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Abstract. We extend the results presented in a previous paper which fo-
cused on deterministic formulations of the wireless network jamming

problem. This problem seeks to determine the optimal number and place-
ment locations for a set of wireless jamming devices to sufficiently suppress
a communication network according to some specified criterion. We now
introduce robust variants of those formulations which account for the fact
that the exact topology of the network to be jammed may not be known
entirely. Particularly, we consider instances in which several topologies
are considered likely, and develop robust scenarios for placing jamming
devices which are able to suppress the network regardless of which can-
didate topology is realized. We derive several formulations and include
percentile constraints to account for a variety of scenarios. Case studies
are presented and the results are analyzed. We conclude with directions
of future research.

1 Introduction

Research on suppressing and eavesdropping communication networks has seen
a surge recently in the optimization community. Two recent papers by Com-
mander et al. [5,6] represent the current state-of-the-art. These problems have
several important military applications and represent a critical area of research
as optimization of telecommunication systems improve technological capabilities
[12]. In [5], the authors develop lower and upper bounds for the optimal num-
ber of wireless jamming devices required to suppress a network contained in a
given area such as a map grid. In this work, there were no a priori assumptions
made about the topology of the network to be jammed other than the geograph-
ical region in which it was contained. This problem is particularly important in
the global war on terrorism as improvised explosive devices (IEDs) continue to
plague the coalition forces. In fact, IEDs account for approximately 65% of all
combat injuries in Iraq [11]. These homemade bombs are almost always deto-
nated by some form of radio frequency device such as cellular telephones, pagers,
and garage door openers. The ability to suppress radio waves in a given region
will help prevent casualties resulting from IEDs [4].
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In [6] the wireless network jamming problem (wnjp) was introduced
and several formulations derived. In the wnjp, the topology of the network is
assumed and various objectives can be considered, from jamming all the com-
munication nodes to constraining the connectivity index of the nodes. In this
chapter, we introduce robust variants of those formulations which account for
the fact that the exact topology of the network to be jammed may not be known
entirely. Particularly, we consider instances in which several topologies are con-
sidered likely, and develop robust scenarios for placing jamming devices which
are able to suppress the network regardless of which candidate topology is re-
alized. The overarching goal is to develop robust formulations with respect to
the uncertainties in the information about the network. These models will pro-
vide a more realistic interpretation of combat scenarios in urban and dynamic
environments.

The organization of the chapter is as follows. In Section 2, we derive several
formulations of the robust wireless network jamming problem (r-wnjp).
In Section 3, we review several percentile measures and incorporate percentile
constraints into the models in Section 4. The results of several case studies are
presented in Section 5 and the results are analyzed. We conclude with directions
of future research.

2 Problem Formulations

Denote a graph G = (V, E) as a pair consisting of a set of vertices V , and a
set of edges E. All graphs in this chapter are assumed to be undirected and
unweighted. We use the symbol “b := a” to mean “the expression a defines the
(new) symbol b” in the sense of King [9]. Finally, we will use italics for emphasis
and small caps for problem names.

We assume that the communication network to be jammed comprises a set
M = {1, 2, . . . , m} of radio devices which are outfitted with omnidirectional an-
tennas and function as both transmitters and receivers [6]. Further we assume
that the coordinates of the nodes and various parameters such as the frequency
range are given by probability distributions. For example, we can assume that a
Kalman filter provides some estimate of the locations of the nodes. In a deter-
ministic setup, the topology, which represents the communication pattern, could
be represented by a graph in which an edge connects two nodes if they are within
a certain communication threshold.

As for the set of jamming devices, we assume that they too are outfitted
with omnidirectional antennas with the effectiveness of a jamming device on
a communication node being inversely proportional to their squared distance.
Suppose that the set of jamming devices is giving by N = {1, 2, . . . , n}, and
we are given a set potential locations in which to place them. Figure 1 pro-
vides an example of the communication network and the potential jamming
device locations. Moreover, each potential location j has an associated cost
cj , j = 1, 2, . . . , n. We can describe the jamming power received by network node
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Fig. 1. Example network shown with potential jamming device locations

i located at a point (ξi, ηi) ∈ R × R, from jamming device j ∈ N located at
(x, y) as

dj(ξi, ηi) ≡ dij :=
λ

(xj − ξi)2 + (yj − ηi)2
, (1)

where λ ∈ R is a constant. Without the loss of generality, we can let λ = 1. We
say that node i ∈ M located at (ξi, ηi) is jammed if the total energy received at
this point from all jamming devices exceeds some threshold value Ci. That is,
node i is jammed if

n∑

j=1

dj(ξi, ηi) ≥ Ci. (2)

As mentioned above, we are considering robust formulations of the wnjp.
Since the exact locations of the network nodes are unknown, we assume that
a set of intelligence data has been collected and from that a set S of the most
likely scenarios have been compiled. We assume that for scenario s ∈ S both the
node locations {(ξs

1, η
s
1), (ξ

s
2 , η

s
2), . . . , (ξ

s
m, ηs

m)} and the set of jamming thresholds
{Cs

1 , Cs
2 , . . . , Cs

m} are modeled. We make no assumption on the equality of the
number of devises to be jammed in the different scenarios. Therefore, we define
for each scenario s ∈ S, the set Ms = {1, 2, . . . , ms} which represents the set of
nodes to be jammed, where ms represents the number of nodes in scenario s. For
example, the networks shown in Figure 2 represent a set of possible topologies
for the network to be jammed.
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Fig. 2. Four example scenarios are shown

2.1 The Robust Connectivity Index Problem

Given a graph G = (V, E), the connectivity index of a node is defined as the
number of nodes reachable from that vertex, i.e., if there exists a path between
two nodes. The first formulation of the wnjp we consider imposes constraints
on the connectivity indices of the network nodes. The degree to which the con-
nectivity index of a given node is constrained may be determined by its relative
importance or how crucial it is for maintaining connectivity among many compo-
nents. It is at the discretion of the analyst whether to assign arbitrary values to
each node or use some heuristic for determining a relative importance. One way
to determine the connectivity indices is to identify the so-called critical nodes
of the graph and impose relatively tighter constraints on these nodes. Critical
nodes are those vertices whose removal from the graph induces a set of discon-
nected components whose sizes are minimally variant [1]. Critical node detection
has been recently applied to interdicting wired communication networks [4], to
network security applications [2], and most recently to the analysis of protein-
protein interaction networks in the context of computational drug design [3].

Suppose for example that for the scenarios shown in Figure 2 the maximum
allowable connectivity index is set to 3 for each node. Then the objective of the
robust connectivity index problem (rcip) is to determine the minimum
number and locations for the jamming devices so that each node has no more
than 3 neighbors in each of the four scenarios presented. Figure 3 provides an
example solution for this case.

Suppose that communication between two nodes in the communication graph
is said to be severed if at least one of the nodes is jammed. Then the objective
of the robust connectivity index problem (rcip) is to determine the min-
imum required jamming devices such that the connectivity index of each node i
in each scenario s does not exceed some predefined values Ls

i . In order to define
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Fig. 3. The optimal solution for the networks in Figure 2 is given for the case when
the maximum connectivity index is 3 for all nodes

the corresponding mathematical formulation we must define the following func-
tions. First let ys : Ms × Ms �→ {0, 1} be a surjection where ys

ij := 1 if there
exists a path from node i to node j in the jammed network according to scenario
s ∈ S. Next let the function zs : Ms �→ {0, 1} be a surjective function where zs

i

returns 1 if node i is not jammed in scenario s ∈ S. Finally, let xi, i = 1, . . . , n
be a set of decision variables where xi := 1 if a jamming device location i is
utilized. If ck and dij are as defined in Equation 1, then we can formulate the
rcip as the following optimization problem.

(RCIP) min
n∑

k=1

ckxk (3)

s.t.
ms∑

j=1
j �=i

ys
ij ≤ Ls

i , ∀ i ∈ Ms, ∀ s ∈ S, (4)

M(1 − zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈ Ms,

∀ s ∈ S, (5)
xj ∈ {0, 1}, ∀ j ∈ N , (6)
zs

i ∈ {0, 1}, ∀ i ∈ Ms, ∀ s ∈ S, (7)
ys

ik ∈ {0, 1}, ∀ i, k ∈ Ms, ∀ s ∈ S, (8)

where M ∈ R is some large constant.
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In a manner similar to that shown in [6], we can formulate an equivalent
integer programming formulation as follows. First let vs : Ms × Ms �→ {0, 1}
and vs′

: Ms × Ms �→ {0, 1} be respectively defined as

vs
ij :=

{
1, if (i, j) ∈ Es,

0, otherwise,
(9)

and

vs′

ij :=

{
1, if (i, j) exists in the jammed network of scenario s,

0, otherwise.
(10)

An equivalent integer program is then given by

(RCIP-1) min
n∑

k=1

ckxk, (11)

s.t.
ys

ij ≥ vs′

ij , ∀ i, j ∈ Ms, ∀ s ∈ S, (12)
ys

ij ≥ ys
ikys

kj , k 	= i, j; ∀ i, j ∈ Ms, ∀ s ∈ S, (13)

vs′

ij ≥ vs
ijz

s
jz

s
i , i 	= j; ∀ i, j ∈ Ms, ∀ s ∈ S, (14)

m∑

j=1
j �=i

ys
ij ≤ Ls

i , ∀ i ∈ Ms, ∀ s ∈ S, (15)

M(1 − zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈ Ms,

∀ s ∈ S, (16)
xj ∈ {0, 1}, ∀ j ∈ N , (17)
zs

i ∈ {0, 1}, ∀ i ∈ Ms, ∀ s ∈ S, (18)
ys

ij ∈ {0, 1} ∀ i, j ∈ Ms, ∀ s ∈ S, (19)
vs

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S, (20)

vs′

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S. (21)

We establish the equivalence of formulations rcip and rcip-1 in the following
theorem. The proof follows similarly to a result for the single scenario problem
in [6].

Theorem 1. If rcip has an optimal solution, then rcip-1 has an optimal solu-
tion. Furthermore, any optimal solution x∗ of the integer programming problem
rcip-1 is an optimal solution of the optimization problem rcip.

Proof. It is easy to see that if communication nodes i and j are reachable in the
jammed network of a given scenario s ∈ S, then ys

ij = 1 in rcip-1. Indeed if i
and j are reachable, then there exists a sequence of pairwise adjacent vertices

{(i0, i1), . . . , (im−1, im)}, (22)
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where i0 = i and im = j. By inducting along the vertices, we can establish the
fact that ys

i0,ik+1
= 1 for all k = 1, . . . , m. To do this, first note that from (12)

we have that ys
ik,ik+1

= 1. Then if ys
i0,ik

= 1, then by (13) we have that

ys
i0,ik+1

≥ ys
i0,ik

ys
ik,ik+1

= 1. (23)

This completes the induction step. Thus far we have shown that

m∑

j=1
j �=i

ys
ij ≥ connectivity index of node i.

Let F be the objective function in rcip-1 and rcip. Furthermore, suppose
(x∗, y∗) and (x̂∗, ŷ∗) represent optimal solutions for each formulation respec-
tively. Then so far, we have confirmed that

F (x∗) ≥ F (x̂∗). (24)

It is easy to verify that (x̂∗, ŷ∗) is feasible in rcip-1. This follows from the def-
inition of ys

ij in rcip and the fact that (x̂∗, ŷ∗) satisfies the feasibility constraints
in rcip. This proves the first statement of the theorem. Hence from rcip-1, we
have that

F (x∗) ≤ F (x̂∗). (25)

Therefore using (24) and (25), we have

F (x∗) = F (x̂∗). (26)

Now define ys such that

ys
ij := 1 ⇔ j is reachable from i when scenario s is jammed by x∗. (27)

Using the above results, we know that (x∗, ys) is feasible in rcip-1, and hence
optimal. Also from the construction of ys it follows that (x∗, ys) is feasible in
rcip. According to (26), we can conclude that x∗ is also optimal for rcip. Thus
the theorem is proved.

With the previous theorem, we have established a one-to-one correspondence
between the two formulations. By using some standard techniques, we can now
reformulate rcip-1 into the following integer linear program

(RCIP-2) min
n∑

k=1

ckxk (28)

s.t.
ys

ij ≥ vs′

ij , ∀ i, j = 1, . . . , Ms, ∀ s ∈ S, (29)
ys

ij ≥ ys
ik + ys

kj − 1, k 	= i, j; ∀ i, j ∈ Ms, ∀ s ∈ S, (30)

vs′

ij ≥ vs
ij + zs

j + zs
i − 2, i 	= j; ∀ i, j ∈ Ms, ∀ s ∈ S, (31)
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m∑

j=1
j �=i

ys
ij ≤ Ls

i , ∀ i ∈ Ms, ∀ s ∈ S, (32)

M(1 − zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈ Ms,

∀ s ∈ S, (33)
xj ∈ {0, 1}, ∀ j ∈ N , (34)
zs

i ∈ {0, 1}, ∀ i ∈ Ms, ∀ s ∈ S, (35)
ys

ij ∈ {0, 1} ∀ i, j ∈ Ms, ∀ s ∈ S, (36)
vs

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S, (37)

vs′

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S. (38)

Theorem 2. If rcip-1 has an optimal solution, then rcip-2 has an optimal
solution. Further, any optimal solution x∗ of rcip-2 is an optimal solution of
rcip-1.

Proof. For binary variables, notice that the following equivalence holds

ys
ij ≥ ys

ikys
kj ⇔ ys

ij ≥ ys
ik + ys

kj − 1. (39)

Then the only other difference between the formulations are the two constraints:

vs′

ij = vs
ijz

s
jz

s
i (40)

vs′

ij ≥ vs
ij + zs

i + zs
j − 2 (41)

In a manner similar to (39) above, it is easy to verify that (40) implies (41).
Therefore the feasible region of rcip-2 includes the feasible region of rcip-1.
With this we have the first statement of the theorem.

As in the previous proof, let F represent the objective function in rcip-1 and
rcip-2 and let x∗ and x̂∗ represent respective optimal solutions. Then it follows
that

F (x∗) ≥ F (x̂∗). (42)

Let (x∗, ys∗, v
′s∗, zs∗) be an optimal solution for formulation rcip-2. Now, define

v
′′s∗ as follows:

v
′′s∗
ij :=

{
1, if vs

ij + zs∗
i + zs∗

j − 2 = 1,

0, otherwise.
(43)

Notice that if v
′s∗
ij ≥ v

′′s∗
ij then (x∗, ys∗, v

′′s∗, zs∗) is feasible in rcip-2 according
to constraint (29) (i.e., ys

ij ≥ v
′′s∗
ij ). Furthermore, (x∗, ys∗, v

′′s∗, zs∗) is optimal
in rcip-2 as the the objective value is F (x∗), which is optimal by definition.
Using (43), (v

′′s∗, zs∗) satisfies:

v
′′s∗
ij = vs

ijz
s∗
j zs∗

i . (44)
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Using this we have that (x∗, ys∗, v
′′s∗, zs∗) is feasible for rcip-1. If x̂∗ is an

optimal solution of rcip-1 then it follows that

F (x̂∗) ≤ F (x∗) (45)

On the other hand, we have shown in (42) above, that

F (x∗) ≤ F (x̂∗). (46)

(45) and (46) together imply F (x1) = F (x∗). The last equality proves that x∗ is
an optimal solution of rcip-1. Thus, the theorem is proved.

Finally, we have the following theorem which establishes the equivalence between
the optimization problem rcip and the integer linear programming formulation
rcip-2 [6].

Theorem 3. If rcip has an optimal solution, then rcip-2 has an optimal solu-
tion. Moreover, any optimal solution of rcip-2 is an optimal solution of rcip.

Proof. The proof follows directly from Theorem 1 and Theorem 2.

2.2 Robust Node Covering Problem

What follows is a robust formulation of the optimal node covering problem
presented in wnjp. As before, we are given Ms, the set of nodes to be jammed.
We are also given the set of potential locations for the jamming devices, N . The
objective of the robust network covering problem (rncp) is to minimize
the number of jamming devices required to suppress communication on all of the
nodes for each of the scenarios. Recall from Equation (2) that a node in a given
scenario is said to be suppressed if the cumulative amount of energy received by
that node from all jamming devices exceeds some threshold level. Let ck, ds

ik,
and Cs

i be as defined previously. Also, recall that the decision variable xk := 1
if a jamming device is installed at location k ∈ N . With this, we can formulate
the rncp as follows.

(RNCP) min
n∑

k=1

ckxk, (47)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i , i = 1, 2, . . . , ms, s = 1, 2, . . . , S, (48)

xk ∈ {0, 1}, k = 1, 2, . . . , n, (49)

The rncp is NP-hard which can be easily shown by a reduction from the
multidimensional knapsack problem [7]. With this in mind, we recognize
that solving large-scale instances is unreasonable, thus we must seek alterna-
tive solution methods. One possible way of doing this is accepting the fact that
jamming a sufficient percentage of the network nodes will suffice given the in-
tractability of the problem. We now examine the r-wnjp with the inclusion of
percentile constraints.
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Fig. 4. A graphical depiction of VaR and CVaR

3 Percentile Constraints

As demonstrated in the seminal paper on deterministic network jamming prob-
lems [6], it is often the case that a network can be sufficiently neutralized by
suppressing communication on a fraction of the total nodes. This can be accom-
plished by the inclusion of percentile constraints into a mathematical model. In
this section, we review two commonly used risk measures and derive formulations
of the rcip and a rncp.

3.1 Review of Value at Risk (VaR) and Conditional Value at Risk
(CVaR)

The first percentile constraint we examine is the simplest risk measure used in
optimization of robust systems and is known as the Value at Risk (VaR) measure
[8]. VaR provides an upper bound, or percentile on a given loss distribution. For
example, consider an application in which a constraint must be satisfied within
a specific confidence level α ∈ [0, 1]. Then the corresponding α-VaR value is
the lowest value ζ such that with probability α, the loss does not exceed ζ
[10]. In economic terms, VaR is simply the maximum amount at risk to be lost
from an investment. VaR is the most widely applied risk measure in stochastic
settings primarily because it is conceptually simple and easy to incorporate into a
mathematical model [6]. However with this ease of use come several complicating
factors as we will soon see. Some disadvantages of VaR are that the inclusion
of VaR constraints adds to the number of discrete variables in a problem. Also,
VaR is not a so-called coherent risk measure, implying among other things that
it is not sub-additive.

Another commonly applied risk measure is the so-called Conditional Value-
at-Risk (CVaR) developed by Rockafellar and Uryasev [13]. CVaR is a more
conservative measure of risk, defined as the expected loss under the condition
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that VaR is exceeded. A graphical representation of the relationship between
CVaR and VaR is shown in Figure 4. In order to define CVaR and Var we need
to determine the cumulative distribution function for a given decision vector
subject to some uncertainties. Suppose f(x, y) is a performance (or loss) function
associated with a decision vector x ∈ X ⊆ Rn, and a random vector y ∈ Rm

which is the uncertainties that may affect the performance. Assume that y is
governed by a probability measure P on a Borel set, say Y [6]. The loss f(x, y)
for each x ∈ X is a random variable having a distribution in R induced by y.
Then the probability of f(x, y) not exceeding some value ζ is defined as

ψ(x, ζ) := P{y|f(x, y) ≤ ζ}. (50)

By fixing x, the cumulative distribution function of the loss associated with the
decision x is thus given by ψ(x, ζ) [15].

Given the loss random variable f(x, y) and any α ∈ (0, 1), we can use equation
(50) to define α-VaR as

ζα(x) := min{ζ ∈ R : ψ(x, ζ) ≥ α}. (51)

From this we see the probability that the loss f(x, y) exceeds ζα(x) is 1 − α.
Using the definition above, CVaR is the conditional expectation that the loss
according to the decision vector x dominates ζα(x) [13]. Thus we have α-CVaR
denoted as φα(x) defined as

φα(x) := E{f(x, y)|f(x, y) ≥ ζα(x)}. (52)

In order to include CVaR and VaR constraints in optimization models we
must characterize ζα(x) and φα(x) in terms of a function Fα : X × R �→ R

defined by

Fα(x, ζ) := ζ +
1

(1 − α)
E{max {f(x, y) − ζ, 0}}. (53)

In the seminal paper on CVaR [13], Rockafellar and Uryasev prove that as
a function of ζ, Fα(x, ζ) is convex and continuously differentiable. Moreover,
they show that α-CVaR of the loss associated with any x ∈ X , i.e., φα(x), is
equal to the global minimum of Fα(x, ζ), over all ζ ∈ R. Further, if Aα(x) =
argminζ∈R Fα(x, ζ) is the set consisting of the values of ζ for which F is min-
imized, then Aα(x) is a non-empty, closed and bounded interval and ζα(x) is
the left endpoint of Aα(x). In particular, it is always the case that ζα(x) ∈
argminζ∈R Fα(x, ζ) and ψα(x) = Fα(x, ζα(x)) [13].

This result gives a linear optimization algorithm for computing α-CVaR. It
is a result of the convexity of Fα(x, ζ), that we are able to minimize CVaR for
x ∈ X without having to numerically calculate φα(x) for every x. This has been
shown by Rockafellar and Uryasev in [14]. Further, it has been shown in [14] that
for any probability threshold α and loss tolerance ω, that constraining φα(x) ≤ ω
is equivalent to constraining Fα(x, ζ) ≤ ω.
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3.2 Robust Jamming with Percentile Constraints

Now that we have theoretical groundwork for the VaR and CVaR percentile
measures, we develop formulations of the robust jamming problems incorporating
these risk constraints. We begin with the robust node covering problem.
Since we are given a set of possible network scenarios, we would like to develop
a formulation for the rncp in which the optimal solution will be guaranteed to
cover some predetermined fraction α ∈ (0, 1) of the network nodes, regardless of
the scenario realized. To do this, we can include α-VaR constraints in the rncp

as follows. First we define the surjection ρs : Ms �→ {0, 1} by

ρs
i :=

{
1, if node i is jammed in scenario s,

0, otherwise.
(54)

Then we can formulate the robust node covering problem with Value-at-
Risk constraints as

(RNCP-VaR) min
n∑

k=1

ckxk, (55)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i ρs
i , ∀ s ∈ S, ∀ i ∈ Ms, (56)

ms∑

i=1

ρs
i ≥ αms, ∀ s ∈ S, (57)

xk ∈ {0, 1}, ∀ k ∈ N , (58)
ρs

i ∈ {0, 1}, ∀ s ∈ S, ∀ i ∈ Ms, (59)

Notice that to include the VaR constraints an additional ms binary variables are
required for each scenario s ∈ S.

In a similar manner, we can incorporate VaR constraints into the rcip by
introducing ωs : Ms �→ {0, 1} as

ωs
i :=

{
1, connectivity index of node i is constrained on scenario s,

0, no requirement on connectivity index of node i.
(60)

Using this we have

(RCIP-VaR) min
n∑

k=1

ckxk (61)

s.t.

M(1 − zs
i ) >

n∑

k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ s ∈ S,

∀ i ∈ Ms, (62)



Robust Wireless Network Jamming Problems 411

ms∑

j=1
j �=i

ys
ij ≤ Ls

iω
s
i + M(1 − ωs

i ), ∀ s ∈ S, ∀ i ∈ Ms, (63)

ms∑

j=1

ωs
j ≥ αms, ∀ s ∈ S, (64)

xk ∈ {0, 1}, ∀ k ∈ N , (65)
zs

i , ω
s
i ∈ {0, 1}, ∀ s ∈ S, ∀ i ∈ Ms, (66)

ys
ik ∈ {0, 1}, ∀ s ∈ S, ∀ i, k ∈ Ms, (67)

where M ∈ R is some large constant. As with the RNCP-VaR formulation, an
additional ms binary variables are required for each scenario s ∈ S. We will see
in the following section the dramatic effect that the inclusion of VaR constraints
has on the computability of optimal solutions.

In order to develop formulations incorporating CVaR constraints, we must
derive an appropriate loss function for each problem. We will begin with the
rncp. As in [6], we introduce the function fs : {0, 1}n × Ms �→ R defined by

fs(x, i) := Cs
i −

n∑

j=1

xjd
s
ij . (68)

Given a decision vector x representing the placement of the jamming devices,
the loss function is defined as the difference between the energy required to jam
network node i, namely Cs

i , and the cumulative amount of energy received at
node i due to x over each scenario [6]. With this we can formulate the rncp

with CVaR constraints as follows.

(RNCP-CVaR) min
n∑

k=1

ckxk, (69)

s.t.

ζs +
1

(1 − α)ms

ms∑

i=1

max

{
Cs

min −
n∑

k=1

ds
ikxk − ζs, 0

}
≤ 0, ∀ s ∈ S, (70)

xk ∈ {0, 1}, ∀ k ∈ N , (71)
ζs ∈ R, ∀ s ∈ S. (72)

The CVaR constraint (70) implies that for the (1−α) ·100% of the worst (least)
covered nodes, the average value of f(x) is less than or equal to 0.

In a similar manner, we can formulate the robust connectivity index

problem with the addition of CVaR constraints. As before, we need to define
an appropriate loss function. We define the loss function f ′

s for a network node i
in scenario s as the difference between the connectivity index of i and the maxi-
mum allowable connectivity index Ls

i which occurs as a result of the placement of
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the jamming devices according to x. That is, let f ′ : {0, 1}n × Ms �→ Z be
defined by

f ′
s(x, i) :=

ms∑

j=1,j �=i

ys
ij − Ls

i . (73)

With this, the cip-cvar formulation is given as follows.

(RCIP-CVaR) min
n∑

k=1

ckxk, (74)

s.t.

ζs +
1

(1 − α)ms

ms∑

i=1

max

⎧
⎪⎪⎨

⎪⎪⎩

ms∑

j=1
j �=i

ys
ij − Ls

max − ζs, 0

⎫
⎪⎪⎬

⎪⎪⎭
≤ 0, ∀ s ∈ S, (75)

xk ∈ {0, 1}, ∀ k ∈ N , (76)
ys

ik ∈ {0, 1}, ∀ s ∈ S, ∀ i, k ∈ Ms, (77)
ζs ∈ R, ∀ s ∈ S, (78)

where Ls
max is a maximum allowable connectivity index under scenario s which

occurs as a result of the placement of the jamming devices. The constraint on
CVaR provides that for the (1−α) ·100% of the worst cases, the average connec-
tivity index will not exceed Lmax. Notice that to include the CVaR constraint, we
only add real variables to the problem. The continuous nature of CVaR variables
versus the discrete nature of the VaR variables will explain the vast difference
in the computation times in the case studies presented in the following section.

4 Case Studies

In this section, we present some preliminary numerical results comparing the
performance and solution quality of the proposed formulations. The experiments
were performed on a PC equipped with a 1.4MHz Intel Pentium R 4 processor
with 1GB of RAM, working under the Microsoft Windows R XP SP2 oper-
ating system. The optimal solutions for the case studies were calculated using
CPLEX 9.0.

The problem set considered is relatively small, but provides some insights into
the solutions obtained using VaR and CVaR constraints. The network consists
of 20 nodes which must be jammed. For this problem, we consider five network
scenarios. We note here that the jamming thresholds of the nodes do not depend
upon the scenarios. As for the placement of the jamming devices, we use the
same approach as in [6], which consists of 36 potential locations located on the
vertices of a uniform grid placed over the region containing the network. One
network scenario showing the potential locations of the jamming devices is shown
in Figure 1. The remaining scenarios are depicted in Figure 2.
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4.1 Node Covering Problems

We begin by examining the robust node covering problem. For the first case
study, we consider the rncp with Value-at-Risk constraints. The loss threshold is
.9 which implies that the covering constraints must be satisfied for at least 90%
of the network nodes. The optimal solution requires 9 jamming devices. CPLEX
computed the solution for this problem in 18 seconds. The results of this instance
are provided in Table 1. The table shows the total jamming level as a percentage
of the jamming threshold received by each node in each scenario. Notice that all
but 7 (over all scenarios)were totally jammed; however, for those nodes not totally
jammed VaR constraints provide no guarantee that they will receive any jamming
energy whatsoever. Though not an important factor in this case, this fact could
potentially lead to problems in large-scale instances of the problem.

Next, we examine the same problem only replacing the VaR constraints with
Conditional Value-at-Risk constraints. As before, the loss threshold is .90, imply-
ing that the maximum allowable losses (uncovered nodes) exceeding VaR must
be no greater than 10%. Interestingly, the optimal solution in this case also re-
quires 9 jamming devices. However this solution was computed in 0.922 seconds.
The results from this study are shown in Table 2. Notice in this case that with the
same number of jamming devices all but 2 nodes (across all scenarios) were totally
jammed. We see that not only is this solution better in terms of the total number
of jammed nodes, but it was also computed in an order of magnitude less time.

Table 1. Network coverage with VaR constraints. The total jamming level (%) for
each scenario is shown.

Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 100 100 79.31
14 100 100 100 100 100
15 100 75.74 100 100 100
16 86.45 81.86 100 57.84 100
17 100 100 100 100 100
18 100 100 100 100 100
19 100 100 100 100 100
20 86.47 100 100 65.24 100
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Table 2. Network coverage with CVaR constraints. The total jamming level (%) for
each scenario is shown.

Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 97.25 100 100
14 100 100 100 100 100
15 100 100 100 100 100
16 100 100 100 93.93 100
17 100 100 100 100 100
18 100 100 100 100 100
19 100 100 100 100 100
20 100 100 100 100 100

4.2 Connectivity Index Problems

Now we discuss the results of the case study for the rscip with VaR and CVaR
constraints. In this case, both maximum connectivity indices are set to L = 3.
Again, the VaR threshold is .90. The optimal solution for this problem (without
percentile constraints) is shown in Figure 3. This solution requires 4 jamming

Fig. 5. The optimal solution with VaR constraints for the networks in Figure 2 is given
for the case when the maximum connectivity index is 3 for all nodes
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devices and was computed in 3 minutes, 58 seconds. The solution using VaR
constraints is shown in Figure 5. This solution also required 4 jamming devices,
but took 8 hours, 49 minutes, 43 seconds to compute. The same solution was
also obtained using CVaR constraints in a time comparable to the original for-
mulation. Even for this small example, we see that including VaR constraints
in an optimization model often leads to drastic increases in computation times.
This provides more evidence that using CVaR constraints instead is usually more
efficient and provides appropriate solutions.

5 Conclusion

In this chapter, we develop models for jamming communication networks under
uncertainty. This work extends prior work by the authors in which deterministic
cases of the problems were considered [4,6]. In particular, we have developed
formulations for jamming wireless networks when the exact topology of the un-
derlying network is unknown. We have used scenario based techniques which
provide robust solutions to the problems considered. Future areas of research in-
clude investigating the required number of scenarios to accurately model the sta-
tistical properties of the data. Due to the complexity of the problems considered,
heuristics and advanced cutting plane techniques should also be investigated.
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