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Abstract. This work centers on the real-time trajectory planning for
the cooperative control of two aerial munitions that are attacking a
ground target in a planar setting. Sensor information from each muni-
tion is assumed available, and the individual target-location estimates are
fused in a weighted least squares solution. The variance of this combined
estimate is used to define a cost function. The problem is posed to design
munition trajectories that minimize this cost function. This chapter de-
scribes the solution of the problem by a dynamic-programming method.
The dynamic-programming method establishes a set of grid points for
each munition to traverse based on the initial position of the munition
relative to the target. The method determines the optimal path along
those points to minimize the value of the cost function and consequently
decrease the value of uncertainty in the estimate of the target location.
The method is validated by comparison to known solutions computed by
a variational method for sample solutions. Numerical solutions are pre-
sented along with computational run times to indicate that this method
proves effective in trajectory design and target location estimation.

1 Introduction

Research is in progress on the cooperative control of air armaments designed
to detect, identify, and attack ground targets with minimal operator oversight.
One class of this type of armament is wide-area search munitions, which can
be deployed in an area of unknown targets. Current development is focused on
the possibilities of enhancing munition capabilities through cooperative control.
Important work exists in the literature on the two related problems of cooper-
ative search [1,2,3] and the design of optimal trajectories for single observers
[4,5,6,7,8,9,10]. The problem of planning optimal trajectories for cooperative ob-
servers has been studied using collocation [11,12]. The problem of cooperative
attack was previously investigated using variational methods [13]. This chapter
presents a method to drastically reduce the computational expense of the pre-
viously implemented variational methods by use of the dynamic-programming
(DP) method. This problem of designing an attack trajectory that enhances
the ability to estimate the target location will be referred to as simultaneous
localization and planning (SLAP).
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The methods presented in this chapter will be illustrated for a planar problem
with two munitions and one stationary target. In the following section, models
for the munition motion and sensor performance are presented. Next, the SLAP
trajectory design is posed as a DP problem. The cost-sensitivity to grid resolution
is then investigated. Finally, the performance of a target-location estimation
algorithm is evaluated along the SLAP trajectories and compared to alternative
trajectories.

2 Problem Definition

A scenario will be considered with the two-dimensional plane populated by two
munitions and a single fixed target. The state of each munition is given by its
position in two dimensional space, x1 = [x1 y1]T and x2 = [x2 y2]T. A constant-
speed kinematic model is used to describe the motion of the munitions. The
heading angles of the munitions are ψ1 and ψ2, and the speed of each munition
is v. Here, the heading angles are treated as control variables.

ẋ1 = v cosψ1 ; ẋ2 = v cosψ2

ẏ1 = v sin ψ1 ; ẏ2 = v sin ψ2 (1)

ẋi = fi (ψi) , i ∈ {1, 2} (2)

A variable-speed model could be used; however the additional control variables
would increase the complexity of the problem and was not considered here. The
two velocities were chosen to be equal for the sake of simplicity. Additionally, each
munition is considered to carry a sensor that is capable of measuring the target
location in the x−y plane. To design trajectories that improve the estimation of
the target location, a model of the sensor measurements and their uncertainties is
needed. The target has a position described by xT = [xT yT ]T. The measurement
of the target location by each munition, z̃1 = [x̃T,1 ỹT,1]T and z̃2 = [x̃T,2 ỹT,2]T,
is modeled as shown in Equation (3).

x̃T,1 = xT + wx,1(0, σx,1) ; x̃T,2 = xT + wx,2(0, σx,2)
ỹT,1 = yT + wy,1(0, σy,1) ; ỹT,2 = yT + wy,2(0, σy,2) (3)

The measurement errors from each munition are assumed to be independent of
the errors from the other munition. The x and y measurement errors from each
individual munition, wx,i and wy,i, however, are treated as correlated Gaussian
random variables with zero mean and standard deviations of σx,i and σy,i, where
i ∈ {1, 2}. These uncertainties will drive the trajectory design, and they can be
selected to model particular sensors.

The error in the target-location measurements from an individual munition is
treated as following a zero-mean jointly-Gaussian distribution that is uncorre-
lated in the down-range and cross-range directions, relative to the true target and
munition locations. The errors in these directions, wd,i(0, σd,i) and wc,i(0, σc,i),
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Fig. 1. Measurement of the target by the ith munition and the associated error prob-
ability ellipse

can therefore be treated as independent Gaussian random variables. The stan-
dard deviations in the down-range and cross-range directions are modeled as
functions of the range from the munition to the target.

σd,i = 0.1ri ; σc,i = 0.01ri (4)

These coefficients do not correspond to specifications of any particular sensor,
but model a sensor that is more accurate when close to the target and more
accurate in the transverse direction than in the radial direction. The uncertainty
in the measurement of the target location by the ith munition is illustrated in
Figure 1.

From the down-range and cross-range variables, the errors and the covariance
matrix in the x and y coordinates can be found.

[
wx,i

wy,i

]
=

[
cos θi sin θi

− sin θi cos θi

] [
wd,i

wc,i

]
(5)

Pi =
[

σ2
x,i σxy,i

σxy,i σ2
y,i

]
=

[
cos θi sin θi

− sin θi cos θi

] [
σ2

d,i 0
0 σ2

c,i

] [
cos θi − sin θi

sin θi cos θi

]
(6)

Here, θi is the bearing angle of the target relative to the ith munition. The range
and bearing angle for each target-munition pair are computed as shown below.

ri =
√

(xT − xi)
2 + (yT − yi)

2 (7)

θi = tan−1
(

yT − yi

xT − xi

)
(8)

The measurements provided by both munitions can be fused into a single
instantaneous estimate of the target location. This is done using a weighted least-
squares estimator (WLSE) [14,15]. The measurements of the target location from
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each munition are grouped into a measurement vector z̃ = [x̃T,1 ỹT,1 x̃T,2 ỹT,2]T.
This produces a linear measurement model in terms of the target location.

z = HxT + w (9)

H =
[
1 0 1 0
0 1 0 1

]T

; w =
[
wx,1 wy,1 wx,2 wy,2

]T (10)

Here, w is the vector of measurement errors. The covariance of this error vector
is given by arranging the covariances from each munition.

R =
[

P1 0
0 P2

]
(11)

The instantaneous WLSE of the target location and the associated covariance
reduce to the following.

P =
[

σ2
x σxy

σxy σ2
y

]
=

(
P−1

1 + P−1
2

)−1
(12)

The covariance P models the uncertainty in the combined target-location es-
timate based on the positioning of the two munitions relative to the target.
The task of designing trajectories for the munitions in order to enhance the
estimation performance can now be posed as the following optimal control prob-
lem. Consider the state vector x = [x1 y1 x2 y2]T. The heading angles of the
munitions can be organized into a control vector u = [ψ1 ψ2]T. The state vec-
tor evolves according to the state equation found by grouping Equation (2),
ẋ = f(u) = [fT

1 fT
2 ]T. For boundary conditions, the initial positions of the mu-

nitions will be considered a given, and the final position of munition 1 is required
to be the target location, x1(tF ) = xT and y1(tF ) = yT . The final position of
munition 2 is free.

The goal will be to find the trajectories that minimize the following cost
function, which is based on the WLSE covariance.

J =
∫ tF

0

(
σ2

x + σ2
y

)
dt (13)

The variances of each target location are functions of the states describing the
munition configuration. Clearly, this cost function emphasizes the uncertainty
over the entire trajectory. Alternative cost functions could be defined using other
metrics of the covariance matrix, but these were not investigated here.

3 Dynamic-Programming Approach

The above nonconvex problem has previously been solved using a variational
method [13]. Although these solutions demonstrated that significant improve-
ments in the target-location estimate could be achieved, the method was too
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Fig. 2. Example of (a) path grids and (b) DAG where n = 64 and m = 168 and all
edges are directed from left to right

computationally expensive for implementation. This section describes a solu-
tion of the problem by dynamic programming (DP), with the goal of reducing
computational expense.

Whereas variational methods consider a continuous range of heading angles at
any instant in time, the approach considered here only allows a discrete number
of possible headings at discrete instants in time. Admissible trajectories were
selected considering Equation (2). The trajectories were limited to two possible
heading angles at each decision instant. In between decision points, the trajec-
tories follow constant headings. This discretization generates a grid of possible
trajectories, as illustrated in Figure 2 (a). This grid of physical points through
which the munitions may travel is referred to as the path grid. It is noteworthy
that the candidate paths are based on the simple vehicle model in Equation (2);
however, the path planning generated from this model could be applied to a
higher-order system.

The path grids were laid out for each munition and were structured such
that they were symmetric about a reference line from the initial state to the
target location. The expansion of this grid is variable about the reference line
by an angle, α. Because the results of the variational method showed that the
munitions tended to approach the target at orthogonal headings, the path grid
was of variable width to allow for outward sweeps. The degree of expansion was
determined based on the initial positions of the munitions relative to the target.

The nodes were organized into subsets of nodes that could be reached in a
given amount of time. Consequently, the time increment between layers was also
assumed constant between each layer. This time increment is calculated from
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the initial range of the munition that will strike the target, which is assumed to
always be the closer of the two munitions. The same time step is used for both
munitions in order to preserve synchronized motion of the munitions.

This algorithm implements the Bellman-Ford model for trajectory optimiza-
tion through dynamic programming in Fortran 77 [16]. Once a cost function is
defined and a cost corresponding to each possible set of paths for each muni-
tion is calculated according to Equation (13), the combinatorial possibilities of
physical node locations for the two munitions were used to form the vertices of
a directed acyclic graph (DAG) with n vertices and m edges. Each vertex repre-
sents a particular location for each munition at a particular instant in time, and
each edge corresponds to the cost value associated with the munitions traveling
to those particular locations. The graph is directed and acyclic because the paths
must follow the flow of time.

The vertices are arranged into subsets, where each subset represents a partic-
ular instant in time. Once the cost along each edge of the DAG is computed, the
algorithm marches backward in time from the last layer of vertices to the first
vertex to determine the lowest possible cost and the path that produces it. At
each subset, the optimal path is computed by comparing the costs to proceed
forward. That path and cost are then stored and the algorithm works backwards
to the preceding subset, continuing this process until it reaches the initial vertex.
The DAG associated with the path grid in Figure 2 (a) is shown in Figure 2 (b).
Solutions for this type of graph can be computed in O(m) time.

Example trajectories produced by the DP method are shown in Figures 3
and 4 using n = 64 and m = 168. The DP trajectories are also compared to
trajectories computed from the variational method. A third order curve fit was
used to obtain the smooth trajectories from the grid points of the path grids.
The trends of the DP trajectories capture those of the variational method. This
is also evidenced by a minor increase in the final cost of approximately 7.75% in
each problem, as shown in Table 1. When paired with a computational run-time
of 0.1 sec on a 2GHz PC for the DP method, and the advantage of deterministic
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Fig. 3. Problem 1 SLAP trajectories from variational (a) and DP (b) methods



Simultaneous Localization and Planning for Cooperative Air Munitions 75

−2000 −1000 0 1000 2000
−2000

−1500

−1000

−500

0

500

1000

1500

2000

x (ft)

y 
(f

t)

munition 1
munition 2
target 1

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500
−2000

−1500

−1000

−500

0

500

1000

1500

2000

x (ft)

y 
(f

t)

Munition 1
Munition 2
Target

(a) (b)

Fig. 4. Problem 2 SLAP trajectories from variational (a) and DP (b) methods

Table 1. Cost for sample SLAP trajectories

Problem DP Method Cost DP Method Cost Variational Method Cost
n = 64 n = 27

1 1.7181 ∗ 104 1.7209 ∗ 104 1.59 ∗ 104

2 2.0317 ∗ 104 2.0318 ∗ 104 1.89 ∗ 104

run time, these cost values confirm the effectiveness of this method to the SLAP
problem.

4 Cost Sensitivity to Grid Resolution

In implementing the DP method, the resolution of the path grids and the re-
sulting DAG must be selected. In order to determine an appropriate resolution,
the sensitivity of the cost to grid resolution was investigated. A lower resolution
DAG with n = 27 and m = 70 was created. The resulting increase in perfor-
mance cost was less than 1%, as shown in Table 1. This low sensitivity to grid
resolution did not motivate the investigation of resolutions greater than n = 64.

5 Estimation Performance

The impact of the trajectories on the target-location estimation can now be
evaluated. Although the trajectories were designed using a cost function based
on the variances from a continuous WLSE algorithm, the estimation performance
will be evaluated using a recursive weighted least squares estimation (RWLSE)
algorithm with discrete measurement updates. The estimates computed using
the DP trajectories are compared to estimates using the variational method and
following trajectories from the initial conditions straight to the target location
(STT trajectory). In each case, noisy measurements were simulated using the
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measurement model in Equation (4). The measurements were generated by use
of the RANDN command in MATLAB to generate a normal distribution of
random numbers.

The munition sensors were assumed to collect measurements of the target
location at a rate of 10 Hz. The RWLSE algorithm operated as follows to deter-
mine the estimate and the uncertainty at the kth time step [14,15]. The current
estimate is computed as follows.

Kk = Pk−1H
T (

HPk−1H
T + R

)−1
(14)

x̂
(T )
k = x̂

(T )
k−1 + Kk

(
z̃k − Hx̂

(T )
k−1

)
(15)

The current covariance matrix is computed as shown.

Pk =
[

σ2
x,k σxy,k

σxy,k σ2
y,k

]
=

(
P−1

k−1 + HT
k R−1

k Hk

)−1
(16)

To compare the estimation performance along the different trajectories, the size
of the one-sigma uncertainty ellipsoid in the target-location estimate can be used
as a metric. At the kth time step, this is given by the product of π with the square
root of the product of the eigenvalues of Pk. In particular, the ellipsoid size at
two seconds prior to impact ((tF − 2) seconds) will be highlighted. Although tF
is different for each trajectory, at this point in time munition 1 is roughly 600 ft
from the target.

Using the initial condition of x1(0) = 0 ft, y1(0) = −2000 ft, x2(0) = 100 ft,
and y2(0) = −2000 ft, two munitions on STT trajectories correspond to a one-
sigma uncertainty ellipse with an area of 39.7 ft2 at (tF − 2) sec, with tF =
6.67, sec. When the two munitions follow the SLAP trajectories obtained through
the variational and DP methods shown in Figure 3 however, the area is reduced
as shown in Table 2. The error histories for a sample simulation with noisy mea-
surements and three-sigma error bounds (±3σx,k and ±3σy,k) generated by the
RWLSE algorithm are shown in Figure 5. Figure 5(a) shows the errors in the x
and y estimates of the target location using the variational method trajectories.
Figure 5(b) show the errors using the DP trajectories. Both trajectories give
similar, relatively good performance in estimating the target location, however
the DP trajectory has slightly slower convergence. This highlights the differ-
ence between the uncertainty ellipse area as a performance metric and the cost
function used in generating the paths.

Table 2. Area of one-sigma uncertainty ellipse

Problem STT Variational Method DP Method
1 39.7 ft2 9.1 ft2 24.5 ft2

2 40.8 ft2 9.3 ft2 23.5 ft2
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Fig. 5. Estimation errors using (a) Variational Method and (b) DP trajectories with
x2(0) = 100 ft, and y2(0) = −2000 ft
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Fig. 6. Estimation errors using (a) Variational Method and (b) DP trajectories with
x2(0) = 0 ft, and y2(0) = 2000 ft

Moving munition 2 to the initial condition x2(0) = 0 ft, and y2(0) = 2000 ft
corresponds to an uncertainty ellipse with an area of 9.3 ft2 for the variational
method trajectories. With a mesh expansion angle of π/4, the resulting uncer-
tainty ellipse area was 23.5 ft2 for the DP trajectories. For these initial conditions,
the error histories for a sample simulation with noisy measurements and three-
sigma error bounds generated by the RWLSE algorithm are shown in Figure 6.

6 Conclusions

Careful trajectory design can have a significant impact on target-location es-
timation. In this work, the DP approach was used to demonstrate that SLAP
trajectories are practical for real-time implementation. The advantage of this
approach is that discretization in both time and spatial coordinates results in
a DAG on which the corresponding problem can be solved in a deterministic
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amount of computation. This allows grid resolution to be selected based on the
available computational resources and desired performance.

More accurate target-location estimation could allow more accurate strike
capability or the ability to attack the targets that are difficult to detect. Further
work is needed to demonstrate the impact of these estimation enhancements on
guidance and control performance. In future implementations, heuristic methods
may be developed based on insight gained from solutions of the optimal control
problem. Additionally, an algorithm could be developed to allow for an adaptive
mesh expansion angle. The DP approach will still be a useful development tool
to cheaply investigate various solutions.

Acknowledgment

The authors are grateful to Clayton W. Commander, Air Force Research Lab,
for his helpful discussion of shortest-path algorithms.

References

1. Chandler, P.R., Pachter, M., Nygard, K.E., Swaroop, D.: Cooperative control for
target classification. In: Murphey, R., Pardalos, P.M. (eds.) Cooperative Control
and Optimization, pp. 1–19. Kluwer, Netherlands (2002)

2. Jeffcoat, D.E.: Coupled detection rates: An introduction. In: Grundel, D., Murphey,
R., Pardalos, P.M. (eds.) Theory and Algorithms for Cooperative Systems, pp.
157–167. World Scientific, New Jersey (2004)

3. Frew, E., Lawrence, D.: Cooperative stand-off tracking of moving targets by a
team of autonomous aircraft. In: AIAA-2005-6363. AIAA Guidance, Navigation,
and Control Conference, San Fancisco, California (August 2005)

4. Fawcett, J.A.: Effect of course maneuvers on bearings-only range estimation. IEEE
Transactions on Acoustics, Speech, and Signal Processing 36(8), 1193–1199 (1988)

5. Hammel, S.E., Liu, P.T., Hilliard, E.J., Gong, K.F.: Optimal observor motion for
localization with bearing measurements. Computers and Mathematics with Appli-
cations 18(1-3), 171–180 (1989)

6. Logothetis, A., Isaksson, A., Evans, R.J.: Comparison of suboptimal strategies
for optimal own-ship maneuvers in bearings-only tracking. In: American Control
Conference, Phiadelphia, Pennsylvania (June 1998)

7. Passerieux, J.M., Van Cappel, D.: Optimal observer maneuver for bearings-only
tracking. IEEE Transactions on Aerospace and Electronic Systems 34(3), 777–788
(1998)

8. Oshman, Y., Davidson, P.: Optimization of observer trajectories for bearings-only
target localization. IEEE Transactions on Aerospace and Electronic Systems 35(3),
892–902 (1999)

9. Frew, E.W., Rock, S.M.: Trajectory generation for constant velocity target motion
estimation using monocular vision. In: IEEE International Conference on Robotics
& Automation, Taipei, Taiwan (September 2003)

10. Watanabe, Y., Johnson, E.N., Calise, A.J.: Vision-based guidance design from sen-
sor trajectory optimization. In: AIAA-2006-6607. AIAA Guidance, Navigation, and
Control Conference, Keystone, Colorado (August 2006)



Simultaneous Localization and Planning for Cooperative Air Munitions 79

11. Grocholsky, B.: Information-Theoretic Control of Multiple Sensor Platforms. Ph.D
thesis, University of Sydney, Sydney, Australia (2002)

12. Ousingsawat, J., Campbell, M.E.: Optimal cooperative reconnaissance using mul-
tiple vehicles. Journal of Guidance, Control, and Dynamics 30(1), 122–132 (2007)

13. Sinclair, A.J., Prazencia, R.J., Jeffcoat, D.E.: Simultaneous localization and plan-
ning for cooperative air munitions. In: Hirsch, M.J., Pardalos, P.M., Murphey, R.,
Grundel, D. (eds.) Advances in Cooperative Control and Optimization. LNCIS,
vol. 369, pp. 81–94. Springer, Heidelberg

14. Stengel, R.F.: Optimal Control and Estimation. Dover, New York (1986)
15. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. Chapman

& Hall/CRC, Boca Raton (2004)
16. Bellman, R.E., Dreyfus, S.E.: Applied Dynamic Programming. Princeton Univer-

sity Press, Princeton (1962)


	Simultaneous Localization and Planning for Cooperative Air Munitions Via Dynamic Programming
	Introduction
	Problem Definition
	Dynamic-Programming Approach
	Cost Sensitivity to Grid Resolution
	Estimation Performance
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




