 p2 + ε4 pqx + ε5q2
x + ε6 p, (4.107)

where εi are arbitrary constants. We remind that preliminaries of the variational
approach and the coupled system (4.51) of equations

zt + zxx = (2p+ z2)x, pt − pxx = (2zp)x, z≡ qx, (4.108)

which represent (4.106) in the case

H[p,q] = p2 + pq2
x + pxqx ≡ p2 + p(q2

x−qxx),

have been discussed in Sect. 1.3. Two more examples of evolutionary equations
connected by hamiltonian density (4.107) are given below.

Example 22. By “elementary” transformations like qx→ qx +const the hamiltonian
density (4.107) can be reduced to three canonical forms. The first one gives rise to
(4.108) and the other two are as follows:

H = pxqx + pq2
x +qx p2 ⇒ (4.109)

zt + zxx =
(
2pz+ z2)

x , pt − pxx =
(
2zp+ p2)

x ;

H = pxqx + p2q2
x + ε3 p2 + ε5q2

x ⇒ (4.110)

zt + zxx = 2
(

pz2 + ε3 p
)

x , pt − pxx = 2
(
zp2 + ε5z

)
x .

All these coupled system of equations for z, p possess three local conservation laws
of zero order

zt , pt , (zp)t ∈ ℑDx.

This characteristic feature allows to relate (4.109) with the other two by Miura-type
transformations (see references in review [5]).

The interconnection of generalizations of the Toda chain (4.104) with Hamiltoni-
ans (4.107) is formulated in the next definition of canonical Bäcklund
transformations.

Definition 23. [4] The function F [q, q̂] = F(q,qx, q̂, q̂x) is called the canonical Bäck-
lund transformations generation function (or shortly BCT-function) for Hamiltonian
system (4.106) if there exists σ [q, q̂] = σ(q,qx, q̂, q̂x) such that

p =
δF [q, q̂]

δq
, p̂ =−δF [q, q̂]

δ q̂
⇒ Ĥ[p̂, q̂]−H[p,q] =

d
dx

σ [q, q̂].
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In this case the Lagrangian system of equations with one discrete and one continu-
ous variable

δF = δ
∫

dx∑Fn = 0, Fn
def= F [qn,qn+1], (4.111)

is called the associated system.

Rewriting (4.111) in more explicit form we find

δF [qn,qn+1]
δqn

+
δF [qn−1,qn]

δqn
= 0 ⇒ (4.112)

pn =
δF [qn,qn+1]

δqn
=−δF[qn−1,qn]

δqn
= p̂n−1.

One can now readily verify that Definition 23 implies that the chain of transforma-
tions

. . .(pn−1,qn−1)→ (pn,qn)→ (pn+1,qn+1) . . .

maps solutions of Hamiltonian equations (4.106) in solutions again.

Theorem 24. The BCT-function F [q, q̂] for Hamiltonian density (4.107) is as
follows:

F [q, q̂] = F(z,y) = W (z)+ zV (y)+U(y), y
def= q̂−q, z≡ qx, (4.113)

where W ′′(z) = −(ε0z2 + ε2z + ε3)−1 and the functions U, V satisfy the system of
ODE

a′+ ε2a2−2ε0ab+ ε1a = 0, b′+ ε3a2− ε0b2 + ε1b = ε5, V ′ = a, U ′ = b.
(4.114)

Sketch of Proof. In the case (4.113) we find

p = cqxx−aq̂x−b, p̂ =−aqx−b, c = ε0z2 + ε2z+ ε3.

The substitution of the above expressions in (4.107) and integration by parts in the
difference Ĥ−H yields the equations (4.114) which are equivalent to the condition
Ĥ−H ∈ ℑDx. �

Theorem 24 describes discrete symmetries of dynamical systems (4.106), (4.107).
On the other hand, Eqs. (4.114) and formulae (4.113) fully define a family of La-
grangian chains (4.111) depending on five parameters ε0, ε1,ε2, ε3, ε5. which we
call generalized Toda chains. It can be proved that the exclusion of p by (4.112) in
the first part of dynamical equations (4.106) results in variational symmetry (see
[11]) of the Lagrangian (4.111). Thus, the next theorem is just a reformulation
of Theorem 24 which states that evolution equations (4.106) are consistent with
(4.111).

Theorem 25. Let W ′′(z) =−(ε0z2 + ε2z + ε3)−1 and functions U, V are defined by
(4.114). Then the Lagrangian (4.111), (4.113) and corresponding chain equations
with yn = qn+1−qn
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W ′′(zn)zn,x + zn+1V ′(yn)− zn−1V ′(yn−1)+U ′(yn)−U ′(yn−1) = 0, zn = qn,x

(4.115)
possess variational symmetry as follows:

W ′′(zn)(qn,t +ε1z2
n)+zn+1V ′(yn)+zn−1V ′ (yn−1)+U ′(yn)+U ′(yn−1) = 0. (4.116)

For each generalized Toda chain (4.115) there is, due to E. Noether theorem [11],
besides common conservation laws of momentum and energy

d
dx∑

{
W ′(zn)+V ′(yn)

}
= 0,

d
dx∑

{
znW ′(zn)−W (zn)−U(yn)

}
= 0,

higher conservation law related with the variational symmetry (4.116). The difficult
problem of classification “arbitrary” chains with higher order conservation laws is
considered by Ravil Yamilov (see references in review [5]).

The next two examples should illustrate an application of the above theorems to
a given chain of the form (4.103). In the case of Theorem 25 one has to first derive
Lagrangian form of (4.103) and find the “integrating multiplier” denoted by W ′′(z).
Second, one should check out Eqs. (4.114) and find the exact form of Hamiltonian
density H from Theorem 24.

Example 26. For Toda chain (4.104) W ′′ =−1 and Lagrangian density is

Fn =−1
2

z2
n +β f (yn), f ′(y) = α f (y), βα = 1.

The comparison with (4.114) yields ε0 = ε2 = ε5 = 0, ε1 = α, ε3 = 1. Thus

H = pxqx +α p2q2
x + p2 + ε4 pqx + ε6 p

and Theorem 24 implies that Toda chain (4.104) defines Bäcklund transformations
for the Hamiltonian system (4.106) corresponding to (4.108) when α = 1.

For Volterra chain we have

zn,x = zn(zn+1− zn−1) ⇒ W ′′(z) = z−1 ε0 = ε3 = ε5 = 0, ε1 = ε2 = 1.

In this case Lagrangian equations (4.111) define canonical Bäcklund transforma-
tions for Hamiltonian system (4.106), (4.109). In virtue of Theorem 25 the varia-
tional symmetry is

qn,t = zn(zn+1 + zn−1)+ z2
n

and it is a good exercise to verify that independently. Notice that the same Hamilto-
nian density

H = pxqx + pq2
x +qx p2

corresponds as well to modified Toda chain (4.76) from Sect. 2.2.

There is the analogy of Theorem 25 with the list of Painlevé second-order dif-
ferential equations in Sect. 1.1. First, as well as differential equations (4.12), (4.13),
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(4.14), (4.15), the chain equations from Theorem 25 are related to the same spectral
problem (4.52). Second, there is, missed in Theorem 25, the so-called “elliptic Toda
chain”

qn,xx = (r(qn)− z2
n)
(

1
qn+1−qn

− 1
qn−qn−1

)
+

1
2

r′(qn), (4.117)

which is the analog of the famous Painlevé sixth equation discussed at the end of
Sect. 2.2.

The chain (4.117) is Lagrangian (4.111) with

F [q, q̂] = W (z,q)+U(q, q̂), z≡ qx, Wzz =
1

r(q)− z2 (4.118)

for any function r(q) and possesses variational symmetry

qn,t =
(
r(qn)− z2

n

)( 1
qn+1−qn

+
1

qn−qn−1

)
,

if and only if r(q) = αq4 + βq3 + γq2 + δq + ε is an arbitrary polynomial of the
fourth degree [2]. In terms of Definition 23 it means that (4.118) defines the gener-
ation function of BCT for Hamiltonian density (cf. (4.110)) as follows:

H[p,q] = pxqx +q2
x p2− p2r(q)+

1
2

pr′(q)− 1
12

r′′(q). (4.119)

The point is that Hamiltonian system (4.106) coincides with complexified form of
anisotropic Landau–Lifshitz model

St = i[S,Sxx + JS], S2
1 +S2

2 +S2
3 = 1 (4.120)

up to change of variables (cf. (4.55)):

S3 = 1+2pq, iS2 +S1 = 2q(1+ pq), iS2−S1 = 2p.

In the case of diagonal matrix J = diag(J1,J2,J3) in (4.120) one finds that

4r(q) = (J2− J1)q4 +2(J1 + J2−2J3)q2 + J2− J1.

It is important that applying Definition 23 one can find, as in Theorem 24, the
general form of BCT-function

F [q, q̂] = W (z,q)+ zV (q, q̂)+U(q, q̂), z≡ qx

for the Hamiltonian (4.119). The exact connection (4.119) with Sklyanin chain [14]
has been uncovered in this way [1, 5].

The general problem of classification of Lagrangians (4.105) consistent with
canonical Bäcklund transformations (Definition 23) is discussed in the paper by
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[4]. In particular, it has been demonstrated that the Lagrangian densities

Φ = qtqx +q2
xx +4q2

x ; Φ =
qt

qx
+

r(q)−q2
xx

q2
x

, r(V )(q) = 0

give rise, respectively, to the KdV dressing chain (4.82) and its analog for Krichever–
Novikov equation

qt = qxxx−
3

2qx
(q2

xx− r(q)).

This evolutionary equation plays the role of universal model (4.120) in the case of
KdV hierarchy.

The dressing chain (4.100) (see Sect. 2.2) for the third-order differential operator
L = D3 +uD+ v is Lagrangian (4.111) with the density

Fn = 2q2
n,x +4qn,xqn+1,x +3(qn+1 +qn)x f 2

n + f 4
n −4μn fn, fn = qn+1−qn. (4.121)

It corresponds to variational problem (4.105) with

Φ = (qt +qxx)2 +q2
x ⇒ H[p,q] = p2 +4pqxx +16q2

xx−48q3
x .
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Chapter 5
Normal Form and Solitons

Y. Hiraoka and Y. Kodama

Abstract We present a review of the normal form theory for weakly dispersive
nonlinear wave equations where the leading order phenomena can be described
by the KdV equation. This is an infinite-dimensional extension of the well-known
Poincaré–Dulac normal form theory for ordinary differential equations. In particu-
lar, the normal form theory shows that the perturbed equations given by the KdV
equation with higher order corrections are asymptotically integrable up to the first-
order correction, and the first-order corrections can be transformed into a symmetry
of the KdV equation called the fifth-order KdV equation. We then give the explicit
conditions for the asymptotic integrability up to the third-order corrections. As an
important example, we consider the Gardner–Miura transformation for the modi-
fied KdV equation and show that the inverse of the transformation is a normal form
transformation. We also provide a detailed analysis of the interaction problem of
solitary waves as an important application of the normal form theory. Several ex-
plicit examples are discussed based on the normal form theory, and the results are
compared with their numerical simulations. Those examples include the ion acous-
tic wave equation, the shallow water wave equation and the Hirota bilinear equation
having a seventh-order linear dispersion.

5.1 Introduction

In this chapter, we review the normal form theory developed in [18, 19] for weakly
nonlinear and weakly dispersive wave equations where the leading order equation
is given by the KdV equation in an asymptotic perturbation sense. The chapter is
based on the report [20] and the master thesis of the first author at Osaka University
(February 2002, [12]).

The lectures started with a brief summary of the Poincaré–Dulac normal form
theory for a system of ordinary differential equations [3]. The main point in the
lectures is to present the normal form theory for near-integrable system where the

Y. Kodama (B)
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leading order system is given by a nonlinear wave equation. This may be considered
as an infinite-dimensional extension of the Poincaré–Dulac normal form theory. The
basic technique of the normal form theory based on the Lie transformation can be
formally extended to the infinite-dimensional case. Unfortunately the convergence
theorem of the normal form series has no extension to the present theory. However,
one should emphasize that the leading order in the present theory is given by a
nonlinear equation, and it is not clear how one defines a resonant surface for the
leading order equation. This may provide a good problem for a future project.

Let us briefly summarize a background of the normal form theory for near-
integrable systems of nonlinear dispersive equations. It is well known that for a wide
class of nonlinear dispersive wave equations, the leading order nonlinear equation
in an asymptotic expansion turns out to be given by an integrable system, such as
the Korteweg–de Vries (KdV) equation in weak dispersion limit and the nonlinear
Schrödinger equation in strong dispersion limit (see for example [38]). This implies
that most of the nonlinear dispersive wave equations are integrable at the nontrivial
leading orders in an asymptotic sense. Then a natural question is to ask how the
higher order corrections affect the integrability of the leading order equations. In
[24], the effect of the higher order corrections on one-soliton solution of the KdV
equation was studied, and it was shown that the velocity of soliton is shifted by
the secular terms in the higher order terms. Those secular terms or resonant terms
are given by the symmetries of the KdV equation. The nonsecular terms then con-
tribute to modify the shape of the soliton. However, multisoliton interactions were
not studied in that paper. In [18], the normal form for weakly dispersive equations
was first introduced up to the second-order corrections, and it was found that the
integrable approximation can be extended beyond the KdV approximation but not
to the second order. This shows that asymptotic equations for the weakly disper-
sive and weakly nonlinear wave systems are integrable not only at the leading order
KdV approximation but also up to the next order corrections. Those corrections
are then shown to be transformed into a symmetry of the KdV equation by normal
form transformation. In this sense, those perturbed KdV equations with higher or-
der corrections are asymptotically equivalent up to the first-order corrections (see
for example [8, 9, 25, 28, 29] for a further development of the asymptotic equiv-
alence). The obstacle to the asymptotic integrability appearing at the higher order
corrections plays no rule for one-soliton solution, but provides a crucial effect for
two-soliton interactions. This was found in [19, 20]. The obstacles are defined as the
nonexistence of the integrals of perturbed equation in the form of the power series
in a small parameter. This was also recognized as the nonexistence of approximate
symmetries of the perturbed equation [31]. (The normal form for strongly disper-
sive wave equations has also been studied in [15, 22].) Then in [19], the effect of
the obstacle on the interaction of two solitary waves was studied for the regularized
long wave equation (although the method can apply to other equations of weakly
dispersive system). An inelasticity due to the obstacle was found, and it leads to
the shifts of the soliton parameters and the generation of a new soliton as well as
radiation through the interaction.



5 Normal Form and Solitons 177

In this chapter, we present a comprehensive study of the normal form theory for
weakly dispersive wave equations: We start in Sect. 5.2 to define the perturbed KdV
equation as an asymptotic expansion of a weakly dispersive wave equation whose
leading order equation is given by the KdV equation. We give a recursion formula
to generate the higher order corrections which may be obtained by an asymptotic
perturbation method (see for example [38]). The set of those higher order terms
forms an extended space of differential polynomials which includes some nonlocal
terms. The space is denoted by P̂odd, where “odd” implies the odd weight of those
integro-differential polynomials.

In Sect. 5.3, the conserved quantities or integrals of the KdV equation are re-
viewed, and we discuss approximate integrals of the perturbed KdV equation. We
then obtain the conditions for the existence of approximate integrals in each order
(Proposition 6). We also discuss a connection of the conserved quantities and the
N-soliton solutions of the KdV equation.

In Sect. 5.4, we review the symmetries of the KdV equation and discuss the
approximate symmetries for the perturbed KdV equation. Here we also define the
space of P̂even, which together with P̂odd provides the appropriate spaces for
the normal form transform defined in the next section.

In Sect. 5.5, we describe the normal form theory. The normal form transformation
is then obtained by a linear equation of an adjoint map defined as

adK(0) : P̂even −→ P̂odd,

where K(0) is the KdV vector field (Theorem 10). The explicit form of the normal
form is given for the perturbed KdV equation which contains the first three lowest
weight approximate conserved quantities (Theorem 12). The normal form then ad-
mits one-soliton solution of the KdV equation, which confirms the result in [24]. We
also discuss the Gardner–Miura transformation, which is an invertible version of the
Miura transformation, and show that the inverse Gardner–Miura transformation is
nothing but the normal form transformation after removing the symmetries of the
KdV equation (Theorem 14).

In Sect. 5.6, we consider the interaction problem of two solitary waves under the
influence of the obstacles of asymptotic integrability and provide the explicit formu-
lae for the shifts of the soliton parameters (Theorem 15). We also give the formulae
of the radiation energy and additional phase shifts which are used to compare with
the numerical simulations for some examples in the next section.

Finally in Sect. 5.7, we present explicit examples including ion acoustic wave
equation, the Boussinesq equation as a model of shallow water waves and the regu-
larized long wave equation. We show the good agreements with the results obtained
by the normal form theory. We also consider a seventh-order Hirota bilinear equa-
tion which admits an exact two-soliton solution but is known to be nonintegrable.
We look for an obstacle to the asymptotic integrability and find that the obstacles
appear at the fourth order. This implies that the fourth-order obstacles play no rule
for two-soliton solution, just like all obstacles have no rule for one-soliton solution
for the system with the first three approximate integrals.
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5.2 Perturbed KdV Equation

Under the assumption of weak nonlinearity and weak dispersion, the wave prop-
agation in a one-dimensional medium can be described by the KdV equation in
the leading order of an asymptotic expansion. Using an appropriate asymptotic per-
turbation method (see, e.g., [38]) one can show that the higher order correction to
the KdV equation has the following expansion form with a small parameter ε with
0 < ε� 1,

ut +K(u;ε) = O
(
εN+1) ,

with K(u;ε) = K(0)(u)+ εK(1)(u)+ ε2K(2)(u)+ · · ·+ εNK(N)(u), (5.1)

where K(0)(u) gives the KdV flow and the higher order corrections K(n)(u) are gen-
erated by a recursion formula starting from n =−1,

K(n)(u) =
M(n)

∑
i=1

a(n)
i X (n)

i (u)

= a(n)
1 u(2n+3)x + ∑

n1+n2=n−2
1≤i≤M(n1)
1≤ j≤M(n2)

c(n)
i j

(
X (n1)

i D−1X (n2)
j

)
(u). (5.2)

Here a(n)
i , c(n)

i j are the real constants determined by the original physical problem,

unx = ∂ nu/∂xn, and D−1 indicates an integral over x, D−1(·) :=
∫ x
−∞ dx′(·). Each

X (n)
i (u) is a monomial in the polynomial K(n)(u), and M(n) is the total number

of independent monomials of the order n. The first few terms of K(n)(u) are then
given by

K(−1) = a(−1)
1 ux, M(−1) = 1,

K(0) = a(0)
1 u3x +a(0)

2 uux, M(0) = 2,

K(1) = a(1)
1 u5x +a(1)

2 u3xu+a(1)
3 u2xux +a(1)

4 uxu2, M(1) = 4,

K(2) = a(2)
1 u7x+a(2)

2 u5xu+a(2)
3 u4xux+a(2)

4 u3xu
2+a(2)

5 u3xu2x

+a(2)
6 u2xuxu+a(2)

7 uxu
3+a(2)

8 u3
x , M(2) = 8,

K(3) = a(3)
1 u9x +a(3)

2 u7xu+a(3)
3 u6xux +a(3)

4 u5xu2x

+a(3)
5 u5xu2 +a(3)

6 u4xu3x +a(3)
7 u4xuxu+a(3)

8 u3xu2xu

+a(3)
9 u3xu2

x +a(3)
10 u3xu3 +a(3)

11 u2
2xux +a(3)

12 u2xuxu2

+a(3)
13 u3

xu+a(3)
14 uxu4 +a(3)

15 uxD−1(u3
x), M(3) = 15.

We normalize the KdV flow so that K(0)(u) is given by the standard form which we

denote by K(0)
0 (u), i.e.,
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K(0)
0 = u3x +6uux.

Each polynomial K(n) has the scaling property: Assign the weight 2 to u(x, ·), and 1
to ∂/∂x. Then if u(x, ·) = δ 2v(δx, ·) = δ 2v(ξ , ·), we have

K(n)(u(x, ·)) = δ 2n+5K(n)(v(ξ , ·)) = δ 2n+5
(

a(n)
1 v(2n+5)ξ + · · ·

)
.

Thus each polynomial K(n)(u) has the homogeneous weight “2n+5”. We denote by
P̂odd[u] the set of all the odd weight polynomials generated by the formula (5.2).
Then we have

P̂odd[u] =
∞⊕

n=−1

P̂
(n)
odd[u],

where P̂
(n)
odd[u] is the finite-dimensional subspace of the polynomials with the homo-

geneous weight 2n + 5, and the dimension of the space is given by dim P̂
(n)
odd[u] =

M(n),
P̂

(n)
odd[u] = SpanR

{
X (n)

i (u) : 1≤ i≤M(n)
}

.

As shown in the examples, the subspaces P̂
(n)
odd[u] up to n = 2 are given by the

differential polynomial of u and its derivatives, and we denote

P̂
(n)
odd[u] = P2n+5[u]⊕R Q2n+5[u],

where Pk[u] is the space of homogeneous differential polynomials of weight k,

Pk[u] = SpanR

{
ul0 ul1

x · · ·uln
nx :

n

∑
j=0

( j +2)l j = k, l j ∈ Z≥0

}
,

and Qk[u] consists of the polynomials of weight k containing the integral operator(s)
D−1,

Q2n+5[u]⊂ SpanR

{
X (n0)

i0
D−1X (n1)

i1
· · ·D−1X (nl)

il
:
∑l

j=0 n j +2l = n

X
(n j)
i j
∈Pn j [u]

}
.

The space Pk[u] can also be extended for k = even, and we will later define Qk[u]
for k = even.

Remark 1. In order to verify the expansion (5.1), one may need to impose the fol-
lowing conditions for the initial data on u(x, t = 0):

a) |u(x,0)| ≤C exp(−ε1/2|x|), as |x| → ∞,

b) ‖u(x,0)‖2
H∞(R) =

∞

∑
n=0

∫
R

|unx(x,0)|2dx < ∞.
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The rigorous justification of the KdV equation from a physical model such as the
shallow water waves has been discussed in [7, 14].

5.3 Conserved Quantities and N-Soliton Solutions

The integrability of the KdV equation implies the existence of an infinite number
of conserved quantities or integrals. Here we briefly summarize those quantities and
discuss approximate integrals of the perturbed equation (5.1). The approximate inte-
grals will play a fundamental role for the normal form theory discussed in Sect. 5.5
and provide an analytical tool to study the nonintegrable effect on the solution of
the perturbed KdV equation.

5.3.1 Conserved Quantities

Let us first recall the definition of a conserved quantity for the evolution equation in
the form

ut = f (u), with f (u) ∈ P̂odd[u]. (5.3)

Definition 2. An integral of a differential polynomial ρ(u) ∈P[u] =⊕kPk[u],

I[u] =
∫

R

ρ(u) dx, so that ρ(u) ∈P[u]/Im(D),

is a conserved quantity of (5.3) if

ρt ∈ Im(D), with D = ∂/∂x.

The polynomial ρ(u) is called a conserved density for (5.3).

We also define a vector field generated by f (u) and its action on the space P[u].

Definition 3. A vector field generated by f (u) is defined by

Vf :=
∞

∑
i=0

Di( f )
∂

∂uix
,

which acts on the space P[u] as a differential operator,

Vf : P[u] −→P[u],
g �−→ Vf ·g.

With this definition, the condition for ρ(u) being a conserved quantity can be ex-
pressed by

ρt = Vf ·ρ ∈ Im(D).
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The KdV equation with f (u) = K(0)(u) ∈P5[u] has an infinite sequence of con-
served quantities,

I(0)
k [u] =

∫
R

ρ(0)
k (u) dx, with ρ(0)

k ∈P2k+2[u] for k = 0,1,2, · · · ,

which are generated by the bi-Hamiltonian relation,

D∇I(0)
l+1(u) =Θ∇I(0)

l (u), with Θ := D3 +2(Du+uD). (5.4)

The gradient (∇I)(u) is defined by

∫
R

v(∇I)(u) dx = lim
δ→0

d
dδ

I[u+δv],

which can be expressed as

(∇I)(u) =
∞

∑
i=0

(−1)iDi ∂ρ
∂uix

(u), for I[u] =
∫

R

ρ(u) dx.

The first few conserved densities ρ(0)
k are given by

ρ(0)
0 =

1
2

u, ρ(0)
1 =

1
2

u2, ρ(0)
2 =

1
2

(
u2

x−2u3) ,
ρ(0)

3 =
1
2

(
u2

2x−10uu2
x +5u4) .

Each density ρ(0)
k (u) can be considered as

ρ(0)
k ∈P2k+2[u]/Im(D).

We then define

Definition 4. The set of differential polynomials for the conserved densities are
given by

Fk[u]∼= Pk[u]/Im(D),

where Fk[u] are defined by

Fk[u] := SpanR

{
ul0 ul1

x ul2
2x · · ·uln

nx :
n

∑
j=0

( j +2) l j = k, ln ≥ 2

}
.

Table 5.1 shows the relation between the weight and the dimension of the space
Fk[u]:
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Table 5.1 The relation between the weight and the dimension of Fk[u]

Weight 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Dimension 1 0 1 0 2 0 3 1 4 2 7 3 10 7 14 11 22 17

5.3.2 Approximate Conserved Quantities

Here we discuss approximate conserved quantities of the perturbed KdV equation
ut + K(u;ε) = O(εN+1) in (5.1). We look for the conserved quantity in a formal
power series,

Il [u;ε] =
∫

R

ρl(u;ε) dx = I(0)
l [u]+ εI(1)

l [u]+ · · ·+ εNI(N)
l (u)+O

(
εN+1) ,

so that the density ρl(u;ε) satisfies

VK ·ρl(u;ε) = O
(
εN+1) (mod Im(D)), (5.5)

V
K(0)

0
·ρ(m)

l (u) =−
m

∑
i=1

VK(i) ·ρ(m−i)
l (u), for m = 1,2, · · · . (5.6)

Then we have

Lemma 5. For the linear map VK(0) ,

VK(0) : F2k[u] −→ F2k+3[u],

the kernel of VK(0) with a fixed weight is a one-dimensional subspace of F2k[u]
given by

KerVK(0) ∩F2k[u] = SpanR

{
ρ(0)

k−1

}
.

A proof of this lemma can be found in [34]. Namely there is only one conserved
density in the form of differential polynomial for each weight. From this lemma, we

obtain a sufficient condition for the solvability of ρ(m)
l on the space of differential

polynomials F2(m+l)+2[u],

dim F2(m+l)+5[u] = dim F2(m+l)+2[u]−1. (5.7)

Equation (5.5) is overdetermined in general, and we denote by N(m)
l the number of

the constraints for the existence of ρ(m)
l , that is,

N(m)
l = dim F2(m+l)+5[u]− (dim F2(m+l)+2[u]−1).

Note here that N(m1)
l1

= N(m2)
l2

if l1 +m1 = l2 +m2. Then from Table 5.1, we obtain
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Proposition 6. For the existence of the higher order corrections of the conserved
quantities, we have the following:

i) There always exist conserved quantities, I0, I1, I2, I3 up to order ε.

ii) At order ε2, there exist I0, I1, I2, and N(2)
3 = 1, that is, there is one condition

μ(2)
1 = 0 for the existence of I3 where

μ(2)
1 := −560a(2)

1 +170a(2)
2 −60a(2)

3 −8a(2)
4

+24a(2)
5 −9a(2)

6 +3a(2)
7 +24a(2)

8

+
10
3

a(1)
1

(
240a(1)

1 −67a(1)
2 +6a(1)

4

)

+
1
3

a(1)
2

(
4a(1)

2 +30a(1)
3 +a(1)

4

)

−a(1)
3

(
2a(1)

3 +a1
4

)
.

iii) At order ε3, there always exist I0, I1. There are totally three conditions, μ(3)
k = 0,

k = 1,2,3, with μ(3)
1 = 0 for the existence of I2 (i.e., N(3)

2 = 1), and two conditions

μ(3)
2 = 0, μ(3)

3 = 0 for the existence of I3 (i.e., N(3)
3 = 2). (Explicit form of

μ(3)
k , k = 1,2,3, are listed in Appendix.)

iv) At order ε4, there always exist I0. There are in total seven conditions, μ(4)
k = 0,

k = 1, · · · ,7 with N(4)
1 +N(4)

2 +N(4)
3 = 1+2+4 = 7.

One should note here that many physical examples have several conserved quanti-
ties, such as the total mass, momentum and energy, which may be assigned as the
first three quantities Il [u;ε] with l = 0,1 and 2. Then the existence of the higher con-
served quantity I3[u;ε] is a key for the integrability of the perturbed equation. The
(i) in Proposition 6 suggests the asymptotic integrability of the perturbed equation
(5.1) up to order ε. In fact, in Sect. 5.5, we transform the perturbed equation to an

integrable system up to order ε and discuss the effect of the nonexistence of I(2)
3 ,

i.e., μ(2)
1 �= 0, on the interaction behavior of two solitons.

5.3.3 N-Soliton Solution

One of the most important aspects of the existence of conserved quantities in the
form of differential polynomial is to provide several exact solutions of the system.
For example, N-soliton solution can be obtained by the variational equation (see for
example [34])

∇S[u;λ1, . . . ,λN ] = 0, (5.8)

where S[u;λ1, . . . ,λN ] is the invariants given by
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S = I(0)
N+1[u]+λ1I(0)

N [u]+ · · ·+λNI(0)
1 [u].

Here λk are real constants (the Lagrange multipliers). Thus the N-soliton solution

is given by a stationary point of the surface defined by I(0)
N+1[u] = constant subject

to the constraints I(0)
k [u] = constant for k = 1,2, · · · ,N. This characterization of the

N-soliton solution is essential for its spectral stability (see, e.g., [23]).
Equation (5.8) gives a 2N order differential equation for u(x, ·) and contains one-

soliton solution in the form

u(x, ·) = 2κ2sech2(κ(x− x0(·))), (5.9)

with an appropriate choice of the parameters λk. In fact, using the bi-Hamiltonian
relation (5.4) the variational equation ∇S = 0 can be written as

(
RN−1 +μ1R

N−2 + · · ·+μN−1
)

D
(
∇I(0)

2 +μN∇I(0)
1

)
= 0,

where μks are some constants related to λ j. Then by choosing μN = −4κ2 this
equation admits the one-solitonsolution in the form (5.9). Here the operator R is
called the recursion operator defined as

R =ΘD−1 and RD∇I(0)
k = D∇I(0)

k+1. (5.10)

The recursion operator plays an important role for the theory of the integrable
systems.

5.4 Symmetry and the Perturbed Equation

Here we review the symmetries of the KdV equation and discuss how these symme-
tries work for the analysis of the nearly integrable systems.

5.4.1 Symmetries of the KdV Equation

Let us define the symmetry for a system

ut = K(u), with K(u) ∈ P̂[u]. (5.11)

Definition 7. A function S(u) ∈ P̂[u] is a symmetry of (5.11) if S(u) satisfies the
commutation relation

adK ·S(u) := [K,S](u) = (VS ·K−VK ·S)(u) = 0,

where adK : P̂[u]→ P̂[u] is the adjoint map of K.
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This means that if S(u) is a symmetry of K(u) then the vector fields generated by
K(u) and S(u) commute with each other, i.e., VK · (VS ·u)−VS · (VK ·u) = 0.

The KdV equation has an infinite number of commuting symmetries which are

given by the Hamiltonian flows generated by the conserved quantities I(0)
l [u] for

l = 1,2, . . ., that is,

K(n)
0 (u) := D∇I(0)

n+2, for n =−1,0,1,2, . . . .

Then using the recursion operator R in (5.10) those symmetries can be con-
structed as

K(n−1)
0 (u) = RnK(−1)

0 (u), with K(−1)
0 (u) = ux.

The symmetry can also be constructed by the so-called master symmetry [10].
The definition of the master symmetries is as follows. A function M(u) is a master
symmetry of the evolution equation (5.11) if the Lie bracket defined by M maps
symmetries onto symmetries, i.e.,

[M,Si] = S j,

where Si and S j are symmetries of (5.11).

The explicit form of the first few commutative symmetries K(i)
0 , i≥−1, are

K(−1)
0 = ux,

K(0)
0 = 6uux +u3x,

K(1)
0 = u5x +10u3xu+20u2xux +30uxu2,

K(2)
0 = u7x +14u5xu+42u4xux +70u3xu2 +70u3xu2x +280u2xuxu

+140uxu3 +70u3
x ,

K(3)
0 = u9x +18u7xu+72u6xux +168u5xu2x +126u5xu2 +252u4xu3x

+756u4xuxu+1260u3xu2xu+966u3xu2
x +420u3xu3

+1302u2
2xux +2520u2xuxu2 +1260u3

xu+630uxu4,

and the master symmetries M( j)
0 , j ≥ 0, are

M(0)
0 = xK(−1)

0 +2u,

M(1)
0 = xK(0)

0 +8u2 +4u2x +2K(−1)
0 D−1(u),

M(2)
0 = xK(1)

0 +32u3 +48uu2x +36u2
x +6u4x +2K(0)

0 D−1(u)

+6K(−1)
0 D−1(u2),

M(3)
0 = xK2 +8u6x +96uu4x +240uxu3x +160u2

2x +384u2u2x +576uu2
x

+128u4 +2K(1)
0 D−1(u)+6K(0)

0 D−1(u2)+10K(−1)
0 D−1 (2u3−u2

x

)
.
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The set of those polynomials {K(n)
0 ,M(m)

0 } forms an infinite-dimensional Lie al-
gebra containing a classical Virasoro algebra of the master symmetries, that is,

[Mn,Km] = (2m+3)Kn+m, [Mn,Mm] = 2(m−n)Mn+m. (5.12)

One notes here that the symmetries K(n)
0 (u) are the odd weight (differential) polyno-

mials, while the master symmetries are the even weight polynomials. In particular,

each M(k)
0 (u)− xK(k−1)

0 (u) can be considered as an element of the space of even
weight polynomials generated by the recursion formula starting from k = 0,

Y (k)(u) = α(k)
1 u2kx

+ ∑
k1+k2=k−1
1≤i≤N(k1)
1≤i≤N(k2)

(
β (k)

i j (Y (k1)
i Y (k2)

j )(u)+ γ(k)
i j (X (k1−1)

i D−1Y (k2)
j )(u)

)
,

where X (k)
i (u) is a monomial in P̂2k+5[u]. This defines the space P̂even[u],

P̂even[u] =
∞⊕

k=0

P̂
(k)
even[u], with P̂

(k)
even[u] = P

(k)
even[u]⊕Q

(k)
even[u],

where P
(k)
even[u] = P2k+2[u]. The space P̂

(k)
even[u] will be important for the normal

form theory discussed in the next section.

Remark 8. The actions of the symmetries and the master symmetries on one-soliton
solution (5.9) give a representation of the algebra (5.12) in terms of the soliton

parameters κ and θ = κx0: For the symmetry K(n)
0 , the action generates the vector

field

Vn = 4n+1κ2n+3 ∂
∂θ

, for n≥−1,

and for the master symmetry,

Wm = 4nκ2n+1 ∂
∂κ

, for m≥ 0.

This gives a representation of the algebra (5.12), that is,

[Vn,Vm] = 0, [Wn,Vm] = (2m+3)Vn+m, [Wn,Wm] = 2(n−m)Wn+m.

5.4.2 Approximate Symmetries

As we discussed about the approximate conserved quantity for the perturbed equa-
tion (5.1) in the previous section, one can also discuss the approximate symmetries
for (5.1). We say that a differential polynomial H(u) ∈P[u] is an approximate
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symmetry of order n of the perturbed equation (5.1), if the commutator of K(u) and
H(u) gives

[K,H](u) = O
(
εn+1) .

Expanding H(u) in the power series of ε, H = H(0) +εH(1) +ε2H(2) + · · · , we have
the equation for H(m)(u),

ad
K(0)

0
·H(m) =−

m

∑
j=1

[
K( j),H(m− j)

]
, for m = 1,2, · · · ,

where K(0)
0 = u3x + 6uux, and K( j)s are the higher order corrections of the KdV

equation (5.1). Then choosing H(0) to be one of the symmetries of the KdV equation,

say H(0) = K(n)
0 , we find the obstacles for the existence of higher order corrections

H(m) for the approximate symmetry and obtain the same conditions for the existence
as stated in Proposition 6 [31]. In the proof, one needs the following lemma similar
to Lemma 5 for the kernel of the adjoint action ad

K(0)
0

:

Lemma 9. The kernel of ad
K(0)

0
on the space of differential polynomials P2n+3[u] is

given by

ker

(
ad

K(0)
0

)
∩P2n+5[u] = SpanR

{
K(n)

}
, for n≥−1.

5.5 Normal Form Theory

The normal form theory has been well developed in the study of finite-dimensional
dynamical systems (cf. [3]). The main purpose of the normal form is to classify
the vector fields near critical points in terms of the symmetries of the leading order
equation. This concept has been applied for the perturbed KdV equation as well as
the nonlinear Schrödinger equation in [15, 18, 19].

In this section we review the normal form theory for the perturbed KdV equation
(5.1) [19, 20]. The main result is to give an explicit construction of a near-identity
transformation which transforms the perturbed equation (5.1) into a normal form.
In particular, the normal form up to third order is derived when the perturbed KdV
equation has the first three nontrivial integrals, such as mass, momentum and energy.
This result shows that the perturbed KdV equations with higher order corrections are
asymptotically equivalent to the KdV equation up to the first order (see also [8, 9,
28, 29] for a further discussion on the asymptotic equivalence for shallow water
waves). As an explicit example, we also discuss the Gardner–Miura transformation
(which is an invertible version of the Miura transformation) in terms of the normal
form theory and show that the Gardner–Miura transformation is just a normal form
transformation.
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5.5.1 Normal Form

The basic idea of the normal form for the perturbed KdV equation (5.1) is to re-
move all the nonresonant (nonsecular) terms in the higher order corrections using a
near-identity transformation given by the Lie transformation. Since the symmetries

K(n)
0 (u) of the KdV equation give the obvious resonant terms, we write each higher

order term K(n)(u) of (5.1) in the form

K(n)(u) = a(n)
1 K(n)

0 (u)+F(n)(u), for n = 1,2, . . . ,

so that F(n)(u) has no linear term. Then the point of the transformation is to simplify
the term by removing the nonresonant terms in F(n)(u). If one succeeds to remove
the entire F(n)(u) up to n = N, then the perturbed equation is asymptotically inte-

grable up to the order εN , and it possesses approximate integrals I(n)
l [u;ε] for all

l ∈ Z≥0 and n = 1, . . . ,N. However, as we have shown in Proposition 6, there are
conditions for the existence of approximate conserved quantities. Thus we expect
to see obstacles in removing all the nonlinear terms F(n)(u) from the higher order
corrections. In fact we have

Theorem 10. There exists a near-identity transformation, Tε : v �→ u,

u = Tε(v) = v+ εφ (1)(v)+ · · · , with φ (n)(v) ∈ P̂
(n)
even[v]

such that the perturbed equation (5.1) is transformed to

vt +G(v;ε) = O(εN+1), (5.13)

with G(u;ε) = K(0)
0 (v)+ εG(1)(v)+ ε2G(2)(v)+ · · ·+ εNG(N)(v),

where G(n)(u) are given by

G(n)(v) = a(n)
1 K(n)

0 (v)+R(n)(v), with R(n)(v) =
Δ(n)

∑
i=1

μ(n)
i R(n)

i (v).

Here the constants μ(n)
i are given in Proposition 6 for the existence of the approx-

imate conserved quantities, Δ(n) is the total number of the conditions for the exis-

tence, and some R(n)
i (v) ∈ P̂2n+5[v].

Proof. We take the Lie (exponential) transform for a near-identity transform, that is,

u = Tε(v) = expVφ · v,

where the generating function φ is expanded in the power series of ε,

φ = εφ (1) + ε2φ (2) + · · ·+ εNφ (N) +O
(
ε(N+1)

)
.
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Substituting this into (5.1) leads to

VG = AdexpVφ
·VK := expVφ ·VK · exp(−Vφ ),

which gives

G =
∞

∑
n=0

1
n!

(
adφ
)n ·K = K +[φ ,K]+

1
2!

[φ , [φ ,K]]+
1
3!

[φ , [φ , [φ ,K]]]+ · · · .

Then from each order of ε, we obtain
[
K(0)

0 ,φ (1)
]

= K(1)−G(1),

[
K(0)

0 ,φ (2)
]

= K(2)−G(2) +
1
2

[
φ (1),K(1) +G(1)

]
,

[
K(0)

0 ,φ (3)
]

= K(3)−G(3) +
1
2

[
φ (2),K(1) +G(1)

]
,

+
1
2

[
φ (1),K(2) +G(2)

]
+

1
12

[
φ (1),

[
φ (1),K(1) +G(1)

]]
,

...
... .

Thus we have the equation for φ (n) in the form called the homological equation,

ad
K(0)

0
·φ (n) :=

[
K(0)

0 ,φ (n)
]

= K̃(n)−G(n), (5.14)

where K̃(n) is successively determined from the previous equations. Since the ad-
action ad

K(0)
0

raises the weight by three, we have

ad
K(0)

0
: P̂2n+2[v]−→ P̂2n+5[v].

Then we assume the following form for φ (i) ∈ P̂2n+2[v]:

φ (1) = α(1)
1 v2 +α(1)

2 v2x +α(1)
3 vxD−1(v),

φ (2) = α(2)
1 v3 +α(2)

2 vv2x +α(2)
3 v2

x +α(2)
4 v4x

+α(2)
5 K(0)D−1(v)+α(2)

6 vxD−1(v2),

φ (3) = α(3)
1 v4x +α(3)

2 vv2
x +α(3)

3 v2v2x +α(3)
4 v2

2x +α(3)
5 vxv3x

+α(3)
6 vv4x +α(3)

7 v6x +α(3)
8 vxD−1 (v3)+α(3)

9 vxD−1 (v2
x

)
+α(3)

10 K(0)D−1(v2)+α(3)
11 K1D−1(v)+α(3)

12 K(1)D−1(v).

The homological equation (5.14) gives a linear system of equations for the column

vector α(n) := (α(n)
1 , · · · ,α(n)

N(n))
T with N(n) = dim P̂2n+2[v],
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Aα(n) = b(n), (5.15)

where A is a (M(n)− 1)×N(n) matrix representation of the linear map ad
K(0)

0
on

P̂2n+2[v], and b(n) represents the coefficients of the monomial in K̃(n)−G(n) which
has M(n)− 1 elements with M(n) = dim P̂2n+5[v]. The system (5.15) is overde-
termined, and the total number of constraints for the consistency of the system is
given by

N(m) := dim P̂2n+5−1−dim P̂2n+2.

This number should agree with that of the conditions for the existence of approxi-

mate symmetries, that is, the number of μ(n)
i in Proposition 6.

Let us give an explicit form of G(n) up to n = 2:
At order ε, the matrix A in (5.15) is given by a 3×3 matrix with rank 3, so that

we have R(1) = 0, that is, no obstacle. The explicit transformation φ (1)(v) is given by

α(1)
1 =

1
6

(
20a(1)

1 +a(1)
2 −a(1)

4

)
, α(1)

2 =
1

12

(
10a(1)

1 +a(1)
3 −a(1)

4

)
,

α(1)
3 =

1
3

(
10a(1)

1 −a(1)
2

)
.

At order ε2, the matrix A is a 7×6 matrix with rank 6, and we have one obstacle
with the form

R(2)(v) = b(2)
2 v5xv+b(2)

3 v4xvx +b(2)
4 v3xv2 +b(2)

5 v3xv2x

+ b(2)
6 v2xvxv+b(2)

7 vxv3 +b(2)
8 v3

x ,

Here b(2)
i , i = 2,3, · · · ,8, are constants satisfying the condition

170b(2)
2 −60b(2)

3 −8b(2)
4 +24b(2)

5 −9b(2)
6 +3b(2)

7 +24b(2)
8 = 1.

The explicit formula of the α(2) = (α(2)
1 , · · · ,α(2)

6 )T is given in Appendix. ��

Theorem 10 shows that in particular, the perturbed KdV equation (5.1) can be
transformed into the integrable equation of the KdV equation with the fifth-order
symmetry. This implies that the weakly dispersive nonlinear wave equations are
asymptotically equivalent to the integrable system up to the first-order correction.

The perturbed equation (5.1) may have several approximate conserved quantities
based on the original physical setting. Then we consider a particular form of the
transformed equation (5.13) whose conserved quantities are given by those of the
KdV equation. We call this form of equation the normal form of (5.1), that is, we
define

Definition 11. For a subset of integers Γ ⊂ Z≥0, suppose that the perturbed KdV
equation (5.1) has the approximate conserved quantities Il [u,ε] for l ∈Γ up to order
εN . Then the normal form of (5.1) is defined by (5.13)
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vt +
N

∑
n=0

εnG(n)(v) = O
(
εN+1) ,

whose conserved quantities Jl [v;ε] := Il [Tε(v);ε] for l ∈Γ are expressed in terms of

the conserved quantities of the KdV equation I(0)
l [v],

Jl [v;ε] = I(0)
l (v)+ εc(1)

l I(0)
l+1(v)+ · · ·+ εNc(N)

l I(0)
N+l(v)+O

(
εN+1) , (5.16)

where c(i)
l , i = 1,2, . . . ,N, are some real constants.

In particular, if the set Γ contains the first three numbers, Γ ⊇ {0,1,2}, then the
normal form admits a solitary wave solution in the form of KdV soliton (5.9). This
can be seen by taking the variation

∇(J2[v,ε]+λJ1[v.ε]) = 0.

Since many physically interesting systems possess those conserved quantities as
mass, momentum and energy, we expect to find a solitary wave close to the KdV
soliton for such systems. Now we show the existence of such normal form for the
case Γ = {0,1,2}:

Theorem 12. Suppose that the perturbed KdV equation (5.1) has the first three ap-
proximate conserved quantities Il [u,ε], l = 0,1,2 up to order ε3. Then the corre-
sponding normal form takes the form (5.13) with

R(1)(v) = 0,

R(2)(v) = μ(2)
1 R(2)

1 ,

R(3)(v) =−μ(2)
1 c(1)

2 R(R(2)
1 )+μ(3)

2 R(3)
1 +μ(3)

3 R(3)
2 ,

where the conserved quantities Jl [v,ε] for the normal form are given by

Jl [v,ε] = Il [v]+ εc(1)
l Il+1[v]+ · · ·+ ε3c(3)

l Il+3[v]+O(ε4).

The obstacles R(n)
k are expressed as

R(2)
1 =

−1
50

(
v5xv+

3
2

v4xvx +5v3xv2− 5
2

v3xv2x +20v2xvxv+10vxv3 +5v3
x

)
,

R(3)
1 =

1
175

(
v7xv+

5
2

v6xvx +14v5xv2− 7
2

v4xv3x +63v4xvxv+35v3xv2xv

+56v3xv2
x +42v3xv3 +42v2

2xvx +273v2xvxv2 +168v3
xv

+
105
2

vxv4 +21vxD−1(v3
x)
)

,
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R(3)
2 =

1
175

(
4v7xv+10v6xvx +

91
2

v5xv2−14v4xv3x +
441
2

v4xvxv

+
385
2

v3xv2xv+203v3xv2
x +147v3xv3 +

357
2

v2
2xvx +903v2xvxv2

+ 483v3
xv+210vxv4 +21vxD−1(v3

x)
)

and R is the recursion operator.

Proof. Recall that Jl [v,ε] =
∫
R
ρ(v;ε)dx is an approximate conserved quantity for

(5.13) if
VG ·ρ(v;ε)+(εN+1) ∈ Im(D).

Then using the form (5.13) and ρl = ρ(0)
l + εc(1)

l ρ(0)
l+1 + · · · , we have, at order ε2,

VR(2) ·ρ(0)
l (v) ∈ Im(D), for l = 0,1,2, (5.17)

and at order ε3,

VR(3) ·ρ(0)
k (v) ∈ Im(D), for k = 0,1,

VR(3) ·ρ(0)
2 + c(1)

2 VR(2) ·ρ(0)
3 ∈ Im(D). (5.18)

Then from a direct computation with the explicit form of R(2) ∈P9[v], the condi-
tions (5.17) lead to the required form of R(2)(v).

For (5.18), we first write R(3) in the sum of homogeneous solution R(3)
h and a

particular solution R(3)
p , that is,

V
R(3)

h
·ρ(0)

l ∈ Im(D), for l = 0,1,2,

V
R(3)

p
·ρ(0)

2 +VR(2) ·ρ(0)
3 ∈ Im(D).

Then one can find a particular solution by using the recursion operator R =ΘD−1,

VR(2) ·ρ(0)
3 = R(2)∇I(0)

3 mod Im(D)
= R(2)D−1D∇I(0)

3 mod Im(D)
= R(2)D−1Θ∇I(0)

2 mod Im(D)
= (ΘD−1R(2))∇I(0)

2 mod Im(D)
= V

RR(2) ·ρ(0)
2 mod Im(D)

from which we have
R(3)

p =−μ(2)
1 c(1)

2 R(R(2)
1 ).

Then from a direct computation we have the homogeneous solution in the desired
form,

R(3)
h = μ(3)

2 R(3)
1 +μ(3)

3 R(3)
2 .

��
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In [5], Bilge also studied the integrability of the perturbed KdV equation (5.1) using
the normal form theory and the formal symmetry approach developed in [30]. The
main result is to show that the only integrable KdV like seventh-order equations are
the KdV, Sawada–Kotera and Kaup equations.

Remark 13. We have the following remarks on the obstacles:

a) In general, the explicit form of the obstacles R(n) may be successively obtained
by solving the linear equations

VR(n) ·ρ(0)
l +

n−2

∑
k=1

c(k)
l VR(n−k)ρ(0)

l+k ∈ Im(D), for n = 2,3, ·.

Suppose we found R(k) up to k = n−1. Then we have a particular solution in the
form

R(n)
p =−

n−2

∑
k=1

c(k)
l RkR(n−k).

Here one has to check the compatibility among the different l = 0,1,2.
b) Since the normal form with Γ = {0,1,2} admits the solitary wave in the form

of the KdV soliton, one can see that all the obstacles vanish when v assumes the
KdV soliton solution

R(n)(v) = 0, when v = 2κ2sech2(κ(x− x0)).

5.5.2 The Gardner–Miura Transformation

It was found in [32] that there is an invertible transformation between the KdV
equation and the KdV equation with a cubic nonlinear term,

ut +6uux +u3x = εau2ux, (5.19)

where a is an arbitrary constant. The transformation is called the Gardner–Miura
transformation which is an invertible version of the Miura transformation,

v = u−αε1/2ux−α2εu2, with α =−
√

a/6. (5.20)

Here we treat (5.19) as an example of the perturbed KdV equation and give an
explicit formulation of the Gardner–Miura transformation in terms of the normal
form theory. Since the perturbed equation (5.19) has an infinite number of conserved
densities and there is no resonant term as the symmetry of the KdV equation in
the higher order, the normal form is just the KdV equation. Then we construct the
normal form transformation u = Tε(v) which is the inverse of the Gardner–Miura
transformation (5.20).
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Since the Gardner–Miura transformation (5.20) is of a Riccati type, the change
of the variable

δu =
1
δ

(
D lnϕ +

1
2δ

)
, with δ = αε1/2, (5.21)

leads to the Schrödinger equation

L2ϕ := (D2 + v)ϕ = k2ϕ, with k =−1/(2δ ).

Using the notion of the pseudo-differential operators Dν for ν ∈ Z, one can define
L = (D2 + v)1/2 as

L = D+q1D−1 +q2D−2 + · · · , qi ∈Pi+2[v].

Then writing D in the power series of L, we have

D = L+ p1L−1 + p2L−2 + · · · , pi ∈Pi+2[v]

and using Lϕ = kϕ , we find

D lnϕ =− 1
2δ

+
∞

∑
i=1

(−2δ )i pi(v). (5.22)

Note in particular that we have

q1 =
1
2

v, p1 =−1
2

v.

From (5.21), Eq. (5.22) leads to the inverse of the Gardner–Miura transformation

u =
∞

∑
i=1

(−2)iδ i−1 pi(v,vx, · · ·)

= v+δvx +δ 2(v2x− v2)+ · · ·.

We now remove the terms of the non-integer powers of ε, the odd integer of δ =
αε1/2, in this equation. The first term δvx can be removed by the translation of

x. After removing the term δvx, we have K(0)
0 (v) at the order of ε3/2. This can be

removed by the translation of t. Continuing this process, we see the symmetries
of the KdV equation at the non-integer powers of ε. Then shifting the symmetry
parameters x2n+1, those can be removed. Here x = x1 and t = −x3. Now we can
show

Theorem 14. The inverse of the Gardner–Miura transformation (5.20) gives a nor-
mal form transform

u =
1
δ

D−1 sinh

(
δ

∞

∑
i=0

δ 2i

2i+1
∂

∂x2i+1

)
v, δ =−

√
εa
6

,
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where the derivative of v with respect to x2n+1 defines the symmetry, that is,

∂v/∂x2n+1 = K(n)
0 (v).

Proof. It is well known [13] that the wave function ϕ of the Schrödinger equation
can be expressed by the τ-function

ϕ(x,k) =
τ (x+2〈δ 〉)

τ(x)
ekx1 , with k =− 1

2δ
,

where we denote x := (x1,x2, . . .) and

〈δ 〉=
(
δ ,

δ 3

3
,
δ 5

5
, · · ·
)

.

Expanding the equation D lnϕ with this equation in the power of δ , we find

v(x) = 2D2 lnτ(x). (5.23)

Then from (5.21) we have

u(x) =
1
δ

D(lnτ(x+2〈δ 〉)− lnτ(x)) .

Now applying the vertex operator

V (δ ) = exp

(
−δ

∞

∑
i=0

δ 2i

(2i+1)
∂

∂x2i+1

)

and using (5.23), we obtain the result. Note here that both u(x) and u(x+〈δ 〉) satisfy
the same equation (5.19). ��

5.6 Interactions of Solitary Waves

As an important application of the normal form theory, we consider the interaction
problem of solitary waves and show how the theory enables us to understand the
interaction properties under the influence of the higher orders in the perturbed KdV
equation (5.1). We assume that the perturbed equation possesses the first three con-
served quantities, i.e., Γ = {0,1,2}. Then the first obstacle appears in the order ε2

as μ(2)
1 �= 0, that is, we consider the normal form

vt +K(0)
0 (v)+ εa(1)

1 K(1)
0 (v)+ ε2

(
a(2)

1 K(2)
0 (v)+μ(2)

1 R(2)
1 (v)

)
= 0.

Several physical examples of this type will be discussed in Sect. 5.7. We use the
method of perturbed inverse scattering transform [16, 17] to analyze the normal
form. We start with a brief description of the method.
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5.6.1 Inverse Scattering Transform

The key of the inverse scattering transform is based on the one-to-one correspon-
dence for each t between the scattering data S(t) and the potential v(x, t), the solution
of the normal form, of the Schrödinger equation (see for example [1]),

∂ 2ϕ
∂x2 +(v+ k2)ϕ = 0.

The correspondence is given by the formula of v(x, t) in terms of the squared eigen-
functions

v(x, t) = 4
N

∑
j=1

κ j(t)Cj(t)ϕ2(x, t; iκ j)+
2i
π

∫ ∞

−∞
kr(t;k)ϕ2(x, t;k) dk. (5.24)

Here the scattering data S(t) is defined by

S(t) :=
{
{κ j(t) > 0,Cj(t)}N

j=1, r(t;k) for k ∈ R
}

,

and the eigenfunction ϕ(x, t;k) is assumed to satisfy the boundary condition

ϕ(x, t;k)−→ e−ikx, as x−→−∞.

Note that the squared function ϕ2(x, t;k) satisfies

Θϕ2 := (D3 +2(Dv+ vD))ϕ2 =−4k2Dϕ2,

so that the function Dϕ2 is the eigenfunction of the recursion operator R with the
eigenvalue −4k2.

With the formula of v in (5.24), the conserved quantities Ji[v;ε] can be expressed
in terms of the scattering data

Ji[v;ε] = I(0)
i [v]+ εc(1)

i I(0)
i+1[v]+ ε2c(2)

i I(0)
i+2[v]+O

(
ε3) , i = 0,1,2, (5.25)

where I(0)
j can be expressed as

I(0)
m =

22m+1

2m+1
(−1)m+1

[
M

∑
j=1

κ2m+1
j − (−1)mΔm

]
(5.26)

with the radiation part Δm(t)

Δm =−2m+1
2π

∫ ∞

0
k2m ln(1−|r(t;k)|2) dk ≥ 0.

The existence of such conserved quantities plays a crucial rule for the interaction as
in the case of the KdV solitons.
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The time evolution of the scattering data is determined by

d
dt

S(t) =−VK ·S(t), for vt +K(v) = 0.

In particular, the equation for the reflection coefficient r(t;k) is given by

d
dt

r(t;k) =
−1

2ika2(t;k)

∫
R

vt(x, t)ϕ2(x, t;k) dx,

where a(t;k) is the reciprocal transmission coefficient determined by r(t;k) and κ j.
Using the normal form vt +K(v) = 0, we obtain the equation for r(t;k)

dr
dt

= iωr + ε2 μ(2)
1

2ika2

∫ ∞

−∞
R(2)

1 ϕ2(x, t;k)dx+O
(
ε3) , (5.27)

where ω = 8k3(1−4εa(1)
1 k2 +16a(2)

1 ε2k4).
Those given above provide enough information for our purpose of studying the

interaction of solitary waves.

5.6.2 Solitary Wave Interaction

Recall that the obstacle vanishes for one-soliton solution of the KdV equation, that
is, there is no effect of the obstacle on the solitary wave. The higher order terms
lead to the shift of the velocity of the soliton solution due to the resonance caused
by the symmetries of the KdV equation [24]. In order to see the effect of obstacles,
we now consider the interaction of two solitary waves and show the inelasticity in
the interaction which can be considered as a nonintegrable effect of the obstacle.

5.6.2.1 Inelasticity in the Interaction

Let us assume that the initial data consist of two well-separated solitary waves with
parameters κ1 > κ2 in the form of (5.9), traveling with speed,

s j = 4κ2
j

(
1−4εa(1)

1 κ2
j +16ε2a(2)

1 κ4
j

)
, j = 1,2 , (5.28)

and they are approaching each other. Then we analyze the interaction by using a
perturbation method where the leading order solution is assumed to be the exact
two-soliton solution of the KdV equation, that is, for large x02− x01 1

v(x,0)� 2κ2
1 sech2(κ1(x− x01))+2κ2

2 sech2(κ2(x− x02)).
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We then determine the evolution of the scattering data, κ j(t) and the radiation Δm(t)
in (5.29). First we have

Theorem 15. [19] Due to the interaction of two solitary waves, their parameters
κ j, j = 1,2, are shifted by Δκ j(t) which can be expressed in terms of the radiation
Δm(t) for any m = 0,1,2:

Δκ1 =
5κ2

2Δ1 +3Δ2

15κ2
1

(
κ2

1 −κ2
2

) +O(εΔm)≥ 0,

Δκ2 = − 5κ2
1Δ1 +3Δ2

15κ2
2

(
κ2

1 −κ2
2

) +O(εΔm)≤ 0.

There is also a production of the third soliton with the parameter

Δκ3 =
15κ2

1κ2
2Δ0 +5

(
κ2

1 +κ2
2

)
Δ1 +3Δ2

15κ2
1κ2

2

+O(εΔm)≥ 0.

Proof. From the conserved quantities Jl [v;ε] = constant for l = 0,1,2 up to order
ε3, we obtain

Δ I(0)
l + εc(0)

l Δ I(0)
l+1 + ε2c(2)

l Δ I(0)
l+2 = O

(
ε3) ,

where the variations Δ I(0)
n are taken over the shifts Δκ j and the radiation Δm, that is,

(2l +1)
N

∑
j=1

κ2l
j Δκ j− (−1)lΔl = O(εΔl) , for l = 0,1,2.

Here N − 2 is a possible number of new solitary waves. Since the Δκ j for j > 2
represents a new eigenvalue of the Schrödinger equation, it is nondegenerate and an
isolated point on the imaginary axis of the spectral domain . This implies that the
number of new eigenvalues should be just one for a sufficiently small ε, i.e., N = 3.

Because of κ j = 0 initially for j > 2, one can find the formulae of Δκ j for j = 1,2
from those variations for l = 1,2. Also the first variation with l = 0,

3

∑
j=1

Δκ j−Δ0 = O(εΔ0) ,

leads to the formula Δκ3 for a new solitary wave. ��

Thus we find the following:

a) The total mass, M =
∫

vdx ∝ κ , of the larger solitary wave is increased, and
contrarily that of the smaller solitary wave is decreased by the interaction.

b) The amount of the energy change, E =
∫

v2dx ∝ κ3, has the property 1 <
|ΔE2/ΔE1| < (κ1/κ2)2, i.e., the energy expense of the smaller solitary wave is
more than the energy gain of the larger one.

c) The interaction produces a new solitary wave as well as radiation.
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Those results except for a new solitary wave production are consistent with the
numerical observation in [6]. It may be difficult to observe the new solitary wave
from the numerical calculation, since this solitary wave has long width and small
amplitude (Δκ3)2 which is of order ε8 (see below).

The function Δm(t) of the radiation can be computed as follows: The reflection
coefficient r(t;k) in (5.27) can be expressed as

r(t;k) =
ε2μ(2)

1

2ik

(∫ t

0
dτ

e−iωτ

a(τ;k)2

∫
R

dxϕ2(x,τ;k)R(2)
1 (v)

)
eiωt .

Then Δm(t) is given by

Δm(t) =
2m+1

2π

∫ ∞

0
Dm(t;k) dk +o(ε4), (5.29)

where

Dm(t;k) = k2m|r(t;k)|2 +o(ε4)

= ε4 (μ(2)
1 )2k2(m−1)

4

∣∣∣∣
∫ t

0
dτ e−iωτ

∫
R

dx ϕ2(x,τ;k)R(2)
1 (v)

∣∣∣∣
2

+o(ε4).

We numerically calculate the formula Δm(t) by means of perturbation, that is, we as-

sume v(x, t) to be a two-soliton solution of the integrable one vt +K(0) + εa(1)
1 K1 +

ε2a(2)
1 K2 = 0 and ϕ(x, t,k) is the corresponding eigenfunction. The result will be

shown in Sect. 5.7 for the examples of ion acoustic waves and the Boussinesq
equation.

5.6.2.2 Additional Phase Shifts of Solitary Wave

As a consequence of the nonlocal terms in the normal form transformation, one can
find the additional phase shifts on the solitary waves u(x, t) of the perturbed KdV
equation (5.1) through their interaction.

Let us first recall the phase shifts of the two-soliton solution for v(x, t) [2, 11].
The asymptotic form of v(x, t) consists of well-separated one solitons,

v(x, t) ≈ v±j (x, t), as

{
t→±∞
κ jx∼ ω jt

with v±j (x, t) = 2κ2sech(κ jx−ω jt−θ±j ),

where ω j = κ js j with the speed s j in (5.28). Then the phase shifts Δx(0)
j :=

(θ+
j −θ−j )/κ j are given by
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Δx(0)
1 =− 1

κ1
ln

(
κ1−κ2

κ1 +κ2
,

)
and Δx(0)

2 =
1
κ2

ln

(
κ1−κ2

κ1 +κ2

)
.

We now compute the correction to the shift Δx(0)
j using the normal form transfor-

mation. From the asymptotic form of the two-soliton solution for t→−∞, we have
up to order ε

u(x, t) −→
κ1x∼ω1t

v−1 + ε

(
α(1)

1 (v−1 )2 +α(1)
2 (v−1 )2x +α(1)

3 (v−1 )x

∫ x

−∞
v−1 dx

)

−→
κ2x∼ω2t

v−2 + ε

(
α(1)

1 (v−2 )2 +α(1)
2 (v−2 )2x +α(1)

3 (v−2 )x

∫ x

−∞
v−2 dx

)

+εα3(v−2 )x

∫
R

v−1 dx.

One should note here that there is an extra term in the v2 solitary wave which is
the key term for the additional phase shift. Namely the term can be absorbed as a
translation of x in v2. The other terms contribute to modify the shape of the soliton,
the dressing part.

Also for t→+∞, we have

u(x, t) −→
κ1x∼ω1t

v+
1 + ε

(
α(1)

1 (v+
1 )2 +α(1)

2 (v+
1 )2x +α(1)

3 (v+
1 )x

∫ x

−∞
v+

1 dx

)

+εα3(v+
1 )x

∫
R

v+
2 dx

−→
κ2x∼ω2t

v+
2 + ε

(
α(1)

1 (v+
2 )2 +α(1)

2 (v+
2 )2x +α(1)

3 (v+
2 )x

∫ x

−∞
v+

2 dx

)
.

Now the additional shift appears to v1. This can be extended for the next order where

the shift also appears as a translation of t with a term like K(0)
0 (v1)

∫
R

v2dx. Thus we
have the total phase shift for v1 solitary wave

Δx1 = Δx(0)
1 + εΔx(1)

1 + ε2Δx(2)
1 +O

(
ε3) , (5.30)

where the additional phase shifts are given by

Δx(1)
1 = α(1)

3

∫
R

v2dx = 4κ2α
(1)
3 ,

Δx(2)
1 = α(2)

6

∫
R

(v2)2dx+
α(1)

3

(
α(1)

1 −α(1)
3

)
2

∫
R

(v2)2dx+4κ2
1α

(2)
5

∫
R

v2dx

=
(

16
3
α(2)

6 +
8
3
α(1)

3

(
α(1)

1 −α(1)
3

))
κ3

2 +16α(2)
5 κ2

1κ2.
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5.7 Examples

In this section, the normal form theory is applied to some explicit models including
the ion acoustic wave equation, the Boussinesq equation as a model of the shallow
water waves and the regularized long wave equation (sometimes called BBM equa-
tion). We also carry out the numerical simulation for those examples and compare
the results with the predictions obtained from the normal form theory such as the
phase shift (5.30) and the radiation energy (5.29).

We also consider the seventh-order Hirota KdV equation which is known to be
nonintegrable even though it admits an exact two solitary wave solution. The main
issue is to determine the order of the obstacle of the corresponding normal form,
which indicates a nonintegrability of the equation in the asymptotic sense. It turns
out that the obstacles appear at order ε4.

5.7.1 Ion Acoustic Waves

An asymptotic property of the ion acoustic waves has been discussed in several pa-
pers (see for example [38]). These studies show that the KdV equation is derived as
the first approximation of the ion acoustic wave equation under the weakly disper-
sive limit. The higher order corrections to the KdV soliton solution has also been
discussed in [24]. Recently, Li and Sattinger in [26] studied numerically the inter-
action problem of solitary waves and showed that the amplitude of the radiation
after two solitary wave interaction can be observed as small as 10−5 order, and they
concluded that the KdV equation gives an excellent approximation. Here we ex-
plain those observations based on the normal form theory developed in the previous
sections.

Following the method in [38], we first derive the KdV equation with the higher
order corrections. The ion acoustic wave equation is expressed by the system of
three partial differential equations in the dimensionless form

⎧⎪⎪⎨
⎪⎪⎩

(ni)T +(nivi)X = 0,

(vi)T +
(

v2
i

2
+φ
)

X
= 0,

φ2X − expφ +ni = 0,

(5.31)

where ni, vi and φ are the normalized variables for ion density, ion velocity and
electric potential. Electron density ne is related with φ as ne = exp(φ). Assuming
the weak nonlinearity and the weak dispersion, we introduce the scaled variables

vi = εv, ne = 1+ εn and x = ε1/2X , t = ε1/2T.

Then we write (5.31) in the following form for (n,v):
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1− εD2 · 1

1+ εn

)
nt + vx + ε(nv)x− ε(v ln(1+ εn))x = 0,

vt + vvx +
1

1+ εn
nx = 0.

Then inverting the operator in front of nt , we have the matrix equation

∂
∂ t

U +A0
∂
∂x

U + ε
∂
∂x

B(U) = 0, with U =
(

n
v

)
, (5.32)

where A0 is the constant matrix A0 =
(

0 1
1 0

)
, and the vector function B(U) is given

by the expansion

B = B(1) + εB(2) + ε2B(3) + · · · ,

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B(1) =
(

v2x +nv
1
2 (v2−n2)

)
, B(2) =

(
v4x +nxvx

1
3 n3

)
,

B(3) =
(

v6x +(nxvx)2x− (nv3x)x− vnnx

− 1
4 n4

)
.

Thus for the case with ε = 0, we have two simple linear waves propagating with
the speeds λ± = ±1 given by the eigenvalues of the matrix A0. We then look for
an asymptotic wave along with the speed λ+ = 1, so that we introduce the scaled
variables on this moving frame,

x′ = x− t, t ′ = εt,

which gives, after dropping the prime on the new variable,

(A0− I)
∂U
∂x

+ ε

(
∂U
∂ t

+
∂B(U)
∂x

)
= 0, (5.33)

where I is the 2×2 identity matrix. Let us decompose U in the form

U(x, t) = u(x, t)R+ + f (x, t)R−,

where R± are the eigenvectors corresponding to the eigenvalues λ± = ±1. Then
taking the projections of (5.33) on the R±-directions, we have

⎧⎨
⎩

ut +(L+B)x = 0,

−2 fx + ε ( ft +(L−B)x) = 0,

where L± are the left eigenvectors with the normalization L±R± = 1, L±R∓ = 0.
Then we can see that f (x, t) can be expressed in an expansion form
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f (x, t) = ε f (1)(u)+ ε2 f (2)(u)+ ε3 f (3)(u)+ · · · , with f (k)(u) ∈ P̂
(k)
even[u],

where f (n) are determined iteratively from

f =
ε

2
(L−B)+

ε

2
D−1 ft =

ε

2

(
L−B(1)

)
+

ε2

2

(
L−B(2)

)
+

ε

2
ft + · · ·.

Thus we obtain the perturbed KdV equation which takes the following form up to
order ε2 after an appropriate normalization

ut +6uux +u3x + ε

(
1
4

u5x−u3xu− 3
2

uxu2
)

+ ε2
(

5
72

u7x−
1
2

u5xu

−17
24

u4xux +
1
6

u3xu2x +
3
4

u3xu2− 1
4

u2xuxu− 7
8

u3
x +

1
4

uxu3
)

= O(ε3),

from which we have

μ(2)
1 =−11

9
�= 0.

Thus the normal form of the ion acoustic wave equation has the obstacle R(2)
1 . The

normal form transformation is given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(1)
1 =

11
12

, α(1)
2 =

1
3
, α(1)

3 =
7
6
,

α(2)
1 =

731
3600

, α(2)
2 =

89
600

, α(2)
3 =

433
3600

,

α(2)
4 =

51
800

, α(2)
5 =

23
1800

, α(2)
6 =

87
400

.

Remark 16. The physical variables n and v are expressed as

n = u+ f , v = u− f , with R± =
(

1
±1

)
.

Since f has an expansion of the power series of ε and each coefficient f (n) is an

element in P̂
(n)
even, the expressions of n, v have the same form as of the normal form

transformation. In the asymptotic sense, all the physical variables are expressed by
one function u as U = uR+. Then the choice of the higher order terms f has a
freedom. Then the main purpose of the normal form is to use this freedom to classify
near-integrable systems in the asymptotic sense.

We now compare the results in Sect. 5.6 with numerical results. We used the
spectral method [40] for the numerical computation. For convenience, we consider
(5.31) in a moving frame with a speed c:
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⎧⎪⎪⎨
⎪⎪⎩

(n)t − (6+ c)nx +6vx +6(nv)x = 0,

(v)t − (6+ c)vx +6

(
v2

2
+φ
)

x
= 0,

φ2x−3expφ +3(n+1) = 0.

(5.34)

The computation is done with the 212 number of Fourier modes and the time step
dt = 0.008. In general, the spectral method yields aliasing errors from the high-
frequency modes in the nonlinear terms, so we try to get rid of their errors by adopt-
ing the 3/2 rule [36].

Let us first compare a solitary wave solution of the ion acoustic wave equation
with the KdV soliton solution. Since the one-soliton solution (5.9) is a kernel of
the obstacle R(2)

1 , one can construct a solitary wave for the variable u by the normal
form transformation, i.e.,

u = v+ εφ (1) + ε2
(
φ (2) +

1
2

Vφ (1) ·φ (1)
)

+O(ε3),

with v = 2κ2sech2(κ(x− x0)), (5.35)

where x0 is a center position of the soliton at t = 0. The solitary wave for the variable
u is constructed by the core v with the dressing terms εφ (1) + ε2(φ (2) + 1

2Vφ (1) ·
φ (1))+O(ε3). Now let us see the effect of the dressing terms, which is considered as
nonresonant higher harmonics in a periodic solution of finite-dimensional problem.

Figure 5.1 shows the difference of the amplitude of radiation emitted during the
time evolution for each initial wave. The initial solitary wave is given by u = v in the
left figure, u = v + εφ (1) in the central figure and u = v + εφ (1) + ε2(φ (2) + 1

2Vφ (1) ·
φ (1)) in the right figure. The core part is given by (5.35) for κ = 0.2. These figures
show that the generation of the radiation can be suppressed by adding the higher
order dressing terms into the core.

Now let us discuss the interaction of the two solitary waves. In Fig. 5.2, we
show the result of the phase shift Δx1 of (5.30) and the radiation Δ1(t) of (5.29)

x–0.001
30 40 50

0

0.001

0.002
u

30 40 50 x

0

504030 x

0

Fig. 5.1 Effect of the dressing term for ion acoustic solitary wave. The figures plot the solutions
of (5.34) for the initial function to be either (a) u = v (left), (b) u = v + εφ (1)(v) (middle) or
u = v+ ε(1)(v)+ ε2ψ(2)(v) (right) where ψ(2) = φ (2) + 1

2Vφ (1) ·φ (1)
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Fig. 5.2 Phase shifts Δx1 of (5.30) and the time evolution of the radiation Δ̄1(t) :=
Δ1(t)/(ε4(μ(2)

1 )2) of (5.29) for the ion acoustic waves

generated by the interaction of the solitary waves with the parameter κ1(> κ2). We
fix κ1 +κ2 = 0.5 and ε = (κ2

1 +κ2
2 )/2 � 0.07. For the phase shift (the left figure),

the solid line is calculated from the formula (5.30), and the broken line is obtained
by the numerical simulation. The shift of the KdV soliton is also shown as the dotted
line.

As we can see, the phase shift formula gives a good agreement to the numerical
results. In the right figure, the energy of the radiation Δ1(t) emitted after the inter-

action is calculated from (5.29) with Δ1(t) = Δ̄1(t)/(ε4(μ(2)
1 )2). This shows that the

radiation energy is of order 10−5 which also agrees with the result in [26]. Thus the
normal form theory provides an accurate description of the deviation from the KdV
equation.

5.7.2 Boussinesq Equation

The Boussinesq equation as an approximate equation for the shallow water waves
is given by {

ηT + vX +(ηv)X = 0,

vT +
1
2
(v2)X +ηX −

1
3

vXXT = 0,

where η and v are the normalized variables which represent the amplitude and the
velocity [39]. Since this equation is truncated at the first order from the shallow wa-
ter wave equation, the normal form may not provide a structure of the asymptotic
integrability at the second order. However, the Boussinesq equation itself has an
interesting mathematical structure, such as the regularization at the higher disper-
sion regime, and it may be interesting to study its own asymptotic integrability. The
normal form for the shallow water wave equation has been studied in [21].
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Following the similar process as in the case of ion acoustic waves, we obtain the
perturbed KdV equation up to order ε2:

ut + 6uux +u3x + ε

(
3
8

u5x +
3
2

u3xu+4u2xx− 3
4

uxu2
)

+ ε2
(

5
32

u7x +
11
16

u5xu+
99
32

u4xux +
95
16

u3xu2x−
3
16

u3xu2

−33
16

u2xuxu− 27
32

u3
x +

3
16

uxu3
)

= O(ε3).

Due to the non-zero integrability condition (μ(2)
1 = 3/2), the obstacle R(2)

1 does
not disappear in the second-order correction. The generating functions in the Lie
transformation are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(1)
1 =

13
8

, α(1)
2 =

17
24

, α(1)
3 =

3
4
,

α(2)
1 =

2591
14400

, α(2)
2 =

71
100

, α(2)
3 =

2747
3600

,

α(2)
4 =

1583
9600

, α(2)
5 =

17
800

, α(2)
6 =

571
4800

.

Now let us consider the phase shift during the two solitary wave interactions in the
same way as the ion acoustic wave equation. As shown in Fig. 5.3, the numerical
data of the phase shift can be well explained by the phase shift formula. In the right
figure, we show the time evolution of Δ1(t). This figure shows that the energy of
the radiation after the interaction is about the same as that for the ion acoustic wave
equation.
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Fig. 5.3 Phase shifts Δx1 of (5.30) and the time evolution of the radiation Δ̄1(t) =
Δ1(t)/(ε4(μ(2)

1 )2) of (5.29) for the Boussinesq equation
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5.7.3 Regularized Long Wave Equation

Since the KdV equation is derived under the assumption of weak dispersion, it is
not valid for the wave phenomena involving short waves. As a model of shallow
water waves for a large range of wavelength, Benjamin et al. in [4, 37] proposed the
equation

wT +wX +6wwX −wXXT = 0.

This equation is called the regularized long wave equation (RLW) or the BBM
equation. It has been shown that this equation has only three nontrivial independent
conserved quantities [35] indicating its nonintegrability. The BBM equation admits
a solitary wave solution

w =
2κ2

1−4κ2 sech2
(
κX− κ

1−4κ2 T

)
.

The numerical simulations by Bona et al. [6] showed that the interaction of the
solitary waves is inelastic and generates radiation. Their study also found the shifts
of the amplitudes of two solitary waves after the collision. The normal form theory
has been applied to this equation in [19]. Here we review the work [19] and add the
phase shift results. We also compare the BBM equation with the ion acoustic wave
equation and the Boussinesq equation.

As in the previous cases, we introduce the scaled variables

x = ε
1
2 (X−T ), t = ε

3
2 T, w = εu,

which yield
(1− εD2)ut +6uux +u3x = 0.

Then inverting the operator in front of ut , we obtain the perturbed KdV equation

ut +K(0)
0 (u)+

∞

∑
k=1

εkD2kK(0)
0 (u) = 0.

Then the obstacle R(2)(u) appears with μ(2)
1 = 40. The comparison of the phase

shift between the numerical results and those by the formula (5.30) is shown in
Fig. 5.4.

Because of the large value of μ(2)
1 , the agreement between the numerical results

and the results from (5.30) is poor. In the computation, the value of ε2μ(2)
1 is about

order one, and thus one needs to consider much higher corrections to get a better
agreement. However, the numerical observation of the radiation agrees with the for-
mula (5.29) which is of order 10−2–10−3, and the shifts in the parameters observed
in [6] also agree with the result from the normal form theory. In [27], Marchant dis-
cussed the solitary wave interaction for the BBM equation and obtained the similar
results presented here.
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Fig. 5.4 Phase shifts Δx1 of
(5.30) for the regularized long
wave equation
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5.7.4 Seventh-Order Hirota KdV Equation

Here we consider

wT + w7X +28ww5X +28wX w4X +70w2X w3X

+210w2w3X +420w3wx = 0,
(5.36)

which has a Hirota bilinear form,

DX (D7
X +DT )τ · τ = 0,

where DX and DT mean the Hirota derivative, and w is given by w = 2D2 lnτ . If
the order of the derivative is either three or five, the equation becomes the KdV
equation or the Sawada–Kotera equation which are both integrable. However, (5.7.4)
is known to be nonintegrable [33], but it admits both one and two solitary wave
solutions in the same form as the KdV solitons except their time evolution. Since

there is an exact two solitary wave solution, several conditions μ(n)
k = 0 should be

satisfied. Now the question is to determine the order in which the condition μ(n)
k = 0

breaks.
In order to apply the normal form theory, we first introduce

w = εu+ c, t = 210ε3/2c2T, x = ε1/2 (X−420c3T
)
,

which puts (5.36) in the form (5.1) of the perturbed KdV equation

ut +K(0)
0 (u)+ ε

2
15c

(u5x +15u3xu+15u2xux +45uxu2)

+
ε2

210c2 (u7x +28u5xu+28u4xux +70u3xu2x

+ 210u3xu2 +420u2xuxu+420uxu3) = 0,
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where c is an arbitrary non-zero constant. The direct calculation shows
⎧⎪⎨
⎪⎩

μ(2)
1 = 0,

μ(3)
i = 0, i = 1,2,3,

μ(4)
i �= 0, i = 1,2, . . . ,7.

Thus the seventh-order Hirota KdV equation passes the asymptotic integrability
conditions not only at order ε2 but also at order ε3, and the first obstacles appear
at order ε4. Then the normal form up to order ε4 of the seventh-order Hirota KdV
equation takes the form

vt + K(0)
0 + εa(1)

1 K(1)
0 + ε2a(2)

1 K(2)
0 + ε3a(3)

1 K(3)
0

+ ε4
(

a(4)
1 K(4)

0 +R(4)
)

= O
(
ε5
)

, (5.37)

where R(4) consists of seven obstacles. Since the seventh-order Hirota KdV equation
admits the two-soliton solution, the kernel of R(4) should include not only one-
soliton solution but also two-soliton solution. Thus we have

Corollary 17. If the normal form of a perturbed KdV equation has the form (5.37),

then there exists two-soliton solution up to order ε4. Equivalently, if μ(2)
1 , μ(3)

1 , μ(3)
2

and μ(3)
3 are all zero, then the perturbed KdV equation can admit a two-soliton

solution up to order ε4.

Appendix

Here we give the explicit formulae for the coefficients α(2)
k of the generating func-

tion φ (2) in Theorem 10 and the conditions μ(3)
k for the asymptotic integrability in

Proposition 6.

The coefficients ααα(2)
k in φφφ (2)

α(2)
1 =− 100

9

(
a(1)

1

)2
− 10

27
a(1)

1 a(1)
2 −

5
108

(
a(1)

2

)2
− 1

54
a(1)

2 a(1)
4 +

1
36

(
a(1)

4

)2

+
112
9

a(2)
1 +

2
9

a(2)
2 +

1
9

a(2)
4 −

1
6

a(2)
7 −

4
225

μ(2)
1 ,

α(2)
2 =− 175

9

(
a(1)

1

)2
+

10
9

a(1)
1 a(1)

2 +
5
18

a(1)
1 a(1)

3 −
1

36
a(1)

2 a(1)
3 −

5
18

a(1)
1 a(1)
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Chapter 6
Multiscale Expansion and Integrability
of Dispersive Wave Equations

A. Degasperis

6.1 Introduction

The propagation of nonlinear dispersive waves is of great interest and relevance in
a variety of physical situations for which model equations, as infinite-dimensional
dynamical systems, have been investigated from various perspectives and to dif-
ferent purposes. In the ideal case in which waves propagate in a one-dimensional
medium (no diffraction) without losses and sources, quite a number of special mod-
els, so-called integrable models, have been discovered together with the mathe-
matical tools to investigate them. This important progress has provided important
contributions to such matters as dispersionless propagation (solitons), wave colli-
sions, wave decay, long-time asymptotics among others. On the mathematical side,
such progress on integrable models has considerably contributed also to our present
(admittedly not concise) answer to the question “What is integrability?”, which can
be found in [1], and a partial guide to the vast literature on the theory of solitons is
given in [2].

It is plain that integrable models, though both useful and fascinating, remain ex-
ceptional: nonlinear partial differential equations (PDEs) in 1+1 variables
(space+time) are generically not integrable. The aim of these notes is to show how
an algorithmic technique, based on multiscale analysis and perturbation theory,
may be devised as a tool to establish how “far” is a given PDE from being inte-
grable. This method basically associates to a given PDE one or more, generally
simpler, PDEs with respect to rescaled space and time variables. This approach [3]
has been known in applicative contexts [4–8] since several decades as it provides
approximate solutions when only one, or a few, monochromatic “carrier waves”
propagate in a strongly dispersive and weakly nonlinear medium. More recently [9]
it has proved to be also a simple way to obtain necessary conditions which a given
PDE has to satisfy in order to be integrable, and to discover integrable PDEs as
well [10].
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The basic philosophy of this approach is to derive from a nonlinear PDE one or
more PDEs whose integrability properties are either already known or easily found.
In this respect, a general remark on this method is the following. Integrability is
not a precise notion, and different degrees of integrability can be attributed to a
PDE within a certain class of solutions and boundary conditions, according to the
technique of solving it. For instance, C-integrable are those nonlinear equations
which can be transformed into linear equations via a change of variables [10], and
S-integrable are those equations which can be linearized (within a certain class of
solutions) by the method of the spectral (or scattering) transform (see, f.i., [11, 12]).
Examples of C-integrability are the equations (ut = ∂u/∂ t, ux = ∂u/∂x, etc.)

ut +a1ux−a3uxxx = a3
(
3uux +u3)

x , u = u(x, t), (6.1a)

ut +a1ux−a3uxxx = 3a3c
(
u2uxx +3uu2

x

)
+3a3c2u4ux, u = u(x, t), (6.2a)

which are both mapped to their linearized version (a1,a3,c are constant coefficients)

vt +a1vx−a3vxxx = 0, v = v(x, t), (6.3)

the first one, (6.1a), by the (Cole–Hopf) transformation

u = vx/v (6.1b)

and the second one, (6.2a), by the transformation [10]

u = v/(1+2cw)1/2, wx = v2. (6.2b)

Well-known examples of S-integrable equations are the modified Korteweg–de
Vries (mKdV) equation

ut +a1ux−a3uxxx = 6a3cu2ux , u = u(x, t), (6.4a)

and the nonlinear Schrödinger (NLS) equation (a1,a2,a3,c are real constant coeffi-
cients)

ut − ia2uxx = 2ia2c|u|2u , u = u(x, t), (6.5a)

whose method of solution is based on the eigenvalue problem

ψx + ikσψ = Qψ , ψ = ψ(x,k, t), (6.6)

where ψ is a 2-dim vector, σ is the diagonal matrix diag(1,−1) and Q(x, t) is the
off-diagonal matrix

Q =
(

0 u
−cu 0

)
, (6.4b)

where u is real for the mKdV equation (6.4a) and (the asterisk indicates complex
conjugation)
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Q =
(

0 u
−cu∗ 0

)
, (6.5b)

where u is complex for the NLS equation (6.5a). Here k is the spectral variable. In
any case, whatever type of integrability is involved, we adopt in our treatment the
“first principle” (axiom) that integrability is preserved by the multiscale method.
Though in some specific cases, where integrability can be formulated as a precise
mathematical property, one can give this principle a rigorous status, we prefer to
maintain it throughout our treatment as a robust assumption. Its use, according to
contexts, may lead to interesting consequences. One is that it provides a way to ob-
tain other (possibly new) integrable equations. On the other hand, if a PDE, which
has been obtained by this method from a given PDE, is proved to be nonintegrable,
then from our first principle it there follows that the given PDE cannot be integrable,
and this implication leads to conditions of integrability. Some of these conditions
are found to be simple and, therefore, of ready practical use. Others conditions are
instead the results of lengthy algebraic manipulations which require a rather heavy
computer assistance. Finally, this way of reasoning leads to the following obser-
vation, which has been pointed out in [10]. Suppose the same PDE is obtained by
multiscale reduction from any member of a fairly large family of PDEs; so we can
call it a “model PDE”. Then the principle stated above explains why a model PDE
may be at the same time widely applicable (because it derives from a large class
of different PDEs) and integrable (because it suffices that just one member equa-
tion of that large family of PDEs be integrable). The most widely known example
of such case is the NLS equation (6.5a) which is certainly a model equation (as
shown below) with many applications (f.i. nonlinear optics and fluid dynamics [4–
8]), and whose integrability has been discovered in 1971 [13] but it could have been
found even earlier by multiscale reduction from the KdV equation ut +uxxx = 6uux

(the way to infer the S-integrability of the NLS equation from the S-integrability of
the KdV equation has been first pointed out in [14]), whose integrability has been
unveiled in 1967 [15].

The method of multiscale reduction which we now introduce is a perturbation
technique based on three main ingredients : (i) Fourier expansion in harmonics,
(ii) power expansion in a small parameter ε, (iii) dependence on a (finite or infi-
nite) number of “slow” space and time variables, which are first introduced via an
ε-dependent rescaling of x and t and are then treated as independent variables. This
last feature explains why this approach is also referred to as multiscale perturbation
method or multiscale reduction.

In order to briefly illustrate how these basic ingredients naturally come into play
in the simpler context of ordinary differential equations (ODEs), let us consider the
well-known Poincaré–Lindstedt perturbation scheme to construct small amplitude
oscillations of an anharmonic oscillator around a stable equilibrium position. Let
our one-degree dynamical system be given by the nonlinear equation (q̇≡ dq/dt)

q̈+ω2
o q = c2q2 + c3q3 + . . . . , q = q(t,ε) (6.7a)

where the small perturbative parameter ε is here introduced as the initial amplitude,
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q(0,ε) = ε, q̇(0,ε) = 0 . (6.7b)

The equation of motion (6.7a) is autonomous as all coefficients ω0,c2,c3, ... , are
time independent, and it has been written with its linear part in the lhs and its non-
linear (polynomial or, more generally, analytic) part in the rhs. In this elementary
context, the model equation which is associated with this family of dynamical sys-
tems, is of course the harmonic oscillator equation, q̈+ω2

0 q = 0, which is obtained
when the amplitude ε is so small that all nonlinear terms can be neglected. In fact,
the purpose of the Poincaré–Lindstedt approach is to capture the deviations from the
harmonic motion which are due to the nonlinear terms in the rhs of (6.7a). Since,
for sufficiently small ε, the motion is periodic, namely

q(t,ε) = q(t +
2π
ω(ε)

,ε) , (6.8)

it is natural to change the time variable t into the phase variable θ ,

θ = ω(ε)t , q(t,ε) = f (θ ,ε) , (6.9)

even if the frequency ω(ε) is not known as it is expected to depend on the initial
amplitude ε. Then Eqs. (6.7a, b) now read ( f ′ ≡ d f /dθ)

ω2(ε) f ′′+ω2
0 f = c2 f 2 + c3 f 3 + . . . . , f (0,ε) = ε, f ′(0,ε) = 0, (6.10)

and we look for approximate solutions via the power expansions

ω2(ε) = ω2
0 + γ1ε + γ2ε

2 + . . . , (6.11)

f (θ ,ε) = ε f1(θ)+ ε2 f2(θ)+ . . . . (6.12)

We note that the periodicity condition f (θ) = f (θ + 2π) implies that ω(0) =
ω0; inserting the expansions (6.11) and (6.12) in the differential equation (6.10)
and equating the lhs coefficients with the rhs coefficients of each power of ε yields
an infinite system of differential equations, the first one, at O(ε), is homogeneous,
while all others, at O(εn) with n > 1, are nonhomogeneous, i.e.

O(ε) : f
′′
1 + f1 = 0, f1(0) = 1, f

′
1(0) = 0, (6.13)

O(εn) : f
′′
n + fn = {−n,−n+1, . . . ,−1,0,1, . . . ,n−1,n}, fn(0) = 0, f ′n(0) = 0.

(6.14)

The notation in this last equation refers to harmonic expansion with the fol-
lowing meaning. Since the functions fn(θ) are periodic in the interval (0,2π),
one can Fourier-expand them; however, because of the differential equation they
satisfy, only a finite number of the Fourier exponentials exp(iαθ), α being an
integer, enters in their representation. This is easily seen by recursion: f1(θ) =
1
2 (exp(iθ) + exp(−iθ)), and since fn(θ), for n > 1, satisfies the forced harmonic
oscillator equation where the forcing term in the rhs of (6.14) is an appropriate poly-
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nomial of f1, f2, . . . , fn−1, its expansion can only contain the harmonics exp(iαθ)
with |α| ≤ n. Thus, the integers in the curly bracket in the rhs of (6.14) indicate the
harmonics which enter in the Fourier expansion of the forcing term, and this implies
that fn(θ) itself has the Fourier expansion

fn(θ) =
n

∑
α=−n

f (α)
n exp(iαθ), n≥ 1, (6.15)

where the complex numbers f (α)
n have to be recursively computed. To this aim, it is

required that also the coefficients γn in the expansion (6.11) be computed, and the
way to do it is to use the periodicity condition fn(θ) = fn(θ +2π), or, equivalently,
the condition that the ε-expansion (6.12) be uniformly asymptotic (note that we
do not address here the problem of convergence of the series (6.12) but we limit
ourselves to establish uniform asymptoticity). The point is that, for each n ≥ 2, the
forcing term in (6.14) contains the fundamental harmonics exp(iθ) and exp(−iθ)
which are solutions of the lhs equation (i.e. of the homogeneous equation), and are
therefore secular, namely at resonance.

At this point, and for future use, we observe that, in a more general setting, if

v′(θ)−Av(θ) = w(θ)+u(θ) (6.16)

is the equation of the motion of a vector v(θ) in a linear (finite or infinite dimen-
sional) space and A is a linear operator, then, if the vector w(θ) solves the homoge-
neous equation,

w′(θ)−Aw(θ) = 0, (6.17)

then the forcing term w(θ) in (6.16) is secular. This is apparent from the θ -
dependence of the general solution of (6.16), which reads

v(θ) = ṽ(θ)+θw(θ), (6.18)

where ṽ(θ) is the general solution of the equation ṽ′(θ)−Aṽ(θ) = u(θ).
In our present case, the occurrence of the harmonics exp(iθ) and exp(−iθ) in

the forcing term in the rhs of (6.14) forces the solution fn(θ) to have a nonperiodic
dependence on θ , and therefore the condition that the coefficients of exp(iθ) and
exp(−iθ) must vanish is a crucial ingredient of our computational scheme. In fact,
this condition fixes the value of the coefficient γn−1 and this completes the recurrent
procedure of computing, at each order in ε, both the frequency

ω(ε) = ω0 +ω1ε +ω2ε
2 + . . . , (6.19)

and the solution f (θ ,ε), see (6.12). As an instructive exercise, we suggest the reader
to compute the frequency ω(ε) up to O(ε2) (answer: ω1 = 0, ω2 = −(10c2

2 +
9ω2

0 c3)/24ω3
0 ).

This approach has been often used in applications with the aim of computing
approximate solutions; in that context the properties of the series (6.11) and (6.12) of
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being convergent, or asymptotic, and also uniformly so in t, is of crucial importance
(see, f.i., [16] and the references quoted there), particularly when one is interested
also in the large time behaviour. Our emphasis here is instead in the formal use of
the double expansion (see (6.12) and (6.15))

q(t,ε) = ∑
n=1

n

∑
α=−n

εn exp(iαθ) f (α)
n , (6.20)

where θ =ω0t +ω1εt +ω2ε
2t + . . . and therefore here and in the following we drop

any question related to convergence and approximation.
Let us consider now the propagation of nonlinear waves, and let us apply the

Poincaré–Lindstedt method to PDEs. For the sake of simplicity, here and also
throughout these notes, we focus our attention on the following family of equations
which are first order in the variable time

Du = F [u,ux,uxx, . . .] , u = u(x, t), (6.21)

with the assumptions that this equation be real, that the linear differential operator
D in the lhs have the expression

D = ∂/∂ t + iω(−i∂/∂x) , (6.22)

where ω(k) is a real odd analytic function,

ω(k) = ∑
m=0

a2m+1k2m+1 , (6.23)

and that F in the rhs be a nonlinear real analytic function of u and its x - derivatives.
For instance, the subfamily

ω(k) = a1k +a3k3 , F = cu3
x +
(
c2u2 + c3u3 + . . .

)
x , (6.24)

contains three S-integrable equations, i.e. the KdV equation (c = 0,cn = 0 for n≥ 3),
the mKdV equation (6.4a) and the equation [17]

ut +a1ux−a3uxxx =−a3[αsinhu+β (coshu−1)+u2
x/8]ux. (6.25)

Since the linearized version of the PDE (6.21), Du = 0, has the harmonic wave
solution

u = exp[i(k0x− ω̃0t)] , ω̃0 = ω(k0) , (6.26)

one way to extend the Poincaré–Lindstedt approach to the PDE (6.21) is to look for
solutions, if they exist, which are periodic plane waves,

u(x, t) = f (θ ,ε), θ = k(ε)x− ω̃(ε)t, f (θ ,ε) = f (θ +2π,ε) , (6.27)

together with the power expansions
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f (θ ,ε) = ε f1(θ)+ ε2 f2(θ)+ . . . ,

k(ε) = k0 + k1ε + k2ε
2 + . . . , ω̃(ε) = ω̃0 + ω̃1ε

2 + ω̃2ε
2 + . . . (6.28)

This approach can be easily carried out as for the anharmonic oscillator since the
function f (θ ,ε) does now satisfies the real ODE

− ω̃(ε) f (1)(θ ,ε)+ iω(−ikd/dθ) f (θ ,ε) = F
[

f ,k f (1),k2 f (2), . . .
]
,k = k(ε),

(6.29)
where f ( j) ≡ d j f (θ ,ε)/dθ j. Periodic plane waves in fluid dynamics have been in-
vestigated along these lines and, though exact solutions are known for instance for
water waves models (such as the KdV equation) in terms of Jacobian elliptic func-
tions (cnoidal waves), approximate expressions have been found more than a cen-
tury ago (Stokes approximation) [18].

The class of periodic plane-wave solutions (if they exist) is too restrictive to our
purpose. In fact their construction requires going from the PDE (6.21) to the ODE
(6.29), a step which implies loss of information about the PDE itself. Therefore we
now turn our attention to the class of solutions of the wave equation (6.21) whose
leading term in the perturbative expansion is a quasi-monochromatic wave, namely
a wave-packet whose Fourier spectrum is not one point but is well localized in a
small interval of the wave number axis, (k−Δk,k +Δk), where k is a fixed real
number and Δk/k is small,

u(x, t)� Δk
∫ +∞

−∞
dηA(η)exp{i[x(k +ηΔk)− tω(k +ηΔk)]}+ c.c.; (6.30)

here the amplitude A(η) is sharply peaked at η = 0, and the additional complex
conjugated term is required by the condition (which we maintain here and in the
following) that u(x, t) is real, u = u∗.

The perturbation formalism which is suited to deal with this class of solutions is
still close to the Poincaré–Lindstedt approach to the anharmonic oscillator. In fact,
let us go back to the two-index series (6.20) and substitute θ with the expansion
θ =ω0t +ω1t1 +ω2t2 + . . ., where we have formally introduced the rescaled “slow”
times tn = εnt; then the formal expansion (6.20) reads

q(t,ε) = ∑
n=1

n

∑
α=−n

εnEαq(α)
n (t1, t2, . . .) ,E ≡ exp(iω0t) , (6.31)

where the functions q(α)
n depend only on the slow-time variables tn. The scheme of

computation based on the expansion (6.31) is equivalent to that shown above, and it
goes with inserting the expansion (6.31) into the eq. (6.7a) and by treating the time
variables tn as independent variables. In particular the derivative operator d/dt takes
the ε-expansion

d(Eαq(α)
n )/dt = Eα(iαω0 + ε∂/∂ t1 + ε2∂/∂ t2 + . . .)q(α)

n , (6.32)
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and similarly expanding the lhs and rhs of (6.7a) in powers of ε and of E finally
yields a system of PDEs whose solution (after eliminating secular terms) gives the
same result as the (much simpler) frequency-renormalization method based on (6.9)
and (6.11). In this case the service of the multiscale technique is merely to display
the three ingredients of the approach we use below for PDEs, i.e. the power expan-
sion in a small parameter ε, the expansion in harmonics and the dependence on slow
variables.

Let us now proceed with applying the multiscale perturbation approach to solu-
tions of the PDE (6.21) along the line discussed above. As a preliminary observa-
tion, in the case the PDE (6.21) is linear, i.e. F = 0, the expression (6.30) is exact
as it yields the Fourier representation of the solution. If we introduce the harmonic
solution

E(x, t)≡ exp[i(kx−ωt)], ω = ω(k), (6.33)

the small parameter ε ≡ Δk/k and the slow variables ξ ≡ εx, tn ≡ εnt for n≥ 1, the
Fourier integral takes the expression of a “carrier wave” whose small amplitude is
modulated by a slowly varying envelope (no higher harmonics are generated in the
linear case)

u(x, t) = εE(x, t)u(1)(ξ , t1, t2, . . .)+ c.c.. (6.34)

Since the envelope function is (see (6.30))

u(1)(ξ , t1, t2, . . .) = k
∫ +∞

−∞
dηA(η)exp[i(kηξ − kω1ηt1− k2ω2η2t2− . . .)], (6.35)

it satisfies the set of PDEs

∂tnu(1) = (−i)n+1ωn∂ n
ξ u(1) , n = 1,2, . . . (6.36)

In order to write down these equations, we have assumed that the dispersion function
ω(k) is analytic at k, so that its Taylor series

ω(k + εηk) =
∞

∑
n=0

ωnηnknεn, ωn(k) =
1
n!

dn

dkn ω(k) , (6.37)

is convergent. This shows that one has to ask that u(1) depends on as many rescaled
times tn as the number of nonvanishing coefficients ωn in the expansion (6.37); f.i. if
ω(k) is a polynomial of degree N, the multiscale method requires the introduction of
at most N new independent time variables, this being a rule which holds also in the
nonlinear case. More interestingly, we note that in the linear case, because of the hi-
erarchy of compatible evolution equations (6.36) with respect to the slow times, the
commutativity property [∂tn ,∂tm ] = 0 is trivially satisfied, whereas, in the nonlinear
case this commutativity condition is of paramount importance and is strictly related
to integrability in more than one way. Indeed, the purpose of Sect. 6.3 is to show
that the picture we have outlined in the linear case can be extended to the nonlinear
case under appropriate conditions. The main consequence of nonlinearity is the gen-
eration of harmonics which are different from the fundamental one (6.33), together
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with the occurrence of undesired secular terms which force the amplitudes to grow
with time. Killing the secular terms to keep the amplitudes bounded for all times is
the basic way to derive a number of evolution equations. An old result in this direc-
tion, first derived in nonlinear optics and in fluid dynamics [4–8], is the dependence

of the leading order amplitude u(1)
1 (ξ , t1, t2) of the fundamental harmonic on the first

two slow times t1 and t2, namely u(1)
1 translates with respect to t1 with the group ve-

locity ω1 and evolves with respect to t2 according to the NLS equation. Thus, at this
order, the solution u(x, t) of the PDE (6.21) is approximated by the expression

u(x, t) = εv(ξ −ω1t1, t2)E(x, t)+ c.c.+O
(
ε2) , (6.38)

where
vt2 = iω2

(
vξξ −2c|v|2v

)
≡ K2(v) . (6.39)

In order to proceed further, the natural point to start from is the harmonic expan-
sion of the solution u(x, t),

u(x, t) =
+∞

∑
α=−∞

u(α)(ξ , t1, t2, . . .)Eα(x, t) , (6.40)

where E(x, t) si defined by (6.33) and, since u is real, u = u∗, the coefficients u(α)

satisfy the reality condition
u(α)∗ = u(−α) . (6.41)

As for the slow variables, and guided by the approximate expression (6.30) where
we set Δk = εpk, with p > 0, we define

ξ = εpx, tn = εnpt , p > 0, n = 1,2, . . . . (6.42)

As a consequence, the differential operators ∂t and ∂x, as acting on the expansion
(6.40), are replaced by the power expansions

∂x→ ∂x + εp∂ξ , ∂t → ∂t + εp∂t1 + ε2p∂t2 + . . . . (6.43)

Inserting these expansions in the linear operator D, see (6.22), yields the formula

D
[
u(α)Eα

]
= EαD(α)u(α), (6.44)

which defines the differential operator D(α) acting only on the slow variables (6.42).
Moreover, like the operators (6.43), also the differential operator D(α) has a power
expansion in ε,

D(α) = D(α)
0 + εpD(α)

1 + ε2pD(α)
2 + . . . , (6.45)

the first term being just the multiplication by the constant

D(α)
0 = i[ω(αk)−αω(k)], (6.46)

since DEα = D(α)
0 Eα .
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Let us consider now the nonlinear part, namely the rhs of the PDE (6.21). Since
F is supposed to be an analytic function, its decomposition in harmonics,

F [u,ux,uxx, . . .] =
+∞

∑
α=−∞

F(α)
[
u(β ),u(β )

ξ ,u(β )
ξξ , . . .

]
Eα , (6.47)

which is implied by the expansion (6.40), defines the functions F(α) of the ampli-
tudes u(0),u(±1),u(±2), . . . and their derivatives with respect to ξ . For future refer-
ence, we note that the functions F(α) have the gauge property of transformation

F(α)→ exp(iαθ)F(α)

when the amplitude u(α) in its arguments is replaced by exp(iαθ)u(α), where θ is
an arbitrary constant.

Combining now the expansion (6.40), and the definition (6.44), with the expan-
sion (6.47) shows that the PDE (6.21) is equivalent to the (infinite) set of equations

D(α)u(α) = F(α), (6.48)

which, since also F(α) obviously satisfies the reality condition

F(α)∗ = F(−α), (6.49)

needs to be considered only for nonnegative α , i.e. for α ≥ 0.
In the following sections, Eq. (6.48) will be investigated after expanding the am-

plitudes u(α) in power of ε. In this respect, it should be pointed out that the approx-
imate expression (6.30) of the solution u(x, t) clearly shows that the smallness of
u may originate in two ways, one from Δk/k and the other from the amplitude A.
In fact, we find it convenient to define ε by requiring that u itself be O(ε), and this
explains why we have introduced the so far arbitrary parameter p in the rescaling
(6.42) which defines the slow variables.

In Sect. 6.2, since we will look at Eq. (6.48) at the lowest order in ε, only few
harmonics will be considered. This analysis, when carried out in a systematic way,
eventually yields a certain number of model PDEs in the slow variables, whose
integrability properties, if known, lead to the formulation of necessary conditions of
integrability for the original PDE (6.21).

In the third section we tackle instead the problem of pushing the investigation of
(6.48) to higher orders in the ε-expansion. This analysis displays interesting connec-
tions with integrability and it gives a way to set up an entire hierarchy of necessary
conditions of integrability.

We end this introduction with few remarks. First, for pedagogical reasons, we
have constrained the family of PDEs considered here to satisfy appropriate condi-
tions in order to simplify the formalism. These limitations are mainly technical and
do not play an essential role. For instance, extensions of the family of PDEs (6.21)
may include differential equations of higher order in t for complex vector, or matrix,
solutions in higher spatial dimensions.
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Second, we have confined our interest to the multiscale technique which yields
model equations of nonlinear Schrödinger type. Similar arguments, however, do
apply also to the weakly dispersive regime where the prototypical model equation
is instead the KdV equation [19], or to the resonant, or nonresonant, interaction of
N waves [10].

Finally, a different approach which similarly yields necessary conditions for in-
tegrability, and has common features with the one described in Sect. 6.3, has been
introduced by Kodama and Mikhailov [20]. There the perturbation expansion is
combined with the property of integrable systems of possessing symmetries, and
the order-by-order construction of such symmetries is the core of the method. Other
ways to relate integrability to perturbative expansions in a small parameter have
been investigated within different mathematical settings. The interested reader may
refer to Zakharov and Schulman [21] for the Hamiltonian formalism. Also the use
of normal form theory has been designed to this purpose in various contexts, see f.i.
[22–24].

6.2 Nonlinear Schrödinger-Type Model Equations
and Integrability

In this section we investigate the basic equations (6.48) which have been obtained
via the harmonic expansion (6.40) of a quasi-monochromatic solution of the PDE
(6.21). Here we consider only the lowest significant order in the small parameter ε,
but before illustrating our computational scheme, which is mainly based on Refs.
[25, 26] that the interested reader should consult for details and generalizations, we
point out first the main ideas and aims of our approach.

Consider first that once the ε-expansion is introduced into the Eq. (6.48), the
linear operator D(α) takes the expression (6.45) whose coefficients, in addition to
the first one (6.46), are easily found to be

D(α)
n = ∂tn − (−i)n+1ωn(αk)∂ n

ξ , n≥ 1 , (6.50)

where the function ωn(k) is defined by (6.37). Then, at the lowest order in ε, the op-

erator D(α) in (6.48) should be replaced by the coefficient D(α)
0 = i[ω(αk)−αω(k)];

therefore, if D(α)
0 is not vanishing, Eq. (6.48) for u(α) becomes merely an algebraic

equation whose solution is readily obtained. Because of this simple property, we
term “slave harmonics” those harmonics such that, for their corresponding integer

α , the quantity D(α)
0 does not vanishes, i.e.

ω(αk)−αω(k) �= 0. (6.51)

If instead α is such that D(α)
0 = 0, then we say that its corresponding harmonic is at

resonance or, shortly, that α is a “resonance”. The important feature of resonant har-
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monics is that their amplitude satisfies a differential equation in the slow variables
(see (6.50)) rather than an algebraic equation as for slave harmonics. Of course, the
harmonics α = 0,±1 are always (i.e. for any wave number k) at resonance (recall
that ω(k) is on odd function, ω(−k) = −ω(k)). However, it may well happen that

D(α)
0 = 0 for |α| �= 0,1 for a particular value of k; in this case also their correspond-

ing harmonics are accidentally (i.e. not for all values of k) at resonance and their
amplitudes are expected to satisfy differential equations which may be coupled to
the equations for the fundamental harmonics amplitude.

The repeated application of this argument to the next term of the expansion of
D(α) will be shown below to lead to the introduction of weak and strong resonances,
and the systematic investigation of all resonant cases does finally produce a list
of ten model PDEs of nonlinear Schrödinger type. These evolution equations are
reported and discussed below in this section, together with the implication of these
findings with respect to integrability.

The starting ansatz is the ε-dependence at the leading order of the amplitude u(α)

in (6.40):
u(α) = ε1+γαψα α = 0,±1,±2, . . . , (6.52)

where the parameters γα are nonnegative, γα ≥ 0, and, of course, even, γ−α = γα ,
with the condition

γ1 = 0, (6.53)

which fixes the small parameter ε.
Looking only at the lowest order in ε greatly simplifies our analysis in two ways:

it restricts our attention only to the first harmonics |α|= 0,1,2 and, second, it allows
the amplitudes ψα , see (6.52), to be considered as functions only of the slow vari-
ables ξ , t1 and t2. Moreover, since ξ and t1 are of the same order in ε (see (6.42)),
it turns out to be convenient to replace the slow space coordinate ξ with the new
coordinate

ξ = εp(x−Vt) (6.54)

in the frame moving with the group velocity,

V = dω(k)/dk = ω1(k), (6.55)

of the fundamental harmonics (|α|= 1), so that the amplitudes ψα depend through-
out this section only on two variables,

ψα = ψα(ξ ,τ) , τ ≡ t2 = ε2pt. (6.56)

As an additional remark, the following treatment suggests that it is convenient to
take advantage of the fact that the nonlinear function in the rhs of the PDE (6.21)
under investigation could be an x-derivative of a (polynomial or analytic) function,
namely that it could be written as ∂ h

x F(u,ux,uxx, . . .), where it is advisable to choose
for the integer h its highest possible value. This is only a technical point as the final
results can be also derived, though more painfully, by starting with a lower value of
h or by setting tout court h = 0, as in (6.21). Thus we rewrite the PDE (6.21)
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Du = (∂/∂x)hF [u,ux,uxx, . . .], (6.57)

where

F [u,ux,uxx, . . .] =
∞

∑
m=2

∞

∑
j1=0

∞

∑
j2= j1

. . .
∞

∑
jm= jm−1

c(m)
j1,..., jm

u( j1)u( j2) . . .u( jm), (6.58)

with u( j) ≡ (∂/∂x) ju(x, t). Thus the family of PDEs we consider below is fully
characterized by the following parameters: the real coefficients a2m+1 which define
the dispersion function ω(k), see (6.22) and (6.23), the integer h (see (6.57)) and the

real coefficients c(m)
j1,..., jm

, see (6.58). The method described here provides necessary
conditions which these parameters have to satisfy in order that the PDE (6.57) be
integrable.

By taking into account the x-derivative in the rhs of (6.57) together with the
ansatz (6.52), we first rewrite Eq. (6.48) in the form

ε1+γα D(α)ψα = (iαk + εp∂ξ )hF(α). (6.59)

We obtain thereby nontrivial evolution equations for the quantities ψα(ξ ,τ) by
first taking the limit ε → 0 (after having made an appropriate choice for the expo-
nents γα and p) and then by performing some algebraic calculations and also some
“cosmetic rescalings” on the dependent and independent variables, so as to present
the results in neater form.

Let us first treat the linear part, namely the lhs of (6.57). Clearly we get

D(α) = ε2p∂/∂τ + i
M

∑
m=0

εpmA(m)
α (k)(−i∂/∂ξ )m (6.60)

and

A(0)
α (k) = ω(αk)−αω(k) , (6.61a)

A(1)
α (k) = ω1(αk)−ω1(k) , (6.61b)

A(s)
α (k) =

1
s!

ds

dqs ω(q)|q=αk, s≥ 2. (6.61c)

Here the coefficients A(s)
α (k) with s = 0,1 have been singled out because of the

special role they play in the following. Note that by definition

A(0)
1 = A(1)

1 = 0; (6.62)

this corresponds to the pivotal role of the component ψ1(ξ ,τ) which is the amplitude
of the fundamental harmonic. It is indeed clear from (6.59) and (6.60) that the value
of γα which is determined by the requirement to match the dominant terms as ε→ 0

of the quantities in the rhs of (6.59), tends to be smaller if A(0)
α vanishes and even
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smaller if in addition also A(1)
α vanishes and so on. Of course the smaller is the

value of γα , the larger is the role that the component ψα(ξ ,τ) plays in the regime of
weak nonlinearity (small ε). This qualitative notion is given quantitative substance
below; but already at this stage it indicates that the different possibilities discussed
below emerge from various different assumptions about the vanishing of some of

the quantities A(s)
α (k); a vanishing which might occur for all values of k, as it were

for structural reasons, or it might happen only for some special value of k, on which
attention may then be focussed.

For these reasons, in the following the harmonic α is called weak resonance if

A(0)
α (k), but not A(1)

α (k), vanishes,

A(0)
α (k) = 0 , A(1)

α (k) �= 0, (6.63)

while we say that the harmonic α is a strong resonance if, in addition to A(0)
α (k),

also A(1)
α (k) vanishes,

A(0)
α (k) = A(1)

α (k) = 0. (6.64)

Of course, one could consider also the case of even stronger resonances by requir-

ing that, in addition to (6.64), also the condition A(2)
α (k) = 0 be satisfied. However,

these cases are obviously less generic, and they will not be treated here.
Let us now consider the nonlinear rhs of (6.59). Inserting the ansatz (6.52) in the

rhs of (6.58) yields the expression

F(α) =
μ

∑
m=2

εm−1 f (m)
α +O(εμ), (6.65)

with

f (m)
α = ∑

{α1≤α2≤...≤αm;∑m
j=1 α j=α}

εΓ {g(α1,α2, . . . ,αm)ψα1 . . .ψαm +O(εp)}; (6.66)

here
Γ ≡ γα1 + γα2 + . . .+ γαm , (6.67)

and for the constants g we get

g(α1, . . . ,αm) = ∑
{0≤ j1≤...≤ jm}

(ik)Jc(m)
j1,..., jm

[
∑

P(α1,...,αm)
Πm

ρ=1(αρ) jρ

]
, (6.68)

where J = j1 + j2 + ..+ jm, and the notation ∑P(α1,...,αm) indicates the sum over all
permutations of the indices α1, . . . ,αm having different values.

Additional, drastic simplifications occur when further steps are taken towards
implementing the ε → 0 limit; indeed in this context we shall generally need to
consider only the quadratic and cubic terms of F in (6.57), because the contribution
of all other terms turns out to be negligible. Hence (6.59) can now be written, in
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more explicit form, as follows:

ε2p
[
ψ1τ − iA(2)

1 ψ1ξξ

]
= (ik)h

·
[
ε1+γ0g(0,1)ψ0ψ1 + ε1+γ2g(−1,2)ψ∗1ψ2 + ε2g(1,1,−1)|ψ1|2ψ1

]
, (6.69a)

εγ0+p
[
A(1)

0 ψ0ξ + ε pψ0τ

]
= (∂/∂ξ )h.

·εhp [ε1+2γ0g(0,0)ψ2
0 + εg(−1,1)|ψ1|2 + ε1+2γ2g(−2,2)|ψ2|2

]
, (6.69b)

εγ2{iA(0)
2 ψ2 + ε pA(1)

2 ψ2ξ + ε2p
[
ψ2τ − iA(2)

2 ψ2ξξ

]
}= (2ik)h.

·
[
εg(1,1)ψ2

1 + ε1+γ0+γ2g(0,2)ψ0ψ2
]
. (6.69c)

The coefficients g which appear in these PDEs are found, via the formula (6.68),
to have the expressions

g(0,0) = c(2)
0,0 , (6.70a)

g(0,n) = 2c(2)
0,0 +

∞

∑
j=1

(−1) j(nk)2 jc(2)
0,2 j + i

∞

∑
j=0

(−1) j(nk)2 j+1c(2)
0,2 j+1, n �= 0 ,

(6.70b)

g(n1,n2) =
(

1− 1
2
δn1n2

)[ ∞

∑
j=0

(−1) jk2 j
j

∑
j′=0

c(2)
j′,2 j− j′

(
n j′

1 n2 j− j′
2 +n2 j− j′

1 n j′
2

)

+i
∞

∑
j=0

(−1) jk2 j+1
j

∑
j′=0

c(2)
j′,2 j+1− j′

(
n j′

1 n2 j+1− j′
2 +n2 j+1− j′

1 n j′
2

)]
, n1 �= 0, n2 �= 0.

(6.70c)

Equations (6.69a,b,c) contain terms of different order in the small parameter ε ,
and this requires some explaining.

In the first place, many other terms which might have been present have been
omitted because they are of higher order in ε than terms which are present. This is
for instance the case for cubic terms in the rhs of (6.69a) involving ψ0, ψ2, which
are of higher order than quadratic terms which are present. Of course this argument
and analogous ones below are applicable only if the relevant dominant terms are
indeed present, namely provided they are not absent. Note that such an absence
might happen for some “accidental” reason (possibly only for some special value of
k) or for a “structural” reason, for instance if the original equation (6.57) contains
nonlinear terms only of cubic order and higher, but no quadratic terms.

The second point that must be emphasized about (6.69a,b,c) is that these equa-
tions generally contain contributions of different orders in ε , and only those of low-
est order are relevant. The identification of these depends of course on the assign-
ments of specific numerical values to p (of course p > 0) and to the parameters
γα (of course γα ≥ 0,α = 0,1,2). These assignments are dictated by the structure
of these equations (6.69a,b,c), and by assumptions which have to be made about
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the vanishing or nonvanishing of the quantities A(m)
α (k), m = 0,1,2,α = 0,1,2, ap-

pearing in the lhs of (6.69b,c); hence one must consider many subcases, according
to which resonances are present. Let us reemphasize that, in this treatment which
yields the results reported here, the assumption is made that all nonlinear terms
which might be present at the lowest order in ε are indeed present, namely that no
nonlinear terms are missing due to “accidental” cancellations or “structural” causes.
Whenever this hypothesis turns out not to hold, the analysis leading to the assign-
ment of the exponents p and γα must be performed anew by taking into account
higher order terms in ε . This analysis can be based on Eqs. (6.69a,b,c) only if all the
relevant higher order terms are already present in the rhs of these equations, other-
wise account of additional terms in the ε-expansion is necessary. Explicit instances
of this phenomenon are reported in [25].

We finally display the model equations which are obtained from (6.69a,b,c) in
the notation ψ0 = θ ,ψ1 = ϕ,ψ2 = χ,ξ = x and τ = t. There are 10 such equations:

iϕt +νϕxx = λ |ϕ|2ϕ ; (6.71)⎧⎨
⎩

iϕt +νϕxx = λ (1)θϕ ,

θx = λ (2)|ϕ|2 ;
(6.72)

⎧⎨
⎩

iϕt +νϕxx = λ (1)χϕ∗ ,

χx = λ (2)ϕ2 ;
(6.73)

⎧⎪⎪⎨
⎪⎪⎩

iϕt +νϕxx = λ (1)θϕ +λ (2)χϕ∗ ,

θx = λ (3)|ϕ|2 ,

χx = λ (4)ϕ2 ;

(6.74)

⎧⎨
⎩

iϕt +νϕxx = λ (1)θϕ ,

θt = λ (2)θ 2 +λ (3)|ϕ|2 ;
(6.75)

⎧⎨
⎩

iϕt +νϕxx = λ (1)θϕ ,

θt = λ (2)(|ϕ|2)x ;
(6.76)

⎧⎨
⎩

iϕt +νϕxx = λ (1)|ϕ|2ϕ +λ (2)θϕ ,

θt = λ (3)(|ϕ|2)xx ;
(6.77)

⎧⎪⎪⎨
⎪⎪⎩

iϕt +νϕxx = λ (1)θϕ +λ (2)χϕ∗ ,

θt = λ (3)(|ϕ|2)x ,

χx = λ (4)ϕ2 ;

(6.78)
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⎧⎨
⎩

iϕt +ν(1)ϕxx = λ (1)χϕ∗ ,

iχt +ν(2)χxx = λ (2)ϕ2 ;
(6.79)

⎧⎪⎪⎨
⎪⎪⎩

iϕt +ν(1)ϕxx = λ (1)θϕ +λ (2)χϕ∗ ,

θt = λ (3)θ 2 +λ (4)|ϕ|2 +λ (5)|χ|2 ,

iχt +ν(2)χxx = λ (6)θχ +λ (7)ϕ2 .

(6.80)

Let us emphasize that the coefficients ν and λ appearing in different equations
are different quantities, even if they have the same symbol. Note moreover that the
equations featuring in the lhs of the zeroth harmonic ψ0 = θ are real, hence all co-
efficients (both ν and λ ) appearing in them are real; while for the other equations
the coefficients ν are real, the coefficients λ are generally complex. It should be also
clear that the structure of these equations reflects the existence of structural and/or
accidental resonances. In fact, since the fundamental harmonic α = 1 is, by defi-
nition, strongly at resonance, its amplitude ϕ always satisfies a PDE which is first
order in time and second order in space; on the other hand, the zeroth harmonic is
always weakly resonating and either it does not appear at all when h ≥ 1 (because
the first-order differential equation it satisfies can be explicitly integrated) or, when
h = 0, it couples to the other resonating harmonics through a first-order differen-
tial equation which can be either in x or in t depending on whether it is weakly
or, respectively, strongly resonating. Similarly for the amplitude χ of the second
harmonic: if this harmonic is slave, it does not appear in the model equation, other-
wise it satisfies a coupled differential equation which is first order in x if it is only
weakly resonating, and is first order in t and second order in x if it is also strongly
at resonance.

The derivation by reduction of these ten nonlinear Schrödinger-type model equa-
tions is the starting point to make contact with integrability. Indeed, from the knowl-
edge that a model equation is not integrable we deduce that that particular original
PDE in the class (6.57), from which the model equation follows by reduction, can-
not be integrable. To the aim of illustrating the way to convert this general statement
in concrete results we select out of the ten equations (6.71), (6.72), (6.73), (6.74),
(6.75), (6.76), (6.77), (6.78), (6.79), (6.80) the following four PDEs, whose integra-
bility properties are already known (for more details and examples, see [26]).
Equation (6.71): this is the NLS equation which is obtained if

A(1)
0 (k) �= 0,A(2)

1 (k) �= 0 ,A(0)
2 (k) �= 0

and h≥ 1, with ν = A(2)
1 (k) and, if h = 1,

λ =− k
[
A(2)

0 (k)g(0,1)g(−1,1)+2kA(1)
0 (k)g(−1,2)g(1,1)

+A(1)
0 (k)A(2)

0 (k)g(−1,1,1)
]
/A(1)

0 (k)A(2)
0 (k); (6.81)
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this equation is known to be S-integrable if

Im(λ ) = 0. (6.82)

Equation (6.72): it corresponds to h = 0, and A(1)
(0)(k) �= 0 and A(2)

1 (k) �= 0; in this

case ν = A(2)
1 (k), and

λ (1) = g(0,1), λ (2) = g(−1,1)/A(1)
0 (k); (6.83)

this system of equations has been found (A. Ramani, Private Communication) to
pass the Painlevé-type test only if

λ (1)λ (2) = 0, (6.84)

namely, if it effectively linearizes.
Equation (6.73): this obtains if h ≥ 1 and if, for some real nonvanishing value k =
k̃,A(0)

2 (k̃) = 0,A(2)
1 (k̃) �= 0 and A(1)

2 (k̃) �= 0. In this case ν = A(2)
1 (k̃) and, if h = 1,

λ (1) =−k̃g(−1,2), λ (2) = 2ik̃g(1,1)/A(1)
2 (k̃), (6.85)

where, of course, the coefficients g(−1,2) and g(1,1) are valued here at k = k̃.
Also this equation has been found (R. Conte, Private Communication) to pass the
Painlevé-type test only if (6.84) holds.
Equation (6.76): this is the case if h = 1, and if, for some real nonvanishing value

k = k̃,A(1)
0 (k̃) = 0 and A(2)

1 (k̃) �= 0. Then ν = A(2)
1 (k̃) and

λ (1) = ik̃g(0,1), λ (2) = g(−1,1), (6.86)

where g(0,1) and g(−1,1) are evaluated at k = k̃. This system has been proved to
be S-integrable [27] only if

Imλ (1) = Imλ (2) = 0. (6.87)

With this information in our hands we are now in the position to formulate neces-
sary conditions of integrability. For a systematic exploration of the various cases in
which such conditions arise and apply, the reader is refereed to [26], while we limit
ourselves to give here only few instances of our method, and of its potentialities.

We first observe that the integrability conditions for the four equations we have
selected, i.e. (6.71), (6.72), (6.73) and (6.76), involve both the linear part (through

the coefficients A(n)
α , see (6.61a,b,c)) and the nonlinear part (through the coefficients

g, see (6.70a,b,c) and (6.58)) of the PDE (6.57) we wish to test, and that both the
coefficients A(n)

α and g are functions of the real parameter k. It is then clear that the
integrability conditions (such as (6.82) and (6.84)) which hold for an arbitrary value
of k produce a number of necessary conditions for the PDE (6.57) which is larger
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than the number of necessary conditions which originates from expressions such as
(6.85) and (6.86) since these hold only for special values (if any) of k (say k̃).

Let us first assume that the PDE (6.57) we are going to test by our method is in
the class with h = 0, namely its nonlinear term is not a derivative. Then, if the ap-
propriate reduced equation is (6.72), the requirement that g(0,1) or g(−1,1) vanish
for all real values of k entails, via (6.70b) and (6.70c), quite explicit restrictions only
on the nonlinear part of (6.57). This is made explicit by the following:

Lemma 1. A necessary condition for the integrability of a nonlinear evolution PDE
of type (6.57) with h = 0 is that either

c(2)
0n = 0 , n = 0,1,2, . . . , (6.88)

or
n

∑
j=0

(−1) jc(2)
j2n− j = 0, n = 0,1,2, . . . , (6.89a)

namely

c(2)
00 = 0, c(2)

02 − c(2)
11 = 0, c(2)

04 − c(2)
13 + c(2)

22 = 0 (6.89b)

and so on. Clearly the condition (6.88) comes from the requirement that g(0,1)
vanish, while (6.53) comes from the requirement that g(−1,1) vanish, see (6.84) and

(6.83). Since they both require that c(2)
00 vanish we obtain the following remarkably

neat result.

Lemma 2. Every nonlinear PDE of type (6.57) with h = 0 featuring in its nonlinear

part a term c(2)
00 u2 is not integrable.

Consider now the class of PDEs (6.57) with h = 1, and assume that the appropri-
ate reduced model equation is the NLS equation (6.71). The requirement (6.82) with
(6.81) for S-integrability involves both quantities related to the linear and nonlinear
parts of the original equation (6.57), but in many cases it amounts to the require-
ments that (i) the quantity g(0,1) be real (note that g(−1,1) is always real, see
(6.70c)); (ii) the quantities g(−1,2) and g(1,1) be both real or both imaginary; (iii)
the quantity g(−1,1,1) be real. Given the arbitrariness of k, the first of these three

conditions clearly entails the vanishing of all the coefficients c(2)
0n with n odd; the

second condition entails the vanishing of c(2)
12 ,c(2)

14 and c(2)
23 and many other relations

for the coefficients c(2)
nm with n + m odd; the third condition entails the vanishing of

c(3)
001 and many other relations for the coefficients c(3)

nm j with n+m+ j odd. These are
very stringent, and quite explicit, conditions on the nonlinear part of (6.57) (the case
in which h > 1 can be similarly treated [26]).

Assume now that the original PDE (6.57), with h = 1, has passed the test based
on the conditions specified above, namely that all conditions entailed by the require-
ment (6.82), with (6.81), are satisfied. Since these conditions are only necessary, not
much information is gained, a part from a definite hint that our PDE may indeed turn
out to be integrable. However, we can still push our method to look for additional
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conditions to be satisfied. This is in fact the case if a special value of k,k = k̃, exists

such that either the condition A(0)
2 (k̃) = 0 holds, this being appropriate to obtain the

model equation (6.73), or the condition A(1)
0 (k̃) = 0 holds, this being the case for the

model equation (6.76). In the first case, a necessary condition for the integrability
of a PDE of type (6.57) with h = 1 is that, for such special value for k,k = k̃, at
least one of the two quantities g(−1,2),g(1,1) vanish, see (6.84) with (6.85). The
applicability and potency of this result is of course somewhat reduced relative to the
conditions previously found, due to the requirement to restrict consideration to only
those real values k̃ of k (if any) which satisfy the appropriate equality and inequal-
ities specified above. Yet there clearly is a large class of nonlinear evolution PDEs
to which these necessary conditions are applicable [26].

In the second case, namely that in which the model equation is (6.76), a necessary
condition for the integrability of a PDE (6.57) with h = 1 is that, for the appropriate
special value of k, i.e. k = k̃ such that the zeroth harmonic is strongly resonating, the
quantity g(0,1) be imaginary (or vanish),

Re[g(0,1)] = 0 , k = k̃. (6.90)

This requirement follows from (6.87), (6.86) and from the property of g(−1,1) to
be always real. This result is analogous to the previous one as it requires focussing
on special values k̃ of k.

Let us state again that we have presented here only some of the necessary condi-
tions which can be established by the multiscale reduction method and that more in-
stances and applications are discussed in [26] where a distinction between necessary
conditions for C-integrability and for S-integrability is also made. We also observe
that various extensions are possible and worth of further research; for example, dif-
ferent classes of PDEs other than (6.57) can be investigated, say for vector or matrix
solutions as well as with more spatial variables; and/or different model equations,
other than the four equations considered here, can be taken as starting points for the
derivation of other necessary conditions for integrability.

6.3 Higher Order Terms and Integrability

In this section our perturbative analysis of the original PDE (6.21) is extended to
terms of higher order in ε. This extension is based on the expansion in powers of
ε of the amplitude u(α) in Eq. (6.48), with the implication that computations be-
come rather heavy. To the aim of simplifying the formalism by avoiding unessential
complications, we add two assumptions which we maintain throughout this section.
First we ask that the nonlinear part of our equation (6.21), namely its rhs F , be an
odd function of u,

F →−F if u→−u. (6.91)
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As it is easily verified, this parity property allows us to consistently assume that the
amplitudes of all even harmonics be vanishing,

u(2α) = 0 , |α| ≥ 0. (6.92)

Therefore, from now on, we will have to deal only with the amplitudes u(2α+1) of the
odd harmonics. For instance, this condition on F is satisfied by the mKdV equation
(6.4a), the C-integrable equation (6.2a) and by the class of PDEs (6.21) with (6.24)
if c2n = 0.

Our second assumption is that, in contrast with the analysis carried out in the
previous section, no resonance occurs besides the fundamental harmonics α =±1.

In other words, the resonance condition D(α)
0 = 0, see (6.46), should hold only in

the trivial case |α|= 1.
These assumptions imply that all harmonics ±(2α +1) with α > 0 are slave and

that the coefficients u(α)(n) of their ε-expansion,

u(α) = ∑
n=1

εnu(α)(n), |α|> 1, (6.93)

are therefore expressed as differential polynomials of the coefficients u(n) of the
expansion of the fundamental harmonic (α = 1)

u(1) ≡ u = εu(1)+ ε2u(2)+ . . . = ∑
n=1

εnu(n). (6.94)

Here, and also in the following, we drop the harmonic upper index in the coef-
ficients of this expansion because of the very special role played by the function
u(1) in this scheme (it is the only amplitude which satisfies a differential equation).
Moreover, as additional implication which can be easily retrieved from the basic
equation (6.48), the leading order of each harmonic amplitude comes from the rule

u(α)(n) = 0 , for n < |α|, (6.95)

which is equivalent to setting γ2α+1 = 2α for α ≥ 0 in the notation (6.52); the slow
variables ξ and tn are here defined as in (6.42) with p = 1, i.e.

ξ = εx, tn = εnt ,n = 1,2, . . . (6.96)

In order to perform all operations required by our approach the functions u(n),n =
1,2, . . . , are required to be smooth in the real variable ξ , namely they are differen-
tiable to any order in the whole ξ -axis.

The first step is inserting in Eq. (6.48) with α = 1 the appropriate ε-expansions,
namely that of the linear operator D(1) ≡ D, see (6.45) with α = 1 and p = 1,

D = εD1 + ε2D2 + . . . , (6.97)
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that of the amplitude u(1) ≡ u, see (6.94), and finally the expansion of the nonlinear
term,

F(1) ≡ F = ε3F3 + ε4F4 + . . . ; (6.98)

let us reemphasize here that since the differential operators Dn, see (6.50) with α =
1, have the expression

Dn = ∂tn − (−i)n+1ωn(k)∂ n
ξ , n≥ 1, (6.99)

there is no need to introduce the slow time tn if it happens that ωn(k) = 0. Thus, if
the dispersion relation ω(k) is a polynomial of degree N > 1, the expansion (6.97)
turns out to be a polynomial in ε of degree N with the implication that only N slow
times enter into play. We also note that, because of the parity condition (6.91), the
expansion (6.98) of the nonlinear term starts from the third order. In conclusion, the
basic equation (6.48) with α = 1, i.e. D(1)u(1) = F(1) or, in the present notation

Du = F, (6.100)

obviously yields the triangular system of convolution type

D1u(n)+D2u(n−1)+ . . .+Dnu(1) = Fn+1 . (6.101)

Here, and in the following treatment, it is convenient to consider Fn as an ele-
ment of the finite-dimensional vector space Pn defined as the set of all nonlinear
differential polynomials in the functions u(m) and u∗(m) of order n and gauge 1.
The meaning of this terminology is rather obvious: each monomial appearing in an
element of Pn is a product of some u(m),u∗(k) and their ξ -derivatives with the
understanding that

order(u j(m)) = order(u∗j(m)) = m+ j, (6.102)

where we use the short-hand notation

u j(m)≡ ∂ j
ξu(m). (6.103)

On the other hand, by requiring that each polynomial in Pn be of gauge 1 we
understand that such polynomials, say Fn, possess the transformation property

Fn→ eiθFn if u(m)→ eiθu(m), (6.104)

θ being an arbitrary real constant. By following these rules, the reader may easily
verify that P2 is empty, dim (P3) = 1, the basis of P3 being the single monomial
|u(1)|2u(1), while dim (P4) = 4 where its basis may be given by the following four
monomials: |u(1)|2u(2),u(1)2u∗(2), |u(1)|2u1(1),u(1)2u∗1(1).

Therefore, each nonlinear term Fn+1 in the rhs of (6.101) is a linear combination
of the basis vectors (f.i. monomials) of the vector space Pn+1, where the complex
coefficients of such combination are determined by the nonlinear function in the rhs
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of our original PDE (6.21) (see the expansion (6.58) with m running only on the odd
integers).

The next step aims to eliminating all secular terms which may enter in the system
(6.101). Our analysis is briefly described below, and the reader who is interested in
a detailed investigation of this point is referred to [28].

Consider first Eq. (6.101) for n = 1, i.e. D1u(1) = 0 since F2 = 0 (see (6.98));
because of the expression (6.99), D1 = ∂t1 +ω1∂ξ , the function u(1) depends on t1
through the variable ξ −ω1t1. The next equation, say (6.101) with n = 2, reads (see
(6.99))

D1u(2) =−
[(

∂t2 − iω2∂ 2
ξ

)
u(1)−F3

]
, (6.105)

where its rhs plays the role of the nonhomogeneous (forcing) term with respect to
the t1-evolution. On the other hand, this term depends on t1 through the variable
ξ −ω1t1 (recall that F3εP3) and it satisfies therefore the homogeneous equation
D1 f = 0. This implies that the rhs of (6.105) is secular and its elimination requires
that u(1) satisfies, with respect to t2, the evolution equation (∂t2 − iω2∂ 2

ξ )u(1) =
F3, namely just the NLS equation, which has been derived in the previous section.
Killing the secular term in (6.105) implies that also u(2) as u(1) depends on t1
through the variable ξ −ω1t1. This argument can be easily repeated for each integer
n in (6.101) and, together with taking into account the structure of the differential
polynomial Fn+1, it recursively leads to conclude that the coefficients u(n) all satisfy
with respect to the time t1 the same (trivial) equation

D1u(n) = (∂t1 +ω1∂ξ )u(n) = 0, n≥ 1. (6.106)

The time t1 plays no essential role and the system (6.101) reduces to

D2u(n−1)+D3u(n−2)+ . . .+Dnu(1) = Fn+1, n≥ 2 , (6.107)

whose first equation (i.e. for n = 2) is the NLS equation

∂t2u(1) = iω2

(
∂ 2
ξ u(1)−2c|u(1)|2u(1)

)
≡ K2[u(1)]; (6.108)

the rhs of this equation defines the nonlinear operator K2 and we have set F3 =
−2iω2c|u(1)|2u(1).

Next we consider Eq. (6.107) for n = 3, and we look at the evolution with respect
to the time t2. To this aim it is convenient to introduce the linear operator

M2 = ∂t2 −K′2[u(1)], (6.109)

where K′2[u(1)] is the Fréchet derivative of K2[u(1)], see (6.108), that is

d
ds

K2[u(1)+ sv]|s=0 = K′2[u(1)]v, (6.110)

namely
M2v = vt2 − iω2

(
vξξ −4c|u(1)|2v−2cu2(1)v∗

)
; (6.111)
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in fact, with this notation, the n = 3 equation (6.107) reads

M2u(2)+D3u(1) = F̃4, (6.112)

where F̃4 = F4 + 2iω2c(2|u(1)|2u(2)+ u2(1)u∗(2))εP4. Again one has to face the
problem of secularities for this equation. First we observe that the term ∂t3u(1) in
D3u(1) is secular since, obviously, M2(∂t3u(1)) = 0 as M2σ = 0 is satisfied by any
symmetry σ of the NLS equation (6.108). Second, we note that also the other term
∂ 3
ξ u(1) in D3u(1) is secular in the following sense. The requirement that the ε-

expansion (6.94) of u is uniformly asymptotic in time implies that the coefficients
u(n) remain bounded as t → ∞. In particular one should ask that the forcing term

F̃4−D3u(1) in (6.112) vanishes, as t2→∞, faster than t−1/2
2 while the variable ξ/t2

is kept fixed [28]. This restriction is equivalent to asking that D3u(1)εP4, while, at
the same time, the t3-flow for u(1) should also be compatible with the t2-flow given
by the NLS equation. The existence of such evolution of u(1) with respect to t3 is a
fine consequence of the integrability of the NLS equation, provided the parameter c
in (6.108) is real, c = c∗. Indeed, it is well known that a whole hierarchy of flows,

∂tnu(1) = Kn[u(1)], n = 1,2, . . . (6.113)

exist which are all compatible (i.e. commuting) with each other; in the present con-
text, these evolution equations may be conveniently rewritten as

Dnu(1) = (−i)n+1ωncVn+1, n = 1,2, . . . , (6.114)

where Vn is a special element of Pn which depends only on u(1),u(1)∗ and their
ξ -derivatives. The expression of the first few of these polynomials are

V2 = 0, V3 =−2q0u(1) , V4 =−6q0u1(1),

V5 = 2(3q1 +3cq2
0−q0ξξ )u(1)−6(q0u1(1))ξ ,

V6 = 10(q1 +3cq2
0−q0ξξ )u1(1)−6(q0u2(1))ξ , (6.115)

where we use the notation (6.103) together with the definition

qn = |un(1)|2 , n = 0,1,2, . . . . (6.116)

Thus, the requirement that the solution u(2) of (6.112) remains bounded as t2→ ∞
is that D3u(1) =ω3cV3 or, equivalently (see (6.113)), that u(1) satisfies the complex
mKdV equation

∂t3u(1) = K3[u(1)] , (6.117)

with the implication that Eq. (6.112) rereads

M2u(2) = G4 , (6.118)
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with

G4 = F̃4−ω3cV4 = F4 +2iω2c(2|u(1)|2u(2)+u2(1)u∗(2))+6ω3c|u(1)|2u1(1)εP4.

The way to arrive at Eqs. (6.117) and (6.118) from (6.112) we have sketched here
can be repeated for Eq. (6.107) for all n, through a careful analysis of the asymptotic
behaviour of the functions u(n) as t2→∞ [28]. The upshot of this analysis is that the
system of PDEs (6.107) splits into the NLS hierarchy (6.113) for the first coefficient
u(1) and the secularity-free system

M2u(n)+M3u(n−1)+ . . .+Mnu(2) = Gn+2 ,n = 2,3, . . . , (6.119)

where Gn is an element of the vector space Pn and Mn is the linear operator

Mn = ∂tn −K′n[u(1)], (6.120)

where, again, K′n[u(1)] is the Fréchet derivative of the nonlinear operator Kn[u(1)]
in the rhs of (6.113).

Let us point out here that the derivation of the triangular system of nonlinear
PDEs (6.119) requires only that the lowest order nonlinear model equation (in this
case the NLS equation) is integrable (i.e. in this case, the condition is that c be
real, see (6.108)) so as to guarantee the existence of an infinite hierarchy of inde-
pendent mutually commuting symmetries (such as (6.113)). However, if no further
information on the original PDE (6.21) is at hand, one is left with the (hard) task of
integrating the PDEs of the triangular system (6.119). Thus, at this point, the natural
question to ask is whether the special property of the original PDE (6.21) of be-
ing (C- or S-) integrable reflects itself in a special property of the triangular system
(6.119). Here below we briefly show that, indeed, the answer to this question leads
to a hierarchy of necessary conditions of integrability which leads to test a given
PDE (see also [29]).

First we observe that in the obviously integrable case in which the PDE (6.21)
is linear, say F = 0, the operator Mn (6.120) reduces to Dn, see (6.99), and the
system (6.119) with Gn = 0 separates into the hierarchy Dnu(m) = 0,n = 1,2, . . .,
i.e., the same hierarchy for each function u(m). In this case the consistency condition
[Dn,Dm] = 0 is certainly plain but essential. The basic observation [29] now is that,
if the original PDE (6.21) is C-integrable or S-integrable, then, similar to the first
coefficient u(1) which satisfies the hierarchy of PDEs (6.113), each function u(m),
for m≥ 2, satisfies the hierarchy of PDEs

Mnu(m) = fn(m) , n≥ 2, m≥ 2, (6.121)

where the nonhomogeneous nonlinear term fn(m) in the rhs is a differential polyno-
mial in Pn+m. More precisely, one can show that

fn(m) ∈ Pn+m(m−1), (6.122)
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where Pn( j) is defined as the subspace of Pn whose elements are the differential
polynomials of the functions u(m) and u∗(m) where the index m goes only up to j,
say 1≤ m≤ j. Of course, since the functions u(m) are also solutions of the system
(6.119), the rhs terms of the hierarchy (3.31) has to be related to the rhs of (6.119)
by the triangular condition

f2(n)+ f3(n−1)+ . . .+ fn(2) = Gn+2, n≥ 2. (6.123)

In order for the system of PDEs (6.119) to split into separate PDEs, namely
Eq. (6.121), certain compatibility conditions must be met. In fact, since the linear
operators Mn given by (6.120) commute with each other,

[Mn,Mm] = 0 , n≥ 1, m≥ 1, (6.124)

as a straight consequence of the commutativity of the flows of the NLS hierarchy
(6.113), then the hierarchy (6.121), for each m ≥ 2, must satisfy the compatibility
condition

Mj fn(m) = Mn f j(m). (6.125)

Eliminating the time-derivatives by using the evolution equation (6.121) leads to
rewrite the compatibility equation (6.125) as an algebraic condition which the dif-
ferential polynomials fn(m) have to satisfy. In fact, this condition ultimately reads
as a set of constraints on the components of fn(m) on the basis of the vector space
Pn+m.

The way to prove this interesting property of integrable PDEs is not reported
here; it goes via the change of variable which linearizes the PDE (6.21) in the case of
C-integrability (see, f.i., the transformation (6.2b)) or it makes use of the multiscale
expansion of the spectral equation of the Lax pair in the case of S-integrability
(see, f.i., the ODE (6.6) with (6.6b)). We note here that this result opens the way to
establish an integrability test as it yields necessary conditions that the PDE (6.21)
has to satisfy in order to be integrable. Indeed, if one can prove that no differential
polynomials fn(m) exist such that (6.121) holds together with the relation (6.123),
where Gn is given by the multiscale technique, see Eq. (6.119), then the original
PDE (6.21) cannot be integrable.

The following two propositions are instrumental in setting up our test.

Proposition 3. the homogeneous equation Mn f = 0 has no solution f in the vector
space Pm, namely

Ker(Mn)∩Pm = φ . (6.126)

Proposition 4. if, for each n≥ 2, the equation

M2 f3(n) = M3 f2(n) (6.127)

is satisfied with f2(n) and f3(n) given in the appropriate space, see (6.122), then
differential polynomials fm(n), with m ≥ 4 and (6.122), exist unique such that the
flows Mmu(n) = fm(n) commute with each other for m≥ 2. Our method is then better
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illustrated by first showing the nonhomogeneous terms of the hierarchies (6.121) in
the following table (note that in fn(m) the index n labels the nth member of the
hierarchy of evolution equations, namely it refers to the time tn, while m indicates
the m-th coefficient of u in its ε-expansion):

This table is arranged in such a way that summing up the entries along the ver-
tical lines reproduces the condition (6.123), while the arrow which connects f2(n)
with f3(n) represents the compatibility equation (6.127). Note also that the pattern
pictured in Table 6.1 looks like a ladder if only a finite number of slow times need to
be introduced (the simplest picture is obtained when only t2 and t3 are present as for
the dispersion relation ω(k) = a3k3). Let us now proceed with our test. First one has
to compute the differential polynomial G4; this is obtained from the cubic terms of
the nonlinear part F of the PDE (6.21) to be tested (of course, the preliminary step
of computing G3 and, therefore, the real constant c which enters in the operators
Mn has been already made). Then, because of (6.127) with n = 2 and the equality
f2(2) = G4, one has to verify that the vector M3G4 is in the image M2(P5(1)) of
the operator M2. In order to envisage the actual computational task, one has to re-
alize that the differential operator M2 which maps vectors in Pn(m) onto vectors
in the bigger space Pn+2(m) is represented in such spaces as a rectangular matrix,
with the implication that its image is a proper subspace of Pn+2(m). If it turns out
that M3G4 is not in M2(P5(1)), then the original PDE (1.21) cannot be integrable
and computations stop here. If, instead, M3G4 belongs to the image of M2, one can
compute the vector f3(2) which solves the algebraic equation (6.127), and, because
of Proposition 3, see (6.126), the solution f3(2) is unique. Proceeding to the next
step requires first the computation of f2(3) by subtraction (see Table 6.1),

f2(3) = G5− f3(2) , (6.128)

where G5 is obtained directly from the original PDE (6.21), and then the verification
that M3 f2(3) be in the image M2(P6(2)). If this is not the case, this test leads
to the conclusion that the original PDE (6.21) is not integrable, otherwise the test
goes on with the next step in a similar way, namely one computes f3(3) by solving
(6.127) for n = 3. Because of Proposition 4 (see above), the polynomial f4(2) can
be computed and, by subtraction (see Table 1),

Table 6.1 Triangular structure of the terms fn(m) . Vertical summation represents equation (6.123).
The arrow indicates the construction of f3(n) from f2(n) via equation (6.127)

f2(2)→ f3(2) , f4(2) , f5(2) ,
−−− + + +

G4 f2(3) → f3(3) , f4(3) ,
−−− + +

G5 f2(4) → f3(4) ,
−−− +

G6 f2(5) →
−−−

G7
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f2(4) = G6− f3(3)− f4(2) , (6.129)

the polynomial f2(4) is obtained, this being the starting point for the next order.
Thus this procedure may go on order by order, starting with G4 at the order

n = 2. Assume now that one has been able to iterate this computational scheme
we have just illustrated up to the calculation of f2(n + 1), and that the polynomial
M3 f2(n+1) turns out not to belong to the image M2(Pn+4(n)), then we have found
an “obstruction” at order n+1 since this procedure cannot be carried on any further.
Of course, the higher is n where the obstruction occurs, the more integrable is the
original PDE (6.21). The specification of this property deserves a notation, so we
say that the PDE (6.21) is An-integrable, meaning asymptotically integrable up to
order n, if no obstruction occurs up to order n and if the obstruction (if any) occurs
at order m≥ n+1. For instance, the PDE (6.21) is A1-integrable if the constant c in
the NLS equation (6.108) is real. It is also A2-integrable if

M3 f2(2) = M3(a|u(1)|2u1(1)+bu(1)2u∗1(1)) (6.130)

is in the image of M2, i.e. in M2(P5(1)), and recall that the coefficients a and b are
directly computed from the PDE (6.21) since f2(2) = G4. By a straight, but tedious,
computation one obtains that M3 f2(2) is in M2(P5(1)) if and only if a and b are real,
a = a∗ and b = b∗, otherwise one has the obstruction. If a and b are real, one can go
further at n = 3. In this case f2(3) is a 12-dim complex vector and the condition that
M3 f2(3) be in M2(P2(6)) turns out to yield 15 real conditions so that the general
solution f2(3) depends on 2× 12− 15 = 9 real constants. As it is already clear
from these first instances, the computational burden rapidly increases with n and a
computer code is needed even for the first few orders. An idea on how easily a PC
can run out of memory already at n = 4 or n = 5 is given by the dimensionality of the
vector spaces involved. In the notation Pn(m)→ dim (Pn(m)), we have P3(1)→
1,P4(1)→ 2, P5(1)→ 5, P6(1)→ 8, P4(2)→ 4, P5(2)→ 12, P6(2)→
26, P5(3)→ 14, P6(3)→ 34, P6(4)→ 36.

In conclusion, this test is based on an infinite sequence of necessary conditions
of integrability, one at each order of the ε-expansion of the amplitude of the fun-
damental harmonic. Formulated as it is here, several mathematical problems related
to this method remain open for future investigations. Among others, natural gener-
alizations of the family of PDEs (6.21) we have considered here are feasible. For
instance, one can consider PDEs with more than one dispersion branch, as for PDEs
of higher order of the time-derivative or systems of PDEs with vector or matrix so-
lutions, and/or PDEs in more than 1 + 1 independent variables. As an instance, we
have applied [29] this test to the following family of third-order PDEs

ut + c0ux + γuxxx−α2uxxt =
(
c1u2 + c2u2

x + c3uuxx
)

x , (6.131)

which is not in the class (6.21). With the assistance of Mathematica, we have
found that only three members of the family (6.131) are A3-integrable, namely
the KdV equation (α = c2 = c3 = 0), the Camassa–Holm [30] equation (c1 =
− 3

2 c3/α2 , c2 = c3/2) and one new equation (c1 = −2c3/α2 , c2 = c3) which
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can be transformed, by a change of variables, to the form

mt +mxu+3mux = 0 , m = u−uxx . (6.132)

Since the nonlinearity of this equation is quadratic and it passes our test up to order
3 (we could not push the test to higher order because of the heavy algebraic compu-
tations involved), we conjectured that this equation be integrable, but with no proof
as our conditions are only necessary. Only in a subsequent investigation of (6.132),
related in particular with the existence of special solutions known as peakons, it
has been finally shown that the PDE (6.132) is S-integrable by explicitly display-
ing the associated Lax pair and conservation laws [31] together with multisoliton
solutions [32].

Finally, since the conditions of integrability presented here are only necessary,
once they are met, one may try the daisy petals method:
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Chapter 7
Painlevé Tests, Singularity Structure
and Integrability

A.N.W. Hone

Abstract After a brief introduction to the Painlevé property for ordinary differen-
tial equations, we present a concise review of the various methods of singularity
analysis which are commonly referred to as Painlevé tests. The tests are applied
to several different examples, and the connection between singularity structure and
integrability of ordinary and partial differential equations is discussed.

7.1 Introduction

The connection between the integrability of differential equations and the singu-
larity structure of their solutions was first discovered in the pioneering work of
Kowalewski [70, 71], who considered the equations for the motion under gravity
of a rigid body about a fixed point, namely

d� = �×ω + c×g ,

dt
dg = g×ω ; � = Iω .

dt

(7.1)

In the above, � and ω are, respectively, the angular momentum and angular veloc-
ity of the body, g is the gravity vector with respect to a moving frame, and the
centre of mass vector c and inertia tensor I are both constant. The remarkable in-
sight of Kowalewski was that the system of Eq. (7.1) could be solved explicitly
whenever the dependent variables � and g are meromorphic functions of time t ex-
tended to the complex plane, t ∈ C. By requiring that the solutions should admit
Laurent expansions around singular points, she found constraints on the constants
c and I = diag(I1, I2, I3) (diagonalized in a suitable frame). Her method isolated the
two solvable cases previously known to Euler (c = 0) and Lagrange (I1 = I2 with c
defining the axis of symmetry), as well as a new case having principal moments of
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inertia I1 = I2 = 2I3 and c perpendicular to the axis of symmetry. The latter case is
now known as the Kowalewski top, and Kowalewski was further able to integrate it
explicitly in terms of theta-functions associated with an hyperelliptic curve of genus
2, thereby proving directly that the solutions are meromorphic functions of t. A
modern discussion can be found in [8] or [75], for instance.

An important feature of Eq. (7.1) from the point of view of singularity analysis
is that they are nonlinear. For a linear differential equation

dny
dzn +an−1 (z)

dn−1y
dzn−1 + . . .+a1 (z)

dy
dz

+a0 (z)y = 0

of arbitrary order n it is well known [45, 58] that the general solution can have
only fixed singularities at the points in the complex z-plane where the coefficient
functions a j(z) are singular. However, for nonlinear differential equations, as well
as the fixed singularities which are determined by the equation itself, the solutions
can have movable singularities which vary with the initial conditions. For example,
the first-order nonlinear differential equation

dy
dz

+ y2 = 0

has the general solution

y =
1

z− z0
, z0 arbitrary,

with a movable simple pole at z = z0. If the initial data y = y0 is specified at the
point z = 0, then the position of the simple pole varies according to

z0 =− 1
y0

.

The classification of ordinary differential equations (ODEs) in terms of their sin-
gularity structure was initiated in the work of Painlevé [84, 85]. The main prop-
erty that Painlevé sought for ODEs was that their solutions should be single valued
around movable singular points. Nowadays this property is usually formulated thus:

Definition 1. The Painlevé property for ODEs: An ODE has the Painlevé prop-
erty if all movable singularities of all solutions are poles.

Painlevé proved that for first-order ODEs of the general form

y′ =
P (y,z)
Q (y,z)

,

where P and Q are polynomial functions of y and analytic functions of z (and
the prime ′ denotes d/dz), the only movable singularities that can arise are poles
and algebraic branch points. The latter are excluded by Definition 1, and he further
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showed that the most general first-order equation with the Painlevé property is the
Riccati equation

y′ = a2 (z)y2 +a1 (z)y+a0 (z) ,

where the coefficients a0, a1, a2 are analytic functions of z.
For second-order ODEs, life is more complicated because movable essential sin-

gularities can arise (see Chap. 3 in [6] for an example). Painlevé initiated the classi-
fication of second-order ODEs of the form

y′′ = F
(
y′,y,z

)
, (7.2)

with F being a rational function of y′ and y and analytic in z. Painlevé and his
contemporaries succeeded in classifying all ODEs of the type (7.2) which fulfil
the requirements of Definition 1. The complete result is in the form of a list of
approximately 50 representative equations, unique up to Möbius transformations,
which are detailed in Chap. 14 of Ince’s book [58]. It was found that (after suitable
changes of variables) all of these ODEs have general solutions in terms of classical
special functions (defined by linear equations) or elliptic functions, except for six
special equations which are now known as Painlevé I–VI (or just PI–VI).

As an example, consider the second-order ODE

y′′ = 6y2− 1
2

g2. (7.3)

This can be immediately integrated once, because the equation is autonomous (the
right-hand side is independent of z), which yields

(
y′
)2 = 4y3−g2y−g3, (7.4)

with g3 being an integration constant. The general solution of the first-order ODE
(7.4) is given by the Weierstrass elliptic function,

y =℘(z− z0;g2,g3) (7.5)

with the constants g2, g3 being the invariants. The solution (7.5) has infinitely many
movable double poles, at z = z0 and at all congruent points z = z0 +2mω1 +2nω2 ∈
C for (m,n) ∈ Z

2 on the period lattice defined by the half-periods ω1,ω2. (For an
introduction to Weierstrass elliptic functions see Chap. 20 in [112] or Chap. VI in
[98].) We shall return to Eq. (7.3) in the next section.

The first of the Painlevé equations is PI, which is a non-autonomous version of
(7.3) given by

y′′ = 6y2 + z. (7.6)

Its general solution is a meromorphic function of z, and the solution of PI (or some-
times the equation itself) may be referred to as a Painlevé transcendent, since it
essentially defines a new transcendental function. The other equations PII–PVI also
contain parameters; for example the second Painlevé equation (PII) is
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y′′ = 2y3 + zy+α, (7.7)

where α is a constant parameter. The general solution of each of the Painlevé equa-
tions cannot be expressed in terms of elliptic functions or other classical special
functions [61], although for special parameter values they can be solved in this way;
e.g. when α is an integer, Eq. (7.7) has particular solutions given by rational func-
tions of z, and it has solutions in terms of Airy functions for half-integer values
of α .

An important early result was the connection of PVI with the isomonodromic de-
formation of an associated linear system [32, 33]. After the work of Painlevé and his
colleagues around the turn of the last century, the Painlevé equations were probably
only of interest to experts on differential equations. However, in the latter half of the
20th century the Painlevé transcendents enjoyed something of a renaissance when
it was discovered that they gave exact formulae for correlation functions in solvable
models of statistical mechanics [113], quantum field theory [59, 60] and random
matrix models [28, 63], and also arose as symmetry reductions of partial differential
equations (PDEs) integrable by the inverse scattering transform (see [4] and Sect. 3
below). The link with integrable PDEs and linear Lax pairs established the exact so-
lution of the Painlevé equations by the isomonodromy method [31]. More recently
a weakened version of the Painlevé property has been used to find exact metrics for
relativistic fluids [41]. With this wide variety of physical applications, the Painlevé
transcendents have acquired the status of nonlinear special functions (see the review
and references in Chap. 7 of [5]).

The continuation of Painlevé’s classification programme to higher order equa-
tions becomes increasingly difficult as the order increases. Even at third order a
new phenomenon can be encountered, in the form of a movable natural barrier or
boundary beyond which the solution cannot be analytically continued; this occurs
in Chazy’s equation

y′′′ = 2yy′′ −3
(
y′
)2

. (7.8)

A variety of results for third or higher order equations have been obtained by Chazy
[14], Gambier, Bureau and most recently by Cosgrove; see [24] and references
therein. Chazy’s equation (7.8) has some higher order relatives known as Darboux–
Halphen systems, which have a very complicated singularity structure, and occur as
reductions of the integrable self-dual Yang–Mills equations (see the contribution of
Ablowitz et al. in [23]).

It should be clear from the above that the Painlevé property has a very deep con-
nection with the concept of integrability. This connection is by no means straigh-
forward and continues to be the subject of active research [23]. In the rest of this
brief review article, we will introduce the basic techniques for testing the singu-
larity structure of differential equations (both ODEs and PDEs), which are often
referred to collectively as Painlevé analysis. The basic method for testing ODEs by
expansions in Laurent series is treated in Sect. 2. This method should probably be
referred to as the Kowalewski–Painlevé test to honour both pioneers of the subject,
but most commonly only Painlevé is mentioned in this context. Section 3 describes
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the conjecture of Ablowitz, Ramani and Segur [4] on the connection between inte-
grable PDEs and Painlevé-type ODEs, and how this can be used as an integrability
test for PDEs. In the fourth section we explain how the preceding analysis can be
bypassed by a direct consideration of the singularity structure of a PDE, by using
the method of Weiss, Tabor and Carnevale [89]. This is followed in Sect. 5 by as-
sociated truncation techniques related to Bäcklund transformations, Lax pairs and
Hirota bilinear equations for integrable systems of PDEs. In Sect. 6 we highlight the
limitations of the Painlevé property as a criterion for integrability, in the context of
integrable systems with movable algebraic branching and the weak Painlevé prop-
erty [93]. In the final section we give our outlook on methods of singularity analysis
for differential equations and mention how some of these methods and concepts
have been extended to the discrete context of maps or difference equations.

7.2 Painlevé Analysis for ODEs

Consider an ODE for a dependent variable y(z), which may be a single scalar or a
vector quantity. If the ODE has the Painlevé property then its solutions must have
local Laurent expansions around movable singularities at z = z0, where z0 is arbi-
trary. However, if branching occurs then this can be detected by local singularity
analysis. The basic Painlevé test for ODEs consists of the following steps:

• Step 1: Identify all possible dominant balances, i.e. all singularities of form y∼
c0 (z− z0)μ .

• Step 2: If all exponents μ are integers, find the resonances where arbitrary con-
stants can appear.

• Step 3: If all resonances are integers, check the resonance conditions in each
Laurent expansion.

• Conclusion: If no obstruction is found in steps 1–3 for every dominant balance
then the Painlevé test is satisfied.

Note that the exponents μ and leading coefficients c0 must have as many compo-
nents as the vector y, and if the ODE is polynomial then at least one of the exponents
must be a negative integer for a leading order pole-type singularity. Rather than give
formal definitions of the terms introduced in steps 1–3 above (which can be found in
[13] and elsewhere in the references), we would like to illustrate them with a couple
of examples.

First of all we describe the Painlevé test applied to Eq. (7.3), in which case y is
just a scalar. Applying step 1 we look for leading order behaviour which produces a
singularity in the ODE, so we require y∼ c0 (z− z0)μ and μ to be a negative integer
for a movable pole with no branching. This gives immediately

y∼ 1

(z− z0)
2 (7.9)
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as the only possible dominant balance. Note that we could also have obtained this
balance by assuming that y blows up as z→ z0, and then (since g2 is constant)
y2 >> g2 on the right-hand side of the ODE, so the y2 term must balance with the
left-hand side of (7.3), giving

y′′ ∼ 6y2, as z→ z0. (7.10)

We can multiply by y′ on both sides of (7.10) and integrate to find

1
2

(
y′
)2 ∼ 2y3, as z→ z0 (7.11)

(throwing away the integration constant, which is strictly dominated by the other
terms), and after taking a square root in (7.11) and integrating we find (7.9).

We now seek a solution of (7.3) given locally by a Laurent expansion around a
double pole at z = z0, in the form

y =
∞

∑
j=0

c j (z− z0) j−2, c0 = 1, (7.12)

where the value of c0 has been fixed as in (7.9). We wish to determine the reso-
nances, which are the positions in the Laurent series (7.12) where arbitrary coef-
ficients c j can appear. Since the ODE (7.3) is of second order, there must be two
arbitrary constants in a local representation of the general solution: z0, the arbitrary
position of the movable pole, and one other. To apply step 2 of the Painlevé test we
take a perturbation of the leading order with small parameter ε, in the form

y∼ (z− z0)
−2 (1+ εt(z− z0)r) . (7.13)

To first order in ε we have

y2 ∼ (z− z0)
−4 (1+2ε (z− z0)

r) , y′′ ∼ (z− z0)
−4 (6+ ε (r−2)(r−3)(z− z0)

r) .

Thus when we substitute the perturbation (7.13) into the dominant terms (7.10) and
retain only first-order terms in ε we find

y′′ −6y2 ∼ ε
(
(r−2)(r−3)−12

)
(z− z0)

r−4 = 0.

Since the perturbation ε is arbitrary, corresponding to the first appearance of
a new arbitrary constant in the Laurent expansion (7.12), the expression in large
brackets must vanish, giving the resonance polynomial

r2−5r−6 = 0, whence r =−1 or r = 6.

The first resonance at r = −1 must always be present in any expansion around
a movable singularity, since it corresponds to the arbitrariness of z0. The second
resonance value r = 6 indicates that the coefficient c6 should be arbitrary.
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In order to complete the Painlevé test, we must now substitute in the full Laurent
expansion and check that it is consistent up to the coefficient c6. In this case we find
that the expansion is precisely

y =
1

(z− z0)
2 +

1
20

g2 (z− z0)
2 +

1
28

g3 (z− z0)
4 + . . . , (7.14)

so that c6 = g3/28 is the arbitrary constant that appears after integrating (7.3) to
obtain (7.4). In fact only even powers of (z− z0) occur in this expansion, since
the Weierstrass function (7.5) is an even function of its argument. The higher co-
efficients in (7.14) can be found recursively in terms of the invariants g2, g3. (Up
to overall multiples these coefficients are the Eisenstein series associated with the
corresponding elliptic curve [98].) The pole position z0 does not appear in the coef-
ficients because the ODE (7.3) is autonomous.

Here we should point out that passing the basic Painlevé test is only a necessary
condition for an ODE to have the Painlevé property. Proving the Painlevé property
requires showing that the local Laurent expansions can be analytically continued
globally to a single-valued function (or one with only fixed branched points), in
the absence of movable essential singularities. For the ODE (7.3) this follows from
the fact that the general solution (7.5) is given by a Weierstrass elliptic function,
which is meromorphic (for a proof see e.g. [98, 112]). Painlevé’s proof that the first
Painlevé transcendent (7.6) is free from movable essential singularities is outlined
by Ince in Chap. 14 of [58], but the proof is unclear and this has prompted recent
efforts to find a more straightforward approach [46, 65, 100].

Having seen an example where the Painlevé test is passed, we now move on to
an example for which it fails, by considering the following coupled second-order
system:

y′′1 = 2y2
1−12y2, y′′2 = 2y1y2. (7.15)

In [37] this system is associated with an interaction of four particles moving in
a plane, subject to velocity-dependent forces, and in that context it is essential that
both y1(z), y2(z) (denoted c2(τ), c4(τ) in the original reference) and the independent
variable z should be complex. To find the dominant balances, we look for leading
order singular behaviour of the form

y1 ∼ aZμ , y2 ∼ bZν , (7.16)

corresponding to a singularity in the solution at Z = z− z0 = 0 for at least one of μ ,
ν negative. Because the system (7.15) is autonomous, we can expand in the variable
Z, since the position z0 of the movable singularity will not appear in the coefficients
of local expansions around z = z0.

There are three possible dominant balances for the system (7.15), namely

(i) y1 ∼ 3Z−2, y2 ∼ bZ−2, b arbitrary;
(ii) y1 ∼ 3Z−2, y2 ∼ bZ3, b arbitrary;

(iii) y1 ∼ 10Z−2, y2 ∼ 35
3 Z−4.
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Other possible power law behaviour around Z = 0 corresponds to μ , ν both non-
negative integers and leads to Taylor series expansions, which are not relevant to our
analysis of singular points.

The second step in applying the Painlevé test is to find the resonances. For the
system (7.15) to possess the Painlevé property we require that all resonances for all
dominant balances be integers, and at least one balance must have one resonance
value of −1 with the rest being non-negative integers, in which case this is a princi-
pal balance for which the Laurent expansion should provide a local representation
of the general solution. To find the resonance numbers r we substitute

y1 ∼ aZμ (1+δZr) , y2 ∼ bZν (1+ εZr)

into the dominant terms of the system (7.15) for each of the balances (i)–(iii) and
take only the terms linear in δ and ε. This yields a pair of homogeneous linear
equations for δ , ε (which correspond to the arbitrary coefficients appearing at the
resonances). The determinant of this 2×2 system must vanish, which gives in each
case a fourth-order polynomial in r.
Principal balance (i): It turns out that the balance (i) is the only principal balance,
with resonances

(i) r =−1,0,5,6.

As mentioned before, the resonance−1 is always present, since it corresponds to
the arbitrary position z0 of the pole, while r = 0 comes from the arbitrary constant
b in the leading order term of the expansion for y2; the other two values arise from
arbitrary coefficients higher up in the series for y1, y2, so that altogether there should
be four arbitrary constants appearing in these Laurent series. However, for step 3 of
the test we also require that all resonance conditions hold: so far we have only found
the orders in the series where arbitrary constants may appear, but it is necessary to
check that all other terms vanish at this order when the series are substituted into the
equations. Taking

y1 ∼ L1(Z) :=
∞

∑
j=−2

k1, jZ
j, y2 ∼ L2(Z) :=

∞

∑
j=−2

k2, jZ
j (7.17)

in each of Eqs. (7.15) we know already that the leading order terms require

k1,−2 = 3, k2,−2 = b (arbitrary),

giving the resonant term at r = 0 in the expansion for y2, while at subsequent orders
we find

k1,−1 = 0 = k2,−1; k1,0 = b, k2,0 =−b2/3; k1,1 = 0 = k2,1.

At the next orders we further obtain

k1,2 =−3b2/5, k2,2 = 7b3/15; k1,3 = 0, k2,3 arbitrary,
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so that the resonance condition at r = 5 corresponding to k2,3 is satisfied. However,
at the next order in the first equation of the system (7.15), at the first appearance of
the resonance coefficient k1,4, we find the additional relation

k2,2 =−b3/5,

which means that the resonance condition is not satisfied unless b = 0, contradicting
the fact that b should be arbitrary. Thus the Painlevé test is failed by this principal
balance.

The only way to rectify the failure of the resonance condition and leave b as a
free parameter is to modify (7.17) by adding logarithm terms. More precisely taking

y1 ∼ L1(Z)+Δ1(Z), y2 ∼ L2(Z)+Δ2(Z), (7.18)

the resonance condition is resolved by taking

Δ1 ∼−
8
7

b3Z4 logZ, Δ2 ∼−
8
21

b4Z4 logZ. (7.19)

However, the additional terms Δ1, Δ2 in (7.18) must then consist of a doubly
infinite series in powers of Z and logZ, with the leading order behaviours given
by (7.19). Only in this way is it possible to represent the general solution of the
system (7.15) as an expansion in the neighbourhood of a singular point containing
four arbitrary parameters. Such infinite logarithmic branching is a strong indicator
of non-integrability [79, 94].
Non-principal balance (ii): The second balance denoted (ii) above has resonances

r =−5,−1,0,6.

The presence of the negative integer value r = −5 means that this is a non-
principal balance. (For an extensive discussion of negative resonances see [21].)
This gives Laurent expansions

y1 ∼ 3Z−2 + kZ4− 3
2

bZ5 +O(Z7), y2 ∼ bZ3 +O(Z5). (7.20)

In this case all resonance conditions are satisfied and all higher coefficients in
(7.20) are determined uniquely in terms of k and b. However, because it only con-
tains three arbitrary constants (namely b, k and the position z0 of the pole), it cannot
represent the general solution, but can correspond to a particular solution which is
meromorphic.
Non-principal balance (iii): For the balance (iii) the resonances are given by
r =−1 and the roots of the cubic equation

r3−15r2 +26r +280 = 0,

which turn out to be a real irrational number and a complex conjugate pair, approx-
imately
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r =−3.2676, 9.1338±1.5048i.

While non-integer rational resonances are allowed within the weak extension of
the Painlevé test (see [93] and Sect. 6), irrational or complex resonances lead to in-
finite branching, and (as already evidenced by the principal balance (i)) the system
(7.15) cannot possess the Painlevé property. This non-principal balance may be in-
terpreted as a particular solution corresponding to a degenerate limit of the general
solution, and perturbation of this particular solution (within the framework of the
Conte–Fordy–Pickering perturbative Painlevé test [21]) will pick up the logarith-
mic branching present in the general solution. Clearly it would have been sufficient
to stop the test after the failure of the resonance condition in the principal balance
(i), but we wanted to present the details of the other balances to show the different
possibilities that can arise in the singularity analysis of ODEs.

7.3 The Ablowitz–Ramani–Segur Conjecture

Having considered how to test for the Painlevé property in ODEs, we now turn to
the connection with integrable PDEs. In the 1970s it was discovered that ODEs of
Painlevé type, and in particular some of the Painlevé transcendents, appeared as
symmetry reductions of PDEs solvable by the inverse scattering technique. This led
Ablowitz, Ramani and Segur [4] to formulate the following:

Ablowitz–Ramani–Segur conjecture: Every exact reduction of a PDE which is
integrable (in the sense of being solvable by the inverse scattering transform) yields
an ODE with the Painlevé property, possibly after a change of variables.

To obtain ODE reductions of PDEs one can use the classical Lie symmetry
method or its non-classical variants (see [83] for details), or the direct method of
Clarkson and Kruskal [16]. The idea is that having found the symmetry reductions
of the PDE, one can either solve the ODEs that are obtained or apply the Painlevé
test to them, to see if branching occurs. If all the ODE reductions are of Painlevé
type, then this suggests that the original PDE may be integrable. However, the need
to allow for a possible change of variables will become apparent in Sect. 6. Indeed,
the most difficult aspect of this conjecture, if one would like to provide a proof of it,
is in defining exactly what class of variable transformations should be allowed.

As an example, consider the Korteweg–de Vries (KdV) equation for long waves
on shallow water, which we write in the form

ut = uxxx +6uux. (7.21)

This has three essentially different reductions to ODEs; details of their derivation
are given in Chap. 3 of [83]. The first is the travelling wave solution

u(x, t) = w(z), z = x− ct, (7.22)

where c is the (arbitrary) wave speed and w(z) satisfies
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w′′′+6ww′+ cw′ = 0. (7.23)

After an integration and a shift in w this is equivalent to (7.3), and the solution of
(7.23) is given by

w =−2℘(z− z0)− c/6, (7.24)

where z0 and the invariants g2 and g3 of the ℘-function are arbitrary constants. In
the special case g2 = 4k4/3, g3 = −8k6/27 the elliptic function degenerates to a
hyperbolic function, and for c = −4k2 the reduction (7.22) yields the one-soliton
solution

u(x, t) = 2k2sech2(kx+4k3t). (7.25)

(Of course there is the additional freedom to shift the position of the soliton (7.25)
by the transformation x→ x− x0.)

The second reduction of KdV is the Galilean-invariant solution

u(x, t) =−2(w(z)+ t) , z = x−6t2, (7.26)

where w(z) satisfies
w′′′ −12ww′ −1 = 0. (7.27)

Upon integration, and making a shift in z to remove the constant of integration, the
ODE (7.27) becomes the first Painlevé equation (7.6).

The third reduction of (7.21) is the scaling similarity solution

u(x, t) = (−3t)−
2
3 w(z), z = (−3t)−

1
3 x. (7.28)

This solution arises from the invariance of the PDE (7.21) under the group of scaling
symmetries

(x, t,u)−→ (λx,λ 3t,λ−2u).

After substituting the similarity form (7.28) into KdV and integrating once we find
the ODE for w:

w′′+2w2− zw+
�2−1/4+w′ − (w′)2

2w− z
= 0. (7.29)

The parameter �2 is the constant of integration, and (7.29) turns out to be equiv-
alent to the equation P34, so called because it is labelled XXXIV in the Painlevé
classification of second-order ODEs as detailed by Ince [58]. The equation P34 can
be solved in terms of the second Painlevé equation (7.7), according to the relation

w =−y′ − y2, with � = α +1/2. (7.30)

The above formula defines a Bäcklund transformation between the two equa-
tions (7.29) and (7.7), and in fact there is a one–one correspondence between their
solutions. With the parameters of the two ODEs related as in (7.30), the inverse of
this transformation (defined for w �= z/2) is given by
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y =
w′+α
2w− z

.

For more details, and higher order analogues, see [51] and references.
Thus we have seen that the ODE reductions of the KdV equation (7.21) are solved

either in elliptic functions or in terms of Painlevé transcendents, and hence these
reductions certainly have the Painlevé property. So the KdV equation clearly fulfils
the necessary condition for integrability required by the Ablowitz–Ramani–Segur
conjecture, as it should do because it is integrable by means of the inverse scattering
transform. In contrast to KdV, we consider another equation that models long waves
in shallow water, namely the Benjamin–Bona–Mahoney (often referred to as BBM)
equation [9], which takes the form

ut +ux +uux−uxxt = 0. (7.31)

The Benjamin–Bona–Mahoney equation is also known as the regularized long-wave
equation and was apparently first proposed by Peregrine [86]. The travelling wave
reduction of the Benjamin–Bona–Mahoney equation is very similar to that for KdV:
the PDE (7.31) has the solution

u(x, t) =−12c℘(z− z0)+ c−1, z = x− ct, (7.32)

given in terms of the Weierstrass℘-function (with arbitrary values of the invariants
g2, g3 and the constant z0). In the hyperbolic limit with c = (1−4k2)−1 for k �=±1/2
this gives the solitary wave solution

u(x, t) =
12k2

1−4k2 sech2(kx− k(1−4k2)−1t),

but in contrast to (7.25) this is not a soliton because the Benjamin–Bona–Mahoney
equation is not integrable and collisions between such waves are inelastic: see the
discussion and references in Chap. 10 of [27].

Evidence for the non-integrable nature of the Benjamin–Bona–Mahoney equa-
tion is provided by another symmetry reduction, namely

u(x, t) =
1
t

w(z)−1, z = x+κ log t, (7.33)

where κ is a constant. Upon substitution of (7.33) into (7.31), w is found to satisfy
the ODE

κw′′′ −w′′ −ww′ −κw′+w = 0. (7.34)

For all values of the parameter κ , Eq. (7.34) does not have the Painlevé property,
which means that (at least in these variables) the Benjamin–Bona–Mahoney equa-
tion fails the necessary condition required by the Ablowitz–Ramani–Segur conjec-
ture. In the case κ = 0, (7.34) just becomes second order, so it is possible to compare
with the list in Chap. 14 of Ince’s book [58] to see that w′′+ ww′ −w = 0 is not an
ODE of Painlevé type. A direct method, which works for any κ , is to apply Painlevé
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analysis directly to the equation and show that a resonance condition is failed. In
fact the analysis can be greatly simplified by integrating in (7.34) to obtain

κw′′ −w′ − w2

2
−κw =−

∫ z

z1

w(s)ds. (7.35)

(The lower endpoint of integration z1 is an arbitrary constant.)
Now we can perform a Painlevé test on the integro-differential equation (7.35).

For κ �= 0, in the neighbourhood of a movable singularity at z = z0 the dominant
balance is between the w′′ and w2 terms, giving

w(z)∼ 12κ(z− z0)−2, z→ z0.

If we suppose that this is the leading order in a Laurent expansion around z = z0, i.e.

w(z) =
∞

∑
j=0

w j(z− z0) j−2, w0 = 12κ, (7.36)

then at the next order we see that the coefficient of (z− z0)−1 is

w1 =
12κ

6κ−1
, κ �= 1/6.

(For κ = 1/6 the Laurent expansion immediately breaks down.) However, substitut-
ing the expansion (7.36) into the left-hand side of (7.35) gives a Laurent series, while
on the right-hand side there is a term log(z− z0) arising from the non-zero residue
w1 �= 0. Hence the expansion (7.36) cannot satisfy Eq. (7.35), or equivalently (7.34),
and the Painlevé test is failed.

Thus we have seen that all of the ODE reductions of the KdV equation possess
the Painlevé property, but not all the reductions of the non-integrable Benjamin–
Bona–Mahoney equation (7.31) are of Painlevé type. We leave it as an exercise
for the reader to check whether the Benjamin–Bona–Mahoney equation has other
reductions apart from (7.32) and (7.33) (for hints see exercise 3.2 in [83]). How-
ever, it should be clear from the above that a fair amount of work is required when
analysing a PDE in the light of the Ablowitz–Ramani–Segur conjecture, since one
must first find all possible reductions to ODEs and then perform Painlevé analysis
on each of them separately. Finding the symmetry reductions can be a difficult en-
terprise in itself (see [17] for example), but in the next section we shall see how this
complication can be avoided by using the direct method due to Weiss, Tabor and
Carnevale [107].

7.4 The Weiss–Tabor–Carnevale Painlevé Test

While the symmetry reductions of PDEs are clearly indicative of their integrability
or otherwise, it is more convenient to analyse the singularity structure of PDEs di-
rectly. This approach was pioneered by Weiss, Tabor and Carnevale [107] (hence it
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is usually referred to as the WTC Painlevé test). However, in the context of PDEs
with d independent (complex) variables z1, . . . ,zd the singularities of the solution
no longer occur at isolated points but rather on an analytic hypersurface S of codi-
mension one, defined by an equation

φ(z) = 0, z = (z1, . . . ,zd) ∈ C
d , (7.37)

where φ is analytic in the neighbourhood of S . The hypersurface where the singu-
larities lie is known as the singular manifold, and it can be used to define a natural
extension of the Painlevé property for PDEs, which we state here in the form given
by Ward [105]:

Definition 2. The Painlevé property for PDEs: If S is an analytic non-characte-
ristic complex hypersurface in C

d , then every solution of the PDE which is analytic
on C

d\S is meromorphic on C
d .

With the above definition in mind, it is natural to look for the solutions of the
PDE in the form of a Laurent-type expansion near φ(z) = 0:

u(z) =
1

φ(z)μ
∞

∑
j=0

α j(z)φ(z) j. (7.38)

If the PDE has the Painlevé property, then the leading order exponent μ appearing
in the denominator of (7.38) should be a positive integer, with the expansion coef-
ficients α j being analytic near the singular manifold φ = 0, and sufficiently many
of these must be arbitrary functions together with the arbitrary non-characteristic
function φ . As mentioned in [64] in the context of the self-dual Yang–Mills equa-
tions, and further explained in [105], it is important to state that φ should be non-
characteristic because (even for linear equations) the solutions of PDEs can have
arbitrary singularities along characteristics.

The application of the Weiss–Tabor–Carnevale test using series of the form (7.38)
proceeds as for the usual Painlevé test for ODEs: when the series is substituted into
the PDE, equations arise at each order in φ which determine the coefficients α j suc-
cessively, except at resonant values j = r, where the corresponding αr are required to
be arbitrary (subject to compatibility conditions being satisfied). The Weiss–Tabor–
Carnevale test is only passed if all resonance conditions are fulfilled for every possi-
ble balance in the PDE (i.e. all consistent choices of μ). Note that, just as for ODEs,
passing the test merely constitutes a necessary condition for the Painlevé property:
a complete proof is much harder in general, although in the particular case of the
self-dual Yang–Mills equations Ward [105] was able to use twistor methods to prove
that they satisfy the requirements of Definition 2.

To see how the Weiss–Tabor–Carnevale test works, we will indicate the first steps
of the analysis for the example of the KdV equation (7.21). In that case, there are
just two independent variables x and t, so d = 2, and there is only one dominant
balance where the degree of the singularity for the linear term uxxx matches that for
the nonlinear term uux. Substituting an expansion of the form (7.38) into (7.21), with
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z = (x, t) ∈ C
2, it is clear that this gives μ = 2 as the only possibility, and for the

leading order and next-to-leading order the first two coefficients are determined as

α0 =−2φ 2
x , α1 = 2φxx. (7.39)

This means that the expansion around the singular manifold for KdV can be written
concisely as

u(x, t) = 2(logφ)xx +
∞

∑
k=0

αk+2(x, t)φ(x, t)k, (7.40)

where it is necessary to assume φx �≡ 0 so that φ is non-characteristic.
In general, at each order j there is a determining equation for the coefficients of

the series given by

( j +1)( j−4)( j−6)α j = Fj[φx,φt ,φxt . . . ,αk; k < j], (7.41)

where the functions Fj depend only on the previous coefficients αk for k < j and
their derivatives, as well as the various x and t derivatives of φ . It is clear from
(7.41) that the resonance values are r =−1,4,6, meaning that we require φ , α4 and
α6 to be arbitrary functions of x and t. For the KdV equation, apart from the stan-
dard resonance at −1 corresponding to the arbitrariness of φ , the other necessary
conditions for r = 4,6, namely F4 ≡ 0, F6 ≡ 0 are satisfied identically, and so in ac-
cordance with the Cauchy–Kowalewski theorem these three arbitrary functions are
the correct number to provide a local representation (7.40) for the general solution
of the third-order PDE (7.21). We leave it to the reader to calculate the expressions
for the higher Fj in (7.41) and verify the resonance conditions for F4 and F6; this
is a standard calculation, so we omit further details which can be found in several
sources, e.g. [79, 89]. For completeness we note that the issue of convergence of the
expansion (7.40) for KdV has also been completely resolved [66].

We shall return briefly to the KdV equation in the next section, where we discuss
how series such as (7.38) can be truncated within the singular manifold method,
leading to Bäcklund transformations and Lax pairs for integrable PDEs, and by
further truncation to Hirota bilinear equations for the associated tau-functions.
Before doing so, we would like to illustrate ways in which the basic Weiss–Tabor–
Carnevale test may be further simplified, taking the non-integrable Benjamin–Bona–
Mahoney equation (7.31) as our example. Applying the test as outlined above
directly to Eq. (7.31) leads to an expansion (7.38) very similar to that for KdV:
it also has a single dominant balance with μ = 2 for a non-characteristic singular
manifold (where φx �≡ 0 �≡ φt), and the same resonances r = −1,4,6, but for the
Benjamin–Bona–Mahoney equation not all resonance conditions are satisfied and
the test is failed. It is a good exercise to perform this calculation and compare it
with the corresponding results for KdV. Rather than presenting such a comparison
here, we wish to give two shortcuts to the conclusion that Eq. (7.31) does not pos-
sess the Painlevé property for PDEs. First of all, observe that if φx �≡ 0 then locally
we can apply the implicit function theorem and solve Eq. (7.37) for x. Thus we set
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φ(x, t) = x− f (t) (7.42)

with ḟ (t) := d f /dt �≡ 0, and then we can take the coefficients in the expansion (7.38)
to be functions of t only; this is referred to as the ‘reduced ansatz’ of Kruskal, first
suggested in [64]. With this ansatz, the Weiss–Tabor–Carnevale analysis for PDEs
becomes only slightly more involved than applying the Painlevé test for ODEs, and
so constitutes a very effective way to decide if a PDE is likely to be integrable.

For the Benjamin–Bona–Mahoney equation there is a second shortcut that can be
made, which is to take the potential form of the equation by making use of the fact
that it has a conservation law. This approach is widely applicable, since nearly all
physically meaningful PDEs admit one or more conservation laws. For Eq. (7.31) it
is immediately apparent that it can be put in conservation form as

∂u
∂ t

=
∂
∂x

(
uxt −

1
2

u2−u

)
,

which implies that

C =
∫ ∞

−∞
udx

is a conserved quantity for the Benjamin–Bona–Mahoney equation, i.e. dC/dt =
0 for u(x, t) defined on the whole real x-axis with vanishing boundary conditions
at x = ±∞. It follows that upon introducing the potential v as the new dependent
variable, with

v =
∫ x

−∞
udx−→C as x→ ∞,

we can replace u by v and its derivatives in (7.31) to obtain the potential form of the
PDE, namely

vt − vxxt + vx +
1
2

v2
x = 0 (7.43)

(where we have integrated once and applied the boundary conditions to eliminate the
arbitrary function of t). If we now apply the Weiss–Tabor–Carnevale test to (7.43),
at the same time using the ‘reduced ansatz’ (7.42), then we see that the only possible
leading exponent in a Laurent-type expansion for v is μ = 1, giving

v(x, t) =
∞

∑
j=0

β j(t)(x− f (t)) j−1. (7.44)

The equations for the coefficients β j(t) at each order take the form

( j−1)( j +1)( j−6)β j = Fj[ ḟ , f̈ , . . . ,βk; k < j],

so the resonances are r =−1,1,6 which compares with r =−1,4,6 for the original
equation (7.31): clearly one of the resonances has shifted to a lower value by taking
the equation in potential form (7.43). Upon substituting the series (7.44) into the po-
tential Benjamin–Bona–Mahoney equation, the leading order term is at order φ−4,
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giving the equation

−6β0 ḟ +
1
2
β 2

0 = 0.

Since β0 �≡ 0, this determines the first coefficient as

β0 = 12 ḟ .

However, at the next order φ−3 in Eq. (7.43), we have the resonance r = 1 with the
condition

−2β̇0 = 0, whence f̈ = 0. (7.45)

Since f is supposed to be an arbitrary non-constant function of t, we see that the
resonance condition (7.45) is not satisfied, so Eq. (7.43) fails the Weiss–Tabor–
Carnevale Painlevé test, indicating the non-integrability of the Benjamin–Bona–
Mahoney equation. However, observe what happens if f is a linear function of t:
then (7.45) is satisfied, corresponding to the travelling wave reduction (7.32), which
does have the Painlevé property.

The only way to remove the restriction (7.45) on the function f would be to add
a term −(β̇/ ḟ ) log(x− f (t)) to the expansion (7.44). It has been observed [90] that
the inclusion of terms linear in logφ for PDEs in potential form is not incompatible
to integrability. However, in this case terms of all powers of log(x− f (t)) are re-
quired to ensure a consistent expansion in the potential Benjamin–Bona–Mahoney
equation (7.43) with three arbitrary functions f , β1 and β6 corresponding to the
three resonances.

For the reader who is interested in applying either the Painlevé test for ODEs,
as described in Sect. 2, or the Weiss–Tabor–Carnevale Painlevé test for PDEs, it is
worth remarking that software implementations of these tests are now freely avail-
able. The web page www.mines.edu/fs home/whereman has algorithms written by
D. Baldwin and W. Hereman, for instance.

7.5 Truncation Techniques

Aside from the obvious application of the various Painlevé tests in isolating poten-
tially integrable equations (for example, in the classification of integrable coupled
KdV equations [67]), their usefulness can be extended by means of truncation tech-
niques. The first of these is known as the singular manifold method, which was
primarily developed in a series of papers by Weiss [108–111]. The idea behind the
method is that by truncating an expansion such as (7.38), usually at the zero or-
der (φ 0) term, it is possible to obtain a Bäcklund transformation for the PDE. For
such truncated expansions the singular manifold function φ is no longer arbitrary,
but satisfies constraints. In the case of integrable equations that are solvable by the
inverse scattering transform, the singular manifold method can be used to derive the
associated Lax pair; for directly linearizable equations, such as Burger’s equation
or its hierarchy [87], the method instead leads to the correct linearization. Even for
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non-integrable PDEs, where the constraints on φ are much stronger, the singular
manifold method can still be used to obtain exact solutions. Furthermore, for inte-
grable PDEs the truncation approach can be carried further by cutting off the series
before the zero-order term, to yield tau-functions satisfying bilinear equations [35].

We will outline the basic truncation results for the KdV equation (7.21), before
presenting more detailed calculations for the nonlinear Schrödinger (NLS) equation.
For KdV, the Laurent-type expansion (7.40) can be consistently truncated at the
zero-order term to yield

u = 2(logφ)xx + ũ, ũ≡ α2. (7.46)

While substituting the full expansion (7.40) into KdV gives an infinite set of
Eqs. (7.41) for φ and the α j, the truncated expansion gives only a finite number.
The last of these equations does not involve φ , and just says that ũ is also a solution
of KdV, i.e.

ũt = ũxxx +6ũũx.

The other equations (after some manipulation and integration) boil down to just
two independent equations for φ and ũ, as follows:

ũ = k2− (
√
φx)xx√
φx

; (7.47)

φt

φx
= 6k2 +

(
φxxx

φx
− 3φ 2

xx

2φ 2
x

)
. (7.48)

In the above, k is a constant parameter. The important feature to note is that since
u and ũ are both solutions of (7.21), Eq. (7.46) constitutes a Bäcklund transformation
for KdV, provided that φ satisfies (7.47) and (7.48). For example, starting from the
seed solution ũ = 0, the Bäcklund transformation defined by (7.46), (7.47) and (7.48)
can be used to generate the one-soliton solution (7.25) or even a mixed rational-
solitonic solution by taking φ = (x−12k2t)+(2k)−1 sinh(2kx+8k3t).

Maybe it is not immediately obvious that the system comprised of the two equa-
tions (7.47) and (7.48) is equivalent to the standard Lax pair for KdV. This can be
seen by making the squared eigenfunction substitution φx = ψ2, so that (7.47) be-
comes a linear (time-independent) Schrödinger equation. In the context of quantum
mechanics in one dimension, ψ is the wave function with potential −ũ and energy
−k2, i.e. (7.47) is equivalent to

ψxx + ũψ = k2ψ.

The second equation (7.48) is known as the Schwarzian KdV equation [80], and
in its own right it constitutes a nonlinear integrable PDE for the dependent variable
φ ; with the squared eigenfunction substitution it leads to the linear equation for
the time evolution ψt . All these results for KdV are well known and have been
extended to the whole KdV hierarchy; the interested reader who wishes to check
these calculations is referred to [79] for more details.
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Perhaps less well understood, however, is the interesting connection [35] between
the singularity structure of PDEs and the tau-function approach to soliton equations
pioneered by Hirota [48, 81], which culminated in the Sato theory relating integrable
systems to representations of affine Lie algebras [77, 82]. The link with the singular
manifold method is made by truncating the expansion (7.40) at the last singular term
in φ , and setting φ = τ , to give

u = 2(logτ)xx, (7.49)

which is the standard substitution for the KdV variable u in terms of its tau-function.
From (7.21), after substituting (7.49) and performing an integration (subject to suit-
able boundary conditions), a bilinear equation is obtained for the new dependent
variable τ . This bilinear equation may be written concisely as

(DxDt −D4
x)τ · τ = 0, (7.50)

by making use of the Hirota derivatives:

D j
xDk

t g · f :=
(

∂
∂x
− ∂

∂x′

) j( ∂
∂ t
− ∂

∂ t ′

)k

g(x, t) f (x′, t ′)|x′=x,t ′=t .

The bilinear form is particularly convenient for calculating multisoliton solutions
[48], and leads to the connection with vertex operators [77, 81, 82]. For solitons the
tau-function is just a polynomial in exponentials. In general τ is holomorphic, so
from (7.49) it is clear that the places where τ vanishes correspond to the singularities
of u.

We now present details on the application of the singular manifold method to the
nonlinear Schrödinger equation

iψt +ψxx−2|ψ|2ψ = 0. (7.51)

This PDE (commonly referred to as NLS) describes the evolution of a complex
wave amplitude ψ , and due to the minus sign in front of the cubic nonlinear term
this is the non-focusing case of the nonlinear Schrödinger equation; the focusing
case has +2|ψ|2ψ instead, and describes a different physical context. The follow-
ing results on the singular manifold method for the nonlinear Schrödinger equation
appeared in [49]. Seeking an expansion of the form (7.38) for (7.51), at leading
order we find the behaviour

ψ ∼ α0

φ
, |α0|2 = φ 2

x .

Thus, truncating the expansion at the zero order (φ 0) level, we find

ψ =
α0

φ
+ ψ̂, ψ̂ ≡ α1. (7.52)



264 A.N.W. Hone

To proceed with the singular manifold method we substitute the truncated expan-
sion (7.52) into (7.51), and set the terms at each order in φ to zero. This yields the
following four equations (the singular manifold equations):

φ−3 : |α0|2−φ 2
x = 0;

φ−2 : iφt +2φx(logα0)x +φxx +2α0ψ̂ +4α0ψ̂ = 0;

φ−1 : iα0,t +α0,xx−4α0|ψ̂|2−2α0ψ̂2 = 0;

φ 0 : iψ̂t + ψ̂xx−2|ψ̂|2ψ̂ = 0.

(7.53)

Clearly the coefficient of φ−3 just gives the leading order behaviour, while the
φ 0 equation in (7.53) means that the truncated expansion (7.52) constitutes an auto-
Bäcklund transformation for the nonlinear Schrödinger equation, since ψ̂ is another
solution of (7.51). Observe that for x and t real, the singular manifold function φ is
seen to be real valued from the leading order behaviour. Since the Painlevé analysis
is really concerned with singularities in the space of complex x, t variables, it is more
consistent to write the nonlinear Schrödinger equation, together with its complex
conjugate, as the system

iψt +ψxx−2ψ2ψ = 0,

−iψ t +ψxx−2ψ2ψ = 0,
(7.54)

and then treat ψ and ψ as independent quantities. The system (7.54) is the first
non-trivial flow in the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy [2]. For
this full system the singular manifold equations (7.53) should be augmented with
the corresponding ‘conjugate’ equations: formally these are obtained by taking the
complex conjugate with φ real (as for real x and t), and α0, ψ and ψ̂ complex. By
formally taking the real and imaginary parts of the second equation in (7.53), which
are equivalent to linear combinations of that equation together with its conjugate,
the following consequences arise:

φxx +α0ψ̂ +α0ψ̂ = 0;
iφt +φx(log[α0/α0])x +α0ψ̂−α0ψ̂ = 0.

(7.55)

Further manipulation of the singular manifold equations (7.53) and their conju-
gates, together with (7.55), leads to the two equations

α0,x =−2iλα0−2ψ̂φx, (7.56)

iα0,t = (4λ 2 +2ψ̂ψ̂)α0 +(−4iλψ̂ +2ψ̂x)φx (7.57)

and their corresponding conjugates, where λ is a constant. Upon substitution of the
rearrangement

α0 = (ψ− ψ̂)φ
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of (7.52) into (7.56), we find

(ψ− ψ̂)x =−2iλ (ψ− ψ̂)− (ψ + ψ̂)|ψ− ψ̂|, (7.58)

where we have used the first equation (7.53) to substitute φx = |α0|= |ψ− ψ̂| in the
reduction to real x and t. A similar equation for (ψ− ψ̂)t is obtained by eliminating
α0 and φ from (7.57), and the resulting relations between ψ and ψ̂ together with
(7.58) constitute a Bäcklund transformation for the nonlinear Schrödinger equation
in the form studied by Boiti and Pempinelli, taking the special case σ = 0 in the
formulae of [10]. Starting from the vacuum solution ψ̂ = 0, and with zero Bäcklund
parameter λ = 0, this BT can be applied repeatedly to obtain a sequence of singular
rational solutions of the nonlinear Schrödinger equation, which are described in
[50].

The simplest singular rational solution has a single pole, which can be fixed at
x = 0. If we denote the sequence of these rational solutions {ψn}n≥0, then applying
the BT (7.58) with λ = 0 starting from the vacuum solution the first three are

ψ0 = 0, ψ1 =
1
x
, ψ2 =

−2x3 +12itx+ τ3

x4 + τ3−12t2 , (7.59)

with τ3 being an arbitrary constant parameter which is real for real x and t. In general
these rational functions can be written as a ratio of polynomial tau-functions ψn =
Gn/Fn satisfying bilinear equations (see below). The zeros and poles of each ψn,
which are the roots of the polynomials Gn and Fn, respectively, evolve in t according
to the equations of Calogero–Moser dynamical systems [50].

As well as leading to the Bäcklund transformation (7.58) for the nonlinear
Schrödinger equation, the singular manifold equations also yield the Lax pair, upon
making the squared eigenfunction substitution

α0 =−χ2
1 , α0 =−χ2

2 . (7.60)

Fixing a sign we find immediately from the first Eq. (7.53) that

φx = χ1χ2,

and then putting (7.60) into (7.56), (7.57) and their conjugates gives a matrix system
for the vector χ = (χ1,χ2)T , that is

χx = Uχ,
χt = Vχ,

(7.61)

with the matrices

U =
(
−iλ ψ
ψ iλ

)
, V =

(
−2iλ 2− i|ψ|2 2λψ + iψx

2λψ− iψx 2iλ 2 + i|ψ|2
)
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(where we have replaced ψ̂ by ψ in U, V). The system (7.61) is the non-focusing
analogue of the Lax pair for the nonlinear Schrödinger equation found by Zakharov
and Shabat [114], and for U, V as above the PDE (7.51) follows from the compati-
bility condition for the matrix system, which is the zero curvature equation

Ut −Vx +[U,V] = 0.

For real λ , these matrices are elements of the Lie algebra su(1,1), as opposed to
su(2) for the case of the focusing nonlinear Schrödinger equation.

To obtain the Hirota bilinear form of the nonlinear Schrödinger equation we can
make a further truncation in (7.52), setting ψ̂ = 0, α0 = G, φ = F , so that (7.51)
becomes

1
F2

(
(iDt +D2

x)G ·F
)
− G

F3

(
D2

xF ·F +2|G|2
)

= 0.

The two equations in brackets can be consistently decoupled to give the bilinear
system for the two tau-functions F , G:

(
iDt +D2

x

)
G ·F = 0;

D2
xF ·F +2|G|2 = 0.

(7.62)

It is easy to check that the numerators and denominators in the rational functions
(7.59) are particular solutions of the system (7.62). The bilinear form of the nonlin-
ear Schrödinger equation was used by Hirota to derive compact expressions for the
multisoliton solutions [47]. A further consequence of (7.62) is the bilinear equation

iDxDtF ·F−2DxG ·G = iγF2, (7.63)

with a constant γ . This constant can be removed by a gauge transformation of the
tau-functions, rescaling both F and G by exp[γxt/2]. Eliminating G between (7.63)
and (7.62), the nonlinear Schrödinger equation is then rewritten as a single trilinear
equation, expressed as a sum of two determinants, namely

∣∣∣∣∣∣∣
F Fx Ft

Fx Fxx Fxt

Ft Fxt Ftt

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
F Fx Fxx

Fx Fxx F3x

Fxx F3x F4x

∣∣∣∣∣∣∣
= 0. (7.64)

The tau-function solution of the trilinear equation (7.64) is sufficient to determine
both the modulus and the argument of the complex amplitude ψ (see [50] and ref-
erences).

From the preceding results for the KdV and nonlinear Schrödinger equations it
should be clear that truncation methods can be extremely powerful in extracting
information about integrable PDEs. There are several refinements of the singular
manifold method, in particular those involving truncations using Möbius-invariant
combinations of φ and its derivatives [20, 78], and the use of two singular mani-
folds for PDEs with two different leading order behaviours [22]. Probably the most
elegant and general synthesis of these extended methods is the approach formulated
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by Pickering [88], who uses expansions in a modified variable satisfying a system
of Riccati equations. Truncation methods have even been used to derive Bäcklund
transformations for ODEs, in particular Painlevé equations [18, 19]. However, it is
uncertain whether such methods can really be made sufficiently general in order to
constitute an algorithmic procedure for deriving Lax pairs for integrable systems. In
particular, truncation methods are not directly applicable to integrable PDEs which
exhibit movable algebraic branching in their solutions, which are the subject of the
next section.

7.6 Weak Painlevé Tests

There are numerous examples of integrable systems which do not have the strong
Painlevé property, but which satisfy the weaker criterion that their general solution
has at worst movable algebraic branching. Perhaps the simplest example is to con-
sider an Hamiltonian system with one degree of freedom defined by the Hamiltonian
(total energy)

H =
1
2

p2 +V (q),

where the potential energy V is a polynomial in q of degree d ≥ 5. The equations of
motion (Hamilton’s equations) are

dq
dt

= p,
d p
dt

=−V ′(q),

which are trivially integrable by a quadrature:

t = t0 +
∫ q dQ√

2(H−V (Q))
. (7.65)

If the potential energy is normalized so that the leading term of the polynomial is
−2qd/(d− 2)2, then with q(t) having a singularity at t = t0 the integral in (7.65)
gives

t− t0 ∼±
∫ q (2−d)dQ

2Qd/2
=±q1−d/2, as q→ ∞

(for a suitable choice of branch in the square root). Thus at leading order we have

q∼±(t− t0)2/(2−d). (7.66)

For both d = 2g+1 (odd) and d = 2g+2 (even) q is determined by the hyperelliptic
integral (7.65) corresponding to an algebraic curve of genus g. When g = 1 the
solution is given in terms of Weierstrass or Jacobi elliptic functions, and both q and
p are meromorphic functions of t. However, for a potential of degree 5 or more we
have g≥ 2, and it is clear from (7.66) that q has an algebraic branch point at t = t0,
since in that case 2/(2− d) is a non-integer, negative rational number. In fact it is
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easy to verify that (7.66) is the leading order term of an expansion in powers of
(t− t0)2/(d−2). Rather than being meromorphic as in the elliptic case, for d ≥ 5 the
function q(t) is generically single valued only on a covering of the complex t-plane
with an infinite number of sheets and has an infinite number of algebraic branch
points (see [2]).

Clearly for potentials of degree 5 or more, this simple Hamiltonian system fails
the basic Painlevé test, and yet it is certainly integrable according to any reasonable
definition. (Indeed, any Hamiltonian system with one degree of freedom is inte-
grable in the sense that Liouville’s theorem holds.) In order to avoid excluding such
basic integrable systems from singularity classification, Ramani et al. [93] proposed
an extension of the Painlevé property.

Definition 3. The weak Painlevé property: An ODE has the weak Painlevé prop-
erty if all movable singularities of the general solution have only a finite number of
branches.

There are many examples of finite-dimensional many-body Hamiltonian systems
which are Liouville integrable and yet have algebraic branching in their solutions
[1, 2]. Among these examples [2] is the geodesic flow on an ellipsoid, which was
solved classically by Jacobi [62]. Many other examples, such as those considered
by Abenda and Fedorov in [1], arise naturally as stationary or travelling wave re-
ductions of PDEs derived from Lax pairs, in particular those obtained from energy-
dependent Schrödinger operators [52]. Thus the corresponding Lax-integrable PDEs
have algebraic branching in their solutions and fail the Weiss–Tabor–Carnevale test
described in Sect. 4. It is natural to extend the notion of the weak Painlevé property
to PDEs as well and perform Painlevé analysis on ODEs and PDEs with this prop-
erty by allowing algebraic branching and rational (not necessarily integer) values for
the resonances. We illustrate this procedure with the example of the Camassa–Holm
equation and a related family of PDEs [53] which have peaked solitons (peakons).

The Camassa–Holm equation was derived in [12] by asymptotic methods as an
approximation to Euler’s equation for shallow water waves and was shown to be an
integrable equation with an associated Lax pair. In the special case when the linear
dispersion terms are removed the equation takes the form

ut −uxxt +3uux = 2uxuxx +uuxxx, (7.67)

and in this dispersionless limit it admits a weak solution known as a peakon, which
has the form

u(x, t) = ce−|x−ct|. (7.68)

Note that the notion of a ‘weak solution’ (as defined in [39], for instance) is com-
pletely unrelated to the ‘weak’ Painlevé property. The peakon solution has a discon-
tinuous derivative at the position of the peak, and the dispersionless Camassa–Holm
equation (7.67) has exact solutions given by a superposition of an arbitrary num-
ber of peakons which interact and scatter elastically, just as for ordinary solitons. A
detailed analysis of weak solutions of (7.67) has been performed by Li and Olver
[74].
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However, the Camassa–Holm equation is an example of an integrable equation
which does not satisfy the requirements of Definition 2, but instead passes the weak
Painlevé test. In the neighbourhood of an arbitrary non-characteristic hypersurface
φ(x, t) = 0 where the derivatives of u blow up, it admits an expansion with algebraic
branching:

u(x, t) =−φt/φx +
∞

∑
j=0

α j(x, t)φ 2/3+ j/3. (7.69)

If we regard the branching part φ 2/3 as the leading term (since it produces the
singularity in the derivatives ux, ut on φ = 0), then the resonances are r =−1,0,2/3
which correspond to the functions φ ,α0,α2 being arbitrary. The Camassa–Holm
equation thus satisfies the weak extension of the Weiss–Tabor–Carnevale test, since
the expansion (7.69) is consistent, with the resonance conditions at r = 0 and r = 2/3
being satisfied. Of course the test is only local, whereas the weak Painlevé property
is a global phenomenon, and to prove it rigorously for this PDE would require con-
siderable further analysis. The weak extension of the Painlevé test is still a useful
tool, in the sense that if an equation has irrational or complex branching (either
at leading order or in its resonances), or if a failed resonance condition introduces
logarithmic branching into the general solution, then this is a good indication of
non-integrability. Nevertheless, even for ODEs the weak Painlevé property should
be applied cautiously as an integrability criterion. For an excellent discussion see
[94].

We would now like to apply the weak Painlevé test to a one-parameter family of
PDEs that includes (7.67), before showing the effect that changes of variables can
have on singularity structure. We shall consider the family of PDEs

ut −uxxt +(b+1)uux = buxuxx +uuxxx, (7.70)

where the parameter b is constant. These are non-evolutionary PDEs: due to the
presence of the uxxt term, (7.70) is not an evolution equation for u. The (disper-
sionless) Camassa–Holm equation is the particular member of this family corre-
sponding to b = 2. The original reason for interest in this family is that Degasperis
and Procesi applied the method of asymptotic integrability [25] and isolated a new
equation as satisfying the necessary conditions for integrability up to some order
in a multiple-scales expansion. After removing the dispersion terms by combining
a Galilean transformation with a shift in u and rescaling, the Degasperis–Procesi
equation can be written as

ut −uxxt +4uux = 3uxuxx +uuxxx, (7.71)

which is the b = 3 case of (7.70), and it was proved in [26] by construction of
the Lax pair that this new equation is integrable. A powerful perturbative extension
of the symmetry approach was also applied to the non-evolutionary PDEs (7.70)
in [76], and it was confirmed that only the special cases b = 2 (Camassa–Holm)
and b = 3 (Degasperis–Procesi) fulfil the necessary conditions to be integrable.
Hamiltonian structures and the Wahlquist–Estabrook prolongation algebra method
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for these PDEs have also been treated in detail [53]. Subsequently it has been shown
that (after including dispersion) every member of the family (7.70) arises as a shal-
low water wave equation [29], except for the special case b =−1.

For Painlevé analysis it is convenient to rewrite (7.70) in the form

mt +umx +buxm = 0, m = u−uxx. (7.72)

To apply the weak Painlevé test, we look for algebraic branching similar to the
leading order in (7.69), with the derivatives of u blowing up on a singular manifold
φ(x, t) = 0. Thus we seek the following leading behaviour:

u∼ u0 +αφμ , μ ∈ Z, 0 < μ < 1. (7.73)

Then for the derivatives of u and m as defined in (7.72) the most singular terms are
as follows:

ux ∼ αφxμφμ−1, m∼−αφ 2
x μ(μ−1)φμ−2,

mx ∼−αφ 3
x μ(μ−1)(μ−2)φμ−3, mt ∼−αφ 2

x φtμ(μ−1)(μ−2)φμ−3.

Substituting these leading orders into (7.72) we find a balance at order φμ−3

between the mt and umx terms provided that

u0 =−φt/φx.

The next most singular term in the PDE is then at order φ 2μ−3, corresponding to a
balance between the umx and uxm terms in (7.72), with coefficient

−α2φ 3
x μ(μ−1)(μ−2+bμ),

and this is required to vanish giving

μ =
2

1+b
. (7.74)

Thus we see that for a weak Painlevé expansion with the leading exponent μ
being a rational number between zero and one, the most singular terms require that
the parameter b should also be rational with

b =
2
μ
−1 > 1.

To find and test the resonances in an expansion with this leading order, it is sufficient
to take the reduced ansatz (7.42) for φ , and then make a perturbation of the leading
order terms with parameter ε:

u∼ ḟ (t)+α(t)φμ(1+ εφ r), φ = x− f (t). (7.75)
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Substituting the perturbed expression into (7.72) and keeping only terms linear in ε,
we see that terms possibly appearing at order φμ+r−3 cancel out automatically (due
to the form of u0), leaving the resonance equation coming from the coefficient of
φ 2μ+r−3, which is

−εα2(r3 +(2μ−1)r2 +2(μ−1)r) = 0.

Hence the resonances are
r =−1, 0, 2(1−μ),

with μ given in terms of the parameter b by (7.74).
Having applied the first part of the weak Painlevé test and found a dominant bal-

ance and the corresponding values for the resonances, it becomes apparent that the
test is completely ineffective as a means to isolate the two integrable cases b = 2
and b = 3 of (7.72). Although the leading order resonance r = 0 (corresponding
to α being arbitrary) is automatically satisfied, the second resonance condition at
r = 2(1− μ) must be checked for every rational value of μ with 0 < μ < 1 (or
equivalently every rational value of the parameter b > 1). If we write μ in its lowest
terms as a ratio of positive integers, μ = N1/N2, then (7.73) is the leading part of an
expansion for u in all powers of φ 1/N2 , and as the difference N2−N1 increases there
is an increasingly large number of terms to compute before the final resonance is
reached. Checking this resonance for the whole countable infinity of rational num-
bers b > 1 seems to be a totally intractable task. Gilson and Pickering showed that
all the PDEs within a class including (7.72) failed every one of a combination of
strong Painlevé tests [36]. Nevertheless, it is simple to verify that the weak Painlevé
test is satisfied for the two particular cases b = 2,3 which are known to be integrable.

However, after a judicious change of variables, involving a transformation of
hodograph type, it is still possible to use Painlevé analysis to isolate the two in-
tegrable peakon equations. Such transformations have been applied to integrable
PDEs with algebraic branching (see [15]) in order to obtain equivalent systems with
the strong Painlevé property. That this should be possible is in accordance with
the Ablowitz–Ramani–Segur conjecture, but the difficulty lies in finding the correct
change of variables. In fact, for a general class of systems that display weak Painlevé
behaviour (related to energy-dependent Schrödinger operators) we presented a par-
ticular transformation in [52] and, from an examination of a principal balance, we
asserted (without proof) that this transformation produced equivalent systems with
the strong Painlevé property. However, from a more careful calculation of other bal-
ances we have recently observed that this earlier assertion was incorrect [56]. In
the case of the Camassa–Holm equation (7.67), a link to the first negative flow in
the KdV hierarchy was found by Fuchssteiner [34], and in [53] it was shown that the
appropriate transformation can be extended to (almost) every member of the family
of non-evolutionary PDEs (7.72).

The key to a suitable change of variables for (7.72) is the fact that for any b �= 0,∫
m1/b dx is a conserved quantity, with the conservation law

pt =−(pu)x, m =−pb. (7.76)
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This allows a reciprocal transformation, defining new independent variables X ,T
via

dX = pdx− pudt, dT = dt. (7.77)

Observe that the closure condition d2X = 0 for the exact one-form dX is precisely
(7.76), and transforming the derivatives yields the new conservation law

(p−1)T = uX . (7.78)

In the old variables, p is related to u by

pb = (∂ 2
x −1)u, (7.79)

Replacing ∂x by p∂X and using (7.78), this means that (7.79) can be solved for u to
give the identity

u =−p(log p)XT − pb. (7.80)

Finally the conservation law (7.78) can be written as an equation for p alone, by
substituting back for u as in (7.80) to obtain

∂
∂T

(
1
p

)
+

∂
∂X

(
p(log p)XT + pb

)
= 0. (7.81)

Thus we have seen that for each b �= 0, the Eq. (7.72) is reciprocally transformed
to (7.81), with the new dependent variable p and new independent variables X , T
as in (7.77). (For more background on reciprocal transformations, see [68, 69].) By
making the substitution p = exp(iη), (7.81) becomes a generalized equation of sine-
Gordon type [53]. The point of making the reciprocal transformation is that we may
now apply the strong Weiss–Tabor–Carnevale Painlevé test to the equation in these
new variables. At leading order near a hypersurface φ(X ,T ) = 0 there are two types
of singularity that can occur in Eq. (7.81), corresponding to p either vanishing or
blowing up there:

• p∼ αφ , for b≥−1, with α =±φ−1
X for b �=−1;

• p∼ βφμ , for μ = 2/(1−b) < 1.

In the first balance, the resonances are r = −1,1,2. However, if we require the
strong Painlevé test to hold we see that we must have b ∈ Z, since otherwise the
pb term will introduce branching into the expansion in powers of φ . The second
balance can only hold for |b| > 1, but if b < −1 then μ �∈ Z, while if b > 1 then
requiring μ = 1−M to be a (negative) integer gives

b =
M +1
M−1

, M = 2,3,4, . . . (7.82)

From the first balance we require b to be an integer, and the only integer values
in the sequence (7.82) are b = 2,3 (corresponding to M = 3,2, respectively). In-
terestingly, when the Wahlquist–Estabrook method is applied to (7.72), this same
sequence crops up from purely algebraic considerations [53].
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The above analysis shows that the two integrable cases b = 2,3 are isolated im-
mediately just by looking at the leading order behaviour. It is then straightforward
to show that for both types of singularity in Eq. (7.81), these two cases fulfil the res-
onance conditions and thus satisfy the strong Painlevé test. However, the observant
reader will notice that further analysis is required to exclude the two special integer
values b = ±1, for which only the first type of singularity arises; this is left as a
challenge to the reader.

7.7 Outlook

It should be apparent from our discussion that the various Painlevé tests are excel-
lent heuristic tools for identifying whether a given system of differential equations
is likely to be integrable or not. However, the strong Painlevé property is clearly too
stringent a requirement, since it is not satisfied by a large class of integrable sys-
tems which have movable algebraic branch points in their solutions. On the other
hand, checking all possible resonances in the weak Painlevé test can be impractical
as a means to isolate integrable systems, and if there are negative resonances then
more detailed analysis may be necessary to pick up logarithmic branching [89].
In this short review we have concentrated on methods for detecting movable poles
and branch points. However, for equations like (7.67), the existence of the peakon
solution (7.68) has led to the promising suggestion that Dirichlet series (sums of
exponentials) may be a useful means of testing PDEs [91]. Also, although we have
only considered singularities of ODEs in the finite complex plane, there are exten-
sive techniques for analysing asymptotic behaviour at infinity [97, 103, 106].

Before closing, we should like to give a brief mention to the fruitful connection
between the singularity structure and integrability of discrete systems, in the con-
text of birational maps or difference equations. In the last 20 years, there has been
increased interest in discrete integrable systems. Liouville’s theorem on integrable
Hamiltonian systems extends naturally to the setting of symplectic maps or more
generally to Poisson maps or correspondences [11, 104], and many new examples
of integrable maps have been found [101]. Grammaticos, Ramani and Papageorgiou
introduced a notion of singularity confinement for maps or difference equations
[40], which they used very successfully as a criterion to identify discrete analogues
of the Painlevé equations, and they proposed that it should be regarded as a discrete
version of the Painlevé property.

In order to illustrate singularity confinement, we shall consider the second-order
discrete equation

un+1(un)2un−1 = αqnun +β , (7.83)

which is a non-autonomous version of an equation of the Quispel–Roberts–
Thompson type [92] and can be explicitly solved in elliptic functions in the au-
tonomous case q = 1 [54, 55]. For q �= 1, Eq. (7.83) can be regarded as a discrete
analogue of the first Painlevé equation, because if we set un = h−2 − y(nh),
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α = 4h−6, β = −3h−8, q = 1− h5/4 and take the continuum limit h→ 0, with
z = nh held fixed, then Eq. (7.6) arises at leading order in h.

The idea of singularity confinement is that if a singularity is reached upon itera-
tion of a discrete equation or map, then it is possible to analytically continue through
it. (This is by analogy with the fact that the solution of an ODE with the Painlevé
property has a unique analytic continuation around a movable pole.) In the case of
(7.83), a singularity will be reached if one of the iterates, say uN , is zero, because
this means that the next iterate uN+1 is not defined. By redefining α and shifting the
index n if necessary, we can take N = 1 without loss of generality, so u1 = 0. The
vanishing of u1 requires that at the previous stage αu0 +β = 0 must hold. Setting
u−1 = a (arbitrary) and

αu0 +β = ε

gives u1 ∼ α2β−2a−1ε→ 0 as ε→ 0, and the singularity appears at

u2 ∼−β 4a2α−3ε−2.

However, subsequently we have u3 ∼ −q2α2β−2a−1ε, u4 = O(1) and further it-
erates are regular in the limit ε → 0. In this sense, we say that the singularity is
confined.

Although the singularity confinement criterion led to the discovery of many new
discrete integrable systems (see [95] and references), it was shown by Hietarinta
and Viallet that it is not a sufficient condition for integrability [44]. In fact, they
found numerous examples of maps of the plane defined by difference equations of
the form

un+1 +un−1 = f (un),

for certain rational functions f , which have confined singularities and yet whose
orbit structure displays the characteristics of chaos. Other examples of singularity
confinement in non-integrable maps can be found in [57]. Nevertheless, it seems
that singularity confinement should be a necessary condition for integrability of a
suitably restricted class of maps. In fact, Lafortune and Goriely have shown that
for birational maps in d dimensions, singularity confinement is a necessary condi-
tion for the existence of d− 1 independent algebraic first integrals [73]. Ablowitz,
Halburd and Herbst have made an alternative proposal for extending the Painlevé
property to difference equations, by using Nevanlinna theory [7, 43], and this has
deep connections with various algebraic or arithmetic measures of complexity in
discrete dynamics (see [42, 44, 96, 99] and references).

For the reader who is interested in pursuing the subject of Painlevé analysis and
its applications to both integrable and non-integrable equations, a number of ex-
cellent review articles are to be recommended [30, 72, 79, 94, 102], as well as the
proceedings volume [23].
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Chapter 8
Hirota’s Bilinear Method and Its Connection
with Integrability

J. Hietarinta

Abstract We give an introduction to Hirota’s bilinear method, which is particu-
larly efficient for constructing multisoliton solutions to integrable nonlinear evo-
lution equations. We discuss in detail how the method works for equations in the
Korteweg–de Vries class and then go through some other classes of equations. Fi-
nally we discuss how the existence of multisoliton solutions can be used as an
integrability condition and therefore as a method of searching for possible new
integrable equations.

8.1 Why the Bilinear Form?

In 1971 R. Hirota introduced a new “direct method” for constructing multisoliton so-
lutions to integrable nonlinear evolution equations [1]. The idea was to make a trans-
formation into new variables, so that in these new variables multisoliton solutions
appear in a particularly simple form. The equations turned out to be quadratic in
the new dependent variables and all derivatives appeared as Hirota’s bilinear deriva-
tives, this is called “Hirota bilinear form”. The method turned out to be very effective
and was quickly shown to give N-soliton solutions to the Korteweg–de Vries (KdV)
[1], modified Korteweg–de Vries (mKdV) [2], sine-Gordon (sG) [3] and nonlinear
Schrödinger (nlS) [4] equations. Bäcklund transformations also appear naturally in
this formalism [5].

Later it was observed that the essential mathematical ingredient that makes this
idea work is that the new dependent variables are “τ-functions”, which have many
good properties. This has become a starting point for further deep mathematical
developments (the Sato theory; see, e.g., [6]). Since the bilinear form of the equation
is mathematically fundamental, it has appeared in the literature before (but only in
passing): For example, in 1902 Painlevé wrote his first three equations in the bilinear
form, and in 1907 H.F. Baker obtained such forms in his study of multidimensional
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σ -functions.1 However, it was R. Hirota who first emphasized the bilinear aspect as
a new starting point.

In this lecture our aim is to describe how multisoliton solutions can be con-
structed using Hirota’s method. Multisoliton solutions can, of course, be derived by
many other methods, e.g., by the inverse scattering transform (IST). The advantage
of Hirota’s method over the others is that it is algebraic rather than analytic. The IST
method is more powerful in the sense that it can handle general initial conditions,
but at the same time it is more complicated and more demanding to the equation.
Accordingly, if one just wants to find soliton solutions, Hirota’s method is the best
for producing results.

We will not touch the converse approach, starting with the unifying mathematical
theory (Sato theory) behind the bilinear approach and obtaining integrable equations
as specific reductions. Although the Sato theory is the fundamental theory in which
equations and solutions have mathematically elegant forms, it is not the first step to
take when one has to study a given equation.

8.2 From Nonlinear to Bilinear (KdV)

The (integrable) PDE that appears in some particular (physical) problem is rarely in
the best form for further (mathematical) analysis. For constructing soliton solutions
the best form is Hirota’s bilinear form and soliton solutions appear as polynomials
of simple exponentials only in the corresponding new variables. The first problem
we face is therefore to find the bilinearizing transformation. This is not algorithmic
and can sometimes require the introduction of new dependent and sometimes even
independent variables.

8.2.1 Bilinearizing the KdV Equation

We will first discuss in detail the KdV equation

uxxx +6uux +ut = 0. (8.1)

One guideline in searching for the transformation is that the leading derivative
should go together with the nonlinear term and, in particular, have the same number
of derivatives. If we count a derivative with respect to x having degree 1, then to
balance the first two terms of (8.1) u should have degree 2. Thus we introduce a new
dependent variable w (of degree 0) by

u = ∂ 2
x w. (8.2)

1 I thank C. Eilbeck for bringing this last reference to my attention.
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After this the KdV equation can be written as

wxxxxx +6wxxwxxx +wxxt = 0, (8.3)

which can be integrated once with respect to x to give the potential form of KdV

wxxxx +3w2
xx +wxt = 0. (8.4)

In principle we should have introduced an integration constant (function of t), but
since (8.2) defines w only up to w→ w + xa(t)+ b(t), we can use this freedom to
absorb it. Note also that Eq. (8.4) is invariant under scaling x→ λx, t→ λ 3t. Indeed,
scaling invariance is often a good guide in the search for the bilinear form.

Equations in scale-invariant form can usually be bilinearized by introducing a
new dependent variable whose natural degree (in the above sense) would be zero,
e.g., logF or g/ f . In this case the first one works, so let us define

w = α logF, (8.5)

with a free parameter α . When this is substituted into (8.4) we get an equation that
is fourth degree in F , with the structure

F2× (something quadratic)+3α(2−α)(2FF ′′ −F ′2)F ′2 = 0. (8.6)

Thus we get a quadratic equation if we choose α = 2, and the result is

FxxxxF−4FxxxFx +3F2
xx +FxtF−FxFt = 0. (8.7)

In addition to being quadratic in the dependent variables, an equation in the
Hirota bilinear form must also satisfy a condition with respect to the derivatives:
they should only appear in combinations that can be expressed using Hirota’s D-
operator, which is defined as follows:

Dn
x f ·g = (∂x1 −∂x2)

n f (x1)g(x2)
∣∣
x2=x1=x. (8.8)

Thus D operates on a product of two functions like the Leibnitz rule, except for a
crucial sign difference. For example

Dx f ·g = fxg− f gx,

DxDt f ·g = f gxt − fxgt − ftgx + fxtg.

Using the D-operator we can write (8.7) in the following condensed form:

(D4
x +DxDt)F ·F = 0. (8.9)

To summarize: what we needed in order to obtain the bilinear form (8.9) for (8.1)
was a dependent variable transformation

u = 2∂ 2
x logF, (8.10)

and we also had to integrate the equation once.
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For a further discussion of bilinearization, see, e.g., [7–10]; unfortunately the
process is far from algorithmic.

8.2.2 Gauge Invariance

One important property of equations in Hirota’s bilinear form is their gauge invari-
ance. Let us consider a general quadratic expression homogeneous in the derivatives

AN( f ,g) :=
N

∑
i=0

ci
(
∂ i

x f
)(

∂N−i
x g

)

and the gauge transformation

f → eθ f , g→ eθg,θ = kx.

It is now easy to check that AN is gauge invariant, i.e.,

AN(eθ f ,eθg) = e2θAN( f ,g),

if and only if
ci = (−1)i (N

i

)
c0,

which means that we can write

AN( f ,g) = c0 DN
x f ·g.

This is a possible point of generalization [11, 12] and we can define multilinear
operators also by a gauge condition: For an expression cubic in dependent variables
and homogeneous (of degree N) in the x-derivatives we now require

∑
k+l+m=N

cklm(∂ keθ f )(∂ leθg)(∂meθh) = e3θ ∑
k+l+m=N

cklm(∂ k f )(∂ lg)(∂mh).

One then finds that a basis for such gauge-invariant operators is given by T n(T ∗)N−n,
where

T = ∂1 + j∂2 + j2∂3 , T ∗ = ∂1 + j2∂2 + j∂3

and j = e2iπ/3. Note that T nT ∗mF ·F ·F ≡ 0, unless n + 2m ≡ 0 (mod 3), corre-
sponding to the bilinear property DnF ·F ≡ 0, unless n≡ 0 (mod 2).2

The above generalizes to any order of multilinearity and one can introduce the
operators

2 For the bilinear equation P(D)F · F = 0 the dispersion relation is given by P(p) = 0 (see
Sect. 8.3.2), while for a trilinear equation P(T,T ∗)F ·F ·F = 0 the dispersion relation is P(p, p) =
0. Thus some dispersionless equations can be written in trilinear form, e.g., the Monge–Ampere
equation w2

xy−wxxwyy = 0 can be written as (TxT ∗x TyT ∗y −T 2
x T ∗2y )F ·F ·F = 0.
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Mm
n =

n−1

∑
k=0

e2πikm/n∂k+1, for 0 < m < n.

For example, D = M1
2 , T = M1

3 , T ∗ = M2
3 .

8.2.3 Some Properties of the Bilinear Derivative

Finally in this section we would like to list some properties of the bilinear derivative
that are useful for bilinearization [5, 7, 8]:

P(D) f ·g = P(−D)g· f , (8.11)

P(D)1· f = P(−∂ ) f , P(D) f ·1 = P(∂ ) f , (8.12)

P(D)epx·eqx = P(p−q)e(p+q)x, (8.13)

∂x∂t log f =
DxDt f · f

2 f 2 , (8.14)

∂ 4
x log f =

D4
x f · f
2 f 2 −3

(D2
x f · f )2

2 f 4 , (8.15)

∂ 6
x log f =

D6
x f · f
2 f 2 −15

(D4
x f · f )(D2

x f · f )
2 f 4 +15

(
D2

x f · f
f 2

)3

, (8.16)

∂x log(a/b) =
Dxa·b

ab
, (8.17)

∂ 2
x log(a/b) =

D2
xa·a
2a2 −

D2
xb·b
2b2 , (8.18)

∂ 2
x log(ab) =

D2
xa·b
ab
−
(

Dxa·b
ab

)2

. (8.19)

8.3 Multisoliton Solutions for the KdV Class

8.3.1 The KdV Class

Now that we have the KdV equation in the bilinear form (8.9), let us construct soli-
ton solutions for it. It will turn out that the crucial property of the bilinear derivative
is (8.13), which allows easy termination of expansions in exponentials.

Actually, the construction of one- and two-soliton solutions is quite easy for the
generic class of bilinear equations of the form

P(Dx,Dy, ...)F ·F = 0, (8.20)
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where P is a polynomial in the Hirota derivatives D. We may assume that P is even,
because the odd terms cancel due to the antisymmetry of the D-operator. (In the
following we sometimes use boldface for multi-component objects, e.g., the above
could be written as P(D)F ·F = 0.)

The main known integrable equations of this class are the following:

• The Kadomtsev–Petviashvili equation

∂x[uxxx +6uux−4ut ] =∓3uyy (8.21)

(KPI with − sign, KPII with + sign), which bilinearizes with the substitution
(8.10) and two integrations to

(
D4

x−4DxDt ±3D2
y

)
F ·F = 0. (8.22)

As special cases this equation contains the KdV equation (8.1) (with y→ 0, t→
−t/4), and the Boussinesq equation

∂x(uxxx +6uux +ux) = utt (8.23)

(KPII with t→−x/4, y→ t/
√

3).
• The Hirota–Satsuma shallow water wave equation

uxxt +3uut −3uxvt −ux = ut , vx =−u (8.24)

bilinearizes with (8.10) and one integration to
(
D3

xDt −D2
x−DtDx

)
F ·F = 0. (8.25)

This has an integrable (2 + 1)-dimensional extension (the Hirota–Satsuma–Ito
(HSI) equation): (

D3
xDt +aD2

x +DtDy
)

F ·F = 0. (8.26)

• The Sawada–Kotera equation (SK)

uxxxxx +15uuxxx +15uxuxx +45u2ux +ut = 0 (8.27)

bilinearizes with (8.10) and one integration to

(D6
x +DxDt)F ·F = 0, (8.28)

with the integrable (2+1)-dimensional extension

(D6
x +5D3

xDt −5D2
t +DxDy)F ·F = 0. (8.29)
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8.3.2 The Vacuum and the One-Soliton Solution

Let us start with the zero-soliton solution or the vacuum. We know that the KdV
equation has a solution u ≡ 0 and now we want to find the corresponding F . From
(8.10) we see that F = ea(t)x+b(t) yields u≡ 0, and in view of the gauge freedom we
can choose F = 1 as our vacuum solution. It solves (8.20) provided that

P(0,0, . . .) = 0. (8.30)

This is then the first condition that we have to impose on the polynomial P in (8.20):
it should not have a constant term.

The multisoliton solutions are obtained by finite perturbation expansions around
the vacuum F = 1:

F = 1+ ε f1 + ε2 f2 + ε3 f3 + · · · . (8.31)

Here ε is a formal expansion parameter. For the one-soliton solution (1SS) only one
term is needed. If we substitute

F = 1+ ε f1 (8.32)

into (8.20) we get

P(Dx, . . .)
{

1·1+ ε 1· f1 + ε f1·1+ ε2 f1· f1
}

= 0.

The term of order ε0 vanishes because of (8.30). For the terms of order ε1 we use
property (8.12) so that, since P is even, we get

P(∂x,∂y, . . .) f1 = 0. (8.33)

The soliton solutions correspond to the exponential solutions of (8.33). For a 1SS
we take an f1 with just one exponential

f1 = eη , η = px+qy+ωt + · · ·+ const, (8.34)

and then (8.33) becomes the dispersion relation on the parameters p,q, . . .3

P(p,q, . . .) = 0. (8.35)

Finally, the order ε2 term vanishes automatically because of (8.13,8.30):

P(D)eη ·eη = e2ηP(p−p) = 0.

In terms of u in (8.10) we get

3 For KdV the dispersion relation (8.35) reads p(p3 +ω) = 0, but only the branch ω =−p3 is used
in practice.
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u = 2∂ 2
x log(1+ eη) =

2p2eη

(1+ eη)2 =
p2/2

cosh2(η/2)
. (8.36)

We see in particular that the soliton is located at η = 0.

8.3.3 The Two-Soliton Solution

The two-soliton solution (2SS) is built from two 1SSs, and the important principle
is that

• for integrable systems one must be able to combine any pair of 1SSs built on top
of the same vacuum.

Thus if we have two 1SSs, F1 = 1 + εeη1 and F2 = 1 + εeη2 , we should be able
to combine them into a form F = 1 + ε f1 + ε2 f2, where f1 = eη1 + eη1 . Gauge
invariance suggests that we should try the combination

F = 1+ eη1 + eη2 +A12eη1+η2 , (8.37)

where there is just one free constant A12. Substituting this into (8.20) yields

P(D)
{

1 ·1 + 1 · eη1 + 1 · eη2 + A12 1 · eη1+η2 +

eη1 ·1 + eη1 · eη1 + eη1 · eη2 + A12 eη1 · eη1+η2 +
eη2 ·1 + eη2 · eη1 + eη2 · eη2 + A12 eη2 · eη1+η2 +

A12eη1+η2 ·1 + A12eη1+η2 · eη1 + A12eη1+η2 · eη2 + A2
12eη1+η2 · eη1+η2

}
= 0.

In this equation all non-underlined terms vanish due to (8.30),(8.35). Since P is
even, the underlined terms combine as 2A12P(p1 + p2) + 2P(p1 − p2) = 0, from
which A12 can be solved as

A12 =−P(p1−p2)
P(p1 +p2)

. (8.38)

For the KdV case we obtain (using the dispersion relation ωi =−p3
i )

A12 = − (p1− p2)
4 +(p1− p2)(ω1−ω2)

(p1 + p2)
4 +(p1 + p2)(ω1 +ω2)

= −
(p1− p2)

[
(p1− p2)3− (p3

1− p3
2)
]

(p1 + p2)
[
(p1 + p2)3− (p3

1 + p3
2)
] =

(p1− p2)
2

(p1 + p2)
2 .

The important thing about the above construction is that we were able to derive
a two-soliton solution for a huge class of equations, namely all those whose bilinear
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form is of type (8.20) for whatever P. In particular this includes many non-integrable
systems.

8.3.4 The Soliton Content of Solution (8.37)

Next we will show that (8.37) actually describes the scattering of two solitons.
In terms of u the solution (8.37),(8.34),(8.10) is given as

u =
2p2

1eη1(1+A12e2η2)+2p2
2eη2(1+A12e2η1)+2[(p1−p2)2+A12(p1+p2)2]eη1+η2

(1+eη1 +eη2 +A12eη1+η2)2

=
2
√

A12[p2
1 cosh(η2+ 1

2α12)+p2
2 cosh(η1+ 1

2α12)]+(p1−p2)2+A12(p1+p2)2

[cosh( 1
2 (η1−η2))+

√
A12 cosh( 1

2 (η1+η2+α12))]2 , (8.39)

where α12 = logA12 (thus we have assumed that A12 > 1). For example, if in the
KdV case we take p1 = 2, p2 = 4 (in particular η1 = 2x− 8t + 2log3, η1 = 4x−
64t +2log3) then A12 = 1/9 and we get the solution

u = 12
4cosh(2x−8t)+ cosh(4x−64t)+3
[3cosh(x−28t)+ cosh(3x−36t)]2

.

Let us now discuss the soliton content of the solution (8.39). Since it is just a
combination of two solitons, we should see these solitons before and after inter-
action. This is best seen if we go to a coordinate frame traveling with one of the
solitons and observe what happens there as |t| → ∞.

For 1SS recall from (8.36) that the soliton is located at η = 0. Thus in the frame
comoving with soliton 1 the exponent η1 is finite while η2 → ±∞ (later we will
analyze in detail how these limits correspond to t →±∞). The ηi→±∞ limits are
usually easy to determine, in this particular case we obtain from (8.39)

η2→−∞ : u→ 2p2
1eη1

(1+ eη1)2 =
p2

1/2

cosh2( 1
2η1)

,

η2→+∞ : u→ 2A12 p2
1eη1

(1+A12eη1)2 =
p2

1/2

cosh2( 1
2 (η1 +α12))

,

η1→−∞ : u→ 2p2
2eη2

(1+ eη2)2 =
p2

2/2

cosh2( 1
2η2)

,

η1→+∞ : u→ 2A12 p2
2eη2

(1+A12eη2)2 =
p2

2/2

cosh2( 1
2 (η2 +α12))

.

We observe that the limits differ in the argument of the cosh function. If we write
the argument explicitly we get in the KdV case
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ηother→−∞ ηother→+∞
soliton1 1

2 [p1x− p3
1t] 1

2 [p1(x+α12/p1)− p3
1t]

soliton2 1
2 [p2x− p3

2t] 1
2 [p2(x+α12/p2)− p3

2t]

. (8.40)

The main results here is that the solitons are experiencing a phase shift, i.e., their
location changes by Δxi =−α12/pi.

In order to have a dynamical interpretation of the above we must still determine
how the various ηi→±∞ limits correspond to t→±∞ limits. The detailed analysis
goes as follows:

Comoving with soliton 1: We replace x with the new variable ξ = x+(ω1/p1)t and
then η1 = p1ξ +η0

1 , η2 = p2[ξ +(ω2/p2−ω1/p1)t]+η0
2 . In this frame η1 is time

independent, but

η2→ sign
[

p2

(
ω2
p2
− ω1

p1

)
t
]
·∞, as |t| → ∞.

Comoving with soliton 2: Now we use ξ = x +(ω2/p2)t and then η2 = p2ξ +η0
2 ,

η1 = p1[ξ − (ω2/p2−ω1/p1)t]+η0
1 . In this frame η2 is time independent, but

η1→ sign
[

p1

(
ω1
p1
− ω2

p2

)
t
]
·∞, as |t| → ∞.

Example: For KdV we have ωi = −p3
i , ωi/pi = −p2

i (= −vi). Let us furthermore
assume that pi > 0 and that the solitons are numbered so that v1 > v2. Then

sign
[

p2

(
ω2
p2
− ω1

p1

)]
= sign

[
p2
(
−p2

2 + p2
1

)]
= 1, sign

[
p1

(
ω1
p1
− ω2

p2

)]
=−1.

With this we can rewrite table (8.40) as

t→−∞ t→+∞
soliton 1 1

2 [p1x− p3
1t] 1

2 [p1(x+α12/p1)− p3
1t]

soliton 2 1
2 [p2(x+α12/p2)− p3

2t] 1
2 [p2x− p3

2t]
. (8.40’)

Fig. 8.1 Scattering of Korteweg–de Vries solitons. On the left a profile view, on the
right the locations of the maxima, along with the free soliton trajectory as a dotted line.
(p1 = 1

2 , p2 = 1)
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Thus, when going from t =−∞ to t = +∞ the position of the soliton 1 is shifted by
−α12/p1 with respect to straight line motion, while soliton 2 is shifted by +α12/p2.
Since p1, p2 are both positive, A12 < 1 and α12 < 0, the faster soliton (number 1) will
be shifted forward and the slower one (number 2) backward. This is illustrated in
Fig. 8.1. On the left we have plotted a profile view of the scattering process directly
from the analytical result (8.39). On the right we have plotted the locations of the
maxima of the solution. The dotted line shows how a single soliton would have
moved. We can see clearly how the faster soliton has advanced and the slower one
retarded.

We also note that for some parameter values we may have A12 = 0 or ∞, it is then
said that the solitons resonate. In that case the above analysis fails and solitons may
appear in other moving frames as well [13–15].

8.3.5 Existence of Multisoliton Solutions

The above shows that for the KdV class (8.20) the existence of 2SS is not strongly
related to integrability, but it turns out that the existence of 3SS is actually very
restrictive.

A 3SS should start with f1 = eη1 + eη2 + eη3 and, if the above is any guide,
contain terms up to f3. If we now use the requirement that the solution should reduce
to a 2SS when the third soliton goes to infinity (which corresponds to ηk →±∞)
then one finds that F must have the form

F = 1+ eη1 + eη2 + eη3 +A12eη1+η2 +A13eη1+η3 +A23eη2+η3

+A12A13A23eη1+η2+η3 . (8.41)

Note in particular that this expression contains no additional freedom: The parame-
ters pi are only required to satisfy the dispersion relation (8.35) and the phase factors
A were already determined (8.38). This ansatz extends to NSS [16]:

F = ∑
μi=0,1
1≤i≤N

exp

(
∑

1≤i< j≤N

α(i, j)μiμ j +
N

∑
i=1

μiηi

)
, (8.42)

with Ai j = eα(i, j). Thus the ansatz for a NSS is completely fixed and the requirement
that it be a solution of (8.20) implies conditions on the equation itself. Only for
integrable equations can we actually combine solitons in this way. More precisely,
let us make the

Definition 1. A set of equations written in the Hirota bilinear form is Hirota in-
tegrable, if one can combine any number N of one-soliton solutions into an NSS
without any additional restrictions on the single soliton solutions, and the result is a
finite polynomial in the eηs involved.
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In all cases studied so far, equations integrable in the above sense have turned out to
be integrable in other senses as well.

Since the existence of a 3SS is so restrictive it can be used as a method for
searching for new integrable equations. We will return to this question later, here
we would just like to note that if one substitutes the 3SS ansatz (8.41) into (8.20)
one obtains the condition

S3(P)≡ ∑
σi=±1

P(σ1p1 +σ2p2 +σ3p3)P(σ1p1−σ2p2)

×P(σ2p2−σ3p3)P(σ3p3−σ1p1)
.= 0, (8.43)

where the symbol
.= means that the equation is required to hold only when the

parameters pi satisfy the dispersion relation P(pi) = 0. Since the parameters are
not restricted in any other way than by the dispersion relation (which was already
demanded for the 1SS and 2SS) Eq. (8.43) should be interpreted as a condition on
the polynomial P.

8.4 Soliton Solution for the mKdV and sG Class

8.4.1 The Modified KdV Equation

As mentioned before, Hirota’s bilinear method has been applied to many other equa-
tions beside KdV. Let us next consider the modified KdV equation (mKdV)

uxxx + ε6u2ux +ut = 0, (8.44)

where we have explicitly noted the sign ε =±, because it cannot be scaled away. It
is easy to verify that this equation has the traveling wave solutions

u =
±p

cosh(px− p3t + c)
, if ε = 1, (8.45)

u =
±p

sinh(px− p3t + c)
, if ε =−1. (8.46)

Note that the dispersion relation and velocity are as for KdV, but the power of the
cosh or sinh term is different. Since ε = −1 leads to a singular solution we only
consider the ε = +1. The sign in ±p determines whether we have a soliton (+) or
antisoliton (−).

For bilinearization we must first introduce the analog of (8.2) to get suitable scale
invariance. Indeed, if we let

u = ∂x w (8.47)

we get from (8.44)
∂x
[
wxxx +2w3

x +wt
]
= 0, (8.48)

for which the scale transformation x→ λx, t → λ 3t, w→ w only gives an overall
factor. The part in the square bracket is the potential mKdV equation. It now turns



8 Hirota’s Bilinear Method and Its Connection with Integrability 291

out that a good substitution is given by

w = 2arctan(G/F), i.e., u = 2
Dx G ·F
F2 +G2 , (8.49)

and then the potential mKdV gets the form
(
F2 +G2)[(D3

x +Dt)G ·F
]
+3(DxF ·G)

[
D2

x(F ·F +G ·G)
]
= 0. (8.50)

Note that we now have two free functions, G and F , so we can also impose two
equations on them. The form of (8.50) suggests that we take the two equations as

{
(D3

x +Dt)(G ·F) = 0,
D2

x(F ·F + G ·G) = 0.
(8.51)

The splitting into a bilinear pair is not unique, we could also have taken
{

(D3
x +Dt +3λDx)(G ·F) = 0,

(D2
x +λ )(F ·F + G ·G) = 0,

where λ is an arbitrary function of x, t. The 1SS (8.45) corresponds to F = 1,
G =±eη , η = px− p3t and therefore we must take λ = 0.

8.4.2 Sine-Gordon Equation

The sine-Gordon (sG) equation

uxx−utt = sinu (8.52)

is a nonlinear version of the well-known Klein–Gordon equation uxx−utt = 0.
As before, some information about a possible bilinearizing transformation can be

obtained from the 1SS. Let us therefore try the traveling wave ansatz u = f (z), z =
x− vt; when it is substituted into (8.52) we get f ′′(1− v2) = sin f , which can be
integrated once to 1

2 ( f ′)2(1−v2) =−cos f +C. For solitons we demand f ′ → 0 and
f ′′ → 0, as |z| → ∞, and therefore we must choose boundary conditions f → 2πn±,
as |z|→∞ and correspondingly C = 1 and v < 1. Then the equation can be integrated
yielding a kink-type solution

u = 4arctan

[
exp

(
± x− vt +δ

(1− v2)1/2

)]
. (8.53)

(This shows clearly the relativistic nature of the solution.)
On the basis of this soliton solution we try bilinearization with the ansatz

u = 4 arctan(G/F), (8.54)

and when this is used in Eq. (8.52) we get
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[
(D2

x−D2
t −1)G ·F

]
(F2−G2)−FG

[
(D2

x−D2
t )(F ·F− G ·G)

]
= 0.

There is again some ambiguity in splitting this quartic equation into bilinear ones,
because the term λFG(F2−G2) could be added to one part and subtracted from the
other. For solitons λ = 0 and we get the bilinearization

{
(D2

x−D2
t −1)G ·F = 0,

(D2
x−D2

t )(F ·F− G ·G) = 0.
(8.55)

8.4.3 Multisoliton Solutions for the mKdV/sG Class

The mKdV and sG equations have bilinear forms (8.51),(8.55) that are of the type
{

B(D)G ·F = 0,
A(D)(F ·F + εG ·G) = 0,

(8.56)

where A is even and B either odd (mKdV) or even (sG). If B is odd one can make
the rotation F = f +g, G =

√
−ε( f −g) after which the pair (8.56) becomes

{
B(D)g · f = 0, (B odd)
A(D)g · f = 0.

(8.57)

Let us now construct soliton solutions to the class of Eq. (8.56). For the vacuum
we choose F = 1,G = 0 and therefore we must have A(0) = 0. For the 1SS we may
try

F = 1+ εαeη , G = εβeη .

Direct calculation yields three conditions

βB(p) = 0, αβB(0) = 0, αA(p) = 0.

Since we cannot impose two dispersion relations at the same time either α or β
must vanish. Thus we can in principle have two different kinds of solitons

type a : F = 1+ eηA , G = 0, with dispersion relation A(p) = 0,
type b : F = 1, G = eηB , with dispersion relation B(p) = 0.

(8.58)

For mKdV and SG the A polynomial is too trivial to make the first kind of soliton
interesting; indeed, solutions (8.45),(8.53) are of b-type. However, there are inte-
grable equations for which the dispersion relation A(p) = 0 has nontrivial solutions,
so we will now consider the general problem of constructing a 2SS.

a+a: If we want to combine two solitons of type a the starting point must be

F = 1+ εeη1 + εeη2 +O(ε2), G = O(ε2), with A(p1) = A(p2) = 0.

If we take G = 0 then the A-equation is KdV type for F and the solution is given
by (8.37,8.38) with P replaced by A.
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a+b: Now the starting point is

F = 1+ εeη1 +O(ε2), G = εeη2 +O(ε2), with A(p1) = B(p2) = 0.

Studying the equations order by order shows that a 2SS is obtained with

F = 1+ eη1 , G = eη2 +L12eη1+η2 , with L12 =−B(p2−p1)
B(p1 +p2)

. (8.59)

b+b: In this case we start with

F = 1+O(ε2), G = εeη1 + εeη2 +O(ε2), with B(p1) = B(p2) = 0,

and the 2SS turns out to have the form

F = 1−K12eη1+η2 , G = eη1 + eη2 , with K12 = ε
A(p1−p2)
A(p1 +p2)

. (8.60)

These results indicate that again we can have 2SS for a huge class of equations,
since no essential restrictions were given for the two polynomials A and B. And
again the situation is quite different with 3SS, which exists only for very specific
equations. Here we just point out that by considering the different limits one can see
that the only candidate for a combination of three b-type solitons is4

{
G = eη1 + eη2 + eη3 −K12K13K23eη1+η2+η3 ,
F = 1−K12eη1+η2 −K13eη1+η3 −K23eη2+η3 .

(8.61)

The requirement that (8.61) actually is a solution imposes again severe restrictions
on the polynomials A and B.

What if the parameters are complex but so that η2 = η∗1 ? Clearly the 2SS of
the b+b case is still real. In more detail, if η1 = prx +ωrt + i(pix +ωit), η2 =
prx+ωrt− i(pix+ωit) we get

Fig. 8.2 mKdV breather scattering with a soliton.
[
(8.61) with p1 = 1+ i, p2 = 1− i, p3 =

√
2
]

4 When comparing the η →−∞ and η → +∞ limits, note that (G,F) and (−F,G) correspond to
the same soliton when u is defined by (8.49).
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G
F

=
eprx+ωrt2cos(pix+ωit)

1−K12e2(prx+ωrt) =
cos(pix+ωit)√

K12 sinh(prx+ωrt + 1
2 log(K12))

. (8.62)

We see that in addition to moving with constant speed v = −ωr/pr the soli-
ton oscillates, such a solution is called a breather soliton. Note that the velocity
and the breathing frequency depend on different parameters. In the mKdV case
ωr = −pr(p2

r − 3p2
i ) so that v = (p2

r − 3p2
i ), from which we see that a breather

can have a negative velocity. As an illustration we have in Fig. 8.2 breather-soliton
scattering constructed using (8.61).

8.5 The Nonlinear Schrödinger Equation

Let us next consider the nonlinear Schrödinger equation (nlS)

iφt +φxx +2ε|φ |2φ = 0, ε =±1, (8.63)

where the function φ is complex.

8.5.1 One-Soliton Solutions

As usual, we start by constructing a traveling wave solution. Now, however, we have
to make an ansatz also for the complex phase:

φ(x, t) = ei(a(x+bt)+c) f (x− vt). (8.64)

Thus the envelope f travels with speed v, while the phase has its own behav-
ior. From (8.63) one then finds that a = v/2 and then the equation reduces to
f ′′+2ε f 3− ( 1

2 bv+ 1
4 v2) f = 0, which can be integrated once to

( f ′)2 + ε f 4− ( 1
2 bv+ 1

4 v2) f 2 +C = 0. (8.65)

If we assume that f , f ′ → 0 as |x− vt| → ∞, then C = 0, and if ε = +1 the result is

φ =
κ e

i

[
v
2 x+(κ2− v2

4 )t+c

]

cosh(κ(x− vt))
. (8.66)

This solution is called a bright soliton. Note that we can have this normal soliton
solution only if ε = +1 in (8.63). There are two free parameters (in addition to the
overall position and phase): velocity v and amplitude κ . The fact that amplitude
and velocity are both free is in clear contrast with the results for KdV. Indeed, it
seems as if there is no dispersion relation but we will later see that there are in
fact two complex parameters and the dispersion relation still allows two free real
parameters.
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The soliton solution (8.66) describes a bright pulse in a dark background, but
there is also the possibility of a dark soliton in a bright background (envelope-hole
soliton), if ε =−1. In that case we take C �= 0 in (8.65) and get the solution

φ = κ tanh(κ(x− vt))e
i

[
v
2 x−( v2

4 +2κ2)t
]
. (8.67)

This solution also has two free parameters, but if we want to obtain multisoliton
solutions then each soliton must have the same background amplitude and frequency
and therefore these parameters are global. Still other possibilities exist (“gray” and
“antigray”) but for them the ansatz is more general than (8.64).

8.5.2 The Bilinear Approach

The substitution that bilinearizes (8.63) is

φ = g/ f , g complex, f real, (8.68)

and yields
f
[
(iDt +D2

x)g · f
]
−g

[
D2

x f · f − ε2|g|2
]
= 0. (8.69)

For normal solitons we split this into
{

(iDt +D2
x)g · f = 0,

D2
x f · f = ε2|g|2.

(8.70)

Clearly we can start from the vacuum soliton f = 1,g = 0. In the formal ex-
pansion for a 1SS the function g will then have a degree of at least 1 and accord-
ing to the second equation f will go at least to degree 2. Thus if we take g = eη

the correction term to f must be proportional to eη+η∗ , which leads us to try the
ansatz

g = eη , f = 1+aeη+η∗ , η = px+ωt, p and ω complex. (8.71)

From the first equation of (8.70) we then get the dispersion relation

iω + p2 = 0, (8.72)

and from the second the phase factor

a =
ε

(p+ p∗)2 . (8.73)

If we split η and its parameters into real and imaginary parts:

p = pR + ipI , ω = ωR + iωI ,
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then the dispersion relation says

ωR =−2pR pI , ωI = p2
R− p2

I

and we can write

η = pR(x−2pIt)+ i[pIx+(p2
R− p2

I )t],

and finally if ε = +1,

φ =
g
f

=
epR(x−2pIt)+i[pIx+(p2

R−p2
I )t]

1+ ε

4p2
R

e2pR(x−2pIt)
=

pRei[pIx+(p2
R−p2

I )t]

cosh(pR(x−2pIt)+d)
,

which is the result (8.66) obtained before. (If ε =−1 we get a singular solution.)
It is clear that the above construction generalizes to the class

{
B(D)G ·F = 0,
A(D)F ·F = ε2|G|2, (8.74)

so that the 1SS is as before, with

dispersion relation: B(p) = B(−p∗) = 0, phase factor: a =
ε

A(p+p∗)
.

The dark soliton mentioned above is related to a different splitting of (8.69):
{

(iDt +D2
x−2ρ2)g · f = 0,

(D2
x−2ρ2) f · f = −2|g|2. (8.75)

Now the 0SS is given by a pure phase

g≡ g0 = ρeθ , f = 1, θ = i(kx−ωt), ω = k2 +2ρ2, (8.76)

and the 1SS by

g = g0(1+Zeη), f = 1+ eη , (8.77)

η = px−Ω t, Ω = p(2k−
√

4ρ2− p2), Z =
√

4ρ2−p2+ip√
4ρ2−p2−ip

. (8.78)

An illustration is given in Fig. 8.3. It is easy to also show that

|φ |2 = ρ2− p2/4

cosh2( 1
2η)

,

from which we see the “dark” nature of the soliton. If ρ = p/2 then Z =−1 and we
recover (8.67), if ρ > p/2 we have a “gray” soliton.
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Fig. 8.3 A bright soliton (left) and a dark soliton (right): thick line: |φ |, thin line: ℜφ

8.5.3 Two-Soliton Solutions

The bright 2SS is obtainable from the natural extension of (8.71):

g =eη1 + eη2 +a121̄eη1+η2+η∗1 +a122̄eη1+η2+η∗2 , (8.79)

f =1+a11̄eη1+η∗1 +a12̄eη1+η∗2 +a1̄2eη
∗
1 +η2 +a22̄eη2+η∗2 +a11̄22̄eη1+η∗1 +η2+η∗2 .

(8.80)

The principles of forming these expressions were the following: (1) g is odd in eη

and in particular there is always one more η than η∗ in the exponent; (2) f is even
and real; (3) no η twice in the exponent; and (4) treat η and η∗ as independent.
The various coefficients a can be determined when this ansatz is substituted into the
equation. It turns out that the ansatz does not work for arbitrary polynomials A and
B, and in that respect the 2SS behaves more like a 4SS (it would contain ε4 terms of
the expansion). For the nlS we get

ηk = pkx+ ip2
kt +η0

k ,

ai j̄ =
1

(pi + p∗j)2 , ai j = (pi− p j)2, (8.81)

aī j = (ai j̄)
∗, aī j̄ = (ai j)∗, ai jk̄ = ai jaik̄a jk̄, a11̄22̄ = a11̄a12 a12̄a1̄2a1̄2̄a22̄.

The η-limits of this solution are easily obtained:

ℜ(η2)→−∞ : φ → eη1

1+a11̄eη1+η∗1
,

ℜ(η1)→−∞ : φ → eη2

1+a22̄eη2+η∗2
,

ℜ(η2)→+∞ : φ → a122̄eη1

a22̄ +a11̄22̄eη1+η∗1
,

ℜ(η1)→+∞ : φ → a121̄eη2

a11̄ +a11̄22̄eη2+η∗2
.

The ℜ(η)→−∞ limits are of the standard form of (8.66), while for ℜ(η)→ +∞
there are extra complex factors. Since, e.g., a122̄/a22̄ = a12a12̄ and a11̄22̄/a22̄ =
a11̄|a12a12̄|2 we obtain the phase shift
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ηi→ ηi + logci j, ci j = ai jai j̄ =
(pi− p j)2

(pi + p∗j)2 , where i j = 12 or 21.

The magnitude |ci j| therefore determines the change in the location of soliton i as it
scatters with soliton j, in explicit form:

|ci j|=
(pRi− pR j)2 +(pIi− pI j)2

(pRi + pR j)2 +(pIi− pI j)2 .

Remark 2.

1. For nlS we can easily create breather solutions. As usual it is a bound state of two
different solitons traveling with the same speed, therefore we just take pI1 = pI2

and to avoid singular solutions, p2
R1 �= p2

R2.
2. It is also possible to have multisoliton solutions composed of dark solitons, but

the background g0 must be the same for all of them.
3. The above results generalize easily for the integrable equation [17]

iφt +βφxx +δ |φ |2φ + iγφxxx + i3α|φ |2φx = 0, (8.82)

if αβ = γδ .
4. The nlS has also integrable multi-component equations, e.g., Manakov’s

equation {
iq1t +q1xx +

(
|q1|2 + |q2|2

)
q1 = 0,

iq2t +q2xx +
(
|q1|2 + |q2|2

)
q2 = 0,

(8.83)

with interesting scattering that looks inelastic [18], see Fig. 8.4.

Fig. 8.4 Exotic scattering: On the left scattering in the Manakov model (8.83). Note the amplitude
shift between components, top: |q1|, bottom: |q2|. On the right scattering of the different solitons
in the Hirota–Satsuma model (8.84), in the v field (above) we see a sudden phase shift, the u field
(below) shows the reason for it [(8.88), (8.89), (8.90), (8.91) with p1 = p2 = 1]
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8.5.4 Multicomponent Equations

The nlS-class of bilinear equations (8.74) is also associated with some other equa-
tion, including real ones, and they can have several kinds of solitons if both of the
polynomials A and B are nonlinear enough.

As an example consider the Hirota–Satsuma equation [19]
{

ut +uxxx +6uux−6vvx = 0,
vt −2vxxx−6uvx = 0.

(8.84)

If v ≡ 0 the equation reduces to KdV (8.1) and u is then the standard KdV-soliton
with dispersion relation q + p3 = 0. However, it is readily verified that (8.84) also
has the 1SS

u =
2p2

cosh2(p(x+2p2t))
, v =

2p2

cosh(p(x+2p2t))
. (8.85)

Note that the KdV-type soliton has velocity p2, while the soliton (8.85) has velocity
−2p2. Thus these different kinds of solitons also travel in different directions.

The system (8.84) is bilinearized with the substitution

u = 2∂ 2
x log( f ), v = g/ f , (8.86)

which results in {
(2D3

x−Dt)g · f = 0,
(D4

x +DxDt) f · f = 3g2.
(8.87)

There are two kinds of 1SS:

a) g = 0, f = 1+ eη (KdV-type, dispersion relation q =−p3),
b) g = 4p2eη , f = 1+ e2η (nlS-type but real, dispersion relation q = 2p3).

For the 2SS we get
a+a: g = 0, f as in (8.37,8.35,8.38).
a+b:

g =4p2
2eη2(1+B12eη1), (8.88)

f =1+ eη1 + e2η2 +B2
12eη1+2η2 , (8.89)

B12 =
p2

1−2p1 p2 +2p2
2

p2
1 +2p1 p2 +2p2

2

, (8.90)

DR : q1 =−p3
1,q2 = 2p3

2. (8.91)

b+b:

g =4p2
1eη1(1+A12e2η2)+4p2

2eη2(1+A12e2η1), (8.92)

f =1+ e2η1 +C12eη1+η2 + e2η2 +A2
12e2η1+2η2 , (8.93)
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A12 =
(p1− p2)2

(p1 + p2)2 , C12 =
16p2

1 p2
2

(p1 + p2)2(p2
1 + p2

2)
, (8.94)

DR : qi = 2p3
i . (8.95)

The a+a scattering is as for KdV. For the a+b scattering we find

η2→−∞ u→ p2
1/2

cosh2( 1
2η1)

v→ 0,

η2→+∞ u→ p2
1/2

cosh2( 1
2 [η1 +2logB12])

v→ 0,

η1→−∞ u→ 2p2
2

cosh2(η2)
v→ 2p2

2

cosh(η2)
,

η1→+∞ u→ 2p2
2

cosh2(η2 + log(B12))
v→ 2p2

2

cosh(η2 + log(B12))
.

For b+b scattering the result is

η2→−∞ u→ 2p2
1

cosh2(η1)
v→ 2p2

1

cosh(η1)
,

η2→+∞ u→ 2p2
1

cosh2(η1 + log(A12))
v→ 2p2

1

cosh(η1 + log(A12)))
,

η1→−∞ u→ 2p2
2

cosh2(η2)
v→ 2p2

2

cosh(η2)
,

η1→+∞ u→ 2p2
2

cosh2(η2 + log(A12))
v→ 2p2

2

cosh(η2 + log(A12)))
.

The phase shifts obtained for this model follow the usual pattern, in particular
the different components u and v get identical phase shifts. If the solitons are of the
same type (a+a or b+b) the phase shift is determined by A12; if they are different the
phase shift is determined by B12.

The a+b scattering provides us an example of “ghost” solitons: If we look only at
the v field we see a standard soliton traveling along and then suddenly experiencing
a phase shift as shown in Fig. 8.4 (upper part on the right). If we ignore the u-field
we do not see any reason for this behavior, but if u is included (Fig. 8.4, lower part
on the right) the behavior can be understood: the a-type soliton associated with η1

is a ghost soliton. It shows up directly only in the u-field, but its secondary effects
can be seen in the v-field.

8.5.5 Dromions

As the final example in the nlS-class let us consider the Davey–Stewartson (DS)
equation
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{
i∂tφ +(∂ 2

x +∂ 2
y )φ +φv = 0,

∂x∂yv = 2(∂ 2
x +∂ 2

y )|φ |2. (8.96)

This is a (2+1)-dimensional generalization of the nlS equation (8.63) but the two
dimensions get twisted in the second equation.

Normally soliton equations in (2+1) dimensions have just plane wave solutions
that are localized only in one direction. However, it was found [20] that DS equation
can also have solutions that decay exponentially in all spatial directions. These were
rather mysterious at first but when the different roles of the φ and v fields were
recognized [21, 22] it was possible to construct general multi-dromion solutions [23,
24]. The fundamental observation is that there are still underlying plane waves, but
they only show up as such in the v-field—in the φ -field there is an effect only where
two v-plane waves intersect, i.e, where the plane waves suffer a phase shift [25].
Since the plane waves do not show up in the φ -field they are called “ghost” solitons.

Equation (8.96) is bilinearized with

φ = G/F, v = 2(∂ 2
x +∂ 2

y ) logF, (8.97)

which yields {
(iDt +D2

x +D2
y)G ·F = 0,

DxDy F ·F = 2|G|2. (8.98)

The pair (8.98) has two kinds of 1SSs: standard plane wave solitons of the NLS-
type

F1S = 1+K11 eη1+η∗1 , G1S = eη1 , (8.99)

η j = p jx+q jy+Ω jt +η0
j , Ω j = i(p2

j +q2
j), (8.100)

Ki j = 1/[(pi + p∗j)(qi +q∗j)], (8.101)

and also “ghost” solitons

F1D = 1+ ceη1+η∗1 ,G1D = 0, (8.102)

with vanishing φ . For ghosts, in addition to the dispersion relation (8.100) it is also
required that the ηi-plane waves are parallel to the coordinate axes, i.e., either pi = 0
or qi = 0.

In order to construct a 1-dromion solution we take two perpendicular ghost soli-
tons, i.e., η = px+ ip2t, ρ = qy+ iq2t and combine them as follows:

F =δ +α eη+η∗ +β e−ρ−ρ
∗
+ γ eη+η∗−ρ−ρ∗ , (8.103)

G =κeη−ρ
∗
, (8.104)

|κ|2 =4pRqR(αβ − γδ ). (8.105)

The constants α, β ,γ and δ are real numbers and to avoid singular solutions they
should all be nonnegative, furthermore pRqR(αβ − γδ ) > 0.

If one compares (8.103),(8.104),(8.105) to the usual 2SS of NLS given in
(8.79),(8.80), one notes in particular that now both F and G are even in the
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Fig. 8.5 Initial dromion breaking into 4 smaller dromions. In each part the v-field has the standard
plane wave structure

exponentials, whereas for normal solitons G is odd. However, if the ghost plane
waves resonate so that α = β = 0 we can express the result in terms of η̃ = η−ρ∗
and obtain a 1SS described in (8.99),(8.100),(8.101).

One can construct multi-dromion solutions with two bilinear approaches, see
[23, 24]. Such formulae were used in Fig. 8.5, which shows the splitting of one
dromion into four different smaller dromions.

Fig. 8.6 Solitoff-dromion scattering. Note the two resonating plane waves
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The dromion concept (underlying ghost plane waves with dromions at the points
of their intersection) is a robust concept and other examples are known [26]. Fur-
thermore, the underlying plane waves can be made to resonate and create solitoffs
[27], see Fig. 8.6.

8.6 Hierarchies

The above examples illustrate how new dependent variables can be introduced in bi-
linearization, even more than there were originally. In general the soliton equations
are arranged into hierarchies and for higher members in a given hierarchy one also
has to introduce new independent variables.

8.6.1 A Shallow Water Wave Equation

Consider the following equation:

vxxxt +αvxvxt +βvtvxx− vxx− vxt = 0. (8.106)

If α = β = 3 the equation can be integrated once and the substitution v = 2∂x log f
leads to (8.25), but if α = 4, β = 2 this substitution yields first [28]

3Dx [D3
xDt −D2

x−DxDt) f · f ] · f 2 +Dt (D4
x f · f ) · f 2−Dx [D3

xDt f · f ] · f 2 = 0.
(8.107)

We observe that all but the underlined term are of the form Dx[. . . ] · f 2. To proceed
further introduce a new independent variable τ by

(D4
x +DxDτ) f · f = 0. (8.108)

Next we use the identity

Dt (DxDτ f · f ) · f 2 = Dx [DtDτ f · f ] · f 2 (8.109)

and using (8.109),(8.108) in (8.107) we find that (8.106) is equivalent to
{

(D4
x +DxDτ) f · f = 0,

(2D3
xDt −3D2

x−3DxDt −DtDτ) f · f = 0.
(8.110)

In this case we had originally 1 equation for 1 function of 2 variables, but
the bilinear form is given by 2 equations for 1 function of 3 variables. This
method of introducing new independent variables is typical for higher members of a
hierarchy.
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8.6.2 The Kaup/Lax5 Equation

There are two NEEs with dispersion relation p5 +ω = 0, the Sawada–Kotera equa-
tion (8.27) and Kaup’s equation (also called Lax5):

uxxxxx +20uuxxx +40uxuxx +120u2ux +ut = 0. (8.111)

The substitution u = ∂x
2 log f leads to [29]

Dx [(Dx
6 +DxDt) f · f ] · f 2−5Dx (Dx

4 f · f ) · (Dx
2 f · f ) = 0. (8.112)

This can be immediately written in a trilinear form

(7T 6
x +20T 3

x T ∗3x +27TxTt)F ·F ·F = 0, (8.113)

but does it have a bilinear representation?
As above one introduces a new independent variable τ and the constraint (8.108).

Using (8.109) and the further identity

3Dx (DxDτ f · f ) · (Dx
2 f · f ) = Dτ (Dx

4 f · f ) · f 2−Dx (Dx
3Dτ f · f ) · f 2 (8.114)

one finds that (8.111) is equivalent to
{

(D4
x +DxDτ) f · f = 0,

(3Dx
6−5Dx

3Dτ +3DxDt −5Dτ
2) f · f = 0.

(8.115)

8.6.3 The Jimbo–Miwa Hierarchy

The fundamental classification of integrable equations in bilinear form is based on
the Sato theory and was done by Jimbo and Miwa [6]. This classification contains
several infinite hierarchies; one of them, the KP hierarchy, starts as

(D4
1−4D1D3 +3D2

2) f · f =0, (8.116)

(D3
1 +2D3)D2−3D1D4) f · f =0, (8.117)

(D6
1−20D3

1D3−80D2
3 +144D1D5−45D2

1D2
2) f · f =0, (8.118)

...

Here f is a function of infinite number of variables xn, n = 1,2,3, . . . (Dk ≡
Dxk ) obeying infinite number of equations. We recognize the KP-equation as the
first equation. Note that all equations are weight homogeneous, if Dk is given
weight k.

Normal soliton equations are obtained by reductions from a hierarchy [30]. There
are many ways to reduce the hierarchy to an integrable set of finite number of
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equations in a finite number of variables. If we just take Eq. (8.116) alone, we get
the KP-equation after substituting f = ew. If we take (8.117) under the reduction
D4 → cD1 we get the Hirota–Satsuma–Ito equation, and (8.118) under reduction
D2→ 0 yields the Sawada–Kotera–Ramani equation. Without the above reductions
Eqs. (8.117),(8.118) would not be integrable by themselves. In the previous sub-
sections we also showed how the pair (8.116),(8.118), with D2 → 0 corresponds
to (8.111) and (8.116),(8.117) with D2 → εD1, D4 → ε(aDx + bDt), and ε → 0 to
(8.106); in each case x3 was the dummy variable.

In general we could have N equations with N− 1 extra independent variables.
1SSs are constructed as before, we just have N dispersion relations, but N− 1 of
them can be used to determine the parameters associated with the extra independent
variables leaving one true dispersion relation. 2SSs are still of the form (8.37),(8.38),
but now each equation must define the same phase factor A12 and the phase factor
can in fact be used as one of the labels of the hierarchy. The existence of a common
3SS introduces further conditions, which only integrable equations pass.

8.7 Bilinear Bäcklund Transformation

As a further application of the bilinear approach we discuss the Bäcklund transfor-
mation (BT), but only for the KdV equation

(D4
x +DxDt)F ·F = 0. (8.119)

Let us consider the expression

F2[(D4
x +DxDt)G ·G]−G2[(D4

x +DxDt)F ·F ] = 0. (8.120)

Clearly, if F satisfies Eq. (8.119) and G satisfies (8.120), then G also satisfies
Eq. (8.119).

Let us now rewrite (8.120) in a more useful form. There are lots of identities
between bilinear expressions, including the following:

f 2(DxDt g ·g)−g2(DxDt f · f ) = 2Dx (Dt g · f ) · ( f g),

f 2(D4
x g ·g)−g2(D4

x f · f ) = 2Dx (D3
x g · f ) · ( f g)+6Dx (D2

x g · f ) · (Dx f ·g).

When these are applied to Eq. (8.120) it can be written as

2Dx [(D3
x +Dt)G ·F] · [FG]+6Dx [D2

x G ·F ] · [Dx F ·G] = 0. (8.121)

This does not yet produce a BT because the free parameter is still missing. However,
when the following obvious identity

−6λDx[Dx G ·F ] · [FG]+6λDx[GF ] · [Dx F ·G] = 0
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is added to (8.121) we get

2Dx[(D3
x +Dt −3λDx)G ·F] · [FG]+6Dx[(D2

x +λ )G ·F] · [Dx F ·G] = 0,

on the basis of which we get the BT
{

(D3
x +Dt −3λDx)G ·F = 0,

(D2
x +λ )G ·F = 0.

(8.122)

It is still necessary to prove that if F satisfies (8.119) then G can in fact be solved
from (8.122), i.e., that the equations are consistent. Dividing both Eqs. (8.122) with
F they can be written as

L1(G) :=
[
∂ 3

x −3A∂ 2
x +3B∂x−C−3λ (∂x−A)−F−1Ft +∂t

]
G = 0,

L2(G) := [∂ 2
x −2A∂x +B+λ ]G = 0,

where A = F−1Fx, B = F−1Fxx, C = F−1Fxxx. Then we find

(L1 L2−L2 L1)(G) =−3∂x[F−2(D2
x F ·F)]L2(G)+∂x[F−2(D4

x +DxDt)F ·F ]G,

which means that Eq. (8.122) are consistent if F solves (8.119). (It should be noted
that not all pairs obtained by rearranging bilinear expressions are consistent [31].)

From the result (8.122) we note that the unknown function G appears linearly.
This is a general property: The original bilinear equations are replaced by twice as
many equations, in each of which the old and new solutions both appear linearly
and provide us a Lax pair.

8.8 The Three-Soliton Condition as an Integrability Test

8.8.1 Defining the Class of Equations and the Integrability Test

For all searches of integrable systems one has to define the method of testing inte-
grability and the class of equations which are tested. Naturally the testing method
influences the choice of the class of equations.

For example, in the searches based on symmetry methods (see the lectures of
Mikhailov, Sanders, Shabat, Sokolov and Wang in this book) one class of equations
is

ut = f (u,ux,uxx, . . .).

Thus the nonlinearity of f is not restricted in any way, but it is explicitly assumed
that time derivatives appear only as ut which can be separated. This assumption
is natural for the chosen method. (Of course this assumption can be and has been
extended, e.g., to include multi-component models.)
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Here we will discuss searches based on Hirota’s bilinear method. The class of
equations is then defined, e.g., as

P(Dx,Dt ,Dy, . . .)F ·F = 0,

and the integrability test is the existence of multisoliton solutions, see Sect. 8.3.5.
The dispersion relation satisfied by the solitons is given directly by the chosen poly-
nomial: P(p,q, . . .) = 0. Note that now the number of independent variables is not
restricted in any way, but the nonlinearity is: it is whatever comes after substituting
F = ew in the equation.5 After this substitution the linear part of the equation will
be P(∂x,∂y, . . .)w and therefore for a given linear part corresponds to a particular
nonlinear part (within a given class of equations). To repeat: the dispersion relation
is truly arbitrary, but once it is chosen it fixes the nonlinearity.

It is important to note that we let the equation itself determine the dispersion
relation and any solution of the dispersion relation can be used to define a soli-
ton. Another approach [32] is to fix the dispersion relation beforehand, in which
case it is only necessary that the dispersion relation is a factor of P(p,q, . . .). One
might then impose the three-soliton condition only on solitons having this prede-
termined dispersion relation (weak condition), as opposed to all possible solitons
(strong condition).

8.8.2 About the Search Process

In order to find all KdV-type solitons equations we have to find all polynomials that
solve (8.43). Such a search was done in [33] using symbolic algebra (for an earlier
numerical work see [34]).

The problem is best studied in the framework of commutative algebra. Equation
(8.43) needs to be true only on the affine manifold M (P) = {(p1,p2,p3)|P(p1) =
P(p2) = P(p3) = 0}. If P is reducible we can write P =∏Qni

i , where the Qi are irre-
ducible, and then the affine manifold is actually defined by the radical

√
P = ∏Qi.

The 3SC (8.43) then means that we must have S3(P) = ∑3
i=1 Ri(p1,p2,p3)

√
P(pi),

∀pi, for some polynomials Ri. One way to solve the problem is then to try to find
the Ri but that is very cumbersome.

In practice the best way to implement the dispersion relation (or its radical) is to
use a substitution rule. After fixing an ordering for monomials (e.g., first by total
degree and then lexicographically) we take the leading monomial L(P) of

√
P and

substitute for it the negative of the rest of
√

P. This will be done repeatedly until no
term has a factor L(P), and the process will finish in a finite number of steps. After
this the resulting polynomial should vanish identically. In REDUCE [35] the sub-
stitution can be conveniently implemented by a LET-rule, with the built-in property
that all substitutions are repeated as often as possible. We used the following code
for this purpose (R =

√
P):

5 Note, however, the possibility of introducing new variables as in (8.2) and integrating the equa-
tion.
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PROCEDURE TEST3SC(P,R);BEGIN
S:=PART(R,1);
K:=-R+S;
S1:=SUB(X=X1,Y=Y1,T=T1,S);
S2:=SUB(X=X2,Y=Y2,T=T2,S);
S3:=SUB(X=X3,Y=Y3,T=T3,S);
K1:=SUB(X=X1,Y=Y1,T=T1,K);
K2:=SUB(X=X2,Y=Y2,T=T2,K);
K3:=SUB(X=X3,Y=Y3,T=T3,K);
LETS(S1,K1);
LETS(S2,K2);
LETS(S3,K3);
...computation of S3(P)...
END;

PROCEDURE LETS(S,K);LET S=K;

The search process was organized in increasing maximum degree of P and in
increasing the number of dimensions. The form of the 3SC is such that if it holds
for some P it must also hold for any projection to lower dimensions. For example,
if P(x,y,z) passes the test then so will any P(x,y,αx +βy). Thus at a fixed degree
the necessary condition for increasing the dimension, for example from 2 to 3, is
that the starting P has free constants in such a form that they could be combined as
αx+βy. In that case we need to test only those polynomials where the new variable
z appears in place of (some of) these combinations.

8.8.3 Results

8.8.3.1 KdV Class

In addition to the equations known before, (8.22),(8.26),(8.29), and their reductions,
one new genuinely nonlinear equation was found [33] in the KdV class

(D4
x−DxD3

t +aD2
x +bDxDt + cD2

t )F ·F = 0, (8.123)

which seems to be a linear combination of KdV and HSI equations. This equation
also has 4SS and passes the Painlevé test [36], but nothing else is known about it.
Another intriguing result is

DxDyDzDt F ·F = 0, (8.124)

which satisfies the 3SC but not the 4SC.
We have also made a search in the trilinear class P(T,T ∗)F ·F ·F = 0 (using

the Painlevé test [11, 12]), here we just mention one result for which we have also
verified the existence of 3SS:

(
Ty(T ∗4x +8T 3

x T ∗x +9T 2
y )+9T 2

x Tt
)

F ·F ·F = 0. (8.125)

8.8.3.2 mKdV/sG Class

This class was studied in [37–39]. The condition was again that any set of three
solitons could be combined into a 3SS. The final result contained seven equations
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and five were of mKdV type. Three of them have a nonlinear B polynomial but a
factorizable A part (and hence only one kind of soliton with B providing the disper-
sion relation):

{
(aD7

x +bD5
x +D2

xDy +Dt)g · f = 0,
D2

x g · f = 0,
(8.126)

{
(aD3

x +bD3
y +Dt)g · f = 0,

DxDy g · f = 0,
(8.127)

{
(DxDyDt +aDx +bDy)g · f = 0,

DxDy g · f = 0.
(8.128)

In two cases both A and B are nonlinear enough to support solitons; note that
the B polynomials are the same and that the A parts have already appeared in the
KdV list: {

(D3
x +Dy)g · f = 0,

(D3
xDt +aD2

x +DtDy)g · f = 0,
(8.129)

{
(D3

x +Dy)g · f = 0,
(D6

x +5D3
xDy−5D2

y +DtDx)g · f = 0.
(8.130)

Two equations of sine-Gordon type were also found:
{

(DxDt +b)G ·F = 0,
(D3

xDt +3bD2
x +DtDy)(F ·F +G ·G) = 0,

(8.131)

{
(aD3

xDt +DtDy +b)G ·F = 0,
DxDt(F ·F +G ·G) = 0.

(8.132)

Of course the various reductions of these equations are also integrable.

8.8.3.3 nlS Class

The class is defined by (8.74) and the condition was the existence of a 2SS, as
discussed in Sect. 8.5.3. Three equations were found in the search of Refs. [39, 40]:

{
(D2

x + iDy + c)G ·F = 0,
(a(D4

x−3D2
y)+DxDt)F ·F = |G|2, (8.133)

{
(iαD3

x +3cD2
x + i(bDx−2dDt)+g)G ·F = 0,

(αD3
xDt +aD2

x +(b+3c2)DxDt +dD2
t )F ·F = |G|2, (8.134)

{
(iαD3

x +3DxDy−2iDt + c)G ·F = 0,
(a(α2D4

x−3D2
y +4αDxDt)+bD2

x)F ·F = |G|2. (8.135)

Perhaps the most interesting new equation above is the combination in (8.135)
of the two most important (2 + 1)-dimensional equations: Davey–Stewartson and
Kadomtsev–Petviashvili equations [39]. In the special case b = c = 0 its N-soliton
solutions have been discussed in [41].
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8.9 From Bilinear to Nonlinear

In many applications it is useful if the leading derivatives in the evolution equation
appear in terms linear in the dependent variables, while the nonlinear terms contain
lower order derivatives. Starting from bilinear equations one can obtain such a form
by a substitution like F = ew. We will now discuss this “nonlinearization” of bilinear
equations.

8.9.1 KdV-Type Equations

For KdV-type equations (involving only one dependent variable F) the standard
substitution is F = ew. Now since for soliton solutions F is a sum of exponentials, w
grows linearly in some directions. In order to obtain a dependent variable that looks
like a soliton it is necessary to make a further change of variables, e.g., u = wxx.
Then for soliton solutions u looks like a plane wave and in terms of u we have a
bona-fide nonlinear evolution equation.

For example in the case of the 2+1-dimensional HSI equation (8.26) we first get

wtxxx +6wtxwxx +awxx +wty = 0. (8.136)

The x-derivative of this equation can we written as

vtxxx +3vtxvx +3vtvxx +avxx + vty = 0 (8.137)

using v = 2wx. One more derivative is necessary and thus we introduce u = vx =
2wxx. But in order to write the x-derivative of (8.137) without integrals we have to
write it as a coupled system

utxxx +3utxu+6utux +3vtuxx +auxx +uty = 0, vx = u. (8.138)

(In the 1+1-dimensional reduction vty → vtx we could have made the substitution
vx = u directly on (8.137) with the result (8.24) (up to scalings).)

Putting F = ew in the trilinear equation (8.125) yields

wxxxxy +8wxxywxx +4wxywxxx +wyyy +wxxt = 0. (8.139)

8.9.2 mKdV-Type Equations

For the mKdV class (8.57) the generic nonlinearizing substitution is

f = er+w, g = er−w.

As an example let us consider (8.126) in the special case a = b = 0; the equations
then read
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wxxy +4w2
xwy +4rxywx +2rxxwy +wt =0,

rxx +2w2
x =0.

In the limit y→ x we could eliminate rxx from the first equation and get the potential
mKdV equation (8.48). In the general case we introduce new variables v = 2wx,
q = 2rx, take an x-derivative of the first equation, eliminate qx and get

vxxy−4v2vy +2qyvx + vt = 0, qx + v2 = 0. (8.140)

For a discussion of the nonlinear versions of (8.127), (8.128), see [42].

8.9.3 nlS-Type Equations

For the nonlinear Schrödinger equation the canonical first step in the transformation
from the bilinear form to the nonlinear form is

F = ew, G = φew, w real, φ complex, (8.141)

cf. (8.68). Again w will grow linearly in some directions and therefore further
changes of variables are necessary. We will now derive the nonlinear forms for the
search results (8.133),(8.134),(8.135).

Let us first consider (8.133). The transformation (8.141) yields
{

φxx + iφy + cφ +2wxxφ = 0,
a(2wxxxx +12wxx

2−6wyy)+2wxt = |φ |2. (8.142)

but by operating ∂ 2
x on the second equation allows us to introduce u = 2wxx and

obtain Melnikov’s equation [43]
{

φxx + iφy + cφ +uφ = 0,
a[uxxxx +3(u2)xx−3uyy]+uxt = (|φ |2)xx.

(8.143)

This equation may be interpreted as a combination of KP and nlS: (1) If φ = 0 the
second equation yields KPII, while (2) if a = 0 we get a kind of (2+1)-dimensional
nlS, which reduces to the usual nlS if t → x. Note that the first equation has only
two independent variables, x and y, while the second has x, t and y.

Equation (8.134) is a combination of the HSI equation (8.24) and Hirota’s gen-
eralization of nlS [4]. Transformation (8.141) yields now
{

iα(φxxx +6wxxφx)+3c(φxx +2wxxφ)+ i(bφx−2dφt)+ γφ = 0,
2α(wxxxt +6wxxwxt)+2awxx +2(b+3c2)wxt +dwtt = |φ |2. (8.144)

(1) In the limit φ = 0, d = 0 we obtain (8.24), while (2) HnlS is obtained in the
singular limit: first put c = b = γ = 0, d =− 1

2α , then divide the first equation by α
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and put α = 0 in the second. The result is qt +qxxx +3|q|2qx = 0, which is a special
case of (8.82).

Equation (8.135) is a combination of KP and DS. The substitution (8.141) first
yields

{
iα(φxxx +6φxwxx)+3(φxy +2wxyφ)−2iφt + cφ = 0,
a[2α2(wxxxx +6wxx

2)−6wyy +8αwxt ]+2bwxx = |φ |2. (8.145)

There are again two different limits to consider:

1. If we put φ = 0, α = 1, a = 1, b = 0, operate on the second equation by ∂ 2
x and

define u = 2wxx then we get KPII.
2. If we take α = 0, c = 0, operate on the second equation by ∂x∂y and define

u = wxy then we obtain

{
3φxy−2iφt +6uφ = 0,
−6auyy +buxx = (|φ |2)xy.

(8.146)

For b = −6a = 1/δ , u = −q + 1
2δ |φ |2 and after a 45o rotation in the (x,y)-

plane this equation gets the hyperbolic–elliptic form of the DS equation for
φ and q.

In contrast to (8.143) both equations in (8.145) have three variables.

8.10 Conclusions

In these lectures we have discussed Hirota’s method from the ground up, i.e., starting
with nonlinear evolution equations, finding their bilinear forms and then their mul-
tisoliton solutions. We have also described how for a large class of equations one
can construct one- and two-soliton solutions, while the existence of three-soliton
solutions imposes severe restrictions which can be used to search for integrable
equations.

Hirota’s direct method is one of the important tools in the study of nonlinear evo-
lution equations, it is particularly effective for constructing multisoliton solutions
and should therefore be in the toolbox of anyone who works with solitons.

Acknowledgments The author would like to thank J. Satsuma for hospitality at the University of
Tokyo, where this lecture course was finished.
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Chapter 9
Integrability of the Quantum XXZ Hamiltonian

T. Miwa

9.1 Integrability

In classical mechanics, the integrability of a Hamiltonian H in the Liouville sense is
the existence of enough many conserved (i.e., Poisson commuting with the Hamil-
tonian) quantities Hn. For consistency reason they are mutually commuting:

{Hm,Hn}= 0, H = H0. (9.1)

The orbits are determined by the algebraic equations Hn = λn.
If the system has an infinite degrees of freedom (e.g., the KdV equation), it is not

at all obvious how to find explicit solutions for integrable Hamiltonians. Still the
existence of infinitely many conserved quantities is a key to finding them.

In quantum mechanics, the Hamiltonian is an operator acting on some physical
space. Equation (9.1) is replaced by Lie bracket relations in the operator algebra:

[Hm,Hn] = 0. (9.2)

The physical states are by definition simultaneous eigenvectors of these commuting
operators:

Hn|v〉= λn|v〉.
Again, it is not obvious how to find all the simultaneous eigenvectors of these com-
muting operators.

Let us consider the simplest example, i.e., the harmonic oscillator:

H =−1
2

(
d2

dx2 − x2
)

. (9.3)

The degree of freedom is 1 because the space on which H acts is the space of func-
tions in one variable. We do not need any further commuting operators in this case.
Integrability of this H lies in the algebraic structure which makes an explicit diago-
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nalization of H possible. Let us recall this construction. We introduce operators

P =−1
2

(
d
dx

+ x

)
, Q =

d
dx
− x

so that

H = QP+
1
2
,

and P and Q generate the three-dimensional Heisenberg algebra with the relation

[P,Q] = 1.

The structure of the physical space is clearly understood by means of this algebra.
One can find the eigenvector corresponding to the lowest eigenvalue by solving the
equation

P f (x) = 0, f (x) = e−
1
2 x2

.

Applying the operator Q to f (x), one can create other eigenvectors. This is because
H and P,Q satisfy the commutation relations

[H,P] =−P, [H,Q] = Q.

Namely, P changes the eigenvalue of H by −1 and Q by 1. We can think of this fact
as follows: the operator P annihilates a particle, and Q creates it.

Now we introduce the quantum Hamiltonian acting on the tensor product of C
2,

which is our main subject:

H =−1
2∑n

(
σ x

nσ x
n+1 +σ y

nσ
y
n+1 +Δσ z

nσ z
n+1

)
. (9.4)

Here σ x
n ,σ y

n ,σ z
n are the Pauli matrices acting on the nth tensor component. If we

consider finite, say N-fold, tensor product with the periodic condition, one can find
one parameter family of operators T (ζ ) satisfying

[
T (ζ1),T (ζ2)

]
= 0, T (ζ ) = T (1)(1+H (ζ −1)+ · · ·) . (9.5)

In particular, we have [H,T (ζ )] = 0. Suppose that a matrix

R =
(

Rε ′τ ′
ετ (ζ )

)
ε ,τ ,ε ′,τ ′=0,1

acting on C
2⊗C

2 satisfies the cubic relations

∑
ε ,τ ,η

Rετ
ε ′′τ ′′ (ζ1/ζ2)Rε ′η

εη ′′ (ζ1/ζ3)Rτ ′η ′
τη (ζ2/ζ3) (9.6)

= ∑
ε ,τ ,η

Rτη
τ ′′η ′′ (ζ1/ζ2)Rεη ′

ε ′′η (ζ1/ζ3)Rε ′τ ′
ε ,τ (ζ2/ζ3) .
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This is called the Yang–Baxter equation.

Define T =
(

T
ε ′1···ε ′N
ε ′′1 ···ε ′′N

(ζ )
)
ε ′i ,ε
′′
i =0,1

acting on ⊗N
C

2 by

T
ε ′1···ε ′N
ε ′′1 ···ε ′′N

(ζ ) = ∑
τ1,...,τN=0,1

R
τ2ε ′1
τ1ε ′′1

(ζ )Rτ3ε ′2
τ2ε ′′2

(ζ ) · · ·Rτ1ε ′N
τNε ′′N

(ζ ). (9.7)

Then, one can show the commutativity (9.5). We also remark that T (1) is the shift
operator:

T (1)(vε1 ⊗ vε2 ⊗·· ·⊗ vεN ) = vε2 ⊗ vε3 ⊗·· ·⊗ vε1 .

Drinfeld and Jimbo clarified the representation theoretical meaning of the Yang–
Baxter equation (9.6) by introducing Uq(ĝ), which is a q-deformation of the univer-
sal enveloping algebra of the affine Lie algebra

ĝ = g⊗C[t, t−1]⊗CK.

Here we explain this in the simplest setting of the two-dimensional representation
of Uq(ŝl2). The algebra is generated by six generators ei, fi, ti = qhi (i = 0,1). They
satisfy the commutation relations (in fact, a little bit more, but we omit them):

[hi,h j] = 0, [ei, f j] = δi j
ti− t−1

i

q−q−1 ,

[hi,e j] =

{
2e j if i = j

−2e j if i �= j,
[hi, f j] =

{
−2 f j if i = j

2 f j if i �= j.

The algebra has a two-dimensional representation

e0 =
(

0 0
1 0

)
, f0 =

(
0 1
0 0

)
, h0 =

(
1 0
0 −1

)
,

e1 =
(

0 0
1 0

)
, f1 =

(
0 1
0 0

)
, h1 =

(
−1 0
0 1

)
.

In this representation, the central element K = h0 +h1 is zero.
One can define the tensor product of two representations by using the algebra

map
Δ : Uq(ŝl2)→Uq(ŝl2)⊗Uq(ŝl2)

given by

Δ(ei) = ei⊗1+ ti⊗ ei,

Δ( fi) = fi⊗ t−1
i +1⊗ fi,

Δ(hi) = hi⊗1+1⊗hi.

The algebra admits one-parameter family of automorphisms:
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ρζ : Uq(ŝl2)→Uq(ŝl2)

given by
ρζ (ei) = ζei, ρζ ( fi) = ζ−1 fi, ρζ (hi) = hi.

Therefore, one can define one-parameter family of two-dimensional representations,
which we denote by (C2)ζ = Cv0⊕Cv1. When ζ = 1, we denote (C2)1 = C

2.
For generic values of ζ1,ζ2 the tensor product (C2)ζ1

⊗(C2)ζ2
is irreducible, and

it is isomorphic to (C2)ζ2
⊗(C2)ζ1

. The unique isomorphism (called the intertwiner)

R : (C2)ζ1
⊗ (C2)ζ2

→ (C2)ζ2
⊗ (C2)ζ1

is written as
R(vε ′ ⊗ vτ ′) = ∑

ε ′′,τ ′′=0,1

(vτ ′′ ⊗ vε ′′)R
ε ′τ ′
ε ′′τ ′′ .

The R-matrix has the dependence on ζ1,ζ2 through ζ1/ζ2 : R = R(ζ1/ζ2).
The Yang–Baxter equation is a consequence of the uniqueness of the intertwiner

(C2)ζ1
⊗ (C2)ζ2

⊗ (C2)ζ3
→ (C2)ζ3

⊗ (C2)ζ2
⊗ (C2)ζ1

.

The main problem is the diagonalization of the family of transfer matrices. The
quantum inverse scattering method was designed for this problem. The idea is sim-
ilar to the algebraic method for the harmonic oscillator. Namely, we proceed as
follows:

(i) find an eigenvector (reference state) Ω0;
(ii) construct an operator B(ξ ), which creates eigenvectors in the form

B(ξ1) · · ·B(ξn)Ω0 (9.8)

for an appropriate choice of ξ1, . . . ,ξn;
(iii) obtain the eigenvalue of T (ζ ) in the form ∏n

i=1 τ(ζ/ξi).
For the XXZ Hamiltonian, we can take Ω0 = v0⊗·· ·⊗ v0︸ ︷︷ ︸

N

for which T (ζ )Ω0 =

Ω0. This is because the total spin operator Sz = ∑nσ z
n commutes with H and

the subspace where Sz = N is one-dimensional.

The operator B(ζ ) = T10(ζ ) is given by

(Tab)
ε ′1···ε ′N
ε ′′1 ···ε ′′N

(ζ ) = ∑
τ1,...,τN=0,1

R
τ2ε ′1
aε ′′1

(ζ )Rτ3ε ′2
τ2ε ′′2

(ζ ) · · ·Rbε ′N
τNε ′′N

(ζ ). (9.9)

Note that the transfer matrix (9.7) is given by T = T00 +T11.
If B(ζ ) satisfies the relation

T (ζ )B(ξ ) = τ(ζ/ξ )B(ξ )T (ζ ),
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then (ii) and (iii) are true for arbitrary choice of ξ1, . . . ,ξn. This is not possible
because we are working on the finite-dimensional vector space C

2⊗·· ·⊗C
2.

The set of parameters ξ1, . . . ,ξn must satisfy a set of algebraic equations so that
the vector (9.8) really gives an eigenvector. This is called the Bethe Ansatz equa-
tions. It is difficult to solve the equations for a finite value of N.

Another difficulty in comparison to the harmonic oscillator case is that the eigen-
vector Ω0 does not necessarily give the lowest eigenvalue of H. In the region
Δ = (q+q−1)/2 <−1, the lowest eigenvalue belongs to the subspace where SZ = 0.
Therefore, we must take n in (9.8) to be large (∼N/2) in order to obtain eigenvectors
whose eigenvalues are close to the lowest.

For finite N it is not possible to overcome these difficulties completely. How-
ever, in the infinite limit N → ∞ and in the sectors where SZ is finite, the situation
simplifies and (iii) is valid without limitation for ξ1, . . . ,ξn (except |ξi|= 1).

We will explain a method for obtaining these eigenvectors, which is based on
the representation theory of Uq(ŝl2). This method is very different from the quan-
tum inverse scattering method. In fact, we find a “simple” lowest eigenvector |vac〉,
called the vacuum vector, of the renormalized transfer matrix T (∞)(ζ ) in the limit
N = ∞ such that T (∞)(ζ )|vac〉= |vac〉. Then, we create other eigenvectors by using
operators ψε(ξ ) (ε = 0,1) which satisfy the commutation relations

T (∞)(ζ )ψε(ξ ) = τ(ζ/ξ )ψε(ξ )T (∞)(ζ ). (9.10)

Namely, our method is a generalization of the algebraic method for the harmonic
oscillator.

Our approach is, however, a so-called bootstrap approach. It means we raise our-
selves in the air by pulling up the bootstraps of our shoes by our hands. By heuris-
tic argument we derive algebraic relations for renormalized operators that are valid
only in the limit N =∞. We will find the operators satisfying these relations by using
representation theory. The second step is rigorous, but the first step is like pulling
ourselves by bootstraps.

9.2 Symmetry

We prepare more facts from the representation theory of the algebra Uq(ŝl2). One
can add an operator D, to the algebra, that satisfies

[D,ei] =−ei, [D, fi] = fi, [D,hi] = 0.

There exists representations of Uq(ŝl2), which we denote by Hi (i = 0,1) with the
following characterization (i–iv):

(i) the vector space Hi is graded by the eigenspaces of D

Hi =⊕l(Hi)∞l=0 where D = l on (Hi)l ;
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(ii) the space (Hi)0 is one-dimensional and it is spanned by a vector vi called the
highest weight vector;

(iii) the highest weight vector satisfies

e jvi = 0, h jvi = δ jivi;

in particular, K = 1 on Hi;
(iv) the vector vi is cyclic, i.e., the space Hi is generated by vi by the actions of

f0, f1;
(v) the action of e0,e1, f0, f1 are locally nilpotent, i.e., for any vector v∈Hi, xNv =

0 for x = e0,e1, f0, f1 and sufficiently large N.
In application to the XXZ Hamiltonian, the following property is most impor-
tant:

(vi) there exists an intertwiner of the representations:

Φ(ζ ) : Hi→H1−i⊗ (C2)ζ . (9.11)

Namely, the following commutativity of the mappings holds:

Δ(x)◦Φ(ζ ) = Φ(ζ )◦ x for all x ∈Uq(ŝl2).

The intertwiner is unique up to normalization. For simplicity, we do not bother this
normalization in this chapter. Therefore, formulas are written up to finite scalar.

The key idea is the following hypothesis. We identify the semi-infinite tensor
product with H = H0⊕H1:

· · ·⊗C
2⊗C

2 �H , (9.12)

and the action of the semi-infinite transfer matrix with the intertwiner Φ(ζ ):

T (∞/2)(ζ )
(
· · ·⊗ vε ′2 ⊗ vε ′1

)
= ∑

τ1,τ2,...

(
· · ·⊗ vε ′′2 ⊗ vε ′′1 ⊗ vε

)
R
τ1ε ′1
εε ′′1

(ζ )Rτ2ε ′2
τ1ε ′′2

(ζ ) · · · .

The reason of the hypothesis (9.12) is as follows. Repeated application of the
intertwiners Φ(1) gives the isomorphisms of representations.

H
�→H ⊗C

2 �→H ⊗C
2⊗C

2 �→H ⊗C
2⊗C

2⊗C
2 �→·· · .

In the infinite limit, we have (9.12). Of course this is not a proof of any mathemat-
ical statement. However, it gives us a possibility of constructing the renormalized
Hamiltonian in the language of Uq(ŝl2).

Now, the question is how to understand the whole infinite tensor product

· · ·⊗C
2⊗C

2⊗C
2⊗C

2 · · · .

Define an anti-automorphism of Uq(ŝl2):
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b : Uq(ŝl2)→Uq(ŝl2),

b(ei) = qt−1
i ei, b( fi) = q−1 fiti, b(ti) = t−1

i .

Let M be a Uq(ŝl2)-module. The anti-automorphism b defines an action of Uq(ŝl2)
on the dual space. Let us denote the dual space with this action by M∗b. The dual
space of tensor product is given by the opposite tensor product of dual spaces:

(M1⊗M2)∗b �M∗b2 ⊗M∗b1 .

In particular, we have an isomorphism

(C2)ζ � (C2)∗bζ , vε �→ v∗−ε ,

where v∗ε is the dual basis to vε . We identified one half of the infinite tensor product
with H (9.12). The other half of infinite tensor product is identified with H ∗b:

C
2⊗C

2⊗·· · � (C2)∗b⊗ (C2)∗b⊗·· · � (· · ·⊗C
2⊗C

2)∗b �H ∗b.

Thus we have a representation theoretical picture

· · ·⊗C
2⊗C

2⊗C
2⊗C

2 · · · �H ⊗H ∗b.

All these are heuristic arguments, and we need some justification (if not a mathe-
matical proof). Especially, we should answer why the semi-infinite space is a direct
sum of two irreducible representations.

We restrict our consideration to the region of the parameter q with −1 < q < 0,
or equivalently Δ < −1. In the region |Δ | < 1, i.e., |q| = 1, the representation the-
oretical interpretation is not valid. In the extreme limit q = 0−, i.e., Δ = −∞, the
Hamiltonian simplifies. Namely, only the σ z terms survive:

H(−∞)∼∑
n
σ z

nσ z
n+1.

This is already diagonal. The lowest eigenvalue of this diagonal Hamiltonian is
given by one of the following two vectors:

· · ·⊗ v∓⊗ v±⊗ v∓⊗ v± · · · .

The eigenvalue is −∞. We renormalize this value to zero. Then, all the other finite
eigenvalues are obtained from the simple tensor product

· · ·⊗ vε2 ⊗ vε1 ⊗ vε0 ⊗ vε−1 · · · ,

where εn = (−1)i+n (i = 0,1) for n→ ∞, and εn = (−1) j+n ( j = 0,1) for n→−∞,
separately. The choice of i = 0,1 corresponds to Hi, and j = 0,1 to H ∗b

j . We denote
the boundary condition in this sense by (i, j).
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Let us interpret the transfer matrix T (ζ ) in the limit N = ∞. Recall that T (1) is
the shift operator. Therefore, T (ζ ), in general, changes the boundary condition (i, j)
to (1− i,1− j). Therefore, we want to find the vacuum vectors |vac〉i satisfying the
boundary condition (i, i) such that T (ζ )|vac〉i = t0(ζ )|vac〉1−i. In the limit N = ∞,
the eigenvalue t0(ζ ) is actually divergent. We need renormalization. Let us define
the renormalized transfer matrix T (∞)(ζ ) starting from the identification (9.12). As
an operator in End(H ⊗H ∗) we have

T (∞)(ζ ) =∑
ε
Φε(ζ )⊗Φ−ε(ζ )t .

Here
Φ(ζ )t : (C2)ζ ⊗H ∗ � (H ⊗ (C2)ζ )∗ →H ∗

is the transpose of Φ(ζ ). We think of T (∞)(ζ ) as

T (∞)(ζ ) : H ⊗H ∗Φ(ζ )⊗id→ H ⊗ (C2)ζ ⊗H ∗id⊗Φ(ζ )t

→ H ⊗H ∗.

It is convenient to use the canonical isomorphism

H ⊗H ∗ � End(H ).

An operator A⊗B ∈ End(H )⊗End(H ∗) � End(H ⊗H ∗) is translated to an
operator in End(End(H )) mapping f ∈ End(H ) to A◦ f ◦B ∈ End(H ). Thus, the
renormalized transfer matrix is defined as

T (∞)(ζ ) f =∑
ε
Φε(ζ )◦ f ◦Φ−ε(ζ ).

Now, we proceed to the diagonalization of T (∞)(ζ ). We need a few more facts
from representation theory:

(vii) the intertwiners obey the homogeneity with respect to the grading by D:

ξ−DΦε(ζ )ξD = Φε(ζ/ξ );

(viii) and also the “unitarity” relation

∑
ε
Φε(−q−1ζ )Φ−ε(ζ ) = id;

(ix) another kind of intertwiner exists:

Ψ ∗(ξ ) : (C2)ξ ⊗H →H

(x) and satisfies the commutation relation

Φε(ζ )Ψ ∗ε ′(ξ ) = τ(ζ/ξ )Ψ ∗ε ′(ξ )Φε(ζ ).
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Now we define |vac〉i ∈ End(Hi) by

|vac〉i = (−q)D.

Then we have

T (∞)(ζ )|vac〉i = ∑
ε
Φε(ζ )◦ (−q)D ◦Φ−ε(ζ )

= (−q)D ◦∑
ε
Φε(−q−1ζ )◦Φ−ε(ζ )

= (−q)D

= |vac〉1−i.

We have obtained the vacuum vectors.
The particles are created by the operators ψε(ξ ) ∈ End(End(H )) defined by

ψε(ξ ) f =Ψε(ξ )◦ f .

We only check (9.10), and it is straightforward from the commutation relation (x).
The method we have explained in this chapter is originally obtained in [1]. A full

and expository account is available in [2].

References

1. B. davies, O. Foda, M. Jimbo, T. Miwa, and A. Nakayashiki, Diagonalization of the XXZ
Hamiltonian by vertex operators, Commun. Math. Phys. 151, 89–153, 1993. 323

2. M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models CBMS Regional Con-
ference Series in Mathematics No. 86, AMS, 1995. 323



Index

p-adic, 90, 112, 113
Painlevé
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Poincaré-Lindstedt
perturbation, 217

Poisson
brackets, 28–30
distribution, 123
non-degenerate, 28
weight, 123

Riccati
equation, 154, 247

Riemann
surfaces, 120, 123, 127

Schrödinger
continuous, 123
discrete, 128
factorized, 128
finite-gap, 121
low-dimensional, 120
nonlinear, 216, 225, 226, 231
one-dimensional, 120
operator, 119–123, 126–128, 136, 137
quasi-periodic, 119

Stokes
approximation, 221

Toda
chain, 122
lattice, 125, 130

Veselov-Novikov
equation, 3

Virasoro
algebra, 186

Volterra
chain, 81

XXZ



Index 327

Hamiltonian, 318, 320
a-type

soliton, 300
acoustic

ion, 177, 199, 201, 203–207
affine

manifold, 307
algebra

Heisenberg, 316
Jordan, 55–57, 79
Virasoro, 186
associative, 58, 60–62
commutative, 56, 307
differential, 20, 32
enveloping, 317
group, 104
left-symmetric, 57, 58
non-associative, 56, 60
non-commutative, 90, 104
operator, 315

amplitude
bounded, 223
harmonic, 235
oscillations, 217

analogs
discrete, 133, 134
multi-dimensional, 133

anharmonic
oscillator, 217, 221

anisotropic
equations, 83

ansatz
Bethe, 319

approximate
integrals, 177, 180, 188
symmetries, 176, 177, 186, 190
symmetry, 90, 186, 187

approximation
Diophantine, 89, 94, 114
Stokes, 221
integrable, 176

arithmetic
progressions, 160

associative
algebra, 58, 60–62

asymptotically
integrable, 188, 242

asymptoticity
uniform, 219

asymptotic
behaviour, 239
equations, 176
integrability, 176, 177, 183, 205, 209
long-time, 215

perturbation, 177, 178
uniformly, 219, 238

b-type
solitons, 293

bilinearizing
transformation, 280, 291

bilinear
Hirota, 177, 208, 279–282, 289, 290, 307
derivative, 279, 283
equations, 29, 283, 299, 306, 310
representation, 304

binomial
noncommutative, 91

bivariate
polynomials, 100

black-white
colored, 135
triangulation, 133–135

black
edge, 136
factorization, 131
triangles, 134
triangle, 131–135

bounded
amplitude, 223
functions, 126
function, 120
triangulated, 135

brackets
Poisson, 28–30

branch
dispersion, 242

breather
soliton, 294

breathing
frequency, 294

bright
soliton, 294

canonical
densities, 43–45, 51, 63, 114
density, 45, 46, 51
isomorphism, 322
transformation, 30, 31

chain
Darboux, 122, 123
Lagrangian, 169
Laplace, 125–127, 130
Toda, 122
Volterra, 81
cyclic, 120, 122, 123
dressing, 159, 162, 164–167, 172
equations, 164, 167–169, 171
integrable, 19
quasi-cyclic, 127



328 Index

semi-cyclic, 127
classical

mechanics, 315
closure

quasi-periodic, 158
coboundary

operator, 134
colored

black-white, 135
combinatorial

geodesics, 134
commutative

algebra, 56, 307
differential, 92
group, 119
hierarchy, 105
symmetries, 44, 185

comoving
frame, 287

compact
manifold, 127

complex
conjugated, 221
derivative, 126
simplicial, 136
vector, 224, 242

components
homogeneous, 99

conjugated
operator, 33, 68

constraints
differential, 149–151

constraint
isospectrality, 143

contact
transformation, 74

continuous
Schrödinger equation, 120, 123

coordinate
frame, 287

cosmetic
rescalings, 227

creation
operator, 124

curvature
discrete, 129, 133

curve
projective, 114

cyclic
chain, 120, 122, 123
permutation, 62

dark
soliton, 295, 296, 298

data

Cauchy, 135
de-coupled

equations, 54
deformation

isospectral, 119
degenerated
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Fréchet, 24, 33, 37, 40–42, 45, 52–54, 61, 64,

68, 69, 237, 239
Frobenious, 28

Galilean, 38
Gardner, 1
Gardner-Miura, 177, 187, 193, 194
Garnier, 142
gauge, 156, 163, 224, 236

Gel’fand, 65, 119
Gel’fand-Dikii, 91
genus, 123, 126, 127
ghost, 300–302
ghost-plane-waves, 303
grading, 322
graphs, 136
Green, 1
groundstates, 128, 132

Habibullin, 19
Hamiltonian, 28–32, 43, 120, 151, 152,

167–171, 185, 225, 315, 316, 318, 320,
321

Harry-Dim, 50
Heisenberg, 316
hierarchy, 40, 41, 43–46, 54, 55, 66, 70, 72,

75, 89, 95, 102, 103, 105, 119, 120, 127,
137, 146, 147, 150, 151, 153, 172, 222,
224, 238–241, 303–305

Hilbert, 84
Hirota, 130, 177, 201, 208, 209, 279–282, 284,

289, 290, 307, 311, 312
Hirota-Satsuma, 284, 298, 299
Hirota-Satsuma-Ito, 284, 305
horocycles, 134
HSI, 284, 308, 310, 311
hypersurface, 107

Ibragimov-Shabat, 104, 105
inelasticity, 176, 197
injectiveness, 97, 115, 116
instanton, 121
integrability, 19, 23, 29, 46–48, 54–56, 65,

70–73, 75, 90, 98, 114, 119, 125, 136,
176, 177, 180, 183, 193, 205, 206,
209, 215–217, 222, 224–226, 231–234,
238–240, 242, 243, 289, 306, 307, 315

intertwiner, 318, 320, 322
invariance, 164, 167, 281, 282, 286, 290
irreducible, 57, 94, 107, 114, 115, 307, 318,

321
isospectral, 119, 122
isospectrality, 143
IST, 280

Jacobi, 21–25, 37, 83, 101
Jacobian, 221
Jimbo, 304, 317
Jordan, 55–59, 79, 80, 82

Kadomtsev-Petviashvili, 284, 309
Kaup, 2, 193, 304
Kaup-Kupershmidt, 79, 90, 95, 103–105



338 Index

kink, 291
Kirchhoff, 30, 31
Klein-Gordon, 291
Kodama, 4, 13, 225
Korteweg-de Vries, 33, 42, 44, 76, 152, 279
Kowalewski, 30–32
KPI, 284
KPII, 284, 311, 312
Krichever, 76
Kruskal, 1
Kulish, 6
Kupershmidt, 104, 105

Lagrange, 29, 164, 184
Lagrangian, 19, 151, 168–172
Landau, 127, 128, 133
Landau-Lifshitz, 77, 152, 171
Laplace, 120, 124–131, 133, 137
Laplace-Beltrami, 134, 136
Lax, 1, 48, 95, 142, 150, 157–159, 164–166,

243, 306
Lech, 110
left-symmetric, 57, 58
Leibnitz, 20, 67, 281
Lenard, 8
Levitan, 120
Lindstedt, 218
linearisation, 26, 89
Liouville, 28, 315

Mahler, 110
Manakov, 3, 59, 298
manifold, 127, 307
Marchant, 207
Marchenko, 120
Marikhin, 19
master-symmetry, 146, 153
mechanics, 28, 123, 164, 315
Melnikov’s, 311
Meshkov, 77, 114
Mikhailov, 91, 225, 306
Miura, 1, 48, 51, 150, 177, 187, 193
Miwa, 304
module, 96, 97, 115, 116, 321
Monge-Ampere, 282
multilinearity, 282
multiplicity, 110, 111, 132
multisoliton, 121, 176, 243, 279, 280, 285,

295, 298, 307, 312

Newell, 2
NLS, 59, 76, 80, 147, 150, 152, 153, 216, 217,

223, 231, 233, 237–240, 242, 279, 294,
297–301, 311

nonintegrability, 46, 201, 207
Nonlinear Schrödinger equation, 263
nonlinearisation, 310
nonlocality, 137
normalization, 202, 203, 320
Novikov, 2, 4, 76
Novikov-Veselov, 137

obstacle, 45, 133, 176, 177, 187, 188, 190,
191, 193, 195, 197, 201, 203, 204, 206,
207, 209

obstruction, 242
ODE, 23, 26, 36, 81, 153, 217
Olver, 23
one-cocycle, 137
operator

recursion, 196
optics, 217, 223
oscillator, 121–123, 160, 217, 218, 221, 315,

318, 319

p-adic, 114
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