
15

Efficient Clustering for Orders

Toshihiro Kamishima and Shotaro Akaho

National Institute of Advanced Industrial Science and Technology (AIST),
AIST Tsukuba Central 2, Umezono 1–1–1, Tsukuba, Ibaraki, 305–8568 Japan
mail@kamishima.net
http://www.kamishima.net/
s.akaho@aist.go.jp

Abstract. Lists of ordered objects are widely used as representational forms. Such ordered ob-
jects include Web search results or best-seller lists. Clustering is a useful data analysis technique
for grouping mutually similar objects. To cluster orders, hierarchical clustering methods have
been used together with dissimilarities defined between pairs of orders. However, hierarchical
clustering methods cannot be applied to large-scale data due to their computational cost in terms
of the number of orders. To avoid this problem, we developed an k-o’means algorithm. This al-
gorithm successfully extracted grouping structures in orders, and was computationally efficient
with respect to the number of orders. However, it was not efficient in cases where there are too
many possible objects yet. We therefore propose a new method (k-o’means-EBC), grounded on
a theory of order statistics. We further propose several techniques to analyze acquired clusters of
orders.

15.1 Introduction

The term order indicates a sequence of objects sorted according to some property. Such
orders are widely used as representational forms. For example, the responses from Web
search engines are lists of pages sorted according to their relevance to queries. Best-
seller lists, which are item-sequence sorted according to sales volume, are used on many
E-commerce sites.

Orders have also been exploited for sensory test of human respondents’ sensations,
impressions, or preference. For such a kind of surveys, it is typical to adopt a scoring
method. In this method, a respondents’ sensation is measured using a scale on which
extremes are represented by antonymous words. One example is a five-point-scale on
which 1 and 5 indicate don’t prefer and prefer, respectively. If one very much prefers
an apple, he/she rates the apple as 5. Though this scoring method is widely used, it
is not the best way for all types of sensory test. For example, as pointed out in [1],
a trained expert, e.g., a wine taster, can maintain a consistent mapping from his/her
sensation level to rating score throughout a given session. However, users’ mappings
generally change for each response, especially if the intervals between responses are
long. Hence, even if two respondents rate the same item at the same score, their true
degrees of sensation may not be the same. When effects of such demerits cannot be
ignored, a ranking method is used. In this method, respondents show their degree of
sensation by orders, i.e., object sequences according to the degree of a target sensation.

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 261–279.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

262 T. Kamishima and S. Akaho

In this case, respondents’ sensation patterns are represented by orders, and analysis
techniques for orders are required.

Orders are also useful when the absolute level of observations cannot be calibrated.
For example, when analyzing DNA microarray data, in order that the same fluoresce
level represents the same level of gene expression, experimental conditions must be
calibrated. However, DNA databases may consist of data sampled under various condi-
tions. Even in such cases, the higher level of fluoresce surely corresponds to the higher
level of gene expression. Therefore, by treating the values in the microarray data as or-
dinal values, non-calibrated data would be processed. Fujibuchi et al. adopted such use
of orders in searching a gene expression database for similar cell types [2].

And clustering is the task of partitioning a sample set into clusters having the prop-
erties of internal cohesion and external isolation [3]. This method is a basic tool for
exploratory data analysis. Clustering methods for orders are useful for revealing the
group structure of data represented by orders such as those described above.

To cluster a set of orders, classical clustering has been mainly used [4, chapter 2].
In these studies, clustering methods were applied to ordinal data of a social survey,
sensory test, etc. These data sets have been small in size; the number of objects to be
sorted and the length of orders are at most ten, and the number of orders to be clustered
are at most thousands. This is because an scoring method has been used to acquire
responses for a large-scale survey. Responses can easily be collected by requesting for
respondents to mark on rating scales that are printed on paper questionnaire forms.
On the other hand, using printed questionnaire forms is not appropriate for ranking
method, because respondents must rewrite entire response orders when they want to
correct them. Therefore, in a ranking method, respondents generally reply by sorting
real objects. For example, respondents are requested to sort glasses of wine according
to their preference. However, it would be costly to prepare so many glasses. Due to this
reason, ranking method has been used for a small-scale survey, even if its advantage
to an scoring method is known as described above. But now, adoption of computer
interface clear this obstacle in using a ranking method. Respondents can sort virtual
objects instead of real objects. Further, methods to implicitly collect preference orders
have proposed [5, 6]. These technical progress has made it easier to collect the large
number of ordinal data.

We can now collect a large-scale data that consist of orders. However, current tech-
niques for clustering orders are not fully scalable. For example, to cluster a set of orders,
dissimilarities are first calculated for all pairs of orders, and agglomerative hierarchical
clustering techniques are applied. This approach is computationally inefficient, because
computational cost of agglomerative hierarchical clustering is O(N2 log(N))) under
non-Euclidean metric [7], where N is the number of orders to be clustered. To alleviate
this inefficiency in terms of N , we proposed a k-means-type algorithm k-o’means in
our previous work [8]. The computational complexity was reduced to O(N) in terms of
the number of orders. Though this method successfully extracted a grouping structure in
a set of orders, it was not efficient yet, if the number of possible objects to be sorted was
large. In this paper, to alleviate this inefficiency, we propose a new method, k-o’means-
EBC. Note that EBC means Expected Borda Count, which is a classic method to
find an order so as to be as concordant as possible with a given set of orders. And

15 Efficient Clustering for Orders 263

incompleteness in orders are processed based on a theory of order statistics. Addition-
ally, we propose several methods for interpreting the clusters of orders.

We formalize this clustering task in Section 15.2. Our previous and new cluster-
ing methods are presented in Section 15.3. The experimental results are shown in
Sections 15.4 and 15.5. Section 15.6 summarizes our conclusions.

15.2 Clustering Orders

In this section, we formalize the task of clustering orders. We start by defining our ba-
sic notations regarding orders. An object, entity, or substance to be sorted is denoted
by xj . The universal object set, X∗, consists of all possible objects, and L∗ is defined
as |X∗|. The order is denoted by O = xa� · · · �xj� · · · �xb. Note that subscript j
of x doesn’t mean “The j-th object in this order,” but that “The object is uniquely in-
dexed by j in X∗.” The order x1�x2 represents “x1 precedes x2.” An object set X(Oi)
or simply Xi is composed of all objects in the order Oi. The length of Oi, i.e., |Xi|,
is shortly denoted by Li. An order of all objects, i.e., Oi s.t. X(Oi)=X∗, is called
a complete order; otherwise, the order is incomplete. Rank, r(Oi, xj) or simply rij ,
is the cardinal number that indicates the position of the object xj in the order Oi. For
example, for Oi=x1�x3�x2, r(Oi, x2) or ri2 is 3. Two orders, O1 and O2, are concor-
dant if ordinal relations are consistent between any object pairs commonly contained in
these two orders; otherwise, they are discordant. Formally, for two orders, O1 and O2,
consider an object pair xa and xb such that xa, xb∈X1∩X2, xa �=xb. We say that the
orders O1 and O2 are concordant w.r.t. xa and xb if the two objects are placed in the
same order, i.e., (r1a − r1b)(r2a − r2b) ≥ 0; otherwise, they are discordant. Further,
O1 and O2 are concordant if O1 and O2 are concordant w.r.t. all object pairs such that
xa, xb∈X1∩X2, xa �=xb.

A pair set Pair(Oi) is composed of all the object pairs xa�xb, such that xa pre-
cedes xb in the order Oi. For example, from the order O1=x3�x2�x1, three object
pairs, x3�x2, x3�x1, and x2�x1, are extracted. For a set of orders S, the Pair(S) is
composed of all pairs in Pair(Oi) of Oi ∈ S. Note that if the same object pairs are
contained in numbers of Pair(Oi), these pairs are multiply added into the Pair(S). For
example, if the same object pairs x1�x2 are extracted from O5 and O7 in S, both two
ordered pairs x1�x2 are multiply included in Pair(S).

The task of clustering orders is as follows. A set of sample orders, S = {O1, O2, . . . ,
ON}, N ≡ |S|, is given. Note that sample orders may be incomplete, i.e., Xi �=Xj , i �=
j. In addition, Oi and Oj can be discordant. The aim of clustering is to divide the
S into a partition. The partition, π = {C1, C2, . . . , CK}, K = |π|, is a set of all
clusters. Clusters are mutually disjoint and exhaustive, i.e., Ck ∩ Cl = ∅, ∀k, l, k �= l
and S = C1∪C2∪· · ·∪CK . Partitions are generated such that orders in the same cluster
are similar (internal cohesion), and those in different clusters are dissimilar (external
isolation).

15.2.1 Similarity between Two Orders

Clusters are defined as a collection of similar orders; thus, the similarity measures be-
tween two orders are required. Spearman’s ρ [9, 4] is one such measure, signifying the

264 T. Kamishima and S. Akaho

correlation between ranks of objects. The ρ between two orders, O1 and O2, consisting
of the same objects (i.e., X ≡ X(O1) = X(O2)) is defined as:

ρ =

∑
xj∈X

(
r1j − r̄1

)(
r2j − r̄2

)

√∑
xj∈X

(
r1j−r̄1

)2
√∑

xj∈X

(
r2j−r̄2

)2
,

where r̄i = (1/L)
∑

xj∈X rij , L=|X |. If no tie in rank is allowed, this can be calculated
by the simple formula:

ρ = 1 −
6

∑
xj∈X

(
r1j − r2j

)2

L3 − L
. (15.1)

The ρ becomes 1 if the two orders are concordant, and −1 if one order is the reverse of
the other order. Observing Equation (15.1), this similarity depends only on the term

dS(O1, O2) =
∑

xj∈X

(r1j − r2j)
2
. (15.2)

This is called Spearman’s distance. If two or more objects are tied, we give the same
midrank to these objects [4]. For example, consider an order x5�x2∼x3 (“∼” denotes
a tie in rank), in which x2 and x3 are ranked at the 2nd or 3rd positions. In this case, the
midrank 2.5 is assigned to both objects.

Another widely used measure of the similarity of orders is Kendall’s τ . Intuitively,
this is defined as the number of concordant object pairs subtracted by that of discordant
pairs, and then it is normalized. Formally, Kendall’s τ is defined as

τ = 1
L(L−1)/2

∑

xa�xb∈Pair(O1)

sgn
(
(r1a−r1b)(r2a−r2b)

)
, (15.3)

where sgn(x) is a sign function that takes 1 if x>0, 0 if x=0, and −1 otherwise. Many
other types of similarities between orders have been proposed (see [4, chapter 2]), but
the above two are widely used and have been well studied.

In this paper, we adopt Spearman’s ρ rather than Kendall’s τ because of the following
reasons: First, these two measures have similar properties. Both measures of similarities
between two random orders asymptotically follow normal distribution as the length
of the orders grows. Additionally, these are highly correlated, because the difference
between the two measures is bounded by Daniels’ inequality [9]:

−1 ≤ 3(L + 2)
L − 2

τ − 2(L + 1)
L − 2

ρ ≤ 1.

Second, Spearman’s ρ can be calculated more quickly. All of the object pairs have to
be checked to derive Kendall’s τ , so O(L2) time is required. In the case of Spear-
man’s ρ, the most time consuming task is sorting objects to decide their ranks; thus, the
time complexity is O(L log L). Further, the central orders under Spearman distance is
tractable, but the derivation under Kendall’s distance is NP-hard [10].

For the clustering task, distance or dissimilarity is more useful than similarity. We
defined a dissimilarity between two orders based on ρ:

15 Efficient Clustering for Orders 265

dρ(O1, O2) = 1 − ρ(O1, O2). (15.4)

Since the range of ρ is [−1, 1], this dissimilarity ranges [0, 2]. This dissimilarity
becomes 0 if the two orders are concordant.

15.3 Methods

Here, we describe exiting clustering methods and our new clustering method.

15.3.1 Hierarchical Clustering Methods

In the literature of psychometrics, questionnaire data obtained by a ranking method have
been processed by traditional clustering techniques [4]. First, for all pairs of orders in
S, the dissimilarities in Section 15.2.1 are calculated, and a dissimilarity matrix for S is
obtained. Next, this matrix can be clustered by standard hierarchical clustering methods,
such as the group average method. In these survey researches, the size of the processed
data set is rather small (N < 1000, L∗ < 10, Li < 10). Therefore, hierarchical
clustering methods could cluster order sets, even though the time complexity of these
methods is O(N2 log(N)) under non-Euclidean metric [7] and is costly. However, these
method cannot be applied to a large-scale data, due to their computational cost.

Additionally, when the number of objects, L∗, is large, it is hard for respondents
to sort all objects in X∗. Therefore, sample orders are generally incomplete, i.e.,
X(Oi) ⊂ X∗, the dissimilarities cannot be calculated because the dissimilarity mea-
sures are defined between two orders consisting of the same objects. One way to deal
with incomplete orders is to introduce the notion of an Incomplete Order Set (IOS)1 [4],
which is defined as a set of all possible complete orders that are concordant with the
given incomplete order. Given the incomplete order O that consists of the object set X ,
an IOS is defined as

ios(O) = {O∗
i |O∗

i is concordant with O, X(O∗
i) = X∗}.

This idea is not fit for large-scale data sets because the size of the set is (L∗!/L!), which
grows exponentially in accordance with L∗. Additionally, there are some difficulties in
defining the distances between the two sets of orders. One possible definition is to adopt
the arithmetic mean of the distances between orders in each of the two sets. However,
this is not distance because d(iosa, iosa) may not be 0. Therefore, more complicated
distance, i.e., Hausdorff distance, has to be adopted.

Since the above IOS cannot be derived for a large-scale data set, we adopted the
following heuristics in this paper. In such cases, the dissimilarity between the orders is
determined based on the the objects included in both. Take, for example, the following
two orders:

O1 =x1�x3�x4�x6, O2 =x5�x4�x3�x2�x6.

1 In [4], this notion is referred by the term incomplete ranking, but we have adopted IOS to insist
that this is a set of orders.

266 T. Kamishima and S. Akaho

From these orders, all objects that are not included in both orders are eliminated. The
generated orders become:

O′
1 = x3�x4�x6, O′

2 = x4�x3�x6.

The ranks of objects in these orders are:

r(O′
1, x3)=1, r(O′

1, x4)=2, r(O′
1, x6)=3;

r(O′
2, x3)=2, r(O′

2, x4)=1, r(O′
2, x6)=3.

Consequently, the Spearman’s ρ becomes

ρ = 1 −
6
(
(1−2)2 + (2−1)2 + (3−3)2

)

33 − 3
= 0.5.

If no common objects exists between the two orders, ρ = 0 (i.e., no correlation).

15.3.2 k-o’means-TMSE (Thurstone Minimum Square Error)

In [8], we proposed a k-o’means algorithm as a clustering method designed to process
orders. To differentiate our new algorithm described in detail later, we call it by a k-
o’means-TMSE algorithm.

A k-o’means-TMSE in Figure 15.1 is similar to the well-known k-means algorithm
[11]. Specifically, an initial cluster is refined by the iterative process of estimating
new cluster centers and the re-assigning of samples. This process is repeated until no
changes in the cluster assignment is detected or the pre-defined iteration time is reached.
However, different notions of dissimilarity and cluster centers have been used to handle
orders. For the dissimilarity d(Ōk, Oi), equation (15.4) was used in step 4. As a cluster
center in step 3, we used the following notion of a central order [4]. Given a set of

Algorithm k-o’means(S, K, maxIter)
S = {O1, . . . , ON}: a set of orders
K: the number of clusters
maxIter: the limit of iteration times

1) S is randomly partitioned into a set of clusters: π = {C1, . . . , CK},
π′ := π, t := 0.

2) t := t + 1, if t > maxIter goto step 6.
3) for each cluster Ck ∈ π,

derive the corresponding central order Ōk .
4) for each order Oi in S,

assign it to the cluster: arg minCk d(Ōk, Oi).
5) if π = π′ then goto step 6; else π′ := π, goto step 2.
6) output π.

Fig. 15.1. k-o’means algorithm

15 Efficient Clustering for Orders 267

orders Ck and a dissimilarity measure between orders d(Oa, Ob), a central order Ōk is
defined as the order that minimizes the sum of dissimilarities:

Ōk = arg min
O

∑

Oi∈Ck

d(O, Oi). (15.5)

Note that the order Ōk consists of all the objects in Ck, i.e., XCk
= ∪Oi∈Ck

X(Oi).
The dissimilarity d(Ōk, Oi) is calculated over common objects as in Section 15.3.1.
However, because Xi ⊆ X(Ōk), the dissimilarity can always be calculated over Xi.
Unfortunately, the optimal central order is not tractable except for a special cases. For
example, if using a Kendall distance, the derivation of central orders is NP-hard even if
all sample orders are complete [10].

Therefore, many approximation methods have been developed. However, to use as a
sub-routine in a k-o’means algorithm, the following two constraints must be satisfied.
First, the method must deal with incomplete orders that consist of objects randomly
sampled from X∗. In [12], they proposed a method to derive a central order of top k
lists, which are special kinds of incomplete orders. Top k list is an order that consists
of the most preferred k objects, and the objects that are not among the top k list are
implicitly ranked lower than these k objects. That is to say, the top k objects of a hidden
complete order are observed. In our case, objects are randomly sampled, and such a
restriction is not allowed. Second, the method should be executed without using iterative
optimization techniques. Since central orders are derived K times in each loop of the
k-o’means algorithm, the derivation method of central orders would seriously affect
efficiency if it adopts the iterative optimization.

To our knowledge, the method satisfying these two constraints is the following one
to derive the minimum square error solution under a generative model of Thurstone’s
law of comparative judgment [13]. Because we used this method to derive central or-
ders, we call this clustering algorithm by the k-o’means-TMSE (Thurstone Minimum
Square Error) algorithm. We describe this method for deriving central orders. First, the
probability Pr[xa � xb] is estimated. The pair set of Pair(Ck) in Section 15.2 is gen-
erated from Ck in step 3 of k-o’means-TMSE. Next, we calculate the probabilities for
every pair of objects in Ck:

Pr[xa � xb] =
|xa � xb| + 0.5

|xa � xb| + |xb � xa| + 1
,

where |xa � xb| is the number of the object pairs, xa � xb, in the Pair(Ck). These
probabilities are applied to a model of Thurstone’s law of comparative judgment. This
model assumes that scores are assigned to each object xl, and an order is derived by
sorting according to these scores. Scores follow a normal distribution; i.e., N(μl, σ),
where μl is the mean score of the object xl, and σ is a common constant standard
deviation. Based on this model, the probability that object xa precedes the xb is

Pr[xa�xb] =
∫ ∞

−∞
φ(

t − μa

σ
)
∫ t

−∞
φ(

u − μb

σ
)du dt

= Φ

(
μa − μb√

2σ

)

, (15.6)

268 T. Kamishima and S. Akaho

where φ(·) is a normal distribution density function, and Φ(·) is a normal cumulative
distribution function. Under the minimum square error criterion of this model [14], μ′

l,
which is a linearly transformed image of μl, is analytically derived as

μ′
l =

1
|XCk

|
∑

x∈XCk

Φ−1(Pr[xl � x]
)
, (15.7)

where XCk
=

⋃
Oi∈Ck

Xi. The value of μ′
l is derived for each object in XCk

. Finally,
the central order Ōk can be derived by sorting according to the corresponding μ′

l. Be-
cause the resultant partition by k-o’means-TMSE is dependent on the initial cluster, this
algorithm is run multiple times, randomly changing the initial cluster; then, the partition
minimizing the following total error is selected:

∑

Ck∈π

∑

Oi∈Ck

d(Oi, Ōk). (15.8)

This k-o’means-TMSE could successfully find the cluster structure in a set of incom-
plete orders due to the following reason: Because the dissimilarity in Section 15.3.1
was measured between two orders, the precision of the dissimilarities was unstable. On
the other hand, in the case of k-o’means-TMSE, central orders are calculated based on
the |Ck| orders. |Ck| is generally much larger than two, and much more information
is available; thus, the central order can be stably calculated. The dissimilarity between
the central orders and each sample order can be stably measured, too, because all of
objects in a sample order always exist in the corresponding central order and so the full
information in the sample orders can be considered.

However, the k-o’means-TMSE is not so efficient in terms of time and memory com-
plexity. Time or memory complexity in N and K is linear, and these are efficient. How-
ever, complexity in terms of L∗ is quadratic, and further, the constant factor is rather
large due to the calculation of the inverse function of a normal distribution. Due to this
inefficiency, this algorithm cannot be used if L∗ is large. To overcome this inefficiency,
we propose a new method in the next section.

15.3.3 k-o’means-EBC (Expected Borda Count)

To improve efficiency in computation time and memory requirement, though we used
the k-o’means framework in Figure 15.1 and the dissimilarity measure dρ of equa-
tion (15.4) in step 4 of Figure 15.1, we employed other types of derivation procedures
for the central orders.

Below, we describe this derivation method for a central order Ōk of a cluster Ck

in step 3 of Figure 15.1. We call this the Expected Borda Count(EBC) method, and
our new clustering method is called a k-o’means-EBC algorithm. The Borda Count
method is used to derive central orders from complete orders; we modified this so as to
make it applicable to incomplete orders. The Borda Count method [15] was originally
developed for determining the order of candidates in an election from a set of ranking
votes. A set of complete orders, Ck, is given. First, for each object xj in X∗, the vote
count is calculated:

15 Efficient Clustering for Orders 269

vote(xj) =
∑

Oi∈Ck

(
L∗ − rij + 1

)
.

Then, a central order is derived by sorting objects xj ∈ X∗ in descending order of
vote(xj). Clearly, this method is equivalent to sorting the objects in ascending order of
the following mean ranks:

r̄j =
1

|Ck|
∑

Oi∈Ck

rij . (15.9)

If all sample orders are complete and Spearman’s distance is used, it is known that the
central order derived by the above Borda Count optimally minimizes Equation (15.5)
[4, theorem 2.2].

Because all sample orders are complete, Spearman’s distance is proportional to the
distance dρ. Therefore, even in the case that dρ is used as dissimilarity, the optimal
central order can be derived by this Borda Count method. This optimal central order
can also be considered as a maximum likelihood estimator of the Mallows-θ model
[16]. The Mallows-θ model is a distribution model of the complete order O, and is
defined as

Pr[O; O0, θ] ∝ exp(θdS(O0, O)), (15.10)

where the parameters θ and O0 are called a dispersion parameter and a modal order,
respectively.

Unfortunately, this original Borda Count method cannot be applied to incomplete
orders. To cope with incomplete orders, we must show the facts known in the order
statistics literature. First, we assume that there is hidden complete order O∗

h which is
randomly generated. A sample order Oi ∈ Ck is generated by selecting objects from
this O∗

h uniformly at random. That is to say, from a universal object set X∗, Li objects
are sampled without replacement; then, Oi is generated by sorting these objects so as
to be concordant with O∗

h. Now we are given Oi generated through this process. In this
case, the complete order O∗

h follows the distribution:

Pr[O∗
h|Oi] =

{
Li!
L∗! if O∗

h and Oi are concordant,

0 otherwise.
(15.11)

Based on the theory of order statics from a without-replacement sample [17, sec-
tion 3.7], if an object xj is contained in Xi, the conditional expectation of ranks of
the object xj in the order O∗

h given Oi is

E[r∗j |Oi] = rij
L∗ + 1
Li + 1

, if xj ∈ Xi, (15.12)

where the expectation is calculated over all possible complete orders, O∗
h, and r∗j ≡

r(O∗
h, xj). If an object xj is not contained in Xi, the object is at any rank in the hidden

complete order uniformly at random; thus, an expectation of ranks is

E[r∗j |Oi] =
1
2
(L∗ + 1), if xj /∈ Xi. (15.13)

270 T. Kamishima and S. Akaho

Next, we turn to the case where a set of orders, Ck, consists of orders independently
generated through the above process. Each Oi ∈ Ck is first converted to a set of all com-
plete orders; thus, the total number of complete orders is L∗!|Ck|. For each complete
order, we assign weights that follow equation (15.11). By the Borda Count method, an
optimal central order for these weighted complete orders can be calculated. The mean
rank of xj (equation (15.9)) for these weighted complete orders is

E[r̄j] =
1

|Ck|
∑

Oi∈Ck

∑

O∗
h∈S(L∗)

Pr[O∗
h|Oi]r(O∗

h, xj)

=
1

|Ck|
∑

Oi∈Ck

E[r∗j |Oi], (15.14)

where S(L∗)2 is a set of all complete orders. A central order is derived by sorting
objects xj ∈ XCk

in ascending order of the corresponding E[r̄j]. Since objects are
sorted according to the means of expectation of ranks, we call this method an Expected
Borda Count (EBC).

A central order derived by an EBC method is optimal if the distance d(Oi, Ōk) is
measured by ∑

O∗
h∈S(L∗)

Pr[O∗
h|Oi]dS(O∗

h, Ōk). (15.15)

Hence, in step 4 of Figure 15.1, not dρ, but this equation (15.15) should be used. How-
ever, it is intractable to compute equation (15.15), because its computational complex-
ity is O(L∗(L∗!/Li!)). Therefore, we adopt dρ, and it empirically performed well, as
is shown later. Furthermore, if all sample orders are complete, dρ is compatible with
equation (15.15). Note that we also tried

d(Ō, Oi)
∑

xj∈X∗

(r(Ōk , xj) − E[r∗j |Oi])
2
,

but empirically, it performed poorly.
The time complexity of a k-o’means-EBC is

O
(
K max(NL̄ log(L̄), L∗ log L∗)

)
, (15.16)

where L̄ is the mean of Li over S. First, in step 3 of Figure 15.1, the K central orders
are derived. For each cluster, O((N/K)L̄) time is required for the means of expected
ranks and O(L∗ log L∗) time for sorting objects. Hence, the total time required for
deriving K central orders is O(max(NL̄, KL∗ log L∗)). Second, in step 4, N orders
are classified into K clusters. Because O(L̄ log L̄) time is required for calculating one
dissimilarity, O(NL̄ log(L̄)K) time is required in total. The number of iterations is
constant. Consequently, the total complexity becomes equation (15.16).

Note that the uniformity assumption of missing objects might look too strong. How-
ever, in the case of a questionnaire survey by ranking methods, the objects to be ranked
by respondents can be controlled by surveyors.

2 S(L∗) is equivalent to a permutation group of order L∗.

15 Efficient Clustering for Orders 271

Further, if all the sample orders are first converted into the expected rank vectors,
〈E[r∗1 |Oi], . . . , E[r∗L∗ |Oi]〉, then an original k-means algorithm is applied to these vec-
tors. One might suppose that this k-means is equivalent to our k-o’means-EBC, but
this is not the case. A k-means is different from this k-o’means-EBC in terms of the
derivation of centers; In the k-means case, the mean vectors of the expected ranks are
directly used as cluster centers; in a k-o’means case, these means are sorted and con-
verted to rank values. Therefore, in the k-means case, the centers that correspond to
the same central orders are simultaneously kept during clustering. For example, two
mean rank vectors 〈1.2, 1.5, 4.0〉 and 〈1, 5, 10〉, correspond to the same central order
x1 � x2 � x3, but these two vectors are not differentiated. On the other hand, in
a k-o’means-EBC algorithm, they are considered as equivalent, and thus we suppose
that the k-o’means-EBC algorithm can find the cluster structure reflecting the ordinal
similarities among data.

15.4 Experiments on Artificial Data

We applied the algorithms in Section 15.3 to two types of data: artificially generated
data and real questionnaire survey data. In the the former experiment, we examined
the characteristics of each algorithm. In the latter experiment of the next section, we
analyzed a questionnaire survey data on preferences in sushi.

15.4.1 Evaluation Criteria

The evaluation criteria for partitions was as follows. The same object set was divided
into two different partitions: a true partition π∗ and an estimated one π̂. To measure the
difference of π̂ from π∗, we adopted the ratio of information loss (RIL) [18], which
is also called the uncertainty coefficient in numerical taxonomy literature. The RIL is
the ratio of the information that is not acquired to the total information required for
estimating a correct partition. This criterion is defined based on the contingency table
for indicator functions [11]. The indicator function I((xa, xb), π) is 1 if an object pair
(xa, xb) are in the same cluster; otherwise, it is 0. The contingency table is a 2 × 2
matrix consisting of elements, ast, that are the number of object pairs satisfying the
condition I((xa, xb), π∗)=s and I((xa, xb), π̂)=t, among all the possible object pairs.
RIL is defined as

RIL =

∑1
s=0

∑1
t=0

ast

a··
log2

a·t
ast∑1

s=0
as·
a··

log2
a··
as·

, (15.17)

where a·t =
∑

s ast, as· =
∑

t ast, and a·· =
∑

s,t ast. The range of the RIL is [0, 1];
it becomes 0 if two partitions are identical.

15.4.2 Data Generation Process

Test data were generated in the following two steps: In the first step, we generated the
K orders to be used as central orders. One permutation (we called it a pivot) consist-
ing of all objects in X∗ was generated. The other K − 1 centers were generated by

272 T. Kamishima and S. Akaho

Table 15.1. Parameters of experimental data

1) the number of sample orders: N = 1000
2) the length of the orders: Li = 10
3) the total number of objects: L∗ = 10, 100
4) the number of clusters: K = {2, 5, 10}
5) the inter-cluster isolation: {0.5, 0.2, 0.1, 0.001}
6) the intra-cluster cohesion: {1.0, 0.999, 0.99, 0.9}

transforming this pivot. Two adjacent objects in the pivot were randomly selected and
exchanged. This exchange was repeated at specified times. By changing the number of
exchanges, the inter-cluster isolation could be controlled.

In the second step, for each cluster, constituent orders were generated. From the
central order, Li objects were randomly selected. These objects were sorted so as to
be concordant with the central order. Again, two adjacent object pairs were randomly
exchanged. By changing the number of times that objects were exchanged, the intra-
cluster cohesion could be controlled. Note that the sizes of clusters are equal.

The parameters of the data generator are summarized in Table 15.1. The differences
between orders cannot be statistically tested if Li is too short; on the other respondents
cannot sort too many objects. Therefore, we set the order length to Li = 10. Param 1–
2 are common for all the data. The total number of objects (Param 3) is set to 10 or
100. All the sample orders are complete if L∗ = 10, and these are examined in Sec-
tion 15.4.3. We examine the incomplete case (L∗ = 100) in Section 15.4.4. Param 4
was the number of clusters. It is difficult to partition if this number is large, since the
sizes of the clusters then decrease. Param 5 was the inter-cluster isolation that could
be tuned by the number of times that objects are exchanged in the first step of the data
generation process. This isolation is measured by the probability that the ρ between a
pivot and another central order is smaller than that between a pivot and a random order.
The larger the isolation, the more easily clusters are separated. Param 6 was the the
intra-cluster cohesion indicating the number of times that objects are exchanged in the
second step of the data generation process. This cohesion is measured by the probability
that the ρ between the central order and a sample one is larger than that between the
central order and a random one. The larger the cohesion, the more easily a cluster could
be detected.

For each setting, we generated 100 sample sets. For each sample set, we ran the
algorithms five times using different initial partitions; then the best partition in terms of
Equation (15.8) was selected. Below, we show the means of RIL over these sets.

15.4.3 Complete Order Case

We analyzed the characteristics of the methods in Section 15.3 by applying these to
artificial data of complete orders. The two k-o’means methods were abbreviated to
TMSE and EBC, respectively. Additionally, a group average hierarchical clustering
method using dissimilarity as described in Section 15.2.1 was tested, and we denoted

15 Efficient Clustering for Orders 273

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0010.10.20.5

AVE
TMSE

EBC

RIL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.990.9991.0

AVE
TMSE

EBC

RIL

(a) K = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0010.10.20.5

AVE
TMSE

EBC

RIL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.990.9991.0

AVE
TMSE

EBC

RIL

(b) K = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0010.10.20.5

AVE
TMSE

EBC

RIL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.990.9991.0

AVE
TMSE

EBC

RIL

(c) K = 10

Fig. 15.2. Experimental results on artificial data of complete orders
NOTE: The left charts show the variation of RIL in the inter-cluster isolation when the
intra-cluster cohesion is fixed to 0.999. The right charts show the variation of RIL in the
intra-cluster cohesion when the inter-cluster isolation is fixed to 0.2.

this result by AVE. The experimental results on artificial data of complete orders (i.e,
L∗ = 10) are shown in Figure 15.2. In Figures 15.2(a), (b), and (c), the means of RIL
are shown in cases of K = 2, 5, and 10, respectively. The left three charts show the
variation of RIL in the inter-cluster isolation when the intra-cluster cohesion is fixed
to 0.999. The right three charts show the variation of RIL in the intra-cluster cohesion
when the inter-cluster isolation is fixed to 0.2.

As expected, the more inappropriate clusters were obtained when the inter-cluster
isolation or the intra-cluster cohesion decreased and the number of clusters increased.

274 T. Kamishima and S. Akaho

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0010.10.20.5

AVE
TMSE

EBC

RIL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.990.9991.0

AVE
TMSE

EBC

RIL

(a) K = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0010.10.20.5

AVE
TMSE

EBC

RIL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.990.9991.0

AVE
TMSE

EBC

RIL

(b) K = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0010.10.20.5

AVE
TMSE

EBC

RIL

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.990.9991.0

AVE
TMSE

EBC

RIL

(c) K = 10

Fig. 15.3. Experimental results on artificial data of incomplete orders

NOTE: See note in Figure 15.2.

We begin with the variation of estimation performance according to the decrease of
intra-cluster cohesion. If the cohesion is 1, sample orders are exactly concordant with
their corresponding true central orders. In this trivial case, the AVE method succeeds
almost perfectly in recovering the embedded cluster structure. Because the dissimilari-
ties between sample orders are 0 if and only if they are in the same cluster, this method
could lead to perfect clusters. Though both the EBC and TMSE methods found almost
perfect clusters in the K=2 case, the performance gradually worsened when K in-
creased. In a k-o’means clustering, a central order is chosen from the finite set, S(L∗).
This is contrasted to the fact that a domain of centers is an infinite set in the clustering

15 Efficient Clustering for Orders 275

of real value vectors. Hence, the central orders of two clusters happen to agree, and one
of these clusters is diminished during execution of the k-o’means. As the increase of
K , clusters are merged with higher probability. For example, in the EBC case, when
K = 2 and K = 5, clusters are merged in 7% and 35% of the trials, respectively.
Such occurrence of merging degrades the ability of recovering clusters. As the cohe-
sion increases, the performance of AVE became more drastically worse than the other
two methods. Furthermore, in terms of the inter-cluster isolation, the performance of
AVE became drastically worse as K increased, except for the trivial case in which the
cohesion was 1. In the AVE method, the determination to merge clusters is based on
local information, that is, a pair of clusters. Hence, the chance that orders belonging to
different clusters would happen to be merged increases when orders are broadly dis-
tributed. When comparing EBC and TMSE, these two methods are almost completely
the same.

15.4.4 Incomplete Order Case

We move to the experiments on artificial data of incomplete orders (i.e, L∗ = 100).
The results are shown in Figure 15.3. The meanings of the charts are the same as in
Figure 15.2.

TMSE was slightly better than EBC when K = 2 and K = 5 cases; but EBC
overcame TMSE when K = 10. AVE was clearly the worst. We suppose that this
advantage of the k-o’means is due to the fact that the dissimilarities between order
pairs could not be measured precisely if the number of objects commonly included in
these two orders is few. Furthermore, the time complexity of AVE is O(N2 log N),
while the k-o’means algorithms are computationally more inexpensive as in Equa-
tion (15.16). When comparing TMSE and EBC, TMSE would be slightly better. How-
ever, in terms of time complexity, TMSE’s O(NL∗ max(L∗, K)) is much worse than
EBC’s O(K max(NL̄ log(L̄), L∗ log L∗) if L∗ is large. In addition, while the required
memory for TMSE is O(L∗2), EBC demands far less O(KL∗). Therefore, it is reason-
able to conclude that k-o’means-EBC is an efficient and effective method for clustering
orders.

15.5 Experiments on Real Data

We applied our two k-o’means to questionnaire survey data, and proposed a method to
interpret the acquired clusters of orders.

15.5.1 Data Sets

Since the notion of true clusters is meaningless for real data sets, we used the k-o’means
as tools for exploratory analysis of a questionnaire survey of preference in sushi (a
Japanese food). This data set was collected by the procedure in our previous works
[19, 8]. In this data set, N = 5000, Li = 10, and L∗ = 100; in the survey, the
probability distribution of sampling objects was not uniform as in equation (15.11).
We designed it so that the more frequently supplied sushi in restaurants were more

276 T. Kamishima and S. Akaho

frequently shown to respondents. Objects were selected independently with probabil-
ities ranging from 3.2% to 0.13%. Therefore, the assumption of the uniformity of the
sampling distribution, introduced by the EBC method, was violated. The best result in
terms of Equation (15.8) ware selected from 10 trials. The number of clusters, K , was
set to 2. Note that responses of both authors were clustered into Cluster 1.

15.5.2 Qualitative Analysis of Order Clusters

In [8], we proposed a technique to interpret the acquired clusters based on the relation
between attributes of objects and central orders. We applied this method to clusters
derived by the EBC and TMSE methods. Table 15.2 shows Spearman’s ρ between
central orders of each cluster and an order of objects sorted according to the specific
object attributes. For example, the third row presents the ρ between the central order
and the sorted object sequence according to their price. Based on these correlations,
we were able to learn what kind of object attributes affected the preferences of the
respondents in each cluster. We will comment next on each of the object attributes.

Almost the same observations were obtained by both EBC and TMSE. The attribute
A1 shows whether the object tasted heavy (i.e., high in fat) or light (i.e., low in fat). The
positive correlation indicate a preference for heavy testing. The cluster 2 respondents
preferred heavy-tasting sushi. The attribute A2 shows how frequently the respondent
eats the sushi. The positive correlation indicates a preference for the sushi that the re-
spondent infrequently eats. Respondents in both clusters preferred the sushi they usually
eat. No clear difference was observed between clusters. The attribute A3 is the prices
of the objects. The positive correlation indicates a preference for economical sushi.
The cluster 2 respondents preferred more expensive sushi. The attribute A4 shows how
frequently the objects are supplied at sushi shops. The positive correlation indicates a
preference for the objects that fewer shops supply. Though the correlation of cluster 1
was rather larger, the difference was not very clear. Roughly speaking, the members of
cluster 2 preferred more heavy-tasting and expensive sushi than those of cluster 1.

In this paper, we propose a new technique based on the changes in object ranks. First,
a central order of all the sample orders was calculated, and was denoted by Ō∗. Next,
for each cluster, the central orders were also calculated, and were denoted by Ōk. Then,
for each object xj in X∗, the difference of ranks,

rankup(xj) = r(Ō∗, xj) − r(Ōk, xj), (15.18)

Table 15.2. Relations between clusters and attributes of objects

Attribute Cluster 1 Cluster 2
EBC TMSE EBC TMSE

A1 0.0999 0.0349 0.3656 0.2634
A2 −0.5662 −0.7852 −0.4228 −0.6840
A3 −0.0012 −0.0724 −0.4965 −0.6403
A4 −0.1241 −0.4555 −0.1435 −0.5838

15 Efficient Clustering for Orders 277

Table 15.3. The top 10 ranked up and the worst 10 ranked down sushi

Cluster 1 Cluster 2
2313 2687
1 egg ♣ +74 ark shell ♥ +63
2 cucumber roll ♣ +62 crab liver ♠ +39
3 fermented bean roll ♣ +38 turban shell ♥ +26
4 octopus +36 sea bass +23
5 deep-fried tofu ♣ +33 abalone ♥ +22
6 salad ♣ +29 tsubu shell +16
7 pickled plum & perilla leaf roll ♣ +28 angler liver ♠ +16
8 fermented bean ♣ +26 sea urchin ♠ +15
9 perilla leaf roll ♣ +24 clam ♥ +13

10 raw beef +21 hardtail ♦ +13
...

...
91 flying fish ♦ -10 chili cod roe roll ♣ -15
92 young yellowtail ♦ -12 pickled plum roll ♣ -15
93 battera ♦ -13 shrimp -17
94 sea bass -14 tuna roll ♣ -19
95 amberjack ♦ -37 egg ♣ -19
96 hardtail ♦ -41 salad roll ♣ -27
97 fluke fin -46 deep-fried tofu ♣ -30
98 abalone ♥ -63 salad ♣ -32
99 sea urchin ♠ -84 octopus -57

100 salmon roe -85 squid -82

NOTE: Sushi in each cluster derived by k-o’means-EBC were sorted in descending order of
rankup(xj) (Equation (15.18)). In top row labeled “#”, the sizes of clusters were listed. The
upper half of the tables show the ranked up sushi, and the bottom half show the ranked down
sushi. Just to the right of each sushi name, the rankup(xj) values are shown.

was derived. We say that xj is ranked up if rankup(xj) is positive, and that it is ranked
down if rankup(xj) is negative. If the object xj was ranked up, it was ranked higher in
cluster center Ōk than in the entire center Ō∗. By observing the sushi whose the absolute
values of rankup(xj) were large, we investigated the characteristics of each cluster.
Table 15.3 list the most 10 ranked up and the most 10 ranked down sushi in clusters
derived by k-o’means-EBC. That is to say, we show the objects whose rankup(xj)
were the 1st to 10th largest, and were the 1st to 10th smallest. The upper half of the
tables shows the ranked up sushi, and the bottom half shows the ranked down sushi. In
the top row labeled “#”, the sizes of the clusters are listed. Sushi names that we were
not able to translate into English were written using their original Japanese names in
italics. Just to the right of each sushi name, the rankup(xj) values are shown.

We interpreted this table qualitatively. In this table, the mark ♠ indicates objects
whose internal organs, such as liver or sweetbread, are eaten. The sushi marked by ♦
are so-called blue fish, and those marked by ♥ are clams or shells. These sushi were
rather substantial and oily, as revealed in the A1 row of Table 15.2. However, we could
not conclude that the respondents in cluster 2 preferred simply oily sushi. For example,

278 T. Kamishima and S. Akaho

sushi categorized as a red fish meat, e.g., fatty tuna, were not listed in the table, because
the preference of sushi in this category were similar in both clusters. We can say that
the respondents in cluster 2 preferred rather oily sushi, especially blue fish, clam/shell,
or liver. The sushi marked by ♣ are very economical. Though these sushi were fairly
ranked up in cluster 1, this would not indicate a preference for economical sushi. These
would be ranked up because these respondents had sushi that they disliked more than
these inexpensive types of sushi. Therefore, to interpret the acquired cluster of orders,
not only should the values of equation (15.18) be observed, but also the kind of objects
that were ranked up or ranked down.

15.6 Conclusions

We developed a new algorithm for clustering orders called the k-o’means-EBC method.
This algorithm is far more efficient in computation and memory usage than k-o’means-
TMSE. Therefore, this new algorithm can be applied even if the number of objects L∗ is
large. In the experiments on artificial data, our k-o’means outperformed the traditional
hierarchical clustering. For artificial data, the prediction ability of k-o’means-TMSE
is almost equal to that of k-o’means-EBC. Therefore, by taking computational cost
into account, it could be concluded that the k-o’means-EBC method was superior to
the k-o’means-TMSE for clustering orders. Additionally, we advocated the method to
interpret the acquired ordinal clusters.

We plan to improve this method in the following ways. During clustering orders,
undesired merges of clusters more frequently occur than in clustering of real value vec-
tors. To overcome this defect, it is necessary to improve the initial clusters. For applying
ordinal clustering to DNA microarray data, the curse of dimensionality must be solved.
We want to develop a dimension reduction technique for orders like PCA. In the case
of an Euclidean space, there are many points far from one point. However, in a case
of a space of orders (a permutation group), the order most distant from one order is
unique, i.e., the reverse order. Therefore, there are biases for central orders to become
exact reversals of themselves. We also would like to lessen this bias.

Acknowledgments. This work is supported by the grants-in-aid 14658106 and
16700157 of the Japan society for the promotion of science.

References

1. Luaces, O., Bayón, G.F., Quevedo, J.R., Dı́ez, J., del Coz, J.J., Bahamonde, A.: Analyzing
sensory data using non-linear preference learning with feature subset selection. In: Boulicaut,
J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201,
pp. 286–297. Springer, Heidelberg (2004)

2. Fujibuchi, W., Kiseleva, L., Horton, P.: Searching for similar gene expression profiles across
platforms. In: Proc. of the 16th Int’l Conf. on Genome Informatics, p. 143 (2005)

3. Everitt, B.S.: Cluster Analysis, 3rd edn. Edward Arnold (1993)
4. Marden, J.I.: Analyzing and Modeling Rank Data. Monographs on Statistics and Applied

Probability, vol. 64. Chapman & Hall, Boca Raton (1995)

15 Efficient Clustering for Orders 279

5. Branting, L.K., Broos, P.S.: Automated acquisition of user preference. Int’l Journal of
Human-Computer Studies 46, 55–77 (1997)

6. Joachims, T.: Optimizing search engines using clickthrough data. In: Proc. of The 8th Int’l
Conf. on Knowledge Discovery and Data Mining, pp. 133–142 (2002)

7. Olson, C.F.: Parallel algorithms for hierarchical clustering. Parallel Computing 21, 1313–
1325 (1995)

8. Kamishima, T., Fujiki, J.: Clustering orders. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.)
DS 2003. LNCS (LNAI), vol. 2843, pp. 194–207. Springer, Heidelberg (2003)

9. Kendall, M., Gibbons, J.D.: Rank Correlation Methods, 5th edn. Oxford University Press,
Oxford (1990)

10. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the Web. In:
Proc. of The 10th Int’l Conf. on World Wide Web, pp. 613–622 (2001)

11. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs
(1988)

12. Fligner, M.A., Verducci, J.S.: Distance based ranking models. Journal of The Royal Statisti-
cal Society (B) 48(3), 359–369 (1986)

13. Thurstone, L.L.: A law of comparative judgment. Psychological Review 34, 273–286 (1927)
14. Mosteller, F.: Remarks on the method of paired comparisons: I — the least squares solution

assuming equal standard deviations and equal correlations. Psychometrika 16(1), 3–9 (1951)
15. de Borda, J.C.: On elections by ballot (1784). In: McLean, I., Urken, A.B. (eds.) Classics of

Social Choice, pp. 81–89. The University of Michigan Press (1995)
16. Mallows, C.L.: Non-null ranking models. I. Biometrika 44, 114–130 (1957)
17. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics. John

Wiley & Sons, Inc., Chichester (1992)
18. Kamishima, T., Motoyoshi, F.: Learning from cluster examples. Machine Learning 53, 199–

233 (2003)
19. Kamishima, T.: Nantonac collaborative filtering: Recommendation based on order responses.

In: Proc. of The 9th Int’l Conf. on Knowledge Discovery and Data Mining, pp. 583–588
(2003)

	Efficient Clustering for Orders
	Introduction
	Clustering Orders
	Similarity between Two Orders

	Methods
	Hierarchical Clustering Methods
	k-o'means-TMSE (Thurstone Minimum Square Error)
	k-o'means-EBC (Expected Borda Count)

	Experiments on Artificial Data
	Evaluation Criteria
	Data Generation Process
	Complete Order Case
	Incomplete Order Case

	Experiments on Real Data
	Data Sets
	Qualitative Analysis of Order Clusters

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

