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Preface

Data mining and knowledge discovery can today be considered as stable fields with 
numerous efficient methods and studies that have been proposed to extract knowledge 
from data. Nevertheless, the famous golden nugget is still challenging. Actually, the 
context evolved since the first definition of the KDD process and knowledge has now 
to be extracted from data getting more and more complex. The structure of the data, 
for instance, doesn’t match the attribute-value format when considering the web, texts 
or videos.  

In the framework of Data Mining, many software solutions have been developed 
for the extraction of knowledge from tabular data (which are typically obtained from 
relational databases). Methodological extensions have been proposed to deal with data 
initially obtained from other sources, like in the context of natural language (text min-
ing) and image (image mining). KDD has thus evolved following a unimodal scheme 
instantiated according to the type of the underlying data (tabular data, text, images, 
etc), which, at the end, always leads to working on the classical double entry tabular 
format. 

However, in a large number of application domains, this unimodal approach ap-
pears to be too restrictive. Consider for instance a corpus of medical files. Each file 
can contain tabular data such as results of biological analyzes, textual data coming 
from clinical reports, image data such as radiographies, echograms, or electrocardio-
grams. In a decision making framework, treating each type of information separately 
has serious drawbacks. It appears therefore more and more necessary to consider these 
different data simultaneously, thereby encompassing all their complexity. Many ex-
amples of complex data can thus be found in potential knowledge extraction proc-
esses. These data can be: 

• Semi-structured or unstructured; 
• Sensor data such as scientific or medical data; 
• Representing the same information at different periods; 
• Grouping different kinds of information (images, text, ontologies, etc.). 

Hence, a natural question arises: how could one combine information of different 
nature and associate them with a same semantic unit, which is for instance the patient? 
On a methodological level, one could also wonder how to compare such complex 
units via similarity measures. The classical approach consists in aggregating partial 
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dissimilarities computed on components of the same type. However, this approach 
tends to make superposed layers of information. It considers that the whole entity is 
the sum of its components. By analogy with the analysis of complex systems, it ap-
pears that knowledge discovery in complex data can not simply consist of the con-
catenation of the partial information obtained from each part of the object. The aim 
would rather be to discover more « global » knowledge giving a meaning to the com-
ponents and associating them with the semantic unit. This fundamental information 
cannot be extracted by the currently considered approaches and the available tools. 

The new data mining strategies shall take into account the specificities of complex 
objects (units with which are associated the complex data). These specificities are 
summarized hereafter: 

• Different kind. The data associated with an object are of different types. Be-
sides classical numerical, categorical or symbolic descriptors, text, image or 
audio/video data are often available. 

• Diversity of the sources. The data come from different sources. As shown in 
the context of medical files, the collected data can come from surveys filled 
in by doctors, textual reports, measures acquired from medical equipment, 
radiographies, echograms, etc. 

• Evolving and distributed. It often happens that the same object is described 
according to the same characteristics at different times or different places. 
For instance, a patient may often consult several doctors, each one of them 
producing specific information. These different data are associated with the 
same subject. 

• Linked to expert knowledge. Intelligent data mining should also take into ac-
count external information, also called expert knowledge, which could be 
taken into account by means of ontology. In the framework of oncology for 
instance, the expert knowledge is organized under the form of decision trees 
and is made available under the form of “best practice guides” called Stan-
dard Option Recommendations (SOR). 

• Dimensionality of the data. The association of different data sources at dif-
ferent moments multiplies the points of view and therefore the number of  
potential descriptors. The resulting high dimensionality is the cause of both 
algorithmic and methodological difficulties. 

The difficulty of Knowledge Discovery in complex data lies in all these specificities. 
The aim of this book is to gather the most recent works that address issues related 

to the concept of mining complex data. The whole knowledge discovery process being 
involved, our goal is to provide researchers dealing with each step of this process by 
key entries. Actually, managing complex data within the KDD process implies to work 
on every step, starting from the pre-processing (e.g. structuring and organizing) to the 
visualization and interpretation (e.g. sorting or filtering) of the results, via the data 
mining methods themselves (e.g. classification, clustering, frequent patterns extrac-
tion, etc.). The papers presented here are selected from the workshop papers held 
yearly since 2006.  



  Preface VII 

The book is composed of four parts and a total of sixteen chapters. Part I gives a 
general view of complex data mining by illustrating some situations and the related 
complexity. It contains five chapters. Chapter 1 illustrates the problem of analyzing 
the scientific literature. The chapter gives some background to the various techniques 
in this area, explains the necessary pre-processing steps involved, and presents two 
case studies, one from image mining and one from table identification.   

In Chapter 2, the authors use genetic algorithms for imbalanced datasets classifica-
tion. The chapter presents a new methodology to extract a Fuzzy System by using 
Genetic Algorithms for the classification of imbalanced datasets when the intelligibil-
ity of the Fuzzy Rules is an issue. A method for fuzzy variable construction, based on 
modifying the set of fuzzy variables obtained by the DDA/RecBF clustering algorithm 
is proposed. Afterwards, these variables are recombined to obtain Fuzzy Rules by 
means of a Genetic Algorithm. The method has been developed for the prenatal 
Down’s syndrome detection during the second-trimester of pregnancy.  

Chapter 3 deals with another problem which adds a complexity to mining proc-
esses, i.e. the noisy data. In this chapter, the authors propose new approach and modi-
fications carried out on AdaBoost to handle the noise in data. They demonstrate that it 
is possible to improve the performance of the Boosting by exploiting assumptions 
generated with the former iterations to correct the weights of the examples.  

Missing values can be seen as a possible type of noise in the data. In Chapter 4, au-
thors use probabilistic decision trees to deal with that problem. The proposed approach is 
explained and the comparative tests using several real databases are discussed.  

Chapter 5 deals with Kernel-based algorithms on interval data and their visualisa-
tion. The chapter aims at extending kernel methods to interval data mining and using 
graphical methods to explain the obtained results. Interval data type can be an interest-
ing way to aggregate large datasets into smaller ones or to represent data with uncer-
tainty. No algorithmic changes are required from the usual case of continuous data 
other than the modification of the Radial Basis Kernel Function evaluation. Thus, 
kernel-based algorithms can deal easily with interval data. Interactive graphical deci-
sion tree algorithms and visualization techniques to give an insight into support vector 
machines results are used. 

One of the main goals in Knowledge Discovery is to find interesting associations 
between values of attributes, those that are meaningful in a domain of interest. The 
objective of Part II of this book is to illustrate the complexity in terms of data and 
mining processes related to the general area of rules extraction. Chapter 6 presents 
evaluation models based on objective indices. To enhance the adaptability of rule 
evaluation models, authors introduced a constructive meta-learning system for the 
construction of appropriate learning algorithms. 

Chapter 7 is related to the statistical association rules in the specific context of 
medical images. Authors discuss how to take advantage of association rules mining to 
promote feature selection from low-level image features. Feature selection can signifi-
cantly improve the precision of content-based queries in image databases by removing 
noisy and redundant features. A new algorithm named StARMiner is presented. 
StARMiner aims at finding association rules relating low-level image features to high-
level knowledge about the images. Such rules are employed to select the most relevant 
features.  
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Chapter 8 deals with sequence mining. The first part of the chapter proposes a new 
algorithm for mining frequent sequences. This algorithm processes only one scan of 
the database because of an indexed structure associated to a bit map representation. 
Beyond mining plain sequences, taking into account multidimensional information 
associated with sequential data is of a great interest to many applications. In the sec-
ond part, author proposes a characterization based multidimensional sequential pat-
terns mining.  

The last chapter, Chapter 9, of Part II discusses a specific case of rules, i.e.  
E-Action rules. E-Action rules can be used not only for automatic analysis of discov-
ered classification rules but also for hints of how to reclassify some objects in a data 
set from one state into another more desired one. 

Part 3 deals with the general problem of graph mining and its applications. This 
part contains five chapters. Chapter 10 discusses the problem of indexing graph struc-
tured data. An own design of an indexing structure for general graph structured data 
called ρ -index that allows an effective processing of special path queries is pre-

sented. These special queries represent for example a search for all paths lying be-
tween two arbitrary vertices limited to a certain path length. 

Chapter 11 deals with frequent sub-graph mining. Mining graph databases for fre-
quent sub-graphs has recently developed into an area of intensive research. Its main 
goals are to reduce the execution time of the existing basic algorithms and to enhance 
their capability to find meaningful graph fragments. Here authors present a method to 
achieve the former, namely an improvement of what they called “perfect extension 
pruning" in an earlier work. With this method the number of generated fragments and 
visited search tree nodes can be reduced, often considerably, thus accelerating the 
search. 

In Chapter 12, a parallel algorithm Peamc (Parallel Enumeration of All Maximal 
Cliques) is discussed which exploits several new and effective techniques to enumer-
ate all maximal cliques in large-scale complex networks. Experimental results on true-
life networks with up to 20 million vertices and 50 million edges show that Peamc can 
find all the maximal cliques with high efficiency and scalability. 

Applications of graph mining on community finding in large networks are dis-
cussed in the next two chapters. In Chapter 13, authors introduce the topology of the 
network to evaluate the feasibility and correctness of a community finding algorithm. 
A relationship between the rough number of communities and the magnitude of the 
number of hub nodes in the network is given in detail firstly. Then, an algorithm based 
on Laplace matrix spectral decomposition is proposed and its key technology, thresh-
old selection of Euclidean distance between nodes, is discussed. Based on the scale-
free topology of complex network, the evaluation criterion of community finding 
algorithm including three conditions is obtained.  

Chapter 14 deals with the same problem as the previous chapter but using another 
approach, i.e. k-dense method. An efficient algorithm for extracting k-dense commu-
nities is proposed. The method is applied on the three different types of networks 
assembled from real data, namely, from blog trackbacks, word associations and 
Wikipedia references, and demonstrated that the k-dense method could extract com-
munities almost as efficiently as the k-core method, while the qualities of the extracted 
communities are comparable to those obtained by the k-clique method. 
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The last part of this book contains two chapters related to the problem of data clus-
tering. Chapter 15 deals with clustering of orders. A new method called k-o’means is 
developed. This algorithm successfully extracts grouping structures in orders, and was 
computationally efficient with respect to the number of orders. However, it was not 
efficient in cases where there are too many possible objects yet. A new method (k-
o’means-EBC), grounded on a theory of order statistics is proposed. Furthermore, 
several techniques to analyze acquired clusters of orders are proposed. 

Chapter 16 deals with validity indices and their usage in the context of textual data. 
Two main contributions are discussed: firstly, since validity indices have been mostly 
studied in a two or three-dimensional datasets, authors have chosen to evaluate them 
in a real-world applications, document and word clustering. Secondly, a new context-
aware method that aims at enhancing the validity indices usage as stopping criteria in 
agglomerative algorithms is proposed. 
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Using Layout Data for the Analysis of
Scientific Literature

Brigitte Mathiak, Andreas Kupfer, and Silke Eckstein

Technische Universität Braunschweig, Germany
Institute of Information Systems
mathiak@gmail.com, {kupfer, eckstein}@ifis.cs.tu-bs.de

Summary. It is said that the world knowledge is in the Internet. Scientific knowledge
is in the books, journals and conference proceedings. Yet both repositories are too large
to skim through manually. We need clever algorithms to cope with the huge amount of
information. To filter, sort and ultimately mine the information available it is vital to
use every source of information we have. A common technique is to mine the text from
the publications, but they are more complex than the text they include. The position of
the words gives us clues about their meaning. Additional images either supplement the
text or offer proof to a proposition. Tables cannot be understood before deciphering
the rows and columns. To deal with the additional information, classic text mining
techniques have to be coupled with spatial data and image data. In this chapter, we will
give some background to the various techniques, explain the necessary pre-processing
steps involved and present two case studies, one from image mining and one from table
identification.

1.1 Introduction

A scientific document is more complex than it seems. While readers can easily de-
duce structure and semantics of the different characters and pictures on a page,
most of this structure information is not stored and available when automat-
ically accessing the publication. Most text mining applications from scientific
literature are trying to find facts. In biology, these are facts like gene-to-gene
relationships [1, 2] or gene expression profiling [3], mostly in abstracts [4], as
these are most easily available. It is shown that these techniques can give biolog-
ically significant results [5]. Yet, more information can be obtained by searching
through full text paper [6]. In [7] it was shown that different kinds of information
are stored in different kinds of sections. Although the abstract has the highest
information density, other sections contain viable information as well. In [8], it
has been observed that analyzing the figure caption is of great value. Classifying
the different sections of a paper to analyse them separately like in [9] has been
successfully attempted, but curiously, the figure captions and tables have not
been examined.

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 3–22.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 B. Mathiak, A. Kupfer, and S. Eckstein

In [7], the tested sections did not include tables, figure captions or table cap-
tions. Figures have been dealt with, by [10] and our own [11]. However, ta-
ble contents are a completely new topic and not been reseatched yet, to our
knowledge.

1.2 Background

The basic problem of handling PDF documents is that the text information is not
freely available. While an HTML file stripped of its tags usually delivers legible
text, even the simple task of text extraction from a PDF is rather complicated.
Down to the basics, PDF is foremost a visual medium, describing for each glyph
(= character or picture) where it should be printed on the page [12]. Most PDF
converters simply emulate this glyph-by-glyph positioning in ASCII [13].

Still, since the position of all glyphs is known, the original layout can be
deduced and the semantic connection can be restored. For HTML, the layout
information has successfully been used to improve the classification of web pages
[14]. We extract the same layout information out of PDF documents. This offers
us a multitude of possibilities, from the restoration of the original reading order
over table recognition up to finding the images in the paper.

Usually, image retrieval in biomedical context is not used for literature re-
trieval, but for image retrieval on large databases. The general PicHunter ap-
proach [15] is an example for such a content-based image retrieval system. With
updated Bayesian formulas the framework of PicHunter has been adapted to
refine the results of a query by predicting the users action. This approach ad-
dresses the image retrieval in general and does not discuss image retrieval within
the biological context.

The IRMA-concept (Image Retrieval in Medical Applications) [16, 17] has
been developed to handle primitive and semantic queries and to browse medical
images with respect to medical applications. The approach is able to support
content understanding and highly differentiated queries on an abstract informa-
tion level. In order to compensate for the different smaller structures of a typical
medical image, local representations are used to categorize the entire image.
Those local features are then compared with a k-nearest neighbour algorithm.

Tables pose a completely different problem. Green and Krishnamoorthy [18]
developed a method that is capable of analyzing model-based tables. To make
this approach work, a model or template of the tables in question has to be pro-
vided. Zuyev [19] introduced an algorithm for table image segmentation that uses
table grids. Tables that use table lines can be identified well, but the approach
is not able to find tables without these separators.

Both methods have the problem that they rely much on table separators, like
lines or connectors, like dots between the values. Unfortunately, these marks
do not come out clearly in vector-based documents. All we have there are the
characters and the position of the characters. Also, not all tables use these sep-
arators constantly. The T-Recs system [20] follows a bottom-up approach to
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identify and segment tables in electronic or paper documents. The method is
independent from any table separators because only the words are considered.
This trait makes it also perfect for adaptation for vector-based documents.

1.3 Overview

In order to extract the layout and being able to process it, several steps are
necessary. First, we need the full text literature, which is often a problem due
to copyright issues. Since the full text paper is usually available in PDF format,
we need to extract the text from there. The real problem in this step is: we need
to know where the text is on the page; otherwise we could just use a normal
text extractor. Also, the images have to be extracted, again with the positional
information intact. This information is handed over from the layout analyzer
to the next step (cf. Fig. 1) by storing them in an XML format we call ELL
(Enriched Layout Language).

Fig. 1.1. Workflow of the layout analysis

The next steps are modularized. The ELL files are regrouped internally to
provide the correct reading order. Also, image or table extraction algorithms are
used. To provide a semantic annotation their captions are found by using another
algorithm. The results of these algorithms are indexed to be presented on a web-
based search engine. In order to have a standardized interface, we created the
XML exchange format SIL (Search Interface Language). The SIL files are used
by the web platform CaptionSearch to provide a search interface to the user.
CaptionSearch allows multiple corpora to be handled separately. Also, different
users may be registered to different sets of corpora.
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1.3.1 Finding the Literature

The first step in pre-processing is to build a corpus. In order to find a suitable
corpus for a specific topic, several open search engines and databases, such as
Google, Citeseer or PubMed can be used. Still, a number of papers are not free
and can only be downloaded from the publisher website. When downloading
from the original publisher website, it is often quite difficult to find the specific
paper, as they often have different structures for storing their publications.

The corporae for our case studies were either provided directly by our collab-
oration partners or had to be acquired using said databases. To build a corpus
from scratch automatically, we developed a downloading tool. It only needs a
broad search query to describe the topic. That query is fed into suitable open
databases and then cross-referenced with the available publisher websites. From
there, we should be able to find a link to the full paper. The page is crawled and
every link weighed according to whether they contain interesting keywords, like
“pdf”, “reprint”, volume number or issue number. Also, we give penalties for
less interesting terms like “abstract”, “guide”, “faq”, and so on. The links are
followed in the order of their weights; negative weight links are never followed.

The first link directed to a PDF document is downloaded. In order to prevent
the downloading of unwanted documents, we also compiled a blacklist of terms
not allowed to be part of a followed link, like “manual”, “adobe.com” and so on.
When we do not find a suitable link to follow, we assume that we do not have
permission to download the paper. The downloader is able to handle multiple
proxy configurations, so it is possible to use different licenses simultaneously. So,
when we do not find a document, we try to open an alternative connection using
another license, or an alternative link given by the database.

The process of downloading is relatively slow, because we want to avoid over-
loading the source databases. It takes roughly 30 seconds per document, most of
that being generous timeouts due to the local rules of the databases involved. The
downloader is quite successful. In a test with the query “gene expression microar-
ray rat”, there were 1244 full paper links given by PubMed, the database spe-
cialising in biomedical literature. By using a regular library license, we achieved
to download 598 of them, plus only 34 false positives. Searching for the same
documents by just using the free text links provided by PubMed, there were only
485.

The system’s precision can be improved through usage, as we can backtrack
where the false positives came from and add more terms to the blacklist or the
penalty list. An improvement of recall is difficult, as the “missed” paper is rarely
noticed.

1.3.2 Extracting Layout Information from the PDF Format

A typical vector-based format like PDF or Postscript does not directly give
the position of the text. The description is not pixel-based, but a description
of lines and curves that form the text. Like that, the information about the
document stays more authentic, because scaling does not matter and a lot of the
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semantic information prevails, like text. The disadvantage though, is that layout
identification becomes more complicated, since more objects are involved.

By convention, the parameters of a command are written before the command
and all commands are abbreviated to two letters. All text-related commands are
between a BT (line 1) and an ET (line 8) which stands for Begin Text and End
Text, respectively. The Tj and TJ commands include the text actually written.
The other commands are describing where and how the text is written.

1 BT
2 8 0 0 8 52 757.35 Tm
3 /F2 1 Tf
4 0 -1.706 TD
5 (page 354)Tj
6 T*
7 [ (J) -27 (OURN) 27 (AL) -378 (1) ]TJ
8 ET

For a correct layout analysis and indexing, it is vital to identify correct word
borders; otherwise words may be glued together or torn apart. Also, without
spaces the text is undistinguishable from a large table. Unfortunately, the spaces
are at times not given directly, but instead the characters are just a little more
apart from each other than usual. The problem sharpens as theoretically all
characters can be written in any kind of order by jumping around with explicitly
set coordinates.

In order to identify the spaces anyway, our first run through the text stream
just extracts the characters one by one and calculates their bounding boxes.
Then the difference vector xdiff between two adjacent characters is calculated
and rotated in writing direction R.

rotationmatrix R =
(

xold,right − xold,left yold,right − yold,left

−yold,right + yold,left xold,right − xold,left

)

xdiff = (xnew,left − xold,right)
R
|R|

The resulting vector is compared to the current modified font size to determine
whether this is a space, no space, carriage return or a new block of text. Next,
the blocks are sorted and go through a similar procedure. This way the initial
information about the order is conserved best.

The words bounding boxes are extracted, as are all changes in fonts or font
size. Additional problems which arise are: text overlaps, when e.g. a special font
is used to write the accent over à that overlaps the original “a” and the overall
handling of non-identifiable fonts and fonts that give wrong bounding boxes. The
results of these calculations are stored together with text in the ELL file format.

1.3.3 Structure in ELL

To get a better overview, we modelled the data structure in UML (cf. Fig. 2).
The UML version is then transferred to XML Schema, so all the XML files can
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Fig. 1.2. UML model of the ELL format

be checked against it. The various implemented algorithms also use classes in a
similar structure.

The model has to fulfil multiple functions at once. First, it represents all
the meta-information we gain from the text conversion. Also, there is room for
further structuring. Algorithms can nest the text in a recursive data structure
and can include additional meta-information on the objects.

The XML document structure is HTML-like so the results can be easily
verified with a web browser. The original plain text conversion is preserved,
so by simply deleting all tags from the document, the text can be restored at all
steps. All metadata is stored in the attributes.

1.3.4 Data Cleansing

The conversion process from PDF to XML documents is not fool-proof. Although
the PDF specification is publicly available, many PDFs do not adhere to the
recommendations given there, but instead rely on a visual correct appearance
in the viewers. To cope with wrong input data, we add a data cleansing step to
filter out faulty documents.

The most common errors in PDF conversion are caused by wrong encoding
information for a specific font. Usually, each font provides a dictionary to match
each character in a font with the Unicode character it represents. Should this
be missing, we try to guess by assuming the encoding is similar to ASCII. To
catch wrong interpretation though, all of our tests inspect the document text by
splitting it into the fonts used. Each text from each font in each document must
pass three tests or is removed.

First, it is checked for non-ASCII symbols. These occur with wrong font in-
formation and are critical, as they disable the document for XML validation
later. The second test removes files which do not contain at least 1000 bytes of
document text. This case occurs in documents which are only a series of scanned
images without text information or documents which are just an abstract or a
form. Most scientific papers contain at least 20 kb of text.

The third test is a cumulative quota of suspicious characters over all characters
in the text. If this quota is above 10 percent, the document is rejected. We mark
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characters as suspicious, if they do not seem to be English text. We started
with the language classifier Lingua::Identify by Jose Castro from CPAN. But
the results were not very stable, because the library is not designed to identify
text not written in a natural language and also scientific papers include a lot of
words which do not seem to be English. Therefore, we implemented four simple
heuristics to detect conversion flaws. Each one either can either mark a font as
suspicious or a continuous piece of text.

The first heuristic makes sure that the text in a font contains at least one
whitespace. If there is not a single space in the text written in this font, it is
marked as suspicious. As omitted spaces are a common conversion problem, the
second heuristic is similar by searching for words with more than 20 letters, with
the explicit exception of sequence data. The third marks possible encoding errors,
where a character in PDF without a proper encoding reference is converted as
letter and number code, like M150. To avoid special names, this pattern must
occur in at least 2 consecutive characters. Therefore, single characters, especially
mathematical operators, remain undetected. Finally, the fourth heuristic marks
all characters which are outside the 7-bit ASCII alphabet.

The data cleansing step is quite fast and can process more than a document
per second. In a quite modern test data set 19 out of 605 documents (3.1%) were
filtered out. 10 of the documents did not contain enough text, 8 did fail the quota
and one included an improper symbol. All of these papers were unintelligible
from a text extraction point of view. In older documents this rate can be higher,
as older converters tended to emphasis more on shortness than legibility.

1.3.5 CaptionSearch : The Web Application

As a simple demonstration, how the layout information can be used, a web
based search engine is used. It is called CaptionSearch, since we are technically
not searching for images or tables, but for the caption text beneath them.

After an image or table extraction has been done, the results are written to
an XML file in the SIL language. Each publication is represented by one file
containing a PDF element (line 2-5), which may contain many image elements
(like the one in line 3-5), which have the link to the picture as an attribute (line
3) and the caption as a further element (line 4-5).

1 <?xml version="1.0" encoding="iso-8859-2"?>
2 <pdf src="10094677.pdf">
3 <img src="pics/10094677.Im4.jpg">
4 <caption>FIG. 4. DNase I footprint analysis of ...
5 </caption></img></pdf>

Alternatively, there may be a text to show, if the image is not available. That
way we can also use SIL as a regular search engine. For the indexing itself, we
use the Lucene package [21], which offers fast, Java-based indexing, but also
some additional functionality, like a built-in query parser and several so-called
analyser that allow us to vary how exactly the captions are indexed and what
defines a term.
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In order to bring the information on the web, we set up a Tomcat web server
[22], using Java servlets [23] to produce the website and to present the query
results. All queries are executed by a servlet that uses Lucene to fetch the results
from the index files and builds a new web page to display the results according
to the pre-selected schema.

1.4 Image Extraction

While the location and size of an image in a PDF document are clearly described,
there are many possibilities to store the actual image data. The images can be
encoded in JPEG, in a BitMap-like format, as a postscript description, even in a
fax format and many more. It is very bothersome to implement every single one of
those possibilities, especially as third-party products (e.g. www.pdfgrabber.de)
are available. Still, those products do not reveal the position of the pictures on
the page, so a matching of the resulting pictures to the layout data we already
collected is needed. Also, there are graphics not caught by image extractors as
they are derived from graphical commands in the PDF script language, which
is very similar to Postscript.

1.4.1 Images in PDF

There are two ways to represent images in PDF documents. The textstream
can include graphical commands to draw lines or other geometrical objects.
Alternatively, they can be stored as external object called XObject. From the
text stream an XObject can be called by using the command Do (execute the
named XObject).

This example object represents an image that can be called by entering /Im3
Do into the text stream. What happens then is that the object called Im3 is
identified and executed. From the object dictionary, we can gain some informa-
tion like width (line 5) and height (line 6), although this information might not
be accurate. The true height and width are calculated and give, together with
the current position, the bounding box of the picture. To actually extract the
picture, we need the filter (as given in line 10), in this case DCTDecode, which
is the PDF name for Jpeg encoding [24].

1 22 0 obj
2 << /Type /XObject
3 /Subtype /Image
4 /Name /Im3
5 /Width 580
6 /Height 651
7 /BitsPerComponent 8
8 /ColorSpace /DeviceGray
9 /Length 31853
10 /Filter /DCTDecode>>
11 stream ... endstream endobj
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Vector based drawings are inserted in the textstream as commands like m for
move or l for line. Converting them to pixel pictures is done by using a blank
canvas and recreating all commands. To avoid inserting small decoration objects
like footnote lines or table separators, we demand a certain density of commands
in order to accept it as a full fledged image.

1.4.2 Caption Identification

By convention, images or figures in scientific literature are accompanied by cap-
tions to explain their meaning. This is very useful for the mining process, as
the figures can be searched for by a simple term search. When identifying the
captions, the first step is to look for paragraphs starting with “Fig” in any kind
of writing. This feature is very distinctive. So far, we found only one paragraph
starting with “Fig” that was not an actual figure caption.

If there is only one caption candidate on the same page, the choice for the
picture is clear. Even several pictures for one caption candidate is not a problem,
actually this happens quite often, when the figure is composed of more then one
picture (e.g. before and after). Two problems may occur though: first, there
might be more then one caption candidate (because, for instance, there is more
than one figure). Second, there might be no caption candidate, either because
the caption does not start with “Fig” or because there is none (it might be a
logo or other non-captioned image).

We solve both problems the same way. By using the layout information, gained
during the extraction process, we look for likely positions of a caption. The
general goal is to pick the candidate closest to the image, preferably below. In
order to do that, we give scores for different kinds of proximity.

We considered finding the parameters for this algorithm by machine learning
procedures, but it is hard to find a good training set, as we need scientific paper
with two or preferably more figures on at least one page, already annotated and
not uniformly produced. We found 68 so far, which all performed well with the
initial parameters, except for two cases, which were both rather special and hard
to interpret even for specialists able to deduce the connection through visually
matching caption with image. So, it seems doubtful, if machine learning would
not produce an algorithm overfitting the training set.

Candidate figure captions that could not be connected to an image are instead
linked to the whole page picture, if existing, or the first picture on the page, if
existing, or to a dummy image, so they can be indexed by the search engine and
then tracked by looking directly at the PDF. This occurs very rarely, though.

1.4.3 Case Studies for Image Extraction

To evaluate the usefulness of this new search method, we set up a case study with
colleagues from biology. There were two things to be observed: how interesting
is this method for the scientists and how well does it works in terms of efficiency.

The PRODORIC database [25] contains very special data like DNA binding
sites of prokaryotic transcriptional regulators. This data is generated via specific
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experiments like DNAse I footprints or ElectroMobility gel Shift Assays (EMSA).
Unfortunately, the specific experiments conducted are rarely mentioned in the
abstract or title of the documents in question. The search for general key words
classifying this comprehensive field like “gene regulation”, “promoter” or “bind-
ing site” results in over 150,000 hits, and even with additional refinement only
10-20% contain appropriate data. Therefore it is necessary to screen all the hits
manually to obtain literature references suitable for the database annotation. Of
these, those are especially valuable that contain pictures of the DNAse I foot-
print or EMSA assay, because they represent verified information of high quality.
This quality assessment can be important on further exploration of the subject.

In this case study, the corpus included 188 papers that were known to contain
information about DNA binding sites (from the PRODORIC database). We
extracted 1430 pictures, about one quarter of them pictures of whole pages.
In data cleansing, we found that 13% of them were completely unreadable (the
oldest ones), due to text conversion errors. The extracted images showed scanned
pages of the paper. Another 10% did show fairly good text recognition, but had
the pictures not included separately, but as part of a whole page picture. Another
8% showed minor errors, like too short captions, not recognized figure blocks due
to text conversion errors, and so on, in some of the captions. All in all, for 80%
of the papers the captions could be indexed properly. The rest were set aside for
manual inspection.

To find DNAseI footprints the keywords “footprint”, “footprinting” and
“DNAse” were used to find the appropriate figures in CaptionSearch. Overall,
184 hits were scored of which 163 actually showed experimental data. As a by-
product, the thumbnails, presented by the engine, mostly sufficed to make a fast
quality assessment. Another positive effect was that the data was much faster
available than with the usual method of opening each PDF independently. The
search for EMSAs was a bit more difficult, since there is a wide range of naming
possibilities. The most significant terms in those names were “shift”, “mobility”,
“EMSA” and “EMS” to catch “EMS assay”. We had 91 hits of which 81 were
genuine. Recall could not be tested thoroughly, due the sheer numbers of pictures
and the limited time of experts, but a random sample did not include interesting
pictures that had not also been found by the keywords, which suggests a rather
high recall.

The second field study was conducted in collaboration with neurologists. They
were interested in finding paper under the topic of “mismatch negativity” and
make them searchable through our engine. Technically, the main difference be-
tween the two is the variety of age. The binding site corpus is from the years
1995 to 2003, while the mismatch negativity corpus only includes papers from
the years 2001 and 2002. And of course the general topic is different, one being
from Microbiology and one from Neurology.

In the newer corpus the problems were a little different. It includes 355 papers,
all from the years 2001 and 2002, containing 1754 extractable pictures. 2 of the
papers had to be omitted in the data cleansing step. We found that 31% of
the pictures were logos. Most of these occurred either on the first page, or on the
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every single page as a copyright reminder. There were much fewer text conversion
errors; only 5% of the captions were either too long or too short or otherwise
wrongly converted.

While precision in both corpora was reasonably high, often the wrong pictures
were quite obvious wrong, from a visual point of view. While so far, only the
textual description of the images is considered, the next step is to look at the
pictures themselves.

1.5 Image Classification

In the biological data set a significant number (27%) of the images were showing
the whole page instead of just the figure. What we are looking for, though, are
pictures containing the gel pictures made for the experiments. As gel pictures are
visually quite different from other common pictures, a classic image classification
seems possible. In the neurological data set the problems are different. Here the
logos and copyright disclaimer are more prominent then the full page images.
Also, we would like to differentiate between CT-photos and normal graphs and
models.

The pictures from both data sets were classified by an expert biologist (see
figures 1.3 and 1.4). We estimate the overall error rate in the data set at 4%.
This estimation is based on a manual random check of misclassified images and
their assigned classification.

Fig. 1.3. These are sample pictures from the biological data set. Under a) are two
pictures from the category raw data that show various gel pictures. b) are from the
category model. c) shows full text pages.
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Raw data Full page Model Logo

Fig. 1.4. Sample pictures from the neurological data set. The category is written below
the image.

In a neurological test set, we used four categories: full pages, raw data, model
and logo. In the biological test set there were no logo, hence there were only 3
categories. The distribution was quite different, instead of a large number of full
pages, we had many logos. We estimate the error rate of this set in fact higher
than on the biological data set, because of the increased number of categories.
Unlike in the biological data set the distribution is much more biased with only
13 instances of full pages and over 1000 models.

1.5.1 Method for Classification

For image classification, a feature-based approach seems best, because we do not
classify based on the object seen in the image, but on the representation of that
object, e.g. gel blots vs. graph points. Other algorithms, like the random window
approach, tend to repress those representation details. We base our method on
[26], a method originally used to distinguish between computer-made images and
real life photos, since that is a closely related problem.

In order to classify the pictures, we calculate 6 metrics or features based on
the picture. The calculations for the metrics are all linear, so the calculation
takes less than a second for an average picture. The small number of attributes
allows fast learning and classification. An information gain estimate is given in
table 1.1. The features are explained below. Also included is an interpretation
of how useful these features were to our task.

1. Number of Colours: counts the number of occurring colours in the pic-
ture. We assume that many colours indicate slow colour changes typical for
photos of experimental results, while graphs are usually black and white.

2. Contour Sharpness: measures the occurrence of hard changes in the
colour values. First, it compares each pixel with its neighbouring pixels, to find
the biggest colour difference between them. Then, all pixels with a maximum
difference bigger than 0 are counted as S and those bigger then a threshold t



1 Using Layout Data for the Analysis of Scientific Literature 15

Table 1.1. Information gain of the metrics

biological neurological Metric
data set data set

0.909 0.382 Number of Colors
0.854 0.473 Contour Sharpness
0.829 0.496 Smallest Dimension
0.68 0.663 Prevalent Color
0.663 0.595 Dimension Ratio

0 0.133 Saturation

are counted as C. The sharpness value is then C/S. The threshold is set halfway
between black and white. While photos of experimental results tend to have
fuzzy borders with slow colour changes, graphs and text have a lot of black and
white changes.

3. Smallest Dimension: represents the actual size of the picture or in fact
the minimum of width and height in centimetres. This is used to sort out very
big pictures, which might indicate a full text page or very small pictures that
might indicate a logo.

4. Prevalent Colour: is the percentage of the prevalent, usually the back-
ground, colour in the picture. The idea is that strong backgrounds indicate
graphics. Unfortunately, pure gel pictures are mostly gray and mixed pictures
are mostly white, so the information gain for the biological data set is limited.
Still it is the most important metric for the neurological data set.

5. Dimension Ratio: calculates the ratio between height and width of the
picture. In our test sets, it was mostly between 1 and 2, due to the standard
dimension of figures. Outliers weakly indicate gel pictures, while whole pages
and groups of logos have a characteristical dimension ratio.

6. Saturation: measures the percentage of gray-scale pixels, compared to
coloured ones. While this is no help in the biological data set at all, due to com-
plete lack of coloured pictures, it is of some help in the more modern neurological
data set.

Table 1.1 also shows the decline of importance of the first three metrics over
time. In fact, in the newer data set the model category are more similar to the
raw data pictures. We assume that this is a result of the newer technologies,
making it possible to produce models that more detailed and colourful.

1.5.2 Classification Results

We tested the method on both a neurological and a biological data set. The
results (cf. table 1.2) are about the same as for the biological data set (up to
94.5%). This score can be considered almost perfect, since the estimated error
rate in the data set is in the same region. Compared to the other data set,
the classification task was de facto harder, as there was an additional category.
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Table 1.2. Results from the classification

Data set BayesNet DecisionTrees JRip SVM

biological 92.9 93.0 92.8 89.0
neurological 91.4 93.6 94.5 84.9

Also, the neurological data set is much more biased concerning the number of
instances in each category.

During the experiment we used a standard accuracy as ratio of correctly
classified entities to overall entities under 10-fold cross-validation. Precision and
recall were evenly distributed. The final confusion matrix in the biological data
set showed some mix up between raw data and models, while the precision and
recall for full pages were much higher. For the neurological data set, this trend
intensified. Logos could be identified almost perfectly, while the raw data had
much less accuracy (F-Score for raw data was only 0.73). Full pages was also
problematic (F-Score 0.7), but that seems natural considering that there were
only 13 instances to learn from.

Unlike the method proposed by [26] we decided to test several machine learn-
ing algorithms for comparison. We used Bayes net, decision trees, JRip and sup-
port vector machines with standard parameters from the Weka Tool [27]. While
the rule learner JRip and decision trees generally performed similarly, Bayes Net
worked significantly better on the biological data set than on the neurological
data set. SVMs performance was far below average. As SVM naturally does not
support multiple categories, we had to use binary classifiers between all possi-
ble combinations of categories. This lead to overlapping classifications and the
complete exclusion of sparsely set categories.

1.6 Table Detection

Besides finding images and their captions, a second use for using layout infor-
mation springs to mind: the analysis of tables. In order to identify the tables
in a paper, we decided to take an algorithm from OCR, as already discussed in
the Background section. The T-Recs algorithm was designed to find tables in
scanned pages, but can be adjusted to work in a vector-based environment as
well.

1.6.1 The T-Recs Algorithm

The method presented by Kieninger [28] can be split into three steps. First,
possible table relationships are identified by searching for regular structures in
the layout of the text. Next, some error-correcting methods are employed and
finally, the actual table structure is identified and table content is separated from
non-table content.

In the first step, text units are identified, by melting together words that
overlap horizontally. An overlap is defined as:
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ovl(w1, w2) := (w1.x1 < w2.x2) ∧ (w1.x2 > w2.x1)
∧(w1.y1 + w1.height ≥ w2.y2) ∧
(w1.y2 − w1.height ≤ w2.y1))

Two words w1 and w2 overlap, if left side of w1 is left of the right side of w2 and
vice versa. Also, they have to be in vertical proximity to each other. x1, x2, y1
and y2 represent the bounding box of the word in two points: (x1, y1) is the lower
left corner and (x2, y2) the upper right corner. The zero-point is in the upper
left corner of the page.

As most of the words are overlapping with each other, common text should
be recognised as one unit. Table columns, in contrast, do not overlap and should
thus be recognisable (also cf. Fig. 1.5). A simple distinction based on the typical
number of neighbours in a unit allows a broad classification into text and table
units.

Fig. 1.5. Left: Result of the overlapping algorithm on a text unit; Right: Result of the
overlapping algorithm on a table unit

The starting point for identifying the structure of the tables is the columns.
These have to be aligned both vertically and horizontally. But, as you can see in
Fig. 1.6 the words do not fit precisely. Instead, a margin point is rather a margin
area with two border points. Since tables may come with a variety of special
cases, for example, melted columns or two rows of text in a cell, the matching
does not have to be precise. When a table is established, units in the proximity
are tested, if they fit the pattern. That way, solitary words are reintroduced,
when they fit.

We pre-evaluated our method on 86 scientific documents that included 92
tables. For the purpose of annotation it is most important to reach a high recall,
as missed hits are much harder to find than sorting out wrong hits. Adjusting
the parameters to that goal, we were able to reach a very high recall: 91%,
although many of the tables were only found partially. Unfortunately, it lowered
the precision to as much as 44%. A lot of those wrong tables were formulae with
matrices or multiple lines. Another source of wrong tables was that tables were
split in two, either because they were stretched out over two pages or they had
a vertical gap inside, when the headline of the column was very large, while the
values were quite short. We counted these as both a partial find and a wrong
table. Also see table 1.3 for a subsumption of the results.
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Fig. 1.6. Margin points, applied on the units 1-3

Table 1.3. Results of the table algorithm evaluation

number of documents 86

number of tables 92

number of correctly found tables 51

number of partially found tables 34

number of not found tables 8

number of found tables 236

Recall 91,73 %

Precision 43,74 %

To compare the results and further increase recall, it was also decided to store
all terms in a separate index, showing them additionally to the results from the
table search, together with their nearest table caption.

1.6.2 Case Study for Table Extraction

With the dawn of high-throughput analysis, biological papers have started to
contain a lot more information than the actual focus of the paper would suggest.
A simple experiment on diabetic rat, for example, will concentrate on a very few
proteins and genes. Still, there are dozens of other proteins and genes involved in
the process, but this information usually just ends up in a table in the appendix.
A scientist concentrating on one of these proteins and genes may never know
about the effects on diabetic rats, as this information never shows up in the
abstract or via standard search methods. With our approach, we can find the
tables the proteins or genes are mentioned in and show the user the table caption
to have them easily assess the context.
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Fig. 1.7. Evaluation results

The accuracy of the workflow was tested by using randomly selected gene or
protein names from tables of the PDF dataset that was downloaded by using the
terms “gene expression microarray rat” on the PubMed database. The queries
produced 598 hits. A sample of 16 gene or protein names was tested. The queries
produced from 1 to more then 800 hits. Due to this magnitude we only tested the
first 40 hits for each of the 16 queries, so that a total of 506 hits were evaluated.
The hits were analysed in several aspects. The first one was to see whether
it was a table entry or a text passage and if some of the analysed hits were
duplications. Errors in this section usually derive from the table identification
algorithm. Duplication occurred in approximately 11% of the cases. 24% of the
hits were text entries (also cf. Fig. 1.7).

The next step was to see if the caption of the table entry is correct. We
found different problems; the caption can be too short (this only occurred two
times) or too long (about 22%). In the case of too long, usually an additional
word sneaked in. This class of errors derives from problems in the PDF-text-
conversion. Another problem was the lack of a genuine caption or the wrong
caption for the table (the latter occurred in 8% of the cases). Both problems
most likely come from the caption matching algorithm. All in all, we found that
in 65% of the hits, the gene name is in a table just as intended. We believe that
this is an acceptable precision, given that text entries also tend to give additional
information about the gene.

All of the queries identified the table their terms were originally taken from.
That places the recall at 100%. Given that the small sample size might distort
that number, we tried a number of other terms, not being able to produce a
failure. So, we suspect the recall to be very high, although that is hard to verify,
due to the frequent high number of hits.

The participating biologist was amazed and very interested to see the diversity
of contexts her protein was mentioned in. Most of those she would have never
discovered via conventional literature review, looking only for papers already
related to the problem she is working on or with the protein name in the abstract
of the paper.
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1.7 Conclusion

Mining the complex structure of scientific publications is a daunting task, yet
achievable. Not only can the layout information be used to improve on classical
tasks [9], we have also shown that it opens up new possibilities of retrieving
information from the publications. Being able to specifically find images and
table data, not only helps in the biological scenario of our case studies. It is
also applicable to other areas, such as chemistry to find structure formulae, in
engineering to find results of standardized tests in tables or in pharmacology to
find which drugs did not work on a given problem.

1.8 Future Trends

The next topic of interest would be to show, whether the mistakes made by the
automatic layout detection outweigh the gains when applying it to classical tasks
like classification and clustering. In table recognition, it would be interesting to
see, if the data from the tables can automatically extracted into databases for
easier access. And these are just a few of the many possibilities that the layout
analysis of scientific documents opens up.

Layout information can also be used to improve the analysis of web sites
or any other textual and graphical medium, such as newspapers or magazines.
As the amount of data presented in that way rises very fast and will probably
continue to do so in the future, it becomes more and more important to find
effective ways to handle this data and get the most out it.
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Abstract. This chapter presents a new methodology to extract a Fuzzy System by using  
Genetic Algorithms for the classification of imbalanced datasets when the intelligibility of the 
Fuzzy Rules is an issue. We propose a method for fuzzy variable construction, based on modi-
fying the set of fuzzy variables obtained by the DDA/RecBF clustering algorithm. Afterwards, 
these variables are recombined to obtain Fuzzy Rules by means of a Genetic Algorithm. The 
method has been developed for the prenatal Down’s syndrome detection during the second-
trimester of pregnancy. We present empirical results showing its accuracy for this task. Fur-
thermore, we provide more generic experimental results over UCI datasets proving that the 
method can have a wider applicability on imbalanced datasets. 

Keywords: Imbalanced Datasets, Fuzzy Logic, RecBF, Down Syndrome, Rule Extraction. 

2.1   Introduction 

In this chapter, we present our research aiming at improving the nowadays existing 
classification of the prenatal Down’s syndrome detection, during the second-trimester 
of pregnancy, with non invasive techniques.  

Nowadays, experts (obstetricians and gynaecologists) recommend fetal chromoso-
mal screening to all pregnant women, regardless of age, because of improvements in 
low-risk, non invasive screening methods. The screening methods 19 consist in evalu-
ating data in order to achieve the maximum quantity of true positive values with the 
minimum loss of false positives, since a perfect evaluation cannot be obtained from 
the data. In particular, in Down’s syndrome detection problem, a positive case (it has 
Down’s syndrome) which is correctly classified by the screening method is a true 
positive, and a negative case (it has not Down’s syndrome) which is incorrectly clas-
sified (the system detects that it has Down’s syndrome and it is not true) is a false 
positive. These screening methods use statistical functions to obtain the Down’s  
syndrome risk, from data obtained during pregnancy from the mother, like gestational 
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age, mother age, the measure of some hormones, etc. The risk is usually indicated in 
odds as an expression of its certainty probability. 

There are several screening methods which are applied to achieve this goal, taking 
into account that those methods are different depending on whether we are evaluating 
the first or the second-trimester of pregnancy. Nowadays, the screening methods for 
the first-trimester of pregnancy have an accuracy of the 80-90% and for the second-
trimester just the 60-70%, with a 5% of false positives for the latter, although usually 
they are around and 8% 18. 

The data obtained in prenatal Down’s syndrome detection problem is a two-class 
imbalanced dataset. An imbalanced dataset is characterized by the existence of a high 
difference in the number of cases in one class with respect to the rest of the classes. In 
this case, as being a two-class dataset (it has or has not Down’s syndrome), the fetus 
with Down’s syndrome (positive class) has a much lesser number of cases than the 
healthy one (negative class). Regarding to the number of cases, from now on we will 
refer to the negative class as the major-class and the positive class as the minor-class. 

The focus of our study is to improve the above results obtained by the screening 
methods in the second-trimester of pregnancy and, as far as possible, extract an  
understandable set of rules. This goal will be achieved by a new Soft Computing 
method based on Fuzzy Logic designed to work with imbalanced datasets. 

The Soft Computing method is called FLAGID (Fuzzy Logic And Genetic algo-
rithms for Imbalanced Datasets). The FLAGID method consists in using a clustering 
algorithm called DDA/RecBF to obtain a first set of trapezoidal Membership Func-
tions from the dataset, recombine those functions to obtain new ones, and finally, with 
the recombined set of membership functions and the dataset, obtain a set of fuzzy 
rules by means of a Genetic Algorithm. The result is expressed as a Fuzzy System. 

This chapter is structured in 6 sections. The first section is this introduction, which 
describes the topic which is dealt with in this chapter. In the second section we review 
some related work aiming at solving the imbalanced datasets problem. The third  
section details the development and the characteristics of our new method (FLAGID). 
In the following section, we present the experimental results obtained by applying the 
FLAGID method to the dataset corresponding to the Down’s syndrome, and we also 
compare FLAGID accuracy with other imbalanced methods. Finally, future applica-
tions of the method and its conclusions are presented. 

2.2   Related Work 

The imbalanced datasets classification problem has recently received considerable 
attention from the machine learning community 12. Several studies have been pub-
lished dealing with this classification problem, which can be divided into two impor-
tant directions. The first one corresponds to the use of the traditional learning methods 
with some changes, in the dataset and/or the algorithm. The changes applied to the 
dataset, commonly deal with resampling the quantity of data of every class in order to 
equilibrate their number of cases. Those of the algorithm try to avoid the undesirable 
effects produced by an imbalanced dataset, by introducing some precise changes to  
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the algorithm, which usually are the application of different costs (depending on the 
class) to the misclassified cases. 

The second direction is centred on developing new learning methods that solve the 
imbalanced problem, which is impossible to manipulate with classic algorithms. 

The resampling strategy has two approaches: oversampling and undersampling. 
Oversampling increases the quantity of patterns included in the minor-class (e.g. 3), 
and undersampling decreases the number of examples of the major-class 4. These two 
techniques are the most commonly used, because they allow to leverage existing clas-
sification methods that work with balanced sets of data, such as SVM 523 , neural 
networks 5 , and others 4. Two examples of SVM based methods are SDC and KBA. 
SDC 6 (SMOTE with Different Costs) combines SVM and SMOTE to solve the prob-
lem of a boundary too near to the positive instances by using different learning costs. 
KBA 7 (Kernel Boundary Alignment) is an algorithm based on SVM that modifies 
the boundary as well. 

Another strategy is to add costs to misclassified patterns, depending on their class, 
to improve the classification accuracy. There are some reports like Domingos 8, 
Zadrozny and Elkan 9, Meler et al. 10, etc. which present this technique as a generic 
algorithm modification. 

The above solutions, sometimes, do not give the wished results; it depends on the 
imbalanced problem. Then, there are many attempts to solve this problem using new 
methods developed in order to work with imbalanced datasets 11. For example, Visa 
and Ralescu 24 proposed a fuzzy classifier for imbalanced datasets and overlapping 
between classes, or Zhang et al. 12 presented a very simple and effective method, 
called RLSD (Rule for Learning Skewed Data) to generate rules from highly  
imbalanced datasets.   

Regarding to the previous work with Down’s syndrome detection using soft com-
puting methods, we refer to the work done by M. Sordo 21, who used RBF networks. 
The obtained results were 84% of true positives and 35% of false positives, worse 
than our results as will be seen in the Experimental Results section. 

However, there is neither method nor algorithm that has been used especifically to 
the Down’s syndrome problem, because medical experts have openly expressed their 
disbelieve in such approaches, like resampling methods, which are based on the fact 
that they would either create new patterns which do not exist in real life or erase pat-
terns with small details that could be relevant for the final solution. 

2.3   Proposed Method 

The method proposed in this chapter has the goal of achieving an accurate Fuzzy 
Classification System from an imbalanced dataset. The method consists of several 
steps, which are shown in Fig. 2.1. By using the DDA/RecBF clustering algorithm, a 
first set of fuzzy membership functions from the dataset can be obtained. Then, those 
functions are recombined by using a special method called ReRecBF (Recombined 
RecBF) which will be also presented in this chapter; and finally, with the recombined 
set of membership functions and the dataset, a set of fuzzy rules will be obtained by 
means of a Genetic Algorithm. 
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Fig. 2.1. Our method’s schema. Solid line rectangles represent algorithms (DDA/RecBF,  
ReRecBF and Genetic Algorithm) and dashed ones represent sets (dataset, fuzzy rules set and 
fuzzy variables set). 

The DDA/RecBF (Dynamic Decay Adjustment for Rectangular Basis Functions) 
algorithm 13 allows to obtain a RecBF Network from a dataset and a definition of the 
clusters (classes) of the output variable in a set of fuzzy membership functions. 
RecBF Networks 13 are a variation of RBF networks, in which the representation is a 
set of hyper-rectangles belonging to the different classes of the system. Every dimen-
sion of the hyper-rectangles represents a membership function. Finally, a network is 
built, representing, on every neuron, the membership function found. The algorithm 
which produces the RecBFN from the dataset and from the definition of the classes of 
the system is called DDA/RecBF. The set of membership functions defined by this 
method are usually well suited for classification. 

These membership functions will be used to obtain a set of rules by means of a 
Genetic Algorithm. Although first, a previous step to transform the set of membership 
functions (output of the DDA/RecBF) has to be done since they need to be adapted 
for working with imbalanced data. This task is done through the ReRecBF algorithm 
by recombining the set of membership functions. 

Genetic Algorithms 14 are used to derive fuzzy rules from the set of recombined 
membership functions. Genetic algorithms are methods based on principles of natural 
selection and evolution for global searches. Given a problem, a genetic algorithm runs 
repeatedly by using the three fundamental operators: reproduction, crossover and 
mutation. These operators, combined randomly, are based on a fitness function evolu-
tion to find a better solution in the searching space. Chromosomes represent the indi-
viduals of the genetic algorithms and a chromosome is composed of several genes. 
Genetic algorithms are used to find solutions to problems with a large set of possible 
solutions and they have the advantage of only requiring information concerning the 
quality of the solution. This fact makes genetic algorithms a very good method to 
solve complex problems. 

Empirical results show that for the Down’s syndrome problem the accuracy is  
improved with respect to the current method used. Furthermore, this method has been 
compared with other methods for imbalanced problems, using some UCI datasets. 
The results show that our method improves the accuracy in most of cases. 
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In summary, the FLAGID method pursues the following steps: 

1. It uses the DDA/RecBF algorithm to get a first set of membership function from 
the dataset. 

2. It recombines the membership functions found by DDA/RecBF and obtains a new 
set of membership functions. 

3. Finally, it applies a genetic algorithm to find a small set of fuzzy rules that uses the 
membership functions obtained in step 2 and provide high classification accuracy. 
These steps will be explained deeply in the following three subsections. 

2.3.1   Constructing a First Set of Membership Functions by Applying RecBFs 

The DDA/RecBF clustering algortihm13 constructs a set of membership functions 
from a dataset that provides a set of linguistic labels that can be later used to concisely 
express relationships and dependencies in the dataset. The algorithm creates hyper-
rectangles (called Rectangular Basis Functions or RecBFs) belonging to every class, 
from the input dataset and a defined fuzzy output variable. From these RecBFs, a set 
of membership functions will be extracted for every variable. 

Each RecBF is defined by a support-region and a core-region. In terms of mem-
bership function, a trapezoidal membership function is composed of four points 
(a,b,c,d): the interval [a,d] defines the support-region and the [b,c] one, the  
core-region. An example is shown in Fig. 2.2. 

Core Region

   a                       b               c                                      d 

d         c        b
   a

Support Region  

Fig. 2.2. Example of a 2-dimensional Fuzzy Point and its membership functions defined by its 
two regions. The a,b,c & d points are different for each dimension. 

DDA/RecBF algorithm is based on three procedures, which are executed for every 
training pattern: covered is executed when the support-region of a RecBF covers a 
pattern, commit creates a new pattern if the previous condition is false and, finally, the 
procedure shrink solves possible conflicts of the pattern with respect to RecBFs of a 
different class. Fig. 2.3 shows the behaviour of the DDA/RecBF algorithm for one  
epoch. 

Fig. 2.4 shows an example of the execution of the DDA/RecBF algorithm. It is 
shown how the patterns are passed to the DDA/RecBF algorithm and how the  
different RecBFs are created. 

 
 



28 V. Soler and M. Prim 

 ∀Rk

i { 
   Wk

i = 0   
   (a,b,c,d)k

i = (a,-,-,d)
k

i 

} 
∀pattern (x,µ) { 
   k = argmax1•k•c{µ

 k(x)} 

   if ∃Rk

i:x ∈[ak

i ,d
k

i] then 
      Wk

i = W
k

i + 1 
      covered()  
   else 
      mk = mk + 1; a

k

mk = 1 
      (a,b,c,d)k

mk = (-,x,x,-) 
   end if 

   ∀Ri

j with •i(x) = 0 { 
      if x∈ [ai

i ,d
k

i] then 
         shrink() 
      end if 
   } 
} 

Reset Rk
i. Rk

i represents 
the ith RecBF of class k, and 
Wk

i represents its weight. 
 
 
 
covered() stretch the core-

region of Rk
i selected to 

(x,µ). 
commit: a new RecBF is 

created, having its core-
region=pattern. 

 
If a pattern is incorrectly 

covered by a RecBF of an-
other class, its support-
region will be reduced until 
the conflict will be solved. 
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Fig. 2.3. One epoch of the DDA/RecBF algorithm. The algorithm iterates until stability of the 
RecBFs is reached.  

Support 
Region 

Core Region (1)
(2)

(3) (4)  

Fig. 2.4. An example of the execution of the DDA/RecBF algorithm for a 2-dimensional sys-
tem. (1) shows 3 patterns from one class determining a RecBF, (2) shows 2 patterns from an-
other class and how they cause the creation of a new RecBF and shrink the existing one, (3) and 
(4) show the different RecBFs created when the inclusion of new pattern is done, just varying 
the x coordinate: outside and inside the core-region of the other class. The x and y axis show 
the different membership functions created. 

However, in our case we work with imbalanced or highly imbalanced datasets, and 
to avoid granulation of the membership functions of the minor-class, it is absolutely 
necessary to generalize this class, because the main problem is when the method has 
to classify/test patterns belonging to this class, not shown during the training process. 
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Therefore, the following aspects will be taken into account to train the DDA/RecBF 
algorithm, argued in 17: 

1. The shrinking operation can be either done in all dimensions or only in one (which 
looses less hyper-area in its shrinking). In our case, the latter is used, as proposed 
by the authors of the DDA/RecBF algorithm in 13, because it causes less granula-
tion on RecBFs. 

2. The algorithm will train the dataset sorted by classes, first major-class and then 
minor-class. This fact will reduce the quantity of RecBFs (membership functions) 
of the minor-class, due to the DDA organization and RecBFs creation. So, the  
minor-class will have the minimum quantity of membership functions, letting the 
major-class organize itself in the quantity of membership functions needed. 

The following subsection explains how to obtain new RecBFs by recombining the 
existing ones, in order to adapt them to work with imbalanced datasets. 

2.3.2   ReRecBF Algorithm: Recombining Rectangular Basis Functions (RecBFs) 

Since the shrinking method in RecBF algorithm is performed only in one dimension, 
superposed membership functions are given as result of that algorithm (Fig. 2.4(4)), 
when working with datasets with overlapped classes (boundary not well defined). 
These membership functions are not adequate to obtain an accurate set of fuzzy rules 
from the imbalanced dataset. The tests on different datasets demonstrated that the 
membership functions obtained from the DDA/RecBF algorithm were not discrimi-
nant enough and some transformations of these membership functions were needed. 
On these grounds we propose to (argued in 17): 

1. Take only the intervals obtained by the core-regions. 
2. Transform to triangles the trapezoids belonging to the minor-class. 
3. If it is possible, discard the less representative RecBFs. That is, RecBFs whose 

core-region includes less than the 10% of the patterns of its class.  

The core-regions delimit the areas where the training patterns are, and the support-
regions (without taking into account the core ones) are the undefined areas between 
the core ones. In these undefined regions the algorithm does not know how to classify 
the possible patterns included there. Then, we can affirm that the only place where we 
are sure that a pattern belongs to a class is into the core-regions of that class. 

Out of them, the RecBF represents a grading of the level in which the instance  
belongs to the class. In this way, the nearer the value is to the core area, the higher the 
possibilities to belong to the class. So, in this case, the set of overlapped membership 
functions belonging to a variable and a class will be split into new ones, selecting 
only the areas defined by the core-regions. Thanks to this operation, we will have the 
membership function areas divided into sectors, and this fact will improve the  
quantity of patterns matched by the rules found. 

Finally, the recombination procedure shown in Fig. 2.4 consists in creating new 
membership function by splitting the existing ones by its core-region (points b and c) 
and eliminating the old ones. For every new membership function created, the  
support-area will be defined from the minimum to the maximum values of that  
 



30 V. Soler and M. Prim 

variable. The membership functions created from examples belonging to the minor-
class are transformed into triangles (having its maximum in the average point of its 
original trapezoid) and the major-class ones as trapezoids. 

We can obtain the following conclusions about the proposed transformation: 

1. More uncertainty is introduced in the definition of the membership function be-
cause we do not discard that a membership function can be evaluated in the whole 
variable space. 

2. Every value for a membership function is always greater than 0, so always the 
alpha-cut will be greater than 0. 

3. As the value of a rule will be determined by the minimum of the alpha-cuts, and as 
the importance of a class is determined by the maximum of the alpha-cuts of all its 
rules, we can affirm that the final importance of a class in a pattern can be deter-
mined by only one rule, and that rule has to have all membership function as near 
as possible the values of the example treated.  

4. The minor-class membership functions introduce more uncertainty because they 
are treated as triangles. If we do not have much information about how that class is 
(the case for highly imbalanced datasets), we can consider an area centred in the 
average of the membership function’s core-region and its belonging value decreas-
ing as far away it is. 

Thanks to these characteristics, the membership functions are not so rigid and they 
have many more possibilities to participate in every rule. Thus, we give to the system 
more feasible tools to adapt itself to the given dataset. 

The following subsection explains how the rule set will be extracted by a genetic 
algorithm, once the membership functions have been calculated by the previously 
specified procedure. 

2.3.3   Obtaining the Rule Set: The Genetic Algorithm 

The codification of one chromosome of our genetic algorithm is expressed in the 
following line: (x1,1,...,x1,n,x2,1,....,x2,n,xm,1,...,xm,n) where n is the number of variables 
(input variables plus output variables) and m is the number of rules. xi,j is the value 
that a gene can take, which is an integer value compressed in the interval 
[0,n_fuzzysetsj] and n_fuzzysetsj is the number of membership functions of the jth 
variable. If a xi,j has value 0 it expresses that this variable is not present in the rule. If 
the 0 value is assigned to the output fuzzy set, the rule is not taken into account to 
evaluate the rules. So, the system is able to find a set of rules less than m, just putting 
0 in the output fuzzy set of the rule. Every xi,1,..., xi,n corresponds to a rule of the  
system. 

The initial population is either taken randomly or by an initial set of rules. Every 
gene of a chromosome is generated randomly in the interval [0,n_fuzzysetsj], but 
some rules can be fixed for the entire simulation or just given as an initial set of  
rules, if needed. If a fuzzy set is 0, it means that the variable is not taken into account 
in the rule. 

In the case of this chapter, the initial rules have been generated randomly and no 
restriction has applied on them. 
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Fig. 2.5. (1) Trapezoids for major-class membership functions and triangles for minor-class 
membership functions. (2) Example of 2 overlapped trapezoids. (3) Three trapezoids will be 
obtained from above if the membership functions would belong to the major-class and (4) 
Three triangles if would belong to the minor-class. Both (3) and (4) have membership functions 
with the minimum and the maximum in the limits of the variable. 

The genetic algorithm uses the g-means metric (1), suggested by Kubat et al. 11, as 
fitness value for imbalanced datasets.  

 

 (1) 

 

The g-means is the most common measure used to evaluate results in imbalanced 
datasets, where acc+ is the accuracy classification on the positive instances, and acc- 
the accuracy on the negative ones. 

The classification of the data, in a fuzzy logic system depends on the shape of the 
membership functions of the input and output variables and the rules. The member-
ship functions of the input variables are obtained by the ReRecBF method, the rules 
by means of this genetic algorithm and the output variable has to be defined from the 
beginning. So, another important fact in the matching of the examples by the rule set 
is the shape of the output trapezoids. We can choose between symmetric (they have 
the same area and shape) or non-symmetric (they have different shapes and areas) 
(Fig. 2.5), that is, both classes will have either the same importance or not.  

−+ ⋅= accaccg
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In this chapter, 4 different types of asymmetry were tested. They have been chosen 
in order to represent different degrees of asymmetry to provide one degree more of 
freedom in the learning process. Fig. 2.6 (1) represents a high degree of asymmetry, 
and Fig. 2.6 (2) is symmetric. 

(1)                                              (2)  

Fig. 2.6. Example of (1) non-symmetric and (2) symmetric 2-class output 

The symmetric one is much better, because the fuzzy rules will be much easier  
intelligible. 

Regarding the stopping criteria, it is difficult to apply an early-stopping method 
based on the test of a small quantity of data, since usually the minor-class is provided 
with a reduce number of patterns. In this case, the genetic algorithm will stop when a 
determinate threshold value in its fitness function is reached. 

2.4   Experimental Results 

The goal of the tests made, mainly, is to find a Fuzzy System that tries to improve the 
results of the method used nowadays for the detection of the Down syndrome for the 
second-trimester of pregnancy (called age/LR 18). In this section, we will apply  
the FLAGID method to two types of problems. In the first subsection, the results of 
the FLAGID method on the Down’s syndrome dataset will be compared with those 
obtained with the current method (age/LR). In the second subsection, the FLAGID 
method will be compared with two of the best methods that work with imbalanced 
datasets, SDC and KBA, in order to demonstrate that the new proposed method works 
well with imbalanced datasets. 

2.4.1   Experimental Results for Down’s Syndrome Detection 

The dataset has been obtained from the University Hospital Dr. Josep Trueta of Gi-
rona (Spain). The data contain many variables, and only a few are used: the race of 
the mother, the number of fetuses, the age of the mother, its weight, the gestational 
age of the fetus, the existence of diabetes, the consumption degree of tobacco and 
alcohol, and the measure of the AFP and hCG hormones. Current methods also use a 
reduction of variables used in medicine called MoM (Multiple of Median) 18. This 
reduction is commonly used in this problem and consists in a regression based on the 
median of the 2 hormones. The median values are previously modified by other vari-
ables, which produces 2 new variables that include the value of the rest of variables 
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except the age of the mother. This variable is not included because it will be an error 
to reduce the quantity of information of its contribution to solve the problem. Thus, in 
case of MoM just 3 variables will be taken into account. With respect to the output 
variable, it only indicates if the fetus has or has not the Down’s syndrome. From now 
on, the non-MoM variables will be called physical variables. 

From these variables, the medical team made us to consider take into account: 
white race women1 and with a single fetus, in order to simplify the problem, since the 
changes in race or number of fetuses produces significant changes in the value of the 
hormonal markers. 

Therefore, the input variables are the age of the mother, its weight, the gestational 
age of the fetus, the existence of diabetes, the consumption degree of tobacco and 
alcohol, and the hormonal markers AFP and hCG, and their respective MoMs. As the 
MoMs include almost all the input variables, the variables have been divided into two 
groups:  

1. One formed by the age of the mother and both MoM (MoM-AFP and MoM-hCG).  
2. Other formed by the 8 variables that are not expressed in MoMs: the age of the 

mother, its weight, the gestational age of the fetus, the existence of diabetes, the 
hormonal consumption degree of tobacco and alcohol, and AFP and hCG markers. 

The data is divided into two groups: one with 3109 cases (3096 negatives and 13 
positives) and another with 4995 (4980 negatives and 15 positives), ordered chrono-
logically, so the cases of the second group are later than the cases of the first group. 
The data is numerical, has 2 output classes (has or has not Down’s syndrome) and its 
imbalance ratio is approximately 1:300, i.e., highly imbalanced dataset. In Table 2.1 it 
is shown the characteristics of the two datasets and the total. The last set, the 
Down_total, is the sum of the two previous ones. 

Table 2.1. Characteristics of the 2 datasets and the total 

Name #patterns #neg #pos %neg %pos 
Down_3109 3109 3096 13 99.60% 0.40% 
Down_4995 4995 4980 15 99.70% 0.30% 
Down_total 8922 8892 30 99.66% 0.34% 

In the current method age/LR, the hormones markers and its MoM are truncated by 
their upper and lower limits, due to an adjustment of the function to achieve a Gaus-
sian shape, since it is fulfilled in the central part but not in the ends. In order to fulfill 
the Gaussian shape, the approximate limits are settled down in 3 times the variance. 
In our case, we considered that just the upper limits have to be truncated, and the 
truncation is 5 times the MoM (e.g. in case of MoM the upper limit is 5), due to the 
upper values are really spread, producing a big scope of the variables which have  
the information concentrated in a smaller area (the 95% of the cases concentrated in 
the 10% of its space). This fact may cause problems in the extraction of a learning 
model and for that reason the data is truncated. Table 2.2 shows the new upper limits. 

                                                           
1 In Spain, the white race is majority. 



34 V. Soler and M. Prim 

Table 2.2. Upper limits of both hormonal markers 

 MoM No MoM 
AFP 5 115 
hCG 5 85 

Both datasets Down_3109 and Down_4995 have differences. We pointed out 
above that they are chronologically different, appearing a degradation in the acquisi-
tion of the data. Down_4995 has %TP=40% and %FP=7.71%, whilst Down_3109 has 
normal rates, specified in the Introduction section. 

The learning/test process has been done by selecting the stratified (the same pro-
portion of data of both classes) 50% of the Down_3109 dataset for learning and the 
other 50% for testing. With the best solutions, a second test with the Down_4195 has 
been done. Several generations of Fuzzy Systems have been extracted by selecting 
different variables. In case of the physical variables the best solutions have been  
obtained from using a set of 5 variables (physical: age of the mother, weight of the 
mother, gestational age of the fetus, and the measures of two hormones), and in case 
of MoM just have been considered 3 variables (age of the mother and the two MoM 
hormones). In this case, the fuzzy system has been obtained from a dataset that 
matches the results of the age/LR method and that it is also tested with a noisy data-
set, preventing this situation in the future. Thus, we can affirm that the fuzzy system 
extracted will be robust under noisy conditions. 

The variables of tobacco and alcohol consumption did not produce good results, as 
well as the diabetes one. The first two variables may produce noisy due to their value 
depends on the truth of the women telling whether the consumption of alcohol is null, 
1-5 times a week or 1-5 times a day; and whether they smoke 5 cigarettes or more a 
day or they do not smoke. With respect to the diabetes, we have rejected its use due to 
noisy problems as well. 

Several classification methods have been tested with this dataset in order to discard 
the possibility of finding a good solution with them: Neural Networks (BayesNN, 
Backpropagation, etc.), classical methods of Fuzzy Rule Extraction and other meth-
ods, like decision trees or SVM 9,10,15,16. The results always were negative, because 
of the treatment of the minor-class patterns: either because they did specialize neu-
rons/rules/etc. in the cases belonging to the minor-class or because the minor-class 
patterns were ignored (they tried always to match the major-class patterns without 
taking into account the minor-class patterns). 

In Table 2.3, the best results for the Down’s syndrome problem using the FLAGID 
method and ordered by %TP (True Positives) are shown. The first two columns refer 
to a test done with the Down_4815 dataset not included in the Down_3071 used for 
learning. For every % of correct positives found, it is shown the % of false positives, 
the type of set with better results (5 or 3 variables), if discarded membership functions 
needed, the number of rules found and the %FP (False Positives) and %TP from the 
first dataset. The last two columns show the accuracy for the Down_3071 dataset after 
testing for whole training and test patterns. 

Table 2.3 shows that the results are very similar to those obtained by the age/LR 
method (60%-70% TP and 10% FP). Screening methods, as commented at the  
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Table 2.3. Results for the Down’s syndrome problem using the FLAGID method. The first 2 
columns express the accuracy of the test of 4815 patterns not included in the set of 3071 
training patterns. The type of the set refers to the type of dataset: using MoM or physical. The 
type of output can be symmetric or non-symmetric. Discarded RecBFs indicates if the solution 
was found discarding the less representative RecBFs. The last 2 columns refer to the accuracy 
of the training/test dataset, training always with the stratified half of patterns. 

%TP 
(4815) 

%FP 
(4815) 

type of 
dataset 

type of 
output 

discarded 
RecBFs 

#rules %TP 
(3071) 

%FP 
(3071) 

60% 9.69% physical Symmetric 0% 4 81.82% 8.39% 
66.66% 10.21% MoM Symmetric 0% 6 81.82% 7.25% 
73.33% 13.56% MoM Symmetric 0% 6 90.91% 10.49% 
80% 14.48% physical Symmetric 0% 4 100% 12.87% 

beginning of this chapter, want to find a good solution dealing with the %TP and the 
%TN. In case of Down’s syndrome problem, rather than %TN, the %FP will be  
taking into account. Finding the best solution, a threshold in one of both indexes has 
to be placed. 

The different rows in Table 2.3 show the best %FP for different thresholds of %TP. 
The best results are in the first three rows, which minimizes the %FP. A FP, in 
Down’s syndrome problem, is the case that the method classifies a fetus as positive 
but in reality is negative, and in this case the mother would try to do an invasive test, 
which has 1% of probability of loosing the child, to be 100% sure of the results.  

In all cases shown in Table 2.3, no RecBF obtained was discarded and the output 
variable has a symmetric distribution of its membership function. However, the  
results which improve the current methods are focused in the very small quantity of 
rules found: between 4 and 6. This fact makes the system very understandable and 
hence very adequate for the task of extracting intelligible fuzzy rules.  

2.4.2   Comparison with Other Methods 

In order to know if the FLAGID method can be applied to the classification of any 
imbalanced dataset, it is needed a comparison with other methods specialized in deal-
ing with imbalanced datasets. 

Table 2.4 shows this comparison with other two methods for imbalanced datasets: 
KBA and SDC. These two methods are two of the best methods for imbalanced data-
sets, with very good results with datasets of the UCI repository 25. These datasets will 
be used to do this comparison.  

The SDC method (Smote with Different Costs) 6 combines SVM and SMOTE to 
solve the problem that appears in SVM when the dataset is imbalanced: the border is 
located always too near to the minor-class. This algorithm applies the modified SVM 
function proposed by Veropoulos, Campbell and Cristianini 26, shown in Equation 
(2). This SVM function uses different costs to the errors in the positive class and in  
the negative class. The SDC method uses this function in combination with an  
oversampling method called SMOTE 3. 

∑∑∑∑
==−=

−

+=

+ −+−+⋅−++=
−+ n

i
iiiii

n

i
i

n

yj
j

n

yi
ip bxwyCC

w
bwL

jii 111/1/

2

]1)([
2

),,( ξβξαξξα
 

   (2) 



36 V. Soler and M. Prim 

The authors of the KBA (Kernel Boundary Alignment) aim at the potential prob-
lems in SVM like the border is slanted towards the minor-class, due to its lack of 
representation in the dataset. In such case, they propose to modify the function of 
nucleus adapting it to the distribution of classes and thus reshaping the boundary. 

For KBA, the authors divided the dataset into 7 parts: 6 for training and 1 for test-
ing, and 7:3 in SDC case. The columns with the SVM and SMOTE methods are  
included because they can be compared with the rest of the results (both authors  
included them in their results). Both KBA and SDC are kernel methods, based on 
modifications of a SVM. 

The UCI datasets selected to do this comparison are: Segmentation, Glass, Car, 
Yeast, Abalone and Sick. All of the selected UCI datasets do not have binary output, 
and they were transformed into binary datasets by choosing one class as the negative 
one and the rest of classes were grouped all as one. We chose the same class than the 
authors of both methods just to compare the results.  

In Table 4 the number that appears with the name of the dataset corresponds to the 
chosen class. The first four columns of the table explains the type of the dataset,  
the following three columns are the g-means results from the KBA and the next 3 
columns the same results from the SDC. The last two columns reflect the g-means 
results from the method proposed in this paper (FLAGID) and the different number of 
rules of the systems found. 

These results show that for the Glass, Segmentation and Yeast datasets our method 
(FLAGID) is better, in terms of the g-means metric whilst for the Car and Abalone it 
is worst. The results are equal for the Sick dataset. In case of Abalone FLAGID im 
proves KBA but it is worst than SDC. Always the system found has a small number 
of rules, i.e., so it has a high probability of being understandable by a human expert. 

To prove that the method scales good when the imbalancing level increases, we 
imbalanced even more some datasets. For instance, we imbalanced much more the  
 

Table 2.4. Comparison of our method (FLAGID) with the SVM, SMOTE, KBA & SDC 
methods for some UCI datasets, by means of the g-means measurement. In first column, the 
number of the class made as minor-class is included with the name of the dataset. The columns 
2, 3 & 4 express the characteristics of every dataset. The last column indicates the number of 
rules of the fuzzy system found, that shows that it is reduced. 

Dataset #attrib #pos #neg 
SVM
(6:1)

SMOTE
(6:1) 

KBA
(6:1)

SVM
(7:3)

SMOTE
(7:3) 

SDC
(7:3)

FLA
GID #rules 

Segmentation(1) 19 30 180 0.98 0.98 0.98 0.99 0.99 0.97 1 3,4,5,9 

Glass(7) 10 29 185 0.89 0.91 0.93 0.86 0.87 0.94 0.97  3,6 

Car(3) 6 69 1659 0.99 0.99 0.99 0 0.98 0.984 0.94 3,4 

Yeast(5) 8 51 1433 0.59 0.69 0.82    0.83 3,6 

Abalone(19) 8 32 4145 0.0 0.0 0.57 0 0 0.74 0.72 11,13 

Sick(2) 27 231 3541    0 0.40 0.86 0.86 3,5 
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Car dataset, letting just take from the minor-class the half of the patterns taken in the 
method expressed in Table 2.4. If the ratio for training/test was 7:3, the positive  
patterns chosen for training were 24, rather than 48 (it is the 3/10 of 69). The results 
after applying this reduction in the number of patterns belonging to the minor-class 
during the training phase, were practically the same than for 48 (g=0.93). Similar 
results were found for the Hepatitis dataset (taking only 30 and 5 patterns of both 
classes). 

2.5   Future Trends 

From the point of view of the accomplishment of this work, some research lines have 
been opened. The first one is to try to solve the overfitting problem that appears when 
training, by evaluating the existing overlapping in the classes. To do it, it is consid-
ered the use of the measurement proposed by S. Visa and A. Ralescu in 24, which 
measures the degree of overlapping between datasets. Batista et al. 22 concluded in 
their paper that the main problem in learning from imbalanced datasets is their degree 
of overlapping between classes (the case that a boundary cannot be well defined). 
Therefore, on the basis of this measurement a research line can be opened, in order to 
anticipate whether there will or will not exist possibilities of finding overfitting, and 
raising solutions for it. Within the same researching line, a new measurement also 
could be proposed.  

Another opened line, that has relation with the previous one, is to determine the 
ideal number of rules (approximated) for a dataset. Now it is determined being based 
on the number of membership function generated. In addition to this number of rules, 
also this research line would be focused on determining the best values of the parame-
ters that are used in the FLAGID method: order of the patterns, reshrink operation, 
discarding Fuzzy Points, etc. Now this process is made by means of carried out tests 
with the training set, but it could be productive that some of these parameters were 
calculated automatically from the dataset.  

One of the problems in SVM with respect to its variation applied to the imbalanced 
datasets, is the one of knowing which is the ideal C-/C+ ratio. All the publications 
pointed out that choosing the ratio between the number of patterns of each class as the 
C-/C+ ratio, already gave good results to them. In this case, a researching line is opened 
in this field, since the Down’s syndrome dataset does not fulfil this empirical rule.  

A proposal to try to improve the probability of success in the evaluation of  
knowing if a fetus is affected of Down’s syndrome would be to try to combine both 
methods, the method age/LR and the result of the FLAGID method.  

Another line of research lies in trying to modify and to improve the FLAGID 
method to work better for imbalanced datasets, improving its results. A way to apply 
an improvement to it could be the combination of the results of different solutions 
using bagging or the combination of this method with others by using boosting. 

2.6   Conclusions 

We have presented a method to work with imbalanced or highly imbalanced datasets, 
called FLAGID. The method has been shown to give the same results than the used  
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methods on the Down’s syndrome detection problem. Furthermore, it has been proven 
to be competitive with the state of the art of classifiers for imbalanced datasets, on 
UCI repository. 

This method extracts information in the dataset, and expresses it in a fuzzy system. 
This information is expressed in a small number of rules, as can be seen in tables 2.3 
and 2.4. This fact means that the rules are not specialized in cases of the minor-class, 
but they are distributed among both classes. Normally, we can find more or many 
more rules belonging to the major-class than to the minor-class. This was one of the 
goals to be achieved by the method. 

Finally, we can conclude that the new method presented in this chapter and called 
FLAGID (Fuzzy Logic And Genetic algorithms for Imbalanced Datasets) is a very 
good method to deal with imbalanced datasets. 
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Abstract. To reduce error in generalization, a great number of work is carried out on
the classifiers aggregation methods in order to improve generally, by voting techniques,
the performance of a single classifier. Among these methods of aggregation, we find the
Boosting which is most practical thanks to the adaptive update of the distribution of the
examples aiming at increasing in an exponential way the weight of the badly classified
examples. However, this method is blamed because of overfitting, and the convergence
speed especially with noise. In this study, we propose a new approach and modifications
carried out on the algorithm of AdaBoost. We will demonstrate that it is possible to
improve the performance of the Boosting, by exploiting assumptions generated with
the former iterations to correct the weights of the examples. An experimental study
shows the interest of this new approach, called hybrid approach.

3.1 Introduction

The great emergence of the modern databases and their evolution in an expo-
nential way as well as the evolution of transmission systems result in a huge
mass of data which exceeds the human processing and understanding capabili-
ties. Certainly, these data are sources of relevant information and require means
of synthesis and interpretation. As a result, researches were based on powerful
systems of artificial intelligence allowing the extraction of useful information
helping us in decisions making. Responding to this need, data mining was born.
It drew its tools from the statistics and databases. The methodology of data
mining gives the possibility to build a model of prediction. This model is a phe-
nomenon starting from other phenomena more easily accessible, based on the
process of the knowledge discovery from data which is a process of intelligent
data classification. However, the built model can sometimes generate errors of
classification that even a random classification does not make. To reduce these
errors, a great amount of research in data mining and specifically in machine
learning has been carried out on classifiers aggregation methods having as goal
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to improve by voting techniques the performance of a single classifier. These
aggregation methods are good for compromised Skew-variance, thanks to the
three fundamental reasons explained in [6]. These methods of aggregation are
divided into two categories. The first category refers to those which merge preset
classifiers, such as simple voting [2], the weighted voting [2], and the weighted
majority voting [12]. The second category consists of those which merge classi-
fiers according to data during the training, such as adaptive strategies (Boosting)
and the basic algorithm AdaBoost [21] or random strategies (Bagging) [3].

We are interested in the method of Boosting, because of the comparative
study [7] that shows, in little noise, AdaBoost is seemed to be working against
the overfitting. In fact, AdaBoost tries to optimize directly the weighted votes.
This observation has been proved not only by the fact that the empirical error
on the training set decreases exponentially with iterations, but also by the fact
that the error in generalization also decreases, even when the empirical error
reached its minimum. However, this method is blamed because of overfitting,
and the speed of convergence especially with noise. In the last decade, many
studies focused on the weaknesses of AdaBoost and proposed its improvement.
The important improvements were carried on the modification of the weight of
examples [19], [18], [1], [20], [14], [8], the modification of the margin [9], [20],
[17], the modification of the classifiers’ weight [15], the choice of weak learning
[5], [24] and the speed of convergence [22], [13], [18]. In this paper, we propose
a new improvement to the basic Boosting algorithm AdaBoost. This approach
aims exploiting assumptions generated with the former iterations of AdaBoost
to act both on the modification of the weight of examples and the modification
of the classifiers’ weight. By exploiting these former assumptions, we think that
we will avoid the re-generation of a same classifier within different iterations
of AdaBoost. Thus, consequently, we expect a positive effect on the improve-
ment of the speed of convergence. The paper is organized in three sections. In
the following section, we describe the studies whose purpose is to improve the
Boosting against its weaknesses. In the third section, we describe our improve-
ment of boosting by exploiting former assumptions. In the fourth section, we
present an experimental study of the proposed improvement by comparing its
error in generalization, its recall and its speed of convergence with AdaBoost, on
many real databases. We study also the behavior of the proposed improvement
on noisy data. We present also comparative experiments of our proposed method
with BrownBoost (a new method known that it improves AdaBoost with noisy
data). Lastly, we give our conclusions and perspectives.

3.2 State of Art

Due to the finding of some weaknesses, such as the overfitting and the speed
of convergence, met by the basic algorithm of boosting AdaBoost, several re-
searchers have tried to improve it.

Therefore, we make a study of main methods having as purpose to improve
boosting relatively to these weaknesses. With this intention, the researchers try
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to use the strong points of Boosting such as the update of the badly classified
examples, the maximization of the margin, the significance of the weights that
AdaBoost associates the hypothesis and finally the choice of weak learning.

3.2.1 Modification of the Examples’ Weight

The distributional adaptive update of the examples, aiming at increasing the
weight of those badly learned by the preceding classifier, makes it possible to
improve the performance of any training algorithm . Indeed, with each iteration,
the current distribution supports the examples having been badly classified by
the preceding hypothesis, which characterizes the adaptivity of AdaBoost. As a
result, several researchers proposed strategies related to a modification of weight
update of the examples, to avoid the overfitting.

Indeed, we can quote for example MadaBoost [8] whose aim is to limit the
weight of each example by its initial probability. It acts thus on the uncon-
trolled growth of the weight of certain examples (noise) which is the problem of
overfitting.

Another approach which make the algorithm of boosting resistant to the noise
is Brownboost [14], an algorithm based on Boost-by-Majority by incorporating
a time parameter. Thus for an appropriate value of this parameter, BrownBoost
is able to avoid the overfitting. Another approach, which adapts to AdaBoost a
logistic regression model, is Logitboost [18].

An approach, which produces less errors of generalization compared with the
traditional approach but with the cost of an error of training slightly more
raised , is the Modest boost [1]. In fact, its update is based on the reduction in
the contribution of classifier, if that functions “too well” on the data correctly
classified. This is why the method is called Modest AdaBoost - it forces the
classifiers to be “modest” and it works only in the field defined by a distribution.

An approach, which tries to reduce the effect of overfitting by imposing
limitations on the distribution produced during the process of boosting is used
in SmoothBoost [20]. In particular, a limited weight is assigned to each exam-
ple individually during each iteration. Thus, the noisy data can be excessively
underlined during the iterations since they are assigned to the extremely large
weights.

A last approach, Iadaboost [19], is based on the idea of building around each
example a local information measurement, making it possible to evaluate the
overfitting risks, by using neighboring graph to measure information around each
example. Thanks to these measurements, we have a function which translates
the need for updating the example. This function makes it possible to manage
the outliers and the centers of clusters at the same time.

3.2.2 Modification of the Margin

Certain studies, analyzing the behavior of Boosting, showed that the error in
generalization still decreases even when the errors in training are stable. The
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explanation is that even if all the examples of training are already well classified,
Boosting tends to maximize the margins [20].

Following this, some studies try to modify the margin either by maximizing it
or by minimizing it with the objective of improving the performance of Boosting
against overfitting.

Several approaches followed such as AdaBoostReg [17] which tries to identify
and remove badly labeled examples, or to apply the constraint of the maximum
margin to examples supposed to be badly labeled, by using the Soft Margin.

In the algorithm, proposed by [9], the authors use a weighting diagram which
exploits a margin function that grows less quickly than the exponential function.

3.2.3 Modification of the Classifiers’ Weight

During the performance evaluation of Boosting, researchers wondered about the
significance of the weights α(t) that AdaBoost associates with the produced
hypotheses.

However, they noted at the time of experiments on very simple data that the
error in generalization decreased further whereas the weak learning had already
provided all the possible hypotheses. In other words, when a hypothesis appears
several times, it votes finally with a weight, office sum of all α(t), which is
perhaps absolute. So several researchers hoped to approach these values by a
nonadaptive process , such as locboost [15] an alternative to the construction of
the whole representations of experts which allows the coefficients α(t) to depend
on the data.

3.2.4 Choice of Weak Learner

A question that several researchers posed against the problems of boosting is
that of weak learner and how to make a good choice of this classifier?

A lot of research moves towards the study of choosing the basic classifier
of boosting, such as GloBoost [24]. This approach use a weak learner which
produces only correct hypotheses. RankBoost [5] is also an approach which is
based on weak learner which accepts as data attributes functions of rank.

3.2.5 The Speed of Convergence

In addition to the problem of overfitting met by boosting in the modern
databases mentioned above, we find another problem : the speed of convergence
of Boosting especially AdaBoost.

Indeed, in the presence of noisy data, the optimal error of the training al-
gorithm used is reached after a long time. In other words, AdaBoost “loses”
iterations, and thus time, with reweighing examples which do not deserve in
theory any attention, since it is a noise.

Thus research was made to detect these examples and improve the perfor-
mance of Boosting in terms of convergence such as: iBoost [22] which aims at
specializing weak hypotheses on the examples supposed to be correctly classified.
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The IAdaBoost approach also contributes to improve AdaBoost against its
speed of convergence. In fact, the basic idea of the improvement is the modifica-
tion of the theorem [18]. This modification is carried out in order to integrate
the risk of Bayes. The effects of this modification are a faster convergence to-
wards the optimal risk and a reduction of the number of weak hypotheses to
build. Finally, RegionBoost [13] is a new weighting strategy of each classifier.
This weighting is evaluated at the voting time by a technique based on K Nearest
Neighbors of the example to label. This approach makes it possible to specialize
each classifier on areas of the training data.

3.3 Boosting by Exploiting Former Assumptions

To improve the performance of AdaBoost and to avoid forcing it to learn either
from the examples that contain noise, or from the examples which would become
too difficult to learn during the process of Boosting, we propose a new approach.

This approach is based on the fact that for each iteration, Adaboost, builds
hypotheses on a defined sample, it makes its updates and it calculates the error
of training according to the results given only by these hypotheses. In addition,
it does not exploit the results provided by the hypotheses already built on other
samples to the former iterations. This approach is called AdaBoostHyb

Program Code

– Input X0 to classify
– S = (x1, y1), ....., (xn, yn) Sample
– For i=1,n Do
– p0(xi) = 1/n;
– End FOR
– t← 0
– While t ≤ T Do
– Learning sample St from S with probabilities pt.
– Build a hypotheses ht on St with weak learning A.
– εt apparent error of ht on S with εt =

∑
weight of examples

such that argmax(
∑t

i=1 αihi(xi) �= yi). αt = 1/2ln((1− εt)/εt).
– For i=1, m Do
– Pt+1(xi) ← (pt(xi)/Zt)e−αt if argmax(

∑t
i=1 αihi(xi)) = yi (correctly

classified)
Pt+1(xi) ← (pt(xi)/Zt)e+αt if argmax(

∑t
i=1 αihi(xi)) �= yi (badly

classified)
(Zt normalized to

∑n
i=1 pt(xi) = 1)

– End For
t← t + 1

– End While
– Final hypotheses :

H(x) = argmax y ∈ Y
∑T

t=1 αt
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The modification within the algorithm is made through two ways

The first way is during the modification of the weights of the examples: Indeed,
this strategy, with each iteration, is based on the opinion of the experts already
used (hypotheses of the former iterations) for the update of the weight of the
examples.

In fact, we do not compare only the class predicted by the hypothesis of
the current iteration with the real class but also the sum of the hypotheses
balanced from the first iteration to the current iteration. If this sum votes for
a class different from the real class, an exponential update such as in the case
of AdaBoost is applied to the badly classified example. Thus, this modification
lets the algorithm be interested only in the examples which are either badly
classified or not classified yet. So, results related to the improvement the speed of
convergence are awaited, similarly for the reduction of the error of generalization,
because of the richness of the space of hypotheses to each iteration.

The second way is during the error analysis ε(t) of the hypothesis to the
iteration T: Indeed, this other strategy is rather interested in the classifiers’
coefficient ( hypothesis) to each iteration α(t).

In fact, this coefficient depends on the apparent error analysis ε(t). This
method, with each iteration, takes into account hypotheses preceding the current
iteration during the calculation of ε(t). So the apparent error with each iteration
is the weight of the examples voted badly classified by the hypotheses weighted
of the former iterations by comparison to the real class.

Results in improving the error of generalization are expected since the vote
of each hypothesis (coefficient α(t)) is calculated from the other hypotheses.

3.4 Experiments

The objective of this part is to compare our new approach and especially
its contribution with the original approach of Adaboost and to look further
into this comparison by the choice of a version improved of Adaboost (Brown
Boost [14]).

Our Choice of BrownBoost was based on its robustness against the problems
of noisy data. In fact,BrownBoost is an adaptive algorithm which use a function
that depends on the iteration number K (execution time), the Current iteration
i, the number of times that the example has already been correctly predicted r,
and the probability of success 1− γ

αi
r = (k−i−1

k/2−r )(1/2 + γ)(k/2)−r(1/2− γ)(k/2)−i−1+r instead on the exponential
function.

So by a good estimation of K parameter BrownBoost is capable of avoiding
overfitting. The advantage of this approach is that the noised data would be
detected at some point, and their weights stop rising.

The comparison criterions chosen in this article are the error rate, the recall,
the p-value, the average gain compared to AdaBoost, the speed of convergence
and the sensitivity to noise.
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Table 3.1. Databases Description

Databases Nb. Inst Attrib Cl. Pred Miss.VaL
IRIS 150 4 numeric 3 no

NHL 137 8 numeric and symbolic 2 yes

VOTE 435 16 boolean valued 2 yes

WEATHER 14 4 numeric and symbolic 2 no

CREDIT-A 690 16numeric and symbolic 2 yes

TITANIC 750 3 symbolic 2 no

DIABETES 768 8 numeric 2 no

HYPOTHYROID 3772 30 numeric and symbolic 4 yes

HEPATITIS 155 19 numeric and symbolic 2 yes

CONTACT-LENSES 24 4 nominal 3 no

ZOO 101 18 numeric and boolean 7 no

STRAIGHT 320 2 numeric 2 no

IDS 4950 35 numeric and symbolic 12 no

LYMPH 148 18 numeric 4 no

BREAST-CANCER 286 9 numeric and symbolic 2 yes

To do this experimental comparison, we used the C4.5 algorithm as a weak
learner (according to the study of Dietterich [6]). To estimate without skew
the theoretical success rate, we used a procedure of cross-validation in 10 folds
(according to the study [11]). In order to choose the databases for our ex-
periments, we considered the principle of diversity . We have considered 15
databases of the UCI. Some databases are characterized by theirs missing
values (NHL, Vote, Hepatitis, Hypothyroid). Some others concern the problem of
multi-class prediction (Iris: 3 classes, Diabetes: 4 classes, Zoo: 7 classes, IDS: 12
classes). We choose the IDS database [23] especially because it has 35 attributes.
Table 1 describes the 15 databases used in the experimental comparison.

3.4.1 Comparison of Generalization Error

Graphic 1 indicated the error rates in 10-fold cross-validation corresponding
to the algorithm AdaBoost M1,BrownBoost and the proposed one. We used the
same samples for the tree algorithms in cross-validation for comparison purposes.
The results are obtained while having chosen for each algorithm to carry out 20
iterations. The study of the effect of the number of iterations on the error rates
of the tree algorithms will be presented in the section 4.3, where we will consider
about 1000 iterations.

The results in graphic 1 show already that the proposed modifications improve
the error rates of AdaBoost. Indeed, for 14 databases out of 15, the proposed
algorithm shows an error rate lower or equal to AdaBoost M1. We remark, also,
a significant improvement of the error rates corresponding to the three databases
NHL, CONTACT-LENS and BREAST-CANCER. For example, the error rate
corresponding to the BREAST-CANCER database goes from 45.81% to 30.41%.



48 E. Bahri et al.

Comparison of error rate in generalization
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Fig. 3.1. Rate of error of generalization

According to this results, we use test-student and we find a significant p-value
0.0034. We have also a average gain of 2.8 compared to AdaBoost.

Even, if we compare the proposed algorithm with BrownBoost, we remark
that for 11 databases out of 15 the proposed algorithm shows an error rate lower
or equal to BrownBoost. Using test of student, we find a p-value not significant,
But a average gain of 2.5 compared to AdaBoost.

This gain shows that by exploiting hypotheses generated with the former it-
erations to correct the weights of the examples, it is possible to improve the
performance of the Boosting. This can be explained by the calculation of the
precision of the error analysis ε(t) and consequently the calculation of the coef-
ficient of the classifier α(t) as well as the richness of the space of the hypotheses
to each iteration since it acts on the whole of the hypotheses generated by the
preceding iterations and the current iteration.

3.4.2 Comparison of Recall

The encouraging results, found previously, enable us to proceed further within
the study of this new approach. Indeed, in this part we try to find out the
impact of the approach on the recall, since our approach does not really improve
Boosting if it acts negatively on the recall.

Graphic 2 indicates the recall for the algorithms AdaBoost M1, Brownboost
and the proposed one. We remark that the proposed algorithm has the best
recall overall the 14 for 15 studied databases. This result confirms the preceding
ones. We remark also that it increases the recall of the databases having less
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Comparison of recall
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Fig. 3.2. Rate of recall

important error rates. Based on this results, we use test-student and we find a
significant p-value 0.0010. We have a significant average gain of 4.8 compared to
AdaBoost.

Considering Brownboost, we remark that it improves the recall of Ad-
aBoostM1, overall the data sets (except the TITANIC one). However, the recall
rates given by our proposed algorithm are better than those of BrownBoost.
Except, with the zoo dataset. In this case, we have a significant p-value 0.0002
and not a significant average gain (1.4)compared to AdaBoost according to the
results given by AdaBoosthyb.

It is also noted that our approach improves the recall in the case of the
Lymph base where the error was more important. It is noted though that the
new approach does not act negatively on the recall but it improves it even when
it can not improve the error rates.

3.4.3 Comparison with Noisy Data

In this part, we are based on the study already made by Dietterich [6] by adding
random noise to the data. This addition of noise of 20% is carried out, for each
one of these databases, by changing randomly the value of the predicted class
by another possible value of this class.

Graphic 3 shows us the behavior of the algorithms with noise. We notice
that the hybrid approach is also sensitive to the noise since the error rate in
generalization is increased for all the databases.
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Generalization error  of noisy data 
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Fig. 3.3. Rate of error on Noisy data

However this increase remains always inferior with that of the traditional
approach except for the databases such as Credit-A, Hepatitis and Hypotyroid.

So, we studied these databases and we observed that all these databases have
missing values. In fact, Credited, Hepatitis and Hypothyroid have respectively
5%, 6% and 5,4% of missing values. It seems that our improvement loses its
effect with accumulation of two types of noise: missing values and artificial noise,
although the algorithm AdaBoostHyb improves the performance of AdaBoost
against the noise. Using test-student, we find a significant p-value 0.0352 and a
average gain of 4.6 compared to AdaBoost. Considering Brownboost, we remark
that it gives better error rates that AdaboostM1 on all the noisy data sets.
However, It gives better error rates than our proposed method, only with 6 data
sets. Our proposed method gives better error rates with the other 9 data sets. We
haven’t a significant p-value but a average gain of 4.4 compared to AdaBoost.
This encourages us to study in details the behavior of our proposed method on
noisy data.

3.4.4 Comparison of Convergence Speed

In this part, we are interested in the number of iterations that allow the algo-
rithms to converge, i.e. where the error rate is stabilized. Table 2 and graphic 4
shows us that the hybrid approach allows AdaBoost to converge more quickly.
Indeed, the error rate of AdaBoost M1 is not stabilized even after 100 iterations,
whereas Adaboost Hyb converges after 20 iterations or even before.
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Table 3.2. comparison of speed convergence

- AdaBoost M1 BrownBoost AdaBoost hyb

Nb. iterations 10 20 100 1000 10 20 100 1000 10 20 100 1000

Iris 7,00 6,00 5,90 5,85 3.96 3.89 3,80 3,77 3,50 3,00 3,00 3,00

Nhl 37,00 35,00 34,87 34,55 30,67 30,01 29,89 29,76 31,00 28,00 28,00 28,00

Weather 21,50 21,42 21,40 14,40 21,10 21,00 20,98 21,95 21,03 21,00 21,00 21,00

Credit-A 15,85 15,79 15,75 14,71 13,06 13,00 12,99 12,97 14,00 13,91 13,91 13,91

Titanic 21,00 21,00 21,00 21,00 24,08 24,00 23,89 23,79 21,00 21,00 21,00 21,00

Diabetes 27,70 27,61 27,55 27,54 25,09 25,05 25,03 25,00 25,56 25,56 25,56 25,56

Hypothyroid 0,60 0,51 0,51 0,50 0,62 0,60 0,59 0,55 0,43 0,42 0,42 0,42

Hepatitis 16,12 15,60 14,83 14,19 14,15 14,10 14,08 14,04 14,03 14,00 14,00 14,00

Contact-Lenses 26,30 24,80 24,50 16,33 15,90 15,86 15,83 15,80 16,00 16,00 16,00 16,00

Zoo 7,06 7,00 7,00 7,00 7,25 7,23 7,19 7,15 7,00 6,98 7,00 7,00

Straight 2,50 2,46 2,45 2,42 2,12 2,00 1,98 1,96 0,42 0,42 0,42 0,42

IDS 2,00 1,90 1,88 1,85 0,7 0,67 0,65 0,63 0,7 0,67 0,65 0,63

Lymph 19,53 19,51 19,51 19,50 18,76 18,54 18,50 18,45 18,76 18,54 18,50 18,45

Breast-Cancer 45,89 45,81 45,81 45,79 31,10 31,06 31,04 31,00 31,10 31,06 31,04 31,00
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Fig. 3.4. Average Error by iteration

For this reason we choose for the first part 20 iterations to carry out the
comparison in terms of error and recall. These results are also valid for the
database Hepatitis. In fact, This database has a lot of missing values (Rate 6%).
These missing values always present a problem of convergence. Moreover, the
same results appear on databases of various types (several attributes, the class
to be predicted with K modalities, important sizes).
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This makes us think that due to the way of calculating the apparent error, the
algorithm reaches stability more quickly. Finally, we remark that BrownBoost
does’nt converge even after 1000 iterations. This remark prove the fact that the
BrownBoost problem is the speed of convergence.

These results are confirmed by graphic 4. In fact, this graphic show us that
firstly, the average error in generalization of AdaBoosthyb is less than the average
error of other algorithms and secondly adaboosthyb converge more quickly than
BrownBoost and specially AdaBoost M1 that don’t converge even after 1000
iterations.

3.5 Conclusion

In this paper, we proposed an improvement of AdaBoost which is based
on the exploitation of the hypotheses already built with the preceding iterations.
The experiments carried out and the results show that this approach improves
the performance of AdaBoost in error rate, in recall, in speed of convergence and
in sensibility to the noise. However, it proved that this same approach remains
sensitive to the noise.

We did an experimental comparison of the proposed method with BrownBoost
(a new method known that it improves AdaBoost M1 with noisy data). The
results show that our proposed method improves the recall rates and the speed
of convergence of BrownBoost overall the 15 data sets. The results show also
that BrownBoost gives better error rates with some datasets, and our method
gives better error rates with other data sets. The same conclusion is reached
with noisy data.

To confirm the experimental results obtained, more experimentations are
planned. We are working on further databases that were considered by other
researchers in theirs studies of the boosting algorithms. We plan to choose weak
learning methods other than C4.5, in order to see whether the obtained results
are specific to C4.5 or general. We plan to compare the proposed algorithm to
new variants of boosting, other than AdaBoost M1. We can consider especially
those that improve the speed of convergence like IAdaBoost and RegionBoost.
In the case of encouraging comparisons, a theoretical study on convergence will
be done to confirm the results of the experiments.

Another objective which seems important to us consists in improving this
approach against the noisy data. In fact, the emergence and the evolution of
the modern databases force the researchers to study and improve the boosting’s
capacities of tolerance to the noise . Indeed, these modern databases contain a
lot of noise, due to new technologies of data acquisition such as the Web. In
parallel, studies such as [5], [16] and [18] , show that AdaBoost tends to overfit
the data and especially the noise. So, a certain number of recent work tried to
limit these risks of overfitting. These improvements are based primarily on the
concept that AdaBoost tends to increase the weight of the noise in an exponential
way. Thus two solutions were proposed to reduce the sensibility to noise. One is
by detecting these data and removing them based on the heuristic and selection
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of prototypes such as research presented in [4]and [25]. The other solution is
by detecting these data through the process of boosting, in which case we speak
about a good management of noise. According to the latest approach, we plan
to improve the proposed algorithm against the noisy data, by using neighboring
graphs or using update parameters.

Finally, a third perspective work aims at studying the Boosting with a weak
learner that generates several rules (Rule learning [10]). Indeed, the problem of
this type of learners is the production of conflicting rules within the same itera-
tion of boosting. These conflicting rules will have the same weights (attributed
by the boosting algorithm). In the voting procedure, we are thinking about a
combination of the global weights ( those attributed by the boosting algorithm)
and the local weights (those attributed by the learning algorithm).
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This chapter deals with the problem of missing values in decision trees during classifi-

cation. Our approach is derived from the ordered attribute trees method, proposed by

Lobo and Numao in 2000, which builds a decision tree for each attribute and uses these

trees to fill the missing attribute values. Our method takes into account the depen-

dence between attributes by using Mutual Information. The result of the classification

process is a probability distribution instead of a single class. In this chapter, we ex-

plain our approach, we then present tests performed of our approach on several real

databases and we compare them with those given by Lobo’s method and Quinlan’s

method. We also measure the quality of our classification results. Finally, we calculate

the complexity of our approach and we discuss some perspectives.

4.1 Introduction

In classification, the goal of a learning algorithm is to build a classifier from a
training set. Each example in such a training set is assigned to a class. Classi-
fication is the task of assigning objects to their respective categories. Decision
Trees are one of the most popular classification algorithms currently in use in
Data Mining and Machine Learning. Decision Trees belong to supervised clas-
sification methods. Once built, decision trees are used to classify new cases. A
case is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving through the tree until a leaf is encountered;
the case is classified by the class associated with the leaf. It may happen that
some objects have no value for some attributes. We can encounter this problem,
known as the problem of missing values, both during the construction phase and
the classification phase of a decision tree. In the latter situation, when classi-
fying an object, if the value of a particular attribute which was branched on
in the tree is missing in the object, it is not possible to decide which branch
to take in order to classify this object, and the classification process cannot be
completed.

Our objective is to classify an object with missing values. Our work is situ-
ated in the framework of probabilistic decision trees [1, 5, 23]. We aim at using

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 55–74.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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the dependencies between attributes to predict missing attribute values. There-
fore, we are interested in the type of approaches which use decision trees to
fill in missing values [16, 21], because if a decision tree is able to determine
the class of an instance thanks to the values of its attributes, then it can be
used to determine the value of an unknown attribute from its dependent at-
tributes. We have extended the Ordered Attribute Trees method (OAT), pro-
posed by Lobo and Numao [16]. They use decision trees to deal with missing
values and they fill missing values both in training data and test data [16]. Our
approach to deal with missing values uses decision trees during the classification
phase. The result of classification is a probabilistic distribution according to the
class values.

In our experimentation, we have tested our approach on several databases
[20], aiming at measuring and evaluating the quality of our classification results.
For this purpose, we have compared each instance in the test data with all the
instances in the training data by calculating the distance between them. Our
approach is based on an algorithm called Relief [12] and its extension ReliefF
[14, 24], to calculate the distance between two instances. For each test instance,
we calculate the frequency of its nearest instances from each class. This frequency
is compared with the classification results obtained by our approach and the
C4.5 method for the same test instance. The Relief algorithm, developed by
[12], and its extension ReliefF [14, 24] are measures for classification. They take
into account the context of other attributes when estimating the quality of an
attribute with respect to the class.

In this chapter, we first present the work in the domain, and particularly
Lobo’s approach (OAT) and C4.5’s method. We then describe our method to
estimate missing values that uses the dependencies between attributes and gives
a probabilistic result; we then present the tests performed on several databases,
using our approach,OAT’s method and Quinlan’s method. We also measure the
quality of our classification results. Finally, we calculate the complexity of our
method and we present some perspectives.

4.1.1 Related Work

We present in this section the methods to deal with missing values using deci-
sion trees1. The general idea in filling missing values is to infer them from other
known data. We can distinguish several approaches to deal with missing values.
The simplest one is to ignore instances containing missing values [15]. The second
type of technique consists in replacing a missing value with a value considered as
adequate in the situation. For example, [13] proposes a method that uses class
information to estimate missing attribute values during the training phase; the
idea is to assign the most probable value of the attribute to the missing value,
given the class membership of the case concerned. [22] fills in the missing values
of an attribute with its most common known value in the training set during the
1 The methods which deal with missing values in the statistical domain are not pre-

sented in this chapter [2].
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classification phase. The third type of technique replaces missing values with a
distribution of probability. For example, Quinlan’s method [5] assigns probabil-
ity distributions to each node of the decision tree when learning from training
instances. The fourth type of technique focuses on the classification phase and
uses another attribute instead of the one that is unknown, in order to keep on
classifying the current case; the selected attribute is then correlated with the
unknown attribute. For example, the CART method [1], which constructs bi-
nary decision trees, consists in using a surrogate split when an unknown value
is found in the attribute originally selected. A surrogate split is a split that is
similar to the best split in the sense that it makes a similar partition of the
cases in the current node. Algorithms for constructing decision trees, such as
[1, 5], create a single best decision tree during the training phase, and this tree
is then used to classify new instances. The fifth type of technique constructs the
best classification rule instead of constructing the whole decision tree. For ex-
ample, the dynamic path generation method [15]. produces only the path (i.e.,
the rule) needed to classify the case currently under consideration, instead of
generating the whole decision tree beforehand. This method can deal with miss-
ing values in a very flexible way. Once a missing value is found to be present
in an attribute of a new instance, such an attribute is never branched on when
classifying the instance. Similarly, the lazy decision tree method [7] conceptually
constructs the best decision tree for each test instance. In practice, only a clas-
sification path needs to be constructed. Missing attribute values are naturally
handled by considering only splits on attribute values that are known in the test
instance. Training instances with unknowns filter down and are excluded only
when their value is unknown for a given test in a path. The last type of approach
uses decision trees to fill in missing values. For example, Shapiro’s method [21]
constructs a decision tree for an unknown attribute by using the subset of the
original training set consisting of those instances whose value of the unknown
attribute is defined. The class is regarded as another attribute and it participates
in the construction of the decision tree for this attribute. This method is used
only in the building phase. We now present the Ordered Attribute Trees (OAT)
method [16],which also deals with missing values and which we have studied in
more detail.

4.1.2 Ordered Attribute Trees Method

Ordered Attribute Trees (OAT) is a supervised learning method to fill missing
values in categorical data. It uses decision trees as models for estimating un-
known values. This method constructs a decision tree for each attribute, using
a training subset that contains instances with known values for the attribute.
These cases in the training subset, for a target attribute, are described only by
the attributes whose relation with the class has lower strength than the strength
of the relation between the target attribute and the class. The resulting deci-
sion tree is called an attribute tree. This method uses Mutual Information [3]
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as a measure of the strength of relations between the attributes and the class2.
There is an order for the construction of the attribute trees. This order is guided
by the Mutual Information between the attributes and the class. The method
orders the attributes from those with low mutual information to those with high
mutual information. It constructs attribute trees according to this order. These
trees are used to determine unknown values for each attribute. The first at-
tribute tree constructed is a one-node tree with the most frequent value among
the values of the attribute. An attribute tree is constructed for an attribute
Ai using a training subset, which contains instances with known values for the
attribute Ai, and the attributes whose missing values have already been filled
before. Consequently, the attributes Ak for which MI(Ai, C) < MI(Ak,C) are
excluded [16]. During the calculation of MI(Ai, C), instances which have missing
values for the attribute Ai are ignored [18]. This method is not general enough
to be applicable to every domain [18]. The domains in which there are strong
relations between the attributes appear to be the most suitable to apply the
OAT method. In this method, the idea to start by dealing with the attribute
which is the less dependent on the class [16, 17, 18] is interesting, because it is
the attribute which has the least influence on the class.

4.1.3 C4.5’s Method

Quinlan’s method [5] assigns probability distributions to each node of the deci-
sion tree when learning from training instances. The probability distribution, for
the values of the attribute involved in the test in a node, is estimated from the
relative frequencies of the attribute values among the training instances collected
at that node. The result of the classification is a class distribution instead of a
single class. This approach works well when most of the attributes are indepen-
dent, because it depends only on the prior distribution of the attribute values
for each attribute being tested in a node of the tree [5, 23].

4.1.4 Conclusion

We observe that the methods above have some drawbacks. For example, [5,
13, 22] determine the missing attribute values only once for each object with
this unknown attribute. The Dynamic path generation method and the lazy
2 Mutual Information (MI) between two categorical random variables X and Y is the

average reduction in uncertainty about X that results from learning the value of Y:

MI(X, Y ) = −
∑

x∈Dx

P (x)log2P (x) +
∑

y∈Dy

P (y)
∑

x∈Dx

P (x|y)log2P (x|y)

Dx and Dy are the domains of the categorical random variables X and Y. P(x) and
P(y) are the probability of occurrence of x ∈ Dx and y ∈ Dy , respectively. P(x|y)
is the conditional probability of X having the value x once Y is known to have the
value y.
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decision tree method [7, 15] do not resolve the missing values problem during
the construction of the tree, but they classify the object using only its known
attribute. Shapiro’s method [21] makes good use of all the information available
from the class and all the other attributes, but there is a difficulty that arises
if the same case has missing values on more than one attribute [15]: during the
construction of a tree to predict an unknown attribute, if a missing value is tested
for another attribute, another tree must be constructed to predict this attribute,
and so on. This method cannot be used practically, because this recursion process
of constructing a decision tree once we find missing values for an attribute, leads
to eliminating too many training cases when there are many unknown attributes.
By constructing the attribute trees according to an order relying only on mutual
information between the attributes and the class, Lobo and Numao provide a
solution which can work in every situation [18]. However, they do not take into
account all the dependencies between attributes, because they are built in an
ordered manner. Therefore, It seems to make sense to build an attribute tree
from the attributes which are dependent on it.

4.2 Probabilistic Approach

Our approach to estimate missing values during classification uses a decision tree
to predict the value of an unknown attribute from its dependent attributes [8].
This value is represented by a probability distribution. We made two proposals.
The first one, called Probabilistic Ordered Attribute Trees (POATs), simply ex-
tends Lobo’s OATs [16] with probabilistic data. In this proposal, we construct
a probabilistic attribute tree for each attribute in the training data. These trees
are constructed according to an order guided by the Mutual Information be-
tween the attributes and the class. The attributes used to build a POAT for an
attribute Ai are those whose attributes trees have already been built before and
are dependent on Ai. The result of classifying an object with missing values using
POAT is a class distribution instead of a single class. These trees give a proba-
bilistic result which is more refined than Lobo’s initial OATs. However, they do
not take into account all the dependencies between attributes, because they are
built in the same ordered manner that is used by Lobo’s OAT. Therefore, we
suggested another approach, called Probabilistic Attribute Trees (PATs), which
uses the dependence between attributes and also gives a probabilistic result [8].
In the PATs approach, we calculate the Mutual Information between each pair
of attributes in order to determine for each attribute its dependent attributes.
A Probabilistic Attribute Tree (PAT) is constructed for each attribute, using all
the attributes depending on it.

4.3 Classification Algorithm

To classify an instance with missing values using the final probabilistic decision
tree3, we start tracing the decision tree from its root until we reach a leaf by
3 A final decision tree is the tree which corresponds to all the training set.
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following the branches according to attributes values of the instance. When we
encounter a missing value for a test-attribute (test-node), we must trace all the
paths corresponding to the values of this attribute. In this case, we reach several
leaves in the tree, and not only one leaf as in classical classification. For this
purpose, it is necessary to calculate the class probability on each one of these
leaves.

Let us assume that the class has two values A, D, and for a path from the
root of the tree to a leaf F, we go through the branches B1, B2,.., Bn.
P(class A at leaf F) = P(A | path from the root to F) = P (A|B1, B2, .., Bn)
P(class D at leaf F) = P(D | path from the root to F) = P (D|B1, B2, .., Bn)

P (A in the tree) =
∑

i

P (A|Fi) ∗ P (Fi)

P (D in the tree) =
∑

i

P (D|Fi) ∗ P (Fi)

where i = 1,..,m (m is the number of leaves in the tree).
The probability P (A|Fi) is the conditional probability of class A at this leaf;

the probability P (Fi) is the joint probability of the attributes in the path which
starts from the root until the leaf Fi.

To simplify, let us consider that the path from the root of the tree until Fi

goes through only the branches B1 and B2:
P (Fi) = P (B1, B2) = P (B1) ∗ P (B2|B1); B1 is less dependent on the class

than B2
4.

4.3.1 Calculating the Joint Probability P (B1, B2) Using Our
Approach

To calculate this joint probability, we distinguish the following cases:

• B1 and B2 are independent:
P (B2|B1) = P (B2) and P (B1, B2) = P (B1) ∗ P (B2)
Consequently, the PAT of B1 is constructed without B2 and the PAT of B2
is constructed without B1. We calculate the probability of the attribute B1
from its PAT. The probability of B2 is also calculated from its PAT.

• B1 and B2 are dependent and the POAT of B1 is constructed without B2
because B1 is less dependent on the class than B2: P (B1|B2) �= P (B1). The
probability of B1 is calculated from its POAT. Note that the PAT of B2 is
constructed using B1. Therefore, we calculate the conditional probability of
B2 given B1 P (B2|B1) from the PAT of B2.

4 In our work, when two attributes are dependent and unknown at the same time
(Cycle problem), we deal first with the attribute which is less dependent on the class
by using its POAT. Then, for the other attribute, we use its PAT.
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• B1 et B2 are dependent, B1 is the less dependent on the class. There is
another missing attribute G which is dependent on B1 and B2, G is less
dependent on the class than B1 and B2

5.

P (B1) =
∑

i

P (B1|Gi) ∗ P (Gi)

P (B2|B1) =
∑

i

P (B2|B1, Gi) ∗ P (Gi|B1)

P (B1, B2) =
∑

i

P (B1, B2, Gi)

=
∑

i

P (Gi) ∗ P (B1|Gi) ∗ P (B2|B1, Gi) (4.1)

• B1 and B2 are independent but they are dependent on another missing at-
tribute G. G is less dependent on the class than B1 and B2:

P (B1, B2) =
∑

i

P (B1, B2, Gi)

=
∑

i

P (Gi) ∗ P (B1|Gi) ∗ P (B2|Gi)

B2 and B1 are conditionally independent, given G.

4.4 Experiment

In our experiment, we tested our approach on several databases from the UCI
repository [20]. Each database was tested on several thresholds. To choose a
threshold, we calculate the average Normalized Mutual Information6 calculated
between each attribute and the class. We then choose some thresholds that are
closest to this average value [9]. We compared our classification results with
those generated by Quinlan’s method [5]; we found that our results are equal
or better than those given by C4.5. We present the tests performed on the vote
database [20]. A training set, which has 232 instances with 16 discrete attributes
(all are Boolean and take the values y or n), is used to construct our trees
(POATs and PATs). The class in this database can take two values: (Democrat
and Republican). This training data does not have any missing values, but the
test data we used contains 240 objects with missing values. The average value of
Normalized Mutual Information is 0.26. Therefore, we have tested our approach
5 We also can calculate the joint probability given in the equation 4.1 as fol-

lowing: P (B1, B2)= P (B1) ∗ P (B2|B1)= P (B1) ∗ ∑
i P (B2|B1, Gi) ∗ P (Gi|B1) =∑

i P (B2|B1, Gi)*P (Gi|B1) ∗ P (B1)=
∑

i P (B2|B1, Gi)P (B1|Gi)P (Gi)
6 We use Normalized Mutual Information as proposed by Lobo and Numao [18] instead

of Mutual Information. Normalized Mutual Information is defined as:

MIN(X, Y ) ≡ 2MI(X, Y )

log ||Dx|| + log ||Dy ||
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Table 4.1. Tests performed on vote database

Threshold well classif. ¬ well classif. 50%

0.2 91.25% 08.33% 0.41%
0.3 90% 09.16% 0.83%

PAT 0.4 88.33% 11.66%
0.5 87.08% 12.91%

C4.5 83.75% 16.25%
OAT 91.66% 08.33%

Table 4.2. The confusion matrix of Vote database using PAT, C4.5, OAT

a b ¡- classified as

154 18 a=democrat
2 66 b=republican

a b ¡- classified as

166 6 a=democrat
34 34 b=republican

a b ¡- classified as

153 19 a=democrat
1 67 b=republican

Table 4.3. Tests performed on Nursery database

Threshold well classif. ¬ well classif. 50%

0.001 68.25% 23.80% 07.93%
PAT 0.02 67.46% 32.53%

0.03 67.46% 32.53%
C4.5 68.25% 23.80% 06.34%
OAT 72.22% 27.77%

on several thresholds: 0.2, 0.3, 0.4 and 0.5. The result of the tests is shown
in Table 4.1. The column 50% in Table 4.1 contains the percentage of objects
having a probability of 0.5 for each class value. Our results are better than the
results given by C4.5, which are presented in the same table. But our results
are equal to those given by OAT when the threshold is 0.2. Generally, when we
decrease the threshold, we increase the degree of dependence between attributes,
and consequently we use more attributes to construct our trees, which decreases
the number of instances on each leaf in each tree. In Table 4.1, we note that
when we decrease the threshold, our results improve and the best results are
obtained by PAT with a threshold of 0.2.

In Table 4.2, we show the complete confusion matrix of the Vote database
using PAT, C4.5 and OATfrom the left to the right, respectively. We find that
34 objects are misclassified with C4.5 when the class is Republican.

In Table 4.3, we present the tests performed on the Nursery database [20],
which has 8 discrete attributes. The class takes 5 values: not-recom, recommend,
very-recom, priority, spec-prior. The training set has 12960 instances, without
missing values. The test set has 126 instances where the missing values rates are
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Table 4.4. The confusion matrix of the Nursery database using PAT, C4.5 and OAT

a b c d e ¡- classified as

26 0 0 8 8 a = not-recom
0 0 0 0 0 b = recommend
2 0 1 3 0 c = very-recom
2 0 0 34 3 d = priority
4 0 0 8 27 e = spec-prior

a b c d e ¡- classified as

26 0 0 8 8 a = not-recom
0 0 0 0 0 b = recommend
2 0 1 3 0 c = very-recom
2 0 0 34 3 d = priority
2 0 0 10 27 e = spec-prior

a b c d e ¡- classified as

24 0 1 12 5 a = not-recom
0 0 0 0 0 b = recommend
0 0 6 0 0 c = very-recom
0 0 3 36 0 d = priority
0 0 0 14 25 e = spec-prior

Table 4.5. Tests performed on lymphography database

Threshold well classif. ¬ well classif. 50%

0.06 91.93% 8.06%
PAT 0.07 95.16% 4.83%

0.08 83.87% 12.90%

C4.5 79.03% 19.35% 01.61%
OAT 79.03% 19.35% 01.61%

35% for the attribute parents, 37% for has-nur, 39% for health and 13% for form.
We remark that our results are closer to those given by C4.5 when the Threshold
is 0.02 or 0.03. Our results do not improve when decreasing the threshold because
all the attributes in this database are independent. The confusion matrix are
shown in Table 4.4.

We find that PAT and C4.5 give nearly the same classification error when
the attributes are independent. OAT is better when the class is very-recom. We
have also tested our approach on the lymphography database [20]. The training
set has 148 objects and 18 discrete attributes. The class takes 4 values: normal,
metastases, malign-lymph, fibrosis. We also use a test data which has 62 objects.
The missing values rates in the test data are: 56% for the attribute block-of-affere,
30% for lym-nodes-dimin, 40% for changes-in-node, 12% for early-uptake-in, 13%
for special-forms, 11% for changes-in-stru, 17% for defect-in-node and 11% for
the attribute lym-nodes-enlar. Table 4.5 contains the tests performed on the
lymphography database [20] using the PAT approach, C4.5 and OAT.

From Table 4.6, we find that generally the performance of our PAT approach is
closer to those given by C4.5 and OAT, but it is better than themwhen the class is
malign-lymph. We have also tested our approach on the Mushroom database [20].
The training data has 5644 instances and 22 discrete attributes. The class takes
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Table 4.6. The confusion matrix of the Lymphography database using PAT, C4.5 and
OAT

a b c d ¡- classified as

0 0 0 0 a = normal
0 35 4 0 b = metastases
0 1 20 0 c = malign-lymph
0 0 0 2 d = fibrosis

a b c d ¡- classified as

0 0 0 0 a = normal
0 35 4 0 b = metastases
0 9 12 0 c = malign-lymph
0 0 0 2 d = fibrosis

a b c d ¡-classified as

0 0 0 0 a = normal
0 33 6 0 b = metastases
0 7 14 0 c = malign-lymph
0 0 0 2 d = fibrosis

Table 4.7. Tests performed on Mushroom database

Threshold well classif. ¬ well classif. 50%

0.1 80.82% 19.17 %
PAT% 0.2 75.34% 24.65 %

C4.5 58.90% 41.09%
OAT 67.12% 32.87%

Table 4.8. The confusion matrix of the Mushroom database using PAT, C4.5 and
OAT

a b ¡-classified as

33 5 a = e
13 22 b = p

a b ¡-classified as

33 5 a = e
25 10 b = p

a b ¡-classified as

35 3 a = e
21 14 b = p

2 values e, p. The test data has 73 objects. The missing values rates are: 75%
for the attribute odor, 26% for stalk-shape, 52% for stalk-root, 23% for veil-type,
27% for spore-print-color and 19% for ring-type. We remark that in Tables 4.7,
4.8 our results are better than those given by C4.5 and OAT.

Finally, we present the tests performed on the Zoo database [20]. The training
data has 101 instances and 17 attributes. The class takes 7 values: mammal, bird,
reptile, fish, amphibian, insect, invertebrate. The test data has 65 instances. The
missing values rates in the test data are: 21% for the attribute feathers, 29%
for milk, 16% for airborne, 16% for aquatic, 13% for predator and 13% for the
attribute legs. The result of testing is given in Table 4.9. From Tables 4.10, 4.11
we remark that when the class is bird, we have 17 objects in the test data, 16
of which are misclassified with C4.5, 4 of which are misclassified with OAT and
only 1 object is misclassified with PAT.
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Table 4.9. Tests performed on Zoo database

Threshold well classif. ¬ well classif. 50%

0.1 98.46% 1.53%
PAT 0.2 100% 0%

0.3 96% 4%

C4.5 78.46% 21.53%
OAT 88.73% 11.26%

Table 4.10. The confusion matrix of the Zoo database using PAT and C4.5

a b c d e f g ¡- classified as

27 0 0 0 0 0 0 a = mammal
0 16 0 0 0 0 1 b = bird
1 0 2 0 1 0 0 c = reptile
0 0 0 10 0 0 0 d = fish
0 0 0 0 3 0 0 e = amphibian
0 1 0 0 0 3 0 f = insect
0 0 0 0 0 0 6 g = invertebrate

a b c d e f g ¡- classified as

27 0 0 0 0 0 0 a = mammal
6 1 10 0 0 0 0 b = bird
1 0 2 0 0 0 1 c = reptile
1 0 0 9 0 0 0 d = fish
1 0 0 1 0 0 1 e = amphibian
1 0 0 0 0 3 0 f = insect
2 0 0 0 1 0 3 g = invertebrate

Table 4.11. The confusion matrix of the Zoo database using OAT

a b c d e f g ¡– classified as

25 0 2 0 0 0 0 — a = mammal
0 13 3 0 1 0 0 — b = bird
0 0 2 0 2 0 0 — c = reptile
0 0 0 10 0 0 0 — d = fish
0 0 0 0 3 0 0 — e = amphibian
0 0 0 0 0 4 0 — f = insect
0 0 0 0 0 0 6 — g = invertebrate

In our experiment, we have also calculated the Root Mean Squared Error7

which is a metric for comparing the accuracy of probability estimates [4].
Table 4.12 shows RMSE for each method. Since RMSE is a measure of error,
smaller is better. RMSE for Both C4.5 and OAT are bigger than the RMSE for
PAT.
7 The root mean squared error for an instance x is given by the following equation:

RMSE =

√√√√ 1

n

j=n∑
j=1

(t(j|x) − P (j|x))2 (4.2)

where x is the instance, j is the class value, t(j|x)is the true probability of class j
for x and P (j|x) is the probability estimated by the method for instance x and class
j. For test data where the true classes are known, but not probabilities, t(j|x) is
defined to be 1 if the class of x is j and 0 otherwise.
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Table 4.12. The Root Mean Squared Error

DataBase PAT C4.5 OAT

Vote 0.310443 0.52039 0.315079
Nursery 0.4456728 0.44999 0.436149
Lymphography 0.260477 0.477835 0.420603
Mushroom 0412543 0.643147 0.535865
Zoo 0.133817 0.44812 0.245

4.5 Measure of the Quality of the Classification Results

Our approach is based on the dependence between attributes. The results of
classification given by our approach are probabilistic. We measured the quality
of our classification results in order to improve the performance of our approach.
For this purpose, we considered an algorithm [12] called Relief, which has been
shown to be very efficient in estimating attributes. We were interested in Relief
because it relies entirely on statistical analysis and employs few heuristics. On
the other hand, the classical measures for classification8 evaluate the quality
of an attribute with respect to the class independently of the context of other
attributes [25]. However, Relief takes into account the context of other attributes
when estimating the quality of an attribute with respect to the class. The basic
idea of Relief, when analysing training instances, is to take into account not
only the difference in attribute values and the difference in classes, but also the
distance between instances. In this section, we first present the algorithm Relief,
its extension ReilefF and the Distance function used to calculate the distance
between two instances. We then propose an algorithm which calculates for each
test instance in the test data the frequency of its nearest instances from each
class. Finally, we give some examples.

4.5.1 Relief

The key idea of Relief is to estimate attributes according to how well their values
distinguish among instances that are close to each other. For that purpose, given
a randomly selected instance R from m instances, Relief [14] searches for its two
nearest neighbors: one H from the same class and the other M from a different
class. It uses a function diff that calculates the difference between the values
of Attribute for two instances. For a discrete attribute this difference is either
1 when the values are different or 0 when the values are equal. Estimating the
quality W[A] of attribute A is defined as shown below:

W [A] = W [A] − diff (A, R, H)/m + diff (A,R, M)/m (4.3)

Relief updates the quality estimation W[A] for all the attributes A depending
on their values for R, M and H. This is repeated m times according to the m

8 As information gain, gain ration, distance measure and Gini-index, etc.
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instances. The original Relief can deal with discrete and continuous attributes.
However, it cannot deal with incomplete data and is limited to two-class prob-
lems. Its extension, which solves these and some other problems, is called ReliefF
[14, 24]. ReliefF is able to deal with incomplete and noisy data and can be used
for evaluating the attribute quality in multi-class problems. ReliefF also gener-
alizes the function diff(A, Instance1, Instance2) to deal with missing values.
This function becomes for a discrete attribute A:

diff(A, I1, I2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if V (A,I1) = V (A,I2)

1 if V (A,I1) �= V (A,I2)

1 − P (V (A,I2)|ClassI1)

if A is unknown in I1

(4.4)

Where:

• V (A,Ij) is the value of A in the instance Ij

• ClassI1 is the value of the class in the instance I1
• 1 − P (V (A,I2)/ClassI1) is the probability that two instances I1 and I2 have

different values for the given attribute A when one of the instances (I1 here)
has unknown value for A.

We notice that this function also calculates the probability that two instances I1
and I2 have different values for the given attribute A when both instances have
unknown attribute values, but we do not explain it in equation 4.4. However, we
can find it in [14, 24].

4.5.2 Calculating the Distance between Instances

Relief and ReliefF were the basis of our approach to calculate the distance be-
tween two instances using the function given in equation 4.4. The first instance
is from the test data with missing values, the other one is from the training data
without unknown attributes. The total distance is simply the sum of differences
over all the attributes [14]. The Distance function is shown in equation 4.5 below:

Distance(I1, I2) =

j=n∑
j=1

diff(Aj , I1, I2)
9 (4.5)

For example, if the distance between two instances is 5, it means that there
are 5 attributes whose values are different in the two instances.

In our experiment[11], to measure the quality of our classification results, we
compare each instance in the test data with all the instances in the training
data by calculating the distance between them by using the function given in
equation 4.5. Then, for each test instance, we calculate the frequency of its
nearest instances from each class. This frequency, which is a statistical result,
9 n is the number of attributes.
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is to be compared with the classification result obtained by the PAT approach
for the same test instance. For this purpose, we propose an algorithm which is
presented below10.

4.5.3 Instance Analysis Algorithm

Input: Inst test instance ,
n training instances I;

Output: for Inst:
frequency of nearest instances from the same class and frequency of
nearest instances from the different class;

Function Instance-Analysis(Inst:test instance,
I:array[1..n] of instances): Pc:array[1..2] of real;

Const near=5;
Var nbSCL, nbDCL, k, near: integer;

dis: real;
begin
nbSCL=0, nbDCL=0;
For k:=1 to n do
begin
dis= Distance(Inst,I[k])
If dis < near {the two instances are nearest neighbor}
then
If(both Inst and I[k] are from same Class)

then nbSCL++
else nbDCL++;

end; (*for k*)
Pc1= P(nearest instances from same class) = nbSCL/(nbDCL+nbSCL)
Pc2= P(nearest instances from different class)= nbDCL/(nbDCL+nbSCL)

end;
return(Pc);

In the above algorithm, we present only the treatment of two-class problems.
However, in our experiment, we also deal with the mutli-class problem. The con-
stant near is fixed by the user. We consider that two instances are nearest if
the distance between them is lower than near. For a test instance, this algorithm
tells us statistically about the proportion of its nearest instances from each class.
We then compare this frequency with the classification result obtained by the
PAT approach for the same test instance.

Results: To illustrate our experience using the Instance Analysis Algorithm
proposed above, we present only the result of testing this algorithm on three
examples as presented in Table 4.13 from the vote database. The vote database
10 This algorithm is a K-Nearest Neighbour method from instance-based learning. We

use the distance function in equation 4.5 because it is the most appropriate to our
problem.
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Table 4.13. Result of testing Instance Analysis Algorithm on Vote database

attributes instance 1 instance 2 instance 3

physician-fee ? ? ?
el-salvador y ? y
education y n n

crime y n n

near=8 (16%, 83%)(91%, 08%)(92%, 07%)
near=10 (29%, 70%) (84%, 15%) (75%, 24%)
near=12 (38%, 61%) (70%, 29%) (57%, 42%)

PAT (11%,89%) (99%,01%) (85%,15%)
C4.5 (53%,47%) (53%,47%) (53%,47%)

has 16 attributes, so the constant near may be 8, 9, 10, 11, or 12. Table 4.13
contains the results of testing this algorithm only when near is 8, 10 and 12.
It also contains the results of testing the PATapproach and C4.5 on the same
examples. By comparing the results of PAT and C4.5 with the statistical results
given by the Analysis-Instance algorithm for the same examples, we remark
that PAT’s results in Table 4.13 are closer to the statistical results in Table 4.13
when near is 8. Therefore, they are better than the C4.5 results when near is 8,
10 or 12.

We note that the only attribute used to construct the decision tree using
the C4.5 method is physician-fee-freeze, which has the greatest influence on the
decision. However, if this attribute is unknown, as in Table 4.13, C4.5 calculates
its frequency in all the training data without taking into account the other
attributes which depend on it. Consequently, in the test data each object which
has a missing value for physician-fee-freeze is classified Democrat with probability
0.53 and Republican with probability 0.47 (Table 4.13). For the threshold 0.4,
our probabilistic decision tree corresponding to the training data is constructed
using the attributes physician-fee-freeze, el-salvador-aid and education-spending.
The PAT for physician-fee-freeze is constructed using el-salvador-aid, education-
spending and crime. Consequently, when physician-fee-freeze is unknown, we
calculate its probability according to its dependent attributes, and so on. For
example, in Table 4.13, we notice that in the PAT approach, the probability
distribution of each object depends on the other attributes values. However,
with C4.5, this distribution depends only on physician-fee-freeze’s frequency.

4.6 The Complexity of Constructing a Decision Tree

The complexity of a decision tree depend on the size of the training data and
the number of attributes in this data. For example, if we have training data
that contains n objects and m attributes without the class, the computational
complexity of the decision tree constructed using this training data is [19]:

O(n × (m + 1) × log(n)) (4.6)
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In the POAT approach, we construct a POAT for each attribute in the training
data. Therefore, for a training set which has m attributes without the class
attribute and n instances, we construct m decision trees. The first tree is a one-
leaf tree constructed using one attribute. The second tree uses two attributes,
and so on; the last tree is constructed using m attributes11. Since we obtain m
decision trees with an increasing number of attributes, the complexity of these
trees is:

O(1 n log(n) + 2 n log(n) + ..+ m n log(n))= O((
∑m

i=1 i) n log(n)) =
O(m(m+1)

2 n log(n))

For the same training set, we construct another m decision trees using the PAT
approach. Each tree is constructed for an attribute by using all the attributes
dependent on it. In the worst-case, all the attributes are mutually dependent.
In this case, each decision tree is constructed using m attributes. Therefore, the
complexity of these m trees is:

O(m n log(n) + m n log(n)+...+ m n log(n))= O( m m n log(n)) =
O(m2 n log(n)).

4.6.1 The Complexity of Classifying a New Instance

Once a decision tree has been built, classifying a new instance is extremely fast,
with a worst-case complexity of O(h), where h is the maximum depth of the tree
[6]. This is true when we classify a new instance without missing values, because
we trace only one path in the decision tree from its root-node to a leaf-node
according to the outcome of each attribute node in this path. Let us assume
that L is the number of leaves in the tree. Therefore, the height of this tree is
superior or equal to logv(L) [10].

The complexity of classifying a new case is O(logv(L)). This complexity
changes when the new instance has missing values for some attributes, because
we trace several paths in the tree instead of only one path. In the worst-case, we
trace all the possible paths. The complexity of tracing all the possible paths in
the tree becomes O(L logv(L)), which is the classification complexity of C4.5.

The complexity of our classification algorithm

In our method, during the classification process, when we encounter a missing
attribute-test we trace all the paths corresponding to its values. When we reach
a leaf in the final tree, we calculate the probability of each missing attribute
encountered in such a path by calling its tree12. The way in which we calculate
the probability of each missing attribute is not arbitrary. We always start by
dealing with the attribute which is the less dependent on the class. Therefore, in
11 In the worst-case, when all the m-1 attributes are dependent on the attribute m.
12 POAT or PAT according to the situation. We take into account the other missing

attributes encountered in such a tree.
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each tree which is called, we trace only one path. At the end of our classification
process, we have called several attribute trees. We can calculate the complexity
of our classification algorithm as follows: Let us assume that at the end of our
classification, we have called nbAT attribute trees. Therefore, the complexity of
these nbAT trees is:

O(
i=nbAT∑

i=1

ComplexityT ree(Treei)) (4.7)

ComplexityT ree(Tree) =

{
O(0) if one leaf/LTreei = 1/

O(log(LTreei)) else
(4.8)

where LTreei is the number of leaves in this tree.
To calculate nbAT which is the number of attribute trees called during the

classification process, let us assume that in our test instance, we have m missing
attributes; attribute i takes vi values. If all of these attributes are dependent,
we can calculate the number of attribute trees called during our classification
process as follows:

nbAT = m× (v1 × v2 × ...× vm)

Assuming that v̄ = v1+v2+...+vm

m is the average number of possible values for
each attribute. The number of called trees becomes:

nbAT = m× v̄m (4.9)

From equations 4.7, 4.8 and 4.9, we calculate the complexity of all the attribute
trees called during the classification as:

O(
i=nbAT∑

i=1

ComplexityT ree(Treei)) = O(
i=nbAT∑

i=1

log(LTreei))

= O(log(

i=nbAT∏
i=1

LTreei)) = O(log(

i=nbAT∏
i=1

L̄T ))

= O(log(L̄nbAT
T )) = O(nbAT × log(L̄T ))

= O(m × v̄mlog(L̄T )) (4.10)

Where :

- L̄T is the average number of leaves in an attribute tree.
- m is the number of missing attributes in the instance.

We remark that the complexity in equation 4.10 increases when the number
of missing values in the instance increases.

Finally, the complexity of classifying an instance in the final decision tree
using our approach is equal to the complexity of tracing this decision tree + the
complexities of all the attribute trees called during the classification process:
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Complexity(Trees) = O(nbPathTree Log(LTree))

+ O(

i=nbAT∑
i=1

ComplexityT ree(Treei))

(4.11)

nbPathTree =

⎧⎪⎨
⎪⎩

1 if no missing values

LTree if all are missing

nbPT else

(4.12)

From equation 4.11, we remark that nbPathTree may be LTree in the worst-case
when all the attributes are missing. Therefore, we can note that the complex-
ity O(nbPathTree Logv(LTree)) in this equation is quasilinear according to the
number of leaves in the final decision tree.

Consequently, the total complexity of classifying a new instance with missing
values becomes:

Complexity(Trees) = O(nbPathTree Log(LTree))

+ O(m × v̄mlog(L̄T ))

This complexity is exponential in the number of missing attributes in the instance
to classify and quasilinear in the number of leaves in the final decision tree.

4.7 Conclusion and Perspectives

In this chapter, we have introduced a probabilistic approach to fill missing val-
ues in decision trees during classification. We proposed replacing an unknown
attribute with a probability distribution and taking into account the depen-
dence between attributes. We presented the results of tests performed on several
databases and we compared our results with those given by C4.5 and Lobo’s ap-
proach for the same databases. We have observed that the results of our approach
are better than those obtained by OAT and C4.5. To measure the quality of our
classification results, we used an approach derived from Relief and its extensions
to calculate the distance between two instances with missing values. For each
instance in the test data, our Analysis-Instance algorithm gives the frequency
of its nearest instances from each class. We then compared the results obtained
by the Analysis-Instance algorithm with PAT and C4.5 results. We observed
that our classification results are closer to the Analysis-Instance algorithm re-
sults and better than those given by C4.5. The complexity of constructing our
attributes trees in the two approaches (PAOTs, PATs) and the complexity of
classifying a new instance with missing values using our approach were briefly
presented in this chapter. We found that the complexity of our classification al-
gorithm is exponential according to the number of missing attributes in the test
instance [10].

In the future, we aim at using a statistical test to calculate the dependence
between attributes instead of Mutual Information. We are also going to test our
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approach on a higher dimensional space and compare our results with those of
C4.5 and OAT. Finally, we aim at comparing our results with those given by
statistical methods [2].
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Abstract. Our investigation aims at extending kernel methods to interval data min-
ing and using graphical methods to explain the obtained results. Interval data type can
be an interesting way to aggregate large datasets into smaller ones or to represent data
with uncertainty. No algorithmic changes are required from the usual case of continu-
ous data other than the modification of the Radial Basis Kernel Function evaluation.
Thus, kernel-based algorithms can deal easily with interval data. The numerical test
results with real and artificial datasets show that the proposed methods have given
promising performance. We also use interactive graphical decision tree algorithms and
visualization techniques to give an insight into support vector machines results. The
user has a better understanding of the models’ behavior.

5.1 Introduction

In recent years, real-world databases have increased rapidly [1], so that the need
to extract knowledge from very large databases is increasing. Data mining [2] can
be defined as the particular pattern recognition task in the knowledge discovery
in databases process. It uses different algorithms for classification, regression,
clustering or association rules. The support vector machines algorithms (SVM)
proposed by Vapnik [3] are a well-known class of algorithms using the idea of
kernel substitution. They have shown practical relevance for classification, regres-
sion and novelty detection tasks. The successful applications of SVM and other
kernel-based methods have been reported for various fields like facial recognition,
text categorization, bioinformatics, etc. [4].

While SVM and kernel-based methods are a powerful paradigm, they have
some difficulty to deal with the challenge of large datasets. The learning task
is accomplished through the resolution of quadratic problem. Therefore, the
computational cost of a SVM approach is at least equal to the squared number
of training data points and the memory requirement makes them intractable
with very large datasets. We propose to scale up their training tasks based on
the interval data concept [5]. We summarize the massive datasets into interval
data. Then, we must adapt the kernel-based algorithms, e.g. SVM to deal with

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 75–91.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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this new data type. We construct a new radial basis kernel function (RBF) for
interval data used for classification, regression and novelty detection tasks. The
numerical test results are obtained on real and artificial datasets.

Furthermore, for many applications, sampling data corrupted with noise makes
the input data uncertain. The interval data concept can also represent this uncer-
tainty. So the kernel-based methods and SVM can also deal with uncertain data.

Although SVM gives high quality results, the interpretation of these results is
not so easy. The support vectors found by the algorithms provide limited infor-
mation. Most of the time, the user only obtains information regarding support
vectors and accuracy. He cannot explain or understand why a model constructed
by SVM makes a good prediction. Understanding the model obtained by the
algorithm is as important as the accuracy because the user has a good compre-
hension of the knowledge discovered and more confidence in this knowledge [6],
[7]. Our investigation aims at using visualization methods to try to explain the
SVM results. We use interactive graphical decision tree algorithms and visualiza-
tion methods [6], [8] to give an insight into classification, regression and novelty
detection tasks with SVM. We illustrate how to combine some strengths of dif-
ferent visualization methods to help the user to improve the comprehensibility
of SVM results.

This paper is organized as follows. In section 2, we present a new Gaussian
RBF kernel construction to deal with interval data. In section 3, we briefly
introduce classification, regression and novelty detection for interval data with
SVM algorithms and other kernel-based methods. Section 4 presents a way to
explain SVM results by using interactive decision tree algorithms. We propose
to use an approach based on different visualization methods to try to interpret
SVM results in section 5 before the conclusion and future work.

5.2 Non Linear Kernel Function for Interval Data

SVM and kernel-based methods are a powerful paradigm and have shown prac-
tical relevance for classification and regression, but the learning task is not easy
to perform with the challenge of large datasets. We propose to scale up their
training tasks based on the interval data concept. Large datasets are aggregated
into smaller data sizes, we need to use more complex data type, e.g. interval
type instead of standard ones.

The simplest way depicted in figure 5.1 is to summarize large datasets into
high-level data type, e.g. clusters using clustering algorithm (e.g. k-means [9]).
We can use the interval data concept to represent the clusters where an interval
vector corresponds to a cluster, the low and high values of an interval are com-
puted by low and high bound of data points inside this cluster. Then, we need
to construct non-linear kernel function for dealing with interval datasets.

We are interested in RBF kernel function because it is general and efficient
[10]. Assume we have two data points x and y ∈ Rn.The RBF kernel formula
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Fig. 5.1. Aggregation of a large dataset

(kernel width σ) in (1) of two data vectors x and y of continuous type, K(x,y)
is based on the Euclidean distance between these vectors, dE(x, y) =‖ x− y ‖.

K〈x, y〉 = exp (−‖ x− y ‖2

2σ2 ) (5.1)

For dealing with interval data, we only need to measure the distance between
two vectors of interval type and then we substitute this distance measure for
the Euclidean distance into the RBF kernel formula (1). Thus the new RBF
kernel can deal with interval data. We propose to use the Hausdorff (1868-1942)
distance to measure the dissimilarity between two data vectors of interval type.

Suppose we have two intervals represented by low and high values: I1 =
[low1, high1] and I2 = [low2, high2], the Hausdorff distance between two intervals
I1 and I2 is defined by (2):

dH(I1, I2) = max (|low1 − low2|, |high1 − high2|) (5.2)

Let us consider two data vectors u, v ∈ Ω having n dimensions of interval
type:

u = ([u1,low, u1,high], [u2,low, u2,high],. . ., [un,low, un,high])
v = ([v1,low , v1,high], [v2,low, v2,high],. . ., [vn,low, vn,high])

The Hausdorff distance between two vectors u and v is defined by (3):

dH(u, v) =

√√√√ n∑
i=1

max (|ui,low − vi,low|2, |ui,high − vi,high|2) (5.3)

By substituting the Hausdorff distance measure dH into RBF kernel formula,
we obtain a new RBF kernel for dealing with interval data. This modification
tremendously changes kernel algorithms for mining interval data. No algorith-
mic changes are required from the usual case of continuous data other than the
modification of the RBF kernel evaluation. All the benefits of the original ker-
nel methods are kept. Kernel-based learning algorithms including Support Vector
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Machines [3], Kernel Fisher’s Discriminant Analysis (KFDA) [11], Kernel Princi-
pal Component Analysis (KPCA) [12] and Kernel Partial Least Squares (KPLS)
[13] can use the RBF function to build interval data models in classification,
regression and novelty detection.

5.3 Interval Data Mining with Kernel-Based Methods

5.3.1 Support Vector Classification (SVC)

Let us consider a binary linear classification task depicted in figure 5.2 with m
data points in a n-dimensional input space x1, x2, . . . , xm having corresponding
labels yi = ±1. SVM classification algorithm aims to find the best separating
surface as being furthest from both classes. It is simultaneously to maximize the
margin between the support planes for each class and minimize the errors. This
can be accomplished through the quadratic program (4).

min (1/2)
m∑

i=1

m∑
j=1

yiyjαiαjK〈xi, xj〉 −
m∑

i=1

αi

s.t.

m∑
i=1

yiαi = 0 (5.4)

C ≥ αi ≥ 0 (i = 1, . . . , m)

where C is a positive constant used to tune the margin and the errors.            

Fig. 5.2. Linear support vector classification
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From the αi obtained by the solution of (4), we can recover the separating
surface and the scalar b determined by the support vectors denoted by #SV
(for which αi > 0). By changing the kernel function K as a linear inner prod-
uct, a polynomial, a radial basis function or a sigmoid neural network, we can
get different classification model. The classification of a new data point x is
based on:

f(x) = sign(
�SV∑
i=1

yiαiK〈x, xi〉 − b)

5.3.2 Novelty Detection with Support Vector Machines (One-Class
SVM)

For one-class (novelty detection), the SVM algorithm has to find an hypersphere
with a minimal radius R and center c which contains most of the data and then
we test if novel points lie outside the boundary of the hypersphere. One-class
SVMs pursue these goals with the quadratic program (5):

min
m∑

i=1

m∑
j=1

αiαjK〈xi, xj〉 −
m∑

i=1

αiK〈xi, xi〉

s.t.

m∑
i=1

αi = 1 (5.5)

1/mν ≥ αi ≥ 0 (i = 1, . . . , m)

where a constant ν ∈ (0, 1) is used to tune the number of support vectors and
outliers.

A new datapoint x is novel if:

f(x) = K(x, x)− 2
�SV∑
i=1

αiK〈x, xi〉+
�SV∑
i=1

�SV∑
j=1

αiαjK〈xi, xj〉 −R2 ≥ 0

where R2 is computed by a training datapoint which is non bound and setting
decision function f(x) to zero.

5.3.3 Support Vector Regression (SVR)

SVM can also be applied to regression problem by the introduction of an alterna-
tive loss function. By using an ε− insensitive loss function proposed by Vapnik,
Support vector regression (SVR) aims to find a predictive function f(x) that
has at most ε deviation from the actual value yi. This task is also accomplished
through the quadratic program (6):

min (1/2)

m∑
i=1

m∑
j=1

(αi − αi
∗)(αj − αj

∗)K〈xi, xj〉 −
m∑

i=1

(αi − αi
∗)yi + ε

m∑
i=1

(αi + αi
∗)
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s.t.

m∑
i=1

(αi − αi
∗) = 0 (5.6)

C ≥ αi, αi
∗ ≥ 0 (i = 1, . . . , m)

The solution of (6) gives αi, αi
∗. Thus the regression function is given by:

f(x) =
�SV∑
i=1

(αi − αi
∗)K〈x, xi〉 − b

where the scalar b is determined by the support vectors.
A survey [14] and the book [15] provide more details about SVM and others

kernel-based learning methods.
These SVMs only deal with continuous data. To deal with interval data no

algorithmic changes are required from the usual case of continuous data other
than the substitution of the RBF kernel function for interval data described
in section 2 into the classical SVM algorithms including SVC, One-class SVM,
SVR. All the benefits of the classical SVMs are kept. Thus they can be used to
deal with interval data.

For the evaluation of our proposed approach, we have added the new non-
linear kernel for interval data to the publicly available toolkit, LibSVM [16]. The
software program is able to deal with interval data in classification, regression
and novelty detection tasks. To apply the SVM algorithms to the multi-class clas-
sification problem (more than 2 classes), LibSVM uses one-against-one strategy.
Assume that we have k classes, LibSVM construct k ∗ (k−1)/2 models: a model
separates ith class against jth class. Then to predict the class for a new data
point, LibSVM just predicts with each model and finds out which one separates
the furthest into the positive region. We have used datasets from Statlog [17],
the UCI machine learning repository [18], regression datasets [19] and Delve [20].
By using k-means algorithm [9], the large datasets are aggregated into smaller
ones. A data point in interval datasets corresponds to a cluster, the low and high
values of an interval are computed by the cluster data points. Some other meth-
ods for creating interval data can be found in [5]. Furthermore, we generated
uncertain data set for evaluating our algorithm. This dataset called Ringnoise is
4− dimensional with 2 classes where class 1 is multivariate normal with mean
0 and covariance 4 times the identity matrix and class 2 has unit covariance and
mean (0.5, 0.5, 0.5, 0.5). Then Gaussian noise is added with mean (0, 0, 0, 0) and
covariance matrix σiI where σi is randomly chosen from [0.1, 0.8], the matrix
I denotes the 4x4 identity matrix. The interval data concept can also represent
this dataset uncertainty. Table 5.1 presents the dataset description and aggre-
gations (interval data). We report the cross validation accuracy of classification
results and mean squared error of regression results in table 5.2. The results of
novelty detection task are presented in table 5.3 with the number of outliers (fur-
thest from other data points in the dataset). According to our knowledge, there
is no other available algorithm being able to deal with interval data in non-linear
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Table 5.1. Dataset description

Dataset Original size Dims Classes Aggregation size Evaluation

Wave 300 21 3 30 leave-1-out

Pima 768 8 2 77 leave-1-out

Shuttle 58000 9 7 594 10-fold

Segment 2310 19 7 319 10-fold

Ringnoise 50000 4 2 500 10-fold

Bank8FM 4499 8 continuous 450 10-fold

Table 5.2. SVM classification and regression results

Dataset Accuracy % Mean squared error

Wave 80.00 0.46

Pima 79.22 0.21

Shuttle 94.78 1.10

Segment 91.22 1.70

Ringnoise 84.20 0.19

Table 5.3. One-class SVM results

Dataset Outliers

Shuttle 9

Bank8FM 6

classification, regression and novelty detection tasks. There is no experimental
result with interval data mining provided by other algorithms. Therefore, we
only report results obtained by our approach, it is difficult to compare with the
other ones.

5.3.4 Other Kernel-Based Methods

Many multivariate statistics algorithms based on generalized eigenproblems can
also be kernelized [21], e.g. Kernel Fisher’s Discriminant Analysis (KFDA), Ker-
nel Principal Component Analysis (KPCA) or Kernel Partial Least Squares
(KPLS). These kernel-based methods can also use the RBF kernel function de-
scribed in section 2 to deal with interval data. We use KPCA and KFDA to
visualize datasets in the embedding space where the user can intuitively see the
separating boundary between the classes based on human pattern recognition
capabilities.

The eigenvectors of the data can be used to detect directions of maximum
variance, and thus, linear PCA is to project data onto principal components by
solving an eigenproblem. By using a kernel function instead of the linear inner
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Fig. 5.3. Visualization of Kernel PCA with the Segment dataset

Fig. 5.4. Visualization of Kernel FDA with the Segment dataset
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product in the formula, we obtain non-linear PCA (KPCA). An example of the
visualization of the Segment interval dataset (class 7 against all) with KPCA
using the RBF kernel function is shown in figure 5.3.

In linear FDA, we consider projecting all the multidimensional data onto a
generic direction w, and then separately observing the mean and the variance of
the projections of the two classes. By substituting the kernel function for a linear
inner product into the linear FDA formula, we have non-linear FDA (KFDA).
An example of the visualization of the Segment interval dataset (class 7 against
all) with KFDA using the RBF kernel function is shown in figure 5.4.

These kernel-based methods are also extended for learning model in which
the input data is corrupted with noise, e.g. sampling data corrupted with noise
makes the input data uncertain. The interval data concept can also represent
them. So the kernel-based methods and SVM using the RBF kernel function in
section 2 can also deal with uncertain data.

5.4 Inductive Rules Extraction for Explaining SVM
Results

Although SVM algorithms have shown to build accurate models, their results
may be very difficult to understand. Most of the time, the user only obtains
information regarding the support vectors being used as “black box” to classify
the data with a good accuracy. The user does not know how SVM models can
work. For many data mining applications, understanding the model obtained
by the algorithm is as important as the accuracy even if up to now very few
methods have been proposed [6], [8] and [22].

We propose here to use interactive decision tree algorithms [23], [24] for trying
to explain the SVM results. The SVM performance in classification task is deeply
understood by the way of IF-THEN rules extracted intuitively from the graphical
representation of the decision trees that can be easily interpreted by humans.

Figure 5.5 is an example of the inductive rule extraction explaining support
vector classification results with the Segment interval dataset. The SVM algo-
rithm using the RBF kernel function classifies the class 7 (considered as +1 class)
against all other classes (considered as -1 class) with 100.00 % accuracy. CIAD
uses 2D scatter-plot matrices [25] for visualizing interval data: the data points
are displayed in all possible pair-wise combinations of dimensions in 2D scatter-
plot matrices. For n − dimensional data, this method visualizes n(n − 1)/2
matrices. A data point in two interval dimensions is represented by a cross and
color corresponds to the class.

The user interactively chooses the best separating split (parallel to an axis)
to interactively construct the decision tree (based on human pattern recognition
capabilities) or with the help of automatic algorithms. The obtained decision
tree having 4 leaves (corresponding to 4 rules) can explain the SVM model. One
rule is created for each path from the root to a leaf, each dimension value along
a path is added in a conjunction and the leaf node holds the class prediction.
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And thus, the non-linear SVM is interpreted in the way of the following four
inductive rules (IF-THEN) that will be easy to understand:

IF (A19 > 0.617975) THEN class=7
IF (A19 ≤ 0.617975) AND (A2 ≤ 0.634350) THEN class �=7
IF (A19 ≤ 0.617975) AND (A2 > 0.634350) AND (A10 ≤ 0.163654) THEN

class=7
IF (A19 ≤ 0.617975) AND (A2 > 0.634350) AND (A10 > 0.163654) THEN

class �=7

Fig. 5.5. Visualization of the decision tree explaining the SVM result with the Segment
dataset

5.5 Visualization Tools for Explaining SVM Results

We have studied some ways to try to explain SVM results by using graphical
representation of high dimensional data. The information visualization methods
guide the user towards the most appropriate visualizations for viewing mining
results (post-processing step). There are many possibilities to visualize data by
using different visualization methods, but all of them have strengths and weak-
nesses. We use the linking technique to combine different visualization methods
to overcome the single one. The same information is displayed in different views
with different visualization techniques providing useful information to the user.
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The interactive brushing technique allows the user to focus on an area (brush)
in the displayed data to highlight groups of data points. And thus, the linked
multiple views provide more information than the single one. We use the interac-
tive brushing and linking techniques and different visualization methods to try
to explain SVM results.

5.5.1 Support Vector Classification Results

For classification tasks with SVM algorithms, understanding the margin (fur-
thest distance between +1 class and -1 class) is one of the most important keys
of the support vector classification. For this purpose, we need to display the
points near the separating boundary between the two classes. To achieve this
goal, we propose to use the data distribution according to the distance from
the separating surface. While the classification task is processed (based on the
support vectors), we also compute the data distribution according to the dis-
tance from the separating surface. For each class, the positive distribution is the
set of correctly classified data points and the negative distribution is the set of
misclassified data points. The data points being near the frontier correspond to
the bar charts near the origin. When the bar charts corresponding to the points
near the frontier are selected, the data points are also selected in the other views
(visualization methods) by using the brushing and linking technique. We use
2D scatter-plot matrices for visualizing interval data. The user can see approxi-
mately the boundary between classes and the margin width. This helps the user
to evaluate the robustness of the model obtained by support vector classification.
He can also know the interesting dimensions (corresponding to the projections
providing a clear boundary between the two classes) in the obtained model.

Figure 5.6 is an example of visualizing support vector classification results
with the Segment interval dataset (class 7 against all). From data distribution
according to the distance from the separating surface, the four bar charts near the
origin are brushed, and then the corresponding points are linked and displayed
in 2D scatter-plot matrices. From the upper part of figure 5.6, we can conclude
there is a clear boundary between the two classes (there is no misclassified data
point), and from the lower part, we can see that dimensions 2 and 16 showing a
clear boundary between the two classes are interesting in the obtained model.

5.5.2 Support Vector Regression Results

We have extended this idea for visualizing support vector regression results.
We have also computed the data distribution according to the distance from
the regression function. Then we combine the histogram with 2D scatter-plot
matrices for visualization. When the user selects the data points far from the
regression function, he can know how the function fits data. If the function
well predicts the data points in high-density region then the obtained model is
interesting.
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Fig. 5.6. Visualization of the classification result with the Segment dataset
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Fig. 5.7. Visualization of the regression result with the Shuttle dataset
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Fig. 5.8. Visualization of the one-class SVM result with the Bank8FM dataset
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For example, we visualize regression result with the Shuttle interval dataset in
figure 5.7. The data points far from the regression function are outliers. Thus, the
model has high quality. The dimensions 1 and 8 are interesting in the obtained
model.

5.5.3 Novelty Detection Results

With a novelty detection task, we visualize the outliers allowing the user to vali-
date them. The approach is based on the interactive linking and brushing of the
histogram and 2D scatter-plot views. The histogram displays the data distribu-
tion according to the distance from the hyper-sphere obtained by one class SVM.
The data points far from the hyper-sphere are brushed in the histogram view, thus
they are automatically selected in 2D scatter-plot view. The user can interpret and
validate the outliers. And then, the dimensions corresponding to the projection
present clearly the outliers and are interesting in the obtained model.

Figure 5.8 is a visualization of one class SVM result on Bank8FM. The user
can verify the outliers obtained by the novelty detection with SVM. And for
example, the dimensions 5 and 7 corresponding to the projection present clearly
some outliers and are interesting in the obtained model.

5.6 Conclusion and Future Works

We have presented an interval data mining approach using kernel-based and visu-
alization methods. Our investigation aims at scaling up kernel-based algorithms
to mine very large datasets and data corrupted with noise. The approaches are
based on the interval data concept. The massive datasets or the uncertain data is
represented by the interval data concept. Thus, we have proposed to construct
a new RBF kernel for interval data. This modification tremendously changes
kernel-based algorithms. No algorithmic changes are required from the usual
case of continuous data other than the modification of the RBF kernel evalua-
tion. The kernel-based algorithms can deal with interval data in classification,
regression and novelty detection. It is extremely rare to find algorithms being
able to construct non-linear models on interval data for the three problems:
classification, regression and novelty detection.

We have also proposed two ways to try to explain SVM results that are well-
known “black boxes”. The first one is to use interactive decision tree algorithms
to explain SVM results. The user can interpret the SVM performance in the way
of IF-THEN rules extracted intuitively from the graphical representation of the
decision trees that can be easily interpreted by the user. The second one is based
on a set of different visualization techniques combined with linking and brushing
techniques giving an insight into classification, regression and novelty detection
tasks with SVM. The graphical representation shows the interesting dimensions
in the obtained model.

For dealing with histogram data type, [26] proposed to represent each his-
togram individual with k bins by a succession of k interval individuals (the first
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one included in the second one, the second one included in the third one and
so on). Once the histogram data have been represented by interval data, our
proposed approaches can naturally deal with histogram data.

A forthcoming improvement will be to extend our approaches to taxonom-
ical or mixed data types. Another one will be to use high-level representative
data for tuning the SVM parameters. This approach drastically reduces the cost
compared with the research in initial large datasets.
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Abstract. The Post-processing of mined patterns such as rules, trees and so forth is
one of the key operations in a data mining process. However, it is difficult for human
experts to completely evaluate several thousand rules from a large dataset with noise.
To reduce the cost of this kind of rule evaluation task, we have developed a rule eval-
uation support method with rule evaluation models that learn from objective indices
for mined classification rules and evaluations by a human expert for each rule.

In this paper, we present an evaluation of the learning algorithms of our rule eval-
uation support method for the post-processing of mined patterns with rule evaluation
models based on objective indices. To enhance the adaptability of these rule evalua-
tion models, we introduced a constructive meta-learning system for the construction of
appropriate learning algorithms. We then have performed case studies using the menin-
gitis as an actual problem. Furthermore, we evaluated our method with the eight rule
sets obtained from eight UCI datasets. With regard to these results, we show the ap-
plicability of the constrictive meta-learning scheme as a learning algorithm selection
method for our rule evaluation support method.

6.1 Introduction

In recent years, enormous amounts of data have been stored on information
systems in natural science, social science, and business domains. People have
been able to obtain valuable knowledge due to the development of information
technology. In addition, data mining techniques combine different kinds of tech-
nologies such as database technologies, statistical methods, and machine learning
methods. Data mining has become well known as a method for utilizing the data
stored on database systems. In particular, if-then rules, which are produced by
rule induction algorithms, are considered to be a highly usable and readable
output of data mining. However, for large datasets with hundreds of attributes
including noise, the process often obtains many thousands of rules. From such
a large rule set, it is difficult for human experts to find out valuable knowledge,
which is rarely included in the rule set.

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 95–111.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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To support such a rule selection, much effort has gone into the use of objec-
tive rule evaluation indices such as recall, precision, and other interestingness
measurements (hereafter, we refer to these indices as “objective indices”). Fur-
ther, it is difficult to estimate the criterion of a human expert using a single
objective rule evaluation index; this is because his/her subjective criterion, such
as the interestingness or importance for his/her purpose, is influenced by the
amount of his/her knowledge and/or the passage of time. In addition, rule selec-
tion methods have never explicitly re-used the history of each rule evaluation,
such as focused items and the relationships between items, which are only stored
in the mind of the human expert.

With regard to the above-mentioned issues, we have developed an adaptive
rule evaluation support method for human experts that use rule evaluation
models. This method predicts the experts’ criteria based on objective indices
by re-using the results of the evaluations by human experts. In Section 6.3, we
describe the rule evaluation model construction method based on objective in-
dices. Then, in Section 6.4, we present a performance comparison of learning
algorithms to obtain rule evaluation models. With the results of the compar-
isons, we discuss the applicability of the constructive meta-learning scheme as a
learning algorithm selection method for our rule evaluation model construction
approach.

6.2 Interestingness Measures and Related Work

Much effort has been expended to develop a method to select valuable rules from
large mined rule set based on objective rule evaluation indices. Some of these
works suggest indices for discovering interesting rules from such a large number
of rules.

To avoid confusing real human interest, objective index, and subjective index,
we clearly define these thems as follows: Objective Index : a feature, such as
the correctness, uniqueness, or strength of a rule, calculated by the mathematical
analysis. It does not include any human evaluation criteria. Subjective Index:
The similarity or difference between the interestingness information given be-
forehand by a human expert and that obtained from a rule. Although it includes
some human criteria in its initial state, the similarity or difference is mainly
calculated by mathematical analysis. Real Human Interest: The interest felt
by a human expert based on a rule in his/her mind.

Focusing on interesting rule selection with objective indices, researchers have
developed more than forty objective indices based on the number of instances,
probability, statistical values, quantity of information, distance of rules or their
attributes, and complexity of a rule. [1, 2, 3]. Most of these indices are used to
remove meaningless rules rather than to discover interesting ones for a human
expert, because they cannot include domain knowledge.

Ohsaki et al.[4] investigated the relation between objective indices and real
human interests, through a consideration of real data mining results and their
human evaluations. In this work, a comparison showed that it was difficult to
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exactly predict real human interest with a single objective index. However, their
work never showed any concrete method to predict human evaluations with these
objective indices.

6.3 Rule Evaluation Support with Rule Evaluation Model
Based on Objective Indices

In practical data mining situations, a human expert repeatedly performs costly
rule evaluation procedures. In these situations, the useful experiences gained
from each evaluation, such as focused attributes, interesting combinations, and
valuable facts, is not explicitly used by any rule selection system, but is tacitly
stored in the mind of the human expert. For these problems, we have suggested
a method using rule evaluation models based on objective rule evaluation indices
as a way to explicitly describe the criteria of a human expert, thus re-using the
human evaluations.

6.3.1 Constructing a Rule Evaluation Model

We considered the process of modeling the rule evaluations of human experts as
the process to clarify the relationships between the human evaluations and the
features of input if-then rules. Based on this consideration, we decided that the
rule evaluation model construction process could be implemented as a learning
task. Fig. 6.1 shows this rule evaluation support method based on the re-use of
human evaluations and objective indices for each mined rule as a rule evaluation
model.

This method is iteratively carried out its training phase and its predictionphase.
In the training phase, the attributes of a meta-level training data set are

obtained by objective indices such as recall, precision and other rule evaluation
values. The human evaluations for each rule are combined as classes of each
instance. To obtain this data set, a human expert has to evaluate a part or
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entire of the input rules at least once. After obtaining the training data set, a
rule evaluation model is obtained by using a learning algorithm.

In the prediction phase, a human expert receives predictions for the rest of a
new rules based on their objective index values.

Since rule evaluation models are used for predictions, we needed to choose
a learning algorithm with high accuracy similar to the current classification
problems.

6.3.2 Learning Algorithm Selection with Meta-learning

To enhance a classification task, people often use meta-learning algorithms.
One of the approaches integrates prepared base-level learning algorithms with
a meta-strategy such as voting, selecting and meta-level learning. We call this
approach “selective meta-learning”. In addition, we developed another meta-
learning scheme, which constructs a proper learning algorithm for a given dataset
using de-composed base-level learning algorithms. This approach is called “con-
structive meta-learning”.

In the field of meta-learning, there have been many studies on selective
meta-learning algorithms. There are two approaches for selective meta-learning
scheme. One includes bagging [5] and boosting [6], combining base-level
classifiers from multiple training data with different distributions. In these
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meta-learning algorithms, just one learning algorithm is selected to learn base-
level classifiers. The other approach includes voting, stacking [7] and cascad-
ing [8], which combines base-level classifiers from different learning algorithms.
METAL [9] and IDA [10] are also selective meta-learning approaches, selecting
a proper learning algorithm for a given data set with a heuristic score, which is
called meta-knowledge.

The constructive meta-level processing scheme [11] takes a meta-learning ap-
proach, where the objective process is controlled with meta-knowledge, as shown
in the upper part of Fig. 6.2. In this scheme, we construct meta-knowledge rep-
resented by method repositories. The meta-knowledge consists of information
about functional parts, restrictions on the combination of these functional parts,
and ways to re-construct object algorithms with the these functional parts.

6.4 Performance Comparisons of Learning Algorithms for
Rule Model Construction

To more accurately predict the human evaluation labels for a new rule based
on objective indices, we had to obtain a rule evaluation model with a higher
predictive accuracy in our rule evaluation support method.

In this section, we first present the results of empirical evaluations of a dataset
obtained from the result of meningitis data mining [12] and that of the eight rule
sets from eight UCI benchmark datasets [13]. Based on the experimental results,
we discuss the followings: the accuracy of rule evaluation models, the learning
curves of the learning algorithms, and the contents of the learned rule evaluation
models.

For evaluating the accuracy of the rule evaluation models, we compared the
predictive accuracies on the entire dataset and Leave-One-Out validation. The
accuracy of a validation dataset D is calculated with correctly predicted in-
stances Correct(D) as Acc(D) = (Correct(D)/|D|) × 100, where |D| is the
size of the dataset. The recalls of class i on a validation dataset are cal-
culated using correctly predicted instances about the class Correct(Di) as
Recall(Di) = (Correct(Di)/|Di|) × 100, where |Di| is the size of instances of
class i. Further, the precision of class i is calculated using the size of instances
which are predicted i as Precision(Di) = (Correct(Di)/Predicted(Di))× 100.

With regard to the learning curves, we obtained curves for the accuracies
of learning algorithms on the entire training dataset to evaluate whether each
learning algorithm could perform in the early stage of the rule evaluation process.
The accuracies of randomly sub-sampled training datasets were averaged with
10 trials on each percentage of the subset.

By observing the elements of the rule evaluation models on the meningitis
data mining results, we considered the characteristics of the objective indices,
which are used in these rule evaluation models.

In order to construct a dataset to learn a rule evaluation model, the values
of the objective indices were calculated for each rule by considering 39 objective
indices as shown in Table 6.1. Thus, each dataset for each rule set has the same
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Table 6.1. Objective rule evaluation indices for classification rules used in this re-
search. P: Probability of the antecedent and/or consequent of a rule. S: Statistical
variable based on P. I: Information of the antecedent and/or consequent of a rule.
N: Number of instances included in the antecedent and/or consequent of a rule. D:
Distance of a rule from the others based on rule attributes.

Theory Index Name (Abbreviation) [Reference Number of Literature]
P Coverage (Coverage), Prevalence (Prevalence)

Precision (Precision), Recall (Recall)
Support (Support), Specificity (Specificity)
Accuracy (Accuracy), Lift (Lift)
Leverage (Leverage), Added Value (Added Value)[2]
Klösgen’s Interestingness (KI)[14], Relative Risk (RR)[15]
Brin’s Interest (BI)[16], Brin’s Conviction (BC)[16]
Certainty Factor (CF)[2], Jaccard Coefficient (Jaccard)[2]
F-Measure (F-M)[17], Odds Ratio (OR)[2]
Yule’s Q (YuleQ)[2], Yule’s Y (YuleY)[2]
Kappa (Kappa)[2], Collective Strength (CST)[2]
Gray and Orlowska’s Interestingness weighting Dependency (GOI)[18]
Gini Gain (Gini)[2], Credibility (Credibility)[19]

S χ2 Measure for One Quadrant (χ2-M1)[20]
χ2 Measure for Four Quadrant (χ2-M4)[20]

I J-Measure (J-M)[21], K-Measure (K-M)[4]
Mutual Information (MI)[2]
Yao and Liu’s Interestingness 1 based on one-way support (YLI1)[3]
Yao and Liu’s Interestingness 2 based on two-way support (YLI2)[3]
Yao and Zhong’s Interestingness (YZI)[3]

N Cosine Similarity (CSI)[2], Laplace Correction (LC)[2]
φ Coefficient (φ)[2], Piatetsky-Shapiro’s Interestingness (PSI)[22]

D Gago and Bento’s Interestingness (GBI)[23]
Peculiarity (Peculiarity)[24]

number of instances as the rule set. Each instance has 40 attributes, including
those of the class.

We applied five learning algorithms to these datasets to compare their per-
formances as rule evaluation model learning methods. We used the following
learning algorithms from Weka [25]: C4.5 decision tree learner [26] called J4.8,
neural network learner with back propagation (BPNN)[27], support vector ma-
chines (SVM)1[28], classification via linear regressions (CLR)2[29], and OneR
[30]. In addition, we also used the following selective meta-learning algorithms:
Bagging [5], Boosting [6] and Stacking3 [7].

6.4.1 Constructing Rule Evaluation Models for the Meningitis
Data Mining Result

In this case study, we considered 244 rules, which had been mined from six
datasets about six types of diagnostic problems as shown in Table 6.2. In these
1 A polynomial kernel function was used.
2 We set up the elimination of collinear attributes and the model selection with a

greedy search based on the Akaike information metric.
3 This stacking took the other seven learning algorithms as base-level learner and J4.8

as a meta-level learner.
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Table 6.2. Description of the meningitis datasets and the results of data mining

#Mined
Dataset #Attributes #Class rules #’I’ #’NI’ #’NU’
Diag 29 6 53 15 38 0
C Course 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult find 29 2 24 3 18 3
TOTAL — — 244 48 187 9

datasets, some appearances of meningitis patients were considered to be at-
tributes and the diagnosis of each patient was considered as a class. Each rule
set had been mined using appropriate rule induction algorithms composed by a
constructive meta-learning system called CAMLET [12]. We labeled each rule
with one of three evaluations (I: Interesting, NI: Not-Interesting, NU: Not-
Understandable) based on evaluation comments provided by a medical expert.

Constructing a proper learning algorithm to construct the menin-
gitis rule evaluation model. We developed a constructive meta-learning
system called CAMLET [11] to choose an appropriate learning algorithm for a
given dataset using a machine learning method repository. To implement the
method repository, we first identified each functional part, called method, from
the following eight learning algorithms: Version Space [31], AQ15 [32], Classifier
Systems [33], Neural Network, ID3 [34], C4.5, Bagging and Boosting. With the
method repository, CAMLET constructs an appropriate learning algorithm for
a given dataset by searching through the possible learning algorithm specifica-
tion space obtained by the method repository for the best one, using a Genetic
Algorithm.

After the initial population was set up τ = 4 and a number of refinement were
made N = 100, CAMLET searched through up to 400 learning algorithms, from
6000 possible learning algorithms, for the best one. Fig.6.3 shows the algorithm
constructed by CAMLET for the dataset of the meningitis data mining result.

This algorithm iterates boosting of a C4.5 decision tree for randomly split
training datasets. Each classifier set generated by the C4.5 decision tree learner
is reinforced with a method from Classifier Systems. Then the learned committee
aggregates with weighted voting from boosting.

Comparison of the classification performances. In this section, we present
the results of accuracy comparison over the entire dataset, the recall of each class
label, and their precisions. Since Leave-One-Out uses just one test instance and
the remainders are used repeatedly as the training dataset for each instance of
a given dataset, we could evaluate the performance of a learning algorithm for
a new dataset without any ambiguity.
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Fig. 6.3. The learning algorithm constructed by CAMLET for the dataset of the
meningitis data mining result

Table 6.3. Accuracies (%), Recalls (%), and Precisions (%) of the five learning
algorithms

I NI NU I NI NU

CAMLET 89.4 70.8 97.9 11.1 85.0 90.2 100.0

Stacking 81.1 37.5 96.3 0.0 72.0 87.0 0.0
Boosted J4.8 99.2 97.9 99.5 100.0 97.9 99.5 100.0
Bagged J4.8 87.3 62.5 97.9 0.0 81.1 88.4 0.0
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0

I NI NU I NI NU

CAMLET 80.3 7.4 73.0 0.0 7.4 73.0 0.0

Stacking 81.1 37.5 96.3 0.0 72.0 87.0 0.0
Boosted J4.8 74.2 37.5 87.2 0.0 39.1 84.0 0.0
Bagged J4.8 77.9 31.3 93.6 0.0 50.0 81.8 0.0
J4.8 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Acc.
Recall Precision

Learning
Algorithms

Learning
Algorithms

Evaluation on the training dataset

Leave－One-Out(LOO)

Acc.
Recall Precision

The results of the performances of the five learning algorithms for the entire
training dataset and the results of Leave-One-Out are shown in Table 6.3. All
the Accuracies, Recalls of I and NI, and Precisions of I and NI are higher than
those of the predicting majority labels.

As compared to the accuracy of OneR, the other learning algorithms achieve
equal or higher performances using combinations of multiple objective indices,
rather than by sorting with a single objective index. With regard to the Recall
values for class I, BPNN achieved the highest performance. The other algorithms
exhibit lower performance than OneR, because they tended to learn classification
patterns for the majority class NI.

The accuracy of Leave-One-Out demonstrates the robustness of each learning
algorithm. The Accuracy (%) of these learning algorithms ranged from 75.8% to
81.9%. However, these learning algorithms were not able to classify the instances
of class NU, because it is difficult to predict a minor class label in this dataset.

The learning algorithm constructed by CAMLET showed the second high-
est accuracy for the entire training dataset, compared with the other learning
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algorithms. Although boosted J4.8 outperformed CAMLET on the entire train-
ing dataset, it had lower accuracy on LOO. This means boosted J4.8 had the
problem of overfitting. Thus, CAMLET showed higher adaptability than the
other selective meta-learning algorithms.

Learning curves of the learning algorithms. Since the rule evaluation
model construction method required that the mined rules be evaluated by a
human expert, we investigated the learning curves of each learning algorithm
to estimate a minimum training subset to obtain a valid rule evaluation model.
The upper table in Fig. 6.4 shows the accuracies of the entire training dataset
for each subset of training dataset. The percentage for the achievements of each
learning algorithm compared with its accuracy over the entire dataset are shown
in the lower section of Fig. 6.4.

As observed in these results, SVM and CLR, which learn hype-planes, ob-
tained achievement ratios greater than 95% using less than 10% of the training
subset. Although decision tree learner, boosted J4.8, and BPNN could learn to

%training
  sample 10 20 30 40 50 60 70 80 90 100

CAMLET 76.7 78.4 80.8 81.6 81.7 82.6 82.8 84.8 84.6 89.3
Stacking 69.6 77.8 75.3 77.9 72.2 82.2 75.4 83.4 86.5 81.1
Boosted J4.8 74.8 77.8 79.6 82.8 83.6 85.5 86.8 88.0 89.7 99.2
Bagged J4.8 77.5 79.5 80.5 81.4 81.8 82.1 83.2 83.2 84.1 87.3
J4.8 73.4 74.7 79.8 78.6 72.8 83.2 83.7 84.5 85.7 85.7
BPNN 74.8 78.1 80.6 81.1 82.7 83.7 85.3 86.1 87.2 86.9
SMO 78.1 78.6 79.8 79.8 79.8 80.0 79.9 80.2 80.4 81.6
CLR 76.6 78.5 80.3 80.2 80.3 80.7 80.9 81.4 81.0 82.8
OneR 75.2 73.4 77.5 78.0 77.7 77.5 79.0 77.8 78.9 82.4
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Fig. 6.4. Learning curves of Accuracies (%) on the learning algorithms over subsam-
pled training dataset
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be better classifier for the entire dataset than these hyper-plane learners and
bagged J4.8, they needed more training instances to become accurate classi-
fiers. Looking at the result of learning algorithm constructed by CAMLET, this
algorithm achieves almost the same performance as bagged J4.8, with smaller
training subset. However, it can outperform bagged J4.8 with larger training
subsets. Although the constructed algorithm was based on boosting, the com-
bination of a reinforcement method from Classifier Systems and the outer loop
was able to overcome the disadvantage of boosting for a smaller training subset.

Rule evaluation models for the meningitis data mining result dataset.
In this section, we present rule evaluation models for the entire dataset learned
using CAMLET, OneR, J4.8 and CLR. This is because they are represented as
explicit models such as a rule set, a decision tree, and a linear model set.

As shown in Fig. 6.5, the indices used in the learned rule evaluation models
are taken, not only from a group of indices that increases with the correctness of
a rule, but also from different groups of indices. Indices such as YLI1, Laplace
Correction, Accuracy, Precision, Recall, Coverage, PSI and Gini Gain are indices
that were formerly used for models. Later indices include GBI and Peculiarity,
which sums up the difference in antecedents between one rule and the other rules
in the same rule set. This corresponds to a comment made by the human expert.
He said that he evaluated these rules not only according to their correctness but
also their interestingness based on his expertise

Top 10 frequency in CAMLET models
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Fig. 6.5. Top 10 frequencies of the indices used by the models of each learning algo-
rithm with 10000 bootstrap samples of the meningitis datamining result dataset and
executions
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6.4.2 Constructing Rule Evaluation Models on Artificial Evaluation
Labels

We also evaluated our rule evaluation model construction method using rule sets
obtained from five datasets of the UCI machine learning repository to confirm
the lower limit performances on probabilistic class distributions.

We selected the following five datasets: anneal, audiology, autos, balance-
scale, breast-cancer, breast-w, colic, and credit-a. With these datasets, we ob-
tained rule sets with bagged PART, which repeatedly executes PART [35] on
the bootstrapped training datasets.

For these rule sets, we calculated 39 objective indices as attributes of each
rule. With regard to the classes of these datasets, we used three class distribu-
tions with multinomial distributions. Table 6.4 shows us a process flow diagram
for obtaining these datasets and their descriptions, with three different class

Table 6.4. The datasets of the rule sets learned from the UCI benchmark datasets

L1 L2 L3
(0.30) (0.35) (0.35)

anneal 95 33 39 23 41.1
audiology 149 44 58 47 38.9
autos 141 30 48 63 44.7
balance-scale 281 76 102 103 36.7
breast- 122 41 34 47 38.5
breast-w 79 29 26 24 36.7
colic 61 19 18 24 39.3
credit-a 230 78 73 79 34.3

(0.30) (0.50) (0.20)
anneal 95 26 47 22 49.5
audiology 149 44 69 36 46.3
autos 141 40 72 29 51.1
balance-scale 281 76 140 65 49.8
breast- 122 40 62 20 50.8
breast-w 79 29 36 14 45.6
colic 61 19 35 7 57.4
credit-a 230 78 110 42 47.8

(0.30) (0.65) (0.05)
anneal 95 26 63 6 66.3
audiology 149 49 91 9 61.1
autos 141 41 95 5 67.4
balance-scale 281 90 178 13 63.3
breast- 122 42 78 2 63.9
breast-w 79 22 55 2 69.6
colic 61 22 36 3 59.0

credit-a 230 69 150 11 65.2

Distribution II

Distribution III

#Mined
Rules

#Class labels
%Def. class

Distribution I
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Table 6.5. Overview of constructed learning algorithms by CAMLET to the datasets
of the rule sets learned from the UCI benchmark datasets

original

classifier set

overall

control structure

final

eval. method

original

classifier set

overall

control structure

final

eval. method

original

classifier set

overall

control structure

final

eval. method

anneal C4.5 tree Win+Boost+CS
Weighted

Voting
C4.5 tree Boost+CS

Weighted

Voting
C4.5 tree Boost+CS

Weighted

Voting

audiology ID3 tree Boost Voting Random Rules CS+GA
Weighted

Voting
Random Rules Simple Iteration Best Select.

autos Random Rules Win+Iteration
Weighted

Voting
ID3 tree Boost+Iteration

Weighted

Voting
Random Rules Boost

Weighted

Voting

balance-

scale
Random Rules Boost Voting Random Rules Boost+CS

Weighted

Voting
Random Rules CS+GA Voting

breast-

cancer
Random Rules GA+Iteration Voting ID3 tree

Boost+CS

+Iteration

Weighted

Voting
Random Rules Win+Iteration

Weighted

Voting

breast-w ID3 tree Win
Weighted

Voting
ID3 tree Iteration Best Select. ID3 tree CS+Iteration

Weighted

Voting

colic Random Rules CS+Win Voting ID3 tree Win+Iteration Best Select. ID3 tree Win+Iteration Voting

credit-a C4.5 tree Win+Iteration Voting Random Rules Win+Iteration Best Select. ID3 tree CS+Boost+IterationBest Select.

CS means including reinfoecement of classifier set from Classifiser Systems Win means including methods and control structure from Window Strat
Boost means including methods and control structure from Boosting GA means including reinforcement of classifier set with Genetic Algorit

Distribution I Distribution II Distribution III

distributions. The class distribution for “Distribution I” is P = (0.35, 0.3, 0.3)
where pi is the probability of class i. Thus, the number of class i instances in
each dataset Dj become piDj. Similarly, the probability vector of “Distribution
II” is P = (0.3, 0.5, 0.2) and that of “Distribution III” is P = (0.3, 0.65, 0.05).

Constructing proper learning algorithms for rule sets from UCI
datasets. In the same way as the construction of an appropriate learning algo-
rithm for the meningitis data mining result, we constructed appropriate learning
algorithms for the datasets of rule sets from the eight UCI datasets. Table6.5
shows an overview of the constructed learning algorithms for each dataset, which
had three different class distributions.

For these datasets, CAMLET constructed various learning algorithms based
on ‘random rule set generation’, ID3 decision tree, and C4.5 decision tree. There-
fore, these learning algorithms consisted of new combinations of methods that
had previously never been seen in learning algorithms. Most of the learning algo-
rithms include ‘Voting’ from bagging or ‘Weighted Voting’ from boosting. With
regard to these results, CAMLET constructed selective meta-learning algorithms
for the datasets with the three different class distributions.

Accuracy Comparison on Classification Performances. For the above
mentioned datasets, we used the five learning algorithms to estimate whether
their classification results reached or exceeded the accuracies when just pre-
dicting each majority class. Table 6.6 shows the accuracies of the nine learning
algorithms applied to each class distribution of the three datasets. The learn-
ing algorithms constructed by CAMLET, boosted J4.8, bagged J4.8, J4.8, and
BPNN always performed better than just predicting the majority class of each
dataset. In particular, Bagged J4.8 and Boosted J4.8 outperformed J4.8 and
BPNN for almost all datasets. However, their performances were suffered from
probabilistic class distributions for larger datasets, such as balance-scale and
credit-a.
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Table 6.6. Accuracies (%) on entire training datasets labeled with three different
distributions

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 74.7 71.6 47.4 56.8 55.8 87.4 100.0 27.4 77.9

audiology 47.0 51.7 40.3 45.6 52.3 87.2 47.0 21.5 63.1

autos 66.7 63.8 46.8 46.1 56.0 89.4 66.7 29.8 53.2

balance-

scale 58.0 59.4 39.5 43.4 53.0 83.3 58.0 39.5 39.5

breast-

cancer 55.7 61.5 40.2 50.8 59.0 88.5 70.5 23.8 41.0

breast-w 86.1 91.1 38.0 46.8 54.4 96.2 100.0 34.2 77.2

colic 91.8 82.0 42.6 60.7 55.7 88.5 100.0 29.5 67.2

credit-a 57.4 48.7 35.7 39.1 54.8 91.3 57.4 26.5 55.7

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 68.4 66.3 56.8 60.0 56.8 85.3 87.4 49.5 67.4

audiology 60.4 61.1 43.6 55.0 56.4 87.2 69.8 50.3

autos 63.1 64.5 52.5 53.2 57.4 90.8 100.0 39.0 67.4

balance-

scale 61.6 57.7 49.8 55.2 58.0 80.4 61.6 45.6 41.9

breast-

cancer 68.0 70.5 47.5 58.2 59.8 77.9 96.7 33.6 64.8

breast-w 89.9 93.7 49.4 58.2 62.0 98.7 100.0 59.5 78.5

colic 77.0 78.7 57.4 62.3 67.2 85.2 100.0 29.5 88.5

credit-a 61.3 59.1 41.3 52.6 56.1 89.6 62.2 47.4 53.5

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 74.7 70.5 67.4 70.5 73.7 84.2 94.7 67.4 66.3

audiology 65.8 67.8 63.8 64.4 67.1 83.2 67.1 59.7 65.1

autos 85.1 73.8 68.1 70.2 73.8 87.9 100.0 66.7 67.4

balance-

scale 70.5 69.8 64.8 65.8 69.8 80.1 85.8 62.6 63.0

breast-

cancer 71.3 77.0 66.4 65.6 77.9 86.9 79.5 73.0 73.0

breast-w 74.7 86.1 73.4 68.4 74.7 87.3 100.0 63.3 70.9

colic 70.5 77.0 65.6 60.7 73.8 85.2 100.0 49.2 60.7

credit-a 70.9 70.0 65.2 65.2 71.3 85.7 87.8 61.7 65.2

Distribution II

Distribution III

Distribution I

SVM, CLR and Stacking affected the class distribution differences. Their per-
formances were sometimes lower the percentage for each majority class. Although
Stacking is a kind of selective meta-learning algorithm, it performed worse than
the other two selective meta-learning algorithms, because it included SVM and
CLR at the same time and failed to control the predictive results of these worse
learning algorithms.

Evaluation of Learning Curves. Similar to the evaluations of the learning
curves on the meningitis rule set, we estimated the minimum training subsets
for a valid model, which works better than just predicting the majority class of
the datasets.

Table 6.7 shows the sizes of the minimum training subsets, which can help
construct more accurate rule evaluation models than the percentages of the
majority class formed by each learning algorithm. For datasets with balanced
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Table 6.7. Number of minimum training subsamples for outperforming the Accuracy
(%) of default class

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 20 14 17 29 29 16 14 36 20

audiology 21 18 65 64 41 21 14 56 27

autos 38 28 76 77 70 28 28 77 31

balance-

scale 12 14 15 15 32 14 9 51 128

breast-

cancer 16 17 22 41 22 14 14 41 36

breast-w 7 10 10 18 14 10 6 19 11

colic 8 8 9 22 14 8 8 24 8

credit-a 9 12 16 30 28 9 8 51 19

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 29 20 16 42 46 26 21 46 29

audiology 36 45 - 61 67 27 30 67

autos 49 39 49 123 88 44 34 74 44

balance-

scale 81 84 69 221 168 60 64 135 -

breast-

cancer 31 28 102 40 46 28 28 62 28

breast-w 14 11 23 30 26 11 10 31 19

colic 24 20 36 42 36 15 18 37 22

credit-a 51 74 - 134 109 49 42 105 78

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 54 58 64 76 - 42 38 64 46

audiology 64 73 45 76 107 50 50 103 84

autos 66 102 84 121 98 45 39 76 76

balance-

scale 118 103 133 162 156 86 92 132 -

breast-

cancer 50 31 80 92 80 38 36 60 41

breast-w 44 36 31 48 71 34 34 52 53

colic 28 24 46 30 42 28 22 48 54

credit-a 118 159 - - 173 76 76 120 109

Distribution II

Distribution III

Distribution I

class distribution (Distribution I), these learning algorithms were able to learn
valid models with less than 20% of the given training datasets. However, for
the datasets with imbalanced distributions (Distribution II & III), they needed
more training subsets to construct valid models, because their performances with
the entire training datasets fell to the percentages of the majority class of each
dataset, as shown in Table 6.6.

Comparison of results of the meta-learning algorithms. Comparing
Stacking and CAMLET, CAMLET achieved a higher accuracy than Stacking,
as shown in Table 6.6. This shows that the approach of CAMLET, the de-
composition and re-construction of learning algorithms, is better than just com-
bining prepared learning algorithms. Although CAMLET can construct boosted
and bagged C4.5, which outperformed than the learning algorithms constructed
by CAMLET, CAMLET could not search for these algorithms as the appropriate
learning algorithms for these datasets. We need to improve the search method
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used by CAMLET to allow it to construct a more appropriate learning algorithm
for a given dataset.

6.5 Conclusion

In this paper, we described the evaluation of the nine learning algorithms for a
rule evaluation support method using rule evaluation models to predict evalua-
tions for an if-then rule based on objective indices by re-using the evaluations
made by a human expert.

Based on a performance comparison of the nine learning algorithms for the
dataset from the result of meningitis data mining, the rule evaluation mod-
els achieved higher accuracies than just predicting the majority class. For this
dataset, the learning algorithm constructed by CAMLET presented higher ac-
curacy with higher reliability than the other eight learning algorithms, including
three selective meta-learning algorithms. For the datasets of rule sets obtained
from eight UCI datasets, although committee type learners such as SVM and
CLR, and Stacking failed to reach the percentage of the majority class of some
datasets, the other learning algorithms were able to go to or beyond the per-
centages of the majority class of each dataset with smaller than 50% of each
training dataset. Thus, our constructive meta-learning scheme has shown its
higher flexibility for different class distributions based on various criteria.

Considering the difference between the actual evaluation labeling and the
artificial evaluation labeling, it was shown that the evaluation of the medical
expert considered the particular relations between an antecedent and a class,
or another antecedent, in each rule. These results indicated that our approach
could detect human criteria differences as several performance differences of rule
evaluation models.

In the future, we will improve CAMLET’s method repository to construct
suitable learning algorithms for rule evaluation models. We will also apply this
rule evaluation support method to other datasets from various domains.
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Abstract. In this chapter we discuss how to take advantage of association rule min-
ing to promote feature selection from low-level image features. Feature selection can
significantly improve the precision of content-based queries in image databases by re-
moving noisy and redundant features. A new algorithm named StARMiner is presented.
StARMiner aims at finding association rules relating low-level image features to high-
level knowledge about the images. Such rules are employed to select the most relevant
features. We present a case study in order to highlight how the proposed algorithm
performs in different situations, regarding its ability to select the most relevant fea-
tures that properly distinguish the images. We compare the StARMiner algorithm with
other well-known feature selection algorithms, showing that StARMiner reaches higher
precision rates. The results obtained corroborate the assumption that association rule
mining can effectively support dimensionality reduction in image databases.

7.1 Introduction

Nowadays, computational applications often need to deal with complex data,
such as images, video, time series, fingerprints, and DNA sequences. Focusing on
one of the most studied type of complex data - images, and more particularly on
medical images - two kinds of systems are now widely used: the Picture Archiving
and Communication Systems (PACS) and the Computer-Aided Diagnosis (CAD)
systems.

The CAD research community has been seeking, for several years, efficient and
precise algorithms to correctly classify medical images into relevant categories,
aiming at supporting medical diagnosis. The development of PACS broadens the
effective use of images on diagnosing, as well as in medicine teaching. However,
in order to be effectively useful, the processing of image retrieval in PACS and
CAD systems must also be fast and consistent with the judgment of specialists.

The volume of images generated on medical exams grows exponentially, de-
manding efficient and effective methods of image retrieval and analysis. In fact,
the number of images generated in hospitals and medical centers corresponds
to several Terabytes per day in a medium size hospital, what demands efficient
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mechanisms to store and retrieve them. Therefore, content-based image retrieval
(CBIR) techniques have been intensively investigated in the last years [16].

CBIR techniques rely on image processing algorithms to extract relevant char-
acteristics (features) from the images. The characteristics are grouped into fea-
ture vectors, which are stored and organized by indexing structures aiming at
achieving fast and efficient image retrieval. Generally, CBIR techniques use in-
trinsic visual features of images, such as color, shape and texture [13] yielding
vectors with hundreds or even thousands of features. Unlike one would think,
having a large number of features actually represents a problem. As the number
of the extracted features grows, the process of storing, indexing, retrieving, and
comparing them becomes more and more time consuming. Moreover, in several
situations, many features are correlated, meaning that they bring redundant in-
formation about the images that can deteriorate the ability of the system to
correctly distinguish them. The large number of features leads CBIR systems to
face the problem known as the “dimensionality curse” [17]. Beyer [7] has proved,
as the number of features increases, the significance of each feature tends to
diminish. Hence, it is important to keep the number of features as low as pos-
sible, establishing a tradeoff between the representation power and the feature
vector size.

Image features are also commonly employed in the classification task. A signif-
icant example is the classification of tumor masses detected in mammograms as
benign or malignant. Initially, the radiologist classifies the images based on the
shape of the lesion. Malignant tumors generally infiltrate the surrounding tissue,
resulting in an irregular or hardly-distinguishable contour, while benign masses
have a smooth contour. Figure 7.1 illustrates two examples of tumor masses.

This chapter discusses how to apply techniques of mining statistical asso-
ciation rules to improve content-based image retrieval in medical domain. We
present a new algorithm (the StARMiner - Statistical Association Rule Miner)
to determine a minimal set of representative features. The algorithm uses sta-
tistical measurements, which describe the behavior of the features considering
the image categories, to find representative rules. We compare the efficacy of
StARMiner and other well- known feature selection algorithms, Relief-F and
DTM (Decision Tree Method) in the task of feature selection using a case
study.

Fig. 7.1. Typical breast tumor masses: benign (left) and malignant (right)
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7.2 Background

Image mining has been the target of many researches in the field of data mining
and information retrieval in current years. A major challenge of the image mining
field is to effectively relate low-level features (automatically extracted from image
pixels) to high-level semantics based on the human perception.

According to [11], researches in image mining can be generally classified
into two main directions: domain-specific and general-purpose directions. The
domain-specific direction focuses on image processing techniques, where the goal
is to process the image and to extract the features that best contribute to dif-
ferentiate images from different types. The general-purpose direction focuses on
mining algorithms that aim at reducing the semantic gap between high-level
human perception of images and low-level image feature representation. Indeed,
general-purpose techniques work improving the accuracy of specific-domain tech-
niques, working in a complementary way.

Mining images demands the extraction of their main features regarding spe-
cific criteria. After extracted, the feature vector and the image descriptions are
submitted to the mining process.

When working with image databases, high-level data manually supplied by
domain experts can also be employed together with low-level features in image
mining processes. However, with the growing of large-scale image repositories,
manual annotation of images has become unfeasible because of its inherent prob-
lems of subjectivity, non-scalability, and non-uniformity of vocabulary. CBIR sys-
tems are proposed to overcome these limitations, where the most similar images
of a given one are retrieved based on comparisons of visual features (automati-
cally extracted from images). The retrieved images can be employed to label a
new one or, in case of medical images, to help the decision making process of
diagnosing a new image.

In this section, two tasks of data mining are discussed: feature selection and
association rule mining. We concentrate on applying these techniques to extract
patterns from images and to improve content-based search in medical image
databases. In this section, we also describe how to evaluate the results of a CBIR
system using the precision versus recall curves (P&R). We employed P&R graphs
to evaluate our experiments.

7.2.1 Feature Selection

Dimensionality reduction (also called dimension reduction) is the process of re-
ducing the number of features (attributes) used to represent a dataset under
consideration. Dimensionality reduction approaches diminish the feature vector
size by removing redundant, correlated and noisy data. In most cases, dimension-
ality reduction speeds up the processing of data mining algorithms and improves
their accuracy.

The dimensionality reduction approaches are also classified into feature selec-
tion and feature transformation approaches. There is no agreement about the
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nomenclature of feature transformation in literature. In fact, feature transforma-
tion approaches are also called feature extraction or feature reduction approaches.
The key difference between feature selection and feature transformation is that
the former consists in selecting a subset of the original features while the last
generates a completely new set of features to represent a given dataset.

In this chapter, we focus on feature selection approaches. Feature selection ap-
proaches do not transform the original features; they only remove the subset of
redundant and irrelevant features, preserving the semantical meaning of original
data. Feature selection techniques can be divided into binary and continuous
techniques. Continuous feature selection techniques assign continuous weights
to each feature, while the binary approach assigns binary weights to each fea-
ture. Feature selection techniques can also follow either the filter or the wrapper
model. In the filter model, the feature selection process is performed before the
learning phase and works as a pre-processing step of the learning algorithm. In
the wrapper model, the feature selection algorithm uses the learning algorithm
as a subroutine. The main disadvantage of the wrapper model is the huge com-
putational effort employed by the learning algorithm to evaluate each feature
subset [18].

A vast amount of feature selection algorithms has been presented in litera-
ture. One of the former algorithms was presented in [19], where the property of
monotonicity is employed to prune the search space, and divergence is employed
to evaluate features.

One of the most well-known feature selection algorithms is Relief [14]. The
general principle of Relief is to measure the quality of features according to how
their values distinguish instances of different classes. Given a randomly selected
instance S from a dataset R, with k features (attributes), Relief searches the
dataset for the nearest neighbor of the same class, which is called nearest hit H ,
and Relief also searches the dataset for the nearest neighbor of the different class,
called nearest miss M . It updates the quality estimator W [fi] of all features fi,
depending on the difference between the feature values of the instances S, H e
M . This process repeats n times, where n is a parameter specified by the user.
The time complexity of Relief is O(nkN), where N is the number of instances of
the dataset and k is the number of features. Relief returns a rank of attributes
ordered according to their relevance, but it does not indicate the number of
features that should be selected. One limitation of the Relief algorithm is that
it works only for datasets with binary classes. This limitation is overcome by
Relief-F [15] that also tackles datasets with multi-valued classes.

Another well-known feature selection technique is the Decision Tree Method
(DTM) [8]. DTM adopts a forward search to generate feature subsets, using the
entropy criterion to evaluate them. DTM runs C4.5 [21], an algorithm that builds
a decision tree. Since a decision tree is a sequence of attributes that defines the
state of an instance, DTM selects the features that appear in the pruned decision
tree as the best subset, i.e., the features appearing in the path to any leaf node
in the pruned tree are selected as the best subset.
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In [12], the chi-square distribution is used to infer data distribution and to
promote feature selection. Indeed, other statistical tests can be used to infer data
distribution. In this chapter, as we will describe in the next section, we use a
statistical test to generate association rules. A performance comparison among
feature selection methods can be found in [22].

7.2.2 Association Rules

In this chapter we show how to use association rules for feature selection. As-
sociation rule mining is a descriptive task of data mining, where the goal is
to find relevant relationships among data items. It was initially motivated by
business applications, such as catalog design, store layout, and customer cate-
gorization [3]. However, finding associations has also been widely used in many
other applications such as data classification and summarization [20, 24].

The problem of mining association rules was first stated in [1] as follows. Let
I = {i1, . . . , in} be a set of literals called items. A set X ∈ I is called an itemset.
Let R be a table with transactions t involving elements that are subsets of I.
An association rule is an expression of the form X → Y , where X and Y are
itemsets. X is called body or antecedent of the rule, and Y is called head or
consequent of the rule.

Let |R| be the number of transactions in relation R. Let |Z| be the total
number of occurrences of the itemset Z in transactions of relation R. Support
and confidence measures (Equations 7.1 and 7.2) are used to determine the rules
returned by the mining process.

Support =
|X ∪ Y |
|R| (7.1)

Confidence =
|X ∪ Y |
|X | (7.2)

The problem of mining association rules, as it was first stated, involves finding
rules that satisfy the restrictions of minimum support and minimum confidence
specified by the user.

Apriori [2] is one of the first and widely used association rule mining algo-
rithm. One drawback of the Apriori algorithm is its low performance because of
the successive dataset scans carried out by the algorithm. Some algorithms were
developed for speeding up the association rule mining. Examples of such algo-
rithms include Partition [26], FP-Growth [10] and Eclat [28]. These algorithms
were developed to mine the first and the simplest type of association rules, the
Boolean association rules, which are rules that correlate categorical (nominal)
data items. In [4, 23, 27] procedures for mining quantitative association rules
are presented. Quantitative association rules relate continuous-valued attributes.
In [29, 30] the problem of generating association rules correlating items from
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multiple databases was dealt with. In [25] an algorithm for mining association
rules in data warehouses was presented.

Mining association rules in image datasets has been a great challenge. Proce-
dures of association rule mining do not produce interesting results by themselves.
Images should be previously pre-processed by image processing algorithms to
produce the image data that is submitted to the mining processes.

7.2.3 Content-Based Retrieval Evaluation

When working with content-based retrieval, performing exact searches on image
datasets are not useful, since searching for the same data already under analysis
has very few applications. Therefore, the retrieval of complex data is mainly
performed regarding similarity. The most well-known and useful types of simi-
larity queries are the k -nearest neighbor (for instance: “given the Thorax-XRay
of John Doe, find the five images most similar to it from the image database”),
and range queries (for instance: “given the Thorax-XRay of John Doe, find the
images that differ from it up to three units”). Similarity search is performed
comparing the feature vectors using a distance function to quantify how close
(or similar) each pair of vectors is.

This chapter is focused on medical images, more specifically on the feature
vectors employed to compare and retrieve the images by similarity. The moti-
vation is to reduce the usually large number of extracted features, because for
PACS and CAD systems, it is usual to gather as many image characteristics as
possible, leading to high-dimensional feature vectors, which encompasses much
redundant information. Consequently, it is necessary to sift the features that
keep the most meaningful information. Notice that the proposed approach can
be straightforwardly extended to work on other types of complex data beyond
images, since similarity queries are generally the most suitable for complex data.

In this chapter, we present a technique that uses association rules to improve
the content-based image retrieval on medical domain. One important issue re-
lated to CBIR systems consists on how to evaluate their efficacy. A standard
approach to evaluate the accuracy of the similarity queries is the precision and
recall (P&R) graph [5]. Precision and recall are defined in Equation 7.3 and
Equation 7.4.

Precision =
TRS

TS
(7.3)

Recall =
TRS

TR
(7.4)

In Equations 7.3 and 7.4, TR is the total number of relevant images for a given
query; TRS is the number of relevant images actually returned in the query, and
TS is the total number of images returned in the query. In our experiments we
use precision and recall (P&R) curves in order to analyze our proposed algorithm
StARMiner.
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7.3 Feature Selection through Statistical Association
Rule Mining

A statistical association rule is a type of rule that shows an interesting relation-
ship among subsets of data based on the distribution of the quantitative values.
The term statistical association rule is given to any association rule whose gen-
eration process uses statistical tests to confirm its validity. The goal of working
with statistical association rules is that they do not require data discretization.
A discretization process often leads to a loss of information and can distort the
results of a mining algorithm.

Feature vectors describe the images quantitatively. Hence, a suitable approach
to find association rules should consider quantitative data. In this section we
present StARMiner (Statistical Association Rule Miner), a new algorithm for
statistical association rule mining. The goal of StARMiner is to find statistical
association rules to select a minimal set of features that preserves the ability of
discerning image according to their types. The method proposed here extends
the techniques of statistical association rule mining proposed in [4].

Let xj be a category of an image fi an image feature (attribute). The rules
returned by the StARMiner algorithm have the format xj → fi. StARMiner
only returns rules that satisfy the Condition 1 and Condition 2, as follows.

Condition 1. The feature fi must have a behavior in images from category xj

different from its behavior in images from all the other categories.
Condition 2. The feature fi must present a uniform behavior in every image
from category xj .

Conditions 1 and 2 are implemented in the StARMiner algorithm incorporat-
ing restrictions of interest in the mining process, in the way described as follows.
Let T be a dataset of medical images, xj an image category, Txj ∈ T the subset
of images of category xj , fi the ith feature of the feature vector F , and fik

the
value of feature fi in the image k. Let µfi(Z) and σfi(Z) be, respectively, the
mean and standard deviation of the values of feature fi in the subset of images Z.
The algorithm uses three thresholds defined by the user: ∆µmin - the minimum
allowed difference between the average of the feature fi in images from category
xj and the average of fi in the remaining dataset; σmax - the maximum standard
deviation of fi values allowed in a category and; γmin - the minimum confidence
to reject the hypothesis H0. StARMiner mines rules of the form xj → fi, if the
conditions given in Equations 7.7, 7.8 and 7.9 are satisfied.

µfi(V ) =
∑

k∈V (fik
)

|V | (7.5)

σfi (V ) =

√
(
∑

k∈V (fik
− µfi(V ))2

|V | ) (7.6)

µfi(Txj)− µfi(T − Txj) ≥ ∆µmin (7.7)
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σfi (Txj) ≤ σmax (7.8)

H0 : µfi(Txj) = µfi(T − Txj) (7.9)

In Equation 7.9, H0 should be rejected with a confidence equal to or greater
than γmin, in favor of the hypothesis that the means µfi(Txj) and µfi(T −Txj) are
statistically different. To reject H0 with confidence γmin, the Z value, calculated
using Equation 7.10, must be in the rejection region illustrated in Figure 7.2. The
critical Z values Z1 and Z2 depend on the γmin value as shown in Table 7.1:

Z =
µfi(Txj )− µfi(T − Txj)

σfi
(Txj

)√
(|Tx|)

(7.10)

A rule xj → fi, returned by the algorithm, relates a feature fi with a cate-
gory xj , where the values of fi have a statistically different behavior in images
of category xj . This property indicates that fi is an interesting feature to dis-
tinguish the images of category xj from the remaining images. The StARMiner
algorithm also gives information about the feature behavior in the mined rules.
A rule mined by StARMiner, on its complete form is:

xj → fi, µfi(Txj), µfi(T − Txj), σfi (Txj), σfi (T − Txj )

where, µfi(Tx) and σfi(Tx) are, respectively, the mean and the standard devia-
tion of fi values in the images from category xj ; µfi(Txj) and σfi (T − Txj) are,
respectively, the mean and the standard deviation of fi values in the images that
are not from category xj . Algorithm 1 presents a description of StARMiner.

To perform StARMiner, the dataset under analysis is scanned twice. The first
scan calculates the mean of each feature (lines 1 to 6). The second dataset scan

Fig. 7.2. Illustration of the rejection regions of a hypothesis test

Table 7.1. Critic Z values

γmin 0.9 0.95 0.99
Z1 -1.64 -1.96 -2.58

Z2 1.64 1.96 2.58
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Algorithm 1. StARMiner Algorithm
Input: Dataset T of image transactions structured as {x, f1, f2, fn} where x represents

the image category and fi an image feature; thresholds ∆µmin, σmax, γmin,
Output: The mined rules
1. Scan dataset T
2. for each feature fi do
3. for each category xj do
4. calculate µfi(Txj ) and µfi(T − Txj )
5. end for
6. end for
7. Scan dataset T
8. for each feature fi do
9. for each category xj do

10. calculate σfi(Txj ) and sigmafi(T − Txj )
11. calculate Z value
12. if (µfi(Txj ) − µfi(T − Txj )) ≥ ∆µmin And σfi(Txj ) ≤ σmax And (Z < Z1

or Z > Z2) then
13. write xj → fi, µfi(Txj ), µfi(T − Txj ), σfi(Txj ), σfi(T − Txj )
14. end if
15. end for
16. end for

(lines 7 to 16) calculates the standard deviation for each feature and the Z value,
used in the hypotheses test. The restrictions of interest are processed in lines
11 and 12. A rule is returned only if it satisfies the input thresholds (∆µmin,
σmax, γmin). The complexity of StARMiner is Θ(ckN), where N is the number
of instances of the dataset, k is the number of features, and c is the number
of categories. Criterion 1 is employed to perform feature selection using the
StARMiner results.

Criterion 1. The features in the set of rules returned by StARMiner algorithm
are selected as the most relevant ones.

The StARMiner algorithm makes possible to find rules that properly cate-
gorizes the images. That is, the algorithm spots the features with high power
on differentiating image categories, since they have a particular and uniform
behavior in images of a given category. This is important, because the features
(or attributes) that present a uniform behavior to every image in the dataset,
independently of the image category, do not contribute to categorize them, and
should be eliminated.

To validate the StARMiner algorithm we used a procedure composed of three
steps illustrated in Figure 7.3. These steps are detailed as follows.

Since StARMiner is a supervised feature selection algorithm, the image
dataset is divided in the training set and the test set. The training set is sub-
mitted to the feature selection algorithm, where the test set is used to evaluate
the method in the content-based queries.
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Fig. 7.3. Steps of the procedure used to validate the StARMiner algorithm

Step 1 - Feature Extraction. The image dataset is submitted to a feature
extractor, generating a feature vector for each image.

Step 2 - Feature Selection. The feature vectors, together with the cate-
gories of the training images, are submitted to the feature selection algorithm.
Thereafter, the reduced feature vectors are used to index the images from the
test set in content-based searches, reducing the computational cost to execute
similarity queries.

Step 3 - Content-Based Retrieval. For each image in the test dataset,
one k-nearest neighbor query is performed. The measurements of precision and
recall (P&R) are computed for each query result and an average P&R curve is
computed for both original vectors and reduced vectors. As a rule of thumb on
analyzing P&R curves, the closer the curve is to the top of the graph, the better
the retrieval technique is.

In the next section, a case study is presented. StARMiner is applied to mine
statistical association rules in a real medical image dataset, selecting relevant
features and promoting dimensionality reduction of the dataset. The case study
show the applicability of statistical association rule mining to find patterns, re-
lating low-level features automatically extracted from images, with high-level
information about image categories. The mined patterns can help image pro-
cessing researchers to better understand low-level feature behavior and to find
which low-level feature is really important to describe the image content. The
mined rules also detail the behavior of features in subsets of images. In the
case study, the feature selection performed by StARMiner is also compared to
other well-known feature selection algorithms. The results show that StARMiner
reaches higher values of precision when processing similarity queries.

7.4 Case Study

In this section, we describe a case study that exemplify the applicability of the
StARMiner algorithm. The case study uses the SegMRF dataset. The SegMRF
dataset consists of 704 medical images (angiogram and magnetic resonance - MR
- images) obtained from the Clinical Hospital at Ribeirao Preto of the University
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Table 7.2. Summary of image categories from the SegMRF dataset

Image Category Number of Images
Angiogram 36
MR Axial Pelvis 86
MR Axial Head 155
MR Sagittal Head 258
MR Coronal Abdomen 23
MR Sagittal Spine 59
MR Axial Abdomen 51
MR Coronal Head 36

of Sao Paulo. The SegMRF dataset is classified in eight categories detailed in
Table 7.2.

In Step 1, the images from SegMRF were segmented using Markov Ran-
dom Fields (MRFs), which has been proved to be a suitable segmentation
model for textured images [9]. MRF segments an image using local features,
assigning each pixel to a region based on its relationship to the neighboring
pixels. The final segmentation is achieved by minimizing the expected value
of the number of misclassified pixels. The segmentation algorithm employed
is the same presented in [6] which is an improved version of the EM/MPM
method [9].

Since MRFs express only local properties of images, it is also important to
extract global properties to discriminate them well. The global description is
achieved by estimating the fractal properties of each segmented region. For each
region segmented based on texture, six features were extracted: the mass (m);
the centroid coordinates (xo and yo); the average gray level (a); the Fractal di-
mension (D); and the linear coefficient used to estimate D (b). Therefore, when
an image is segmented in L regions, the feature vector has L×6 elements. In this
experiment, we segmented the images in five regions. Figure 7.4 illustrates the
feature vector described. It is important to stress that considering just five re-
gions (as illustrated in Figure 7.4), the feature vector generated is quite compact.
The feature vector can discriminate the images well, but even so, StARMiner
demonstrated that it still has superfluous information that does not need to be
stored.

The SegMRF dataset was divided in: training set, composed of 176 images;
and, test set, composed of 528 images. In Step 2, StARMiner was run over
the feature vectors of the training images, generating 21 rules. We evaluated
various threshold values, and the best results were achieved using ∆µmin = 0.2,
σmax = 0.13, γmin = 0.98. An example of a rule obtained is:

angiogram → region 2 gray level average (a2)
µa2 (angiogram images) = 0.1

µa2 (non-angiogram images) = 0.43
σa2 (angiogram images) = 0.07

σa2 (non-angiogram images) = 0.18
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Region 1

Region 2

Region 3

Region 4

Region 5

D1 xo1 yo1 m1 b1

features of the texture of
region 1

D5 xo5 yo5 m5 b5

features of the texture of
region 5

…a1 a5

Fig. 7.4. Segmentation regions and the feature vector

This rule indicates the importance of the average gray level in region 2 (a2)
to identify images from angiogram category. The rule shows that, the mean of
a2 in images of angiogram (0.1) is different from the mean of the same feature
for the remaining images (0.43). The standard deviation of a2 in images from
angiogram is small (0.07) comparing with the standard deviation of the values
of a2 for the remaining images (0.18). These values indicates that the feature a2
(region 2 gray level average) has a particular behavior in images of angiogram,
contrasting with its behavior in images of other categories, evidencing that it is
a relevant feature to distinguish images from angiograms.

Table 7.3 shows the attributes selected by StARMiner. The attributes selected
by StARMiner are underlined. The attributes that are not underlined should be
eliminated from the feature vector.

The results indicate that the fractal dimension D feature has a very low con-
tribution to distinguish the images for this dataset (see Table 7.3). The results
also indicate that features of average gray level a are the most relevant to dis-
tinguish the images in categories, because none feature of this type was removed
by the feature selection process.

Table 7.3. Attributes selected by StARMiner. The attributes selected by StARMiner
are underlined. The attributes that are not underlined should be eliminated from the
feature vector.

Region 1 Region 2 Region 3 Region 4 Region 5
D D D D D
xo xo xo x0 xo
yo yo yo yo yo
m m m m m
a a a a a
b b b b b
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Fig. 7.5. P&R graph built using the SegMRF test set represented by: 30 original
features, 21 selected by StARMiner, 21 selected by Relief-F and 21 selected by DTM

In Step 2, we measured the effectiveness of StARMiner algorithm in the task of
feature selection. To perform it, we also applied Relief-F to the training images.
The 21 most relevant features returned by Relief-F were also taken to compose
a feature vector. In addition, DTM was also applied to the training images and
the 21 most relevant features selected were also placed in a feature vector. The
StARMiner algorithm took 0.25 seconds to select the features, Relief-F took 0.72
seconds, and DTM took 0.85 seconds.

To build the Precision vs. Recall graphs, we considered four cases of feature
vectors used to represent the images: (a) using the 30 original features; (b) using
the 21 features selected by StARMiner; (c) using the 21 features selected by
Relief-F; (d) using the 21 features selected by DTM. Similarity queries were
executed over the test set and the P&R graphs were drawn. Figure 7.5 shows
the P&R graph obtained.

The graph in Figure 7.5 shows that the results obtained with 21 features are
quite better than the results gotten with all 30 features. Thus, although using
approximately 70% of the processing effort originally required, the precision of
content-based queries is improved (the computational effort of a similarity query
is proportional to the feature vector size).

To guarantee that we have selected the minimum set of relevant features that
maintain the precision results, we also executed the same k-nearest neighbor
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Fig. 7.6. Precision vs. Recall obtained using 30 features, 21 features selected by
StARMiner, 20 features obtained by removing the feature D from those selected by
StARMiner, and 20 features obtained by randomly removing one feature from those
selected by StARMiner.

queries using 20 features obtained by randomly removing one feature from the
21 features selected by StARMiner, and, as a result of it, the P&R graph always
worsened. Figure 7.6 shows a P&R graph comparing the precision of the queries
using 30 features, 21 features selected by StARMiner, and 20 features obtained
by randomly removing one feature from those selected by StARMiner. The se-
lected features shown in Table 7.3 points out that the feature D has a very low
contribution to represent the images. We redid the similarity queries removing
the feature D of region 1 from the set of 21 selected features to check if it drops
the precision values. The results of this test are also shown in Figure 7.6.

Comparing the curves from Figure 7.6, it is possible to note that removing the
feature D from the 21 features selected by StARMiner, the precision values reduce
much less than removing another feature, since the contribution of the feature D is
small. For Region 1, the feature D is meaningful, but among the selected features,
it is the one that brings the smallest contribution to differentiate the image types.

It is interesting to visualize the images returned when applying similar-
ity queries using the whole set of features and the reduced set selected by
StARMiner. We asked for the 15-nearest neighbors over the same image cen-
ter shown on the left side of the screen of Figures 7.7 and 7.8.

Figure 7.7 shows the results when using the 30 original features, while
Figure 7.7 shows the results using only the 21 selected features. The features
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Fig. 7.7. Example of query using the 30 original features

Fig. 7.8. Example of query using the 21 features selected by StARMiner

selected by StARMiner works better than the 30 original features for the executed
query. The query performed using the original 30 features (Figure 7.7) achieved a
precision of 80%, while the query performed using the 21 selected features achieved
a precision of 100% (Figure 7.8). This happened in several situations, corroborat-
ing previous claims that allowing correlated attributes to be in the feature vector,
instead of improving, it actually worsens the retrieval process.

7.5 Future Trends

The field of mining complex data has a wide variety of subjects still not explored,
especially when leading with image analysis. Techniques to effectively reduce the
semantic gap between low-level features representation and the high-level human
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interpretation of images should be further developed. Some improvements have
been achieved using relevance feedback techniques. However, these techniques
are still limited, and demand to gather information from sequences of relevance
feedback iterations from different users. Relevance feedback approaches saturate
the provided gain within a few number of iterations and are not automatic. It
makes this approach susceptible to the problem of subjectivity and inconsistency
caused by the typical human restrictions of time, interest or tiredness. However,
the use of relevance feedback brings the human to be part of the process, and if
well implemented, it can really diminish the semantic gap.

On the other hand, development in the field of association rule mining can
effectively help to reduce the semantic gap automatically, where patterns relating
semantic meaning to low-level representation can be found. Advances in feature
selection techniques can also help to reduce the semantic gap by determining
the minimal subset of features that effectively represents semantic information
embedded in complex data.

Another question that should be answered is: how to make computers to
recognize objects in a scene (image) in the same way as humans do? Researchers
from several areas, including medicine, computer science, physics and electrical
engineering, are working together to answer such question. In the future, the
result of this effort might facilitate the human life in several aspects. For instance,
small computer devices that reproduce the electrical stimuli occurred in the brain
when a person is looking to a scene could be developed. Such devices could then
be implanted in blind people’s brains allowing them to see a scene, and even
having the perception of colors and depth.

In the future, the image mining field, which is a special case of a complex data
mining field, should follow two main directions:

• Mining for patterns: mining of images aimed at finding interesting pat-
terns in a image, scene or sequence of scenes;

• Mining for search: mining to support content-based retrieval of images.

The development in the mining for patterns direction can lead to the discovery
of other types of data mining tasks. For example, a new future task of data mining
can be the mapping task. Mapping task can be a future field of data mining
specialized in mapping data, such as space, time and behavior, in trends, objects
and evolution lines. In addition, progress in mining for patterns direction will
improve in medical care, agriculture, climate forecast, and space exploration. A
recent demand for the mining for patterns research is regarding the improvement
of surveillance and security.

With the development of the Internet, improvements in the mining for search
direction are mandatory. Nowadays, a small potential of the Internet is effectively
explored. There are very few and limited mechanisms of content-based search
available in the Internet. The users desire to search for images, scenes or movies
having a given subject. Today, well-known problems forbid them to perform
such searches: (a) inconsistence in image descriptions; and (b) low-level features
are not associated to their semantic meaning. New mining techniques should
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be developed to solve such problems. Such techniques might be available in the
Internet, spreading information and knowledge.

It is expected that the progress in the field of mining complex data makes com-
putational devices and programs to go a step further in the task of reproducing
human brain functions. In fact, a human brain analyzes millions of complex data
in a fraction of seconds, bringing to conscience just a small fraction of such data.
This data fraction is the information that is stored in memory. Thus, the human
brain is the perfect machine of mining complex data and, in future, scientists
might be reproducing such machine. The selection of the most representative
features extracted from images, based on association rules, is one of the most
promising approaches that can turn these developments into reality.

7.6 Conclusions

This chapter details two issues related to mining complex data: feature selection
and association rule mining. A new approach to select the most relevant image
features in image datasets has been presented, consequently allowing dimension-
ality reduction of medical image features. The presented method uses statistical
association rules to select the most relevant features. The presented mining al-
gorithm, StARMiner, finds rules involving the attributes that most contribute
to differentiate many classes of medical images. The accuracy of the method
was verified in several case studies, and one representative was discussed in this
chapter. The experiments performed k-nearest neighbor queries to measure the
ability of the proposed technique in reducing the number of features needed to
perform similarity queries maintaining the accuracy of the results. The results
show that a significant reduction in the number of features can be obtained im-
proving the retrieval efficacy of the features, leading to an impressive gain in
time. The experiments also indicated that the features selected by StARMiner
are more relevant to discriminate images than those selected by Relief-F and
DTM algorithms. Furthermore, the results indicate that the mining of statis-
tical association rules to select relevant features is an effective approach for
dimensionality reduction in medical image datasets. Future trends in the field
of image mining were discussed and an optimistic description of possible future
scenery of the field was presented.
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Abstract. Sequential pattern mining has been broadly studied and many algorithms have been 
proposed. The first part of this chapter proposes a new algorithm for mining frequent se-
quences. This algorithm processes only one scan of the database thanks to an indexed structure 
associated to a bit map representation. Thus, it allows a fast data access and a compact storage 
in main memory. Experiments have been conducted using real and synthetic datasets. The 
experimental results show the efficiency of our method compared to existing algorithms.  
Beyond mining plain sequences, taking into account multidimensional information associated 
to sequential data is for a great interest for many applications. In the second part, we propose a 
characterization based multidimensional sequential patterns mining. This method first groups 
sequences by similarity; then characterizes each cluster using multidimensional properties 
describing the sequences. The clusters are built around the frequent sequential patterns. Thus, 
the whole process results in rules characterizing sequential patterns using multidimensional 
information. This method has been experimented towards a survey on population daily activity 
and mobility in order to analyze the profile of the population having typical activity sequences. 
The extracted rules show our method effectiveness. 

Keywords: Sequential data mining, data structures, algorithms, optimization. 

8.1   Introduction 

The problem of mining sequential patterns was first introduced in the context of mar-
ket basket analysis [2]. It aims to retrieve frequent patterns in the sequences of prod-
ucts purchased by customers through time ordered transactions. Several algorithms 
have been proposed in order to improve the performances and to reduce required 
space in memory [20] [26] [11] [13] [10]. Other works have concerned mining  
frequent sequences in DNA [9] or Web Usage Mining [19] [22]. In general, it could 
apply to any database containing a collection of item sequences. Our target applica-
tion was based on a time-use survey, more precisely the database reports the daily 
activities and displacements carried out by each surveyed person in a household. 

After having tested the most cited algorithms, we have observed their weakness to 
scale with large size datasets. Indeed, most of them perform multiple scans of the 
database, which is the main bottleneck in mining. Others require too large memory 
space to load the data when the database size increases. 
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This leads us to propose, in the first part of this chapter, a new algorithm which 
aims at enhancing the performances of mining sequential association rules while  
reducing resource consumption. We make the following contributions: 

1. This algorithm only makes one scan of the database; 
2. It is based on a highly compact main memory data structure, saving the required 

storage resources; 
3. It allows a fast access to the data thanks to index structure; 
4. The experimental results show that our algorithm outperforms existing ones. 

Mining sequential patterns has many interesting applications as it is. In addition to 
performance issue, many works have proposed new features, such as incremental 
sequential pattern mining [5] [12], restriction by constraints [14] or dealing with new 
types of data, such as query plans [26]. Among interesting extensions, multidimen-
sional sequence mining is a major issue [16]. In fact, it allows discovering rules that 
links between sequences (e.g. transaction history) and regular attributes data (such as 
those in client file). Such rules may describe customer profiles, e.g. to which category 
of individuals a given purchase (or a given path traversal pattern) corresponds, or 
discover to which category of individuals correspond a given path traversal pattern. 
This is the subject of the second part of this chapter. 

Our approach consists in mining individual profiles - based on attributes - for the 
most frequent sequential patterns. At this end, we propose a characterization based 
approach where a whole sequence is considered as a complex attribute. Thus, it makes 
sense to integrate reasoning on sequences (frequent patterns, similarity, grouping) 
while other dimensions are considered as descriptive of each sequence group. Briefly, 
our approach is based on two steps. The first gathers all database sequences around 
the most similar sequential pattern in order to derive classes of sequences represented 
by their sequential patterns. The second step describes these classes (and their  
sequential patterns) by their multidimensional attributes values characterizing them. 

The characteristic rules express which attribute properties are typical to frequent 
sequential patterns. The sequential patterns should fulfill a given support threshold, 
and the rule should be satisfied with a given confidence threshold. The extraction of 
such rules raises three main questions: 

1. How to determine that a sequence or a subsequence is similar to another? 
2. How to group multidimensional sequences with a given sequential pattern? 
3. How to determine the most characteristic properties for a group of sequences? 

We have adopted different solutions that we detail afterward.  
Both methods have been experimented using a real dataset related to population 

daily activity and mobility survey. It aims at mining frequent patterns of activity  
sequences, then at analyzing the profile of the population having those typical activity 
sequences. In addition, other experiments have been conducted to test the scalability 
of the sequential pattern mining algorithm, and use synthetic data and public available 
data widely used. 

This chapter combines and extends two previously published papers, namely [17] 
[18]. It is organized as follows: a background section will provide an overview of the 
state of the art, before stating the concepts and definitions used further, and finally, it 
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introduces the use case. Our contributions are then presented in two parts; the first is 
related to sequential pattern mining, then the second proposes an approach for multi-
dimensional sequences mining. Each part details the implementation and the  
experimental results. The conclusion outlines the main contribution of the paper and 
discusses its perspectives. 

8.2   Background 

8.2.1   State of the Art 

Most works related to mining frequent sequences are in the field of customer transac-
tion analysis. Early work on frequent patterns -Apriori algorithm- only considered 
transactions, not sequence of transactions [1]. This algorithm is costly because it car-
ries out multiple scans of the database to determine frequent subsets of items. Three 
algorithms dealing with sequence of transactions are presented and compared in [2], 
and [20]: AprioriAll, AprioriSome and DynamicSome. AprioriAll algorithm is an  
adaptation of Apriori to sequences where candidate generation and support are com-
puted differently. AprioriAll, and AprioriSome only compute maximal frequent  
sequences. Their principle is to jump to candidates of size k+next(k) in the next scan, 
where next(k)>1. Maximum frequent sequences of lower size that have not been cal-
culated are given in the backward phase. The value of next(k) increases with Pk = 
|Lk|/|Ck|, where Lk stands for frequent sequences of size k, and Ck the whole gener-
ated candidates of size k. DynamicSome algorithm is based on AprioriSome but uses a 
jump by a multiple of user defined step. SPAM algorithm [10] uses a bitmap represen-
tation of transaction sequences once the entire database has been loaded in a lexico-
graphic tree. But this algorithm considers that the entire database and all used data 
structures should completely fit into main memory, and then do not adapt for large 
datasets. GSP algorithm [20] utilizes the property that all contiguous subsequences of 
a frequent sequence also have to be frequent. As Apriori, it generates frequent se-
quences, then candidate sequences by adding one or more items.  PrefixSPAN [14] 
first finds the frequent items after scanning the database once. The sequence database 
is then projected, according to the frequent items, into several smaller databases. Fi-
nally, all sequential patterns are found by recursively growing subsequence fragments 
in each projected database. Employing a divide-and-conquer strategy with the Pat-
ternGrowth methodology, PrefixSPAN efficiently mines the complete set of patterns. 

As for multidimensional sequences mining, it has been studied recently and  
partially. Main works deal with frequent patterns that mix sequence items and dimen-
sions. The main contribution is from [16]. They have defined three algorithms for 
mining multidimensional sequential patterns: UniSeq uses PrefixSPAN [14] to mine 
multidimensional sequential patterns with sequences extended with dimensional in-
formation. Dim-Seq uses the BUC-like algorithm [4] to first mine multidimensional 
patterns, then PrefixSPAN is used to mine the sequential patterns associated to the 
multidimensional patterns. Seq-Dim first mines multidimensional patterns using 
BUC-like algorithm, then uses PrefixSPAN to mine the associated sequential patterns. 
Notice that the three algorithms produce the same result. However, they do not make  
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a real distinction between multidimensional values and sequential items. Moreover, 
mining multidimensional sequential patterns do not allow extracting characteristic 
rules. Finally, they do not use specific methods to select the sequences while some 
multidimensional patterns are likely to be shared by groups of similar sequences. 

8.2.2   Concepts and Definitions 

In the proposed approach, we consider a database composed of sequences s and  
attributes Ai (with value ai) describing the sequences (table 8.1). 

Definition 1: Let I be a set of items. A sequence s = <s1, s2, …, si,…, sn> is defined as 
an ordered list of elements si ∈I. si  is also called a sequence element. 

More general definition was initially proposed in [2], where each sequence element 
is rather an item-set. However, we argue that basic sequences composed of single 
items are sufficient for many applications, and adopt this definition. 

Definition 2: A sequences database S is composed of a set of tuples (sid, s) where sid 
denotes the identity of the sequence s. 

Definition 3: A sequence s = <s1, s2, …, sm> is called a subsequence of another  
sequence t = <t1, t2, …, tn>, denoted s ⊆ t if and only if there exist integers 1 ≤ j1 < j2 
< ... <jn ≤ m such that s1 = tj1, s2 = tj2, ..., sn = tjn. 

In other words, a sequence s is included in a sequence t if the ordered list of ele-
ments of s is included in the ordered list of elements of t. 

Definition 4: The support of a sequence α in a sequence database S is the number of 
tuples in the database containing α i.e., support(α) | {<sid, s> | (<sid, s>∈S) ∧ (α⊆ s)}. 

Definition 5: Given a positive integer min_support, a sequence α is called a sequen-
tial pattern in sequence database S if support(α)  ≥ min_support. 

Another concept is the similarity of sequences in order to compare them. Sequence 
similarity is a well known problem in the fields of bio-informatics. It aims at deter-
mining if a DNA sequence is similar or not to another. The most popular algorithms 
are BLAST [3], FASTA [15] and LCSS (Longest Common Subsequence) [6]. We use 
this last method in our definition of sequence similarity. It measures the minimum 
number of insertions and deletions to transform s1 into s2. This method is widely im-
plemented and used for this purpose. 

Definition 6: Given two sequences s = <s1, s2, ..., si,…, sm> and t = <t1, t2, …, tj, 
…,tn> such that (i∈[1,m], j∈[1,n]). Let lcs (s,t) the size of the longest common subse-
quence. The dissimilarity distance between s and t is defined as: d(s, t) = n + m - 
2*lcs (s, t). 

Definition 7: Given a positive integer DT called dissimilarity threshold, sequence s is 
said similar to a sequence t if their dissimilarity distance is lower than DT. 

Definition 8: A multidimensional sequences database is of schema (RID,S, 
A1,…,Am), where RID is a primary key, A1,…,Am are dimensions, and S the domain 
of sequences. A multidimensional sequence is defined as (rid, s, a1, …, am) where ai ∈ 
Ai, for 1 ≤ i ≤ m and s a sequence (see table 1). 
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Definition 9: We define a Class of a Sequence S, denoted SC, as the cluster composed 
of multidimensional sequences whose sequences are similar to S, where S is a sequen-
tial pattern. 

In order to define characteristic rules, we adopt and formalize the definition given 
in [9]. They define characterization of a sub-set as the property descriptions specific 
to this sub-set, comparing to all objects in the database. 

Definition 10: We denote se a subset of the database DB, prop a multidimensional 
property (ai1, …, aik), freqse(prop) the number of objects in se that meet the property 
prop; and card(se) the cardinality of se. The significance of prop in the subset se is 
defined as: FDB

se(prop) = (freqse(prop)/card(se)) / (freqDB(prop)/card(DB)) 

Definition 11: Given a real R standing for the significance threshold. prop is said 
characteristic of se, and denoted as: prop  se [significance], if and only if: 
FDB

se(prop) = significance ≥ R. 

Definition 12: Let Sc be the class of a sequential pattern SPc. We define a multidi-
mensional sequential rule as:  prop  SPc [significance]. 

This multidimensional sequential rule means that the multidimensional property 
prop is characteristic of the sequential pattern SPc with the computed significance. 
The example of table 8.1 shows a multidimensional sequence database. The tuple 
(1, <s1,s2, .., sn>, a1, …, am) stands for a multidimensional sequence of the database. 

Table 8.1. A Multidimensional Sequence Database 

 

8.2.3   Description of the Use Case and Datasets 

The target application is related to population time-use analysis and more precisely 
their daily activities and displacements. This dataset describes daily activities and 
displacements carried out by each person of a surveyed household at the scale of a 
whole urban area. It can be seen as a sequence of activities, also called activity pro-
gram [24]. For example, during a day, an individual can leave home, drive children to 
school, go to work, pick children up from school and come back to home. This  
sequence can be described as (Home, School, Work, School, Home). In order to sim-
plify the notations, we represent each activity by a specific character, e. g. H for 
Home, W for Work, and S for School. Other activities are Market (denoted M),  
Restaurant (R), Leisure (L), etc. This alphabet can be as long as necessary. Then, by 
removing the comma separators, a sequence could be simplified to a character string, 
e.g. HSWSH for the previous sequence. Although we have used activity programs as 
an example in our experiments, the analysis is also relevant for other sequences, such 
as the transport mode used for displacements, the departure time, and so on.  

S A1 AmA2 Ai… …

a1 a2 ai am <s1, s2, .., si, .., sn> 

             … 
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Activity programs of most individuals may be the same or be similar. Each activity 
program could be seen as a sequence of single value, making it possible to discover 
frequent activity sequences that characterise groups of the surveyed individuals. This 
allows analyzing the mobility of this urban population. Likewise, when considering 
transport mode, schedules or duration sequences, it would be possible to determine a 
typology of used transport modes, schedules, and so on. Besides, the survey holds 
other information about individuals as their age, gender, profession, and so on. Then, 
each group having similar activity pattern is likely to have some characteristic  
attribute values. Hence, it is very relevant to characterize those groups and their corre-
sponding sequential patterns. Those data have been used in the second part yielding 
characteristic rules for the groups of the surveyed individuals that share approxi-
mately those activity patterns. Moreover, other datasets have been used mainly to test 
the scalability and to compare our algorithms in the most widely used contexts, such 
as public datasets1.  

8.3   A Sequential Pattern Mining Algorithm 

This section proposes an algorithm of sequential pattern mining. We focus on the 
specific case where the considered sequences composed of single items instead of 
item-sets. We argue that this is the case if the most popular sequences, such as DNA 
[9], documents, web-logs, or activity program sequences. Our algorithm is compared 
to PrefixSPAN, and SPAN, ones of the most efficient mining algorithms. 

8.3.1   Algorithm Overview 

The proposed algorithm is two phases. The first stage is the data encoding into a 
memory resident data structures. The second one is the frequent generation that in 
turn is composed of candidate generation, and candidate support checking. This algo-
rithm only makes one scan of the database during which the total number of distinct 
sequences, the frequency of these sequences and the number of sequences by size are 
computed. This allows computing the support of each generated sequence.  

The backbone of our approach is its main memory data structure, called IBM as  
Indexed Bit Map. It is composed of four elements: (i) a Bitmap: a matrix that repre-
sents the distinct sequences of the database, (ii) SV: a sequence vector that encodes all 
the ordered combinations of sequences, (iii) INDEX: an index on the Bitmap that 
allows a direct access to sequences according to their size, (iv) NB: a table associated 
to the Bitmap which informs about the frequency of each distinct sequence (Fig. 8.1). 
Only distinct sequences are stored in the Bitmap, they are classified by decreasing 
size. An index by size allows a direct access to sequences according to their size, 
which optimizes the candidate generation and counting phase of the algorithm. In the 
example of Fig. 8.1, IBM encodes the whole distinct sequences of the database.  
Notice that Index and the Bitmap are numbered down-up. Here, there are 6 distinct 
sequences of size 1 to 5: H, W, HSR, HSH, HSMH and HSRWH. Each cell of the 
INDEX indicates the first line where the corresponding size of sequence is stored. For 

                                                           
1 http://kdd.ics.uci.edu 
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example, the cell number 5 (with value 6) corresponds to the line number 6 of the first 
sequence of size 5 encoded in the Bitmap. The table NB stores the frequency of each 
distinct sequence in the database. Thus the sequence HSMH occurs 20 times in the 
database. 

In the first stage of the algorithm, INDEX, SV, NB and the Bitmap are built on the 
fly during one pass. At each insertion of a sequence, the Bitmap matrix may become 
larger, and a set of shifting operations are applied to the bit values stored in this table. 

 

 

Fig. 8.1. The data structure 

 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 8.2. IBM algorithm 

Fig. 8.2 shows the general IBM algorithm that takes as parameters: the sequence 
database DB and a threshold t. This value (t) stands for the minimum subsequences 
frequency taken into account for the generation of the candidates. Then for each se-
quence s that it reads from the database during the scan, SV (line 03) is generated 
using a merging process (as detailed in Fig. 8.3). Three situations may hold. The first 
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04     Update NB  
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12   k = k+1                                           
13   Generate Ck 
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is when the sequence is already encoded in the Bitmap which only requires the update 
of NB table (line 04): the line corresponding to this sequence in NB is incremented to 
maintain its frequency counting. The second case is when the sequence itself is not 
present in the Bitmap, but may be represented in SV. In this case, s will be encoded 
and inserted in the Bitmap as a new line, involving the update of Index and NB ac-
cordingly (lines 06 and 07). The last case is when the sequence cannot be represented 
in SV, i.e. it is affected by the Merge-sequence-vector(s) function (Fig. 8.4). In this 
case, the algorithm adds the process of shifting the Bitmap table in order to adapt 
existing sequences coding to the new SV (line 08). Once all the data have been  
encoded in this structure, new candidates (line 10) are generated (see candidates gen-
eration section) and compared to the data stored in the Bitmap (line 11) with a fast 
access thanks to the Index (see support counting section). 

8.3.2   Generation of the Sequence Vector 

The sequence vector is generated during the unique scan of the database according to 
the algorithm of Fig. 8.3, which depicts the Merge-sequence-vector function which 
builds the SV vector according to the sequences present in the database.  

Merge-sequence-vector (sequence s)
01 For each item a of s -- SV is fetched by a position pointer initially set to 0 
02 If a ∉ SV suffix -- after the current position
03         If (∃ b ∈ s suffix such that b ∈ SV suffix) insert a before b
04         Else insert a at the end of SV
05    update the current position of SV to the position of a

 

Fig. 8.3. Generation of the Sequence Vector 

It takes as parameter a sequence s of the database. It fetches the sequence items one 
by one checking their presence in SV in the right order (line 01). If a given item a is 
not presents in SV after the current position (line 02), the function checks if their exist 
an item b in SV such that b in located after a in s and also located after the  
current position in SV. If those two conditions hold, item a will be inserted before 
item b in SV (line 03). If only the first condition holds, a will be positioned at the end 
of SV (line 04). The process will continue for the next item starting by the position of 
item a in SV (line 05). Notice that SV will stay unchanged when the sequence items 
belong to SV suffix. This holds when the current SV is sufficient to encode the new  
sequence. In the example of Fig. 8.4, the arrow with value 1 shows an insertion of a 
sequence HSH. This operation does not change SV. Since this sequence already exists 
in the Bitmap, only the corresponding frequency in the NB table is incremented. The 
arrow with value 2 shows an insertion of the sequence HWMWH. This operation 
modifies the SV vector; then, shifting operations are applied to the Bitmap in order to 
preserve the existing encoded sequences, and a new line is added in the Bitmap for 
the new sequence. Finally, the frequency of this new sequence is set to one. 
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Fig. 8.4. IBM data structure generation process 

8.3.3   Candidate Generation and Support Counting 

The second phase is based on the APRIORI principle, with the difference that it  
operates in a main memory data structure instead of scanning the database. Using the 
Index table in IBM, the process starts by the sequences candidates of size 1. Their 
support is counted (as explained later). They are retained as frequent if the support 
fulfils the support threshold. Then, bigger size candidates are generated from these 
frequent items using the fusion process (joining phase) as in the GSP algorithm [20]. 
The frequencies of the candidates are counted again, and the process is repeated. 

The fusion process consists to merge two candidates having a common contiguous 
subsequence of size n-2 in one sequence s of size n. For example, consider the two 
candidates c = MMH and c’ = MHM of size 3. MH is a common contiguous subse-
quence of c and c’, and of size 2. Therefore, the candidate s = MMHM is generated 
from c and c’. 

More formally, given two sequences c=c1c2…cn-1 and c’=c’1c’2…c’n-1 of size 
n-1, a sequence of size n s=s1s2…sn may be generated from c and c’ as follows: 

(i) if c = c1 and c’ = c’1, then s = c1c’1. 
(ii) if n > 2 and ∀ i ∈[2..n-1] ci = c’i-1, then  s= c1c2…cn-1c’n-1 

As for the support counting of the generated candidates, it is facilitated by the data 
structure. For a given candidate C of size S, the algorithm (see Fig. 8.5) first looks in 
the cell number S of the Index where the first sequence of size S is encoded. Then, 
this line is accessed. For each line starting from this line to the last line of the Bitmap 
table, the algorithm determines using the SV vector if C is contained in each line of  
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IBM. If so, the corresponding frequency of this sequence stored in the NB table, is 
added to the frequency of the candidate. After the comparison with each line until the 
last one, the support of C is computed. 

Fig. 8.5 shows the Gen-frequent-sequences algorithm that determines all frequent 
candidates of size k. It takes as input a threshold t. All frequent candidates of size  
k are put in the set Lk. The function scans each generated candidate Ck of size k  
(line 02) and checks if it is included in the distinct sequences of size greater or equal 
than k in IBM (line 03). Index[k] points to the first sequence of size k and max  
stands for the sequence of greatest size encoded in IBM. Then if a candidate is a sub-
sequence of a given sequence encoded in IBM (line 05), his support is incremented by 
its frequency (NB[k]) in the database. At the end of this process, if the support of a 
given candidate of size k is greater then the threshold t, the candidate is placed into 
the set Lk. 

 
Gen-frequent-sequences (Threshold t) 
01 Lk = ∅ -- Set of frequent sequences of size k 
02 For all sequences s ∈ Ck  -- Candidates of size k 
03      For all lines l in IBM from line Index[k] to max 
04    If s ⊂ l s.count = s.count + NB[k]   -- frequence of s 
05       If s.count ≥ t Lk= Lk ∪ s 

Fig. 8.5. Generation of Frequent Sequences of Size k 

Suppose the example of Fig. 8.1 and a generated candidate C=HSH of size S=3. 
Then the algorithm will access the cell number 3 of the Index which pin points to the 
line 3 of the IBM table, where the first sequence of size 3 starts. This sequence does 
not contain C, but those in line 4 to 6 contain C. So the frequency of C is computed as 
30+20+15=65. The support of C is equal to 65/ (100+60+40+30+20+15)=0.245. If the 
support threshold is equal to 0.4, C candidate will not be retained as frequent pattern.  

8.4   Implementation and Performance Study 

The experiments aimed to validate our approach and to compare it to other methods. 
This comparison focuses on processing performances, storage costs, and scalability. 
The tests were performed on a 2.5 Ghz Pentium IV with 1 GB of memory running 
Microsoft Windows XP Professional. They aimed at showing: (i) our method effec-
tiveness by applying it to a real dataset, and (ii) its scalability while increasing the 
data size. 

Indeed, IBM has been performed on real data related to daily activity programs of 
the population of a north French urban area. In this application, the number of items is 
about 10. The database contains about 10,800 sequences among which 3,429 distinct 
sequences. The sequence size varies between 2 and 34 with an average size 6. The 
application aims at discovering frequent activity patterns in order to derive some 
population profiles. Interesting and previously unknown patterns have been produced 
which allow the decision makers better understanding of the daily activity and  
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mobility for the reported population. For instance: (Home, Leisure, Home) is the most  
frequent with a support of 49%; (Home, Work, Home) is surprisingly less frequent 
with 37%, among which 9% correspond to (Home, Work, Home, Work, Home); 
(Home, School, Leisure, Home) appears in 11% of the sequences; while (Home, 
Shopping, Home, Leisure, Home) appears in 8% of them. 

As for the scalability test, we generated and tested three different sizes of datasets 
with respectively: 100,000; 300,000; 600,000; and 1,000,000 rows. Items and the size 
of the sequences have been randomly generated for most experiments. The size of 
sequences was randomly generated from 2 to 60, and the number of distinct items was 
about 10 (from 0 to 9). This number has been pushed to 20, 35 and 75 distinct items, 
notably by using the public dataset from UCI KDD archive. For our experimentations, 
we have used the packages PrefixSPAN-0.4.tar.gz2 and Spam.1.3.1.tar.gz3. Moreover, 
we have augmented the activity dataset by randomly generating arbitrary sequences. 
Finally, we have used the public datasets provided in UCI KDD archive chess.dat4 
that has a larger alphabet than in the activity survey dataset. We have measured two 
features: the overall response time from one hand, and the storage cost from the other.  

Moreover, we have studied two variants of the IBM algorithm at the implementa-
tion level. The first one, called IBM2, is based on the observation that the binary 
matrix manipulation necessitates shifting operations. In order to avoid these superflu-
ous and costly computations, we have proposed the variant algorithm IBM2 where the 
Bitmap is replaced by a matrix of Boolean types. This type takes 8 bits in languages 
like Java or C++. This solution requires more space in memory, but it performs better 
since accessing each cell becomes direct. The gain in performances of IBM2 has been 
confirmed by experimental results bellow. The second variant, called IBM_OPT  
(respectively IBM2_OPT when combined with IBM2), uses the fact that the structure 
of IBM in independent from the support threshold value. The idea is to serialize it as a 
Java object and stored in a file, which makes it available for later use after a simple 
load in the main memory. Thus the cost of pre-processing can be totally 
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Fig. 8.6. Performances with 100,000 rows 

                                                           
2 http://chasen.org/~taku/software/PrefixSPAN/ 
3 http://himalaya-tools.sourceforge.net/Spam/#download 
4 http://kdd.ics.uci.edu 
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Fig. 8.7. Performances with 300,000 rows 
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Fig. 8.8. Performances with 600,000 rows 

avoided. This is particularly suitable to data mining process where the user  
interactively tries different support parameters before getting a satisfactory result. 
This optimization improves the performance in processing time, especially for large 
and very large databases as shown in the next section. 

Fig. 8.6 shows all proposed algorithms, namely IBM, IBM2, IBM_Opt and 
IBM2_Opt, outperform PrefixSPAN in the most cases for the dataset having 100,000 
sequences. SPAM has approximately the same response time and outperforms IBM 
when the support decreases, but IBM remains faster. The size of SV is about 173 
items, the generation time for the structure is equal to 2 seconds and the number of 
distinct items in the dataset is around 17,000 sequences. This experiment also con-
firms that IBM outperforms IBM, and shows the performance gain increases as the 
support decreases. Indeed, a lower support increases the number of generated candi-
dates. The more the candidates are generated, the more the number of comparisons in 
the structure increases and the more the number of shifting operations increases.  
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Finally, this experiment shows that IBM_OPT (respectively IBM2_OPT) outperform 
IBM (respectively IBM2). The performance gain (materialized by the gap between the 
corresponding curves) remains constant. Indeed, this difference corresponds to the 
saved time of the data structure construction and it is independent of the support 
threshold. For the dataset composed of 300,000 sequences, we observe the same  
behavior than in the previous experiment (Fig. 8.7). The size of SV is about 219 with 
50,000 distinct sequences in the dataset and the structure is generated in 7.5 seconds. 
For a dataset composed of 600,000 sequences (Fig. 8.8), SPAM algorithm produced a 
memory overflow and failed. The size of SV is composed of 265 items with 90,000 
distinct sequences in the dataset and the time to generate the structure is about 22.6 
seconds. We observe that PrefixSPAN shows better performances than IBM. 
IBM_OPT and IBM2_OPT still outperform PrefixSPAN. IBM2 remains better than 
IBM and than PrefixSPAN, especially for a support bellow 0.3. 

For a dataset composed of 1,000,000 sequences, the size of SV is about 370 with 
160,000 distinct sequences in the dataset and the time to generate the structure is 
about 80 seconds. PrefixSPAN consolidates its performance compared to IBM. 
IBM_OPT always outperforms PrefixSPAN. In general, IBM shows better  
performances than PrefixSPAN, unless the support is high. Conversely, IBM_OPT 
outperforms PrefixSPAN when the support is greater than 0.1. In order to measure the 
impact of the alphabet size on the performances, we have generated datasets using a 
larger alphabet (i.e. with more than 20 distinct items). Fig.. 8.10 and 8.11 show the 
results for 20 and 35 distinct items for dataset composed of respectively 130,000 and 
100,000 sequences. For 20 distinct items, SV is composed of 192 items with 26,000 
distinct sequences in the dataset. For the dataset composed of 35 distinct items, SV is  
composed of 214 items with 32,000 distinct sequences. We observe that PrefixSPAN 
outperforms IBM_OPT and IBM, but IBM and IBM_OPT win PrefixSPAN. Until 35 
distinct items, IBM_OPT wins PrefixSPAN, with a support lower than 0.2. But,  
PrefixSPAN outperforms IBM due to the generation of the structure. 

1,000,000

0

100

200

300

400

500

600

700

0,
05

0,
07

0,
09 0,

2
0,
4

0,
6

0,
8

Support

T
im

e 
(s

ec
o
n
d
s)

IBM2_Opt

IBM_Opt

PrefixSpan

IBM2

IBM

 

Fig. 8.9. Performances with 1,000,000 rows 
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Fig. 8.10. Performances for a dataset with 130,000 rows and 20 distinct items 
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Fig. 8.11. Performances for a dataset with 100,000 rows and 35 distinct items 

For more than 35 distinct items, PrefixSPAN becomes the faster, but this is true 
only for this large database size. Indeed, an interesting result has been obtained on a 
smaller database which has a larger alphabet (of 75 items). 

This test (see Fig. 8.12) used the public dataset chess.dat, provided notably in the 
UCI KDD archive. The dataset is composed of 75 distinct items with 3,196 sequences 
of size between 36 to 37 items. The generation time of the structure is insignificant. 
Although the number of distinct items is greater than 35 (75 here), IBM and IBM 
outperform PrefixSPAN (see Fig. 8.12). The main reason is the size of sequences, 
which is larger (from 36 to 37) compared to the synthetic datasets. Thus height of the 
tree representing the projected database in PrefixSPAN is greater than for the syn-
thetic data. Therefore, traversing this projected data in PrefixSPAN is slower than 
scanning our IBM data structure The memory space required by IBM, IBM and Pre-
fixSPAN are respectively equal to 2.3 MB, 0.29 MB and 9 MB. Nevertheless, the SV 
is only composed of 91 items. Concerning the storage cost, we have measured the 
memory resource consumption for each algorithm for each tested dataset. 
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Fig. 8.12. Performances with chess.dat file 
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Fig. 8.13. Memory consumption 

Fig. 8.13 shows the total memory consumption (in MB) used by IBM and IBM2, 
SPAM, and PrefixSPAN. For instance, with a database composed of 600,000 rows, SV 
contains about 265 values for 90,000 distinct rows. The size of the Bitmap in IBM2 is 
then equal to: 265*90,000 = 23.85 MB. As IBM is 8 times more compact, the size of 
the binary Bitmap is less than 3 MB. With 1,000,000 rows (Fig. 8.9), SV contains 370 
elements for 160,000 distinct rows. Then, the size of the Bitmap reaches 59.2 MB in 
IBM2, whereas the size of the Bitmap fits in 7.5 MB in IBM algorithm. These results 
show that IBM is more appropriate than IBM2 for very large databases, due to data 
compression. However, IBM2 runs faster than IBM. This is due to the costs of shifting 
operations necessary to access target values, whereas IBM2 directly accesses the  
target sequences. As we can see in Fig. 8.13, the difference between memory costs in 
IBM and in IBM2 is insignificant compared to memory costs in SPAM and in Prefix-
SPAN. For example with 1,000,000 rows, the total memory size for IBM is equal to 28 
MB whereas for PrefixSPAN, it is about 468 MB. 
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The size of the Bitmap also depends on the size of SV, which also increases with 
the number of distinct sequences. Notice that SV size does not depend on the size of 
the database itself. In fact, it only increases when the encountered sequence can not be 
encoded using the current SV. Moreover, since the probability to find common  
ordered items between SV and the current sequence becomes high as the building 
process advances, SV size becomes stable regardless of the size of the database. 

In order to prove the efficiency of IBM in extreme cases, we have performed a test 
with a sequence cT of the following form: HWHWHW…HW of size 200, composed 
of repeated series of H and W items. This type of sequence is likely to increase the 
size of the data structure. This experiment aims first to demonstrate that this situation 
does not affect the processing costs, and second to evaluate the loss of storage  
performance. 

Tests have been done with datasets composed of 600,000 and 1,000,000 sequences. 
We observe no variation of processing costs. This is because, according to the se-
quence vector generation algorithm (see the general algorithm), the repeated items H 
and W that are not located in other sequences are put at the end of SV. Therefore, 
unless repeated series are actually frequent in the database, the probability to have 
long repeated series of HW in the middle of SV is very low. Then, using the data 
structure for candidate generation and frequent patterns will not be affected, because 
the items H and W put at the end of the structure would never been accessed. 

8.5   Characterization Based Multidimensional Sequence Mining 

In order to extract relevant knowledge from a multidimensional sequence database, 
we propose a characterization based approach. This process combines: sequential 
patterns mining, sequence similarity, and characterization. It produces sequential 
multidimensional rules as defined in Background section. 

8.5.1   Method Overview 

Our approach is sequence centered. Indeed, it aims to characterize the most frequent 
sequences according to the other dimensions. It is divided into three steps: 

1. first, sequential patterns are mined ; 
2. then these subsequences are used to represent classes composed of subset of  

database sequences. In order to determine to which class a sequence belongs, an 
algorithm of similarity between sequences is used. The sequences of database 
which are the most similar to a given sequential pattern are gathered in the same 
class. At the end of this process, a set of classes composed of database sequences 
and represented by their sequential pattern are defined. In order to reduce the  
intersections between classes, only maximal sequential patterns are considered i.e.  
sequential patterns that are not included in another one ; 

3. once the classes have been built, a characterization algorithm is used to discover 
the dimension values characterizing them.  
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8.5.2   General Algorithm 

Based on the three steps previously described, the general algorithm for mining mul-
tidimensional sequential patterns is depicted in Fig. 8.14. The input parameters of this 
algorithm are:  

 A multidimensional sequences database DB. 
 A support FT for mining sequential patterns. 
 A dissimilarity threshold DT for mining the most similar sequence to a given 

sequential pattern. 
 A characterization threshold CT and a set of attributes and associated values 

E(Ai., Vj). 

The algorithm first mines maximal sequential patterns and places the result in D 
(line 03). Each pattern becomes a model of a class of sequences. Individuals whom 
sequences are the most similar to a given maximal sequential pattern are placed in the 
corresponding class Sc (line 05). The characterization algorithm (line 07) determines 
which attribute values characterize the subset Sc among E(Ai, Vj). 

 
 
 
 
 
 
 
 
 
 

Fig. 8.14. General Algorithm 

 

Fig. 8.15. Characterization Algorithm 

The first step performs maximal sequential pattern mining. As seen before, IBM 
algorithm shows the best performances. Therefore, we use this algorithm at this step 
of the process. Frequent patterns are likely to have much more similar sequences in 
the database than non frequent ones. Therefore, our approach of class generation 
starts from those frequent patterns to determine classes’ centers. We call them models. 

However, not all sequential patterns can be considered as models, because some 
are very similar to each others, and then do not maximize the dissimilarity between 

Mining_MSP(DB, FT,  DT, CT, E(Ai,Vj)) 
01    D = ∅ 
02    R = ∅ 
03    D = Maximal_Sequential_Patterns (DB, FT) 
04    For each S ∈ D  
05        Sc = Cluster (DB, S, DT) 
06     For Each Sc 
07     R = Characterization (Sc, DB, CS, E(Ai., Vj))

Characterization (class se, database DB, real S, set E of (attribute A, value V)) 
00 se.characterization = ∅ ; 
01 compute freqDB(prop) for all properties prop = (attributes, values) ;  
02 For each attribute A 
03       For each value V of A 
04             compute freqse(prop) for the property prop = (attribute, value) ; 
05            If FDB

se(prop) ≥ S Add (se.characterization, prop) ; 
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different classes. Especially, as subsequences of frequent patterns are all frequents, 
their similarity is high. Therefore, models are restricted to maximal frequent patterns. 
The second step assigns the sequences of the database to the classes that are repre-
sented by those models. This is performed based on similarity computation between 
the database sequences and those models. However, most algorithms rather compute 
the dissimilarity distance. Depending on the selected similarity algorithm, the more 
the dissimilarity distance is small, the more the candidates are similar i.e. have com-
mon ordered items. We adopt LCSS algorithm because the presence of each item in 
the sequence is here more relevant than its occurrence probability (see section 2). A 
dissimilarity threshold allows the user to adjust the overlapping between classes as 
well as the class coverage. The more this threshold will be high, the more the over-
lapping probability will be high. Inversely, if this threshold is too small, too many 
database sequences may not be clustered. 

The final step is to discover the main characteristics of individuals (profiles) charac-
terizing each class i.e. the dimension values specific to a given class. In order to extract 
such knowledge, we propose an algorithm based on the definition of the characteriza-
tion proposed by Han and. Kamber [9]. The algorithm is detailed in Fig. 15 above. 

8.5.3   Experimentation 

This experimentation has been done using the real dataset provided by household 
activity survey. The dataset contains 10840 individuals, with the dimensions: gender, 
age (10 classes of age) and work types (about 9). The total number of distinct se-
quence activities is about 3429. The tests have been realized using the following 
threshold values: support=0.1 ; dissimilarity=1 ; characterization= 8.  

The algorithm has found 17 classes. For instance, the sequential pattern HMRH has 
been mined with a support equal to 0.14. Its similar sequences are: HWMRH, HMHR, 
HMRH, HMMRH, HRH, HLMRH, HMH, and HMRRH. This set of sequences com-
poses the class of HMRH. The following rules have been mined for this class: 

(gender = F) ∧ (30 < age < 40) ∧ (job category = TE8)  HMRH [9.064]. 
(gender = F) ∧ (50 < age < 60) ∧ (job category = TE7)  HMRH  [10.413]. 
(gender = F) ∧ (50 < age < 60) ∧ (job category = TE5)  HMRH  [12.466]. 
(gender = H) ∧ (60 < age < 70) ∧ (job category = TE6)  HMRH [10.407]. 

The three first rules mean that individuals having an activity sequence similar to 
HMRH standing for (Home, Market, Restaurant, Home) are frequently (significance 
between 9.064 and 12.466) women between 30 and 40 years old working as liberal 
profession  (here TE8), or women working as clerk (TE5) or without profession (TE7) 
between 50 and 60 years old.  

8.6   Conclusion and Future Work 

This chapter has proposed novel approaches for mining sequential patterns and multi-
dimensional characterization. The first part has presented a new algorithm IBM and its 
variants IBM2, IBM_OPT and IBM2_OPT. The aim of this algorithm is to mine  
frequent sequences in item sequences.  IBM only makes one scan of the database and 
provides efficient data structure that optimizes memory space as well as access costs. 



 8   From Sequence Mining to Multidimensional Sequence Mining 151 

It has been applied to discover all frequent activity sequences in a time use survey 
database within an urban area. The experiments have shown that IBM and its variants 
provide better performances than existing algorithms in most cases: a better response 
time is reached, while a very low memory is required. Experimental results  have also 
shown that IBM2 and IBM2_OPT outperforms IBM and IBM_OPT, which in turns 
outperforms SPAM and PrefixSPAN for large and very large databases and for a  
limited number of distinct items. 

Notice that the proposed data structure for IBM and IBM2 algorithms, and espe-
cially the SV vector, could be used for other purposes as similarity search between 
sequences and sequence clustering.  Another perspective is to apply it to different 
application contexts, as the analysis of query plans and genomic sequences. We have 
already experimented many various datasets: activity sequences, chess play se-
quences, and the web pages sequences msnbc.dat from the UCI KDD archive. In the 
context of the activity-mobility survey, we will explore the mining of spatial  
sequences, such as trajectories [7]. This is still a challenging research issue. 

This chapter also describes a sequence centered approach for mining multidimen-
sional sequential rules. It characterizes the main sequences and performs in three 
steps. First, it mines sequential patterns and sets them as class models. In the second 
step, a similarity algorithm is used to gather each model with similar sequences of the 
database to form the classes. Then in the third step, a characterization algorithm is 
used to extract attribute values characterizing each class. Compared to existing works, 
our approach: (i) allows extracting rules of the form (a1, a2, ai,…, an)  <s1, s2, si,…, 
sn> [R] where attribute values (a1, a2, ai …, an) are characteristics of objects whom 
sequences are similar to <s1, s2, si,…, sn> with a significance R; ii) considers similar 
sequences rather than their exact values, producing more relevant knowledge for a 
better decision–making. In perspective, this approach will be extended to multidimen-
sional spatial and temporal sequences in order to characterize the trajectories of mov-
ing objects. At this end, similarity search of trajectories may use the approach of [23] 
which is also based on LCSS. 
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Abstract. One of the main goals in Knowledge Discovery is to find interesting associ-
ations between values of attributes, those that are meaningful in a domain of interest.
The most effective way to reduce the amount of discovered patterns is to apply two
interestingness measures, subjective and objective. Subjective measures are based on
the subjectivity and understandability of users examining the patterns. They are di-
vided into actionable, unexpected, and novel. Because classical knowledge discovery
algorithms are unable to determine if a rule is truly actionable for a given user [1],
we focus on a new class of rules [15], called E-action rules, that can be used not only
for automatic analysis of discovered classification rules but also for hints of how to
reclassify some objects in a data set from one state into another more desired one.
Actionability is closely linked with the availability of flexible attributes [18] used to
describe data and with the feasibility and cost [23] of desired re-classifications. Some
of them are easy to achieve. Some, initially seen as impossible within constraints set
up by a user, still can be successfully achieved if additional attributes are available.
For instance, if a system is distributed and collaborating sites agree on the ontology
[5], [6] of their common attributes, the availability of additional data from remote sites
can help to achieve certain re-classifications of objects at a server site [23]. Action tree
algorithm, presented in this paper, requires prior extraction of classification rules sim-
ilarly as the algorithms proposed in [15] and [17] but it guarantees a faster and more
effective process of E-action rules discovery. It was implemented as system DEAR 2.2
and tested on several public domain databases. Support and confidence of E-action
rules is introduced and used to prune a large number of generated candidates which
are irrelevant, spurious, and insignificant.

9.1 Introduction

Finding useful rules is an important task of knowledge discovery in data. Most
of the researchers focused on techniques for generating patterns, such as classifi-
cation rules, association rules...etc, from a data set. They assume that it is users
responsibility to analyze these patterns and infer actionable solutions for specific
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problems within a given domain. The classical knowledge discovery algorithms
have the potential to identify enormous number of significant patterns from data.
Therefore, people are overwhelmed by a large number of uninteresting patterns
which are very difficult to analyze and use to form timely solutions. So, there is
a need to look for new techniques and tools with the ability to assist people in
identifying rules with useful knowledge.

There are two types of interestingness measure: objective and subjective
(see [10], [1], [19], [20]). Subjective interestingness measures include unexpect-
edness [19] and actionability [1]. When a rule contradicts the user’s prior belief
about the domain, uncovers new knowledge, or surprises him, it is classified as
unexpected. A rule is deemed actionable, if the user can take action to gain an
advantage based on this rule. Domain experts basically look at a rule and say
that this rule can be converted into an appropriate action.

E-action rules mining is a technique that intelligently and automatically as-
sists humans in acquiring useful information from data. This information can
be turned into actions which can benefit users. The approach gives suggestions
about how to change certain attribute values of a given set of objects in order
to reclassify them according to a user wish.

There are two frameworks for mining actionable knowledge: loosely coupled
and tightly coupled [9]. In the tightly coupled framework, action rules are ex-
tracted directly from a database [7], [8], [22]. In the loosely coupled framework,
proposed in [15], the extraction of actionable knowledge is preceded by classifi-
cation rules discovery. It is further subdivided into:

• strategies generating action rules from certain pairs of classification rules [18],
[21], [23],

• strategies generating action rules from single classification rules [16], [24].

This paper relates to a loosely coupled framework. In most of the algorithms
for action rules mining, there is no guarantee that the discovered patterns in the
first step will lead to actionable knowledge that is capable of maximizing profits.
One way to approach this problem is to assign a cost function to all changes of
attribute values [24]. If changes of attribute values in the classification part of an
action rule are too costly, then they can be replaced by composing this rule with
other action rules, as proposed in [23]. Each composition of these rules uniquely
defines a new action rule. Objects supporting each new action rule, let’s say r,
are the same as objects supporting the action rule replaced by r but the cost of
reclassifying them is lower for the new rule.

E-action rule models the actionability concept in a better way than action rule
[15] by introducing a notion of its supporting class of objects. E-action rules are
constructed from certain pairs of classification rules. They can be used not only
for evaluating discovered patterns but also for reclassifying some objects in a
dataset from one state into a new more desired state. For example, classification
rules found from a bank’s data can be very useful to describe who is a good
client (whom to offer some additional services) and who is a bad client (whom
to watch carefully to minimize the bank loses). However, if bank managers need
to improve their understanding of customers and seek for specific actions to
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improve the services, mere classification rules are not sufficient. In this paper, we
propose to use classification rules to build a new strategy of action based on their
condition features in order to get a desired effect on their decision feature. Going
back to the bank example, the strategy of action would consist of modifying some
condition features in order to improve our understanding of customers behavior
and then improve the services. E-action rules are useful in many other fields,
including medical diagnosis. In medical diagnosis, classification rules can explain
the relationships between symptoms and sickness and in predicting the diagnosis
of a new patient. E-action rules are useful in providing a hint to a doctor what
symptoms have to be modified in order to recover a certain group of patients
from a given illness.

Action Tree algorithm is presented for generating E-action rules and it is
implemented as System DEAR 2.2. The algorithm follows a top-down strategy
that searches for a solution in a part of the search space. It is seeking at each
stage for a stable attribute that has a least number of values. Then, the set
of rules is split recursively using that attribute. When all stable attributes are
processed, the final subsets are split further based on a decision attribute. This
strategy generates an action tree which is used to construct E-action rules from
the leaf nodes of the same parent.

9.2 Information System and E-Action Rules

An information system is used for representing knowledge. Its definition, pre-
sented here, is due to Pawlak [12].

By an information system we mean a pair S = (U, A), where:

• U is a nonempty, finite set of objects,
• A is a nonempty, finite set of attributes i.e. a : U −→ Va is a function for any

a ∈ A, where Va is called the domain of a.

Elements of U are called objects. In this paper, for the purpose of clarity,
objects are interpreted as customers. Attributes are interpreted as features such
as, offers made by a bank, characteristic conditions etc.

We consider a special case of information systems called decision tables [12].
In any decision table together with the set of attributes a partition of that
set into conditions and decisions is given. Additionally, we assume that the set
of conditions is partitioned into stable conditions and flexible conditions. For
simplicity reason, we assume that there is only one decision attribute. Date of
birth is an example of a stable attribute. The interest rate on any customer
account is an example of a flexible attribute as the bank can adjust rates. We
adopt the following definition of a decision table:

By a decision table we mean any information system S = (U, ASt∪AFl∪{d}),
where d �∈ ASt∪AFl is a distinguished attribute called the decision. The elements
of ASt are called stable conditions, whereas the elements of AFl are called flexible
conditions.
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Table 9.1. Decision System

a b c d

x1 2 1 2 L
x2 2 1 2 L
x3 1 1 0 H
x4 1 1 0 H
x5 2 3 2 H
x6 2 3 2 H
x7 2 1 1 L
x8 2 1 1 L
x9 2 2 1 L
x10 2 3 0 L
x11 1 1 2 H
x12 1 1 1 H

As an example of a decision table we take S = ({x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12}, {a, c}∪{b}∪{d}) represented by Table 9.1. The set {a, c} lists
stable attributes, b is a flexible attribute and d is a decision attribute. Also, we
assume that H denotes a high profit and L denotes a low one.

In order to induce rules in which the THEN part consists of the decision
attribute d and the IF part consists of attributes belonging to ASt ∪ AFl, for
instance system LERS [4] can be used for rules extraction.

Alternatively, we can extract rules from sub-tables (U, B ∪ {d}) of S, where
B is a d-reduct (see [11]) of S, to improve efficiency of the algorithm when
the number of attributes is large. The set B is called d-reduct in S if there is
no proper subset C of B such that d depends on C. The concept of d-reduct
in S was introduced to induce efficiently rules from S describing values of the
attribute d depending on minimal subsets of ASt ∪AFl.

By L(r) we mean all attributes listed in the IF part of a rule r. For example,
if r1 = [(a1, 2) ∧ (a2, 1) ∧ (a3, 4) −→ (d, 8)] is a rule then L(r1) = {a1, a2, a3}.

By d(r1) we denote the decision value of that rule. In our example d(r1) = 8.
If r1, r2 are rules and B ⊆ ASt ∪ AFl is a set of attributes, then r1/B = r2/B
means that the conditional parts of rules r1, r2 restricted to attributes B are
the same. For example if r2 = [(a2, 1) ∗ (a3, 4) −→ (d, 1)], then r1/{a2, a3} =
r2/{a2, a3}.

In our example, we get the following certain rules with support greater or
equal to 2:

(b, 3) ∗ (c, 2) −→ (d, H), (a, 1) ∗ (b, 1) −→ (d, L),
(a, 1) ∗ (c, 1) −→ (d, L), (b, 1) ∗ (c, 0) −→ (d, H),
(a, 1) −→ (d, H)

Now, let us assume that (a, v −→ w) denotes the fact that the value of at-
tribute a has been changed from v to w. Similarly, the term (a, v −→ w)(x)
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means that a(x) = v has been changed to a(x) = w. Saying another words, the
property (a, v) of object x has been changed to property (a, w).

Let S = (U, ASt∪AFl ∪{d}) be a decision table and rules r1, r2 are extracted
from S. The notion of an extended action rule (E-action rule) was given in [21].
Its definition is given below. We assume here that:

• BSt is a maximal subset of ASt such that r1/BSt = r2/BSt,
• d(r1) = k1, d(r2) = k2 and k1 ≤ k2,
• (∀a ∈ [ASt ∩ L(r1) ∩ L(r2)])[a(r1) = a(r2)],
• (∀i ≤ q)(∀ei ∈ [ASt ∩ [L(r2)− L(r1)]])[ei(r2) = ui],
• (∀i ≤ r)(∀ci ∈ [AFl ∩ [L(r2)− L(r1)]])[ci(r2) = ti],
• (∀i ∈ p)(∀bi ∈ [AFl ∩ L(r1) ∩ L(r2)])[[bi(r1) = vi]&[bi(r2) = wi]].

Let ASt ∩L(r1)∩L(r2) = B. By (r1, r2) -E-action rule on x ∈ U we mean the
expression r:

[
∏
{a = a(r1) : a ∈ B} ∧ (e1 = u1) ∧ (e2 = u2) ∧ ... ∧ (eq = uq) ∧ (b1, v1 −→

w1)∧(b2, v2 −→ w2)∧...∧(bp, vp −→ wp)∧(c1,−→ t1)∧(c2,−→ t2)∧...∧(cr,−→
tr)](x) =⇒ [(d, k1 −→ k2)](x)

Object x ∈ U supports (r1, r2)-E-action rule r in S = (U, ASt ∪AFl ∪ {d}), if
the following conditions are satisfied:

• (∀i ≤ p)[bi ∈ L(r)][bi(x) = vi] ∧ d(x) = k1
• (∀i ≤ p)[bi ∈ L(r)][bi(y) = wi] ∧ d(y) = k2
• (∀j ≤ p)[aj ∈ (ASt ∩ L(r2))][aj(x) = uj]
• (∀j ≤ p)[aj ∈ (ASt ∩ L(r2))][aj(y) = uj]
• object x supports rule r1
• object y supports rule r2

By the support of E-action rule r in S, denoted by SupS(r), we mean the set
of all objects in S supporting r. Saying another words, this set is defined as:

{x : [a1(x) = u1] ∧ [a2(x) = u2] ∧ ... ∧ [aq(x) = uq] ∧ [b1(x) = v1]∧
[b2(x) = v2] ∧ ... ∧ [bp(x) = vp] ∧ [d(x) = k1]}.

By the confidence of r in S, denoted by ConfS(r), we mean
[SupS(r)/SupS(L(r))] × [Conf(r2)]
To find the confidence of (r1, r2)-E-action rule in S, we divide the number of

objects supporting (r1, r2)-action rule in S by the number of objects supporting
left hand side of (r1, r2)-E-action rule times the confidence of the classification
rule r2 in S.

9.3 Discovering E-Action Rules

In this section we present a new algorithm, called Action-Tree algorithm, for dis-
covering E-action rules. Basically, we partition the set of classification rules R
discovered from a decision system S = (U, ASt∪AFl ∪{d}), where ASt is the set
of stable attributes, AFl is the set of flexible attributes and, Vd = {d1, d2, ..., dk}
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is the set of decision values, into subsets of rules having the same values of stable
attributes in their classification parts and defining the same value of the deci-
sion attribute. Classification rules can be extracted from S using, for instance,
discovery system LERS [2].

Action-tree algorithm for extracting E-Action rules from decision system S is
as follows:

i. Build Action-Tree
a. Partition the set of classification rules R in a way that two rules are in

the same class if their stable attributes are the same
1. Find the cardinality of the domain Vvi for each stable attribute vi in

S.
2. Take vi, which card(Vvi ) is the smallest, as the splitting attribute

and divide R into subsets each of which contains rules having the
same value of the stable attribute vi.

3. For each subset, obtained in step 2, determine if it contains rules of
different decision values and different values of flexible attributes. If
it does, go to step 2. If it doesn’t, there is no need to split the subset
further and we place a mark.

b. Partition each resulting subset into new subsets each of which contains
only rules having the same decision value.

c. Each leaf of the resulting tree represents a set of rules which do not
contradict on stable attributes and also it uniquely defines decision value
di. The path from the root to that leaf gives the description of objects
supported by these rules.

ii. Generate E-action rules
a. Form E-action rules by comparing all unmarked leaf nodes of the same

parent.
b. Calculate support and confidence of each new-formed E-action rule. If

support and confidence meet the thresholds set up by user, print the
rule.

The algorithm starts at the root node of the tree, called E-action tree, rep-
resenting all classification rules extracted from S. A stable attribute is selected
to partition these rules. For each value of that attribute an outgoing edge from
the root node is created, and the corresponding subset of rules that have the
attribute value assigned to that edge is moved to the newly created child node.
This process is repeated recursively for each child node. When we are done with
stable attributes, the last split is based on a decision attribute for each current
leaf of E-action tree. If at any time all classification rules representing a node
have the same decision value, then we stop constructing that part of the tree. We
still have to explain which stable attributes are chosen to split classification rules
representing a node of E-action tree. The algorithm selects any stable attribute
which has the smallest number of possible values among all the remaining sta-
ble attributes. This step is justified by the need to apply a heuristic strategy
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(see [14]) which will minimize the number of edges in the resulting tree and the
same make the time-complexity of the algorithm lower.

We have two types of nodes: a leaf node and a non-leaf node. At a non-leaf
node, the set of rules is partitioned along the branches and each child node gets
its corresponding subset of rules. Every path to the decision attribute node, one
level above the leaf node, represents a subset of the extracted classification rules
when the stable attributers have the same value. Each leaf node represents a set
of rules, which do not contradict on stable attributes and also define decision
value di. The path from the root to that leaf gives the description of objects
supported by these rules.

Instead of splitting the set of rules R by stable attributes and next by the
decision attribute, we can also start the partitioning algorithm from a decision
attribute. For instance, if a decision attribute has 3 values, we get 3 initial sub-
trees. In the next step of the algorithm, we start splitting these sub-trees by
stable attributes following the same strategy as the one presented for E-action
trees. This new algorithm is called action-forest algorithm.

Now, let us take Table 9.1 as an example of a decision system S. Attributes
a, c are stable and b, d flexible. Assume now that our plan is to re-classify some
objects from the class d−1({di}) into the class d−1({dj}). In our example, we
also assume that di = (d, L) and dj = (d, H).

First, we represent the set R of certain rules extracted from S as a table (see
Table 9.2). The first column of this table shows objects in S supporting the rules
from R (each row represents a rule). For instance, the second row represents the
rule [[(a, 2) ∧ (c, 1)] ⇒ (d, L)]. The construction of an action tree starts with
the set R as a table (see Table 9.2) representing the root of the tree (T1 in
Fig. 9.1). The root node selection is based on a stable attribute with the smallest
number of values among all stable attributes. The same strategy is used for a
child node selection. After labelling the nodes of the tree by all stable attributes,
the tree is split based on the value of the decision attribute. Referring back to the
example in Table 9.1, we use stable attribute a to split that table into two sub-
tables defined by values {1, 2} of attribute a. The domain of attribute a is {1, 2}
and the domain of attribute c is {0, 1, 2}. Clearly, card[Va] is less than card[Vc]
so we partition the table into two: one table with rules containing a = 0 and
another with rules containing a = 2. Corresponding edges are labelled by values
of attribute a. All rules in the sub-table T2 have the same decision value. So, we

Table 9.2. Set of rules R with supporting objects

Objects a b c d

{x3, x4, x11, x12} 1 H
{x1, x2, x7, x8} 2 1 L
{x7, x8, x9} 2 0 L
{x3, x4} 1 0 H
{x5, x6} 3 2 H
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Fig. 9.1. Action tree

can not construct E-action rule from that sub-table which means it is not divided
any further. Because rules in the sub-table T3 contain different decision values
and a stable attribute c, T3 is partitioned into three sub-tables, one with rules
containing c=0, one with rules containing c=1, and one with rules containing
c=2. Now, rules in each of the sub-tables do not contain any stable attributes.
Sub-table T6 is not split any further for the same reason as sub-table T2. All
objects in sub-table T4 have the same value of flexible attribute b. There is no
way to form a workable strategy from this sub-table so it is not partitioned any
further. Sub-table T5 is divided into two new sub-tables. Each leaf represents a
set of rules, which do not contradict on stable attributes and also define decision
value di.

The path from the root of the tree to that leaf gives the description of objects
supported by these rules. Following the path labelled by value [a = 2], [c = 2],
and [d = L], we get table T7. Following the path labelled by value [a = 2],
[c = 2], and [d = H ], we get table T8. Because T7 and T8 are sibling nodes, we
can directly compare pairs of rules belonging to these two tables and construct
one E-action rule such as:

[[(a, 2) ∧ (b, 1→ 3)]⇒ (d, L → H)].

After the rule is formed, we evaluate it by checking its support and its confi-
dence (sup = 4, conf = 100%).

This new algorithm (called DEAR 2.2) was implemented and tested on several
data sets from UCI Machine Learning Repository. In all cases, the action tree
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algorithm was more efficient then the action forest algorithm. The generated
E-action rules by both algorithms are the same. The confidence of E-action
rules is higher than the confidence action rules.

9.4 Conclusion

E-action rules are structures that represent actionability in an objective way. The
strategy used to generate them is data driven and domain independent because
it does not depend on domain knowledge. Although the definition of E-action
rules is purely objective, we still can not get rid of some degree of subjectivity
in determining how actions can be implemented. To build E-action rules, we
divide all attributes into two subsets, stable and flexible. Obviously, this partition
has to be done by users who decide which attributes are stable and which are
flexible. This is a purely subjective decision. A stable attribute has no influence
on change, but any flexible attribute may influence changes. Users have to be
careful judging which attributes are stable and which are flexible. If we apply E-
action rule on objects then it shows how values of their flexible features should be
changed in order to achieve their desired re-classification. Stable features always
will remain the same. Basically, any E-action rule identifies a class of objects
that can be reclassified from an undesired state to a desired state by properly
changing some of the values of their flexible features. How to implement these
changes often depends on the user. If the attribute is an interest rate on the
banking account then banks can take appropriate action as the rule states (i.e.,
change lower interest rate to 4.75%). In this case, it is a purely objective action.
However, if the attribute is a fever then doctors may lower the temperature by
following a number of different actions. So, this is a purely subjective concept.
Basically, we cannot eliminate some amount of subjectivity in the process of
E-action rules construction and implementation.
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Botanická 68a, 60200 Brno
Czech Republic
{barton, zezula}@fi.muni.cz

Abstract. An own design of an indexing structure for general graph structured data
called ρ-index that allows an effective processing of special path queries is presented.
These special queries represent for example a search for all paths lying between two
arbitrary vertices limited to a certain path length. The ρ-index is a multilevel balanced
tree structure where each node is created with a certain graph transformation and
described by modified adjacency matrix. Hence, ρ-index indexes all the paths to a
predefined length l inclusive. The search algorithm is then able to find all the paths
shorter than or having the length l and some of the paths longer then the predefined
l lying between any two vertices in the indexed graph. The designed search algorithm
exploits a special graph structure, a transcription graph, to compute the result using
the ρ-index . We also present an experimental evaluation of the process of creating the
ρ-index on graphs with different sizes and also a complexity evaluation of the search
algorithm that uses the ρ-index.

10.1 Introduction

In the context of the Semantic Web, ρ-operators are proposed in [5] as a mean to
explore complex relationships [20] between entities. The problem of searching for
the complex relationships can be modeled as the process of searching paths in a
graph where various entities represent vertices and edges the direct relationships
between them. In case of the semantic web the resources or classes and edges
the properties between them. The notion of complex relationships can be also
identified in bibliographic digital libraries, where entities are publications and
the relationship can represent references or direct citations between them.

As proposed in [5], we recognize two kinds of complex relationships. The first
one is represented by a path lying between two inspected vertices. Speaking in
terms of publications this means that one publication indirectly cites or refer-
ences the other publication – a chain of publications can be built so that one
cites another. The second type of complex relationship is a connection between
two inspected vertices. This symbolizes a fact that the two inspected publica-
tions indirectly cite one common publication, see Figure 10.1 for an example of
this kind of complex relationship.

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 167–188.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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X

’cites’ relation

publication

edge sequence

A

B

Fig. 10.1. An example of a connection between vertices A and B. Two paths originated
in A and B connected in a common vertex X.

The knowledge about complex relationships among publications can be used
for example for ranking the result of the search for publications using the com-
plex relationship discovery among entities present in the result and then sorting
them according to that information. Another use case can be an automated
recommendation of publications based on the preferred set of publications by
searching for close connections between the publications from the preferred set.
Intuitively, the complex relationship discovery has sense in any other field of
interest that incorporates graph structured data. For that reason, this chapter
introduces an indexing technique called the ρ-index that enables efficient dis-
covery of all complex relationships between any two inspected entities in large
collections of arbitrary graph structured data.

This chapter is then structured as follows, Section 10.2 presents related work
in the field of indexing graph structured data, Section 10.3 is a brief insight into
the design of the proposed indexing structure. Section 10.4 introduces a search
algorithm that is used to discover all paths between any two vertices in the
indexed graph using ρ-index. Consequently, the experimental evaluation of the
designed indexing structure and the search algorithm is in Section 10.5. Finally,
this chapter is concluded and some directions of the future work are proposed
in Section 10.6.

10.2 Related Work

The problem of answering various graph queries has two possible solutions. One
is through an algorithmic on the fly query answering and the other one is prepro-
cessing some indexing structure that would ease the computational complexity
of the query processing.

Firstly we discuss one of the on the fly algorithmic approaches which is Tar-
jan’s algorithmic solution to a single source path expression problem from [18, 19]
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Fig. 10.2. An example of the RDF graph

which can be used to answer the queries for all paths lying between any two ver-
tices in a graph. Hence, given a graph G = (V, E) and a distinguished source
vertex s, for each vertex v find a regular expression P (s, v) which represents
all paths from s to v in G. The problem is that the algorithm is designated
to be used only on directed acyclic graph (DAG). Although, there is a trans-
formation proposed to covert an arbitrary graph to DAG, the computational
complexity of the algorithmic solution is O(|E|) making it infeasible for efficient
query processing.

The indexing structures that can be used for efficient search for all paths
lying between two vertices in a graph were designed for RDF [13] graphs. A
short example of a RDF graph is depicted in Figure 10.2. The first index [5] was
designed directly for the purpose of implementing the ρ-operators that represent
the search for the complex relationships in RDF graphs. Its concept is that it
creates a matrix for each RDF schema [9] that takes part in the indexed RDF
graph where each entry of the matrix represents all paths between the entities
in the schema. This approach indexes only the schema part of the graph due to
the computational and store complexity of the index. When candidate paths are
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retrieved from the index the actual existence of their instances in the knowledge
base is checked.

The second indexing structure [15] that has been introduced for RDF graphs
and can be used to process the queries concerning the complex relationships
among vertices in a graph is based on path expressions and suffix arrays [14].
The base idea lies in extracting all possible path expressions from the indexed
graph and consequently create all suffix arrays on string representations of the
path expressions. The main drawback of this approach lays in its limitation of
application to DAGs. Therefore, in this chapter we introduce our own indexing
structure for efficient query processing of path oriented queries.

Nonetheless, the search for complex relationships can be reduced to a reach-
ability query answering. Simply, instead of returning all paths lying between
two inspected vertices a single boolean value is returned answering a question
whether the start vertex can reach the end one. There are numerous algorithmic
approaches to solve this problem varying mostly by the structures they use to
compute the transitive closure of the relation. They are either a matrix based
like [2] that are based on Warshall’s algorithm [22] or the graph based algo-
rithms [16, 17] or combining both approaches which results in a algorithm [3].
The indexing structures for efficient reachability query processing are labeling
schemes that stem from the XML and tree structure labeling schemes. The most
popular labeling schemes are based on either interval labeling scheme [1] or on
a structural approach like [10] or again combining both in a hierarchical label-
ing presented in [23]. Yet, these approaches can be used only to distinguish the
existence of a complex relationship between two vertices, further inspection of
the complex relationship itself is not possible.

10.3 Design of the Index

The graph theory proved that a very handy representation of a directed graph
is its adjacency matrix because using matrix algebra we can comfortably study
the graph’s properties. For instance, if the adjacency matrix is powered by two,
each field in the resulting matrix contains a number of paths of length two lying
between each two vertices in the original graph. If the computation continued,
the result would contain amounts of all paths of an arbitrary length. Moreover,
with a slight modification of the matrix that is introduced later in this section
we would get not just the amounts of paths but the paths themselves.

Main difficulty of matrix representation of a graph is that its use is limited
to fairly small graphs since the matrix grows in the quadratic space and the
multiplication operation on matrices has even cubic time complexity. Therefore,
we introduce graph transformation to enable the use of the matrix approach to
graphs of arbitrary size.

10.3.1 Graph Segmentation

The graph transformation designed to simplify the graph we used is called graph
segmentation. It takes the indexed graph and divides it into segments in a way
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that each vertex is contained in some segment and once assigned to a segment
such vertex is not assigned to any other segment. Precise definition can be found
in Definition 1. The main difference between subgraph and segment of a graph
is that segment can contain edges which’s both vertices are not in the same
segment.

Definition 1. Graph segment and a graph segmentation:

• LEFT V (e) = v1 ⇔ e = (v1, v2)
• RIGHT V (e) = v2 ⇔ e = (v1, v2)

Segment S in a graph G : S = (VS , ES) : VS ⊆ V ∧ ES = {e ∈ E |
RIGHT V (e) ∈ VS ∨ LEFT V (e) ∈ VS}

Segmentation S(G) = {S|S is a segment of G} ∧ ∀S, S′ ∈ S(G), S �= S′ :
VS ∩ VS′ = ∅ ∧

⋃
S∈S(G)

VS = V

Afterward, the vertices and edges between vertices within one segment form a
subgraph of the indexed graph. The edges lying between vertices assigned to
different segments form edges in the simplified graph. Segments then form the
vertices in the simplified graph what we call a segment graph which is defined in
Definition 2. By this transformation, multiple edges can appear between vertices
in the new graph. Regardless, each multiple edge can be substituted by a single
edge since from a path point of view it means a redundant information.

Definition 2. Segment graph of G:

SG(G) = (S(G), X), X = {h|h = (Si, Sj) ⇔ 1 ≤ i, j ≤ k ∧ EDGES -
OUT (Si) ∩ EDGES IN(Sj) �= ∅}

where k is the number of segments in S(G).

The segment graph SG(G) has very similar properties as the graph G. Any path
followed in the indexed graph can be observed also in the segment graph. Since
we left out only the inner edges of each segment. This simplified path in the
segment graph we call a sequence of segments just to avoid confusion of terms,
see Definition 3. Intuitively, each path in the indexed path can be represented by
only one sequence of segments. The method to transform a path into a sequence
of segments is to replace each group of vertices and inner edges of each segment
by that particular segment and to replace each edge lying between two vertices
assigned to different segments by a particular edge from X , with regard to the
Definition 2 such edge always exists.

Definition 3. Sequence of segments:

EDGES OUT(S) = {e|e ∈ ES ∧ LEFT V (e) ∈ VS ∧RIGHT V (e) �∈ VS}
EDGES IN(S) = {e|e ∈ ES ∧RIGHT V (e) ∈ VS ∧ LEFT V (e) �∈ VS}

Sequence of segments (S1 . . . Sl) : S1, . . . Sl ∈ S(G), 1 ≤ i ≤ l− 1 : EDGES -
OUT (Si) ∩ EDGES IN(Si+1) �= ∅
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Thereafter, each of the segments can be represented by its path type adja-
cency matrix. A path type adjacency matrix is a modification of a usual ad-
jacency matrix known from graph theory. It is designed to represent a graph
in a path oriented way. It stores paths in its fields instead of just amounts of
those paths. Initially, in each field path type matrix contains a path consist-
ing of a single edge whenever there is an edge between two vertices in the
graph. The convenience it presents over the usual adjacency matrix is that
after the transitive closure of the path type matrix is computed – the fields
contain not just an amount of paths lying between any two vertices, but also
the paths themselves. Naturally, the mathematical operations on numbers +
and ∗ are replaced by the respective operations on paths – set union and
concatenation.

Using the graph segmentation one large graph (G) can be transformed into a
smaller simplified graph (SG(G)) by identifying certain number of segments and
collapsing them into single vertices. The size of the segment by which we mean
a number of vertices in the segment can be easily controlled. If the transformed
graph is still too big to be described by its path type matrix the whole procedure
can be repeatedly applied again taking as an input the already simplified graph.
Thus we can acquire a multilevel indexing structure where each vertex represents
a graph on the lower level.

Hence, the creation of the ρ-index accompanies a graph segmentation fol-
lowed by a computation of the path type matrix for each segment. This step
is repeated until we get a graph that we are able to describe by its path type
adjacency matrix. A size of segments may vary on every particular level. There-
fore the maximal sizes of the segments at each level form the parameter set-
tings of the ρ-index. Examples of the parameter settings for ρ-index creation
are discussed in Section 10.5. The visual outline of the indexing structure is in
Figure 10.3.

Level 3

Level 2

Level 1

Level 0

Indexed graph G

graph segment
(cluster of vertices)

one vertex

Fig. 10.3. Structure outline of the ρ-index
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10.3.2 Graph Segmentation Method and Strategy

Various ways how to assign the vertices to segments have been identified and
studied. One of them was a graph to forest of trees transformation which’s result
is a forest of trees and was proposed in [7]. Combination of vertex clustering
and the graph to forest of trees transformation together with its preliminary
evaluation can be found in [8]. Further implementation and evaluation showed
that the graph to forest of trees makes the resulting indexing structure very
tangled and therefore the search algorithm did not present good results.

Therefore, for the experimental evaluation presented in this chapter we have
chosen the vertex clustering as a segmentation method. Initially it puts a single
vertex into set VS . Afterwards it incrementally enlarges the segment with vertices
to which or from leads an edge to this vertex. Those edges then form the set ES .
This continues until a maximal number of vertices in VS is reached. For each
level the maximal number of vertices in VS is stated as a parameter.

The nature of the ρ-index tree structure is very dependent on the settings
for the maximal number of vertices in VS at each level. Intuitively, by setting
small sizes of the segments a slim and high tree can be created. On the other
hand, using a large number at first level a wide and low tree is acquired. The
evaluation of different parameter settings and how they affect the search itself
is demonstrated in Section 10.5.

10.3.3 Sequence of Segments Properties

As we mentioned above, each path on a lower level can be represented by some
segment sequence on the upper level. Intuitively, some two different paths can be
represented by one segment sequence. Some of those path are called connecting
paths and are defined in Definition 4. The main property of a connecting path
is that it starts with an common edge of first two segments and ends with a
common edge of last two segments in the sequence of segments.

Definition 4. Connecting path in a sequence of segments:

Common edges CEi for (S1 . . . Sl): 1 ≤ i ≤ l−1 : CEi = EDGES OUT (Si)∩
EDGES IN(Si+1)

Connecting path p = (e1e2 . . . en) ∈ (S1 . . . Sl) : e1 ∈ CE1 ∧ en ∈
CEl−1 ∧ ∃i2, i3, . . . il−1 : 1 < i2 < i3 < . . . < il−1 < n : {e2, . . . ei2} ⊆
ES2 ∧ {ei2 , . . . ei3} ⊆ ES3 ∧ . . . ∧ {eil−2 , . . . eil−1} ⊆ ESl−1

In general, each segment sequence can represent a huge amount of paths of
different lengths. This is because each segment represents a subgraph in which
paths with different lengths can be found. Important to us is knowledge of a
length of the shortest path that the particular segment sequence represents.
Obviously, the shortest path is one of the connecting paths. The length of the
shortest path is then referred to as a weight of the sequence of segments. We have
chosen weight instead of length because length of a segment sequence means the
length of the sequence but the more important to us is the length of the shortest
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path it actually represents. Therefore, if we want to compute all the paths to
the length l we have to store all the segment sequences having its weight less or
equal to l. This parameter l then forms a path length limit that is to be indexed.

Seemingly, to compute the weight of the sequence of segments (S1 . . . Sl) we
would have to compute all its connecting paths to find out which of them is
the shortest. But an enhanced algorithm does not compute all the connecting
paths but only one shortest connecting path for each combination of common
edges picked from all CEis, see Definition 4. Thus we have an upper bound on
a number of connecting paths to be computed for each sequence of segments.

Due to the fact that the weight of a segment sequence represents the length of
a shortest path it represents, it also represents some of the paths that are longer
then its minimal weight. Therefore, using ρ-index we can compute surely all the
paths to the length l but also some of the paths that are actually longer than
the specified l. As we will show in the evaluation in Section 10.5 the amounts
of paths longer then l is not insignificant, yet we realize that this fact highly
depends on the nature of the data on which the ρ-index is being used.

10.4 The Search Algorithm

In this section we describe the algorithm for discovery of all paths to a certain
length between two vertices in the indexed graph using ρ-index. Firstly, the
algorithm looks up the segments the start and end vertex are assigned to. If
we have more than two levels in the ρ-index it looks up to which segments on
the upper level are assigned the segments acquired in the previous step. This
continues until we reach the top level of the ρ-index or we get one common
segment for both vertices. This process goes from the bottom of the structure to
the top. From the definition of the graph segmentation each vertex or segment
belongs to one segment on the upper level. Therefore, for each vertex in the
original graph only one segment exists at each level that contains it.

10.4.1 The Transcription Graph

A special graph structure is used to represent the result throughout the algorithm
computation. It is a transcription graph where the vertices and edges are replaced
by subgraphs retrieved from the ρ-index. The vertices in the transcription graph
are either the segments of the ρ-index or the vertices of the indexed graph. Those
are considered to form the lowest level of the ρ-index. The transcription graph
contains four special kinds of edges:

transitionTo denotes an existence of a transition (edge) between vertices at
the particular level.

existsPathTo indicates an edge that can be replaced by a subgraph from ρ-
index consisting of vertices at the same level and transitions between them,
representing all sequences of segments lying between these two vertices. This
edge may be only between two vertices that are assigned to one common
segment on a higher level.
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Fig. 10.4. Example of an initial transcription graph

belongsToRight represents the relationship of containment, a vertex from a
lower level belongs to a vertex on a higher level.

isSuperiorToRight is an opposite of the previous relationship, it means that
the vertex at a higher level contains the vertex on a lower level.

Figure 10.4 demonstrates an initial state of the transcription graph for a search
of all paths between vertices 1 and 10 in ρ-index having four levels. The vertices
are assigned to respective segments on upper levels and on the topmost level an
existence of a path is supposed between the segments at the highest level.

The concept of the transcription process is to take the initial transcription
graph and transform it to a graph which comprises of only vertices at the lowest
level and all edges are of the transitionTo type. To achieve this, all the segments
and edges at the higher levels need to be processed – transcribed – into entities
at lower levels until we achieve the stop condition of the algorithm. Firstly, it re-
places the existsPathTo edge by a respective subgraph of sequences of segments
lying between the two vertices where all the edges are transitions. Secondly, all
of the transitions concerning the particular segment, that is to be transformed
into entities on the lower level, each transition originated or terminated at this
segment is replaced by a subgraph of segments at a lower level connected to
this segment by the type of edges connecting segments on different levels. This
transformation is demonstrated in Figure 10.5 as the first step in the process.
The transition between the segments X and Z is transformed into a transition
between segments L and K, but on a lower level. This fact indicates, that there
exists a border edge between segments X and Y which is originated in K and ter-
minated in L, where K belongs to segment X and L is assigned to segment Y . If
there existed any other border edges they would also appear in the transcription
graph at this point.
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Fig. 10.5. Transcription of a transition to a lower level

Once the segment has only edges connecting it to other segments on a lower
level it is transformed into lower level entities by connecting each entity on the
left side with each entity on the right side with an existPathTo type of an edge
going from left to right. This is demonstrated in Figure 10.5 by a step number 2
and 3. The transformed segment and all its connecting edges to lower levels are
removed from the graph.

As for the transcription strategy during the transcription process, each vertex
in the transcription graph is assigned two important numbers which are kept
updated through the whole computation. The first number is the vertex’s order
from left and the other one is a length of a shortest path between the start
vertex and this particular vertex. The left order number makes possible to have
the vertices sorted by their position in the transcription graph as the algorithm
processes its vertices strictly from left to right. Since the left order number is a
floating point number, every time the process needs to insert a vertex between
other two vertices there is always a gap between their left orders. Therefore,
the transcription graph forms a special type of a directed graph referred to as
a network which is also a DAG. Since, vertices can be ordered by its left order
number and it is true that there is no edge pointing from a vertex with higher
left order to a vertex with a smaller left order.

The length of a shortest path from the start vertex is used to limit the weight
of segment sequences that are retrieved from the index to replace the path edges
in the transcription graph. It considers the length of an already computed piece
of path from the start vertex to the particular vertex. The segment sequences of
a maximal weight of a difference of the already computed piece of the result and
the maximal length of a desired path, our l, are retrieved and placed into the
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transcription graph. This fact assures that the algorithm will actually stop for
any input because if it is not possible to reach the end vertex from a segment by
a sequence of segments with a weight less then l considering the already minimal
length of a path, the whole branch is removed from the transcription graph.

When the process finishes the resulting transcription graph represents either
a network of all paths initiated in the start vertex and terminated in the end
vertex with a length lower or equal to the predefined l and some paths longer
than l due to the nature of the graph segmentation. All that with respect to the
paths that are in the indexed graph. If there are no paths shorter than l between
the start and end vertex the resulting transcription graph will have only two
vertices and no edges.

The more detailed insight into the transcription graph principles and its tran-
scription strategies, that is beyond the scope of this chapter can be found in [6].

10.5 Experimental Evaluation

In this section we present and discuss the results gained by the indexing struc-
ture and its search algorithm introduced in this chapter. As a testing data we
have used generated synthetic data which’s properties are described later in this
section.

As follows, the set of experiments performed took as a testing data generated
graphs having sizes growing from 5,000 to 30,000 vertices and from 10,000 to
60,000 edges. The graphs were generated iteratively using a small core graph in
the first step. In each iteration a smaller graph was enlarged by randomly adding
edges between newly added vertices or between a new vertex and an old vertex
with a random direction. The probability of where the edge was placed was equal
to the proportion of the number of vertices in the smaller graph to the number
of vertices in the newly built graph. In the rest of this chapter we will refer to
these graphs as G5000, G10000, G20000 and G30000 with respect to the number
of vertices contained in the testing graph. The vertex degree distribution of the
testing graphs is illustrated in Figures 10.6, 10.7, 10.8 and 10.9.

This way we gained graphs with different sizes and having the property that
the smaller graph is always a subgraph of any of the larger graphs. This property
is very important when we evaluate the experiments that compare the search
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Fig. 10.7. Vertex degree distribution in the synthetic graph G10000
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Fig. 10.8. Vertex degree distribution in the synthetic graph G20000
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Fig. 10.9. Vertex degree distribution in the synthetic graph G30000

results in graphs with different sizes, because the result of a search performed on
a smaller graph is also a subset of a search result of the same search performed
on any larger graph. So its true that G5000 ⊆ G10000 ⊆ G20000 ⊆ G30000.

As we performed all the experiments described in the following sections we
stated the maximal indexing length l to be 10. The ρ-index then was built to
index all the paths up to this length and the search then returns all the paths to
this length and some paths longer. Due to the space limitations of this chapter
we will not present a detailed insight into what means some in exact numbers.
Yet we briefly tackle this issue in Section 10.5.3.

As for the machinery on which we executed all our experiments concerning
the ρ-index, the computer is a dual double core Athlon Opteron 2.4 GHz with
a 12 GB of RAM. During the time the tests were run the computer was not
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dedicated to only that task so all the experiments were ran multiple times and
the results depicted are averages of the results thus gained.

10.5.1 ρ-index Creation Time

First of all we present how much time the creation of the ρ-index consumes for
certain sizes of the testing graphs and particular parameter setting. Figure 10.10
represents the experiments performed on our four testing graphs. The ρ-index
created for each graph had 4 levels. The maximal size of a segment on the lowest
level is represented by the values on the x-axis. The other parameters were chosen
to be 10 at the second level, 5 on the third and 2 at the top level. Just to remind
the parameters are the maximal sizes of the segment at the particular level.

The results of this evaluation showed that the ρ-index is sensitive to underfill
of the structure. This can be observed for the case of the smallest graph when
even the ideal parameter setting which is around the value 8 for the max segment
size for the lowest level lead into a creation time which was greater than the best
time of a graph twice as large. We assume that this is caused by a inadequate ρ-
index setting. The ρ-index for this testing graph should have been created using
only three levels or smaller maximal segment sizes at the second and third level.

The creation times of the remaining three graphs indicate that the ρ-index
is highly dependent on the parameter setting. We can observe that the creation
times form a curve of a parabolic shape for all graphs and the size of the testing
graph determine the shift of the values on the y-axis. This implies that the
optimum parameter setting can be easily predicted for graphs at this particular
graph size category upon these experimental results. As a category we consider
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a graphs of a similar size and connectivity. In this case the category is formed
by graphs having from 10,000 to 30,000 vertices and 20,000 to 60,000 edges
respectively.

10.5.2 Search Complexity

This group of experiments performed describe the complexity of the search algo-
rithm using the ρ-index to search all paths to a certain length in respect to the
size of the graph on which the search was performed. Figure 10.11 demonstrates
the experiments where the parameter settings were fixed and the size of the
graph grew. As we mentioned earlier in this section, the result of the search of
the larger graph contains all the search results of the smaller graphs, thus they
are comparable.

Both parts of Figure 10.11 refer to the same results of the same experiments.
They only differ in the y-axis scale. The left part depicts the results in the whole
scale, the right part depicts them ranging from 0 to 80,000 of processed vertices.

The particular curves represent the algorithms used to perform the search
of all paths lying between two vertices. The lines labeled with the prefix seq
represent a sequential algorithm. This algorithm represents an upper bound of
a way to solve the problem of searching all path between two vertices to a
certain length. It is a depth first search that tries to recursively build a path of
a some maximum length. The number in the label states the maximal length of
a searched path.

In Figure 10.11 are present two results for a sequential algorithm seq. This is
caused by the nature of the ρ-index and its search algorithm which results in
a fact that all paths to a specified length l to which the ρ-index was built are
returned and some of the paths longer than l are also returned by the search
algorithm. That implies for the result of the search using ρ-index that is true:
seq(l) ⊆ ρ-index ⊆seq(l + k) for a particular k, where the set inclusion is meant
on the results of the search algorithms. For that reason we also present the
complexity of the algorithm seq(12) which represents the sequential scan for all
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paths to the length 12. The rough comparison of the complexity measured for
the sequential algorithm with the length set to 10 and 12 we can observe that
the growth is exponential.

Another approach to the problem of searching all paths lying between two
vertices in a directed graph is a direct computation using the Tarjan’s algorithms
described in [18] and [19]. The algorithm works in a time complexity n ∗ log(m)
where n represents the number of edges in the graph and m the number of
vertices in the graph. The algorithm takes a flow graph on the input and a start
vertex and returns the path expressions (regular expressions where the letters
are edges of the flow graph) representing all paths to all vertices in a graph on the
output. A flow graph is a special type of a directed graph which allows only one
source vertex in the graph and no cycles. There exist a non-trivial transformation
of an arbitrary directed graph into a flow graph. This computational overhead
of the graph transformation is not included in the complexity of the Tarjan’s
algorithm.

In the progress of the search computational complexity of our designed index
structure and algorithm a decrease of the complexity can be observed for the
graphs G5000 and G10000. As we mentioned in the previous subsection, this is
due to the underfill of the search structure. The parameter settings used to built
the ρ-indexfor each of the testing graphs were the optimal ones for each particular
graph. Again only the max size of the segment on the lowest level varied and
the rest of the parameter settings remained same for all testing graphs.

10.5.3 Search Complexity of Queries with Limited Maximal Length

To this point we always considered the maximal length of the searched path
by the search algorithm to be the same as the maximal length that was used
to create the ρ-index. In this subsection we explore the behavior of the search
algorithm when the maximal length of the searched path is its parameter.

As we refer to the maximal length l of the indexed path, we refer to the max-
imal length of a searched path as softL. Setting this parameter does not limit
the search to return paths longer than softL but again it must not necessarily
find all of them.

Thus Figure 10.12 represents searches executed on the graph G10000 and with
the parameters set to 30, 10, 5 and 2. The ρ-index was computed with l equal to
10. The x-axis then represents the values of the softL parameter and the curves
represent the respective algorithms used to compute the result.

To make the Tarjan’s approach comparable with ours and the sequential al-
gorithm we approximated the computational complexity by limiting the input
graph to only those vertices and edges that are reachable within softL steps.

As for the number of the found paths, the sequential algorithm finds all paths
to the length of softL, our algorithm finds all the paths to the length of softL
and some of the paths that are longer than that. Figure 10.13 represents the
percentage of paths not found that have length greater than softL for each
particular length. Although we ran the experiment for the softL value of 3 the
curve representing returned results is not present here since it returns no paths
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for this softL value. For softL value 5 it finds no path longer than 5 so the
curve reaches immediately 100 percent at length 6.

At this point we have to point out that the amount of paths increases in
exponential manner, what means that the amount of paths of length 12 between
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the testing start and end vertex actually present in G1000 is 1821 and the amount
of paths of length 14 between the same two vertices is 12644. So even if we find
really low percentage of the paths present in the indexed graph, their amount
can easily reach tens of thousands. For illustration, for the softL = l = 10 and
a path length of 24 the amount of found paths is 72,000 and the longest found
path has a length of 42.

10.5.4 Search Complexity Affected by the Parameter Settings

Since the ρ-index can be created for one particular graph using different pa-
rameter settings and as we could see from this section, also having different
properties, we explore the correlation between certain parameter setting and the
complexity of the searches performed on the respective indexing structures built
upon one particular testing graph.

Again we have chosen the testing graph G10000. The parameter settings dif-
fered in the maximal size of a segment on the lowest level, the upper level
settings remained the same for all tests. Consequently, Figure 10.14 depicts the
relation between the parameter settings and the average search complexity for
thus created ρ-index. This curve is falling with the increase of the cluster size.
The dashed curve in Figure 10.14 reflects the creation time of the ρ-index for
that particular parameter setting. The time is in minutes multiplied by 1000
to make the curve visible in this scale. On the contrary, the progress of this
curve is rising as the ρ-index structure is becoming underfilled. We have already
seen this behavior in Figure 10.10 at all graph sizes at the rising part of the
parabolas.
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These facts represent a creation and search tradeoff. We gain better creation
time results for certain parameter settings but on the other hand we get worse
search complexity results. This tradeoff has even one more dimension which is
the amount of paths returned that are longer then l. Due to the space limitations
we are not able to discuss this dependence more in detail.

10.5.5 Deploying the ρ-index to the Real Life Data

The other set od data represents a piece of the CiteSeer [12] database of sci-
entific publications and citations among them. Our data set was created taking
one publication and deploying the breadth first search for all weakly accessible
publications from our starting one until we got a certain amount of vertices in
the built data set. Weak accessibility ignores the orientation of the edge between
two vertices. The amount of publications in our data set we set to be 30, 000. The
amount of edges acquired among the vertices in the data set was 63, 584. The
distribution of the degrees of the vertices in this citation graph is demonstrated
in Figure 10.15. The x-axis represents the particular vertex degree – respectively
the amount of edges initiated, terminated and a total number of both in the
particular vertex – and the y-axis then represents an amount of vertices having
this degree. The x-axis is drawn using logarithmic scale to make a clearer view of
the curve’s progress. Also to the values on the y-axis the logarithm was applied
to achieve better readability of the demonstrated distribution.

The indegree represents the number of citations of each particular publication.
Notice that this distribution follows the power law that states that in the testing
citation graph is a small number of vertices that have large indegree and a large
number of vertices which’s indegree is very small. This exactly conforms with the
reality where most of the publications receive a small number of citations and
was also presented in [4]. To the contrary, the outdegree represents the number
of references that the particular publication refers to. This number is not always
accurate since CiteSeer does not contain all the references for each publication
in its database.

From the ρ-index evaluation demonstrated on the synthetic data in the pre-
vious sections we know that the structure is usable to search for paths between
a pair of vertices. But now, using the CiteSeer’s citation graph we can give
those paths semantics, some meaning. Since each vertex in the citation graph
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Fig. 10.15. Vertex degree distribution in the citation graph
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Table 10.1. A summary of paths found between the reference and core publication

Path length Amount of paths Distinct vertices

4 2 5
5 7 13
6 17 32
7 27 51
8 33 58
9 48 59
10 62 60
11 46 61
12 29 61
13 22 61
14 11 61
15 2 61
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Fig. 10.16. Publication search result visualization

represents a publication and the edges incorporating such publication its cita-
tion relation, a path between a pair of vertices having length greater then two
represents an indirect citation relation. We would like to study this indirect ci-
tation relation between certain – important publications in this citation graph
to identify important publications in the particular context.

Our testing citation graph was built around Van Rijsbergen’s Information Re-
trieval [21] which was identified as a very important publication in the IR field for
it’s high number of citations by other publications. We followed an idea that if we
come across some newer publication that we consider interesting to our research
that falls into the same scientific field then there is a high probability that there
exists either direct or indirect citation of our core book. If there exists an indirect
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citation then there is also a possibility that more then one indirect citation paths
can be found. In this case we would like to study all paths to certain length lying be-
tween our recent – reference – publication and the core book. The vertices on these
paths form a set of publications that deserve a further study of their importance
by the user.

For our experiment we have chosen [11] as the reference publication. We de-
ployed the ρ-index on our testing citation graph and searched for all paths to
length 10. From the nature of the ρ-index that we discussed earlier in this chapter
we got all the paths to the length of 10 and some longer. Table 10.1 summarizes
the amounts of paths found according to their length and a total number of
distinct vertices of all paths up to that length. Figure 10.16 demonstrates the
network of the paths up to length 6 – as a length of a path we mean the num-
ber of vertices in a path. In that figure, the vertices represent publications that
are placed on the background of a timeline to make the result more readable.
Although, the ρ-index was created to index all the paths up to the length of
10 and as Table 10.1 shows ρ-index does index also some more, Figure 10.16
demonstrates only the paths to the length 6 since it would get very hard to
follow when it have contained all the paths got from the ρ-index.

As can be seen in Figure 10.16, the result of the search is a network with one
source which is our reference publication and one sink which represents our core
publication. The result presents a chosen set of publications from the citation
graph which relate to the reference publication because the reference publica-
tion indirectly cites them and they relate to the field of information retrieval
since they indirectly cite our core publication. The resulting publications are or-
dered according to the year of their publication. Yet another ranking technique
could be used to study the relevancy between the reference publication and the
publication found using ρ-index but that is beyond the scope of this chapter.

The approached proposed used one core publication and as we seen we got
for this one a fair amount of publications from the citation graph because the
core publication is well known. If we used as a core publication not so well-
known publication the system would not be able to retrieve a reasonably big
set of publications. For this reason the approach could be improved to carry out
the search with only one core publication but with a set of core publications.
Consequently, ρ-index would find all the paths to each particular publication
from the core set and put the result together. This improvement brings another
interesting issue since the retrieved networks can overlap and that information
can be also used for further recommendation process.

10.6 Concluding Remarks and Future Work

Our goal was to design an indexing structure that would make possible an ef-
fective discovery of paths having special properties in a large graph. The first
objective was to find all paths to certain length l between any two vertices. Also
we still get some amount of paths longer than the specified l as an approximation.
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For brevity, in this chapter we did not presented all the experiments we have
conducted in respect to explore the behavior of the designed ρ-index. For ex-
ample we tackled the issue of the parameter settings modification also at the
upper levels of the indexing structure and their impact on the particular ρ-index
creation time and consequent search complexity.

Hence, to this relates also our next future work. Firstly we want to carry out
more tests to be able to precisely predict the ρ-index properties under certain
parameter settings and hence to be able to find optimal settings for the testing
data. Afterwards, we would like to carry out tests on more testing data in order
to investigate the scalability of the ρ-index in respect to the number of vertices
and to the number of edges in the indexed data. In our near future work we would
also like to implement the algorithm for discovering all connections between two
vertices as the ρ-index allows such utilization according to [7].

As the experiment on the real life data shown it is interesting to study complex
relationships between publications in the citation graph in order to help the user
identify important publications in the particular scientific field. We presented a
search for all paths between two publications where the result was presented
as network ordered according to the date of publication. But also another in-
formation retrieval techniques could be used to rank the search result. We also
identified possible new approaches using our indexing structure like a search for
a relation between one reference publication and a set of core publications to
improve the accuracy of the search.

The future work concerning the information retrieval part of our work is to con-
firm the contribution of a complex relation search in the citation graph. In the first
place, we would like to verify using standard information retrieval techniques the
relevance of the publications recommended by the system. Secondly, we want to
study the relevance to this problem of using a set of core publications instead of
just one single publication in the search. Last but not least we also want to incor-
porate and evaluate the search for a connection between two publications into the
system because it provides a notable alternative to the indirect citation relation.
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Summary. Mining graph databases for frequent subgraphs has recently developed
into an area of intensive research. Its main goals are to reduce the execution time of
the existing basic algorithms and to enhance their capability to find meaningful graph
fragments. Here we present a method to achieve the former, namely an improvement of
what we called “perfect extension pruning” in an earlier paper [4]. With this method
the number of generated fragments and visited search tree nodes can be reduced, often
considerably, thus accelerating the search. We describe the method in detail and present
experimental results that demonstrate its usefulness.

11.1 Introduction

In recent years the problem how to find common subgraphs in a database of (at-
tributed) graphs, that is, subgraphs that appear with a user-specified minimum
frequency, has gained intense and still growing attention. For this task—which
has useful applications in, for example, biochemistry, web mining, and program
flow analysis—several algorithms have been proposed. Some of them rely on
principles from inductive logic programming and describe the graph structure
by logical expressions [7]. However, the vast majority transfers techniques de-
veloped originally for frequent item set mining. Examples include MolFea [11],
FSG [12], MoSS/MoFa [3] , gSpan [16], Closegraph [17], FFSM [9], and Gas-
ton [14]. A related, but slightly different approach, which is strongly geared
towards graph compression, is used in Subdue [5].

The basic idea of these approaches is to grow subgraphs into the graphs of the
database, adding an edge and maybe a node in each step, counting the number of
graphs containing each grown subgraph, and eliminating infrequent subgraphs.
Unfortunately, with this method the same subgraph can be constructed in several
ways, adding its nodes and edges in different orders. The predominant method
to avoid the ensuing redundant search is to define a canonical form of a graph
that uniquely identifies it up to automorphisms: together with a specific way
of growing the subgraphs it enables us to determine whether a given subgraph
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can be pruned from the search tree (see, for example, [1] for a family of such
canonical forms and details of the procedure). As the properties of canonical
forms and code words are widely used throughout this chapter, we briefly review
them in Section 11.4.

To further improve the algorithms one may restrict the search to so-called
closed graph fragments (Section 11.2), which capture all information about the
set of all frequent subgraphs, but lead to considerably smaller output (in terms
of the number of reported fragments). This restriction also enables us to employ
additional pruning techniques, one of which is perfect extension pruning, as we
called it in [4], or equivalent occurrence pruning, as it is called in [17]. Unfor-
tunately, neither of these approaches, in the form in which they were originally
described in these papers, works correctly, as they can miss certain fragments.
This flaw we fix in this paper (Section 11.3).

In addition, the approach in [4] avoided redundant search with the help of
a repository of found fragments instead of using the more elegant approach of
canonical form pruning. As a consequence, perfect extension pruning was easier
to perform, since it was not necessary to pay attention to the canonical form.
With canonical form pruning, part of perfect extension pruning is easy to achieve,
namely pruning the search tree branches to the right of the perfect extension
(Section 11.5). This was first shown in Closegraph [17]. In this paper we show how
one may also prune the search tree branches to the left of the perfect extension
by introducing a (strictly limited) code word reorganization (Section 11.6). We
demonstrate the usefulness of the enhanced approach with experiments on two
molecular data sets (Section 11.7).

11.2 Mining Closed Graph Fragments

The notion of a closed fragment is derived from the corresponding notion of a
closed item set, which is defined as an item set no superset of which has the same
support, i.e., is contained in the same number of transactions. Analogously, a
closed graph fragment is a fragment no superstructure of which has the same
support, i.e., is contained in the same number of database graphs.

As an example consider the molecules (no chemical meaning attached—they
were constructed merely for demonstration purposes) shown in Figure 11.1 as
the given database of attributed graphs. A corresponding search tree (starting
from sulfur as a seed and with fragments being extended only if they appear in at
least two molecules) is shown in Figure 11.2 (how the extensions of fragments are
chosen and ordered is explained below). The numbers below or to the left/right
of the fragments state their support, i.e., the number of molecules a fragment is
contained in. Infrequent fragments (i.e. with a support less than two molecules)

S C N C

O

O S C N

F

O S C N

O

Fig. 11.1. Three simple example molecules
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Fig. 11.2. Search tree for the three molecules in Fig. 11.1; infrequent fragments
(contained in only one molecule) are drawn in gray/light colors, closed fragments are
encircled

are drawn in gray/light colors. The encircled fragments are closed and thus
constitute the output of the search (for a minimum support of two molecules).
Note that, for example, the fragment O-S-C is not closed, since the fragment
O-S-C-N, which contains O-S-C as a proper subgraph, has the same support
(namely two molecules).

As for item sets, restricting the search for molecular fragments to closed frag-
ments does not lose any information: all frequent fragments (drawn in black/dark
color in Figure 11.2) can be constructed from the closed ones by simply forming
all substructures of closed fragments that are not closed fragments themselves.
Knowledge of the support of any non-closed frequent fragment is also preserved:
its support is simply the maximum of the support values of those closed frag-
ments of which it is a substructure. Consequently, restricting the search to closed
fragments is a very convenient and lossless way to reduce the size of the output
of a frequent subgraph mining algorithm.

11.3 Perfect Extensions

Perfect extension pruning is based on the observation that sometimes there is a
fairly large common fragment in all currently considered database graphs (that
is, in all graphs considered in a given branch of the search tree). From the
definition of a closed fragment it is clear that in such a situation, if the current
fragment is only a part of the common substructure, then any extension that
does not grow the current fragment towards the maximal common one can be
postponed until this maximal common fragment has been reached. That is, as
long as the search has not grown a fragment to the maximal common one, it
is not necessary to branch in the search tree. The reason is, obviously, that the
maximal common fragment is part of all closed fragments that can be found in
the currently considered set of molecules. Consequently, it suffices to follow only
one path in the search tree that leads to this maximal common fragment and to
start branching only from there.
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Fig. 11.3. Example of an imperfect extension

As an example consider again the simple set of molecules shown in Figure 11.1.
If the search is seeded with a single sulfur atom, considering extensions by a single
bond starting at the sulfur atom and leading to an oxygen atom can be postponed
until the structure S-C-N common to all molecules has been grown (provided
that the extensions of this maximal common fragment are not restricted in any
way—a requirement we discuss in detail below).

Technically, the search tree pruning is based on the notion of a perfect exten-
sion. An extension of a fragment, consisting of an edge and possibly a node (if
the edge does not close a ring), is called perfect if all of its embeddings (that is,
occurrences of the fragment in the database graphs) can be extended in exactly
the same way by this edge and node. (Note that there may be several ways of ex-
tending an embedding by this edge and node; then all embeddings of a fragment
must be extendable in the same number of ways.) Obviously, if there is a perfect
extension, all closed super-fragments of a given fragment can, in principle, be
found by searching only the corresponding branch.

Note that one has to be careful when identifying perfect extensions. In the
first place, it does not suffice to check whether the number of embeddings of
the extended fragment is equal to or a multiple of the number of embeddings of
the base fragment (as one may be tempted to think at first sight). This is only
a necessary, but not a sufficient condition, as the example shown in Figure 11.3
demonstrates. Even though the total number of embeddings in the right branch
is the same as for the root, the extension is not perfect, because the extension can
be done only once in the left molecule, but three times in the right. The extension
in the left branch is not perfect, because the number of extended embeddings,
even though the same for each parent embedding, is reduced from the number
of extensions of its parents. Such a reduction, which also occurs in the right
branch for the left molecule, indicates that some symmetry has been destroyed
by the extension, which therefore cannot be perfect. As a consequence, a test for
perfect extension actually has to count and compare the number of embeddings
per database graph.

A second problem (which was overlooked in both [17] as well as in [4]) is
the behavior of rings (cycles) in the search, as we demonstrate with the example
molecules shown in Figure 11.4. A search tree for these molecules (with only such
fragments that are contained in both molecules) is shown in Figure 11.5. Here
almost all extensions are perfect in the sense that they can be made in the same
way in all molecules. However, the problem becomes clear when one considers
adding a bond from the nitrogen atom to a carbon atom. This extension rules
out certain ways of reaching the carbon atom via the oxygen atom and the
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Fig. 11.4. Rings/cycles can cause problems
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Fig. 11.5. Search tree for the two molecules in Figure 11.4; closed fragments are
encircled

rest of the ring. Hence the bond leading to the carbon atom is only “locally”
perfect, but not “globally”, that is, when the ring structure is taken into account.
As a consequence we cannot restrict the search to the corresponding branch,
since we would lose fragments. This can be seen clearly from the location of the
closed fragments in the search tree shown in Figure 11.5: there are three closed
fragments (for a minimum support of 2, encircled in gray), but we cannot reach
all of them if we see adding an edge from the nitrogen atom to a carbon atom
as a perfect extension (even after the oxygen atom has been added, which could
actually be seen as a perfect extension).

Obviously, the problem is that there are two ways of reaching the carbon
atom that is directly connected to the nitrogen atom. Even though only one of
them is possible in both molecules, both have to be considered, because part of
the second possibility is the same in both molecules, thus leading to a relevant
frequent fragment. Unfortunately there is no way to determine this locally, that
is, by looking only at the grown fragment and its direct extension. In order
to cope with this problem, we require that a perfect extension edge must be a
bridge1 (that is, the extension edge must be a bridge in all embeddings of the
extended fragment). This is surely a safe (i.e. sufficient) condition as it rules
out any possibility that the destination of the perfect extension edge can be
reached in any other way, and thus fixes the flaw mentioned above. However, this
1 An edge in an undirected graph is called a bridge if its removal increases the number

of connected components of the graph.
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requirement is not a necessary condition. As a closer inspection easily reveals,
extensions closing a ring (that is, extensions by an edge leading to a node that is
already in the base fragment) are also safe and thus can be allowed as candidates
for perfect extensions: since the destination node is already in the fragment, there
cannot be a problem with multiple ways of reaching it. Hence we can slightly
relax the constraints.

Note, however, that these relaxed constraints are still only sufficient, but not
necessary. There are other situations in which an extension can be considered
perfect, even though it does not meet the abovementioned requirements. For
example, if an edge leads to a new node and is part of rings of the same size and
composition in all supporting graphs, it is harmless and thus can be considered
a perfect extension. Even the extension by a bond from the nitrogen atom to the
oxygen atom in Figure 11.5 can be considered a safe perfect extension, despite
the fact that the rings have different size. Unfortunately, checking necessary and
sufficient conditions for (safe) perfect extensions is complicated and costly and
thus we confine ourselves to the rule that an extension edge must either be a
bridge in all database graphs or must close a ring (cycle) in all database graphs
in order to be considered perfect.

11.4 Canonical Codes for Graphs

As we already mentioned in the introduction, perfect extension pruning, as it
was described in the previous section, is not a problem unless canonical forms are
used to identify redundant fragments. However, since canonical forms are a lot
more elegant than, for example, a repository of already processed fragments, need
less memory and make it easier to parallelize the search, it is desirable to be able
to use perfect extension pruning together with canonical form pruning. In this
section we briefly review some fundamentals of canonical forms for (attributed)
graphs, which are necessary to know in order to understand the code word
reorganization we describe in Section 11.6.

The core idea of canonical forms of graphs is to describe an (attributed) graph
by a code word, which uniquely identifies it up to automorphisms, and from which
the graph can be reconstructed. The letters of such a code word describe the
edges of the graph and which nodes they connect as well as the node and edge
attributes (or labels). In order to capture the connection structure, the nodes
are numbered (or, more generally, endowed with unique labels), since the node
attributes are not enough to identify them uniquely: the same attribute may be
assigned to several nodes in a graph. Of course, there are several possible ways
of numbering the nodes, each of which gives rise to a different code word. In
principle, all of these code words are taken into account and the lexicographically
smallest (or greatest) code word is then defined to be the canonical code word.
Note, however, that due to the way in which code words are used in the search
(see below), the possible node numberings (and thus the possible code words)
one has to consider can actually be restricted to those compatible with traversals



11 Full Perfect Extension Pruning for Frequent Subgraph Mining 195

of spanning trees of the considered graphs/fragments (see [1] for more extensive
explanations).

Canonical code words are used in the search as follows: during the mining
process fragments are grown by adding an edge in each step. This edge is char-
acterized by the node from which it starts, by its attribute, and by the node it
leads to. (Note that this does not imply directed edges; the “source” and “des-
tination” node are solely defined by how the extension is done: the node that
is extended is the “source” and the other node, the extension edge is incident
to, is the “destination”.) In addition, the nodes are numbered in the order in
which they are added to the fragment. Hence the search process naturally con-
structs a code word for each grown fragment, namely by simply concatenating
the descriptions of the edge extensions that led to it.

Of course, there are many possible ways of building a fragment by adding
edges, each of which leads to a different code word. However, there is obvi-
ously only one way that leads to the canonical code word (since a code word
fixes a specific order of the extensions). Hence we may choose to extend only
those fragments further that have been built in such a way that their code word
is canonical. Eliminating all other fragments is called canonical form pruning,
which obviously eliminates all redundant search: each fragment is considered at
most once. Note that the way in which the search process builds code words also
explains why we can confine ourselves to node numberings (and thus code words)
compatible with traversals of spanning trees (as mentioned above): no other code
words can be constructed by the search.

For the rest of this paper we focus on code words resulting from node number-
ings that are obtained by breadth-first traversals of spanning trees, that is, the
canonical form that is used in MoSS/MoFa [3]. Note, however, that the described
approach is also applicable for code words resulting from node numberings that
are obtained from depth-first traversals of spanning trees, that is, the canonical
form that is used in gSpan [16] or Closegraph [17]. The necessary adaptations of
the procedure are straightforward and thus not described in detail (they mainly
concern the form of edge descriptions).

A breadth-first code word has the general form a (is b a id)m, where a is node
attribute, b an edge attribute, is the index (or number) of the source node of
an edge, and id the index (or number) of the destination node of an edge (by
definition, it is always is < id). The letter m denotes the number of edges of the
fragment. Each parenthesized expression describes one edge.

As an example, consider the left molecule shown in Figure 11.1. If this molecule
is built from left to right, that is, if we choose the left oxygen atom as the root
of a spanning tree, a possible code is O 0-S1 1-C2 2=O3 2-N4. As can be seen
from this code word, the bond added first is the one from the oxygen atom
(index 0) to the sulfur atom (index 1), the bond added last is the one from
the carbon atom (index 2) to the nitrogen atom (index 4). However, there is
another possibility of building the same fragment, which leads to the code word
O 0-S1 1-C2 2-N3 2=O4 (that is, the last two bonds are added in inverse order).
If these two code words are compared lexicographically, the latter is smaller than
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the former (assuming that single bonds are “smaller” than double bonds, that is,
- < =). Therefore we can conclude that the first code word is not the canonical
code word, but neither is the second. The canonical code word for this molecule
is actually S 0-C1 0-O2 1-N3 1=O4 (if we use the element order S < C < N < O
and the bond order - < =, as we also do for all following examples in order to
avoid confusion).

Note, however, that the canonical code word is C 0-N1 0-S2 0=O3 2-O4 if we
use the order of the periodic table of elements (that is, C < N < O < S, together
with - < =), showing that which code word is the canonical one also depends
on the order we choose for the node and edge attributes. Empirical evidence
suggests that it is recommendable to use an order that reflects the frequency
of the attributes in the graph database to mine (less frequent attributes should
precede more frequent ones), as this usually leads to fewer generated fragments
and thus shorter search times.

Note also that (canonical) code words for graph fragments provide a natural
way of ordering the fragments in the search tree: the children of a search tree
node are listed from left to right in the order of lexicographically increasing code
words. This makes precise what we mean by “to the left” and “to the right” of
a search tree branch: “to the left” are fragments with smaller, “to the right” are
fragments with greater (canonical) code words.

Checking whether a given code word is canonical usually requires testing all
possible code words for a fragment (at least w.r.t. all possible node numberings
resulting from traversals of spanning trees) and thus has essentially the same
complexity as a graph isomorphism test. (Pseudo-code for such a canonical form
check can be found, for example, in [1].) Nevertheless, canonical code words are
very effective in pruning the search tree, because they use “global” information in
contrast to only “local” rules, as they were used originally in [3]. These “local” or
“simple” rules, however, can still be applied to support canonical form pruning,
as they specify necessary (though not sufficient) prerequisites for code words
to be canonical, which can be tested very efficiently and help to avoid a costly
canonical form test in many cases.

For example, if we use a breadth-first (spanning tree traversal) canonical form
(as it was described above), one may not extend a node that has an index smaller
than another node in the fragment, which has already been extended (maximum
source extension: only nodes with an index no less than the maximum source
index may be extended). The reason is that an extension violating this rule
necessarily leads to a non-canonical code word, as can easily be checked with a
spanning tree rooted at the same node.

As an example consider the fragment S-C-N in the search tree in Figure 11.2:
this fragment may not be extended by an edge from the sulfur atom (index 0)
to an oxygen atom, because an atom with a higher index, namely the car-
bon atom (index 1), has already been extended (by attaching the nitrogen
atom). Indeed, if we add such an edge, the code word of the resulting frag-
ment is S 0-C1 1-N2 0-O3, while the canonical code word for this fragment is
S 0-C1 0-O2 1-N3 (using again the element order S < C < N < O).
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More details on canonical forms and the “local” or “simple” rules, which result
from them and restrict the possible extensions of a fragment, can be found in [1].
Of course, there are “local” or “simple” rules not only for breadth-first, but also
for depth-first (spanning tree traversal) code words, which specify a restricted set
of extensions known as rightmost path extensions. However, for the discussion
in this paper it suffices to know that, regardless of the canonical form used,
the “local” or “simple” rules basically state that extensions that generated the
sibling nodes to the left of a search tree branch may not be done in this search
tree branch itself or in branches to the right of it.

11.5 Partial Perfect Extension Pruning

If one wants to combine perfect extension pruning with canonical form pruning
as it was described above, the following problem has to be solved: growing the
maximal common fragment can interfere with canonical form pruning and in
particular with the extension restrictions resulting from it (note that this was
no problem in [4] due to the use of a repository of found fragments to avoid
redundant search). Obviously, perfect extensions should not lead to such a re-
striction, because otherwise search results may be lost. The fact that the code
word of a fragment, as it is built by the search, is not canonical is no longer
sufficient to prune it, since preferring perfect extensions may have changed the
order of the extensions by which a fragment is built.

As an example consider again the search tree shown in Figure 11.2. If we
simply confined the search to the sub-tree rooted at the fragment S-C-N, we
would lose the fragment O-S-C-N in the leftmost branch. The reason is that the
extension of S-C to S-C-N, due to canonical form restricted extensions, prevents
an extension of the sulfur atom in this sub-tree (as described in the preceding
section), because an atom with a higher number, namely the carbon atom, has
already been extended in the preceding step.

Fortunately, this only affects search tree branches to the left of the perfect ex-
tension branch, since the corresponding extensions are ruled out by the perfect
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Fig. 11.6. Search tree for the three molecules in Figure 11.1 with partial perfect
extension pruning (crossed out branches are pruned)
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extension and the “local” or “simple” rules (see above). All extensions corre-
sponding to branches to the right of the perfect extension are still possible for
the fragment reached by the perfect extension. Therefore branches to the right
can be pruned immediately without any loss: they cannot contain any closed
fragment, because the perfect extension cannot be done in them without violat-
ing the canonical form, but has to be done in order to reach a closed fragment.
This type of pruning we call partial perfect extension pruning (because it prunes
only part of the branches aside from the perfect extension one). Note that Close-
graph [17] uses only this form of pruning.

How partial perfect extension pruning changes the search tree for the molecules
in Figure 11.1 is shown in Figure 11.6. Note that only non-closed fragments
are removed from the search tree (compare to Figure 11.2, in which the closed
fragments are highlighted). The gains consist in the fact that the two pruned
fragments need not be processed: neither do they have to be checked for canonical
form nor do we have to consider possible extensions of them.

11.6 Full Perfect Extension Pruning

Although partial perfect extension pruning is already highly effective, it is de-
sirable to prune also the search tree branches to the left of the perfect exten-
sion, thus completing partial perfect extension pruning into full perfect extension
pruning. In order to do so, we must not restrict the extensions of the fragment
that resulted from a perfect extension as it would be required by canonical form
pruning (with or without the “local” or “simple” rules). Otherwise we could lose
(closed) frequent fragments, as we demonstrated above. In other words, we would
like to have a search tree like the one shown in Figure 11.7 for the molecules
shown in Figure 11.1.

The core problem with this is how we can avoid that the fragment O-S-C-N is
pruned as non-canonical. The breadth-first search canonical code word for this
fragment is S 0-C1 0-O2 1-N3. However, with the search tree in Figure 11.7 it
is assigned the code word S 0-C1 1-N2 0-O3, because this reflects the order in
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Fig. 11.7. Search tree for the three molecules in Figure 11.1 with full perfect extension
pruning (crossed out branches are pruned)
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which the bonds have been added. Since this code word is not canonical, the
fragment would be pruned and neither extended nor reported.

In order to avoid this, we allow for a (strictly limited) reorganization of code
words as they result from a search tree, which takes care of the fact that perfect
extension edges may have been added earlier than required by the canonical
form. Technically, we split the code word into two parts: the first, fixed part
consists of the (possibly empty) prefix up to and including the last edge that
was added by a non-perfect extension or by a perfect extension with no search
tree branches to the left of it. The second, volatile part consists of the remaining
suffix of the code word, which is made up only of perfect extensions edges, which
had search tree branches to the left of it.

Note that we can check for the existence of branches to the left of a perfect
extension branch after minimum support pruning, that is, after eliminating all
fragments that occur in less than the user-specified minimum number of database
graphs. The reason is that we can be sure that extensions leading to infrequent
fragments in branches to the left will also lead to infrequent fragments in the
perfect extension branch or in branches to the right of it and thus need not be
considered in these branches.

The construction of the code word for an extended fragment is modified as
follows: instead of always simply appending the description of the extension edge
to the end of a code word, the description of the new edge may now be inserted
anywhere in or even before the volatile part, but not in the fixed part. We may
imagine this as first appending the new edge description and then shifting it to
the left, as long as this makes the code word lexicographically smaller, but the
new edge description does not enter the fixed part.

Note, however, that “shifting” an edge in the code word can make it necessary
to renumber the nodes. For example, if in the fragment O-S-C-N the bond added
last in the search (that is, the bond from the sulfur atom to the oxygen atom) is
shifted left past the perfect extension bond (that is, the bond from the carbon
atom to the nitrogen atom), the oxygen and the nitrogen atom get new indices.
The reason is that the nodes must be numbered in the order in which they would
be added if the edges were added in the order in which their descriptions are
listed in the (reorganized) code word (see Figure 11.8).

Technically, we achieve this renumbering as follows: instead of actually shifting
the extension edge from right to left, we rebuild the code word from left to right.
First we traverse the fixed part, numbering all nodes in the order in which they
are met. Then we continue with the volatile part until at least one of the two

1. Base fragment: S-C-N canonical code: S 0-C1 1-N2
2. Extension to O-S-C-N code: S 0-C1 1-N2 0-O3 (not canonical!)
3. Shift the non-perfect extension code: S 0-C1 0-O3 1-N2
4. Renumber nodes canonical code: S 0-C1 0-O2 1-N3

Fig. 11.8. Fixing a fragment’s code word by shifting a non-canonical extension over
perfect extensions (marked in gray) to the proper place and renumbering the nodes
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nodes incident to the new edge is numbered. Note that this may already be the
case before the first edge in the volatile part is considered. In this case no edge
of the volatile part is processed in this step.

Finally we traverse the (remaining) volatile part edge by edge, each time
comparing the next edge to the new edge. If the new edge (w.r.t. source and –
possibly still to be assigned – destination index as well as edge attribute and
destination node attribute) is lexicographically smaller, it is inserted at the cur-
rent position in the volatile part and the rest of the volatile part is appended
(renumbering nodes as needed). Otherwise any unnumbered node incident to the
current volatile edge is numbered and the next volatile edge is considered. If all
volatile edges have been traversed and the new edge has not been inserted, it is
simply appended at the end of the code word.

To make the process clearer, we execute it step by step for the example shown
in Figure 11.8. The root node (here the sulfur atom) is, of course, always in
the fixed part. Hence it receives the initial node index, that is, 0. Since the
next edge is already in the volatile part, this finishes processing the fixed part.
Since by assigning the index 0 to the sulfur atom, one node incident to the new
edge (sulfur to oxygen) is already numbered, we have to start immediately to
compare edge descriptions. We compare two possibilities, namely appending the
description of the new edge, which assigns the node index 1 to the oxygen atom,
or appending the already present first perfect extension edge (sulfur to carbon),
which assigns the node index 1 to the carbon atom. This yields two possible
code word prefixes, namely S 0-O1 and S 0-C1. Since the latter is smaller (as
C < O), it is fixed (that is, the new edge is not yet inserted) and we move to
the next position. Here we compare the code word prefixes S 0-C1 0-O2 and
S 0-C1 1-N2. Since the former is smaller (as O < N), the position of the new
edge has been found and we fix the first prefix. In a final step, the remaining
perfect extension edge is appended, assigning the node index 3 to the nitrogen
atom. Note that the fixed part of the resulting code word now contains not only
the root atom, but two bonds: the first perfect extension bond, which is rendered
fixed by the fact that a non-perfect extension was inserted after it, and the new
bond, which is fixed, simply because it is not a perfect extension. The volatile
part contains only the second perfect extension (the bond from the carbon to
the nitrogen atom).

Note that generally, provided the new edge is not a perfect extension itself,
this edge is recorded for the restricted extensions as required by the “local” or
“simple” rules of maximum source extensions (that is, extensions preceding this
edge are ruled out). In other words, if the new edge is not a perfect extension, the
place at which it is inserted is the new end of the fixed part of the code word (as
described above). Note also that the resulting code word still has to be checked
for canonical form. Since the reorganization is strictly limited, the resulting code
word may not be canonical. For example, the new edge may actually have to be
inserted into the fixed part in order to make the code word canonical. In this case
the fragment must not be adapted, so that the code word becomes canonical,
but has to be pruned.
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Fig. 11.9. Example molecule used to demonstrate full perfect extension pruning

To further illustrate the process, we study another complete example, which
also shows the different cases that can occur. Consider the molecule shown in
Figure 11.9. Our goal is to build this molecule using full perfect extension prun-
ing.2 As the order of the elements we use again S < C < O, which is in line
with the order used in all preceding examples. As a consequence the search has
to start at the sulfur atom, because all other starting points obviously lead to
non-canonical code words (as even their first letter is greater).

Three extensions of this one-node fragment (code word: S) are possible: we
may add one of the two ring bonds to carbon atoms (which lead to the same
fragment S-C) or we may add the bond to the oxygen atom. Without perfect
extension pruning, both child fragments (i.e. S-C and S-O) would have to be
considered. However, the bond to the oxygen atom is a bridge, occurs in all
molecules (only one in this example), and the number of embeddings of the
extended fragment is the same as for the single sulfur atom. Hence adding this
bond is a perfect extension, while the bond to a carbon atom is not eligible as a
perfect extension, since it is a ring bond (and thus no bridge, see Section 11.3).
This leads to the code word S 0-O1 . The extension is marked as perfect, and the
volatile part of the code word starts directly after the sulfur atom (as is indicated
by a gray background).

Note that the other extension (leading to the fragment S-C) would have to be
considered if we only used partial perfect extension pruning, since its code word,
that is, S 0-C1, is smaller than S 0-O1. Only full perfect extension pruning
allows us to eliminate this fragment from the search.

In the next step, all possible extensions are considered (no restriction by
“local” or “simple” rules, because the preceding extension was perfect), which
are the two ring bonds (again leading to the same fragment, now O-S-C) and the
bond from the oxygen atom to the next carbon atom in the chain. The latter
is a perfect extension and thus the other two extensions are pruned, resulting
in the code word S 0-O1 1-C2 . Since the new edge is a perfect extension, the
volatile part grows to two edge descriptions (gray background).

In the third step, the two ring bonds incident to the sulfur atom are again
eliminated due to the perfect extension to the next carbon atom in the chain,
which is in the left ring: S 0-O1 1-C2 2-C3. Now there are no perfect extensions
left, because all remaining bonds are part of rings (and thus no bridges).

It should be noted that the maximum source index is still 0 (sulfur atom),
because all extensions made so far were perfect and thus their source indices are
2 Mining only one molecule is, of course, not very useful in practice, but it keeps the

example simple, and the process, at least w.r.t. pruning, is exactly the same as when
mining a larger number of molecules.
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not counted for the “local” or “simple” rules characterizing maximum source
extensions. Without this special handling, we would not be allowed to add any
of the bonds of the right ring. But since the sulfur atom is still extendable, we
add, in the next step, one of the two ring bonds to it, which results in the code
word S 0-O1 1-C2 2-C3 0-C4. As one can immediately see from the source
index 0 in the last bond, this code word is not canonical. Therefore we have to
start the process of rebuilding the code word.

First, the sulfur atom is numbered 0 and this already determines three of the
four parts of the description of the newly added bond from the sulfur to the
carbon atom, namely 0-C? (the still to be assigned destination index is replaced
by a question mark; alternatively it may be set to the next free node index, which
is 1 in this case, as we did it before). This “incomplete” extension is compared to
the first perfect extension in the volatile part. Since the incomplete description
0-O? of this extension is greater (as carbon precedes oxygen), the position of the
new edge has been found and the description of this edge is appended. Therefore
we have as a code word prefix S 0-C1, which forms the new fixed part of the
code word. The three perfect extensions in the volatile part are renumbered
accordingly (the indices of the destination nodes are increased by one) and their
descriptions are appended, yielding the code word S 0-C1 0-O2 2-C3 3-C4 (as
before, the gray part is volatile).

The next extension adds the other (ring) bond from the sulfur atom to
a carbon atom: we reorganize from S 0-C1 0-O2 2-C3 3-C4 0-C5 to
S 0-C1 0-C2 0-O3 3-C4 4-C5 . The sixth extension adds another ring bond,
yielding the code word S 0-C1 0-C2 0-O3 3-C4 4-C5 1-C6 (before reorgani-
zation). This time, the new edge is not inserted before all perfect extensions,
but after the first, because its source node index is greater than that of the first
perfect extension: S 0-C1 0-C2 0-O3 1-C4 3-C5 5-C6 . This has two effects:
in the first place, the volatile part now consists of only the last two perfect ex-
tensions (as the insertion of a non-perfect extension edge after it renders the
first perfect extension edge fixed). Secondly, the atom with the maximum source
index (from which on extensions are still allowed) is now the one with index 1,
namely the source atom of the added edge.

The next edge that is added is another ring bond and it is inserted before the
volatile part, since its source index is smaller than the source index of the next
perfect extension bond: S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 6-C7 .

The next edge closes the right ring and it is inserted in the middle of the
volatile part: S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 4-C5 6-C7 (since its source
node index is larger than that of the first perfect extension bond in the volatile
part, but smaller than that of the second perfect extension).

The last three edges, that is, the three bonds of the left ring (3 carbons),
are added in the normal order (after the volatile part, or actually simply by
appending to a fixed code word, since adding the first bond of the left ring renders
the last perfect extension fixed). No code word reorganization is necessary in any
of these steps. The final (canonical) code word is:
S 0-C1 0-C2 0-O3 1-C4 2-C5 3-C6 4-C5 6-C7 7-C8 7-C9 8-C9.
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Fig. 11.10. Experimental results on the IC93 data without ring mining (extensions
add only single bonds, both in rings and outside rings)
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Fig. 11.11. Experimental results on the IC93 data with ring mining (extensions add
single bonds that are not part of rings or complete rings)
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Fig. 11.12. Experimental results on the steroids data with ring mining (extensions
add single bonds that are not part of rings or complete rings)

11.7 Experiments

In order to test full perfect extension pruning, we implemented it as an exten-
sion of the MoSS program3, which is written in Java. As test datasets we used a
well-known subset of the Index Chemicus 1993 [10] (IC93) and a small dataset
of 17 steroids. The results on these datasets with different search modes are
shown in Figures 11.10 to Figure 11.12, which display the number of search tree
nodes (left), created fragments (middle), and created embeddings (right). The

3 MoSS is available for free download under the GNU Lesser (Library) Public License
at http://www.borgelt.net/moss.html.

http://www.borgelt.net/moss.html
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horizontal axis shows the minimal support in percent (IC93) or as an absolute
number (steroids). For the experiments of Figure 11.11 and Figure 11.12 we used
ring mining, which means that rings in a user-defined size range (here: 5 to 6
bonds) are not built edge by edge, but added in one step. The technique underly-
ing such ring mining was introduced in [8] for a repository of processed fragments
to avoid redundant search, but later extended in [2] to work with canonical form
pruning (using a code word reorganization technique that is similar to the one
presented in this paper, but more complex).

In each diagram the dashed gray line refers to the basic algorithm without
any perfect extension pruning, the gray solid line to partial perfect extension
pruning and the black solid line to full perfect extension pruning. These results
show that full perfect extension pruning indeed leads to some non-negligible
gains (in the order of about 5 to 10%) over partial perfect extension pruning,
even though the main gains clearly result from partial perfect extension pruning.
Tests we ran during the development of the program indicated that relaxing the
constraints for perfect extensions (that is, also edges closing rings/cycles are
allowed as perfect extensions instead of only bridges) improved performance by
up to an additional 3%.

11.8 Conclusions

In this paper we fixed the flaw of the original descriptions of perfect extension
pruning by requiring that perfect extensions must be bridges, but still allowing
edges that close rings/cycles apart from bridges. In addition, we introduced
full perfect extension pruning, which consists in pruning not only the search
tree branches to the right (partial perfect extension pruning as it is used in
Closegraph [17]), but also those to the left of the perfect extension branch. To
make this possible in combination with canonical form pruning, we allowed for
a (strictly limited) reorganization of code words as they result from the search.
The experimental results show that this method can actually further reduce the
complexity of the search, although the main improvement comes from partial
perfect extension pruning. Future work is directed at combining sibling perfect
extensions into one extension, so that perfect extensions, once found, need not
be rediscovered and reprocessed.
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12.1 Abstract

Efficient enumeration of all maximal cliques in a given graph has many applica-
tions in the filed of Graph Theory, Social Network Analysis, Bioinformatics and
etc. Recent researches indicate that many networks in our world are complex
networks involving massive data. Being as the complete sub-graph, a maximal
clique can represent a group of friends who all hang around together. It can also
be used to find common sub-topologies in a set of protein structures. However,
the large scale of real networks and the exponentially increasing computation
time of the clique enumeration problem make most of the existing algorithms
unsuitable in the real-world scenarios. Therefore, we present a parallel algorithm
Peamc (Parallel Enumeration of All Maximal Cliques) which exploits several
new and effective techniques to enumerate all maximal cliques in large-scale com-
plex networks. Experimental results on true-life networks with up to 20 million
vertices and 50 million edges show that Peamc can find all the maximal cliques
with high efficiency and scalability.

12.2 Introduction

Many recent researches indicate that a large body of diverse systems in nature
and society can be described in terms of complex networks[1] which often present
a large intricate web of connections among the massive entities they are made
of. For example, the Internet is a complex network of routers and computers
linked by countless interwoven physical links; the WWW (World Wide Web) is
a virtual network consisting of numerous web pages connected by hyperlinks;
fads, rumors, epidemics and innovations spread on the social network, whose
node corresponds to each of us in the human society and whose edges represent
various social actions and relationships. Meanwhile, the computerization of data
acquisition and storage leads to the emergence of large databases on the topology
of various real networks, and the increased computing power has allowed us to
investigate networks containing millions of nodes. Therefore, researchers from
physics, computer science and sociology are now concerned with inferring the

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 207–221.
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underlying linkage patterns or building blocks[2] to have a better understanding
of the network’s structural and functional properties.

Among the basic building blocks, maximal clique is a well-known sub-structure
and has applications in many different domains. In graph theory, an algorithm
for listing all maximal cliques in a graph can be used as a subroutine for solving
many NP -complete graph problems. If a given subgraph is the maximal clique
in some graph G, it is also the maximal independent set[3] in the complement
graph of G. Apparently, the solutions to the maximum independent set problem,
the maximum clique problem, and the minimum independent dominating prob-
lem must all be maximal cliques, and can be found by an algorithm that lists all
maximal cliques and retains the ones with the largest or smallest size. Lawler
(1976) observed that listing maximal independent sets can also be used to find
3-colorings of graphs: a graph can be 3-colored if and only if the complement of
one of its maximal independent sets is bipartite. In social network analysis[4],
a maximal clique represents a group of closely interrelated people, which is also
called the community structure. For social network researchers, individuals be-
longing to the same community are probable to have properties in common.
The communities in the blogs often correspond to topics of interest. Monitor-
ing the aggregate trends and opinions revealed by these communities provides
valuable insight to a number of business strategies and decisions. In bioinfor-
matics, maximal cliques are used to search for the common sub-topologies in a
set of protein structures[5]. Other more complex problems can also be modeled
as finding a clique or independent set of a specific type. All these applications
motivate many algorithms to enumerate all maximal cliques or equivalently, all
maximal independent sets efficiently.

However, it is easy to see that enumerating all maximal cliques is also a NP -
problem[6], where a graph with n vertices can have as many as 3n/3 maximal
cliques, of which some are of the maximum size. Meanwhile, many real world
networks often consist of millions of nodes and edges making the problem even
more challenging. Given graph G with n vertices and m edges, in the worst case,
Peamc runs with O(∆×MC×Tri2

P ) time delay and in O(m+n) using P processing
elements, where ∆ is the maximum degree of G, MC represents the size of the
maximum clique and Tri denotes the number of all triangles in G respectively.

12.3 Related Work

Traditionally, the study of networks has been the territory of graph theory.
While graph theory initially focused on regular graphs, since the 1950s large-
scale networks with no apparent design principles have been described as random
graphs, which were first studied by the famous mathematicians Paul Erdős and
Alfréd Rényi [1] . According to the Erdős–Rényi model, we start with n nodes
and connect every pair of nodes with probability p. The obtained graph has
expected pn(n−1)

2 edges distributed randomly. This model has guided our think-
ing about real world networks for many decades since its introduction. Based
on this model, the maximal clique problem, being as one of the well-known
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sub-structures in a given graph, has been widely investigated since 1973. The ba-
sic maximal clique enumeration algorithm called Base BK [7] algorithm proposed
by Bron and Kerbosch was first published in 1973. Since then, many algorithms
have been developed to solve this classic problem from different perspectives.

In general, these algorithms could be classified into two groups. In terms of
the first group, people use the depth-first searching method and adopt specific
pruning policies to improve the efficiency. All possible combinations of vertices in
the network constitute a search tree with each node corresponding to a candidate
maximal clique. The basic idea is to treat the process of enumerating all the
maximal cliques as a depth-first traversal of this tree. The algorithms of Bron,
Tsukyuama[8] and Makino[9] are typical ones of this kind.

Bron’s BK algorithm maintains three dynamically changing sets: COMPSUB,
a global set containing the current growing clique; CANDIDATES, a local set
holding all vertices that will eventually be added to the current COMPSUB ;
NOT, a local set containing all vertices that have been previously added to
COMPSUB. Each candidate maximal clique corresponds to a node in the search
tree and a function called EXTEND traverses this search tree by the depth-first
order recursively.

Makino’s algorithm[9] develops a search tree by defining a child-parent rela-
tionship between two maximal cliques and traverses this search tree to list every
maximal clique. In addition, given a lower bound f , this algorithm divides graph
G into two sub-graphs: V1 and V2. V1 consists of the vertices whose degree is
larger than f and the left vertices constitute V2. It first finds all maximal cliques
in V1 and and stores them in set Q. Then it finds all maximal cliques in V2
while eliminates those in Q that are already contained by some maximal cliques
in V2. This strategy will relatively improve the efficiency of the algorithm in
sparse graphs. However, there exist two major drawbacks. First, this algorithm
involves too many expensive set operations. If the average size of the maximal
cliques is large, the efficiency of the algorithm will decrease. Second, the selec-
tion of f depends on each specific problem and thus puts a great impact on the
corresponding efficiency as well.

With respect to the second group, people have borrowed the join-and-pruning
strategy. Kose’s algorithm[10] belongs to this class. It takes advantage of the
fact that every clique of size k(k ≥ 2), is comprised of two cliques of size k − 1
that share k− 2 vertices. The basic principle is to build all possible 3-cliques by
joining every two 2-cliques. Any 2-clique that cannot become a component of a
3-clique is declared maximal and output. This procedure is repeated according
to the increasing order of the clique size until it is no longer possible to build a
larger one. Nevertheless, this algorithm also has several drawbacks. On the one
hand, building the candidate cliques in this join-and-pruning manner requires us
to store both the (k−1)- and k-cliques, which will consume too much space when
the problem size is great. On the other hand, every time a k-clique is formed, all
(k − 1)-cliques contained within the new clique must be marked as being used
to eliminate the duplicates. This process will also occupy too much space by the
order of 2n in the worst case.
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All these current algorithms are successful approaches to listing all maximal
cliques in different ways. However, just as mentioned before, the growing interests
in complex systems have prompted many scientists to reconsider Erdős–Rényi
modeling paradigm and ask a simple question: are the real networks behind such
diverse complex systems as the Internet fundamentally random? Fortunately, in
the past few years, several breakthroughs in the study of real world networks
have brought about many new concepts and ideas. More and more grown evi-
dence could show that real networks in our world can be modeled as complex
networks. These networks are often large sparse graphs with the properties of
short average path-length, power-law degree distribution and high clustering co-
efficient. Compared with the classic random network, which has short average
path-length, Poisson degree distribution and law clustering coefficient, it is ap-
parent that complex network is essentially a different kind of network model.
Since most existing algorithms are based on the classic random network, it is
necessary for us to propose a new method which is optimized on the complex
network model and can be efficient to enumerate all the maximal cliques in
practical scenarios.

12.4 Algorithm Peamc

For most complex networks, they are often sparse in global yet dense in local.
Because triangle structure is the basic building block of the clique, our basic idea
is to search for every possible triangle to form larger clique recursively until the
finally obtained clique becomes the maximal one. During this process, we use
several pruning strategies to improve the efficiency. Finally, by extending this
basic idea, we provide a parallel model of the algorithm to make Peamc efficient
and scalable enough when dealing with large-scale networks.

12.4.1 Notations and Definitions

In this paper, we consider simple graphs only, i.e., the graphs without self-loops
or multi-edges. For graph G, V (G) and E(G) denote the sets of vertices and
edges of G respectively.

Definition 1. S ⊆ V (G), ∀u, v ∈ S, u �= v such that (u, v) ∈ E(G), then S is a
clique in G and n-clique denotes a clique of size n. If any other S′ is a clique and
S′ ⊆ S iff S′ = S, then S is a maximal clique of G. In addition, the maximum
clique is a maximal clique with the largest size in all.

Definition 2. Given vertex vi ∈ V (G), let N(vi) = {vj ∈ V (G)|(vi, vj) ∈
E(G)}, N(vi) is called the neighbor set of vi and the degree of vi is thus
|N(vi)|. Let M(vi) = {vj |i < j, vj ∈ N(vi)}, T (vi) = {vk|vk, vj ∈ M(vi), i <
j, j < k, (vi, vj) ∈ E(G), (vj , vk) ∈ E(G)}, T (vi) is called the triangle
neighbor set of vi.
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Definition 3. For a vertex vi ∈ V (G), if the neighbors of vi are part of a clique,
then there will be |N(vi|)(|N(vi)|−1)

2 total edges among them. The ratio of the
number E of the edges that actually exist between the vertices of N(vi to the
total number of edges is the clustering coefficient of vi denoted as C(vi) =

2E
|N(vi)|×(|N(vi)|−1) .

12.4.2 Basic Idea and Method

To efficiently enumerate all maximal cliques, we must address the following two
issues. The first one is how to provide a systematic way to enumerate all the
maximal cliques without duplicates. The second one is how to design smart
strategies to prune futile search subspaces to speed up the searching process.

In terms of the first issue, it is actually concerned with the correctness and
completeness of the algorithm. From the priori discussion, we see that the av-
erage clustering coefficient value of random networks is rather different from
that of complex networks. In a random graph, since the edges are distributed
randomly, the clustering coefficient is the connection probability p. However, in
most real networks the clustering coefficient is typically much larger than it is in
a comparable random network which has the same number of nodes and edges as
the real network. From definition 3, we see that the clustering coefficient is a di-
rect indication to the existence of triangle structures. Because triangle structure
or 3-clique is the basic unit of any clique whose size is larger than 3, we could
take advantage of this fact to develop our traversal strategy to search for the
vertices that could build triangles by depth-first order recursively. For each step
of this traversal process, the large clustering coefficient property of the complex
networks will be an important clue to find the maximal cliques quickly.

All vertices of G will be accessed by the ascending order of their index. For
vi ∈ G, a search tree rooted with vi where each node corresponds to a candi-
date clique will be built and traversed. In the beginning, the vertices of M(vi)
will be chosen by the ascending order of their index. Suppose the current ver-
tex with the smallest index chosen from M(vi) is vj . From vi and vj we build
the triangle neighbor set T (vi). {vi, vj} becomes the direct child of {vi} in the
search tree. Again, a vertex vk with the smallest index from set T (vi) will be
chosen. Next, based on vj and vk, we build the triangle neighbor set T (vj). If
T (vj) �= ∅, {vi, vj , vk} forms the child node of {vi, vj}. This process will repeat
recursively until we reach the leaf node of the search tree where we could not
build any triangle neighbor set. Apparently the traversal process of the search
tree is actually the process of building triangles. Because every candidate vertex
is accessed by the ascending order of its index, there will be no duplicate tri-
angles and candidate cliques being generated. Since the search tree rooted with
every vertex in G will be traversed, which means all the candidate cliques will
be identified, the completeness of Peamc is thus ensured. To identify whether
the candidate clique is a maximal clique, we present the following theorem.
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Theorem 1. Let clique S ⊆ V (G), S is a maximal clique of G, iff ∀vi ∈ S and
vj ∈ N(vi)− S we have S �⊆ N(vj).

Proof: One direction of the ”if and only if” condition states that clique S is a
maximal clique. If ∀vi ∈ S, ∃vj ∈ N(vi) − S such that S ⊂ N(vj), then in the
subgraph {vj}∪S, C(vj) = 1, and set {vj}∪S is also a clique. However, we had
S a maximal clique earlier, meaning that there is no superset of S being a clique,
so a contradiction occurs. The other direction of ”if and only if” condition states
that ∀vi ∈ S and vj ∈ N(vi)− S, we have S �⊆ N(vj), which means there exists
at least one vertex vk ∈ S such that (vj , vk) �∈ E(G), so for subgraph {vj} ∪ S,
vj ∈ N(vi)− S, C(vj) �= 1. Consequently, S is a maximal clique.

Fig. 12.1. 4-clique and 3-clique

To make things more concrete, an illustrated example is given as follows on
the network shown in Fig.12.1, and the whole procedure is given in algorithm
1. In Fig.12.1, C(v0) = C(v1) = 2×3

3×(3−1) = 1, C(v2) = C(v3) = 2×4
4×(4−1) = 2

3 ,
and C(v4) = 2×1

2×(2−1) = 1. We use set CLIQUE to store the candidate maximal
clique. Starting from v0, we choose v1 from M(v0) = {v1, v2, v3}. Based on v0
and v1, T (v0) = M(v0)∩M(v1) = {v2, v3}. Because T (v0) �= ∅, we thus choose v2
from T (v0) and CLIQUE = {v0, v1}. From v1 and v2, T (v1) = T (v0)∩M(v2) =
{v3}. T (v1) �= ∅, v3 is chosen, and CLIQUE = CLIQUE ∪ {v2} = {v0, v1, v2}.
From v2 and v3, T (v2) = T (v1) ∩ M(v3) �= ∅, and CLIQUE = CLIQUE ∪
{v3} = {v0, v1, v2, v3}. At this moment, {v0, v1, v2, v3} is a 4− clique. Since that
{v0, v1, v2, v3} � N(v4), according to theorem 1, {v0, v1, v2, v3} is a maximal
clique. Similarly, starting from v1, we can obtain the candidate clique {v1, v2, v3}.
However, since that {v1, v2, v3} ⊂ N(v0), {v1, v2, v3} is not a maximal clique.

12.4.3 Pruning by Prediction

To address the concern on efficiency, at each step of the depth-first search, Peamc
employs a pruning technique by predicting every possible maximal clique in ad-
vance. Fig.12.2 shows each of the search trees rooted with {v0, v1, v2} in Fig. 12.1.

After we have obtained the maximal 4-clique {v0, v1, v2, v3}, we have to back-
track to the node {v0, v1}. However, when we reach the leaf node {v0, v1, v3},
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Algorithm 1. FindClique(V (G), E(G))
1. Read graph G
2. Generate set M(vi) for ∀vi ∈ V (G)
3. for ∀vi ∈ V (G) do
4. call clique({vi},M(vi),vi)
5. end for
6. Function: clique(CLIQUE,T,vx)
7. for vj ∈ T by the ascending order do
8. build triangle neighbor set T (vx) from vx and vj

9. if T (vx) �= ∅ then
10. CLIQUE ← CLIQUE ∪ vx

11. choose vk with the lowest index from T (vx)
12. call clique(CLIQUE,T (vx),vk)
13. else
14. according to theorem 1
15. end if
16. end for

Fig. 12.2. Example of Search Trees

we finally find that it is not a maximal clique for that it is just contained in
{v0, v1, v2, v3}. Similarly, for the branch {v0} → {v0, v2, v3}, and even for the
whole tree rooted with {v1}, all the candidate cliques {v0, v2, v3} and {v1, v2, v3}
are contained in {v0, v1, v2, v3}. As a result, these traversing processes contribute
nothing at all. If these candidate maximal cliques could be predicted in advance,
the corresponding tedious searching processes will be prevented from the begin-
ning. Therefore, we come up with a pruning strategy as follows. We first give
each obtained maximal clique a clique number. For example, there are 2 maximal
cliques in Fig.12.1. {v0, v1, v2, v3} is given 0, and {v2, v3, v4} is given 1. Then this
clique number is attached to every vertex in the same maximal clique already
obtained. Consequently, 0 is assigned to v0, v1, v2 and v3. 1 is assigned to v2, v3,
v4 respectively. As a result, both v0 and v1 have the clique number {0};v2 and v3
have the clique number {0, 1};v4 has the clique number {1}. For the next time
when we have obtained the triangle neighbor set T (vi) with given vertex vj we
can compare the clique numbers of all the vertices in T (vi) with those of vi and
vj in advance. If they all share the same clique number, we can stop the further
searching process, because all these vertices have ever been in some maximal
clique already obtained before. For instance, when we come to the node {v0, v2}
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with T (v0) = {v3}, since that v0, v2, and v3 share the same clique number 0, the
branch from {v0} → {v0, v2, v3} can now be pruned. In our experiments, this
pruning strategy often improves the efficiency by a factor of 25% on average.

12.4.4 Parallel Model of Peamc

From the above discussion of the basic algorithm, we can find that the enu-
meration of all maximal cliques requires that the search tree rooted with every
vertex of G must be traversed. Because every vertex is accessed by the ascending
order of its index, there will be no duplicate triangles and candidate cliques be-
ing generated. In Fig.12.2, we see that from vertex v0 we have candidate clique
{v0, v1, v2, v3}. When we start from vertex v1, only {v1, v2, v3} is built since ver-
tex v0 has lower index than vertex v1. Thus {v0, v1, v2} is a duplicate triangle
and will not be considered. This fact indicates that if vi �= vj , the traversing of
the search tree rooted with vi, is independent of that rooted with vj shown in
Fig.12.2. Therefore, we have the following theorem.

Theorem 2. The enumeration of all maximal cliques in graph G with n vertices
can be partitioned into n independent enumerations of the maximal cliques from
the search tree rooted with the each vertex.

Practically, the number of processing elements on the existing parallel platform
P is often smaller than n, so some mapping techniques are required. A naive
mapping scheme is to assign n tasks to P processing elements sequentially. Let
Ip ∈ {0, 1, .., P − 1} denote the index of the processing element. Each partition
of the n tasks assigned to each processing element is presented by [Ip × (� n

P �+
1]), (Ip + 1) × (� n

P � + 1)]. However, this scheme sometimes suffers from load
unbalancing, simply because for a search tree rooted with vertex vi, |M(vi)|
may be significantly large. When n � P , it is highly possible that many tasks
with vertices having large |M(vi)| may be assigned to the same partition, which
will lead to a high load on a single processing element. To address such problem,
we first sort the vertices of G by the descending order of |M(vi)| and then define
the partition β on a single processing element Ip as follows

β = {vi|i = 0, ..., � n

P
�+1, vi = uj, uj =

{
i× P + Ip

i
2 = 0

(i + 1)× P − Ip − 1 i
2 �= 0

} (12.1)

Let α =
∑ � n

P
�+1

i=0 |M(vi)|
� n

P �+1 . This mapping scheme enables α of most partitions
approximate with each other, which brings a better load balancingwhich will
improve the efficiency by a factor of 30% on average.

12.4.5 Analysis of Peamc

Based on the experimental results of our research, we have found that the distribu-
tion of the maximal cliques whose size varies from 3 to MC also holds a power-law
feature, where MC represents the size of the maximum clique. Let x denote the
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size of a maximal clique and y denote the number of the maximal cliques with size
x, such that y = x−α. For the traversing of the search tree rooted with vertex vi,
the calculation of the triangle neighbor set T (vi) costs a0× (k× 3−α)×∆, where
0 ≤ a0 < 1, ∆ denotes the maximum degree of G. If T (vi) �= ∅, the next round
calculation of T (vj) will cost a1 × (k × 4−α) × ∆. If T (vj) �= ∅, the calculation
of T (vk) will cost a2× (k× 5−α)×∆. This process continues recursively until we
reach the leaves of the search tree. Since that MC denotes the length of the deep-
est path from the root to the leaf, the time to enumerate all the maximal cliques
by traversing a single search tree is represented as :

T0 = ∆×{(a(T0)
0 × k× 3−α)2 + ... + (a(T0)

MC−3× k×M−α
C )2}, a(T0)

i ∈ [0, 1) (12.2)

Because Peamc requires the traversing of the search tree rooted with every vertex
of G, the total runtime is thus represented as

T =
n−1∑
i=0

Ti = ∆× {(k × 3−α)2[(a(T0)
0 )2 + ... + (a(Tn−1)

0 )2] + ...

+ (k ×M−α
C )2[(a(T0)

MC−3)
2 + ... + (a(Tn−1)

MC−3 )2]}, a(Tj)
i ∈ [0, 1),

n−1∑
j=0

a
(Tj)
i = 1 (12.3)

Since that [(a(T0)
0 )2 + ...+(a(Tn−1)

0 )2] < ((a(T0)
0 )+ ..+(a(Tn−1)

0 ))2 = 1, we have
T < ∆×[(k×3−α)2+...+(k×M−α

C )2] < ∆×MC×(3−α)2. Moreover, because all
vertices of G are traversed by the ascending order of their index, which eliminates
many duplicate results, and the pruning strategy with prediction also reduces
the search space greatly when the maximal cliques grow large, the actual runtime
is much less than T . Thus, to enumerate all the maximal cliques in G, it will cost
O(∆×MC×Tri2) in the worst case, where Tri = k×3−α, and require O(∆×n)
time as a preprocessing to calculate set N(vi) of every vertex. To load the whole
graph G with n vertices and m edges into memory will consume O(m+n) space. If
we have n processing elements, according to theorem 2, every processing element
will traverse one search tree rooted with each vertex. Therefore, the parallel
runtime is the time that elapses from the moment a parallel computation starts
to the moment the last processing element ends, which will cost O(∆×MC×Tri2

n )
theoretically. In practice, the number of the processing elements P is far less
than n, so the practical time delay is O(∆×MC×Tri2

P ) on average.

12.5 Experimental Evaluation

To evaluate the performance of Peamc, we have also implemented Bron’s BK
algorithm and Kazuhisa’s algorithm. Our experiments are done on a DAWN
Cluster (84 3.2GHz processors with 2Gbytes of main memory on each node,
Linux AS3 ). The implementations of Kazuhisa’s algorithm and Improved BK
are strictly based on Kazuhisa’s and Bron’s papers. The code is also optimized
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by our best efforts with C++ STL. These algorithms have been first examined
with graphs generated randomly. Then they are challenged with the complex
networks and Peamc is also evaluated on large sparse call graphs built by real
data taken from one telecom carrier for months in a city. The runtime in tables is
expressed in seconds and we give the following notations for short: M.D. stands
for Max Degree, M.C. for the number of Maximal Cliques, MC is the size of
the maximum clique, Ka for Kazuhisa’s Algorithm, BK for Improved BK, Pn

and P ′
n represent Peamc on n processing elements with and without pruning

respectively and s stands for speedup in the end.

12.5.1 Random Networks

Our random graphs are generated as follows. For given r and n, we build a
graph with n vertices such that vi and vj are adjacent with probability 0.5 if
i + n − j(mod n) ≤ r or j + n− i(mod n) ≤ r. We examine the case of r = 10
and r = 30 with n = 1000, 2000, 4000, 8000, 16000, 32000 respectively.

By comparing the results of r = 10 and r = 30 in Table 12.1 and 12.2, we see
that Improved BK ’s performance keeps stable regardless of |E(G)|. However, in
the case of r = 30, when |V (G)| grows large, the clustering coefficient of every
vertex is also increasing, thus Peamc outperforms Improved BK gradually. Since
our implementation of Kazuhisa’s algorithm is optimized for the sparse graph
according to the paper with O(∆4) time delay, Kazuhisa’s algorithm performs
better in Table 12.3 than in Table 12.1 and 12.2.

Table 12.1. Results on random networks with r = 10

|V (G)| |E(G)| M.D. M.C. MC Ka BK P1 P30 s

1000 4534 16 2239 6 7 0.5 0.2 0.01 19.8
2000 8938 16 4396 6 27 4 0.4 0.02 19.7
4000 17987 24 8894 6 116 29 0.9 0.04 20
8000 36223 28 18112 6 519 243 1.8 0.09 18.5
16000 71904 35 35897 6 n/a 1934 3.6 0.19 18.8
32000 144350 44 68794 6 n/a 15389 7.3 0.38 19

Table 12.2. Results on random networks with r = 30

|V (G)| |E(G)| M.D. M.C. MC Ka BK P1 P30 s

1000 14432 64 19269 8 275 0.7 29 1.69 17.6
2000 28709 82 38060 8 1006 4 56 3.27 17.4
4000 58063 92 78054 8 12464 31 124 6.49 19
8000 116276 112 157278 8 50371 244 248 13.4 18.5
16000 231622 128 311572 9 n/a 1937 486 26 18.8
32000 464069 154 626207 9 n/a 15331 984 47.8 20.6
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12.5.2 Complex Networks

For the complex network, the distribution with the number of the maximal
cliques is confined by the power-law property, but the growth of the maximum
degree of G does not conform to this limitation. Based on the fact that most
complex networks in the real world are large sparse graphs, our researches and
experiments show that the growth of the number of the triangles is slower than
the growth of the maximum degree. Moreover, the size of the maximum clique is
also less than the maximum degree. As a result, Peamc with O(∆×MC ×Tri2)
outperforms Kazuhisa’s algorithm shown in Table 12.3.

Peamc is also evaluated on large sparse telecommunication call networks built
upon the real datasets in a city for 10 months for a Telecom Operator in China.
We regard each subscriber as a single vertex and two vertices will share an edge
if the subscribers have once contacted with each other by their mobile phones.
Results on the 10 large graphs are shown in Table 12.4.

Moreover, Peamc is further challenged with another cellphone call network of
a month in a province with up to 2,423,807 vertices and 5,317,183 edges. We find
801,381 maximal cliques using 70 processors in 21,219 seconds and the size of the
maximum clique is 26. Figure 12.3 gives the statistical results on the distribution

Table 12.3. Results on complex networks

|V (G)| |E(G)| M.D. M.C. MC Ka BK P1

579 500 43 4 3 0.027 0.112 0.001
1161 1000 44 11 4 0.052 0.740 0.001
2301 2000 45 26 5 0.105 6.032 0.004
4557 4000 57 61 5 0.208 42.220 0.008
8760 8000 81 183 6 0.403 313.514 0.022
17376 16000 128 403 7 1.000 2449.000 0.067

Table 12.4. Results on the 10 cellphone call networks

G |V (G)| |E(G)| M.D. M.C. MC P ′
1 P1 P30

1 512,024 1,021,861 673 153,362 14 64 58 4
2 503,275 900,329 731 118,353 13 28 23 1
3 540,342 1,030,489 980 143,259 14 44 43 6
4 539,299 1,014,800 2,396 139,040 15 53 55 18
5 543,856 1,034,291 1,355 145,569 17 185 76 18
6 531,444 1,020,716 913 148,570 16 455 380 169
7 529,280 1,012,299 1,291 145,809 18 174 128 43
8 531,861 1,007,487 1,134 144,434 19 246 223 64
9 562,244 1,060,121 1,922 151,039 17 187 130 24

10 594,186 1,152,470 1,310 168,285 21 498 403 98
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Fig. 12.3. Distribution of the maximal cliques

Table 12.5. Comparison between different schedules

G Naive Schedule on P30 Random schedule on P30 Improvement

1 16 4 75%
2 4 1 76%
3 10 6 40%
4 21 18 14.28%
5 59 18 69.49%
6 171 169 1.16%
7 65 43 33.85%
8 132 64 51.52%
9 51 24 52.94%

10 198 98 50.50%

of all the maximal cliques obtained from the 10 graphs in Table 12.4 whose size
varies from 3 to 21 respectively.

In Fig.12.4, X axis is the size of the maximal clique. Y axis is the corre-
sponding number. We see that the call graph also has a power-law distribution
of its maximal cliques. We have compared our schedule mechanism with the
naive sequential schedule in Table 12.5. These experimental results are based on
the cellphone call networks in Table 12.4 as well. Here we see that our schedule
improves the whole efficiency by a factor of 46.37% on average.
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12.6 Application

Many complex networks capture intricate web of connections among the units
or sub-structures they are made of. An interest topic is to interpret the global
organization of the whole network to identify the basic building blocks, which is
crucial to the understanding of the network’s structural and functional proper-
ties. In our researches, we see the maximum clique across 10 months is that of
size 21 in 10th month, which indicates that the 21 customers have close relation-
ship with each other. Since these customers could also appear in the previous
9 months to form smaller maximal cliques, by joining this maximum 21-clique
with those maximal cliques enumerated in the ten months respectively, we can
find the evolution of the maximum 21-clique in the 10 months, shown in Fig.12.4.

In Fig.12.4, we first focus on the customer denoted by �. The gray filled circles
represent the customers of the maximum 21-clique and those dubbed by the small
white blank circles denote their neighbors which also form maximal cliques in the
10 months respectively. We see that this � customer is first introduced into the
network in Jan and forms a triangle with other two persons in the quasi 19-clique

Fig. 12.4. Maximum 21-clique evolution
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Fig. 12.5. Maximal 9-clique shrinking

(most pairs of its nodes are connected directly) which is part of the maximum 21-
clique. This customer has more connections in the following months indicating he
or she gradually joins in the social circle of the 21 customers and becomes a new
VIP customer to the telecom career. Fig.12.4 also shows that only 19 persons of
the maximum 21-clique have appeared in Jan and only after May, another two
persons denoted by the black filled circles join in the network. The degree of these
two persons is increased sharply in Jun and keeps stable in the later months,
which means these two persons probably have known most of the 19 customers
before and are recommended to use the same network with them, which is good
to the telecom career’s business. Moreover, we find that more and more other
customers appearing as small white nodes inside the maximum 21-clique depend
on this structure heavily and together they form a bigger quasi-clique.

By contrast, Fig.12.5 gives the shrinking process of a maximal 9-clique from
Mar to Jun. The shrinking of the maximal clique among the call graphs has a
close relationship with the specific time and the constitution of the structure.
After one person in the 9-clique quit in Apr, the whole structure has shrank
sharply in the next month. Consequently, we can infer that this person may hold
an important position and have a heavy impact on the others in the community
of the 9 persons, so if we can retain such kind of people in advance, more lost
profits will be prevented, which is another piece of good news to the telecom
operator.

12.7 Future Trends

In recent years, easy connections brought about by cheap devices, modular con-
tent, and shared computing resources are having a profound impact on our so-
cial structures. People now increasingly take their required information from one
another rather than from institutional sources like corporations, media outlets,
religions, and political bodies. As a result, people are implicitly involved in many
social networks which are formed by our friend lists in the instant messaging soft-
wares, by the bloggers who comment on a certain topic in your blogspace, or by
the users who write collaboratively in a wiki site. In social network analysis[4],
maximal clique is one of the typical cohesive sub-structures[11] in a given net-
work, which represents a group of closely related friends who seem to dominate
everything social. However, the clique definition puts too strict restriction on the
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structure of the sub-graph. Moreover, the detected maximal cliques are usually
small in size, and people can get tremendous number of them. Therefore, people
may need some approaches to identify the more general community structures
where not every pair of vertices is required to connect with each other; yet, the
vertices within the same sub-structure have higher density of edges while vertices
between these structures have lower density of edges. Compared with clique, al-
though this kind of community is not yet a complete graph, it is indeed dense
relatively. Since that maximal clique is the densest sub-graph in a given network,
perhaps we can use the overlapped maximal cliques as the clustering kernel and
may use a k-means like method to carry out an agglomerative process. Finally,
each of the obtained clusters may correspond to a community.

12.8 Conclusion

In this paper, a novel parallel algorithm Peamc is provided, which exploits sev-
eral effective techniques to efficiently enumerating all maximal cliques in complex
network. Since most networks in our real world conform to the complex network
model, our algorithm enjoys more attractive advantages in practice. A compre-
hensive performance study to compare Peamc with the existing algorithms on the
real data sets has illustrated that Peamc is more efficient and scalable. Moreover, a
promising application is shown to present and model the sub-structures’ evolution
and shrinking among continuous sparse cellphone call networks in the end.
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Abstract. Recently, topology structures of many social, biological and technological
networks have been discovered to display a scale-free property. For a network, a com-
munity is a natural division of network nodes into groups in which there are more
links between nodes within the groups than to nodes outside of it. Many methods of
community finding have been proposed to seek a fast, feasible and reasonable partition
algorithm for the whole network nodes. In this chapter, we introduce the topology of
the network to evaluate the feasibility and correctness of a community finding algo-
rithm. A relationship between the rough number of communities and the magnitude of
the number of hub nodes in the network is given in detail firstly. Then, an algorithm
based on Laplace matrix spectral decomposition is proposed and its key technology,
threshold selection of Euclidean distance between nodes, is discussed. Based on the
scale-free topology of complex network, the evaluation criterion of community finding
algorithm including three conditions is obtained. Numerical results show that the algo-
rithm of community finding is an effective one and the evaluation criterion is feasible,
fast and easy to operate.

Keywords: Complex network; Community finding; Scale-free network; Algorithm;
Evaluation criterion.

13.1 Introduction

In the last several decades, although our capabilities of collecting and processing
data have been increasing rapidly, we are deluged and baffled by various and
massive data, such as scientific data, financial data, etc. These complex data
are a great challenge to traditional methods of data mining [1]. However, we
should not be pessimistic since there are many new approaches to find the useful
information from these complex data. A new approach is to use complex network
theories to seek the common characteristic of these data [2]. For example, in the
WWW database, each webpage can be considered a node of network, and the
hyperlinks between webpages are the links of the network. Then we can obtain
the set of those very important nodes according to analysis of the network’s

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 223–242.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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topology. Network topology analysis can be considered to be a data mining
method in a widespread sense, which is one of the methods of mining complex
data sometimes.

Complex networks have drawn increasing interests in the community of mathe-
matics, computer science and physics. Many networks in the real world, including
the WWW and the Internet, metabolic and protein networks, social networks,
etc., have been revealed that these topology structures exhibit a scale-free prop-
erty [3, 4, 5]. That is to say, the probability that a node of these networks has k
links obeys a power-law distribution P (k) ∼ kγ , with the exponent γ that ranges
between 2 and 3. The scale-free property is proposed formally by Barabási and
Albert [3], so a network model having a power-law distribution is also titled by
a BA model. According to the evolving process of the BA model and the studies
of Barabási, Albert and Jeong [6], there are two main mechanisms to produce a
scale-free power-law distribution: growth and preferential attachment. Growth
means that the numbers of nodes and links are increasing with the evolving time
t, which accords with the evolving tendency of most networks. In the preferential
attachment mechanism, the probability of a new node will be linked to node i
depends on the degree ki, such that Π(ki) = ki/

∑
j kj . Therefore, the latter

mechanism indicates that there is a higher probability to be linked to a node
that already has a large number of links, which can effectively explain the phe-
nomenon of ”rich get richer” in many real world networks [7]. In fact, preferential
attachment is a deep depiction of “Survival of the fittest” and “Matthew effect”
[8]. In general, these two mechanisms can help to explain the existence of hub
nodes in a network, which hub nodes have very large degrees and play a key role
in influencing the topology of the whole network. An exceptional characteristic
of scale-free network is that, it displays an amazing robustness against random
attack, but when very few hub nodes are failed or removed its topology structure
is very fragility.

General speaking, most networks contain some groups in which the nodes are
more highly linked to each other within group than to the nodes outside of it. These
groups are usually called communities, clusters or modules of the networks [9].
The links of the nodes in a community are dense, while they are very sparse be-
tween communities. An example of community structure is shown in Fig. 13.1. Let
a well-defined community be an intrinsic community of the network. Since detect-
ing the community structure of a network can provide a lot of help in understand-
ing and visualizing the structure of networks, it is a very important issue that how
to achieve a suitable community structure by means of an excellent algorithm of
community finding. There are many successful algorithms to detect community
structure and they can be classified to two categories roughly, traditional algo-
rithms for some networks with small scale and some new algorithms for some com-
plex networks. Some traditional methods of community finding, including spectra
bisection, the Kernighan-Lin algorithm, hierarchical clustering, etc., can be used
to discover community structure of those networks with small scale [10]. For in-
stance, the karate club network Zachary can be divided roughly into two commu-
nities by these algorithms. However, none of these methods is ideal for the scale-free
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Fig. 13.1. An example of community structures [16]. There are three communities,
which are partitioned by the dashed circles, and the links between communities are
very sparser denoted by four blue lines.

complex networks, such as the Internet, the WWW, and biological networks. Some
new methods, including Girvan and Newman algorithm [11], the algorithm based
on the edge betweenness score [12], local community finding algorithm based on
the greedy maximization of local modularity [13], the algorithm based on the max-
imum modularity [14], the algorithm based on information centrality [15], etc., are
able to work well with these complex networks. For the two categories of these al-
gorithms, the evaluation criterion is typically the algorithm’s time complexity.

On the other hand, there is a very difficult issue that how to determine the
optimal number of well-defined communities obtained by most algorithms of
community finding. If the number of well-defined communities is not clearly
known, some algorithms will not be able to run correctly. For the Kernighan-
Lin algorithm, it is necessary to know the number of communities in advance
[10]. If the number of nodes is very large, or the number of communities is
unknown, the algorithm will be failure. The new algorithms have the same issue
as the traditional community finding algorithms. For GN algorithm, it can not
determine the appropriate iterative step when the number is not determined.
Although in the Newman algorithm [17] the appropriate number of communities
can be determine according to the local maximum of the modality indices, the
number of the communities can not be obtained.

For each node, since the probabilities of connecting new edges to other nodes
are different according to preferential attachment of the scale-free network, not
all nodes have the same influences to distribute and transform the information
of the network. The centrality of a network aims at the foundational question
how to measure the importance of nodes. The importance of nodes in a complex
network has attracted a lot of attention of researches since it concerns crucial
subjects such as networks resilience to attacks [12]. In this chapter, it is believed
that there is a close relation between the number of the important nodes and the
number of well-defined communities. So some centrality indices of each node and
the whole network are considered to design the evaluation criteria of community
finding algorithms.
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Therefore, how to evaluate the merits of the various community finding al-
gorithms and give a reasonable evaluation criterion, is an urgent problem of
community finding research. In addition, it is very important to obtain the prior
knowledge of the number of community finding. These two aspects are concerned
in this chapter. A new evaluate criterion of community finding is given accord-
ing to the topology analysis of the scale-free network, and a method predicted
the magnitude order of the number of communities for a scale-free network is
obtained.

13.2 Basic Conceptions

In this section, we give some important conceptions: complex network, degree
distribution, power law distribution, scale-free network, community structure,
community finding algorithm, centrality index.

The complex network that we consider in this chapter is graph consisting
of nodes connected by links, which has non-trivial topological structure [4]).
Clearly, the meanings of nodes and edges in different real-world networks are
different. The nodes of the WWW are the web pages and the edges are the
hyperlinks that point from one web page to another. The topology of the Internet
is considered at two different levels: router level and autonomous system level.
And in the former level, the nodes are the routers and edges are the physical
connections between them, while the nodes are domains in the latter level. In the
movie actor network, the nodes are the actors, and two nodes have a common
edge if the corresponding actors have acted in a movie together.

The degree of a node in a complex network, k, is the total number of links
connected to the node. And the degree distribution of the network, P (k), is the
probability that a randomly selected node has k degree [18].

The popular distributions of real-world complex networks are various, which
can be broadly divided into two categories: one is relatively even distribution;
another is seriously uneven distribution. Poisson and Gauss distribution can
approximately describe the former distribution, whose probability distributions
have a ball-shaped curve [6]. And for seriously uneven distribution, it can be
described by power-law distribution commonly:

P (k) = Ck−γ , γ > 0, k = 1, 2, . . . (13.1)

The power-law distribution has an “L” shaped curve and on log-log scale the
distribution appears as a straight line, which is shown as Fig. 13.2.

Traditionally, the degree distribution of the random graph network described
by Erdös and Rányi [19] follows a binomial distribution, or a Poisson distribution
in the limit of large number of nodes N , that is to say, P (k) = e−µλµ/k!, and the
coefficient µ = p(N − 1), where p is the probability that each random selected
nodes are connected. However, the topology structures of many real-world net-
works don’t exhibit the characteristics of random graph. Real world networks are
nonrandom since some important evolving mechanisms are suggested to control
their topology structures in the whole evolving processes. Recently the data of
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Fig. 13.2. Poisson distribution, power-law distribution and its log-log plot

complex networks obtained by the researchers of many fields show that: some
nodes have a tremendous number of links to other nodes, whereas most nodes
have just a handful links. And these important nodes are called hub nodes in the
network, which have thousands or even millions of links. In the sense, Barabási
et al. suggest the network appears to have no scale. Generally speaking, a com-
plex network is a scale-free network if its degree distribution follows power-law
distribution. From Equation (13.1), we can find that:

P (C′k) = C(C′k)−γ = CC′−γk−γ = C1k
−γ . (13.2)

That is, the exponent of power-law distribution γ is independent on the variable
k. In other words, if the multiplicative factor C′ is taken as a scale of variable k,
the functional form P (k) = Ck−γ remains unchanged when the scale k changes
to C′k. Therefore, the exponent γ of power-law distribution of the network is
scale-free in this sense.

Community structure of a network means that the nodes are often found to
cluster into highly knit groups with a high density of within-group edges and a
low density of between-group edges. Since the component of a node is the set of
nodes that can be reached from it by paths running along edges of the graph,
which is the connected subgraph in undirected graph, the community structure
is not equivalent to the connected subgraphs or components.

Community finding algorithm is an algorithm to detect and partition the
community structure of a network. All community finding algorithms fall into
two rough classes depending on whether they focus on the addition or removal of
edges to or from the network. The main idea of the first category of algorithms is
agglomerative. That is, the network is divided into N communities and there are
no edges between each pair of nodes at first, where the total number of nodes is
N , the new edges are added to link two nodes according to a certain connected-
edge rule of the algorithm. For example, the rule can be that the higher the
similarity between pairs of nodes is, the more priority the link between the nodes
is connected. The key technology of another category of algorithms is divisive.
Divisive community finding algorithms try to find the lowest similarity of node
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pairs of the origin network, then to remove the edge of this node pairs. Repeat
the process and the whole network to be partitioned to increasingly small parts
gradually. The process can be terminated in any case and the whole network is
partitioned some communities finally.

The researches of the centrality of complex networks, especially social net-
works, were beginning in the middle of the last century [20]. Three classical cen-
trality indexes: degree, betweenness and closeness, were proposed by Freeman
[21] to describe the characteristic of a node communicating or controlling the
whole network. And he had proved that three centrality indices assign the star
or wheel network the maximum values and the circle and the complete graph the
minimum values. Degree index of a node describes its potential communication
activity in the network. Betweenness index describes its potential of a node for
control of communication. And closeness index describes its potential indepen-
dence or efficiency of community. The measures of centrality for a network can
be classified into two categories: node centrality and entire network centrality.
Some new centrality indexes, such as group centrality, stress centrality, modified
betweenness centrality, have been studied recently [22, 23].

Degree centrality of a node [21] is defined as

CD(i) = ki/(n− 1), (13.3)

where ki is the degree of node vi. Let CD(i∗) be the largest value of CD(i) for
any node in the network and CD be a general formula for determining the degree
centrality index of the network. For the sake of simplicity, we adopt that CX(i∗)
is the largest value of CX(i) for any node in a network, where X can be D (degree
index), B (betweenness index), and C (closeness index). Then the expression of
CD can be given by

CD =

n∑
i=1

[CD(i∗)− CD(i)]

(n2 − 3n + 2)/(n− 1)
. (13.4)

Let gij be the number of geodesics linking node vi and vj . And gij(k) is
number of geodesics links vi and vj that contained vk. Then the probability that
node vk falls on a randomly selected geodesic linking vi and vj is

bij(k) = gij(k)/gij . (13.5)

So the betweenness centrality [21] can be calculated by

CB(k) =
2

∑
i<j

∑
bij(k)

(n2 − 3n + 2)
. (13.6)

As far as the betweenness of the whole network be concerned, it is the average
value of the betweenness index of each node, so it can be calculated by the
following formula:

CB =

n∑
i=1

[CB(i∗)− CB(i)]

n− 1
. (13.7)
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The independence or efficiency of a node is determined by its closeness to all
other nodes in the network. Let d(i, k) be the number of edges in the geodesic
linking node vi and vk. Then closeness centrality index [21] is defined by

CC(k) =
n− 1

n∑
i=1

d(i, k)
. (13.8)

Then the closeness index of the whole network is the average value of the corre-
sponding index of each node, i.e., the expression of this formula is

CC =

n∑
i=1

[CC(i∗)− CC(i)]

n− 1
. (13.9)

Note that the variation ranges of three indexes are from 0 to 1, we can select
an appropriate percent as the single threshold of three indexes. If three indexes of
one node are larger than the threshold, the node will be joined into the set of the
central nodes. In fact, these centrality indices imply some competing methods of
how centrality might affect group processes. Since the communities of a complex
network are some separate groups in some sense, the centrality indices can be
used to design the algorithms of community finding of complex network, such as
GN algorithm.

13.3 Community Finding Algorithm Based on Laplace
Matrix Spectral Decomposition

We design the community finding algorithm based on Laplace matrix spectral
decomposition in the section. And the key threshold of Euclidean distance is
discussed to obtain an optimal value of the network. The main merit of this
algorithm is that the community structures of the network can be decomposed
thought one-time since other many algorithms take progressive iteration. In ad-
dition, the appropriate number of community structures can be determined ac-
cording to the characteristic of its Laplace matrix.

In many complex networks, there exist many isolated nodes or very small
cliques. It is no sense to analyze these nodes or cliques for community finding
or centrality. Hence only the largest connected component L of the network is
considered and other connected components are ignored for community finding.
For a complex network, let M be the Laplace matrix of the largest connected
component, which is a n × n square matrix. The ith diagonal element of the
Laplace matrix M is the degree of node vi and the non-diagonal elements are
defined as follow:

mij =
{
−1, if there is an edge between node vi and vj ;
0, otherwise. (13.10)

Hence, M is the symmetric matrix and the total of the elements of each line or
column is always zero.
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The set of the eigenvalues of a matrix is defined to its spectrum. It is easily
proved that the spectrum of the Laplace matrix, M , has some properties as
follows:

(i) All spectra of M are non-negative.
(ii) 0 is an element of spectrum set of M .
(iii) The algebraic multiplicity q of 0 is the number of well-defined communities

of the network.

In fact, if the network is full-connected, the algebraic multiplicity of eigenvalue
0 is 1. For example, the spectra of the Laplace matrix of the network determined
by Figure 13.1 are listed as Table 13.1.

Table 13.1. The spectral decomposition of the Laplace Matrix determined by Figure
13.1. It is obvious in a complex network that the number of nodes equals to the number
of spectra of the corresponding Laplace matrix. From this table, we can find that the
smallest eigenvalue is zero, and the fourth smallest eigenvalue (1.1286) obviously has a
great gap with the previous three eigenvalues. It implies that there are three well-defined
communities in the network, which accords with the result shown in Figure 13.1.

Order Eigenvalues

1-6 0.0 0.3553 0.4762 1.1286 1.8912 2.2505
7-12 2.7901 3.4170 3.6729 4.0925 4.5766 4.8204
13-18 5.0000 5.0648 5.2332 5.8186 6.6236 6.7886

As mentioned above, the number of eigenvalue 0 is 1 indeed when the network
is full-connected. However, in a network composed by some large components
adding to a few edges between these components, the Laplace matrix has also a
certain number of eigenvalues very closing to zero, and the remaining eigenvalues
have a gap away from zero remarkably. So we can believe that these near-zero
eigenvalue is the dimension of zero eigenvalue.

Suppose that the number of communities is q if there are q eigenvalues very
closing or equaling to zero. Let λi(i = 1, 2, . . . , n) be the ith smallest eigenvalue
of the Laplace matrix and ξi be the corresponding eigenvector. Hence, we have

λ1(= 0) ≤ λ1 ≤ · · · ≤ λq−1λq ≤ λq+1 ≤ · · · ≤ λn. (13.11)

Since q approximately equals to the algebraic multiplicity of zero, it is very
important that selecting an appropriate value of q according to the distributed
characteristic of eigenvalues of the Laplace matrix. We select the largest value
of q satisfying the following conditions as the appropriate value q∗:

β(λq − λq−1) < λq+1 − λq, β = 3 and λq < 1. (13.12)

The former term of Equation (13.12) is used to measure the gap between the
whole eigenvalues, and the latter is used to ensure that the selected eigenvalue
closes to zero. And the value β measures the gap between all eigenvalues. A large
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value of β implies a more precise community structure of the network. If there
is no one to satisfy Equation (13.12) for all eigenvalues, we will give a smaller
value of β (β = 2 or 1) to judge all the eigenvalues to satisfy the conditions once
again. From Table 13.1 we can find β = 5.

Since there are only q∗ communities in a network, the Euclidean distance
between each pair of nodes can be described by the distance of the former q∗

components of their eigenvectors. That is, the Euclidean distances between node
vi and node vj are calculated by

Dij = ‖ξi − ξj‖
�
=

√√√√ q∗∑
k=1

(ξik − ξjk)2. (13.13)

The algorithm of community finding based on Laplace matrix spectral decom-
position are as follows:

(i) Construct the Laplace matrix M of the network, then calculate the eigen-
values and eigenvectors of M and sort in ascending order.

(ii) Determine the appropriate value of q∗ according to the conditions of Equa-
tion (13.12), which is the number of network well-defined communities.

(iii) Select the former q∗ components of each eigenvector and calculate the
Euclidean distance of pairs of nodes according to Equation (13.13).

(iv) Give the threshold D∗ of Euclidean distance and reconnect an edge of the
original empty network if the distance of two nodes is less than the threshold.
Redo the processes until there are not the distances more than the threshold.

(v) The original network is partitioned to q∗ communities according to its
subgraph of the reconstructed network.

In this algorithm, there is no suitable selection method to determine the
threshold D∗ of Euclidean distance currently. Numerical simulation results in
the following shows that, if the given threshold makes that the percentages of
the numbers of nodes and edges of the reconstructed network to the whole net-
work exceed 80% and 95%, respectively, it is very appropriate to community
finding.

13.4 Evaluating Criterion of Community Finding
Algorithm

Since many real-world networks have scale-free characteristic, this unique topol-
ogy can be used to detect their community structures. Meanwhile, it also provides
a new thinking to find the evaluation criteria of community finding algorithm.
In a scale-free network, its degree distribution displays power-law decay, so the
exponent of power-law distribution is an important coefficient of its topology
structure. On the other hand, the number of hub nodes of a scale-free network
has a close relationship to the power-law exponent. The relationship between
the range of the exponent and the number of hub nodes in a scale-free network
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has discussed by Wang and Dai [24]. They found that there exist lots of hub
nodes whose degree distribution exponents are between 1 and 2. And when the
exponents are between 2 and 3, there are a certain number of hub nodes, which
is less than the number of hub nodes in the first case. Only a few hub nodes
exist in the network when the exponent exceeds 3.

It is rational that each well-defined community of the network includes only
several or one hub nodes, so the numbers of communities and hub nodes have
the same order of magnitude. Therefore, the exponent of the network is prior
information of the number of well-defined communities. According to the distri-
bution of power-law exponent of real-world networks, four likelihoods of com-
munity number are considered as follows:

(i) Since the degree distribution exponents of real-world cannot be less than
1, it is only a theoretical possibility when the exponent is 0 < λ ≤ 1. In fact,
the network closes to a random graph network and the community finding is no
sense for this kind of network.

(ii) If the range of the power-law exponent is 1 < λ ≤ 2, it is proved that
there are a lot of hub nodes in the network, so its community structure is very
dispersed and the number of well-defined communities have the hundred order
of magnitude at least.

(iii) If the exponent is between 2 and 3, which is a majority of the case for
real-world networks, there are a moderate number of hub nodes, so the network
has dozens of different communities.

(iv) When the exponent is λ > 3, a very small number of nodes have con-
nected a very large number of edges according to the characteristic of power-low
distribution. Hence, there are very few hub nodes in the network and the number
of communities doesn’t exceed ten.

After the community structure is obtained by any algorithm of community
finding, we can reconstruct the network with the inverse process of the algo-
rithm. The topology structures of the original network and the new network re-
constructed by community finding algorithm should remain basically unchanged.
From these likelihoods of power-law exponent we can find that, if the number
of the communities detected by a certain community finding algorithm is incon-
sistent with the order of magnitude of the hub nodes, the algorithm is useless
or non-optimal. In other words, if the degree distribution of the reconstructed
network doesn’t follow the power-law distribution any longer, or it does but the
new exponent has a large deviation to the original exponent, the algorithm is
not an effective one.

The power-law degree distribution of a network is one of the topology charac-
teristics, specifically which considers the network connectivity features. However,
network centrality indices mainly measure the activity, control or independence
of communication. So network centrality indices of the original network and
the new network will have no obvious deviation if the algorithm of community
finding is effective.
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Therefore, the criterion evaluating the correctness and efficiency of a certain
community finding algorithm is that three fundamental conditions as follows
must be satisfied:

(i) The number of the well-defined communities detected by the algorithm
has the same order of magnitude to the hub nodes of the network according to
the exponent of power-law distribution.

(ii) There is not an obvious deviation between the exponent of the original
network and the corresponding exponent of the reconstructed network.

(iii) There is not conspicuous change between three network centrality indices,
degree index, betweenness index and closeness index, of the original network and
the reconstructed network.

13.5 Implementation

In this section, we firstly construct a new reply network of a BBS data and
prove that its topology has scale-free characteristic. Then, the community finding
algorithm based on Laplace matrix spectral decomposition is implemented for
this network. Finally, though the calculations and comparisons of the power-
law exponent of degree distribution and three network centrality indices of the
network, the evaluation criterion of community finding algorithm is validated.

The data used in the chapter are downloaded from China Forum, Current
Affairs Board, which listed in Table 13.2.

From the table we can find that, the number of nodes and edges of the largest
connected component account for 99.9% and 98.8% of the effective network.
Hence, the main information of the whole network is contained in the largest
connected component, and it is enough to only analyze the corresponding charac-
teristics, such as degree distribution, community structure and centrality indices,
of the largest connected component.

By means of the community finding algorithm mentioned above, the numbers
of well-defined communities of six months are shown as Figure 13.3.

In the community structure of a BBS network, there is a largest community
which contains a lot of nodes. And the number of nodes in other communi-
ties is significantly less than that of the largest community, which is shown as
Figure 13.3. It shows that there exists only one hot-topic talk which is concerned
by many users in BBS forum each month. The hot-topic talk enables them to
participate in the discussion and post some different perspective articles. Since
other communities contain few number of nodes, the contents which be concerned
by these communities are not hot-topic talk.

According to the data of the forum in April, with the different selection thresh-
olds of Euclidean distance, the numbers of nodes and edges of the largest con-
nected component of the reconstructed network are listed in Table 13.3.

It is shown from Table 13.3 that, when the Euclidean distance thresholds are
increasing, the numbers of nodes and edges of the reconstructed network are
increasing accordingly, and the same tendency in the largest connected compo-
nent. Since the threshold increases, the exiguous distances between nodes are
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Table 13.2. Statistical data of virtual user networks month by month. The URL of
this webpage http://bbs.people.com.cn/bbs/. The total number of BBS reply articles
is 745740, those articles posted between Feb. 1, 2003 and Jul. 31, 2003 to form the origi-
nal network. Data preparation process is as follows. Firstly, the articles are downloaded
with multi-thread from the website to storage to HTML files. Secondly, the important
information of an article, such as posting time, poster, reply conditions, are extracted
and deposited to the corresponding database. Lastly, the effective posters are summa-
rized according to the constructed method of article reply network. These nodes are
linked by their reply relationship to form the original network [25]. And in the table,
the effective network is the network with no circle, no multi-edge and removing the
nodes whose original posters are not in the networks.

Month NOa EOb NEc EEd NLe EFf

Feb. 3017 75142 1939 9983 1912 9968
Mar. 3936 116940 2401 13132 2375 13118
Apr. 4053 119146 2533 14092 2519 14085
May. 4445 146560 2750 16978 2715 16960
Jun. 5001 141378 2885 15872 2839 15848
Jul. 4497 146574 2625 16278 2572 16250

aThe number of nodes for the original network.
bThe number of edges for the original network.
cThe number of nodes for the effective network.
dThe number of edges for the effective network.
eThe number of nodes for the largest connected component.
fThe number of edges for the largest connected component.

Table 13.3. The reconstructed networks with different selection threshold

Threshold NRa ERb NLRc ELRd

0.0005 447 1752 155(34.7%) 1249(71.3%)
0.0006 710 5608 421(59.3%) 5356(95.5%)
0.0007 1009 18008 744(74.7%) 17836(99.0%)
0.0008 1297 50113 1039(81.2%) 49965(99.7%)
0.0009 1520 107279 1258(82.8%) 107108(99.8%)
0.0010 1725 192621 1647(95.5%) 192442(99.9%)

aThe number of nodes for the reconstructed network.
bThe number of edges for the reconstructed network.
cThe number of nodes for the largest connected component of the reconstructed
network.

dThe number of edges for the largest connected component of the reconstructed
network.

overlooked, which forms the more edges. So the nodes and edges of the whole
network are all increasing. Of course, the nodes and edges of the largest con-
nected component also increase.

When these thresholds arrange in sequence from small to large, the theoretical
and actual values of the ratios of the number of nodes of the largest connected
component with the former threshold to that of the latter threshold are shown
in Figure 13.4. For example, when the selected threshold is 0.0005, the number
of nodes the largest connected component is 155, while the latter threshold is
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Fig. 13.3. The numbers of communities of the BBS poster networks from Feb. to Jul.

Fig. 13.4. The comparisons of the simulation values to the theoretical values of node
numbers with different thresholds

0.0006, the node number is 421, the ratio of 155 to 421 is 0.368, which is denoted
by the first point (drawn by “+”). This value is the theoretical value when the
thresholds are changing. The first point drawn by “o” denotes the actual ratio
of the number of nodes with the former threshold to the number of nodes with
the latter threshold. Clearly, these two curves have any difference, which implies
that the nodes with the former threshold must be contained in the set of nodes
with the latter threshold when these thresholds are in ascending order.

Now we give the relationships between selection methods of the threshold and
some nodes’ degrees. Our main attention focuses on the change of the largest ten
nodes with different threshold selections, which as shown in Figure 13.5. With
the first subfigure as an example, when the basis threshold is 0.0005, the ten
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Fig. 13.5. Degree changes of the tenth nodes with different thresholds

points denotes the ratios of the degrees of the largest ten nodes to the sum of
degrees of all nodes. And the label of this figure describes the identifications of
posters in the BBS forum. The other points in one curve denote the ratio of the
ten degrees to the sum of degrees with different thresholds.

When the basis threshold is 0.0005, the changes of the ratios of these node
degrees are quite acute. For example, the degree ratio of the node that poster
identification is 65896 only is the last one of ten ratios with threshold 0.0005,
while the threshold increases, the ratio is always in the top three of these ratios.
In addition, there is a significant difference between the ratios of ten nodes
when the threshold increases, which is not same as the changes of other five
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Fig. 13.6. The power-law degree distribution of virtual user network (a) and the
reconstruct network (b)

Table 13.4. The Number of communities

Month Feb. Mar. Apr. May. Jun. Jun.

NCa 87 145 99 159 122 139

VNb 115 179 155 172 195 179

aThe number of well-defined communities.
bThe number of nodes of the largest connected component.

subfigures. It is shown that, the numbers of nodes and edges are very small so
that the network characteristics are not comprehensive analyzed with a too small
threshold selection.

In the case of the basis threshold 0.0010, since the numbers of nodes and edges
of the whole network are all large, there are an obvious differences although the
degrees of nodes is with great changes, which is shown as the last subfigure. For
example, the degree ratio of the node that its identification is 200623 accounts
for the seventh place, but with the decreasing threshold, the ratio value changes
very small and it does not appear the set of the first ten nodes. This case about
the node is the same as node 192562 and node 75415. So the numbers of nodes
and edges have increased substantially due to the distance threshold is selected
too large. Thereby, the changes of degrees of these nodes are hidden and the
accurately community structure can not be obtained according to the topology
of the reconstructed network.

The changes of the ratios of these node degrees are very little when the basis
threshold is 0.0007 or 0.0008. From the Table 13.3, when the threshold is selected
this two values, the proportions of the numbers of nodes and edges of largest con-
nected component to that of the whole network are 80% and 99%, respectively.
Since the threshold selection directly influences the topology of the reconstructed
network, the appropriate distance threshold can be as an important coefficient
of the Laplace matrix spectral decomposition algorithm of community finding.
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Now we demonstrate the validity of the evaluation criterion of community
finding according to the topology structure of the BBS poster networks.

According to Equation (13.1), if the topology of a complex network obeys the
power-law degree distribution, it is approximately a slope line in the log-log plot.
As shown in Figure 13.6(a), the degree distribution of the BBS poster network
has a power-law distribution approximately and its exponent λ = 1.35. Since
the power-law exponent has the range of 1 < λ < 2, the number of well-defined
communities have the hundred order of magnitude according to the evaluation
criterion. The number of well-defined communities of the largest connected com-
ponents each month and the number of nodes of the largest community are listed
in Table 13.4. The number of communities obtained by community finding algo-
rithm has the same magnitude order as the number indicated by the power-law
exponents of the networks each month.

In addition, although there are lots of well-defined communities in the BBS
networks, comparing the data of Table 13.4 with Table 13.2, the number of nodes
contained in the largest connected component is very large. It shows that there
exists a small quantity of hot-topic talks each month on the BBS forum.

The topology of the reconstructed network has exhibited scale-free property
and its power-law exponent is λ = 1.36, which is shown in Figure 13.6(b). This
exponent is quietly closed to the original exponent 1.35, which verifies the second
condition of the evaluation criterion. We calculate the three network centrality
indices of the original network and the reconstructed network, which are shown
in Figure 13.7. We can find that the two curves have no much difference, and
there is an incremental trend of these indexes from Feb. to Jul. Since the network

Fig. 13.7. The Three network centrality indices comparisons of the original networks
(solid lines) to the reconstructed networks (dotted lines)
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centrality indices have no significant changes before and after community finding
of the network, the algorithm basis on Laplace matrix spectral decomposition
satisfies the third condition of evaluation criterion. In addition, the trend implies
that some central posters have a higher popularity than other general posters
and their articles attract lots of replied articles month by month.

In a word, for the algorithm basis Laplace matrix spectral decomposition,
the three conditions of evaluation criterion of community finding algorithm are
satisfied well according to the data of the BBS poster networks. Hence, the
evaluation criterion of community finding algorithm is validated.

13.6 Future Studies

Further study mainly focuses on two aspects: the community finding algorithm
based on scale-free topology of complex networks and the evaluation criterion of
community finding. Although lots of real-world complex networks have a scale-
free topology structure, the inherent evolving mechanisms forming this special
nature in these networks are to be further thinking and excavated. If the evolu-
tion of complex network is considered as a reverse process of community finding,
the mechanisms of evolution accords with the key rules of community finding
algorithm in the sense. On the other hand, the seeking of evolving mechanisms
is the basis of the analysis of network topologies.

Degree distribution is one of important topology characteristics of complex
network, but there are many other characteristics, such as average shortest path
length, clustering coefficient, etc., that be introduced to design some new com-
munity finding algorithms of complex networks. And the centrality indices, such
as betweenness, degree, have introduced to the algorithm of community finding
and some valuable results have obtained by many researchers. So we can ex-
pect that, there are many more centrality indices that can be used to design
community finding algorithms.

In the community finding algorithm based on Laplace matrix spectral decom-
position, we focus on the method of threshold selection of Euclidean distance.
And the method relies mainly on the ratios of nodes and edges of the largest
connected component to those of the whole network. Since the number of com-
munities is obtained before the Euclidean distances between nodes are calcu-
lated, and it is also an important coefficient of distance calculation formula, the
relationship between the number of communities and the method of selection
threshold is worth studying further.

For the evaluation criterion of community finding algorithm, lots of existed
results have focused on the complexity of runtime to measure the advantages and
disadvantages of an algorithm. And there are some other simple evaluation crite-
rions. For example, if an algorithm can be validated by some real-world networks,
such as Zachary network, whose community structures are known in advance or
those topologies are very simple, it is an effective one. In the past literature,
there is no use of the network topology to evaluate the algorithm of community
finding. We have mainly adopted the relationship between the power-law expo-
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nent of scale-free complex networks and the number of communities, and the
changes of network centrality indices of the original and reconstructed network,
to design the evaluation criterion in the chapter. Some issues have emerged about
the evaluation criterion immediately. Firstly, although the algorithm based on
the Laplace matrix spectral decomposition satisfies the evaluation criterion and
it is proved an effective algorithm, the comparison of different community find-
ing algorithms according to the evaluation criterion is still interesting. Secondly,
three network indices are selected as one of three conditions of the criterion to
measure community finding algorithm. So it is worth discussing whether many
other important network centrality indices can be competent for the task or not.
Lastly, as mentioned above, there are some important topology characteristics
of complex networks. Average shortest path length describes the distance from
arbitrary node to the other node in average, and can be as the measurement of
speed of information dissemination in the sense. If the value of average shortest
path length scales logarithmically or slower with the network size for a given
mean degree, the network shows the small-world effect [26]. And clustering co-
efficient reflects the cliquishness of the mean closest neighborhood of a network
node, iconically in the friendship network, the probability that your friend’s
friend is also your friend directly. However, we only introduce the degree distri-
bution of complex network to give some conditions in the criterion. Therefore, in
the evaluation criterion of community finding algorithm, the two characteristics
maybe serve as its relevant conditions through further analysis.

13.7 Conclusions

In this chapter, we have mainly presented some basis conceptions, such as com-
plex network, degree distribution, community structure, community finding algo-
rithm and network centrality index at first. Then, a new algorithm of community
finding based on Laplace matrix spectral decomposition is proposed. And the
key technology of the algorithm, the method of threshold selection of Euclidean
distances between nodes has been discussion. The evaluation criterion of algo-
rithms including three conditions is given according to the power-law exponent
of scale-free network and three network centrality indices. Finally, the algorithm
is implemented by the poster networks of a BBS forum in a period of time. And
three conditions are satisfied for the community finding algorithm, which proves
that it is an effective algorithm.

There are three major innovations in the chapter. One is combining scale-
free topology characteristic of complex network and network centrality indices
to analyze the algorithm of community finding. And the evaluation criterion of
community finding algorithm is also basis on the topology analysis of complex
network. It is the most important idea which is different from the previous
method distinctly. The Euclidean distance threshold in the algorithm of Laplace
matrix spectral decomposition is given by means of the analysis of ratio of nodes
and edges of the original network to that of the reconstructed network, which
is the second innovation. The third one is that, the relationship between the
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power-law exponent of scale-free network and the number of its communities is
expounded in detail, which can be considered as the deep embody about the hub
nodes of a network.
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Abstract. To understand the structural and functional properties of large-scale
complex networks, it is crucial to efficiently extract a set of cohesive subnetworks as
communities. There have been proposed several such community extraction methods
in the literature, including the classical k-core decomposition method and, more re-
cently, the k-clique based community extraction method. The k-core method, although
computationally efficient, is often not powerful enough for uncovering a detailed com-
munity structure and it only discovers coarse-grained and loosely connected commu-
nities. The k-clique method, on the other hand, can extract fine-grained and tightly
connected communities but requires a substantial amount of computational load for
large-scale complex networks. In this paper, we present a new notion of a subnetwork
called k-dense, and propose an efficient algorithm for extracting k-dense communities.
We applied our method to the three different types of networks assembled from real
data, namely, from blog trackbacks, word associations and Wikipedia references, and
demonstrated that the k-dense method could extract communities almost as efficiently
as the k-core method, while the qualities of the extracted communities are comparable
to those obtained by the k-clique method.

14.1 Introduction

In many scientific and engineering domains, complicated relational data struc-
tures are frequently represented by networks or, equivalently, graphs. For exam-
ple, WWW (World Wide Web) sites are often represented by hyperlink networks,
with pages as nodes and hyperlinks between pages as edges, the interactions be-
tween genes, proteins, metabolites and other small molecules in an organism are
represented by gene regulatory networks, and the relationships between people
and other social entities are characterized by social networks. Extracting a set of
� This work has been done while the first author was with NTT Communication

Science Laboratories.
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cohesive subnetworks as communities from those large-scale complex networks
plays an important role to understand their basic structures and functions [12],
and it hopefully inspires researchers to discover new knowledge and insights
underlying those complex networks.

For this task, two types of approaches have been studied extensively by many
researchers [5, 7, 9, 10, 14, 15]. One approach is based on clustering techniques
that divide all nodes of a network into several communities [5, 7, 15]. Another
approach is based on core decomposition techniques that extract only certain
cohesive portions as communities from a given network; thus the union of ex-
tracted communities is not necessarily equal to the original network [9, 10, 14].
The former approach is suitable for understanding the entire structure of a rela-
tively small network by regarding all nodes as equally important, while the latter
can be used for finding the major building blocks of a relatively large network.

In this paper, we focus on the core decomposition approach that extracts
certain cohesive portions as communities from a large-scale network. For this
task, we can employ the classical k-core decomposition method, or simply, the
k-core method [14], or the recently proposed method called CFinder [10] that
extracts a set of k-clique communities (therefore for simplicity, we call it the k-
clique method in this paper). However, the k-core method is usually not powerful
enough for uncovering the detailed community structure although it is compu-
tationally quite efficient, while the k-clique method often requires a substantial
amount of computational load for large-scale networks.

In this paper, we present a new concept of subnetwork called k-dense, and pro-
pose an efficient algorithm for extracting k-dense communities. In Section 14.2,
we present the notion of k-dense and k-dense communities as well as we review
the notions of k-core and k-clique communities. We also describe an efficient al-
gorithm for extracting k-dense communities. In Section 14.3, we first explain the
three types of networks used in our experiments, and then we describe criteria
for evaluating extracted communities. We then report our experimental results.
In Section 14.4, we discuss some related work and future directions.

14.2 Extracting k-Dense Communities

In this section, we present a new notion of a subnetwork called k-dense as well
as we review the notions of k-core and k-clique communities. We also describe
an efficient algorithm for extracting k-dense communities.

14.2.1 The k-Core Community

For a given network (or equivalently graph) G = (VG, EG), let VG = {1, · · · , N}
be a set of nodes (or vertices) and EG = {e1, · · · , eM} a set of links (or edges),
where em = {i, j} ⊂ VG and i �= j, meaning we focus on undirected networks
without self-links.

Now for a given node i in the network G, we denote FG(i) as a set of adjacent
nodes of i as follows:
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FG(i) = {j : {i, j} ∈ EG}. (14.1)

A subnetwork C(k) of G is called k-core if each node in C(k) has more than
or equal to (k − 1) adjacent nodes in C(k)1. More specifically, for a given order
k, the k-core is a subnetwork C(k) = (VC(k), EC(k)) consisting of the following
node set VC(k) ⊂ VG and link set VC(k) ⊂ VG:

VC(k) = {i : |FC(k)(i)| ≥ k − 1}, (14.2)

EC(k) = {em : em ⊂ VC(k)}. (14.3)

Here |A| denotes the number of elements in the set A. Hereafter we focus on
the subnetwork of maximum size with this property as C(k), and its connected
components Cs(k) (1 ≤ s ≤ SC(k)), each of which is referred to as a k-core
community. Here SC(k) denotes the number of communities (or connected com-
ponents) in C(k).

Figure 14.1 shows an example of k-core communities, where the subnetwork
C1(3) in the outer box is a 3-core community in which each node has at least
two adjacent nodes in C1(3), and C1(4) and C2(4) in the inner boxes are both
4-core communities.

C1(3)
C1(4) C2(4)

Fig. 14.1. An example of k-core communities

14.2.2 The k-Dense Community

For a given set of nodes V ⊂ VG, we denote a set of common adjacent nodes
FG(V ) of V that is a natural extension of FG(i) in Equation 14.1 as follows:

FG(V ) =
⋂
i∈V

FG(i). (14.4)

1 Our definition of k-core is, in fact, (k−1)-core in the conventional definition. We use
this definition for compatibility with the other core concepts.
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We propose that a subnetwork D(k) of G is called k-dense if each pair of
adjacent nodes in D(k) has more than or equal to (k − 2) common adjacent
nodes in D(k). More specifically, for a given order k, the k-dense is a subnetwork
D(k) = (VD(k), ED(k)) consisting of the following node set VD(k) ⊂ VG and link
set ED(k) ⊂ EG:

VD(k) =
⋃

em∈ED(k)

em, (14.5)

ED(k) = {em : |FD(k)(em)| ≥ k − 2}. (14.6)

Note that in this definition, the link em and the set of nodes {i, j} connected
by em are identified.

The rationale behind this definition is that when we group two nodes con-
nected with a link together into a same community, we need some solid evidence
or witness to support a strong positive relation between them: the fact that they
are just connected by a single link may not strong enough. The existence of
more common adjacent nodes in the same community suggests stronger positive
relation.

We can easily see that k-dense implies k-core, i.e., D(k) ⊂ C(k). This is
because |FD(k)(em)| ≥ k − 2 implies em ⊂ VC(k). In fact, if em = {i, j} and
|FD(k)(em)| ≥ k − 2, then the node i needs to have more than or equal to
(k − 2) adjacent nodes other than the node j. Since the nodes i and j are
adjacent, we can confirm that |FD(k)(i)| ≥ k − 1. Again we focus on the sub-
network of maximum size with this property as D(k), and its connected com-
ponents Ds(k) (1 ≤ s ≤ SD(k)), each of which is referred to as a k-dense
community.

Figure 14.2 shows an example of k-dense communities, where the subnetwork
D1(3) and D2(3) are both 3-dense communities in which each link has at least
one common adjacent node in D1(3) and D2(3) respectively. Please note that
the D2(3), which was first introduced as 4-core C2(4) in Figure 14.1, is in fact
4-dense, or more accurately, 4-clique. The definition of k-clique is described in
the next subsection.

D1(3) D2(3)

Fig. 14.2. An example of k-dense communities
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14.2.3 The k-Clique Community

A subnetwork Q(k) = (VQ(k), EQ(k)) of G consisting of k nodes is called k-clique
if each node pair in Q(k) is mutually adjacent. Since a k-clique is a complete
subnetwork of size k, we can easily see that a k-clique implies a k-dense and
k-core, i.e., Q(k) ⊂ D(k) ⊂ C(k). In contrast, a k-core or k-dense of size k is a
k-clique, i.e., |VC(k)| = k implies Q(k) = D(k) = C(k).

Q1(5)

Q2(5)

R1(5)
Fig. 14.3. An example of k-clique communities

Two k-cliques are called adjacent if they share (k − 1) nodes. The
k-clique community proposed by Palla et al. [10] is defined as a union of all
the k-cliques that can be reached from each other thorough a series of ad-
jacent k-cliques. Hereafter we denote each k-clique community as Rs(k) =
(VRs(k), ERs(k)). Note that the k-core C(k) (or the k-dense D(k)) is the union
of all k-core communities (or k-dense communities), each of which is also k-core
(or k-dense) itself. On the other hand, the union of all k-clique communities is
not itself a k-clique or a k-clique community. In this paper, we introduce a new
notion called a k-clique union R(k) in order to directly compare it with C(k) and
D(k). Namely, a k-clique union is defined as a subnetwork R(k) = (VR(k), ER(k))
constructed by the following operation:

R(k) = (
SR(k)⋃
s=1

VRs(k),

SR(k)⋃
s=1

ERs(k)). (14.7)

Figure 14.3 shows an example of a k-clique community, where the subnetwork
Q1(5) and Q2(5) are both 5-cliques, which share 4 nodes in common, resulting
in their union R(5) being a 5-clique community.

14.2.4 Higher-Level k-Dense Community

Because a link em can be identified as a 2-clique Q(2), we can reformulate the def-
inition of the k-dense subnetwork D(k) = (VD(k), ED(k)) given in Equation (14.6)
as follows:

∀Q(2) ⊂ D(k) ⇒ |FD(k)(VQ(2))| ≥ k − 2. (14.8)
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This implies that any pair of adjacent nodes in Q(2) needs to have more than
or equal to (k − 2) common adjacent nodes. By extending Equation (14.8) for
any h and h-clique Q(h) such that 1 ≤ h < k, we can define the h-level k-dense
subnetwork D(k; h) = (VD(k;h), ED(k;h)) as follows:

∀Q(h) ⊂ D(k; h)⇒ |FD(k;h)(VQ(h))| ≥ k − h (14.9)

By identifying Q(1) with a single node, D(k; 1) is identical to the k-core C(k),
i.e., D(k; 1) = C(k). On the other hand, by setting h = k − 1 we can easily
see that any node i in D(k; k − 1) belongs to at least one k-clique. This implies
that (k−1)-level k-dense D(k; k−1) is identical to the k-clique union R(k), i.e.,
D(k; k − 1) = R(k). Note that a (k − 1)-level k-dense community corresponds
to a union of k-clique communities that share at least one node. To summarize,
the k-dense together with its higher level extension can be regarded as a general
concept that naturally interpolates between the k-core and the k-clique union.

A higher-level k-dense community is a subnetwork of corresponding lower-level
k-dense community. Our preliminary experiments show that for many networks,
most of the higher-level k-dense communities with h > 2 are more or less ap-
proximated by the corresponding 2-level k-dense communities, while we need
a substantial amount of commutation load for extracting higher level k-dense
communities. Therefore, from a viewpoint of the applicability to large-scale net-
works, we should only focus on the 2-level k-dense and we refer it simply as
k-dense.

14.2.5 Other Notions of Subnetworks

Distance-based cliques that generalize the notion of a clique, such as an n-step
clique2, or an n-club are widely used in several settings of social network analysis
theory [3]. Here a subnetwork is called an n-step clique if and only if the geodesic
distance of any node pair in the original network is less than or equal to n, while
a subnetwork is called an n-club if and only if the diameter (the maximum
geodesic distance among all node pairs) of the subnetwork is less than or equal
to n. Clearly a 1-step clique or 1-club is nothing but a clique, and all nodes
in an n-step clique or n-club need not be adjacent for n ≥ 2. However, since
many real-world networks have small diameters, it is widely recognized that the
distance is a rather coarse measure to identify meaningful network structures.

A concept called n-plex generalizes the notion of a clique in another direc-
tion [3]. A subnetwork P (n) = (VP (n), EP (n)) is called an n-plex if and only if it
satisfies the following condition:

min
i∈VP (n)

{|FP (n)(i)| ≥ |VP (n)| − n}. (14.10)

2 In order to avoid confusion, we use the term “n-step clique” here, although the
same term “n-clique” is often used for this generalized clique as well.
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A clique is simply a 1-plex as a special case. Since finding maximum n-plexes
is NP-hard for all natural numbers n > 0, any approach based on the n-plex
would have some intrinsic limitation on applicability to large-scale networks.

14.2.6 The k-Core Extraction Algorithm

For a given core order k, we describe a basic algorithm for extracting a k-core
from a network G = (VG, EG). The basic idea is to recursively eliminate the
set of nodes that do not satisfy the k-core condition. The basic procedure for
calculating (VC(k), EC(k)) = Acore

k (VG, EG) is described as follows:

1. Initialize VC(k) = VG, EC(k) = EG;
2. Compute T = {i : |FC(k)(i)| < k − 1};
3. If T = ∅, output (VC(k), EC(k)) and terminate;
4. Set VC(k) = VC(k) − T , EC(k) = EC(k) − {em : em ∩ T �= ∅}, and

return to 2.

Here T denotes a set of nodes for elimination under the k-core condition.
The algorithm above extracts k-core for a fixed k. However, it is not realistic

to assume that we know an appropriate core order k in advance. Fortunately,
the maximum core order is bounded to maxi{FG(i)}, and thus by making use
of the property C(k + 1) ⊂ C(k), we can iteratively compute k-core for every k
quite efficiently as follows:

1. Initialize VC(1) = VG, EC(1) = EG, and set k = 2;
2. Compute (VC(k), ED(k)) = Acore

k (VC(k−1), EC(k−1));
3. If VC(k) = ∅, then terminate;
4. Set k = k + 1, and return to 2.

Note that extracting a k-core at k = 2 is equivalent to eliminating a set of
isolated nodes. Hereafter this method is referred to as the k-core method.

14.2.7 The k-Dense Extraction Algorithm

As mentioned earlier, by using the fact that D(k) ⊂ C(k), we can utilize the
k-core method for extracting a k-dense. The basic procedure for calculating
(VD(k), ED(k)) = Adense

k (VG, EG) is described as follows:

1. Initialize VD(k) = VG, ED(k) = EG;
2. Compute (VD(k), ED(k)) = Acore

k (VD(k), ED(k))
3. Compute L = {em : |FD(k)(em)| < k − 2};
4. If L = ∅, output (VD(k), ED(k)) and terminate;
5. Set ED(k) = ED(k) − L and return to 2.

Here L denotes a set of links for elimination under the k-dense condition.
By using the property D(k + 1) ⊂ D(k), we can iteratively compute k-dense

for every k as follows:
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1. Initialize VD(2) = VC(3), ED(2) = EC(3), and set k = 3;
2. Compute (VD(k), ED(k)) = Adense

k (VD(k−1), ED(k−1);
3. if VD(k) = ∅, then terminate;
4. Set k = k + 1, and return to 2.

In this procedure, the initial value for k is set to k = 3 because D(2) = C(2).
Hereafter this method is referred to as the k-dense method.

Please note that by using the property R(k) ⊂ D(k), it may be possible to con-
struct an efficient algorithm for extracting k-clique communities by utilizing the
k-dense method. Although finding all the k-cliques is NP -hard and intractable,
it may be computationally acceptable to first extract the set of k-dense com-
munities, and then only for a particular subset of interest from the set, extract
k-clique communities.

14.3 Evaluation by Experiments

In this section, we first describe three networks used in our experiments, and then
we describe criteria for evaluating extracted communities. Finally, we report our
experimental results.

14.3.1 Experimental Data and Evaluation Criteria

We have applied the three core extraction methods, the k-core method, the
k-dense method and the k-clique method, to three different types of networks
assembled from real data, namely, a trackback (TB) network obtained from a
Japanese Blog (Weblog) space [13], a word association network that was retrieved
and converted from [11] and also used by Palla et al in [10] to evaluate their
k-clique method called CFinder. an English Wikipedia reference network [17].
Hereafter these networks are referred to as Blog, Word and Wikipedia respec-
tively. Table 14.1 shows basic statistics of these networks.

As evaluation criteria, we have employed the total size of communities, the size
of the maximum community, the number of communities, and the normalized
entropy for measuring the distribution of each community size. Below we describe
some details of each criterion.

Let C(k), D(k) and R(k) be the set of communities extracted by the k-core
method, the k-dense method and the k-clique method respectively. More specif-
ically, for each order k we compare C(k) = {Cs(k) : 1 ≤ s ≤ SC(k)}, D(k) =

Table 14.1. Basic statistics of networks

network # nodes # links avg. # links

Blog 12,047 39,960 3.317
Word 7,207 31,784 4.410

Wikipedia 536,724 1,337,902 2.493
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{Ds(k) : 1 ≤ s ≤ SD(k)}, and R(k) = {Rs(k) : 1 ≤ s ≤ SR(k)}. Here SC(k), SD(k)
andSR(k) are the number of communities (or connected components) inC(k),D(k)
and R(k) respectively. Let X(k) be either C(k), D(k) or R(k), the total size of com-
munities means the number of nodes that belong to a union of extracted commu-
nities, i.e., |VX(k)|. Note that in the case of k-clique communities, some nodes may
belong tomultiple communities, butwe avoid their duplicate counts.The size of the
maximumcommunity and the number of communities correspond tomax{|V s

X(k)|}
and SX(k), respectively. The normalized entropy is a measure defined as follows:

E(X(k)) =
−1

log(SX(k))

SX(k)∑
s=1

|V s
X(k)|∑

s |V s
X(k)|

log
|V s

X(k)|∑
s |V s

X(k)|
. (14.11)

This measure is close to 1 when the variance in community sizes is small, i.e.,
community sizes |V s

X(k)| are almost the same, while it is close to 0 when one com-
munity becomes dominant i.e., X(k) consists of one extremely large community
and other much smaller ones. Note that we can define this measure E(X(k))
only when there exist more than one communities, i.e., SX(k) ≥ 2.

14.3.2 Evaluation Using the Blog Trackback Network

The k-core, k-dense and k-clique methods are applied to the Blog trackback
network labeled Blog in Table 14.1. Let kmax be the maximum core order, up
to which non-empty communities can be extracted. The results of the k-dense
method and the k-clique method both show that kmax = 15, while the result
of the k-core method shows kmax = 20. Figure 14.4(a) shows the total size of
the extracted communities, |VX(k)|, for each order k, obtained by the k-core
method (labeled as k-core), the k-dense method (labeled as k-dense) and the
k-clique method (labeled as k-clique) respectively. We can see that for each k,
the total sizes of communities obtained by the k-dense method and the k-clique
method are almost the same, while the total size of communities obtained by
the k-core method is substantially larger than both of them.

Figure 14.4(b) shows the size of the maximum community, max{|V s
X(k)|}, for

each order k obtained by the k-core, k-dense and k-clique methods. When k is
in the range of 7 ≤ k ≤ 13, the maximum sizes of communities obtained by the
k-dense and k-clique methods are almost the same, while the size obtained by
the k-core method is substantially larger than them. These experimental results
indicate that the results of the k-core method are not well balanced compared to
the other two methods in the sense that the k-core method is likely to produce
one giant community and other much smaller communities.

Figure 14.4(c) shows the number of extracted communities SX(k) for each order
k obtained by the k-core, k-dense and k-clique methods. It can be seen that the
number of communities obtained by the k-dense method is relatively smaller than
that obtained by the k-clique method when k ≤ 6, and as k becomes larger, the
difference between the two becomes much smaller. When k ≤ 6, the number of
communities extracted by the k-clique method is larger than 100 and the size of
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Fig. 14.4. Total size of communities (a), size of the maximum community (b), total
number of communities (c), and normalized entropy (d) of the blog trackback network

each community is small, which suggests that the k-clique method inconveniently
produces a large number of small communities. On the other hand, the number of
communities extracted by the k-core method is at most 10, which suggests that it
may be insufficient to analyze detailed community structure.

Figure 14.4(d) shows the normalized entropy E(X(k)) for each order k ob-
tained by the k-core, k-dense and k-clique methods respectively. Here only the
results when k is in the range of 3 ≤ k ≤ 14 are displayed because this measure
is valid only when the number of communities is more than one. This figure
indicates that the variance in community sizes is small when extracted by the k-
dense method or the k-clique method, while the variance is large when extracted
by the k-dense method, especially when k is small.

14.3.3 Evaluation Using the Word Association Network

The k-core, k-dense and k-clique methods are applied to the word association
network labeled Word in Table 14.1. The results of the k-dense method and the
k-clique method both show that kmax = 7, while the result of the k-core method
shows that kmax = 8.
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Figure 14.5(a), (b) and (c) respectively shows the total community size
|VX(k)|, the maximum community size max{|V s

X(k)|} and the number of com-
munities SX(k) for each order k for the three core extraction methods.

We can observe that although the statistics of these two networks shown in
Table 14.1 are different, the experimental results of these two networks are quite
similar. Namely, the total sizes of the communities extracted by the k-dense
method and the k-clique method are the same for each k. When 4 ≤ k ≤ 5, the
maximum community size obtained by the k-dense method is somewhat larger
than that obtained by the k-clique method, while the number of communities
extracted by the k-clique method is larger than 100. Finally, the k-core method
can extract only one community for each k, and the total size of the communities
and the size of the maximum community are larger than a few thousands even
at the maximum order k = 8.

Figure 14.5(d) shows the normalized entropy E(X(k)) for each order k ob-
tained by the k-dense and k-clique methods. In this figure, we can observe a
remarkable difference between the two methods when k = 4 and the number of
communities obtained by the k-clique method is almost one thousand.
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Fig. 14.5. Total size of communities (a), size of the maximum community (b), total
number of communities (c), and normalized entropy (d) of the word association network
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Fig. 14.6. An visualized example of k-dense and k-clique communities extracted from
the word association network

Figure 14.6 shows visualization results of communities extracted by the k-
dense method and the k-clique method at k = 6. Here the spring method pro-
posed by Kamada and Kawai [8] is employed for visualization. As shown in
this figure, the k-dense method extracts the subnetwork as only one community,
while the k-clique method decomposes it into the three communities, allowing
node overlaps, i.e., the node labeled “MUSIC”, for example, belongs to all three
6-clique communities. In this example, we admit that it is arguable whether we
should allow node overlapping or not and whether we should decompose it into
three communities or treat it as one community. At least by directly visualizing
the subnetwork extracted by the k-dense method, which is substantially easier
than visualizing the whole original network, it would be possible for us to easily
find such substructures without farther decompositions. In addition, this sub-
network is an example that any of the h-level k-dense community with h ≥ 2 is
the same.

14.3.4 Evaluation Using Wikipedia Reference Network

We have applied the k-dense and k-core methods to the Wikipedia reference
network labeled Wikipedia in Table 14.1. It was not possible, at least for us,
to apply the k-clique method by using the CFinder program [10] to this large
Wikipedia reference network with 536,724 nodes and 1,337,902 links. The result
of the k-dense method shows that kmax = 36, while the result of the k-core
method shows that kmax = 48.
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Figure 14.7(a), (b) and (c) respectively shows the total community size
|VX(k)|, the maximum community size max{|V s

X(k)|} and the number of com-
munities SX(k) for each order k for the k-core and k-dense methods. As shown
in these figures, the results are similar to those of the previous two networks.
Namely, in comparison to the k-dense method, the k-core method extracts com-
munities with substantially larger sizes. As for the maximum community size
shown in Figure 14.7(b), the k-dense method extracts a 36-clique at k = 12,
and it is the maximum community up to k = 36. The k-core method extracts
the maximum community whose size is more than or around one thousand even
when k is large (up to around 30).

As shown in Figure 14.7(c), the number of communities extracted by the
two methods are the same when 23 ≤ k ≤ 31. In fact, in this range of k, the
communities extracted by the k-core and the k-dense methods are more or less
equivalent and they consist of a clique with a few additional nodes. An example
of such cliques is a complete graph that consists of nodes starting from “List of
authors by name A” to “List of authors by name Z”.
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Fig. 14.7. Total size of communities (a), size of the maximum community (b), total
number of communities (c), and normalized entropy (d) of the Wikipedia reference
network
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Figure 14.7(d) shows the normalized entropy E(X(k)) for each order k for
the two methods respectively. Again we can observe that for k ≥ 6 the k-dense
method extracts a set of communities with almost equal size, while the sizes of
communities extracted by the k-core method are unbalanced.

14.4 Discussion and Related Work

The CFinder program provided by Palla et al. [10] as a part of their k-clique
method, first enumerates maximal cliques from a given network and then con-
structs the clique-clique overlap matrix by counting the number of common
nodes between each pair of cliques, and then it extracts k-clique communities
for a given k. Here we can alternatively use Carraghan and Pardalos’ algorithm
[1] or Applegate and Johnson’s dfmax program [4] for calculating the maximum
clique, and several methods including an algorithm proposed by Tsukiyama et
al. [16] for enumerating maximal cliques.

However, this type of problems is known to be NP-hard [6]. Moreover, the
number of maximal cliques becomes extremely large for certain types of large-
scale networks. Actually in our own experiments using the Wikipedia reference
network described above, the CFinder program could not proceed its calculation
at the step of the clique-clique overlap matrix calculation. In contrast, the k-
dense method proposed in this paper can produce all of the communities of all
possible k’s in less than one minute. Here all of our experiments were done by
using a Dell PC with an Intel 3.4GHz Xeon processor with 2GB of memory.

The computational complexity of the k-dense method is closely related to that
of the clustering coefficients calculation, which is widely used to characterize
complex networks [12]. Because the k-dense condition requires that each link
must be shared by at least (k − 2) different node-link triangles that are formed
by the link and its common adjacent node, the k-dense calculation as well as
the calculation of the clustering coefficients, involves in repeatedly counting the
number of those triangles in a network. Although the number of triangles for
each link changes and needs to be recalculated as nodes and links that do not
satisfy the k-dense condition are eliminated, the recalculation can be done quite
efficiently because only the links in the neighborhoods of the eliminated nodes
and links are affected by the elimination.

In this paper, for simplicity we focused on only undirected networks without
self-connections, i.e., we treated each link as a set of nodes. However, it is possible
to extend our framework to coping with directed networks. As one such approach,
we can follow the work by Batagelj and Zaversnik [2], in which they extend the
notion of a k-core to directed networks. As another direction, we can consider
a problem to extract bipartite cores or cliques. One pioneering work in this
direction includes Web Trawling [9].

14.5 Conclusion

In this paper, we presented a new concept of a subnetwork called k-dense, and
we then derived an efficient algorithm for extracting k-dense communities. In our
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experiments using three types of real networks assembled from blog trackbacks,
word associations and Wikipedia references, we demonstrated that the k-dense
method could extract communities almost as efficiently as the k-core method,
while the qualities of the extracted communities are comparable to those ob-
tained by the k-clique method. we plan to perform more extensive experiments
using a wider variety of networks in order to clarify relative strength and weak-
ness of the k-dense method.
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Abstract. Lists of ordered objects are widely used as representational forms. Such ordered ob-
jects include Web search results or best-seller lists. Clustering is a useful data analysis technique
for grouping mutually similar objects. To cluster orders, hierarchical clustering methods have
been used together with dissimilarities defined between pairs of orders. However, hierarchical
clustering methods cannot be applied to large-scale data due to their computational cost in terms
of the number of orders. To avoid this problem, we developed an k-o’means algorithm. This al-
gorithm successfully extracted grouping structures in orders, and was computationally efficient
with respect to the number of orders. However, it was not efficient in cases where there are too
many possible objects yet. We therefore propose a new method (k-o’means-EBC), grounded on
a theory of order statistics. We further propose several techniques to analyze acquired clusters of
orders.

15.1 Introduction

The term order indicates a sequence of objects sorted according to some property. Such
orders are widely used as representational forms. For example, the responses from Web
search engines are lists of pages sorted according to their relevance to queries. Best-
seller lists, which are item-sequence sorted according to sales volume, are used on many
E-commerce sites.

Orders have also been exploited for sensory test of human respondents’ sensations,
impressions, or preference. For such a kind of surveys, it is typical to adopt a scoring
method. In this method, a respondents’ sensation is measured using a scale on which
extremes are represented by antonymous words. One example is a five-point-scale on
which 1 and 5 indicate don’t prefer and prefer, respectively. If one very much prefers
an apple, he/she rates the apple as 5. Though this scoring method is widely used, it
is not the best way for all types of sensory test. For example, as pointed out in [1],
a trained expert, e.g., a wine taster, can maintain a consistent mapping from his/her
sensation level to rating score throughout a given session. However, users’ mappings
generally change for each response, especially if the intervals between responses are
long. Hence, even if two respondents rate the same item at the same score, their true
degrees of sensation may not be the same. When effects of such demerits cannot be
ignored, a ranking method is used. In this method, respondents show their degree of
sensation by orders, i.e., object sequences according to the degree of a target sensation.

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 261–279.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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In this case, respondents’ sensation patterns are represented by orders, and analysis
techniques for orders are required.

Orders are also useful when the absolute level of observations cannot be calibrated.
For example, when analyzing DNA microarray data, in order that the same fluoresce
level represents the same level of gene expression, experimental conditions must be
calibrated. However, DNA databases may consist of data sampled under various condi-
tions. Even in such cases, the higher level of fluoresce surely corresponds to the higher
level of gene expression. Therefore, by treating the values in the microarray data as or-
dinal values, non-calibrated data would be processed. Fujibuchi et al. adopted such use
of orders in searching a gene expression database for similar cell types [2].

And clustering is the task of partitioning a sample set into clusters having the prop-
erties of internal cohesion and external isolation [3]. This method is a basic tool for
exploratory data analysis. Clustering methods for orders are useful for revealing the
group structure of data represented by orders such as those described above.

To cluster a set of orders, classical clustering has been mainly used [4, chapter 2].
In these studies, clustering methods were applied to ordinal data of a social survey,
sensory test, etc. These data sets have been small in size; the number of objects to be
sorted and the length of orders are at most ten, and the number of orders to be clustered
are at most thousands. This is because an scoring method has been used to acquire
responses for a large-scale survey. Responses can easily be collected by requesting for
respondents to mark on rating scales that are printed on paper questionnaire forms.
On the other hand, using printed questionnaire forms is not appropriate for ranking
method, because respondents must rewrite entire response orders when they want to
correct them. Therefore, in a ranking method, respondents generally reply by sorting
real objects. For example, respondents are requested to sort glasses of wine according
to their preference. However, it would be costly to prepare so many glasses. Due to this
reason, ranking method has been used for a small-scale survey, even if its advantage
to an scoring method is known as described above. But now, adoption of computer
interface clear this obstacle in using a ranking method. Respondents can sort virtual
objects instead of real objects. Further, methods to implicitly collect preference orders
have proposed [5, 6]. These technical progress has made it easier to collect the large
number of ordinal data.

We can now collect a large-scale data that consist of orders. However, current tech-
niques for clustering orders are not fully scalable. For example, to cluster a set of orders,
dissimilarities are first calculated for all pairs of orders, and agglomerative hierarchical
clustering techniques are applied. This approach is computationally inefficient, because
computational cost of agglomerative hierarchical clustering is O(N2 log(N))) under
non-Euclidean metric [7], where N is the number of orders to be clustered. To alleviate
this inefficiency in terms of N , we proposed a k-means-type algorithm k-o’means in
our previous work [8]. The computational complexity was reduced to O(N) in terms of
the number of orders. Though this method successfully extracted a grouping structure in
a set of orders, it was not efficient yet, if the number of possible objects to be sorted was
large. In this paper, to alleviate this inefficiency, we propose a new method, k-o’means-
EBC. Note that EBC means Expected Borda Count, which is a classic method to
find an order so as to be as concordant as possible with a given set of orders. And
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incompleteness in orders are processed based on a theory of order statistics. Addition-
ally, we propose several methods for interpreting the clusters of orders.

We formalize this clustering task in Section 15.2. Our previous and new cluster-
ing methods are presented in Section 15.3. The experimental results are shown in
Sections 15.4 and 15.5. Section 15.6 summarizes our conclusions.

15.2 Clustering Orders

In this section, we formalize the task of clustering orders. We start by defining our ba-
sic notations regarding orders. An object, entity, or substance to be sorted is denoted
by xj . The universal object set, X∗, consists of all possible objects, and L∗ is defined
as |X∗|. The order is denoted by O = xa� · · · �xj� · · · �xb. Note that subscript j
of x doesn’t mean “The j-th object in this order,” but that “The object is uniquely in-
dexed by j in X∗.” The order x1�x2 represents “x1 precedes x2.” An object set X(Oi)
or simply Xi is composed of all objects in the order Oi. The length of Oi, i.e., |Xi|,
is shortly denoted by Li. An order of all objects, i.e., Oi s.t. X(Oi)=X∗, is called
a complete order; otherwise, the order is incomplete. Rank, r(Oi, xj) or simply rij ,
is the cardinal number that indicates the position of the object xj in the order Oi. For
example, for Oi=x1�x3�x2, r(Oi, x2) or ri2 is 3. Two orders, O1 and O2, are concor-
dant if ordinal relations are consistent between any object pairs commonly contained in
these two orders; otherwise, they are discordant. Formally, for two orders, O1 and O2,
consider an object pair xa and xb such that xa, xb∈X1∩X2, xa �=xb. We say that the
orders O1 and O2 are concordant w.r.t. xa and xb if the two objects are placed in the
same order, i.e., (r1a − r1b)(r2a − r2b) ≥ 0; otherwise, they are discordant. Further,
O1 and O2 are concordant if O1 and O2 are concordant w.r.t. all object pairs such that
xa, xb∈X1∩X2, xa �=xb.

A pair set Pair(Oi) is composed of all the object pairs xa�xb, such that xa pre-
cedes xb in the order Oi. For example, from the order O1=x3�x2�x1, three object
pairs, x3�x2, x3�x1, and x2�x1, are extracted. For a set of orders S, the Pair(S) is
composed of all pairs in Pair(Oi) of Oi ∈ S. Note that if the same object pairs are
contained in numbers of Pair(Oi), these pairs are multiply added into the Pair(S). For
example, if the same object pairs x1�x2 are extracted from O5 and O7 in S, both two
ordered pairs x1�x2 are multiply included in Pair(S).

The task of clustering orders is as follows. A set of sample orders, S = {O1, O2, . . . ,
ON}, N ≡ |S|, is given. Note that sample orders may be incomplete, i.e., Xi �=Xj , i �=
j. In addition, Oi and Oj can be discordant. The aim of clustering is to divide the
S into a partition. The partition, π = {C1, C2, . . . , CK}, K = |π|, is a set of all
clusters. Clusters are mutually disjoint and exhaustive, i.e., Ck ∩ Cl = ∅, ∀k, l, k �= l
and S = C1∪C2∪· · ·∪CK . Partitions are generated such that orders in the same cluster
are similar (internal cohesion), and those in different clusters are dissimilar (external
isolation).

15.2.1 Similarity between Two Orders

Clusters are defined as a collection of similar orders; thus, the similarity measures be-
tween two orders are required. Spearman’s ρ [9, 4] is one such measure, signifying the
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correlation between ranks of objects. The ρ between two orders, O1 and O2, consisting
of the same objects (i.e., X ≡ X(O1) = X(O2)) is defined as:

ρ =

∑
xj∈X

(
r1j − r̄1

)(
r2j − r̄2

)
√∑

xj∈X

(
r1j−r̄1

)2
√∑

xj∈X

(
r2j−r̄2

)2
,

where r̄i = (1/L)
∑

xj∈X rij , L=|X |. If no tie in rank is allowed, this can be calculated
by the simple formula:

ρ = 1−
6

∑
xj∈X

(
r1j − r2j

)2

L3 − L
. (15.1)

The ρ becomes 1 if the two orders are concordant, and −1 if one order is the reverse of
the other order. Observing Equation (15.1), this similarity depends only on the term

dS(O1, O2) =
∑

xj∈X

(r1j − r2j)
2
. (15.2)

This is called Spearman’s distance. If two or more objects are tied, we give the same
midrank to these objects [4]. For example, consider an order x5�x2∼x3 (“∼” denotes
a tie in rank), in which x2 and x3 are ranked at the 2nd or 3rd positions. In this case, the
midrank 2.5 is assigned to both objects.

Another widely used measure of the similarity of orders is Kendall’s τ . Intuitively,
this is defined as the number of concordant object pairs subtracted by that of discordant
pairs, and then it is normalized. Formally, Kendall’s τ is defined as

τ = 1
L(L−1)/2

∑
xa�xb∈Pair(O1)

sgn
(
(r1a−r1b)(r2a−r2b)

)
, (15.3)

where sgn(x) is a sign function that takes 1 if x>0, 0 if x=0, and −1 otherwise. Many
other types of similarities between orders have been proposed (see [4, chapter 2]), but
the above two are widely used and have been well studied.

In this paper, we adopt Spearman’s ρ rather than Kendall’s τ because of the following
reasons: First, these two measures have similar properties. Both measures of similarities
between two random orders asymptotically follow normal distribution as the length
of the orders grows. Additionally, these are highly correlated, because the difference
between the two measures is bounded by Daniels’ inequality [9]:

−1 ≤ 3(L + 2)
L− 2

τ − 2(L + 1)
L− 2

ρ ≤ 1.

Second, Spearman’s ρ can be calculated more quickly. All of the object pairs have to
be checked to derive Kendall’s τ , so O(L2) time is required. In the case of Spear-
man’s ρ, the most time consuming task is sorting objects to decide their ranks; thus, the
time complexity is O(L log L). Further, the central orders under Spearman distance is
tractable, but the derivation under Kendall’s distance is NP-hard [10].

For the clustering task, distance or dissimilarity is more useful than similarity. We
defined a dissimilarity between two orders based on ρ:
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dρ(O1, O2) = 1− ρ(O1, O2). (15.4)

Since the range of ρ is [−1, 1], this dissimilarity ranges [0, 2]. This dissimilarity
becomes 0 if the two orders are concordant.

15.3 Methods

Here, we describe exiting clustering methods and our new clustering method.

15.3.1 Hierarchical Clustering Methods

In the literature of psychometrics, questionnaire data obtained by a ranking method have
been processed by traditional clustering techniques [4]. First, for all pairs of orders in
S, the dissimilarities in Section 15.2.1 are calculated, and a dissimilarity matrix for S is
obtained. Next, this matrix can be clustered by standard hierarchical clustering methods,
such as the group average method. In these survey researches, the size of the processed
data set is rather small (N < 1000, L∗ < 10, Li < 10). Therefore, hierarchical
clustering methods could cluster order sets, even though the time complexity of these
methods is O(N2 log(N)) under non-Euclidean metric [7] and is costly. However, these
method cannot be applied to a large-scale data, due to their computational cost.

Additionally, when the number of objects, L∗, is large, it is hard for respondents
to sort all objects in X∗. Therefore, sample orders are generally incomplete, i.e.,
X(Oi) ⊂ X∗, the dissimilarities cannot be calculated because the dissimilarity mea-
sures are defined between two orders consisting of the same objects. One way to deal
with incomplete orders is to introduce the notion of an Incomplete Order Set (IOS)1 [4],
which is defined as a set of all possible complete orders that are concordant with the
given incomplete order. Given the incomplete order O that consists of the object set X ,
an IOS is defined as

ios(O) = {O∗
i |O∗

i is concordant with O, X(O∗
i ) = X∗}.

This idea is not fit for large-scale data sets because the size of the set is (L∗!/L!), which
grows exponentially in accordance with L∗. Additionally, there are some difficulties in
defining the distances between the two sets of orders. One possible definition is to adopt
the arithmetic mean of the distances between orders in each of the two sets. However,
this is not distance because d(iosa, iosa) may not be 0. Therefore, more complicated
distance, i.e., Hausdorff distance, has to be adopted.

Since the above IOS cannot be derived for a large-scale data set, we adopted the
following heuristics in this paper. In such cases, the dissimilarity between the orders is
determined based on the the objects included in both. Take, for example, the following
two orders:

O1 =x1�x3�x4�x6, O2 =x5�x4�x3�x2�x6.

1 In [4], this notion is referred by the term incomplete ranking, but we have adopted IOS to insist
that this is a set of orders.
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From these orders, all objects that are not included in both orders are eliminated. The
generated orders become:

O′
1 = x3�x4�x6, O′

2 = x4�x3�x6.

The ranks of objects in these orders are:

r(O′
1, x3)=1, r(O′

1, x4)=2, r(O′
1, x6)=3;

r(O′
2, x3)=2, r(O′

2, x4)=1, r(O′
2, x6)=3.

Consequently, the Spearman’s ρ becomes

ρ = 1−
6
(
(1−2)2 + (2−1)2 + (3−3)2

)
33 − 3

= 0.5.

If no common objects exists between the two orders, ρ = 0 (i.e., no correlation).

15.3.2 k-o’means-TMSE (Thurstone Minimum Square Error)

In [8], we proposed a k-o’means algorithm as a clustering method designed to process
orders. To differentiate our new algorithm described in detail later, we call it by a k-
o’means-TMSE algorithm.

A k-o’means-TMSE in Figure 15.1 is similar to the well-known k-means algorithm
[11]. Specifically, an initial cluster is refined by the iterative process of estimating
new cluster centers and the re-assigning of samples. This process is repeated until no
changes in the cluster assignment is detected or the pre-defined iteration time is reached.
However, different notions of dissimilarity and cluster centers have been used to handle
orders. For the dissimilarity d(Ōk, Oi), equation (15.4) was used in step 4. As a cluster
center in step 3, we used the following notion of a central order [4]. Given a set of

Algorithm k-o’means(S, K, maxIter)
S = {O1, . . . , ON}: a set of orders
K: the number of clusters
maxIter: the limit of iteration times

1) S is randomly partitioned into a set of clusters: π = {C1, . . . , CK},
π′ := π, t := 0.

2) t := t + 1, if t > maxIter goto step 6.
3) for each cluster Ck ∈ π,

derive the corresponding central order Ōk .
4) for each order Oi in S,

assign it to the cluster: arg minCk d(Ōk, Oi).
5) if π = π′ then goto step 6; else π′ := π, goto step 2.
6) output π.

Fig. 15.1. k-o’means algorithm
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orders Ck and a dissimilarity measure between orders d(Oa, Ob), a central order Ōk is
defined as the order that minimizes the sum of dissimilarities:

Ōk = arg min
O

∑
Oi∈Ck

d(O, Oi). (15.5)

Note that the order Ōk consists of all the objects in Ck, i.e., XCk
= ∪Oi∈Ck

X(Oi).
The dissimilarity d(Ōk, Oi) is calculated over common objects as in Section 15.3.1.
However, because Xi ⊆ X(Ōk), the dissimilarity can always be calculated over Xi.
Unfortunately, the optimal central order is not tractable except for a special cases. For
example, if using a Kendall distance, the derivation of central orders is NP-hard even if
all sample orders are complete [10].

Therefore, many approximation methods have been developed. However, to use as a
sub-routine in a k-o’means algorithm, the following two constraints must be satisfied.
First, the method must deal with incomplete orders that consist of objects randomly
sampled from X∗. In [12], they proposed a method to derive a central order of top k
lists, which are special kinds of incomplete orders. Top k list is an order that consists
of the most preferred k objects, and the objects that are not among the top k list are
implicitly ranked lower than these k objects. That is to say, the top k objects of a hidden
complete order are observed. In our case, objects are randomly sampled, and such a
restriction is not allowed. Second, the method should be executed without using iterative
optimization techniques. Since central orders are derived K times in each loop of the
k-o’means algorithm, the derivation method of central orders would seriously affect
efficiency if it adopts the iterative optimization.

To our knowledge, the method satisfying these two constraints is the following one
to derive the minimum square error solution under a generative model of Thurstone’s
law of comparative judgment [13]. Because we used this method to derive central or-
ders, we call this clustering algorithm by the k-o’means-TMSE (Thurstone Minimum
Square Error) algorithm. We describe this method for deriving central orders. First, the
probability Pr[xa � xb] is estimated. The pair set of Pair(Ck) in Section 15.2 is gen-
erated from Ck in step 3 of k-o’means-TMSE. Next, we calculate the probabilities for
every pair of objects in Ck:

Pr[xa � xb] =
|xa � xb|+ 0.5

|xa � xb|+ |xb � xa|+ 1
,

where |xa � xb| is the number of the object pairs, xa � xb, in the Pair(Ck). These
probabilities are applied to a model of Thurstone’s law of comparative judgment. This
model assumes that scores are assigned to each object xl, and an order is derived by
sorting according to these scores. Scores follow a normal distribution; i.e., N(µl, σ),
where µl is the mean score of the object xl, and σ is a common constant standard
deviation. Based on this model, the probability that object xa precedes the xb is

Pr[xa�xb] =
∫ ∞

−∞
φ(

t − µa

σ
)
∫ t

−∞
φ(

u − µb

σ
)du dt

= Φ

(
µa − µb√

2σ

)
, (15.6)
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where φ(·) is a normal distribution density function, and Φ(·) is a normal cumulative
distribution function. Under the minimum square error criterion of this model [14], µ′

l,
which is a linearly transformed image of µl, is analytically derived as

µ′
l =

1
|XCk

|
∑

x∈XCk

Φ−1(Pr[xl � x]
)
, (15.7)

where XCk
=

⋃
Oi∈Ck

Xi. The value of µ′
l is derived for each object in XCk

. Finally,
the central order Ōk can be derived by sorting according to the corresponding µ′

l. Be-
cause the resultant partition by k-o’means-TMSE is dependent on the initial cluster, this
algorithm is run multiple times, randomly changing the initial cluster; then, the partition
minimizing the following total error is selected:∑

Ck∈π

∑
Oi∈Ck

d(Oi, Ōk). (15.8)

This k-o’means-TMSE could successfully find the cluster structure in a set of incom-
plete orders due to the following reason: Because the dissimilarity in Section 15.3.1
was measured between two orders, the precision of the dissimilarities was unstable. On
the other hand, in the case of k-o’means-TMSE, central orders are calculated based on
the |Ck| orders. |Ck| is generally much larger than two, and much more information
is available; thus, the central order can be stably calculated. The dissimilarity between
the central orders and each sample order can be stably measured, too, because all of
objects in a sample order always exist in the corresponding central order and so the full
information in the sample orders can be considered.

However, the k-o’means-TMSE is not so efficient in terms of time and memory com-
plexity. Time or memory complexity in N and K is linear, and these are efficient. How-
ever, complexity in terms of L∗ is quadratic, and further, the constant factor is rather
large due to the calculation of the inverse function of a normal distribution. Due to this
inefficiency, this algorithm cannot be used if L∗ is large. To overcome this inefficiency,
we propose a new method in the next section.

15.3.3 k-o’means-EBC (Expected Borda Count)

To improve efficiency in computation time and memory requirement, though we used
the k-o’means framework in Figure 15.1 and the dissimilarity measure dρ of equa-
tion (15.4) in step 4 of Figure 15.1, we employed other types of derivation procedures
for the central orders.

Below, we describe this derivation method for a central order Ōk of a cluster Ck

in step 3 of Figure 15.1. We call this the Expected Borda Count(EBC) method, and
our new clustering method is called a k-o’means-EBC algorithm. The Borda Count
method is used to derive central orders from complete orders; we modified this so as to
make it applicable to incomplete orders. The Borda Count method [15] was originally
developed for determining the order of candidates in an election from a set of ranking
votes. A set of complete orders, Ck, is given. First, for each object xj in X∗, the vote
count is calculated:
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vote(xj) =
∑

Oi∈Ck

(
L∗ − rij + 1

)
.

Then, a central order is derived by sorting objects xj ∈ X∗ in descending order of
vote(xj). Clearly, this method is equivalent to sorting the objects in ascending order of
the following mean ranks:

r̄j =
1
|Ck|

∑
Oi∈Ck

rij . (15.9)

If all sample orders are complete and Spearman’s distance is used, it is known that the
central order derived by the above Borda Count optimally minimizes Equation (15.5)
[4, theorem 2.2].

Because all sample orders are complete, Spearman’s distance is proportional to the
distance dρ. Therefore, even in the case that dρ is used as dissimilarity, the optimal
central order can be derived by this Borda Count method. This optimal central order
can also be considered as a maximum likelihood estimator of the Mallows-θ model
[16]. The Mallows-θ model is a distribution model of the complete order O, and is
defined as

Pr[O; O0, θ] ∝ exp(θdS(O0, O)), (15.10)

where the parameters θ and O0 are called a dispersion parameter and a modal order,
respectively.

Unfortunately, this original Borda Count method cannot be applied to incomplete
orders. To cope with incomplete orders, we must show the facts known in the order
statistics literature. First, we assume that there is hidden complete order O∗

h which is
randomly generated. A sample order Oi ∈ Ck is generated by selecting objects from
this O∗

h uniformly at random. That is to say, from a universal object set X∗, Li objects
are sampled without replacement; then, Oi is generated by sorting these objects so as
to be concordant with O∗

h. Now we are given Oi generated through this process. In this
case, the complete order O∗

h follows the distribution:

Pr[O∗
h|Oi] =

{
Li!
L∗! if O∗

h and Oi are concordant,

0 otherwise.
(15.11)

Based on the theory of order statics from a without-replacement sample [17, sec-
tion 3.7], if an object xj is contained in Xi, the conditional expectation of ranks of
the object xj in the order O∗

h given Oi is

E[r∗j |Oi] = rij
L∗ + 1
Li + 1

, if xj ∈ Xi, (15.12)

where the expectation is calculated over all possible complete orders, O∗
h, and r∗j ≡

r(O∗
h, xj). If an object xj is not contained in Xi, the object is at any rank in the hidden

complete order uniformly at random; thus, an expectation of ranks is

E[r∗j |Oi] =
1
2
(L∗ + 1), if xj /∈ Xi. (15.13)
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Next, we turn to the case where a set of orders, Ck, consists of orders independently
generated through the above process. Each Oi ∈ Ck is first converted to a set of all com-
plete orders; thus, the total number of complete orders is L∗!|Ck|. For each complete
order, we assign weights that follow equation (15.11). By the Borda Count method, an
optimal central order for these weighted complete orders can be calculated. The mean
rank of xj (equation (15.9)) for these weighted complete orders is

E[r̄j ] =
1
|Ck|

∑
Oi∈Ck

∑
O∗

h∈S(L∗)

Pr[O∗
h|Oi]r(O∗

h, xj)

=
1
|Ck|

∑
Oi∈Ck

E[r∗j |Oi], (15.14)

where S(L∗)2 is a set of all complete orders. A central order is derived by sorting
objects xj ∈ XCk

in ascending order of the corresponding E[r̄j ]. Since objects are
sorted according to the means of expectation of ranks, we call this method an Expected
Borda Count (EBC).

A central order derived by an EBC method is optimal if the distance d(Oi, Ōk) is
measured by ∑

O∗
h∈S(L∗)

Pr[O∗
h|Oi]dS(O∗

h, Ōk). (15.15)

Hence, in step 4 of Figure 15.1, not dρ, but this equation (15.15) should be used. How-
ever, it is intractable to compute equation (15.15), because its computational complex-
ity is O(L∗(L∗!/Li!)). Therefore, we adopt dρ, and it empirically performed well, as
is shown later. Furthermore, if all sample orders are complete, dρ is compatible with
equation (15.15). Note that we also tried

d(Ō, Oi)
∑

xj∈X∗

(r(Ōk , xj)− E[r∗j |Oi])
2
,

but empirically, it performed poorly.
The time complexity of a k-o’means-EBC is

O
(
K max(NL̄ log(L̄), L∗ log L∗)

)
, (15.16)

where L̄ is the mean of Li over S. First, in step 3 of Figure 15.1, the K central orders
are derived. For each cluster, O((N/K)L̄) time is required for the means of expected
ranks and O(L∗ log L∗) time for sorting objects. Hence, the total time required for
deriving K central orders is O(max(NL̄, KL∗ log L∗)). Second, in step 4, N orders
are classified into K clusters. Because O(L̄ log L̄) time is required for calculating one
dissimilarity, O(NL̄ log(L̄)K) time is required in total. The number of iterations is
constant. Consequently, the total complexity becomes equation (15.16).

Note that the uniformity assumption of missing objects might look too strong. How-
ever, in the case of a questionnaire survey by ranking methods, the objects to be ranked
by respondents can be controlled by surveyors.

2 S(L∗) is equivalent to a permutation group of order L∗.
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Further, if all the sample orders are first converted into the expected rank vectors,
〈E[r∗1 |Oi], . . . , E[r∗L∗ |Oi]〉, then an original k-means algorithm is applied to these vec-
tors. One might suppose that this k-means is equivalent to our k-o’means-EBC, but
this is not the case. A k-means is different from this k-o’means-EBC in terms of the
derivation of centers; In the k-means case, the mean vectors of the expected ranks are
directly used as cluster centers; in a k-o’means case, these means are sorted and con-
verted to rank values. Therefore, in the k-means case, the centers that correspond to
the same central orders are simultaneously kept during clustering. For example, two
mean rank vectors 〈1.2, 1.5, 4.0〉 and 〈1, 5, 10〉, correspond to the same central order
x1 � x2 � x3, but these two vectors are not differentiated. On the other hand, in
a k-o’means-EBC algorithm, they are considered as equivalent, and thus we suppose
that the k-o’means-EBC algorithm can find the cluster structure reflecting the ordinal
similarities among data.

15.4 Experiments on Artificial Data

We applied the algorithms in Section 15.3 to two types of data: artificially generated
data and real questionnaire survey data. In the the former experiment, we examined
the characteristics of each algorithm. In the latter experiment of the next section, we
analyzed a questionnaire survey data on preferences in sushi.

15.4.1 Evaluation Criteria

The evaluation criteria for partitions was as follows. The same object set was divided
into two different partitions: a true partition π∗ and an estimated one π̂. To measure the
difference of π̂ from π∗, we adopted the ratio of information loss (RIL) [18], which
is also called the uncertainty coefficient in numerical taxonomy literature. The RIL is
the ratio of the information that is not acquired to the total information required for
estimating a correct partition. This criterion is defined based on the contingency table
for indicator functions [11]. The indicator function I((xa, xb), π) is 1 if an object pair
(xa, xb) are in the same cluster; otherwise, it is 0. The contingency table is a 2 × 2
matrix consisting of elements, ast, that are the number of object pairs satisfying the
condition I((xa, xb), π∗)=s and I((xa, xb), π̂)=t, among all the possible object pairs.
RIL is defined as

RIL =

∑1
s=0

∑1
t=0

ast

a··
log2

a·t
ast∑1

s=0
as·
a··

log2
a··
as·

, (15.17)

where a·t =
∑

s ast, as· =
∑

t ast, and a·· =
∑

s,t ast. The range of the RIL is [0, 1];
it becomes 0 if two partitions are identical.

15.4.2 Data Generation Process

Test data were generated in the following two steps: In the first step, we generated the
K orders to be used as central orders. One permutation (we called it a pivot) consist-
ing of all objects in X∗ was generated. The other K − 1 centers were generated by
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Table 15.1. Parameters of experimental data

1) the number of sample orders: N = 1000
2) the length of the orders: Li = 10
3) the total number of objects: L∗ = 10, 100
4) the number of clusters: K = {2, 5, 10}
5) the inter-cluster isolation: {0.5, 0.2, 0.1, 0.001}
6) the intra-cluster cohesion: {1.0, 0.999, 0.99, 0.9}

transforming this pivot. Two adjacent objects in the pivot were randomly selected and
exchanged. This exchange was repeated at specified times. By changing the number of
exchanges, the inter-cluster isolation could be controlled.

In the second step, for each cluster, constituent orders were generated. From the
central order, Li objects were randomly selected. These objects were sorted so as to
be concordant with the central order. Again, two adjacent object pairs were randomly
exchanged. By changing the number of times that objects were exchanged, the intra-
cluster cohesion could be controlled. Note that the sizes of clusters are equal.

The parameters of the data generator are summarized in Table 15.1. The differences
between orders cannot be statistically tested if Li is too short; on the other respondents
cannot sort too many objects. Therefore, we set the order length to Li = 10. Param 1–
2 are common for all the data. The total number of objects (Param 3) is set to 10 or
100. All the sample orders are complete if L∗ = 10, and these are examined in Sec-
tion 15.4.3. We examine the incomplete case (L∗ = 100) in Section 15.4.4. Param 4
was the number of clusters. It is difficult to partition if this number is large, since the
sizes of the clusters then decrease. Param 5 was the inter-cluster isolation that could
be tuned by the number of times that objects are exchanged in the first step of the data
generation process. This isolation is measured by the probability that the ρ between a
pivot and another central order is smaller than that between a pivot and a random order.
The larger the isolation, the more easily clusters are separated. Param 6 was the the
intra-cluster cohesion indicating the number of times that objects are exchanged in the
second step of the data generation process. This cohesion is measured by the probability
that the ρ between the central order and a sample one is larger than that between the
central order and a random one. The larger the cohesion, the more easily a cluster could
be detected.

For each setting, we generated 100 sample sets. For each sample set, we ran the
algorithms five times using different initial partitions; then the best partition in terms of
Equation (15.8) was selected. Below, we show the means of RIL over these sets.

15.4.3 Complete Order Case

We analyzed the characteristics of the methods in Section 15.3 by applying these to
artificial data of complete orders. The two k-o’means methods were abbreviated to
TMSE and EBC, respectively. Additionally, a group average hierarchical clustering
method using dissimilarity as described in Section 15.2.1 was tested, and we denoted
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Fig. 15.2. Experimental results on artificial data of complete orders
NOTE: The left charts show the variation of RIL in the inter-cluster isolation when the
intra-cluster cohesion is fixed to 0.999. The right charts show the variation of RIL in the
intra-cluster cohesion when the inter-cluster isolation is fixed to 0.2.

this result by AVE. The experimental results on artificial data of complete orders (i.e,
L∗ = 10) are shown in Figure 15.2. In Figures 15.2(a), (b), and (c), the means of RIL
are shown in cases of K = 2, 5, and 10, respectively. The left three charts show the
variation of RIL in the inter-cluster isolation when the intra-cluster cohesion is fixed
to 0.999. The right three charts show the variation of RIL in the intra-cluster cohesion
when the inter-cluster isolation is fixed to 0.2.

As expected, the more inappropriate clusters were obtained when the inter-cluster
isolation or the intra-cluster cohesion decreased and the number of clusters increased.
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Fig. 15.3. Experimental results on artificial data of incomplete orders

NOTE: See note in Figure 15.2.

We begin with the variation of estimation performance according to the decrease of
intra-cluster cohesion. If the cohesion is 1, sample orders are exactly concordant with
their corresponding true central orders. In this trivial case, the AVE method succeeds
almost perfectly in recovering the embedded cluster structure. Because the dissimilari-
ties between sample orders are 0 if and only if they are in the same cluster, this method
could lead to perfect clusters. Though both the EBC and TMSE methods found almost
perfect clusters in the K=2 case, the performance gradually worsened when K in-
creased. In a k-o’means clustering, a central order is chosen from the finite set, S(L∗).
This is contrasted to the fact that a domain of centers is an infinite set in the clustering
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of real value vectors. Hence, the central orders of two clusters happen to agree, and one
of these clusters is diminished during execution of the k-o’means. As the increase of
K , clusters are merged with higher probability. For example, in the EBC case, when
K = 2 and K = 5, clusters are merged in 7% and 35% of the trials, respectively.
Such occurrence of merging degrades the ability of recovering clusters. As the cohe-
sion increases, the performance of AVE became more drastically worse than the other
two methods. Furthermore, in terms of the inter-cluster isolation, the performance of
AVE became drastically worse as K increased, except for the trivial case in which the
cohesion was 1. In the AVE method, the determination to merge clusters is based on
local information, that is, a pair of clusters. Hence, the chance that orders belonging to
different clusters would happen to be merged increases when orders are broadly dis-
tributed. When comparing EBC and TMSE, these two methods are almost completely
the same.

15.4.4 Incomplete Order Case

We move to the experiments on artificial data of incomplete orders (i.e, L∗ = 100).
The results are shown in Figure 15.3. The meanings of the charts are the same as in
Figure 15.2.

TMSE was slightly better than EBC when K = 2 and K = 5 cases; but EBC
overcame TMSE when K = 10. AVE was clearly the worst. We suppose that this
advantage of the k-o’means is due to the fact that the dissimilarities between order
pairs could not be measured precisely if the number of objects commonly included in
these two orders is few. Furthermore, the time complexity of AVE is O(N2 log N),
while the k-o’means algorithms are computationally more inexpensive as in Equa-
tion (15.16). When comparing TMSE and EBC, TMSE would be slightly better. How-
ever, in terms of time complexity, TMSE’s O(NL∗ max(L∗, K)) is much worse than
EBC’s O(K max(NL̄ log(L̄), L∗ log L∗) if L∗ is large. In addition, while the required
memory for TMSE is O(L∗2), EBC demands far less O(KL∗). Therefore, it is reason-
able to conclude that k-o’means-EBC is an efficient and effective method for clustering
orders.

15.5 Experiments on Real Data

We applied our two k-o’means to questionnaire survey data, and proposed a method to
interpret the acquired clusters of orders.

15.5.1 Data Sets

Since the notion of true clusters is meaningless for real data sets, we used the k-o’means
as tools for exploratory analysis of a questionnaire survey of preference in sushi (a
Japanese food). This data set was collected by the procedure in our previous works
[19, 8]. In this data set, N = 5000, Li = 10, and L∗ = 100; in the survey, the
probability distribution of sampling objects was not uniform as in equation (15.11).
We designed it so that the more frequently supplied sushi in restaurants were more
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frequently shown to respondents. Objects were selected independently with probabil-
ities ranging from 3.2% to 0.13%. Therefore, the assumption of the uniformity of the
sampling distribution, introduced by the EBC method, was violated. The best result in
terms of Equation (15.8) ware selected from 10 trials. The number of clusters, K , was
set to 2. Note that responses of both authors were clustered into Cluster 1.

15.5.2 Qualitative Analysis of Order Clusters

In [8], we proposed a technique to interpret the acquired clusters based on the relation
between attributes of objects and central orders. We applied this method to clusters
derived by the EBC and TMSE methods. Table 15.2 shows Spearman’s ρ between
central orders of each cluster and an order of objects sorted according to the specific
object attributes. For example, the third row presents the ρ between the central order
and the sorted object sequence according to their price. Based on these correlations,
we were able to learn what kind of object attributes affected the preferences of the
respondents in each cluster. We will comment next on each of the object attributes.

Almost the same observations were obtained by both EBC and TMSE. The attribute
A1 shows whether the object tasted heavy (i.e., high in fat) or light (i.e., low in fat). The
positive correlation indicate a preference for heavy testing. The cluster 2 respondents
preferred heavy-tasting sushi. The attribute A2 shows how frequently the respondent
eats the sushi. The positive correlation indicates a preference for the sushi that the re-
spondent infrequently eats. Respondents in both clusters preferred the sushi they usually
eat. No clear difference was observed between clusters. The attribute A3 is the prices
of the objects. The positive correlation indicates a preference for economical sushi.
The cluster 2 respondents preferred more expensive sushi. The attribute A4 shows how
frequently the objects are supplied at sushi shops. The positive correlation indicates a
preference for the objects that fewer shops supply. Though the correlation of cluster 1
was rather larger, the difference was not very clear. Roughly speaking, the members of
cluster 2 preferred more heavy-tasting and expensive sushi than those of cluster 1.

In this paper, we propose a new technique based on the changes in object ranks. First,
a central order of all the sample orders was calculated, and was denoted by Ō∗. Next,
for each cluster, the central orders were also calculated, and were denoted by Ōk. Then,
for each object xj in X∗, the difference of ranks,

rankup(xj) = r(Ō∗, xj)− r(Ōk, xj), (15.18)

Table 15.2. Relations between clusters and attributes of objects

Attribute Cluster 1 Cluster 2
EBC TMSE EBC TMSE

A1 0.0999 0.0349 0.3656 0.2634
A2 −0.5662 −0.7852 −0.4228 −0.6840
A3 −0.0012 −0.0724 −0.4965 −0.6403
A4 −0.1241 −0.4555 −0.1435 −0.5838
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Table 15.3. The top 10 ranked up and the worst 10 ranked down sushi

Cluster 1 Cluster 2
# 2313 2687

1 egg ♣ +74 ark shell ♥ +63
2 cucumber roll ♣ +62 crab liver ♠ +39
3 fermented bean roll ♣ +38 turban shell ♥ +26
4 octopus +36 sea bass +23
5 deep-fried tofu ♣ +33 abalone ♥ +22
6 salad ♣ +29 tsubu shell +16
7 pickled plum & perilla leaf roll ♣ +28 angler liver ♠ +16
8 fermented bean ♣ +26 sea urchin ♠ +15
9 perilla leaf roll ♣ +24 clam ♥ +13

10 raw beef +21 hardtail ♦ +13
...

...
91 flying fish ♦ -10 chili cod roe roll ♣ -15
92 young yellowtail ♦ -12 pickled plum roll ♣ -15
93 battera ♦ -13 shrimp -17
94 sea bass -14 tuna roll ♣ -19
95 amberjack ♦ -37 egg ♣ -19
96 hardtail ♦ -41 salad roll ♣ -27
97 fluke fin -46 deep-fried tofu ♣ -30
98 abalone ♥ -63 salad ♣ -32
99 sea urchin ♠ -84 octopus -57

100 salmon roe -85 squid -82

NOTE: Sushi in each cluster derived by k-o’means-EBC were sorted in descending order of
rankup(xj) (Equation (15.18)). In top row labeled “#”, the sizes of clusters were listed. The
upper half of the tables show the ranked up sushi, and the bottom half show the ranked down
sushi. Just to the right of each sushi name, the rankup(xj) values are shown.

was derived. We say that xj is ranked up if rankup(xj) is positive, and that it is ranked
down if rankup(xj) is negative. If the object xj was ranked up, it was ranked higher in
cluster center Ōk than in the entire center Ō∗. By observing the sushi whose the absolute
values of rankup(xj) were large, we investigated the characteristics of each cluster.
Table 15.3 list the most 10 ranked up and the most 10 ranked down sushi in clusters
derived by k-o’means-EBC. That is to say, we show the objects whose rankup(xj)
were the 1st to 10th largest, and were the 1st to 10th smallest. The upper half of the
tables shows the ranked up sushi, and the bottom half shows the ranked down sushi. In
the top row labeled “#”, the sizes of the clusters are listed. Sushi names that we were
not able to translate into English were written using their original Japanese names in
italics. Just to the right of each sushi name, the rankup(xj) values are shown.

We interpreted this table qualitatively. In this table, the mark ♠ indicates objects
whose internal organs, such as liver or sweetbread, are eaten. The sushi marked by ♦
are so-called blue fish, and those marked by ♥ are clams or shells. These sushi were
rather substantial and oily, as revealed in the A1 row of Table 15.2. However, we could
not conclude that the respondents in cluster 2 preferred simply oily sushi. For example,
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sushi categorized as a red fish meat, e.g., fatty tuna, were not listed in the table, because
the preference of sushi in this category were similar in both clusters. We can say that
the respondents in cluster 2 preferred rather oily sushi, especially blue fish, clam/shell,
or liver. The sushi marked by ♣ are very economical. Though these sushi were fairly
ranked up in cluster 1, this would not indicate a preference for economical sushi. These
would be ranked up because these respondents had sushi that they disliked more than
these inexpensive types of sushi. Therefore, to interpret the acquired cluster of orders,
not only should the values of equation (15.18) be observed, but also the kind of objects
that were ranked up or ranked down.

15.6 Conclusions

We developed a new algorithm for clustering orders called the k-o’means-EBC method.
This algorithm is far more efficient in computation and memory usage than k-o’means-
TMSE. Therefore, this new algorithm can be applied even if the number of objects L∗ is
large. In the experiments on artificial data, our k-o’means outperformed the traditional
hierarchical clustering. For artificial data, the prediction ability of k-o’means-TMSE
is almost equal to that of k-o’means-EBC. Therefore, by taking computational cost
into account, it could be concluded that the k-o’means-EBC method was superior to
the k-o’means-TMSE for clustering orders. Additionally, we advocated the method to
interpret the acquired ordinal clusters.

We plan to improve this method in the following ways. During clustering orders,
undesired merges of clusters more frequently occur than in clustering of real value vec-
tors. To overcome this defect, it is necessary to improve the initial clusters. For applying
ordinal clustering to DNA microarray data, the curse of dimensionality must be solved.
We want to develop a dimension reduction technique for orders like PCA. In the case
of an Euclidean space, there are many points far from one point. However, in a case
of a space of orders (a permutation group), the order most distant from one order is
unique, i.e., the reverse order. Therefore, there are biases for central orders to become
exact reversals of themselves. We also would like to lessen this bias.
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Abstract. The goal of any clustering algorithm producing flat partitions of data, is
to find both the optimal clustering solution and the optimal number of clusters. One
natural way to reach this goal without the need for parameters, is to involve a validity
index in a clustering process, which can lead to an objective selection of the optimal
number of clusters. In this chapter, we provide two main contributions. Firstly, since
validity indices have been mostly studied in a two or three-dimensionnal datasets, we
have chosen to evaluate them in a real-world applications, document and word clus-
tering. Secondly, we propose a new context-aware method that aims at enhancing the
validity indices usage as stopping criteria in agglomerative algorithms. Experimental
results show that the method is a step-forward in using, with more reliability, validity
indices as stopping criteria.

16.1 Introduction

Due to the exponentially growing volume of textual data, clustering methods are
gaining increasing attention in text applications, where they can play an essential
role in offering more intelligence and efficiency to operations. By textual data,
one can refer to characters, n-grams, words, chunks, sentences, documents, etc.
In this chapter, we focus on document and word clustering. Both tasks can be
extremely useful in a wide range of applications. On the one hand, document
clustering plays a key role especially in Information Retrieval (IR), by improving
systems’ precision and recall [1], by enabling a search without typing through
the scatter/gather method [15], and by enabling an easier information access by
groups [37], or by exploratory browsing [18]. On the other hand, word clustering
seeks applications like knowledge acquisition from text [6], query expansion in
IR [26], and word sense disambiguation [34].

A well-known and inherent issue in cluster analysis is to require a minimal
input parameters [13]. Yet, most clustering methods still require the predefini-
tion of a number of parameters usually unknown by the user, such as the desired
number of clusters. In practice, this is an ill-posed problem since the final par-
titions will depend on subjectively chosen parameters that do not necessarily fit
the dataset. This can lead to discover spurious patterns not really existing, or
to fail to discover the true patterns.

D.A. Zighed et al. (Eds.): Mining Complex Data, SCI 165, pp. 281–300.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The goal of any clustering algorithm seeking flat partitions of data is to find
the optimal clustering solution and the optimal number of clusters k. One natural
way to reach this without the need for parameters, is to evaluate the quality of
different clustering solutions along different number of clusters, in order to finally
choose the solution giving the best results. In cluster analysis, the procedure of
evaluating the results is known as cluster validation [16], and the indices that
aims at comparing different solutions with different parameters are known as
relative validity indices [12].

Relative indices can be involved in clustering methods in two different ways:

– They can be involved as external indicators about the quality of the clustering
solution(s) provided by an algorithm.

– They can be involved as criterion functions driving the entire clustering pro-
cess. In this case, algorithms are often called incremental [8] .

Involving a validity index as a criterion function leads usually to a very high
complexity. Indeed, this complexity depends on each validity index, and on the
type of algorithm that tends to optimize it. For instance, in agglomerative al-
gorithms, at each level of the process, instead of merging two clusters by means
of a ’classic’ criterion function (e.g., by average-linkage), a validity index V I
is calculated evaluating the different solutions that could be obtained following
the different merging possibilities. The pair of clusters that will be chosen for
merging is the one that optimizes V I. Thus, at a level having k clusters, the
complexity of evaluating the different solutions is O(k(k − 1)/2);

In the literature, an ambiguity remains unresolved about the usage of validity
indices. What is sure, is that they are highly effective, since they seem to yield
the only way to bypass the need for input parameters in most clustering algo-
rithms. However, despite their central role, the real utility of validity indices was
neither fully exploited nor enough investigated in the literature, especially when
dealing with high-dimensional data like text. Along those lines, we provide two
main contributions that broadly aim at exploring and exploiting relative indices
in clustering algorithms. The applications of interest are document and word
clustering. More particularly, our contributions try to bring answers to the key
questions below.

– How “good” are relative indices at detecting the optimal clustering solution?
Are they better used as criterion functions or simply as external indicators?
In case of criterion functions, which index is most likely to drive an agglom-
erative algorithm to an ‘optimal partition’?

– How reliably can we use validity indices as stopping criteria (to terminate
the process) in agglomerative algorithm? To which extent can we enhance
their reliability for such usage?

The remainder of this chapter is organized as follows. After an overview on
cluster validity indices in the next section, we describe in Section 16.3 our new
context-aware method. Relative indices are evaluated and compared in Section
16.4. Then, we evaluate our context-aware method in Section 16.5. We conclude
in Section 16.6 by summarizing and drawing some future trends.
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16.2 Cluster Validity Indices

There exist three kinds of cluster validity indices V I, namely internal, external,
and relative indices [16]: (1) External indices evaluate a clustering solution by
comparing it to an a-priori specified structure that reflects the desired result over
the dataset (e.g., FScore measure, entropy, Jaccard Coefficient, Rand Statistic).
(2) Internal indices assess the intrinsic adequacy between the data structure
and the imposed solution basing on quantities and features extracted from the
dataset itself (e.g., CPCC, Hubert τ statistic). (3) Relative indices compare a
clustering solution to another one obtained with different parameters. This can
help choosing the parameters that best fit the dataset. Relative indices tend to
maximize the intra-cluster compactness and the inter-cluster separation (e.g.,
DB, Dunn indices, C1..C4, S Dbw).

Since our concern is broadly to find the optimal solution across different k
values, our focus in the following will be on relative validity indices. We can
distinguish two categories of them, depending on whether or not they scale with
the numbers of clusters [12]:

16.2.1 Relative Indices Scaling with the Number of Clusters

Some relative validity indices have the nature to follow systematically the trend
of the number of clusters k, which means that, as k increases, their values will
keep either increasing or decreasing. Thus, the definition of the optimal k cannot
rely on the maximum/minimum value of a V I. It is usually chosen by inspection
taking the plot having the more significant local change (jump or drop) in the
values of V I, appearing like a “knee” or an “elbow”. The intuition is that quick
jumps/drops are expected when we are still behind the optimal k, and slower
jumps/drops are expected once reaching the optimal k. However, given the many
variations in the values of V I, it is often difficult and unclear in practice how
to identify the right “knee” in the curve. To overcome this shortcoming, two
approaches are widely used: The gap statistics [36] and the stability approach
[2, 20].

Among indices in this category, we can find: CH [35], Diff [19], the Hubert
τ statistic [31]. Another set of indices (i.e., I1, I2, E1, H1, H2) are developed by
Zhao [38] specifically for document clustering purposes.

16.2.2 Relative Indices not Scaling with the Number of Clusters

Indices under this category do not systematically follow the trend of k. In this
case, the optimal k is more easily chosen as the point on the plot maximiz-
ing/minimizing V I. Among indices developed for generic clustering purposes,
we can cite: Dunn [9], the modified Dunn (m-dunn) [3], Davies-Bouldin (DB)
[7], RMSSDT, SPR, RS, CD [33], SD, S Dbw [12], SF [29]. Another bunch
of indices (i.e., C1, C2, C3, C4) were developed by Raskutti [27] for document
clustering purposes.
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Due to their facility of interpretation, we choose to focus on indices not scaling
with k. The other reason is related to our primary goal which is to enable the
usage of relative indices as stopping criteria. This is definitely a hard task that
will get much harder if the optimal k must be selected using relatively sophis-
ticated techniques like the “knee” detection, the gap statistics, or the stability
approach.

A known drawback when involving validity indices in clustering is the com-
putational cost that quickly becomes prohibitive when scaling to large and high-
dimensional datasets. The main reason is that pairwise similarities between the
dataset elements/clusters have to be calculated. As a preliminary attempt to
reduce complexity, we propose a new validity index, H3, that we define as
follows1.

H3 =

∑k
i=1 ni.

∑ni

j=1 sim(ej, Si)

(
∑k

i=1 sim(Si, S))/k

where sim denotes the similarity between two objects, Si denotes the centroid
of cluster Ci containing ni elements, ej denotes a data element, and S denotes
the collection’s centroid which is the average vector of all clusters’ centroids.

H3 is significantly less expensive than other indices. The reason is that H3
deals with centroids to calculate the inter-cluster separation and the intra-cluster
compactness. It has a linear complexity of O(k +n). H3 is inspired from the H1
and H2 indices proposed by Zhao [38]. The difference is that H3 does not follow
the trend of k after having removed its sensitivity to k in an ad-hoc manner.
As a matter of fact, the intra-cluster similarity decreases as k decreases, thus
the quality of clustering continuously deteriorates from an intra-cluster point
of view. We consider that an optimal partition is reached, when the average of
inter-cluster similarities, that tends to improve while grouping similar objects,
is no more able to overwhelm the intra-cluster deterioration.

16.3 A Method for Enhancing Relative Indices Usage as
Stopping Criteria

In this section, we propose a method that aims to reduce the complexity of
clustering algorithms when involving relative indices as criterion functions. One
potential option is to use these indices to terminate the clustering process at a
point where the “optimal” solution is reached, which allows to discard all the
remaining unnecessary part of the process.

16.3.1 Problem Definition

The classical usage of relative validity indices for determining the k yielding
the optimal clustering solution comes a-posteriori, after evaluating the different
1 Evaluation of the H3 index is out of scope in this chapter.
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Fig. 16.1. A validity index values obtained along different number of clusters

solutions provided by a clustering algorithm through all the possible k values
[24, 27, 12, 39]. Consider in Figure 16.1 the plot (that we call index) of a va-
lidity index against the different k values. Using an agglomerative algorithm,
once reaching the flat optimal solution at k = a, all the remaining actions (until
k = 1) are obviously a time waste because we will end up by considering the
solution provided at a. Hence, finding a relevant stopping criterion is primordial.
In probabilistic clustering algorithms (mixture models), many stopping criteria
are defined quantifying the degree to which a model fits a dataset; among the
most known criteria, we can find the Bayesian Information Criterion (BIC) [10],
and the Minimum Description Length (MDL) criterion [28]. In non-probabilistic
algorithms - which are our concern in this chapter - stopping criteria rely in
most cases on input user parameters. For instance, in agglomerative algorithms,
these parameters can be a predefined number of clusters, a minimum similar-
ity between clusters, a maximum similarity gap between successive levels, etc.
This kind of stopping criteria has serious limitations since users often ignore the
parameters that best fit the datasets [13].

A promising approach to address this issue is to make use of relative indices
in order to develop an incremental agglomerative algorithm [8] able to stop
once reaching the “right” optimal solution in terms of a V I at k = a. Thus,
an intuitive approach is to let the clustering process go on while optimizing a
V I in a stepwise fashion, and to stop once reaching a point (k = b) where no
further (significant) improvement2 can be made with any (merging) action [25].
However, such an ad-hoc approach suffers from ignoring, at the specific level
b, whether it has truly reached the optimal solution (i.e., a = b ), or a better
solution will come afterward if it accepts a quality decrease at b (which is the
case in Figure 16.1). The major problem is that validity indices are using too
much local information to take a global decision, e.g., stopping the process. As
one could notice, addressing the described issue is a tough and challenging task.
Along those lines, we developed a method that aims at enhancing agglomerative
algorithms with context-aware decisions taken along with validity indices.
2 While a significant improvement is required with indices scaling with k, a slight

improvement is enough for indices not scaling with k.
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16.3.2 Context-Aware Method

Context-Aware Clustering. The notion of context was introduced to cluster
analysis in [17, 22]. Context was typically involved to provide a more reliable sim-
ilarity calculation between objects by taking into account their relative nearest
neighbor objects. Our goal by involving context in clustering is totally different;
actually, we aim to involve context in order to enhance the ability of validity
indices to be used as stopping criteria where a first drop (FD) in the quality
of a clustering solution can more relevantly indicate that the optimal solution
has been reached. Reconsidering Figure 16.1, the goal is to enhance the classic
index curve with context-awareness, in order to obtain another temperate curve
(index + context curve) where the FD (at d) approaches as much as possible the
optimal solution (at c).

To achieve this goal, the idea is to provide clustering algorithms with a wider
view on the dataset partition, which will enable them to take decisions while
having in “mind” an “idea” on what could happen next if a specific action
is undertaken. As we are seeking the hierarchical agglomerative algorithm, the
method applies the following heuristic at each level j of the process:

1. Consider the M closest pairs of clusters;
2. estimate V I after trying to merge each of the M pairs;
3. among the mergings that improve V I (over the previous V I at j−1), assess

the merging with the lowest Context Risk (CR);
4. if no merging improves V I, merge the pair that optimizes (maximizes/

minimizes) V I.

Consider the bi-dimensional dataset provided in Figure 16.2 where each point
represents a cluster centroid3. Suppose that at this stage we have two merging
options: (1) merging Ci and Cj into a new cluster Cp, and (2) merging Cm

and Cn into a new cluster Cq. Suppose that Cp optimizes a validity index V I,
while Cq simply improves it. Before taking any definitive decision, the method
examines the context of Cp and Cq in terms of their K Nearest Neighbors K-NN
(i.e., surrounding clusters)4. If the context of Cp tells that merging Ci and Cj

could lead to a global quality degradation in terms of V I in next iterations, the
method chooses to create rather Cq improving V I at a minimal context risk.

Applying this method surely implies a more temperate and a slower improve-
ment in V I (as shown at the curve index + context in Figure 16.1), but has the
advantage of continuously pushing, as much as possible, risky merging actions
entailing possible future degradations for later processing. We argue that taking
the “safest” action at each level leads an expected degradation to occur as late
as possible during the process. Thus, a first drop (FD) is likely to occur closer to
the optimal solution, which will offer the possibility to the algorithm to consider
more relevantly FD at (d + 1) as a stopping criteria, and the solution provided
at d as the optimal clustering solution.
3 Si is the centroid of cluster Ci.
4 We set K = 10 in our experiments.
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Fig. 16.2. An illustration of a bi-dimensional dataset

Note that calculating V I for all the possible mergings between k clusters will
lead to a high complexity of O(k2) at each level of the process. We overcome
this by considering, at a given level, only the M closest pairs of clusters5, since
they form the most potential candidates to improve V I.

Context Space Composition. For each new cluster candidate Cp, a Context
Risk CR expresses how risky can be assessing Cp for the overall clustering quality
in the expected upcoming mergings given the context of Cp. Consider the two
new clusters candidates Cp and Cq depicted by their centroids respectively in
Figures 16.3 and 16.4 with five context clusters each (C1...C5). We assume that
Cp, with its K-NN (K = 5) neither too close nor too distant from its centroid,
is more risky than Cq, with its K-NN either too close or too distant from its
centroid. Therefore, we define a context space as the space including the K-NN
of a new cluster candidate Cp. Then, as shown in Figure 16.3, we decompose the
context space of Cp into three layers that we define below.

Intra layer. Clusters within this layer reduce CR as they should not lead to a
quick drop in V I. For this, they have to be close enough to Cp, therefore, likely to
be merged with Cp in next iterations without causing a significant degradation
(comparing to the previous mergings) in the global intra-cluster compactness. As
a matter of fact, the clusters are getting larger over mergings, and thus the intra-
cluster is continuously deteriorating. At a level k where FD did not occurred
yet, we suppose that all the previous mergings that caused degradations in the
intra-cluster are acceptable. This layer is delimited by the thresholds t0 = 0
and t1 = δ(Cp). We define δ(Cp) as the radius of the new cluster candidate Cp

augmented by the standard deviation of radius values obtained following the
previous mergings. A radius is the maximum distance between the centroid of
Cp and an element within Cp.

δ(Cp) = radius(Cp) + Std(radius(Cn...Ck−1))

5 We set M = 10 in our experiments.
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Fig. 16.3. The three-layers context
space of the new risky cluster candidate
Cp

Fig. 16.4. The three-layers context
space of the new non-risky cluster can-
didate Cq

Inter layer. Clusters within this layer also reduce CR as they should not
lead to a quick drop in V I. For this, they have to be distant enough from Cp,
therefore, not likely to be merged with Cp in next iterations. Further, keep-
ing them outside would contribute to improve (or at least not to deteriorate)
the global inter-cluster separation. This layer is delimited by a first threshold
t2 = ∆(K−NN(Cp)). We define ∆(K−NN(Cp)) as the average pairwise inter-
cluster distance between the K-NN of Cp, reduced by the standard deviation
of its homologous values obtained following the previous mergings. Getting the
average separation between clusters surrounding Cp, will give a hint on the mini-
mum required inter-distance to improve the local inter-cluster separation around
Cp, which will most likely improve the global inter-cluster separation.

∆(K −NN(Cp)) = AvgInter(Cp)− Std(AvgInter(Cn..Ck−1))

AvgInter(Cp) =

∑K
i=1

∑K
j=1 dist(Ci, Cj)

K.(K − 1)/2
i �= j

We decided to set the same margin for the intra and inter layers in order to
have balanced scores in both layers. Subsequently, we define the other inter-layer
threshold t3 = t2 + t1.

Risk layer. Clusters within this layer increase CR because we consider that
they could lead to a fast drop in the global clustering quality, whether on the
inter-cluster or intra-cluster level. Actually, these clusters, if merged with Cp in
next iterations, would contribute to a significant degradation in the intra-cluster
compactness since they are not enough close to Cp. Further, clusters within this
layer, if not merged with Cp in next iterations, would not contribute to any
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significant amelioration in the inter-cluster separation since they are not enough
distant from Cp. This layer is delimited by the thresholds t1 and t2 previously
defined.

Context Risk Calculation. In order to calculate CR for a candidate cluster
Cp, we use the following formula:

CR(Cp) =
1
K

(
n1∑
i=1

R(Ci, Cp)−
n2∑

j=1

I1(Cj , Cp)−
n3∑

h=1

I2(Ch, Cp))

where R(Ci, Cp), I1(Cj , Cp), I2(Ch, Cp) denote the score given for a cluster Cp

situated respectively in the risk layer, intra layer, and inter layer. All the scores
are distributed along a [0,1] range according to their distances with the centroid
of Cp (See Figures 16.3 and 16.4). n1, n2, n3 denote the number of clusters
situated respectively in the risk, intra and inter layers. Consequently, CR varies
between -1 (for a minimal risk) and 1 (for a maximal risk). For a contextual
cluster Cx having a distance dx with Sp, its score is calculated with respect to
the following conditions:⎧⎪⎪⎨

⎪⎪⎩
if dx < t1 then I1(Cx, Cp) = t1−dx

t1
else if dx > t2 then I2(Cx, Cp) = dx−t2

t1
else if dx > t3 then I2(Cx, Cp) = 1
else if t1 ≤ dx < (t1 + t2)/2 then R(Cx, Cp) = dx−t1

t1/2

else if (t1 + t2)/2 ≤ dx ≤ t2 then R(Cx, Cp) = t2−dx
t1/2

⎫⎪⎪⎬
⎪⎪⎭

In terms of complexity, CR cannot be considered as computationally expen-
sive. In fact, given K nearest neighbors, and p clusters at a specific iteration,
we compute CR for M candidate clusters resulted from the merging of the M
closest pairs of clusters. Therefore, at a given iteration, the added complexity to
a clustering algorithm is O(M(p−1+K +K(K−1)/2)). Furthermore, we argue
that the parameters M and K have “second order” effect on the results. In other
words, they are not ‘critical’ parameters, and their choices depend solely on the
extent to which we are able to augment the complexity of the algorithm.

16.4 Experimental Study on Relative Validity Indices

16.4.1 Motivation

Since their high computational cost, relative indices are most often studied in
small-dimensional datasets including small numbers of clusters [12, 24, 9, 7,
21, 4, 29]. The principal motivation was the ability to visually inspect data
in two/three dimensions, which help to easily predefine the optimal number of
clusters k. Consequently, indices can be compared according to their ability to
detect the optimal k. Even though such experiments can provide a preliminary
idea about the performance of each validity index, they do not reflect the reality
of their performance in real-world applications, where data is often multidimen-
sional and include a large number of clusters.
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In this section, we investigate, through an experimental study, the utility of
different relative indices for an agglomerative algorithm in two different con-
texts: Document and word clustering. In such contexts, many questions remain
unaddressed in the literature.

– How “good” are relative indices at evaluating partitions? Is it worthwhile in-
volving relative indices as criterion functions in an agglomerative algorithm?
Or involving them as external indicators could be enough (leading to compa-
rable results with much lower complexity)? The goal here is of course to find
the best trade-off between effectiveness and efficiency among the different
approaches.

– Consider the case where relative indices are involved as criterion functions.
A key question arises: Which index will most likely guide the agglomerative
algorithm to the optimal clustering solution and to the optimal number of
clusters in each application?

Indices must indeed be evaluated according to their ability to identify both,
the optimal clustering solution and the optimal number of clusters. Note that
these two goals do not necessarily overlap; actually, since algorithms are error-
prone, an optimal solution can lie under a number of clusters different from
the “real” optimal number of clusters. Moreover, an algorithm can provide poor
solutions at the “real” optimal number of clusters. For this reason, we have
chosen to separate between the two concepts.

The rest of this section is organized as follows: We start by describing the two
benchmarks used for our experiments. Then, we present our evaluation method-
ology and the obtained results for both benchmarks in the following two subsec-
tions. We end up this section by discussing the results.

16.4.2 Benchmark for Document Clustering

The benchmark used for document clustering is constituted of two datasets,
whose general characteristics are summarized in Table 16.1. These are two dis-
tinct collections (no common document) extracted from the Reuters corpus6. Ba-
sically, the Reuters corpus contains over 800,000 manually categorized newswire
stories (documents), each of which consisting of few hundred up to several
thousand words. Each document has been manually categorized into one or
multiple topics, such as “Economics, Markets, Corporate/Industrial”. For our
experiments, documents are preprocessed by applying the classical techniques
of Natural Language Processing (NLP) provided by Gate7: Tokenization, stop-
word removal, POS tagging, words lemmatization. The Vector-Space Model is
used to represent each document d by a vector v in a multidimensional space,
where each dimension represents a word expressed by its tf.idf score [30]. Fi-
nally, a similarity is calculated between a pair of documents by means of the
cosines coefficient between their feature vectors.
6 Reuters corpus, volume 1 (RCV 1), English language, release date: 2000-11-03.
7 http://www.gate.ac.uk/
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Table 16.1. Summary of datasets used for our study on document clustering

Dataset # of documents # of topics
DS1 500 48

DS2 1000 65

16.4.3 Benchmark for Word Clustering

The benchmark used for word clustering is constituted of two datasets, whose
general characteristics are summarized in Table 16.2. These are two distinct
datasets (no common words) extracted from the SemCor corpus [32]. SemCor is
a collection of 352 texts where each token is annotated with POS, lemma, and
a sense (synset from WordNet [23]). A polysemous word can be associated to
many senses in the corpus, as long as it can occur in many different contexts.
Words are represented with respect to the Distributional Hypothesis [14]. Thus,
a word w is represented by a vector v in a multidimensional space, where each
dimension is a local context word w′ expressed by its PMI score (Pointwise
Mutual Information) with w [5]. A 2-word window size is considered for context
words. We turned to language-independent practices representing a context by
a plain word concatenated with its relative positions to the target word (e.g.,
before-tea, after-coffee). Finally, a semantic similarity is calculated between a
pair of words by means of the cosines coefficient between their feature vectors.

Table 16.2. Summary of datasets used for our study on word clustering

Dataset # of words # of senses
DS3 500 52

DS4 1000 78

16.4.4 Evaluation Methodology

The advantage of using the outlined corpora (i.e., Reuters, SemCor) is that
objects have been manually pre-classified by experts. Having this at hand, one
can define such artificial structures as the ideal “Gold Standard” structures for
a clustering algorithm. Indeed, we have to point out that these structures reflect
only a certain level of granularity that could be too specific or too generic for
the data. Thus, we cannot claim that the predefined partition for each dataset
is the only correct partition, but it is indeed a correct one that we could reliably
consider as a “Gold Standard”.

Subsequently, an external validity index (e.g., FScore) is used to evaluate the
partition provided by an algorithm against the predefined partition. Moreover,
one effective way for evaluating relative indices is to compare their behaviors
with those of external indices which we suppose bear the optimal behaviors
since they are based on structures set a-priori by experts.
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Our experiments include 12 algorithms after having run the agglomerative
algorithm separately along with each of the 8 relative validity indices (i.e., C1,
C2, C3, C4, H3, DB, Dunn, Dunn-like), and the 4 classic criterion functions
(i.e., single-linkage, complete-linkage, average-linkage, mean-linkage). Then, each
solution provided at each level of the clustering process is evaluated by means
of the target relative index (predicted quality) and the FScore measure (real
quality).

16.4.5 Experimental Results

Following the described methodology, we study the ability of each criterion func-
tion to lead the algorithm to reach the predefined structure, in terms of reaching
both the optimal clustering solution, and the optimal number of clusters.

On Reaching the Optimal Clustering Solution. The optimal solution is
defined as the solution that maximizes the FScore with the predefined solution.
Approving the FScore output as the “Gold Standard” output at each iteration,
we present in Figures 16.5 and 16.6 the indices results evaluated from three
different angles:

– Their correlation with the FScore: By studying correlation between the pre-
dicted values and the real values, we can figure out to which extent a relative
index can behave similarly to an external index. Correlation represents also
how “good” are relative indices at evaluating solutions, independently of the
clustering method.

– The optimal FScore reached across the different k values: It represents the
optimal clustering quality that a V I can reach if it shares the same optimal
k with FScore. Values express also to which extent, (merging) actions based
on a given index can lead to correct/incorrect partitions among clusters.

– The FScore reached at the optimal value of V I: This is a good indicator of
the overall solution quality that a V I can reach. By comparing these values to
the previous values (i.e., optimal FScore), one can check to which extent the
predicted optimal solution detected by a V I can approach the real optimal
solution.

On Reaching the Optimal Number of Clusters. The optimal k is defined
as the number of distinct classes (i.e., topics, senses) in each dataset. We present
in Figures 16.7, 16.8 the indices results evaluated from two different angles:

– k at the optimal value of V I, which represents to which extent a V I, with
its actual trend for determining the optimal k, is able to approach the real
optimal k value;

– k at the optimal value of the FScore, which represents to which extend a
V I, if it had the trend of FScore for determining the optimal k, is able to
approach the real optimal k value.
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Fig. 16.5. Indices ability to identify the optimal clustering solution - application on
DS1 and DS2 for document clustering

Fig. 16.6. Indices ability to identify the optimal clustering solution - application on
DS3 and DS4 for word clustering

16.4.6 Discussion

After examining the different graphs in Figures 16.5, 16.6, 16.7, and 16.8, we
can conclude the following remarks:

On involving indices as external indicators. An important first remark is
that most indices perform “well” at evaluating solutions, especially when applied
on words. By looking at Figures 16.5, 16.6, we can notice the high correlations
that most indices have with the FScore, which means that they have compara-
ble behaviors to an external index relying on a predefined structure. For word
clustering, on the top of the list, we can find the C2 and the H3 indices with
the outstanding correlations of 0.936 and 0.938 on DS3 and DS4 respectively,
which are of course encouraging results. For document clustering, correlations
were less satisfying. Nevertheless, we could obtain very high correlations with
three indices, i.e., H3, C3, C4, but very low correlations, which could barely go
beyond 0.2, were obtained with the other indices.
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Fig. 16.7. Indices ability to identify the optimal number of clusters - application on
DS1 and DS2 for document clustering

Fig. 16.8. Indices ability to identify the optimal number of clusters - application on
DS3 and DS4 for word clusterin

On involving indices as criterion functions. Next, we compare the ability
of validity indices - when involved as criterion functions - to drive an algorithm
toward “optimal” partitions. That is, by looking at Figures 16.5, 16.6 (“Optimal
F”), we can conclude that the H3 and C3 indices could lead the agglomera-
tive algorithm to the optimal partitions in terms of FScore in all our datasets.
For document clustering, the H3 index could lead to an FScore of 0.695 and
0.592 respectively in DS1 and DS2. These are interesting rates since they are
somehow comparable to the “upper-bound” rates reached when involving the
FScore index itself as criterion function. On the other hand, for word cluster-
ing, much lower FScores were noticed in DS3 and DS4. That is, a maximal
FScore of only 0.245 was attained when using the H3 index. This wide gap in
FScore values between both applications, i.e., word and document clustering, is
certainly due to the relatively poor representation of words patterns. We argue
that representing documents by their content terms is much more meaningful for
similarity calculations than representing words by their context words. This is
what makes word clustering look like a hard tasks, comparing to other clustering
applications.
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On indices rigidity over the number of clusters. In spite of their abil-
ity to reach “good” clustering solutions, relative indices provide relatively poor
solutions at their top-ranked solutions. In other words, while they could reach
high FScores at a specific k, they have hard-time detecting this optimal k, lead-
ing unfortunately to poor solutions comparing to what they could have reached.
This can be explained by the somehow rigid trends over the number of clusters.
Even if these indices are supposed to be completely insensitive to k, depending
uniquely on the dataset, it is not always the case. This lead them to indicate op-
timal solutions at “wrong places”. The gaps between the FScores are dramatic;
for instance, while C3 could lead the algorithm to an FScore of 0.60 in DS4,
it could only reach an FScore of 0.21 at its optimal value. The only exceptions
to this are the H3 and C4 indices which seem to provide comparable FScores,
since their high ability to detect the predefined optimal k.

The rigid trend over k, can be seen more clearly in Figures 16.7, 16.8. By fo-
cusing on the first colon “K @ Optimal index”, we can notice that most indices
are keeping similar relative trends over the optimal k along different datasets.
In our datasets, they generally show trends to large optimal k comparing to the
“real” optimal k which is remarkably smaller (”K @ Optimal F). These differ-
ences, between the predicted optimal k, and the “real” optimal k are naturally
behind the wide gaps in FScore that we have mentioned above. This explain also
why H3 and C4 are exceptions to the other indices. In fact, their high ability
for reaching the optimal k is surely affecting their high ability for reaching the
optimal clustering solutions.

Are indices better used as external indicators or criterion functions?
As mentioned earlier, involving indices as criterion functions leads to much higher
complexity than by involving them as external indicators. In fact, it is natural to
believe that driving an algorithm by optimizing a validity index, would overcome
the approach that drives an algorithm basing on a “blind” similarity between
patterns (e.g., mean-linkage), without paying any consideration to the whole
clustering quality. However, surprisingly, our results showed that the difference
is not significant. For instance, consider the ’one-to-one’ maximal reached rates
with each approach; the H3/mean-linkage criteria could lead to maximal FScore
of 0.695/0.671, 0.624/0.593, 0.245/0.240, and 0.204/0.192 respectively in DS1,
DS2, DS3, and DS4. Thus, slight improvements were noticed when involving
the H3 index, but results are comparable, especially when involving the other
indices. Depending on each task requirements, the open question remains: Is
it worthwhile to considerably increase the algorithm complexity to reach only a
slight improvement in partitions quality? In most cases, the answer will be no.
However, for one seeking definitely the optimal partitions out of an algorithm,
a complexity reduction is highly recommended. This is broadly the purpose of
the method that we proposed in Section 16.3, which aims to reduce algorithms’
complexity by using indices as stopping criteria. This method is evaluated in the
next section.
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16.5 Evaluating Our Context-Aware Method

In this section, we present an experimental study, which is an attempt to answer
the following question: How reliable can be the usage relative indices as stopping
criteria in agglomerative clustering?”. Along those lines, we explore the added-
value of enhancing a clustering process with context-awareness in order to enable
validity indices usage as stopping criteria. We evaluate the proposed method on
the four benchmarks described in Sections 16.4.2 and 16.4.3, for document and
word clustering respectively. We excluded from the following experiments some
indices that showed to be inappropriate for the context-aware method because
they provide too unstable curves to be stabilized (e.g., Dunn, m-Dunn). At last,
our experiments will be carried out on 5 indices, namely DB [7], C1, C2, C4
[27], and H3.

Therefore, the experiments include 10 algorithms after having run the agglom-
erative algorithm 2 times for each of the 5 relative indices (with and without
context-awareness). Each solution provided at each level of the clustering pro-
cess is evaluated by means of the target relative index (predicted quality) and
the FScore (real quality).

As stressed earlier in this chapter, the goal is to approach, as much as possible,
the solution provided before FD to the optimal solution. The optimal solution
is defined as being the solution at k where a specific V I reached its maximum
or minimum, depending on whether we tend to maximize or minimize V I.

16.5.1 On Approaching the Optimal Clustering Solution

We first study to which extent the context-aware method allows FD to approach
the optimal clustering solution reached under a specific number of clusters k.
Therefore, we demonstrate in Figures 16.9 and 16.10 the complete agglomerative
clustering process (k = n → k = 1) divided into three parts:

– P1: This part goes from the initial set (k = n) to the last point before FD.
Thus, using a V I as a stopping criterion will lead the process to the last
point of P1.

– P2: This part goes from FD to the optimal clustering solution. It represents
the part that must be processed but will not if V I is used as a stopping
criterion.

– P3: This part goes from the optimal solution until the root cluster (k = 1),
which forms the unnecessary part that will be performed in vain if V I is not
used as a stopping criterion.

By observing Figures 16.9 and 16.10, we can quickly notice the added-value of
the context-aware method for both applications word and document clustering.
On the first hand, it avoids a clustering algorithm from processing all the P3
parts which is a great time waste. On the other hand, it contributes to reduce
P2, since in most cases, FD occurs remarkably closer to the optimal solution.
This will surely enable us to consider more relevantly a solution before FD as the



16 Exploring Validity Indices for Clustering Textual Data 297

Fig. 16.9. The added-value of the context-aware method in approaching the optimal
k - application on DS1 and DS2 for document clustering

Fig. 16.10. The added-value of the context-aware method in approaching the optimal
k - application on DS3 and DS4 for word clustering

optimal solution. The contribution is made clear when observing, for instance,
the performance of the C4 index in DS2: While the optimal solution in terms
of C4 is found at k = 57 with F = 0.49, using the index as stopping criterion
entails a first drop to occur at k = 655 with F = 0.21. However, when adding
context-awareness to the process, a first drop occurs closer at k = 302 with
F = 0.354. Similarly, consider the H3 index in DS3: While the optimal solution
is found at k = 53 with F = 0.21, using the index alone entails a first drop to
occur at k = 418 with F = 0.146. However, when adding context-awareness to
the process, a first drop occurred at k = 102 with F = 0.197, which is indeed a
promising result.

16.5.2 On the Quality of the Optimal Solutions

Since a context-aware algorithm is no more taking the merging decisions that op-
timizes V I, one may imagine that the method, although approaching the optimal
solution, can deteriorate the quality of this solution. However, results show the
opposite. Actually, the histograms illustrating the FScore at the optimal value of
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each V I, assess that with the context-aware method we can still have a compa-
rable and sometimes better clustering quality than the standard method without
involving any context-awareness. In average, using the method led the FScore at
the optimal value of V I to an improvement of 1.27% and 0.16% in DS2 and DS3,
and to a deterioration of 0.21% and 0.14% in DS1 and DS4 respectively. This can
be explained by the “safe” decisions taken at each step of the process. Although
not improving V I at the highest speed, these context-aware decisions, by foresee-
ing the upcoming mergings, provide better clustering possibilities in future itera-
tions, and thus competitive partitions quality at the end.

16.5.3 On the Quality of the Final Solutions

More informative than the quality of the optimal solutions, is the quality of the
final provided solutions obtained when stopping the process before FD. Thus,
these solutions, provided with/without using context-awareness, are also evalu-
ated in terms of FScore. In average, using the context-aware method contributed
to an FScore improvement of 63.14%, 30.16%, 10.04%, and 19.53% in DS1, DS2,
DS3, and DS4 respectively. We can notice that the largest improvements are
noticed in the document clustering datasets. This is not surprising given the
relatively poor representation of words patterns comparing to documents.

16.6 Conclusion and Future Trends

On the hand, we presented an experimental study that showed that indices
perform generally “well” at evaluating solutions, especially when dealing with
words. However, although they are supposed to be completely insensitive to the
number of clusters k, they have showed some rigidity to k, leading to erroneous
top-ranked solutions. In addition to that, we saw that these indices when involved
as criterion functions yield slightly better results to the case where indices were
simply used as external indicators.

On the other hand, we studied the feasibility of using relative indices as stop-
ping criteria in agglomerative clustering algorithms. Experiments performed in
two applications, document and word clustering, showed that indices used alone
are not effective for such purpose. Thus, we presented a method that aims to
smooth indices’ plots by taking the “safest” decision at each level of a clustering
process. We demonstrated that the method could remarkably enhance the usage
of relative indices as stopping criteria.

An important drawback in most relative indices is their high computational
cost. Yet, their utilization seems crucial in view of a parameter-free clustering.
That is, an important trend is to develop methods that could accurately approx-
imate their values on reduced and representative subsets of data. Among the few
works that have been conducted in this direction, we can cite [11]. Such works,
if tied with efficient clustering methods (e.g., CLIQUE, PROCLUS, Bisective
k-means, frequent pattern-based methods), may enable an objective clustering
on large and high-dimensional datasets.
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