


Lecture Notes
in Control and Information Sciences 381

Editors: M. Thoma, M. Morari



Michael J. Hirsch, Clayton W. Commander,
Panos M. Pardalos, Robert Murphey (Eds.)

Optimization and Cooperative
Control Strategies
Proceedings of the 8th International Conference
on Cooperative Control and Optimization

ABC



Series Advisory Board
F. Allgöwer, P. Fleming, P. Kokotovic,
A.B. Kurzhanski, H. Kwakernaak,
A. Rantzer, J.N. Tsitsiklis

Editors

Dr. Michael J. Hirsch
Raytheon, Inc.
P.O. Box 12248
St. Petersburg, FL 33733
USA
E-Mail: Michael_J_Hirsch@Raytheon.com

Dr. Clayton W. Commander
GNC Branch
AFRL, Munitions Directorate
101 W. Eglin Blvd., Ste. 331
Eglin AFB, FL 32542
USA
E-Mail: Clayton.commander@gmail.com

Dr. Panos M. Pardalos
Department of Industrial and Systems
Engineering
University of Florida
303 Weil Hall
P.O. Box 116596
Gainesville, FL 32611
USA
E-Mail: Pardalos@ufl.edu

Dr. Robert Murphey
GNC Branch
AFRL, Munitions Directorate
101 W. Eglin Blvd., Ste. 331
Eglin AFB, FL 32542
USA
E-Mail: Murphey@eglin.af.mil

ISBN 978-3-540-88062-2 e-ISBN 978-3-540-88063-9

DOI 10.1007/978-3-540-88063-9

Lecture Notes in Control and Information Sciences ISSN 0170-8643

Library of Congress Control Number: 2008935490

c© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

5 4 3 2 1 0

springer.com



Preface

The optimal control of cooperating and collaborating systems has continued
to see increased research across the military domain. Much of autonomous un-
manned vehicle research is presently geared toward cooperative control problems.
Other domains (e.g., medical, homeland security, manufacturing, etc.) are also
devising strategies for solving cooperative control problems. There have been
some novel solutions proposed over the years for solving problems in cooperative
control. However, in light of decentralized systems, and the sharing of meaningful
information to the participants in the system, cooperative control continues to
be one of the most difficult in the applied sciences. Only the continued dedicated
research in this area will allow for novel solutions applicable to the current and
future problems of cooperative control. This present volume, as well as volumes
from previous years, clearly illustrate innovative solutions from some of the best
and brightest cooperative control and optimization researchers.

This volume represents the most recent in a series of publications dealing with
recent research and challenges in the field of optimal cooperative control. Most
of the chapters in this book were presented at the Eighth International Confer-
ence on Cooperative Control and Optimization, which took place in Gainesville,
Florida, January 30 – February 1, 2008. It is our belief that this book will
be an invaluable resource to faculty, researchers, and students in the fields of
optimization, control theory, electrical engineering, computer science, applied
mathematics, and robotics.

We gratefully acknowledge the financial support of the Air Force Research
Laboratory, The Center for Applied Optimization at The University of Florida,
and Raytheon, Inc. We thank the contributing authors, the anonymous referees,
the conference participants, and Springer Publishing for making the conference
so successful and the publication of this book possible.

July 2008 Michael J. Hirsch
Clayton W. Commander

Panos M. Pardalos
Robert Murphey
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Effective Algorithms for a Class of Discrete
Valued Optimal Control Problems

Louis Caccetta, Ian van Loosen, and Volker Rehbock

Western Australian Centre of Excellence in Industrial Optimisation (WACEIO)
Department of Mathematics and Statistics

Curtin University of Technology
Kent Street, Bentley WA 6102, Australia

{L.Caccetta@exchange,ian.loosen@postgrad,rehbock@maths}.curtin.edu.au

Abstract. We consider a general class of optimal control problems
where the control functions are assumed piecewise constant and only
take on values from a finite discrete set. The aim in such a problem is
to find a sequence of discrete control values and a corresponding set of
exact switching times (i.e., times where control should switch between
the discrete values) such that a given functional representing cost or risk
is minimized. Such problems arise in a range of applications. One ap-
plication is the ‘Transit Path Problem’ where an object such as a robot
or vehicle (air, naval, space or land) needs to traverse a specified region
(discrete or continuous) between two points in a prescribed time so as
to avoid detection. The objective is to find a path for the object which
satisfies the time constraints and which minimizes the total risk of detec-
tion. The risk function is not simple and depends on a range of factors
such as the environment, the types of sensors, the speed, direction and
position of the vehicle. The main difficulty with these problems is that
the range of some of the controls is discrete and hence not convex. Since
the gradients with respect to the switching time parameters are discon-
tinuous, ordinary gradients based solution methods perform poorly. An
additional difficulty is to determine exactly how many switching times
are involved in an optimal solution. We address the first difficulty by
using the Control Parameterization Enhancing Transform (CPET) and
the second difficulty by solving a sequence of problems which are trans-
formed via CPET. With respect to the transit path problem our strategy
involves a two stage approach. The first stage involves a discretization
of the problem and the solution of a constrained path problem in a net-
work. The second stage involves the use of an optimal control model and
a solution procedure that utilizes the solution obtained from the first
stage.

1 Introduction

We consider a class of discrete valued optimal control problems where a cost
functional is to be minimized over a class of control functions, some or all of
which take on values from a discrete set, and subject to a dynamical system

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 1–30.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



2 L. Caccetta, I. van Loosen, and V. Rehbock

together with appropriate constraints on the states and control variables. Ex-
amples of such problems include: the Transit Path Problem which arises when
an object needs to traverse between two points through a specified region; opti-
mal driving strategies for the control trains [25], where diesel locomotives have
discrete throttle positions; and the design of operating procedures for process
start-up, shut down and changeovers [35].

Another example of a discrete valued optimal control problem is the opti-
mal battery recharge problem [53]. For example, a conventionally powered sub-
marine needs to recharge its battery banks periodically. The aim of a battery
recharge plan is to identify a sequence of recharge intervals in a given time pe-
riod. Recharging the batteries requires the submarine to surface, doing so will
mean an increase in the noise level of the submarine and consequently this re-
sults in an increased danger of being detected. A number of generators operating
in standard or supercharged mode are available to recharge the batteries. There-
fore, given a time period and a specified distance to be covered, we need to
determine when recharging should occur, how many engines are to be used, and
in what mode they should run. Also the running of different numbers of engines
in different modes results in different levels of exposure. In addition the battery
needs to maintain a charge level between an upper and lower bound and should
also avoid the lower bound as much as possible. The primary objective is to min-
imize the total recharge time. On its own this would result in the solution that
requires all engines to run in supercharge mode for as short a time as possible.
However, the objective must consider different levels of exposure with different
operating modes and the need to maintain a reasonable charge level.

To solve discrete valued optimal control problems, it is necessary to search
over many possible sequences of control values to find the optimal sequence. In
addition, the switching times between changing control actions need to be opti-
mized. These problems are hard to solve numerically since the control functions
come from a discrete set and hence are non-convex, and as the search for the
optimal sequence has to be carried out over a discrete set, the problem has a
combinatorial nature to it. Also, numerical difficulties occur in the integration
of the dynamics of the problem due to possible discontinuities at the switching
points of the discrete control actions.

We focus our attention on the Transit Path Problem. The objective is to
determine an optimal path, in terms of minimizing risk or cost or maximizing
reliability, for an object, such as a robot or vehicle, which needs to traverse a
specified region, discrete or continuous, between two points. In many instances
these transit paths are also required to satisfy more constraints. This problem
arises in many areas of real life. For example, the routing of both manned and
unmanned military vehicles through a detection field. Examples here include
unmanned aerial vehicles (UAVs), strike aircraft and cruise missiles where con-
straints on the path could include such factors as flight time, fuel consumption
or total risk. A similar problem arises in motion planning for robot manipula-
tors through a region that may contain a number of obstacles. If there is any
uncertainty associated with the location of the obstacles, the aim would be to
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plan a path which minimizes the probability of a collision, whilst still reaching
the terminal point within a specified time. Another application is the routing of
a new highway through an undulating terrain. Costs arise from the cut or fill
required for the highway to pass through a certain point. The intention would be
to minimise the cost of constructing the road while still adhering to a limit on the
total length of the highway. Additional constraints on the curvature and slope
of the highway may also be imposed. Other transit path problems occur within
the generation of optimal trajectories for air, space, naval and land vehicles [46].
The problem we specifically look at is that of determining an optimal transit
path for a submarine moving through a field of sonar sensors, subject to a total
time constraint. For a thorough overview of methods relating to the design of
optimal routes under the risk from a threat environment in the literature, refer
to [41].

The designing of optimal routes under the risk from a threat environment has
been studied by a number of authors [8,9,10,13,17,19,22,23,27,32,33,34,36,37,
40, 43, 44, 45, 46, 47, 48, 49, 50, 59, 61, 62], however only a limited number of these
include an additional constraint on the route. The two approaches developed
and employed in the literature use either a continuous or a discrete model. The
continuous approach is typically based on the technique of calculus of variations
whereas the discrete optimization approach, through a network, approximates
the original problem by a constrained shortest path problem.

The strategy to be presented in this chapter involves a two stage approach
for identifying optimal and near-optimal routes. The first stage involves a dis-
cretization of the problem, which results in a Constrained Shortest Path Problem
(CSPP), and the development of a network heuristic method, based upon pa-
rameterisation. The second stage involves the development of an optimal control
model, and the application of the Control Parameterization Enhancing Trans-
form (CPET) technique, and a solution procedure that utilizes the solution ob-
tained in the first stage as a starting point to determine a continuous solution of
the problem. In this phase of our procedure we make use of the optimal control
software package MISER3 [29].

In the proposed model, each of the sensors can detect the presence of the sub-
marine with a probability which is a given function depending on the distance
and speed. This function is not a simple analytical expression, but depends upon
a range of factors, including the characteristics of the ocean floor and ocean sur-
face, depths of the sensor and the submarine, and the temperature and salinity
of the water [18]. Here we use probability of detection functions reported in Hal-
lam [18]. These were constructed under the assumptions that the geographic lo-
cation and environmental conditions are known and that the submarine remains
at a constant depth. Furthermore, each of the given functions is constructed for a
particular constant vessel speed. While there are still further factors influencing
the probability of detection (such as machinery states, frequency of the sensor,
alertness of sensor operators or quality of the automatic detection, the relative
aspect of the submarine and the sensor, the effect of sudden changes in travel
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direction or speed), the functions from Hallam [18] display sufficient detail to
test the feasibility of the proposed method.

The overall probability of detection at any point in time can then be calculated
as an appropriate combination of these individual probabilities of detection.
Here, we make the assumption that the probability of detection for any one
sensor is independent of the probabilities of detection for the other sensors.
The objective then is to find a transit path between two fixed positions in the
sensor field which will minimize the overall probability of detection while still
satisfying a maximum travel time constraint. The difficulty is due to the fact
that the transit time must satisfy an upper bound constraint.

The chapter is organised as follows. In Section 2 we describe how to formulate
the transit path problem by an integer programming formulation through dis-
cretization. The optimal control formulation is described in Section 3 followed by
the CPET technique in Section 4. In Section 5 we demonstrate how the optimal
control model is highly sensitive to the starting solution. Section 6 presents the
computational strategy as well as our heuristic used to solve the problem. This
heuristic is tested against the integer programming software package CPLEX in
Section 7. In Section 8 we give numerical results for our hybrid method. Finally
we summarize our conclusions in Section 9.

2 Discrete Formulation

The first phase of our method is to model and solve the submarine transit path
problem as a CSPP. We construct a grid-like network over the region that needs
to be traversed, as shown in Fig. 1.

From Fig. 1 the START and FINISH points are assumed to be knot points
of the grid. Ignoring the possibility of different speeds for now, we may regard
the knot points of the grid as nodes and the grid lines as edges, and thus think
of the grid as a graph. Clearly, an equally spaced rectangular grid as shown in
Fig. 1 can be generalized to be unequally spaced or even nonrectangular (for
example, one may want to place the nodes in low danger areas only) while still
maintaining the graph structure. Furthermore, other edges (for example, those
joining vertices in a diagonal manner in the diagram) can also be added. We
then allow movement along edges only and with each edge we can associate a
cost value. The cost depends on the location of the edge in the sensor field and
on the speed at which the vessel travels along the edge. It is calculated in the
same manner as for the optimal control model presented in the following section.
Furthermore, since the distance along each edge and the travel speed are known,
we can calculate the time it takes the vessel to traverse each edge simply by
dividing the distance by the speed. Both the cost and the travel time for each
edge in a path can then be simply added to obtain the total cost and total travel
time associated with that path.

Let us assume that the speed s of the submarine comes from a finite discrete
set {s1, s2, s3, . . .}. Physically, a discrete valued vessel speed is obviously not
realistic. However, at the planning level, it is natural for human operators to
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Fig. 1. Structure of the grid to be placed over the sensor field

think of the journey in terms of discrete stages with each stage corresponding
to a constant speed section of the journey.

With respect to a simple Graph G = (N,A), where N = {1, 2, . . . , n} is
the set of nodes, |N | = n, and A is the set of edges, each edge (i, j) has a
corresponding cost cij and a transit time tij . cij is the cost of traversing the
edge in terms of the exposure to the sensors, while tij is simply the time required
to traverse the edge. For convenience, we denote the start (origin) node by O
and the destination node by D. Also let T be the time limit. A directed path
(or simply path) is a finite sequence of nodes P = (i0, i1, . . . , im), such that
(ik−1, ik) ∈ A for k = 1, 2, . . . ,m. The path cost (or simply cost) of P is defined
to be c(P ) = ci0i1 +ci1i2 +. . .+cim−1im =

∑m
k=1 cik−1ik

. Similarly the time of P is
given by t(P ) =

∑m
k=1 tik−1ik

. The path is time feasible if and only if t(P ) ≤ T .
Therefore our problem is to find the minimum cost path c(P ) in G from O to
D such that it also satisfies t(P ) ≤ T . This problem is referred to as the CSPP.
The solution to this problem forms our initial solution for the optimal control
phase of our two phase procedure.

The CSPP is closely related to both the Shortest Path Problem with Time
Windows (SPPTW) [11] and the Resource Constrained Shortest Path Problem
(RCSPP) [3]. The SPPTW consists of finding the optimal route in a network
while respecting specified time windows at each node visited. RCSPPs have vec-
tors of weights, or resources, associated with the arcs rather than just a scalar.
The SPPTW and RCSPP generally appear as sub-problems to Vehicle Routing
Problems (VRP), and are solved using column generation methods to construct
optimal routes. Another closely related problem to the CSPP is the so called
Multi-Objective Shortest Path Problem (MOSPP), which seeks all nondomi-
nated (Pareto) solutions. A special case of the MOSPP is the Bicriterion Short-
est Path Problem, whereby there are only two objective functions that are to be
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minimized, for example both cost and time. It is possible to generate the whole
set of Pareto optimal paths and from this one can select the optimal solution to
the CSPP. However, this would not be efficient because the number of paths in
this set can be very large.

The CSPP can be also be given an Integer Programming Formulation. Here
we consider the grid based graph to be a directed network G = (N,A), where A
is the set of directed edges, known as arcs. Let T be the time requirement. Then
the problem can be specified as

Minimize
∑

(i,j)∈A

cijxij (1)

subject to ∑
j

xij −
∑

j

xji =

⎧⎨⎩
1, if i = O,

−1, if i = D,
0, otherwise,

(2)

∑
i,j

tijxij ≤ T, (3)

xij = 0 or 1, ∀i, j. (4)

The objective function (1) minimizes the total cost of the path. Constraint (2)
ensures that a path from O to D is obtained, whilst constraint (3) ensures that
the path satisfies the specified time constraint. The problem (1), (2) and (4) is
just the standard Minimum Cost Flow Problem which can be solved efficiently
[1]. A similar formulation can be constructed for the undirected case.

The decision version of the CSPP is NP-complete [15], therefore no exact poly-
nomial algorithms exist for solving them. However, the CSPP has been studied
by a number of authors and both exact algorithms and heuristics have been
proposed. Methods used to solve CSPP include: k-shortest path ideas [60]; ap-
proximation and exact methods using cost scaling and rounding [14,21,42]; and
Dynamic Programming formulations [11,28,31]. A few authors [2,3,4,14] intro-
duce preprocessing techniques to reduce graph sizes which results in improve-
ments in computational run times. All these schemes use some form of a label
setting approach.

By using the Integer Programming Formulation, the available solution strate-
gies are: to dualize the time constraint (3) and apply the Lagrangian relax-
ation method [3,7,8,57]; Couple the Lagrangian method with a k-shortest path
routine [20]; Use Lagrangian relaxation together with branch and bound algo-
rithms [54]; Apply a linear integer programming package such as CPLEX [26];
or Develop specialized Branch and Cut methods, using CPLEX for solving the
relaxed subproblems [5]. A number of techniques are also available for prepro-
cessing and probing [5, 55].

All of the strategies mentioned above are computationally feasible for moder-
ately sized networks. However even if a moderately sized grid were to be placed
over the sensor field, the resulting number of edges and arcs in the network
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would make most of the aforementioned methods computationally time consum-
ing, and in defense situations were computation time may be a critical factor,
these methods become somewhat infeasible.

3 Continuous Formulation

As shown in [52] the optimal submarine path problem can be formulated as
a discrete valued optimal control problem. To do this we first begin with a
description of the sonar field. The field is positioned in the Cartesian plane with
coordinates (x, y) indicating the latitudinal and longitudinal distance from the
origin in kilometres, where the origin is assumed to be the starting point of the
journey. We let (x(t), y(t)) represent the (point) location of the submarine at
time t. This is governed by the following simple dynamical system

ẋ(t) = s(t) cos(θ(t)), x(0) = 0,
ẏ(t) = s(t) sin(θ(t)), y(0) = 0, (5)

where θ(t) represents the heading angle of the vessel in radians and s(t) is the
speed of the vessel in km/h. Note that θ and s are control functions in this prob-
lem which need to be chosen so that the resulting path of the vessel minimizes
its probability of being detected. We have the control constraints

0 ≤ θ(t) ≤ 2π, ∀t ∈ [0, T ), and (6)

s(t) ∈ {s1, s2, s3, ...}, ∀t ∈ [0, T ). (7)

Note that s(t) is a discrete valued control function as it can only take on values
from a finite discrete set.

Suppose that a total of ns sensors are located at positions (xi, yi), i =
1, 2, ..., ns, in the field. We assume for simplicity that these positions remain
fixed during the journey and that the sonars are all of the same type with
the same detection capabilities. Either of these assumptions can easily be re-
laxed in the model and in our solution method described. At any instant of
time, the Euclidean distance of the submarine from each sensor is given by
ri(t) =

√
(x(t) − xi)2 + (y(t) − yi)2, i = 1, ..., ns. For each given vessel speed

s, a probability of detection profile, p(r, s) can be constructed as a function of
the physical distance r(t). Assuming that the sensors operate independently, the
instantaneous probability of the vessel being detected is then given by

P ((x(t), y(t), s(t)) = 1 −
ns∏
i=1

(1 − pi (ri(t), s(t))). (8)

Our aim is to minimize the cumulative probability of being detected over the
entire journey. This is equivalent to minimizing the objective functional

g(θ, s, T ) =
∫ T

0
P (x(t), y(t), s(t))dt. (9)
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Note that the submarine must arrive at its intended destination, so we have the
terminal state constraints

x(T ) = xT ,
y(T ) = yT .

(10)

Finally, there is also an inequality constraint on the total time taken to travel
from the initial to the terminal point

T ≤ TMAX. (11)

Note, of course, that the terminal time, T , is variable in this problem. In sum-
mary, then, the optimal control model of the submarine transit path problem
can be stated as: Find a terminal time T (satisfying (11)), and control functions
θ(t) (satisfying (6)) and s(t) (satisfying (7)) such that the objective functional
(9) is minimized subject to the vessel dynamics (5) and the constraints (10).

The fact that the control s is restricted to a discrete set puts this problem into
a general class of discrete valued control problems. Examples of these problems
are studied in [24,39]. The main difficulty in these problems is to determine the
exact time points where the discrete valued control should switch between its
allowed values. Since the gradients with respect to these switching time param-
eters are discontinuous [58], ordinary gradient based solution methods perform
poorly. An additional difficulty is to determine exactly how many such switching
times are involved in an optimal solution. The first of these difficulties has been
successfully overcome by CPET, which was initially applied to a similar class of
time optimal control problems [38] and later directly to discrete valued optimal
control problems [39]. The second difficulty can be partially addressed by solving
a sequence of problems which are transformed via CPET, but this remains an
active area of research. Essentially, CPET involves a scaling of the time horizon,
[0, T ], via an auxiliary control function known as the enhancing control. This
transforms the original problem into an equivalent canonical form which can
then be solved by ordinary gradient based methods such as control parameteri-
zation [58] and incorporated into the optimal control software MISER3 [29]. In
Section 4 we explain CPET through its application to the example at hand. For
a more thorough review and discussion of these techniques, see [51].

4 Control Parametization Enhancing Transform

Before we apply CPET to the Submarine Transit Path Problem, we need to
specify the set of allowable speeds s(t), and set a limit on the maximum number
of course/speed switchings to be allowed. Note that the heading angle control
function, θ(t), is modeled as a piecewise constant function, which is natural,
given that the heading angle ought to remain constant between course changes.
Furthermore, for the sake of simplicity, we assume that the switching times for
the course changes coincide with switching times for the speed changes. This may
appear to be restrictive, but note that this formulation does allow for only one of
the controls to change values at a particular switching time, so full generality of
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the control structure is actually preserved. As discussed in the introduction, for
the purposes of our model, we use the probability of detection profiles, p(r, s),
that are provided in [18]. Here the submarine is restricted to two speeds, 8km/h
and 14km/h. The control constraint (7) therefore becomes

s(t) ∈ {8, 14}, ∀t. (12)

The profiles are given in the form of a set of data points. We use cubic splines to
interpolate this data to generate smooth p(r, s) curves, as illustrated in Fig. 2.

The requirement for a smooth interpolation arises because we solve the prob-
lem using a gradient based optimization technique. The gradient calculations
involve the integration of a set of costate equations, which is carried out more
conveniently when the objective integrand is a smooth function of the state vari-
ables (although this is not a strict requirement in theory). For the purposes of
testing the proposed model and solution method, the qualitative features (in
terms of the frequency and magnitude of variation) of these interpolated curves
adequately reflect a practical situation.

In terms of deciding on the maximum number of switchings that are to be
allowed, in some applications, it is quite important to determine the optimal
number of switchings (see [24] for an example), and in such cases it may be nec-
essary to solve a sequence of problems each with a different maximum number
of allowed switches [39]. However, in this application, we have a practical limi-
tation on the number of course/speed changes during the time horizon, because
course and speed changes physically require a minimum period of time to be
implemented. Furthermore, a submarine commander is unlikely to implement a
solution which involves an excessive number of course/speed changes. Hence, we
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Fig. 2. Probability of detection profiles used in the numerical studies
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assume that the maximum number of switchings allowed is N − 1. The CPET
technique may then be applied as follows.

We define a new time horizon [0, N ] and partition it into the subintervals
I1 = [0, 1), I2 = [1, 2), I3 = [2, 3), ..., IN = [N − 1, N). We then allow u1(τ), τ ∈
[0, N) to be a piecewise constant function on [0, N) which is consistent with this
partition. u1 is essentially the heading angle of the submarine in the transformed
time scale and we still require the control constraints

0 ≤ u1(τ) ≤ 2π, ∀τ∈[0, N). (13)

Furthermore, we define

u2(τ) =
{

14, if τ∈Ik, k odd,
8, if τ∈Ik, k even. (14)

This (fixed) control function takes on the role of s(t) in the transformed problem.
Note that it is consistent with the constraint (12). Furthermore, we define the
enhancing control, u3(τ), to be a piecewise constant function consistent with the
above partition and subject to the following constraints

0 ≤ u3(τ) ≤ TMAX . (15)

The constraint (15) arises due to the total time constraint (11), but, by itself,
will not be sufficient to replace (11) entirely.

The main feature of the CPET method is the scaling, via the enhancing
control, which relates the original time horizon [0, T ] to the new time horizon
[0, N ]. This is done through the following differential equation

dt

dτ
= u3(τ), τ ∈ [0, N), t(0) = 0. (16)

Note that integration of (16) over [0, N) will allow us to recover the original
time horizon [0, T ], where T = t(N). To standardize notation, we set, x1 = x,
x2 = y and x3 = t. The transformed problem may then be stated as follows.
Find piecewise constatnt control functions u1(τ) and u3(τ) (consistent with the
above mentioned partition) such that the objective functional∫ N

0
P (x1(τ), x2(τ), u2(τ))u3(τ)dτ (17)

is minimized subject to the dynamics

ẋ1(τ) = u3(τ)u2(τ) cos(u1(τ)), x1(0) = 0,
ẋ2(τ) = u3(τ)u2(τ) sin(u1(τ)), x2(0) = 0,
ẋ3(τ) = u3(τ), x3(0) = 0,

(18)

and subject to the constraints

x1(N) = xT ,
x2(N) = yT ,
x3(N) ≤ TMAX .

(19)

Note that the third constraint in (19) arises directly from (11).
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The transformed problem now simply involves piecewise constant control func-
tions defined on a regular fixed partition of the fixed time horizon [0, N ]. As such,
it can be solved directly by the optimal control software MISER3 [29]. Note that
the optimal solution of the original problem can be recovered easily from the
solution of the transformed problem, as the original time scale is given by x3(τ).

5 Localized Solutions

Past numerical experiences [52] suggests the solution generated by the optimal
control model depends very much on the initial starting solution provided by the
user. To test whether this is the case with the submarine transit problem, we
tested and compared five different initial solutions. We begin by first describing
how our test problems were generated.

We have restricted our test problems to sonar fields with ns = 4 sensors,
though any number can be easily incorporated into the model. Furthermore, we
consider a region of 80km by 80km. In addition we set x0 = 0, y0 = 0, xT =
80 and yT = 80, that is the starting point is located at (0, 0)km and the des-
tination is at the point (80, 80)km. We constructed 30 problems each with dif-
ferent sensor locations. The locations of the sensors were determined by ran-
domly generating 240 integer values, {x1, x2, . . . , x240}, between 0 and 80. We
then paired these together, (x1, x2), (x3, x4), . . . , (x239, x240), to give the co-
ordinates, in kilometres, of the sensors in relation to the starting point of the
journey. The first four pairs give the sensor locations for the first problem, the
next four pairs represent the sensor locations for the second problem, and so on.
For our model assume that the sensors remain fixed in these positions for the
duration of the submarines journey.

For each of the 30 problems we imposed four different time constraints T ,
ranging from a low or ‘tight’ time constraint to a high or ‘loose’ time constraint.
To generate these constraints, we have imposed a grid size over the region, these
being either of dimension 20×20 or 80×80, all being equally spaced rectangular
grids. We then restrict our attention to this grid. As outlined in Section 2, the
result of imposing a grid over the specified region is a graph were the weights
of the edges are the cost and travel time of traversing that particular edge. The
detection curves of Hallam [18] are used to generate the cost of edges of our graph.

For each problem we determined its minimum time path, denoted by Tmin.
This can easily be determined by simply dividing the shortest possible distance
that the submarine must travel, 160km, by the maximum speed that the sub-
marine can travel at, 14km/h. Therefore for each problem, this minimum time
value will be the same, Tmin = 11.42857hrs. We also determine a maximum
time value for each of the problems, denoted as Tmax . This is done by applying
Dijkstra’s algorithm [12] to the graph, using the arc costs, which will give us
the minimum unconstrained shortest path. The time corresponding to the un-
constrained shortest path becomes our Tmax. The four time constraints are then
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found by the formulae Tα = (1 − α)Tmin + αTmax for α = 0.2, 0.4, 0.6 and 0.8.
T0.2 represents the ‘tightest’ constraint and T0.8 the ‘loosest’ constraint.

For our first set of test problems, we generated 30 random paths which served
as our initial starting solution for the optimal control phase. We set the amount
of switches, N − 1, to 100 that is we allow for a maximum of 100 course/speed
changes. The time constraints for these problems were generated using the 20×20
grid as described above. These random paths used were not necessarily feasible
as they were not required to meet the time constraint T nor did they have to
finish at the destination point (80, 80)km. Also, in most instances, these paths
did not stay within the boundaries of the 80km by 80km region.

Our next four sets of test problems were generated in a similar fashion to
one another. As an alternative starting solution we also used the Euclidean path
which joined the starting point (0, 0)km to the destination (80, 80)km. This
initial diagonal path was either traversed entirely using the slow speed 8 km/h
or the fast speed 14 km/h, and for both of these paths we tested the case where
we allowed either 100 or 325 switches. The time constraints for the problems
with 100 switches were generated using the 20×20 grid and the time constraints
for the 325 switch problems were generated via the 80 × 80 grid. It should be
noted that all the diagonal paths using the fast speed are time feasible, whereas
when using the slow speed diagonal path only those with the time constraint
T0.6 and T0.8 are always feasible. That is there are some instances within the
T0.2 and T0.4 cases where the initial paths are not feasible in terms of meeting
the time constraint.

These five sets of paths were then used as initial guesses for the optimal control
model. The MISER3.2 [30] software was then used in conjunction with two of
the nonlinear programming solvers, NLPQL [56] and NPSOL [16], to refine these
solutions.

All the computational tests discussed in this section were carried out on a Sun
Netra X1 with a 500MHz 64-bit Ultra SPARC Processor and 256MB of RAM.

For the random paths, we tested these starting solutions using the NLPQL
routine. The results are presented in Table 1.

As can be seen in Table 1 we have broken down the 30 problems into each of
their four different time constraints cases Tα, based on α, and averaged each of
these ‘categories’ out as well as given the average over all the 120 problems in

Table 1. Random NLPQL results

α CPU Time Euclidean
(minutes) Distance (meters)

0.2 4.04127 13.55701
0.4 5.38671 2.80282
0.6 5.94014 1.596362
0.8 6.13041 415.26988

All 5.37463 108.30652
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the row All. We can see that as the α value increases, that is the time constraint
becomes more loose, the Computational (CPU) Time increases from around 4
minutes to just over 6 minutes. Overall, the random starting solutions resulted
in a solution being found by the optimal control method in 5.37 minutes. We also
present the average distance each of the solutions determined by NLPQL were
from meeting the terminal state condition that xT = 80 and yT = 80, that is
how far the submarine was from arriving at the destination point. These results
are presented in Table 1 under the column Euclidean Distance. We see here that
for the α = 0.2, 0.4 and 0.6 cases the solutions were on average 13.55, 2.80 and
1.59 meters out from the destination point (80, 80)km respectively. However in
our situation, when we consider that a typical (non-nuclear) submarine, such as
the Australian Collins Class submarine, is in the vicinity of 70-80m in length
all these distances become insignificant and can be ignored. However for the
α = 0.8 case, the solution was 415.27 meters out from the destination point, and
on average over all the problems it was 108.31 meters out. Since 108.31 meters
exceeds the length of the submarine the results generated from using a random
initial solution would have to be declared, on average, infeasible, as they did not
meet the terminal state constraint.

In Fig. 3 we present the solution to one of the random starting solution prob-
lems. This problem corresponds to the sensor pattern

{(15, 61), (0, 25), (41, 44), (0, 78)} ,

with a time constraint of T0.6 = 16.31428 . The final optimal control solution
had a cost of 6.05637, a Euclidean distance from the destination point of 0.44064
meters and a computational time of 8 minutes.

In Fig. 3 we display both the initial random starting solution, given as the
black line, and the resulting optimal control solution, represented by the white

Fig. 3. Random starting solution and optimal transit path
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line. As pointed out, and as we can see with this problem, the random path did
not have to stay within the prescribed region nor did it have to finish at the
destination point. We have chosen to use the probability map associated with
the 8km/h speed to plot the paths on, however the path is still made up of both
speeds 8km/h and 14km/h. A feature not immediately obvious from these figures
is that the speed of the vessel changes according to the level of danger present
in the various sections of the path. It can be seen that the transit path stays
close to low danger areas as long as it is not forced into a major detour. However
at times it is necessary for the submarine to cross high probability of detection
regions on its way to the destination. There are 4 such regions along the path
in this case, a narrow one initially, a broad one about a third the way along the
path, a narrow one about two thirds down the path and another narrow one
just before reaching the destination. Contrary to what one might expect, when
these high danger areas are traversed the optimal solution is to do so at the
high speed. In choosing a high speed through these high danger regions the total
amount of time spent there will be reduced, and thus the cumulative effect of
exposure is minimized.

From the optimization point of view, it is wiser to put up with a high danger
region for a short period of time rather than to take a long period of time
detouring through low danger regions. This is clearly a direct reflection of the
objective function used in our model.

When testing the Euclidean Path starting solutions the NPSOL routine was
employed. The results for both the slow and fast diagonal paths using 100 switch-
ing points and the 20 × 20 grid time constraints are given in Table 2.

Table 2 shows us that the optimal control phase takes, on average, 67.22
minutes and 47.04 minutes to determine a solution using the slow diagonal and
fast diagonal path respectively as a starting solution. The only case where the
slow diagonal results in a faster CPU time is for α = 0.2 where it is around 30
minutes faster than the equivalent fast diagonal. All the initial starting paths
resulted in optimal control solutions that came very close to finishing right at
the destination. The slow diagonal optimal control path was 2.21 meters out
while the fast diagonal optimal control paths were slightly more ‘accurate’ being

Table 2. Euclidean path NPSOL results using 100 switches

Slow Fast

CPU Euclidean CPU Euclidean Fast Cost/
α Time Distance Time Distance Slow Cost

0.2 36.09530 1.65446 66.06981 0.70830 1.02714
0.4 128.06026 2.47124 37.76912 2.73971 1.09184
0.6 54.96907 1.06329 40.29762 1.16792 1.09986
0.8 49.76313 3.65839 44.03036 1.19142 1.05613

All 67.22194 2.21185 47.04173 1.45184 1.06874
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Fig. 4. Fast diagonal path with 100 switches and optimal transit path

only 1.45 meters from meeting the terminals state constraints. It should be
noted that all solutions resulting from the optimal control phase meet the time
constraint T even those problems that began with a time infeasible path. We
have also compared the final objective function value of the path determined
by the optimal control phase by taking the ratio of the cost between the two
solutions. It shows that the results corresponding to the initial fast diagonal
path are, on average, 6.87% greater than that obtained from the slow diagonal
path. So by employing a fast diagonal over a slow diagonal starting point we can
produce optimal control results in less CPU time that are also more accurate
than if we were to use a slow diagonal path. However these solutions have a
higher objective function value. Therefore the starting solution will determine
the quality of solution obtained, and thus there will be a trade-off between the
cost of the path generated and the accuracy and time it takes to compute it.

In Fig. 4 we present the solution to one of the fast diagonal, 100 switches,
starting solution problems. This problem has sensors located at

{(6, 35), (55, 58), (10, 38), (8, 39)},

with a time constraint of T0.2 = 13.05714. Again the starting solution is the
black line and the final optimal control solution is represented by the white line.
After 65.55 minutes of CPU Time, the final solution has a cost of 6.50491 and a
Euclidean distance of 1.23162 meters.

The results for both the slow and fast diagonal paths using 325 switching
points are given in Table 3. Again the NPSOL routine was used.

From Table 3 we can see that on average the objective function value of the
path determined by NPSOL using the fast diagonal as a starting solution is 6.73%
greater than the corresponding slow diagonal. In terms of the computational
time, over all the α cases, using the slow diagonal (56.48 minutes) always results
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Table 3. Euclidean path NPSOL results using 325 switches

Slow Fast

CPU Euclidean CPU Euclidean Fast Cost/
α Time Distance Time Distance Slow Cost

0.2 61.99554 12.34010 85.27216 20.52914 1.07538
0.4 51.04162 79.99248 85.58536 4.77574 1.05912
0.6 60.68678 4.47546 71.62280 31.73964 1.06484
0.8 52.21530 54.44737 70.83199 71.81457 1.06971

All 56.48481 37.79692 78.32808 32.21477 1.06726

in less computation time than employing than the fast diagonal (78.33 minutes).
The Euclidean distances the final solutions are from the destination point are,
on average, 37.80 meters for the slow diagonal and 32.21 meters for the fast
diagonal. These distances might seem a bit excessive in comparison to the cases
involving 100 switches, however, since they are still within the prescribed 70–80
meter length of a typical diesel class submarine we can safely declare them as
being feasible. In fact any solution with a distance within 100 meters of the
terminal constraint we will consider being feasible. Again all solutions resulting
from the optimal control phase meet the time constraint T . So in this instance,
unlike the 100 switches case, by employing a slow diagonal starting point we can
produce optimal control results with a smaller objective function value in less
CPU time than if we were to just use a fast Euclidean starting solution. Again
however, the fast diagonal path produces a more accurate solution.

What we notice in the examples shown in Figs. 3 and 4, is that the optimal
control path stays within the general vicinity of the starting solution path. From
observing the sonar fields of these examples it would seem to be more prudent to
construct a path along the very bottom and far right hand side of the enclosed
region where there are substantial areas of low probability. But for the random
path, since the initial path generated lies within the top portion of the area the
optimal control model is ‘encouraged’ to find a solution within this location.
Similarly for the fast diagonal path, the optimal control model only tweaks the
initial path slightly downward into a safer region rather than dragging it all the
way to the bottom of enclosed region.

Even though it is not possible to make a direct comparison between the results
given in Tables 2 and 3, since the time constraints on the problems are different,
we still see that there is a substantial difference between the Euclidean distances
the solutions are from the destination point not to take notice. On average over
the α cases, we see that for 100 switches the solutions are accurate to within 0.71
to 3.66 meters whereas the accuracy for 325 switches is within the vicinity of
4.48 to 85.59 meters. So we can see that the lesser the amount of switches used
in the initial solution the more accurate the final solution will be. Therefore just
as in the previous studies we mentioned earlier, we believe the number of switches
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used in submarine transit path problem will have a bearing on the quality of the
solution obtained.

Finally, comparing the results from Table 1 to those in Table 2, where in both
cases we used 100 switches, we see that using the random path is substantially
quicker in computational time than using either a slow or fast Euclidean path.
But one should not employ a random starting solution over the Euclidean paths
as the solutions were infeasible. However, these observations may be the result
of the nonlinear solver used within MISER3.2 and not the quality of the starting
solution employed as our initial starting solution.

6 Hybrid Method

We have shown that the final Optimal Control solution is highly sensitive to
the starting solution employed. The Random and Euclidean paths we used were
shown to be ineffective initial solutions for our Submarine Transit Path prob-
lem. It may well be worth some extra effort in developing and implementing a
procedure to calculate a ‘superior’ starting solution as it could produce results
in the optimal control phase which are superior to those obtained from using
some trivial starting solution such as the random and Euclidean paths. What
we need is a method to produce initial paths that are within the locality of the
global minimum solution since, as we have shown, the Optimal Control will only
move the path around slightly keeping it within the same vicinity. In response
to this what we propose to do is to place a grid, such as the one displayed in
Fig. 1, over the sensor field and to solve the ensuing CSPP on a network. The
solution to this network problem will be our starting solution for the optimal
control phase.

To solve the CSPP we introduce a heuristic that generates a feasible solution
that is near optimal or optimal with minimal computational time. It should
be noted that in defense situations, such as this, computational time can be a
critical factor thus we need to find a satisfactory trade-off between computation
time and optimality.

Each edge (i, j) in our graph has two weights associated with it, a cost cij
and transit time tij . The idea is to parameterize these two weights into one label
on the edge using the equation wij(β) = βcij + (1 − β)tij , where β ∈ [0, 1],
then solve the resulting SPP while incrementing β until a time feasible path,
t(P ) ≤ T , is found. The heuristic begins by first setting β = 1 and then applying
Dijkstra’s algorithm [12] to the resulting graph to find the shortest path P from
the source O to the destination D. When β = 1, each edge weight is just cij
and we are therefore solving the unconstrained SPP. If the corresponding path
P is time feasible we can stop. In this trivial case where the time constraint T
is meaningless, in terms of the CSPP, the solution is also guaranteed to be the
optimal solution to the problem. If β = 1 does not produce a feasible solution we
need to reduce the value of β. By reducing β we are effectively giving the time
a higher weighting, applying Dijkstra’s algorithm [12] to wij(0) is the same as
determining the minimum time path of the graph. We start decrementing β by
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0.1 in each iteration and compute the minimum wij(β) path P until t(P ) ≤ T .
Once we have found the appropriate β value that results in a time feasible path
we need to refine β to a precision of two decimal places by searching the region
β ∈ [β, β + 0.09]. Starting at β = β + 0.09 we keep reducing β by 0.01 until the
wij(β) path is feasible.

This path forms our initial guess for the optimal control phase of our ap-
proach. It is envisaged that this path is reasonably close to the global solution
for the continuous Optimal Control problem, therefore, should be sufficient for
our purpose. So our proposed method for solving the Optimal Submarine Transit
Path problem involves two phases. In the first stage we discretize the problem,
which results in a CSPP, and we then solve the resulting network by the net-
work heuristic described above. The second stage involves the use of the optimal
control model that utilizes the solution obtained in the first stage as a start-
ing point. In this phase of our procedure we make use optimal control software
package MISER3.2 [30].

7 Comparison of Heuristic and CPLEX

As we demonstrated in Section 2, after discretizing the sensor field with a net-
work, it is possible to formulate the resulting CSPP by an integer program. As
such it should be possible to apply the software package CPLEX to the integer
programming formulation to determine optimal solutions.

We tested our proposed method on problems generated in the exact same
manner as was described in Section 4, using the same number of sensors that
are located in the same 30 positions as before. To test our heuristic we imposed
three different grid sizes over the region for the network phase, these being of
dimension 20×20, 40×40 and 80×80. However, we imposed the time constraint
associated with the 20 × 20 network to the other two grid dimensions.

We formulated all these problems as integer programs. We solved these for-
mulations by using ILOG CPLEX 9.0 on an Intel Pentium 4 PC with a 2.40GHz
Processor and 1GB of RAM using Microsoft Visual Studio .NET 2003 as the
interface. As pointed out in Section 2 if the order and size of the network is
somewhat large CPLEX can become computationally time consuming. Conse-
quently we have introduced two additional stopping criterions, apart from the
optimality stopping condition that already exists within CPLEX, to ensure a
reasonable CPU time. The first of these stipulates that once the duality gap, or
difference, between the objective function value of the current integer solution,
which is our upper bound, and lower bound becomes less than 0.1% of the inte-
ger solution cost then we stop, and use the current best integer solution as our
final solution. However if the optimal solution has not been determined or the
duality gap has not been reduced to less than 0.1% after 5 minutes of CPU time
we terminate and again use the current integer solution as our final answer.

In Table 4 we present the CPLEX results for the 20× 20, 40× 40 and 80× 80
grids respectively. In the table we display the average CPU time, in seconds, to
determine a result and the duality gap associated with this solution. Also shown
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Table 4. CPLEX results

20 × 20 Grid 40 × 40 Grid 80 × 80 Grid

α Cost CPU Duality Cost CPU Duality Cost CPU Duality
Ratio Time Gap % Ratio Time Gap % Ratio Time Gap %

0.2 1.034 31.19 0.07643 1.039 21.48 0.04717 1.043 52.27 0.04830
0.4 1.024 12.77 0.03927 1.028 11.60 0.03255 1.032 65.67 0.04780
0.6 1.007 1.78 0.00828 1.017 5.18 0.02370 1.025 33.66 0.02743
0.8 1.010 0.34 0.01587 1.004 25.24 0.04867 1.003 50.56 0.05670

All 1.019 11.52 0.03496 1.022 15.88 0.03802 1.026 50.54 0.04506

in the table is the ratio, Heuristic/CPLEX, between the objective function values
of the corresponding heuristic and CPLEX solutions allowing us to compare the
two solution procedures. What we notice is that as the grid dimension increases
so to does the average CPU time and Duality Gap. This is a direct result of the
number of nodes and edges incorporated in each of these grids. As the order and
size of the grid increases so to will the amount of variables and constraints needed
to model the problem as an integer programming formulation. This enlarges
the solution space and therefore the amount of time needed to find an optimal
solution. We can also see that when we compare the CPLEX results against
our heuristic results, the heuristic results are on average 1.9%, 2.2% and 2.6%
greater than the objective function values obtained via CPLEX for the 20× 20,
40 × 40 and 80 × 80 grid problems respectively.

In Table 5 we display the duality gap distribution of the solutions. We observe
that the number of optimal solutions that are found, that is those problems with
a 0% duality gap, decreases as the grid dimension increases. The number of final
solutions that are sufficiently close to being optimal, that is the problems with
a duality gap between 0 and 0.1%, increases as the grid size increases. The same
occurrence can be seen with the amount of problems that have not closed the
duality gap to within 0.1% inside of the 5 minute CPU time constraint.

As we mentioned above, even when the network is just of moderate size the
CPU time taken to solve the problem to optimality can become prohibitively
large. In fact, there is nothing to guarantee that CPLEX would eventually de-
termine the optimal solution even if we were to let it run without any time
constraint. To illustrate this point we reran the four 20× 20 grid problems that

Table 5. Distribution of CPLEX results

Grid Optimal Duality Gap Duality Gap
Size Solution 0 − 0.1% > 0.1%

20 × 20 99 17 4
40 × 40 78 37 5
80 × 80 55 54 11
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had not resolved to a solution of within 0.1% of the duality gap in the 5 minutes
prescribed. However this time, while keeping the duality gap stoping criteria in-
tact, we increased the 5 minute CPU time limit to 1 hour. Similarly we reran the
five 40×40 grid problems that had not established a solution to our satisfaction
within the 5 minute time limit but we enlarged the CPU time constraint to 4
hours in this case. In both these cases, even with the increase in CPU time, it
didn’t have any effect whatsoever on the quality of the solution determined by
CPLEX, the solutions remained identical to the ones found after only 5 minutes
and their duality gaps had not tightened up at all.

The eleven 80 × 80 grid problems that did not solve to within a duality gap
of 0.1% were also rerun using CPLEX but with a 5 hour time limit on this
occasion. The results of this are presented in Table 6. With this new 5 hour
time constraint only the problem associated with sensor pattern 29 managed to
both close its duality gap to less than 0.1% and improve the objective function
value of the solution, it required 44.22 minutes of CPU time to do so. Of the ten
remaining problems that still had a duality gap of over 0.1% after the 5 hour
time limit had expired, just two had improved their objective function value,
and they only did so very slightly. For the remaining problems there was no real
benefit in letting CPLEX run for the additional CPU time since the only result
of doing so was a small tightening up of some of their duality gaps. In fact we
can’t be sure that duality gaps would eventually close up to within 0.1% even if
we were to let CPLEX work on these ten problems over an extended period. For
example, when we take the sensor pattern 21 problem shown in Table 6, and let
CPLEX run for 4 days the objective function still remains unchanged from that
value obtained after only 5 minutes and the duality gap is no different from the
result that was obtained after 5 hours.

Table 6. Rerunning of CPLEX on selected 80 × 80 problems

5 minute CPU 5 hour CPU
Time Limit Time Limit

Sensor Time Obj Fn Duality Obj Fn Duality
Pattern Constraint α Value Gap % Value Gap %

1 0.2 8.784 0.227538 8.781 0.167702
1 0.4 7.89 0.276273 7.89 0.276273
2 0.4 7.708 0.146773 7.708 0.137215
5 0.8 4.628 0.430061 4.628 0.407408
7 0.4 8.259 0.170637 8.259 0.141423
9 0.8 7.202 0.162646 7.202 0.159338
13 0.2 8.285 0.115284 8.285 0.115284
21 0.8 6.605 0.176625 6.605 0.13409
26 0.2 9.182 0.379952 9.177 0.302471
27 0.6 7.171 0.127628 7.171 0.106674
29 0.4 8.013 0.138233 8.011 0.097239
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It should be noted that when we used our heuristic on these 20 × 20, 40 × 40
and 80×80 grid problems it required on average around 0.1, 0.8 and 6.5 seconds,
respectively, using the same Intel Pentium 4 PC with a 2.40GHz Processor and
1GB of RAM, to determine the solutions as compared to 11.52, 15.88 and 50.54
seconds using CPLEX. So even when we restrict CPLEX to a 5 minute CPU
time limit, our heuristic is still significantly quicker in determining a solution.
Therefore by using our heuristic we can achieve optimal or very near optimal
solutions in substantially less time than if we were to employ CPLEX.

8 Numerical Results

As mentioned our Two Phase approach uses the solutions obtained from our
heuristic as initial starting points for the corresponding optimal control model.
We tested our proposed method on 480 problems that were generated in the
exact same manner as was described in Section 2, with the addition of a 60× 60
grid. Again we imposed the time constraint associated with the 20× 20 network
across the other grid dimensions. By preserving the same time constraint for all
the grid sizes we are able to directly compare the effect that the initial starting
solutions generated via the different sizes has on the final path obtained in the
optimal control phase. The results were obtained via an Intel Pentium 4 PC with
a 2.40GHz Processor and 1GB of RAM.

We need to decide on how many switches to use within the optimal control
phase, these amounts are presented in Table 7.

We see from Table 7 that the number of switches increases as the grid size
increases so as to incorporate the heuristic solution into the MISER software
package. That is, the number of line segments allowed in the optimal control
model is chosen sufficiently large so that the heuristic solutions can be fully
parameterized. Indeed, a certain percentage of additional segments are allowed
in case they are needed for an optimal solution. For example for the 60 × 60
case, at minimum one would have to travel 120 edges to get from the source
to the destination, 60 edges to the right and 60 edges up. Each edge can be
traversed in one of two possible speeds, so we double 120 to give us 240. Then as
mentioned we allow for some additional switches as well, in case of any backward
or downward movements made by the submarine. We include 20 extra switches
for the 20×20 grids, 17 for the 40×40 grids, 3 for the 60×60 grids and a further
5 for the 80 × 80 networks.

In the optimal control phase we employed the NPSOL routine, as previous
research [6] suggests it to be the most effective nonlinear solver for our problem.

Table 7. Number of switching points

20 × 20 40 × 40 60 × 60 80 × 80

# Switches 100 175 243 325



22 L. Caccetta, I. van Loosen, and V. Rehbock

Table 8. Comparison of different grid sizes

20 × 20 40 × 40

α % CPU Euclidean % CPU Euclidean
Improvement Time Distance Improvement Time Distance

0.2 33.68 6.13 1.63 33.19 14.30 2.07
0.4 26.51 6.98 0.80 26.32 13.64 0.36
0.6 18.58 8.46 1.81 20.27 20.17 0.91
0.8 14.93 9.60 0.80 13.99 15.26 0.95

All 23.43 7.79 1.26 23.44 15.84 1.07

Table 9. Comparison of different grid sizes (cont.)

60 × 60 80 × 80

α % CPU Euclidean % CPU Euclidean
Improvement Time Distance Improvement Time Distance

0.2 32.03 28.88 5.08 28.69 52.57 18.11
0.4 26.95 35.37 3.59 21.33 47.93 14.17
0.6 19.61 38.16 5.03 15.65 55.23 1.56
0.8 12.10 26.97 8.63 8.48 58.66 31.24

All 22.67 32.34 5.58 18.54 53.60 16.27

Table 8 and Table 9 shows us that the % Improvement that is made over
the initial solution decreases as the grid size increases, apart from the 20 × 20
and 40× 40 cases where the average improvement is virtually the same. We also
observe that the CPU time, in minutes, increases as the grid dimension becomes
larger.

For both the heuristic and optimal control solution we measured the average
percentage of how far the results obtained were from the corresponding best
solution of that approach. For example, for the heuristic phase, after determining
the solution for each grid size using the same time constraint, we compared the
costs of the paths C(P ) against the best C(P ∗) of the four solutions using the
equation

[
C(P )−C(P ∗)

C(P ∗)

]
× 100. This procedure was also followed for the optimal

control solutions. This will tell us how far, in terms of percentage above the best
solution, the path was from the best solution obtained.

From Table 10 we see that as the grid size increases from 20 × 20 to 80 × 80
the quality of the heuristic solution generated improves from 3.14% to 1.15%
on average above the best solution. This is what we would expect since from
a larger grid size we can determine a more refined path that has a lower cost
than if we were to use a smaller dimension grid. However, when we look at Table
11 we note that the best solution obtained via the optimal control phase comes
from the starting solution generated by the 40 × 40 grid, it is on average 3.57%
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Table 10. Heuristic: Average % above best solution

α 20 × 20 40 × 40 60 × 60 80 × 80

0.2 2.83 2.25 1.87 1.57
0.4 3.02 2.39 1.43 1.40
0.6 2.68 2.33 1.92 1.42
0.8 4.04 2.09 0.83 0.20

All 3.14 2.27 1.51 1.15

Table 11. Optimal Control: Average % above best solution

α 20 × 20 40 × 40 60 × 60 80 × 80

0.2 3.14 3.35 4.67 10.10
0.4 5.27 4.74 2.89 11.47
0.6 5.55 3.05 3.47 8.24
0.8 3.87 3.16 4.19 7.68

All 4.45 3.57 3.81 9.37

above the best solution. The worst solution, on average, was found from using
the 80 × 80 path which was 9.37% greater than the best solution.

This shows us that despite using a ‘better’ path from the 80×80 grid dimension
as an initial guess the resulting optimal control path is not as good as the
path resulting from using any other of the grid dimensions. This contradicts
our belief that the best optimal control solution would be found by using a
feasible path which has the lowest cost. These results and observations are a
direct consequence of the different number of switching points used within the
optimal control phase. We still believe that the final optimal control solution is
dependent on a good initial solution, however, the number of switching points
also have a large bearing on the quality of result obtained. This would appear
to be due to the nature of the CPET transformation which tends to introduce
a large number of local minima in the transformed optimal control formulation
of the problem. Consequently the likelihood of getting stuck in a local minima
increases with the number of switching points.

To reduce the possibility of our optimal control solution becoming caught in
a local minimum we need to reduce the number of switches used within the
second phase of our procedure. For conformity sake, we have been using the
‘maximal’ amount of switches, across the board, that was necessary for a one-
to-one mapping of any possible network path into the required MISER input
format regardless of whether they were required or not. To keep the amount
of switches to a minimum we only used a sufficient amount that allowed us to
incorporate the heuristic solution into the requisite input format. In Table 12 we
display the average minimum number of switching points used for each of the
four grid dimensions.
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Table 12. Average minimum number of switching points used

20 × 20 40 × 40 60 × 60 80 × 80

# Switches 17.64167 27.80833 39.375 49.425

Table 13. Comparison of different grid sizes using minimal switching points

20 × 20 40 × 40

α % CPU Euclidean % CPU Euclidean
Improvement Time Distance Improvement Time Distance

0.2 31.24 1.80 0.45 30.71 2.89 0.50
0.4 26.13 2.55 0.39 25.32 3.42 0.51
0.6 17.59 3.01 0.48 16.76 3.27 0.49
0.8 11.77 3.31 0.66 12.57 3.55 0.50

All 21.68 2.67 0.50 21.34 3.28 0.50

To test the effect that using a minimal amount of switches has on the final
solution we use the same initial network solutions as before, with the same time
constraints, and again we employ the NPSOL routine. However in this case we
use a minimal amount of switches in the optimal control phase.

As we observed with our earlier results, Tables 13 and 14 shows us that the
percentage improvement that is made over the initial solution decreases as the
grid size increases. Again we also note that as the grid dimension becomes larger
the CPU time, in minutes, increases. What we can also discern from these tables
as compared to Tables 8 and 9, is that the Euclidean distances have all ‘tightened
up’, especially in the 80 × 80 problems where it has reduced from 16.27 meters
out from the destination down to 0.63 meters.

Again, we measured the average percentage of how far the optimal control
results obtained were from the corresponding best solution. These results are

Table 14. Comparison of different grid sizes using minimal switching points (cont.)

60 × 60 80 × 80

α % CPU Euclidean % CPU Euclidean
Improvement Time Distance Improvement Time Distance

0.2 30.94 3.38 0.48 31.49 3.21 0.41
0.4 24.47 3.31 0.42 23.01 4.30 1.31
0.6 17.59 4.66 0.39 16.67 4.66 0.40
0.8 10.97 4.70 0.41 11.26 8.14 0.42

All 20.99 4.01 0.43 20.61 5.08 0.63
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Table 15. Optimal control minimal switches: Average % above best solution

α 20 × 20 40 × 40 60 × 60 80 × 80

0.2 6.03 6.26 5.15 4.32
0.4 4.35 4.88 5.05 7.07
0.6 5.74 6.53 4.89 5.65
0.8 5.48 2.55 3.16 2.25

All 5.40 5.05 4.56 4.82

presented in Table 15. In this instance, when we use minimal switches, the best
solution which is obtained from the optimal control phase comes from using the
grid not the 60 × 60 grid not the 40× 40 grid as was the case. What stands out
most from Table 15, as compared to those in Table 11, is the improvement in
the 80 × 80 solutions. From being the worst at 9.37% above the best solution it
is now only 4.82%, the second best of our optimal control solutions. This shows
us that, as we believed, using the maximum 325 switches introduces too many
local minima into the solution space thus increasing the odds that our initial
path will tend towards one of these instead of the global minimum solution. The
worst solution, on average, was found from using the 20 × 20 path which was
5.40% greater than the best solution. The explanation for this being that the
20 × 20 grid is less likely to produce a path that falls within the vicinity of the
global continuous minimum solution then using a higher grid dimension, also an
average of 17.64 switches in the optimal control phase is perhaps too small a
number to allow for a sufficient resolution of the problem.

Finally in Table 16 we summarise the difference in the results from using both
the maximum and minimum amount of switches. Along with % Improvement
and CPU Time numbers that we have already presented, we also include the
Cost and Time ratios between the two solutions. That is for the Cost Ratio,
we divide the cost of the optimal control solution where we used the maximum
switches by the objective function value of the optimal control solution using
the minimum number of switches. Similarly we do the same for the CPU Times
between the two. Apart from the 80 × 80 case, we can see from the Cost Ratio
column that by reducing the number of switches to a minimum the cost of the
path found is roughly 2% worse off than if we were to use the maximum amount
of switches in the optimal control phase. However when we look at the Time
Ratio between the two we notice that there is an order of magnitude speed up in
the CPU times by between 3 to 8 times. So by reducing the number of switches
to a minimum we can significantly speed up the CPU time with the only side
effect being a tiny decrease in the quality of the path determined. However,
when we consider the 80× 80 problems not only does reducing the switches to a
minimum speed up the CPU time by a magnitude of over 10.5 times but it also
improved the solution path by 3.22%.

So in summary, there needs to be a balance struck with regard to the size
of the grid used and the number of switches used in the optimal control phase.
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Table 16. Comparison of the results for maximum and minimum switches

% Improvement CPU Time

Grid Max Min Cost Ratio Max Min Time Ratio
Size Switches Switches Max/Min Switches Switches Max/Min

20 × 20 23.43 21.68 0.9816 7.79 2.67 2.92
40 × 40 23.44 21.34 0.9760 15.84 3.28 4.82
60 × 60 22.67 20.99 0.9819 32.34 4.01 8.06
80 × 80 18.54 20.61 1.0322 53.60 5.08 10.56

We need to reduce the amount of switches to a point where we relegate the
number of, and therefore chances of becoming caught in a, local minima in the
transformed optimal control problem, and also to decrease the computational
time of finding a solution path, but not so much that it reduces the quality
of the path determined. Reducing the amount of switches means there are less
course and/or speed changes that can be made in the continuous problem. We
need to allow for an adequate amount so that the submarine can effectively
navigate the sensor region without putting itself at unnecessary risk.

9 Conclusions

This chapter has established and demonstrated a computational procedure for
the resolution of a discrete valued optimal control path design problem where a
transit path needs to be determined for a submarine passing through a sensor
field. The objective is to minimise the probability that the submarine will be
detected while still satisfying a total time constraint on the route.

Our approach to solving the submarine transit path problem was to use two
phases. In the first phase we generate a solution for the discretized network
problem, using a simple efficient heuristic. In the second phase of our method,
we refine the network solution by employing it as an initial starting point for
optimal control approach. Extensive numerical testing successfully demonstrates
the use of our methodology. Improvements can be made in the range of 16 to
24% by applying the optimal control method over the discretized network model.

Through our research we also established that the determination of a good
solution, via the use of our two phase method, is very much dependent on a
number of factors. These factors include:

1. The initial route used as the starting solution for the optimal control phase.
We have shown that the final optimal control solution will stay within the
vicinity of the primary solution. Using some trivial initial solution will be
totally inefficient as it will more than likely not be in the area of the global
minimum solution. Therefore there is a need to discretize the original prob-
lem and to determine a more intuitive initial solution.

2. The dimension of the grid used to discretize the sensor field. The greater the
dimension of the grid used the closer the solution found from our heuristic
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will be to a continuous solution. However an increase in the dimension results
in a network with a larger size and order and consequently more computa-
tional time is required to determine a solution.

3. The number of switches used within the optimal control phase. Not only does
a larger number of switches result in an increase in computational time but
it also introduces more local minima’s into the continuous solution space.
This therefore increases the likelihood that an initial solution will become
trapped in a local minimum and not gravitate towards the global minimum
solution. It was demonstrated that by reducing the amount of switches used
to a minimum, one could substantially diminish the amount of computational
time needed to determine a solution with only a very small reduction in the
quality of the solution obtained.
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Abstract. This chapter addresses the problem of concurrent task and
path planning for a number of surveillance Unmanned Ground Vehicles
(UGVs) such that a user defined area of interest is covered by the UGVs’
sensors in minimum time.

We first formulate the problem, and show that it is in fact a gener-
alization of the Multiple Traveling Salesmen Problem (MTSP), which is
known to be NP-hard. We then propose a solution that decomposes the
problem into three subproblems. The first is to find a maximal convex
covering of the search area. Most results on static coverage use disjoint
partitions of the search area, e.g., triangulation, to convert the continu-
ous sensor positioning problem into a discrete one. However, by a simple
example, we show that a highly overlapping set of maximal convex sets
is better suited for minimum time coverage.

The second subproblem is a combinatorial assignment and ordering
of the sets in the cover. Since the Tabu search algorithm is known to
perform well on various routing problems, we use it as a part of our
proposed solution.

Finally, the third subproblem utilizes a particular shortest path
sub-routine in order to find the vehicle paths, and calculate the over-
all objective function used in the Tabu search. The proposed algorithm
is illustrated by a number of simulation examples.

1 Introduction

Surveillance is an application area that has received an increasing amount of
attention over the last decades. In civilian as well as military applications, auto-
mated solutions ranging from security cameras to surveillance UGVs are used in
increasing numbers. It is therefore not surprising that the research area of auto-
mated positioning and control of surveillance sensors is also active and growing.
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In this chapter we investigate how small scale UGVs, such as the one depicted
in Figure 1, can be used in surveillance and security applications.

For the purpose of this chapter, we divide the rich set of work in this field
into the following three categories: First moving sensor platforms where the main
limitation on field of view is the physical sensor range. Applications where such
a formulation is reasonable include demining, vacuum cleaning, UAV-search and
outdoor pursuit-evasion games. The second category consists of problems deal-
ing with positioning of static sensors where occluding objects and walls present
the main limitation on field of view. Such formulations are found in the so called
Art Gallery Problems, where the number of guards required to monitor a build-
ing is to be minimized. The third category consists of problems where moving
sensors are to cover an area where again, occluding objects and walls present
the main limitation of field of view. This last category includes applications
such as pursuit-evasion games or exploration and mapping, in urban or indoor
environments. We will now discuss each of these categories in more detail.

In the first category, where sensor range is the main limitation on the extension
of the visible area we find problems such as vacuum cleaning and demining, [2, 13],
general coverage [6, 14, 18], multi robot coverage [11] and some robotic security
applications [5]. Furthermore, a number of UAV surveillance papers, such as [1,
19, 22] fall into this category. The last set of papers also consider the combined
problems of ordering a set of surveillance areas, and planning the search sweep of
each individual area. The pursuit-evasion problem, where a number of pursuers
try to find an evader is sometimes also formulated in this way [15].

In the second category, the field of view of stationary sensors is limited by
occluding objects instead of physical sensor range. This corresponds to indoor or
urban environments, where the distance between e.g., walls, is in general smaller
than the range of the sensor, e.g., a camera or a laser scanner. The first group of
results in this category comes from combinatorial geometry, and addresses Art

Fig. 1. This Surveillance UGV testbed, developed by SAAB Aerotech, will be used in
real-world experiments
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Gallery Problems, see e.g., [3, 16] and the excellent survey in [26]. This work has
then been built upon in [9] where a feedback solution to the guard positioning
was proposed.

In the third category, where the field of view of moving guards is mainly
limited by occluding walls and other objects, we also find results building on
the Art Gallery work. In an indoor environment, the pursuit-evasion problem
can be solved with a guarantee that the evader will be caught. Such results
are found in [8, 12]. Some of this work also deals with the situation where the
area is unknown. These problems are sometimes referred to as exploration and
mapping, and examples include [4, 27].

Some papers address coverage problems that do not fall into one of the above
categories. Examples include [7], where the mean squared distance from a sensor
to a random event is minimized, and [24], where both sensor range and occlusions
are incorporated into a combined planning of both UAV and sensor movements.

In the first category, many papers study the problem of covering an area in
minimum time. However, when occlusions and not sensor range are the main
limitations to field of view, as in the third category, we have found no paper
addressing the minimum time coverage problem. In this chapter we formulate
such a problem and propose an algorithm to solve it.

The organization of this chapter is as follows. In Section 2 some concepts and
results from combinatorial geometry and multi vehicle routing problems is given.
Then, in Section 3, we state our problem and propose a solution in Section 4.
Simulations illustrating the approach are presented in Section 5. Finally, the
chapter is concluded in Section 6.

2 Theoretical Background

In this section we review some tools from combinatorial geometry and combina-
torial optimization that will be used in the rest of the chapter.

2.1 Art Gallery Problems

We start by reviewing some terminology from combinatorial geometry. In this
section we closely follow the approach of Urrutia [26], but add the sensor range
R into some of the definitions.

A polygon Q in the plane is an ordered sequence of points q1, . . . , qn ∈ R
2, n ≥

3, called vertices ofQ together with the line segments qi to qi+1 for i = 1, . . . , n−1
and qn to q1, called edges. In the following we assume that none of these edges
intersect. A polygon is called orthogonal if adjacent edges are orthogonal.

Given a polygon Q and and a set of m disjoint polygons Q1, . . . , Qm contained
in Q we call the set A = Q \ {Q1 ∪ ... ∪Qm} a polygon with m holes. A polygon
with holes is called orthogonal if every pair of edges are either orthogonal or
parallel. The areas to be searched in this chapter, denoted A, are all going to be
of this form. An orthogonal polygon with holes is depicted in Figure 2(a).

Given two points p and q in A we say that p is visible from q if the line
segment joining p and q is totally contained in A, and ||p− q|| ≤ R, where R is
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(a) A polygon with holes (b) Convex Cover of the polygon.

Fig. 2.

the maximal sensor range. A set of points H = {h1, . . . , hk} ⊂ A guards A if for
all p ∈ A there exists hi ∈ H such that p is visible from hi.

In order to define our minimum time coverage problem we make the following
definitions. A path P is an ordered set of points P = p1, . . . , pn. A convex cover
C of A is a set of convex sets C = {ci}, such that A ⊆ ∪ici. A convex cover C
is visited by the path P = {p1, . . . , pn} if ∀ci ∈ C ∃pj ∈ P : pj ∈ ci. We define
a maximal convex cover of A to be a convex cover C = {ci} of A, such that1

|ci| ≤ R, and for all i, there is no convex set s ⊆ A, |s| ≤ R such that s ⊃ ci.
An example of a convex cover can be found in Figure 2(b). Note that the four

leftmost sets are maximal and overlap, while the sets to the right are disjoint
and not maximal. Hence the depicted cover is not maximal. Below we will argue
that the overlapping in a maximal cover is preferable in minimum time coverage
applications.

Given the above definitions we can state the following lemma before we define
the main problem addressed.

Lemma 1. If there exists a convex cover C of A such that the path P visits C,
then P guards A

Proof. Since P visits C, and every set ci in C is convex, P guards every set ci.
Furthermore, since A ⊆ ∪ici, P guards A.

3 Problem Formulation

In this section we first informally state the Minimum Time UGV Surveillance
Problem (MTUSP) and then show that it is NP-hard.

Informally, the problem we are studying is the following: Given a set of surveil-
lance UGVs and a user defined area to be covered, find paths such that every
point of the area can be seen from a point on a path and such that the time for
executing the search in parallel is minimized.
1 Here, |s| = sup

a,b∈s
dist(a, b) denotes the diameter of the set s.
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Problem 1 (Minimum Time UGV Surveillance Problem). Given N ve-
hicles and an area A, find a set of waypoint paths P = {P1, . . . , PN} that solve
the following optimization problem

min
P

max
i

ni−1∑
k=1

||pik − pi(k+1)||

s.t. ∪iPi guards A

Here Pi = {pi1, . . . , pini} and the start and finish depots, denoted by pi1, pini , i ∈
Z+

N � {1, . . . , N} may be given.

An example solution to a MTUSP can be found in Figure 3.

2 4 6 8 10 12 14

1

2

3

4

5

6

Fig. 3. An approximate solution to the Minimum Time UGV Surveillance Problem
(MTUSP) involving two UGVs on the area in Figure 2. Note that all the obstacle
free area can be seen from some point on the UGV paths. Details on this and other
simulations can be found in Section 5.

Remark 1 (Sensor field of view). In the problem statement above we demand
that each point in A is visible from some point in P . This is reasonable in the
case of omni-directional sensors. It is however also relevant in the case of cameras
mounted on pan-tilt units. In these cases the time right before and after passing
pik must be used to cover the areas visible from pik. If necessary, the UGVs will
have to slow down to facilitate the sensor coverage. A similar argument can be
made for the case when the sensor is one or more laser scanners.

Remark 2 (Variations). Throughout this chapter we are focusing on the mini-
mum time coverage problem. However, other closely related problems can also be
addressed using the same approach. For instance when surveillance of some par-
ticular region has higher priority, or when battery power is a scarce resource and
the user wishes to minimize the overall distance traveled by the UGVs. A third
option is to make the UGVs avoid high threat areas. All these variations can be
incorporated into the solution algorithm presented below by simply varying the
considered objective function and edge costs.

We end this section with showing that the problem defined above is NP-hard.
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Proposition 1. Problem 1 (MTUSP) is NP-hard.

Proof. The proof will built upon a polynomial reduction from an arbitrary in-
stance of a well-known NP-hard problem, namely the Euclidean-TSP (ETSP)
to a special instance of MTUSP2.

Given an ETSP instance, (n, [dij ]), where n is the number of cities to be visited
and [dij ] denotes the inter-city distances, we are free to choose the following parts
of Problem 1 (MTUSP) such that the achieved optimal solution corresponds to
that of the given ETSP.

1. The number of UGVs, N
2. The start and finish depots for all UGVs, pi

1, p
i
n+1, i ∈ Z+

N

3. The obstacle configuration
4. The area to be surveyed, A
5. The maximal sensor range, R

Regarding the number of UGVs, N = 1 is a natural selection. In order to achieve
a tour for this single UGV, we may locate the start and finish depot, p11, p1n+1
at an arbitrary city cite, as long as they are set equal. Further, an obstacle-free
environment is chosen and the area A is taken as the union of isolated points
located at the city cites. Finally, we set R = 0.

Due to these choices, the area A is fully guarded if and only if the UGV visits
all the city locations and hence the optimal solution of this specially designed
instance of the MTUSP will coincide with the optimal solution of the given
ETSP. This completes the proof.

Knowing that MTUSP is NP-hard, we can not hope to solve all problem in-
stances to optimality in reasonable time but must adopt heuristic solution meth-
ods. In fact, the comparative study [25] shows that for similar class of problems,
finding globally optimal solutions (by commercial software packages like CPLEX)
is not a viable approach.

4 Proposed Solution

In this section we will propose a solution to the MTUSP described above. The
solution encompasses three subproblems, as illustrated in Figure 4. In the first
subproblem, the computationally intractable problem of finding the minimum
time paths that enable complete regional surveillance, is turned into a finite
dimensional combinatorial optimization problem. This is achieved by finding a
maximal convex cover ofA, as defined in Section 2. In the second subproblem, the
order in which to visit the sets in the cover is determined using Tabu search. The
third subproblem, which is called as a subroutine of the second one to evaluate
the objective function in the Tabu search, involves a shortest path problem on
a graph, constructed from the given visitation order.

2 Consult [10, 17, 23] to read more about showing NP-hardness through reduction.
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Find a maximal convex cover

Assign and order the convex sets using Tabu Search

Find the paths by solving Shortest Path Problems

Fig. 4. The proposed solution relies on decomposing the problem into three subprob-
lems

Formally we state the algorithm below.

Algorithm 1 (Proposed solution). The algorithm consists of the following
two steps:

1. Create a maximal convex cover C = {c1, . . . , cM} of A in accordance with
Algorithm 2.

2. Solve the following combined assignment and ordering problem using Tabu
search:

min
π
F (π) = αmax

i
fi(π) + (1 − α)Σifi(π) (1)

where π is a permutation of Z+
M+N , representing the assignment/ordering

of the M convex sets to the N vehicles, α ∈ [0 1], and fi(π) is the optimal
path length of UGV i given the constraints in π. The value of fi(π) is found
in a sub-routine by using a shortest path formulation to solve the following
optimization problem:

fi(π) = minPi Σk||pik − pi(k+1)|| (2)
s.t. Pi guards ∪Iπ

i
cj

Pi visits cIπ
i (j) before cIπ

i (j+1), j ∈ Z+
|Iπ

i |−1

Here, Iπ
i is the index of the sets in C that are assigned to UGV i in the min-

imization of F . In (1), α = 1 corresponds to the minimum time problem and
α = 0 corresponds to the minimum distance problem. Examples of both these
options are found in Figures 10 and 11 in Section 5.

Having stated Algorithm 1 we first note that it does indeed result in a com-
plete covering of the surveillance area A, i.e., it produces a feasible solution to
Problem 1. This is clear from the following three observations in conjunction
with Lemma 1:
1. A convex cover is created.
2. All sets are assigned to different UGVs in (1).
3. Paths visiting all assigned sets are created in (2).

It is now time to describe and motivate the different subproblems in detail.
This will be done in Section 4.1 through 4.3. But first we make the following
assumption.
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Assumption 1. Throughout the rest of this chapter we assume that the area A
is orthogonal, see Section 2. This assumption is due to the nature of Algorithm
2. Finding a maximal convex cover for a non-orthogonal environment is how-
ever not a hard problem and it should be noted that the rest of the solution in
Algorithm 1 can handle any general polygon-with-holes type of environment.

4.1 Finding a Maximal Convex Cover

Since the polygons are all orthogonal, one can see that the maximal convex sets
ci must be rectangles aligned with the polygon. With this fact in mind we can
apply the following procedure to find a maximal convex cover.

Algorithm 2 (Maximal convex cover)

1. Make a discretization of the area A and construct the corresponding graph
representation, G(A). Since A is orthogonal, a variable sized grid can be
created with grid boundaries intersecting all points in the polygon Q and
holes Q1, . . . , Qm.

2. Find a yet uncovered cell, p.
3. Start growing a rectangle ci from p until it is bounded by |ci| ≤ R, or the

holes on all four sides.
4. While uncovered cells exist, goto 2.

When no more uncovered grid cells can be found the process terminates and A
is covered, A ⊆ ∪ici. Having described how to find a maximal convex cover in
detail, we now discuss a number of related issues.

We first note that decomposing the problem into subproblems, first creating
a maximal cover and then finding paths visiting that cover, might remove the
optimal solution from the new set of feasible solutions. Since Problem 1 is NP-
hard however, our aim is not to solve the problem to optimality, but rather to
produce high-quality solutions in reasonable time.

The second thing to notice is that one straight forward solution to the problem
would be to first solve a so-called Art Gallery Problem[3] to find a small set of
points guarding A, and then solve an ETSP visiting these points. This would
however not be efficient, since the points are chosen to be as few as possible,
not to permit short vehicle paths. For the same reason, we do not choose a
cover with as few sets as possible. That option furthermore happens to be an
instance of the optimal set cover problem which is one of Karp’s 21 NP-complete
problems [20].

The benefit of a maximal convex cover is illustrated in Figure 5. If the area A
is cross–shaped, as depicted in the figure, then the entire area can be instantly
surveyed from any point in a1 ∩ a2. Using disjoint orthogonal sets however,
the minimum time path for visiting all the orthogonal polygons (b1, b2, b3), and
thereby be sure to have surveyed the entire area, is strictly larger than zero.
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a1

a2

(a) Maximal convex cover.

b1

b2 b3

(b) Rectangular disjoint
convex cover.

Fig. 5.

4.2 Assignment and Ordering of the Convex Sets Using Tabu
Search

In this section we describe how we propose to solve the optimization problem
in (1), i.e.,

min
π
F (π) = αmax

i
fi(π) + (1 − α)Σifi(π).

Above, π is a permutation representing the assignment/ordering of the sets ci
to the UGVs, and fi(π) is evaluated by solving another optimization problem,
as explained in Section 4.3 below.

In order to solve the assignment and ordering problems simultaneously we
first give the sets and UGVs id-numbers. Assign the id numbers 1, . . . ,M to
the convex sets ci, i ∈ Z+

M . Let furthermore the N vehicles have id numbers
M + 1, . . . ,M + N . The search space for the Tabu search then consists of all
permutations of the id numbers, i.e., Z+

M+N . The interpretation of a sequence
of id numbers is then best explained by means of the following example: Let
M = 14, N = 3, and the final sequence be

π = (15, 1, 4, 17, 10, 14, 9, 3, 8, 16, 2, 13, 12, 7, 6, 5).

This corresponds to the following assignments:

Set with id numbers assigned to UGV with id number
1 4 15
2 13 12 7 6 5 16
10 14 9 3 8 17

The details of the implementations are, apart from the evaluation of fi(π),
identical to those presented in [21]. Hence we refer the interested reader to that
paper for a detailed description. We just note that the neighborhood search is
performed by pairwise interchanging components in π and the Tabu condition
corresponds to requiring a minimum number of iterations before switching a
particular pair again.

We now turn to see how the function fi(π) is evaluated in each Tabu step,
and how the individual UGV paths are found.
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4.3 Path Planning and Functional Evaluation by Solving Shortest
Path Problems

In the Tabu step above, each UGV is assigned a number of sets ci and an order of
visitation. The problem is now to decide what part of each set to pass through,
in order to make the resulting UGV path as short as possible while visiting the
assigned sets in the correct order. Formally, we need to solve the optimization
problem in (2) for a given assignment and ordering π, i.e.,

fi(π) = minPi Σk||pik − pi(k+1)||
s.t. Pi guards ∪Iπ

i
cj

Pi visits cIπ
i (j) before cIπ

i (j+1), j ∈ Z+
|Iπ

i |−1

Given a pair of starting and finishing positions for each vehicle3, we construct
a particular graph for each vehicle. This graph, which is termed a Route Graph,
has the starting and finishing positions as its first and last node. As depicted
in Figure 6, the intermediate nodes are extracted from the ordering π and cor-
respond to the nodes of G(A) inside the convex sets cj , j ∈ Iπ

i . To obtain the
edge costs for the Route Graph, an “all pairs shortest path problem” is solved
in the graph representation of A, G(A). This can be done by running Dijkstra’s
algorithm,[23], once with each node of G(A) as source node.

p1 cIπ
i (1) cIπ

i (2) cIπ
i (l) p2

Fig. 6. A graph representation of the route of one UGV

We illustrate the Route Graph with the following example. Assume as in the
table above that the UGV with id number 15 starts from some point p1 and is
assigned to visit first c1 and then c4 on its way to p2. These sets and positions
can be found in Figure 7.

The shortest path starting from p1, visiting at least one node in c1 and then
visiting at least one node in c4 and finally ending up at p2, is plotted in the
figure as well as in the Route Graph. As can be seen, the fact that c1 and c4
overlap makes q1,4 coincide with q4,3, enabling a very short path.

The evaluation of fi(π) corresponds to solving a shortest path problem in the
Route Graph; a task for which polynomial time algorithms such as Dijkstra or
3 For applications indifferent to finishing point, it is possible to let the optimization

routine choose it freely.
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Fig. 7. Example scenario with corresponding Route Graph and optimal path (dashed).
Note how the fourth node in c1, q1,4, coincides with the third one in c4, q4,3, hence the
cost of the edge between them equals zero in the Route Graph.

A* exist. Note that the solution of this optimization problem yields both the
UGV path Pi and its length fi(π).

5 Simulations

In this section, a small selection of examples are presented. The objective is
to highlight some of the key characteristics of the proposed solution method.
Throughout this section, the search area, A, is chosen to be all of the obstacle
free space. Implemented in Matlab, the area representation is normally taken
as a random matrix with obstacle density ρ ∈ {0.3 0.7}. It is assumed that
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Fig. 8. The Manhattan grid is surveyed cooperatively in minimum time. The starting
points of the UGVs are marked with �.



42 D. Anisi and P. Ögren
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Fig. 9. Minimum time surveillance. Note how the UGVs collectively guard A.

the obstacles have been enlarged with the diameter of the vehicle so that paths
passing between two obstacles do not imply collision. Furthermore, the initial
position of the vehicles are marked with a square (�), while the final positions
are marked with a diamond (�). These two, together with the filled larger circles
represent the surveillance points for guarding A.

The first two simulations, found in Figures 3 and 8, illustrate the cooperative
nature of the MTUSP. The final positions of the vehicles are here free variables to
be chosen by the optimization routine. As can be seen, this extra degree of freedom
is used constructively so that the vehicles survey the horizontally and vertically
aligned “streets” in a cooperative manner with the common objective of minimiz-
ing the search time, i.e., we have chosen α = 1 in (1). These simulations are also
a testimony of the advantage of using a highly overlapping cover.

Figure 9 illustrates a possible drawback of choosing the objective function as
pure minimum time. Here, the route of the vehicle to the left, (dash-dotted), is
unnecessarily long since a complete coverage would also have been achieved if
the vehicle did not move at all. However, the minimum time objective has no
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(a) Minimum time objective.
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(b) Minimum distance objective.

Fig. 10.
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(a) Minimum time objective.
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(b) Minimum distance objective.

Fig. 11.

way of distinguishing between these two solutions and regards them as equally
good since the time for executing them in parallel is indeed equal.

Figures 10 and 11 further illuminate the interplay between the choice of the
objective function and the obtained solutions. In Figures 10(a) and 11(a), the
solutions are once again obtained by minimizing the total search time. It can
be noted that these solutions distribute the work load quite evenly over the
vehicle fleet. In Figures 10(b) and 11(b) however, the objective has been set to
minimize the total distance traveled by the vehicles, i.e., α = 0 in (1). Since this
option does not take into consideration the division of the work load between the
different vehicles, the resulting solutions often do not utilize some of the vehicles
at all. This may be of interest when e.g., battery power must be saved, or when
unemployed vehicles can be used to perform other tasks.

6 Concluding Remarks

The Minimum Time UGV Surveillance Problem (MTUSP), where it is occlusion,
and not sensor range, that is the main limitation to the sensors’ field of view, is
at the focal point of this chapter. We initially show that this problem is in fact
NP-hard, hence we cannot hope to solve all instances to optimality in reason-
able time. We then proceed by proposing a decomposed solution method that
encompasses finding a maximal convex cover, performing Tabu search on the
assignment and ordering of the convex cover and finally, solving shortest path
problems in the so called Route Graphs. The simulations demonstrate the ad-
vantage of using a maximal and highly overlapping convex cover, the cooperative
nature of the MTUSP and the interplay between minimum time and minimum
distance solutions.
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Future research involves various interesting extensions of the current prob-
lem formulation, for instance, imposing path-wise constraints that require the
induced information graph to be kept recurrently connected.
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25. Thunberg, J., Anisi, D.A., Ögren, P.: A comparative study of task assignment and
path planning methods for multi-UGV missions. In: Hirsch, M.J., Commander,
C.W., Pardalos, P.M., Murphey, R. (eds.) Optimization and Cooperative Control
Strategies. LNCIS. Springer, Heidelberg (2008)

26. Urrutia, J.: Art gallery and illumination problems. In: Sack, J.-R., Urrutia, J. (eds.)
Handbook of computational geometry, pp. 973–1027. North-Holland Publishing
Co., Amsterdam (2000)

27. Yamauchi, B.: Frontier-Based Exploration Using Multiple Robots. In: Proceedings
of the second international conference on Autonomous agents, pp. 47–53 (1998)



A Distributed Network Enabled Weapon-Target
Assignment for Combat Formations
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Abstract. A distributed decision-making capability resulting in near-
optimal weapon-target assignments for formations of unmanned combat
vehicles is proposed. The decision-making is based on a modified ver-
sion of the cross-entropy method distributed over the formations. For
the formations to agree about a single consistent target assignment, a
new consensus algorithm is proposed so that exact agreement can be
reached in finite time through a communications graph that is at least
weakly connected. The decision-making algorithm enables the blue-team
combat vehicles to engage, or visit, an ordered sequence of targets while
grouping into formations of varying dimensions on their way to the sites.
The additional degree of freedom in the formulation of the optimization
problem allows mitigating the risks of destruction of the combat vehicles
when facing hostile red units. The weapon-target assignment aims at
maximizing a global utility function that expresses the overall weapons
effects. Constraints on the autonomy of each formation is taken into ac-
count in the formulation of the optimization problem. The engagement
dynamics is represented by means of an attrition model. It is shown
through numerical simulations that the proposed weapon-target assign-
ment outperforms, in specific cases, the solution to a travel salesman
problem, where all the vehicles are grouped into a single formation. The
numerical simulations also suggest that the performance of the proposed
algorithm is dependent on the number of formations per blue team, and
on the number of vehicles per formation.

1 Introduction

A weapon-target assignment strategy generally involves the solution to a com-
binatorial optimization problem. In such case, one seeks optimal weapon-target
pairing ensuring destruction of all targets while minimizing damage incurred
from battle and satisfying constraints on energy expenditure. Weapon-target as-
signment problems can usually be tackled by means of appropriate relaxation
techniques or heuristics. Techniques that have been investigated include stochas-
tic programming [1], genetic algorithms [2], and mixed-integer linear program-
ming (MILP) [3]. Several methods and tools aim at distributing optimal control
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of fleets of unmanned aerial vehicles. Techniques include MILP [4], dynamic pro-
gramming [5], and game-theoretic algorithms such as fictitious play [6], to name
a few. A vast body of research has been devoted to the domain of air operations,
which is a field closely related to weapon-target assignment. The decision making
is naturally addressed within a game-theoretic framework. For instance, prob-
abilistic attrition-type, discrete-time modeling of two opposing forces engaged
in a military air operation is utilized in [7,8,9] to derive one-step and two-step
lookahead Nash policies. In [10], spatial distribution of air campaign resources
in the battlefield is addressed by means of minimax strategies. Also related to
target assignment is the vehicle routing problem, where a multi-vehicle dynamic
traveling repair-person problem is solved by means of decentralized algorithms
[11,12]. The decentralized target assignment strategy proposed in [12] is locally
optimal when the time intensity of the Poisson process, which models target
occurrence, approaches either zero or infinity.

A Network Enabled Weapon-Target Assignment Scheme (NEWTAS) is pro-
posed to control, in a distributed manner, multiple formations of Unmanned
Combat Vehicles (UCVs). Assuming the vehicles share information through wire-
less communication links, NEWTAS is aimed at aiding ground crew in optimally
assigning targets to weapons for arbitrarily large teams of UCVs. NEWTAS as-
signs a sequence of targets to every blue-team formation. The sequence is ob-
tained by minimizing a global utility function that incorporates the attrition
entailed by hostile red forces and constrains the total energy expenditure of the
UCVs. The set of tactical targets is arranged as an ordered sequence of targets
to be engaged or visited, depending on context, by any given formation. The
pairing of a formation with a sequence of tactical targets constitutes the solu-
tion to the so-called multirouting problem. NEWTAS is tailored to the following
scenario. A combat theater consists of multiple formations of UCVs, denoted as
the blue team, facing tactical targets and adversarial ground units (red team) lo-
cated randomly. Blue-team hierarchical decision-making architecture comprises
several modules, as depicted in Figure 1. NEWTAS sits at the highest level of the
decision-making. At the lower level of the decision-making, the Path and Muni-
tions Planning (PMP) functions are obtained by solving a two-player, stochastic
game [13]. Such scheme enables deployment of the blue team formations from
one target to the next in a near-optimal manner, despite the presence of ground
units. Allowing the formations to merge into large groups and to divide into small
teams is the key capability enabling maximal survivability of the combat vehi-
cles, which evolve in a partially known, adversarial environment [13,15,16]. The
decision-making system composed of NEWTAS and PMP is to be contrasted
with the approach in [7,8] where limited horizon stochastic games are solved
sequentially to decrease the computational load. With the proposed NEWTAS,
the weapon-target assignment problem is solved over the entire horizon. Further-
more, as opposed to techniques applied to attrition-model-based air operations
[7,8,14], NEWTAS is distributed. Hence, the networked formations are capa-
ble of executing NEWTAS online such as, for instance, when significant events
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render a weapon-target assignment obsolete and require re-assigning targets to
UCVs.

This chapter focuses on the highest level of the decision-making hierarchy
by proposing a multirouting solution to the weapon-target assignment problem.
Assigning an ordered sequence of targets to be engaged, or visited, by the UCV
formations constitutes the so-called multirouting solution provided by NEW-
TAS. The states of the formations are governed by an attrition model [7,8]. This
model is a function of the number of healthy blue-team UCVs and of the number
of ground units faced during the mission. The proposed NEWTAS is character-
ized by a Cross-Entropy-Method-Based [17] Algorithm (CEMBA) distributed
over the networked formations. CEMBA offers several attractive features when
applied to the weapon-target assignment problem considered in this chapter.
First, stochasticity of CEMBA allows reaching optimality in probability with a
trade-off between the maximum reachable value of the global utility and the size
of the sample sets. Fixing the size of the sample set allows one to constrain the
computation time of the near-optimal assignment. Second, the Markov-chain-
based algorithm complies with the objective of distributing NEWTAS over a
network of formations. To ensure consistency of the state variables that are com-
municated among distributed computing units, CEMBA is coupled to a novel
consensus algorithm reaching an exact agreement in finite time. Case studies and
numerical simulations illustrate the effectiveness of the proposed NEWTAS. In
particular, it is shown that the weapon-target assignments obtained with NEW-
TAS can lead to improved performances in terms of reduced energy expenditure
and minimization of the number of UCVs lost, due to red force engagements,
when compared to the sequencing and routing of a single, large formation of
blue-team UCVs obtained with the solution to a classical Traveling Salesman
Problem (TSP). However, performance of NEWTAS is highly dependent upon
the attrition model and on the value of the following parameters: the number
of formations per blue team, and the number of vehicles per formation. Indeed,
numerical simulations suggest that NEWTAS applied to a small number of large
formations, for example 4 formations of 16 vehicles, results in a performance su-
perior to that obtained with NEWTAS on a relatively large number of small
formations, such as 8 formations of 8 vehicles.

2 Nomenclature

B Blue team
B− {1, ..., ϕ}
di,k′ Matrix exchanged among neighboring formations (for consensus)
Ep Expectation computed from P
Fi ith formation of B, (i = 1, ..., ϕ)
f(X,P ) Probability of generating X
Gc Communication graph of B
hs, hf Step sizes (slow and fast rates)
I Indicator function
M1,i,k′M2,i,k′ Internal memory of Fi (consensus algorithm)
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Fig. 1. Overview of the decision-making architecture

mϕ Number of munitions per vehicle
Ni Set of neighbors of Fi

n̂i,k′ Matrix exchanged among neighboring formations (for consensus)
n Number of targets plus B’s base
nϕ Number of vehicles per formation
P [P1, ..., Pϕ]
Pi Transition matrix of the Markov chain associated with Fi

PrP Probability computed from P
Pi,j Engagement factors
pi

jj′ (j, j′)-th entry of Pi

Qi,j Attrition factors
qi,j Probability of destruction of a vehicle of Fi

R Red team
rj(l + 1) Number of ground units located between Xi,l and Xi,l+1

S Set of targets augmented with B’s base
S− {1, ..., n}
S∗ Set of targets
Sd,i Length of the path followed by Fi

Sd Sum of Sd,i over B
Tj Targets if j > 1, blue team’s base if j = 1
ts,k, tf,k Discrete time instants (slow and fast rates)
U Blue team’s global utility
ui

j Lagrangian multipliers
uj

1,i,k′ , uj
2,i,k′ Input variables of Fi (consensus algorithm)

Vj Value of Tj
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X Set of paths followed by all the formations in B
Xi Path followed by Fi

Xi,g Waypoint in Xi

Xs
k sth entry of the sample set of paths obtained at ts,k

X Set of allowed paths for B
X̃ Unconstrained X with respect to the number of target visits
Xi Set of allowed paths for Fi (X )
X̃i Set of allowed paths for Fi (X̃ )
X̃ i

jj′ (r) Set of routes in X̃i whose rth transition occurs along (Tj , Tj′)
X̃ i

j′ (r) Set of all routes in X̃i whose rth transition starts from Tj

y1,j,k′ , y2,j,k′ Output variables of Fi (consensus algorithm)
zi,j(l) Number of Fi’s healthy vehicles between Xi,l and Xi,l+1
βi,j Probability acquisition of a vehicle of Fi by a ground unit
µi,j Normalizing factor in the attrition model
ϕ Number of formations in blue team

3 Weapon-Target Assignment Formulated as a Vehicle
Multirouting Problem

Assigning targets to weapons and planning the routes of UCVs may be solved
prior to mission. Knowing that limited communication capacities are available
prior to and during mission, it becomes clear that the global optimization prob-
lem may become infeasible in finite time. Thus, we propose the two-level hier-
archical decision-making system shown in Figure 1. First, information on the
tactical target locations, and on the ground unit types and locations is used to
derive an ordered sequence of targets to be engaged, or visited, by the UCV
formations, as illustrated in Figures 1 and 2. This is the so-called vehicle mul-
tirouting problem, which is solved with the proposed NEWTAS. Second, the
formations path planning and the deployment of munitions, labeled as the PMP
function in Figure 1 and illustrated in Figure 3, is achieved by means of a one-
step lookahead rollout policy [13,16].

Several definitions and assumptions are presented before stating the NEWTAS
objective.

Definition 1 (Red team). Team R is made up of n − 1 tactical targets, labeled
T2, ..., Tn, which are protected by static ground units. Note that we let T1 rep-
resent the base of the blue team, the starting point of the mission. When a
blue-team formation engages a ground unit, the latter is allowed to shoot at
most one munition. Blue-team potential losses caused by R are detailed in the
attrition model of Definition 3. For the purpose of simulations, in this chapter,
tactical targets and ground units are scattered randomly throughout the urban
area. The ground units may be located close to tactical targets, for protection
purposes, and in-between tactical targets along pathways that may be followed
by the blue-team formations, as depicted in Figure 2. Let S∗ = {T2, ..., Tn} de-
note the set of n − 1 tactical targets. Let Vj and pj be the value of target Tj ,
and the probability that Tj is destroyed by a single weapon, respectively.
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Fig. 2. Urban theater composed of Fiblue-team formations (black trapezoid), red-team
ground units (black circles), and tactical targets (black striped squares). The sequences
of tactical targets obtained with the weapon-target assignment NEWTAS are sketched
for formations F1 to F5.

Definition 2 (Blue team). At the onset of the mission, team B = {F1, ..., Fϕ} is
composed of ϕ ∈ N formations. Each formation Fi ∈ B is comprised of nϕ UCVs.
A UCV carries mϕ ∈ N munitions. Every vehicle of a formation Fi is assumed
to move with speed vi ∈ [vm, vM ] along straight-line paths whose extremities
are tactical targets that have to be engaged or visited. B is able to split into
ϕ distinct formations. Conversely, grouping into large formations, and into the
entire set B, is possible. Each UCV is allowed to fire at the ground units of the
red team. Losses caused by B is detailed in the attrition model of Definition 3. B
has perfect knowledge of S∗. To each formation Fi is associated an ni-tuple Xi =
(Xi,1, ..., Xi,ni) of ni > 1 sites that Fi has to visit. All ofXi,g ∈ S∗, where S∗ and
g ∈ {2, ..., ni−1}, are distinct. Furthermore, Xi,1 = Xi,ni = T1. The path length
associated with Xi is defined as Sd,i =

∑ni−1
k=1 dist(Xi,k, Xi,k+1), where dist(a, b)

denotes the distance between a and b. Similarly, the total length of the ϕ routes
that are associated with X = {X1, ..., Xϕ} is defined as Sd(X) =

∑ϕ
i=1 Sd,i. Let

di represent the maximum path length that Fi can follow. The set X of allowed
ni-tuple Xi is defined as X = {Xi ∈ Xi, i = 1, ..., ϕ s.t. S∗ ⊂ ∪ϕ

i=1Xi}, where
Xi = {Xi = (Xi,g)g=1,...,ni s.t. Sd,i ≤ di, Xi,1 = T1, Xi,ni = T1; ∀i′ �= i, ∀j ∈
Si, ∀j′ < j : Xij �= Xij′ , Xij �= Xi′j′}, where Si = {1, ..., ni − 1}. The following
sets, B− = {1, ..., ϕ}, S− = {1, ..., n}, and S = {T1, S

∗}, where T1 is the common
deployment and gathering base of B, are used in Section 4.

The dynamics of engagements between B and R are modeled by the following
attrition model.

Definition 3 (Attrition model). When travelling from targetXi,l to targetXi,l+1,
a formation Fi may be faced with hostile ground units. Let rj(l+ 1) denote the
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Fig. 3. Path planning obtained with PMP for formations F3, F4, and F5. Formations
F4 and F5 move from tactical target Tj−1, to Tj , and then to Tj+1. Formation F3 goes
from Tj−1 to Tj .

number of ground units located between Xi,l = Tj and the next target Xi,l+1.
The Markov chain defined in Section 4 determines how Xi,l+1 is realized from
Xi,l. Let zi,j(l) and zi,j(l + 1) represent the number of Fi’s healthy vehicles
when Fi begins to move toward Xi,l+1 from Xi,l, and when Fi reaches Xi,l+1,
respectively. A healthy vehicle is understood as being undamaged and with some
level of lethality. The transition of the blue team’s state, zi,j(l), is governed by

zi,j(l + 1) = (1 − Pi,j(l + 1)Qi,j(l + 1))zi,j(l),
Pi,j(l + 1) = βi,j(1 − exp(−µi,jrj(l + 1)/zi,j(l))),
Qi,j(l + 1) = 1 − (1 − qi,j)rj(l+1),

(1)

where βi,j is the probability that a ground unit acquires a vehicle of Fi, and µi,j

is a normalizing factor [7,8]. qi,j is the probability that a vehicle in formation
Fi is destroyed by one of the rj(l + 1) ground units. Pi,j and Qi,j correspond
to the engagement and attrition factors, respectively. Transition from rj(l) to
rj(l + 1) evolves similarly to (1), where rj is substituted for zi,j and vice versa.
Parameters related to the dynamics in rj(l) may take different values from those
related to zi,j(l).
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Assumption 1. Let EB represent the set of all pairs of formations Fi and Fj that
are linked by wireless communication. The communication graph Gc = (B, EB)
is assumed undirected and time invariant when solving the weapon-target as-
signment problem. During a time interval [k′hf , (k′ + 1)hf ), each formation Fi

communicates to its neighbor a pair of matrices n̂i,k′ , d̂i,k′ ∈ Rϕ×ϕ along with
an identity number M2,i,k′ . Variables n̂i,k′ , d̂i,k′ , M2,i,k′ , k′, and hf are defined
in Section 5.

Remarks 1. (i) Straight-line paths and attrition model, which are utilized to
derive NEWTAS, constitute a coarse modeling of the actual trajectories and the
low-level path-following dynamics, which are commanded by PMP. The rollout-
policy-based PMP proposed in [13,16] is obtained by using a low granularity
modeling of the theatre, as shown in Figure 3. (ii) Although not demonstrated
in this chapter, the proposed NEWTAS can be re-executed online, during the
course of the mission, whenever significant events, such as pop-up threats, render
the original weapon-target assignment obsolete. In this chapter, it is assumed
that NEWTAS is carried out prior to mission. (iii) The number of targets that Fi

has to visit may not be equal to n. However, blue team B, as a whole, is required
to visit all the tactical targets of S∗ at least once during the course of the mission.
(iv) While not theoretically proven, it is shown in Section 5, that the proposed
algorithm displays a certain level of robustness with respect to communication
loss. When communication links are temporarily lost, the communication graph
becomes a time-varying, possibly intermittently unconnected, graph.

NEWTAS objective. From Definition 1, the value of Tj being engaged by aj

UCVs can be expressed by

Uj(X) = Vj(1 − (1 − pj)aj ),
aj =

∑ϕ
i=1

∑ni

l=1 I(Xi,l = Tj)zi,j(l),
(2)

where I stands for the indicator function. Uj in (2) leads to the blue team’s
global utility

U(X) =
n∑

j=1

Uj(X). (3)

Optimization Problem. From Definitions 1 and 2, and from Assumption 1, we
aim to obtain a weapon-target assignment expressed by means of the set of ϕ
routes, X∗, verifying

X∗ = arg max
X∈X

U(X). (4)

The global utility maximizer X∗, which is constrained by the autonomy
di of Fi, i ∈ B−, is expected to be reached by a parallelized version of a
CEMBA algorithm [17] distributed over a weakly connected graph Gc of comput-
ing nodes.
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4 Application of Cross-Entropy Method in NEWTAS

4.1 Preliminaries

Let time be discretized as ts,k = khs, k ∈ N
+,where hs is the step size at

which CEMBA is updated. To simplify the presentation of the algorithm it is
first assumed that the communication graph Gc in Assumption 1 is complete,
which implies that the global information state of the graph is available to all
Fi ∈ B at any k ∈ N

+. A consensus algorithm is introduced in the next section
so that NEWTAS may be implemented in a distributed manner even when the
communication graph is only weakly connected.

CEMBA is inspired from the algorithm dedicated to the TSP, pp. 51-53 in [17],
where the probability mass function of X , which is central to the cross-entropy
method applied to TSP, is modified to solve the weapon-target assignment ex-
pressed as a vehicle multirouting problem. Recall that, unlike the problem de-
fined in (4), TSP involves either a single vehicle or a single formation of vehicles.
The latter being relevant to our combat scenario. For the sake of clarity, parts
of the algorithm proposed in [17] are recalled. The algorithm requires finding a
Markov chain on the graph GS = (S, ES), where ES represents the set of edges
that relate any pair of nodes in S. Such a Markov chain aims at seeking a near-
optimal solution X+ in the sense that {X+ ∈ X , U(X+) > γ} is a rare event for
some level γ > 0; that is, PrP (U(X+) > γ) = Ep[I{U(X+)>γ}] is very small, typ-
ically under 10−5. P = [P1, ..., Pϕ] is the concatenation of the transition matrix
applied to Fi and defined in the sequel. PrP and Ep stand for probabilities and
expectations that are computed from P , respectively. The Markov chains with
one-step transition matrix

Pi = (pi
jj′ )j,j′∈S− , ∀i ∈ B−,

pi
jj = 0, ∀j ∈ S−, (5)

are first derived from an extended set X̃ where routes of any type are allowed.
By any type we mean routes that start and end at T1, and can visit n− 1 sites
of S∗, which are not necessarily distinct. A simple heuristic is then employed to
constrain routes to the set X of allowed routes.

4.2 Proposed Algorithm

Let X̃ = {X̃i ∈ X̃i, i = 1, ..., ϕ}, where X̃i = {X̃i = (Xi,g)g=1,...,n s.t. Xi,1 = T1,
Xi,g ∈ S∗, g ∈ {2, ..., n}}. To X̃i ∈ X̃i is associated the path (X̃i, T1) that Fi has
to follow. Extension of X̃ to X comes from the fact that constraints Xij �= Xij′

and Xij �= Xi′j′ introduced in X are not included in the definition of X̃ . Let Ũ
be the utility defined over X̃ as follows

Ũ(X) =
{
U(X) if X ∈ X ,
−∞ otherwise. (6)
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The problem defined in (4) is equivalent to finding the maximizer of Ũ(X) with
X ∈ X̃ . The probability of generating X ∈ X̃ is given by

f(X,P ) =
∏ϕ

i=1 f(Xi, Pi),
f(Xi, Pi) =

∏n
r=1

∏n
j=1

∏n
j′=1(p

i
jj′ )I(Xi∈X̃i

jj′ (r)),
(7)

where X̃ i
jj′ (r) stands for the set of routes in X̃i whose rth transition occurs along

the edge (Tj , Tj′).
The cross-entropy method relies on an iterative procedure, which is designed

to yield at each iteration step k a set of transition matrices P1,k, ..., Pϕ,k, concate-
nated in Pk, such that the Kullback-Leibler divergence between some function
of Pk, denoted f(Pk), and the function f(P+) gives the best likelihood ratio
estimator of PrP+(U(X+) > γ) [17]. Minimization of the Kullback-Leibler di-
vergence applied to (7) at k along with the use of Lagrangian multipliers ui

j ,
which ensure that the jth row of Pi,k sums to one [17], leads to the following
maximization

max
Pk

min
ui

j ,j∈S−,i∈B−
(EPk

[I(U(Xk) > γ)) ln f(Xk, Pk)] +
ϕ∑

i=1

n∑
j=1

n∑
j′=1

ui
j(p

i
k,jj′ − 1)),

(8)
where Xk = {X1,k, ..., X1,k} ∈ X̃ is the set of routes generated by Pk at k, pi

k,jj′

is the (j, j′)-th entry of Pi,k, and

ln f(Xk, Pk) =
ϕ∑

i=1

n∑
r=1

n∑
j=1

n∑
j′=1

I(Xi,k ∈ X̃ i
jj′ (r)) ln pi

k,jj′ . (9)

Differentiating (8) with respect to pi
k,jj′ and noting that

∑n
j′=1 p

i
k,jj′ = 1 gives

ui
j = −EPk

[I(Ũ(Xk)
n∑

j′=1

n∑
r=1

I(Xi,k ∈ X̃ i
jj′ (r))]. (10)

Substituting (10) for ui
j in the derivative of (8) with respect to pi

k,jj′ yields

pi
k,jj′ =

EPk
[I(Ũ(Xk) > γ)

∑n
r=1 I(Xi,k ∈ X̃ i

jj′ (r))]

EPk
[I(Ũ(Xk) > γ)

∑n
r=1 I(Xi,k ∈ X̃ i

j′ (r))]
, (11)

where X̃ i
j′(r) stands for the set of all routes in X̃i whose rth transition starts from

node Tj . The estimator of (11) where expectations are replaced by averaging over
the sample (X1

i,k−1, ..., X
N
i,k−1) is expressed as

pi
k,jj′ =

∑N
s=1 I(Ũ(Xs

k−1) > γ)
∑n

r=1 I(X
s
i,k−1 ∈ X̃ i

jj′ (r))∑N
s=1 I(Ũ(Xs

k−1) > γ)
∑n

r=1 I(X
s
i,k−1 ∈ X̃ i

j′ (r))
, (12)

where Xs
k−1 = (Xs

1,k−1, ..., X
s
ϕ,k−1) is obtained from Pk−1. Pk−1 is computed at

k − 1 from formula in (12).
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As noticed in [17], Pk defined in (12) is likely to yield few ni-tuples, Xk,i,
that belong to Xi. Thus, relatively large sample sets are necessary to efficiently
utilize the estimator in (12). To avoid using sample sets that are prohibitively
large, a heuristic procedure, labeled HP(k, s), is proposed so as to increase the
probability that Xs

i,k belongs to Xi. It consists in setting to zero appropriate
columns of Pi,k so that Xs

i,k belongs to the set that corresponds to Xi without
the constraint on Fi’s autonomy. Omitting Sd,i ≤ di during the route generation
process is inevitable since it is not possible to assess the length of a route until
it has been fully generated.

Let Xs
i,g,k denote the gth element of route Xs

i,k. Consider a matrix’s row
Ro = [αr1, ..., αrn], where

∑n
i=1 αri = 1, from which a new row, Ro′, is obtained

by setting some entries, αrj1 , ..., αrjm , of Ro to zero. Then normalization of
Ro′ corresponds to Ro′ = Ro′/

∑
αri /∈{αrj1 ,...,αrjm} αri. HP(k, s) generates the

sample Xs
k = (Xs

1,k, ..., X
s
ϕ,k) from Pk as follows.

Step 1. (Initialization) Set Xs
1,1,k = T1, ..., X

s
ϕ,1,k = T1, and Q1 = [Q1,1, ...,

Qi,1, ..., Qϕ,1], where Qi,1 corresponds to Pi,k whose (1, 1) entry is set to zero.
Q1 is normalized to Q1.
Step 2. (lth iteration) Let Xs

1,l−1,k = Tj1,l−1 , ..., X
s
i,l−1,k = Tji,l−1 , ..., X

s
ϕ,l−1,k =

Tjϕ,l−1 be the realization of Ql−1 obtained at the (l− 1)th step of the recursion.
Proceed as follows.
Step.2.1. Qi,l is obtained from Qi,l−1 by setting its (j1,l−1, ..., ji,l−1, ..., jϕ,l−1)-th
columns to zero. Qi,l, for all i = 1, ...ϕ, is then normalized to give Ql.
Step.2.2. Generate successively Xs

1,l,k, ..., X
s
ϕ,l,k from Q1,l, ..., Qϕ,l, respectively.

Step.2.3. If Xs
i,l,k = T1 for i = 1, ..., ϕ− 1, then the first column of Qϕ,l is set to

zero. The new matrix is normalized to Qϕ,l.

Step.2.4. Generate Xs
ϕ,l,k from Qϕ,l.

Step 3. Set l to l+ 1. Reiterate from Step 2 as long as B ∩ {Xs
1,l,k, ..., X

s
ϕ,l,k} =

B\{T1}.
Step 4. (Stopping condition) Let l′ be the iteration step such that B ∩ {Xs

1,l′,k′ ,
..., Xs

ϕ,l′,k′} = B\{T1}. Set Xs
i,l′+1,k to T1, whenever Xs

i,l′,k �= T1.

Remarks 2. (i) T.2.3 ensures that the set of ϕ routes will cover all of the targets
of R; otherwise, there is a positive probability that at least one target will not
be visited. (ii) The result of this procedure is to be contrasted to that of [17]
applied to the TSP, where each generated route, involving only one vehicle or
formation, belongs to the desired set Xk. The reason why Xs

i,k is sometimes out
of Xi comes from the fact that the proposed procedure HP(k, s) cannot eliminate
route Xs

i,k whose length is greater than di.

Let g ∈ N, α ∈ (0, 1), ρ ∈ (0, 1) and P
(i)
k be the matrix Pk in (12) computed

by Fi. Furthermore, n̂i,k, and d̂i,k denote the matrices constituted of all of the
numerators and denominators of P (i)

k , respectively.
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CEMBA distributed over the complete graph Gc is defined as follows.

Step 1. (Initialization) Set k = 1 and Pi,1 = (1n − In)/(n − 1), for all i ∈ B−,
where 1n and In stand for the n×n unitary and identity matrices, respectively.
Set n̂i,1, and d̂i,1 to (1n − In) and to In/(n− 1), respectively.
Step 2. (kth iteration) Each formation Fi of B execute the following tasks.
Step.2.1. Compute R(i)

k−1 by dividing each (θ, θ′)-th entry of
∑ϕ

i=1 n̂i,k−1 by the
(θ, θ′)-th entry of

∑ϕ
i=1 d̂i,k−1.

Step.2.2. Compute P̃ (i)
k−1 = αR

(i)
k−1 + (1 − α)P̃ (i)

k−2.
Step.2.3. Generate Xs

k, for s = 1, ..., N, by means of HP(k − 1, s) applied to
P̃

(i)
k−1.

Step.2.4. Compute U(Xs
k) and order them as U(1) < ... < U(N).

Step.2.5. Defined γk = U�(1−ρ)N�.
Step.2.6. Compute P (i)

i,k by using (12), and communicate n̂i,k, and d̂i,k to Fj ,
where j �= i.
Step 3. (Stopping condition) Set k to k + 1. Reiterate from Step 2 as long as
γk+1 does not change for a number of g subsequent iterations.

As noted at the beginning of this section, Gc is not, by assumption, com-
plete. Therefore, each formation needs to reach a consensus in finite time so that
Step.2.1 can be carried out. By consensus, it is meant the mean value of n̂i,k−1

and of d̂i,k−1 over all i ∈ B−, which is computed despite the weak connectedness
of Gc.

5 Consensus Algorithm

Information consensus algorithms proposed in the last few years ensure asymp-
totic convergence in time of variables that are shared through a weakly connected
(see Figure 4), possibly time-varying, graph Gc [18,19]. Information state Ii,k of
a node i at iteration step k is usually updated by means of rules that depend on
neighboring nodes, for example, Ii,k = Ii,k−1+ε

∑
l∈Ni

(Il,k−1−Ii,k−1), where Ni

and ε denote the set of neighbors of i, and the simulation step size, respectively.
Such rules enable each node’s information state to approach to (1/ϕ)

∑ϕ
i=1 Ii,1

as time goes to infinity. In the sequel a simple communication protocol is pro-
posed so that the information state of every node approaches (1/ϕ)

∑ϕ
i=1 Ii,1 as

t→ ∞.
Since the consensus must be reached within each CEMBA’s iteration, the

proposed consensus algorithm is implemented with a time that is discretized at
a frequency 1/hf which is higher than that of CEMBA; that is, the discretized
time instant is defined as tf,k′ = k′hf , k′ ∈ N

+,where hf = hs/ν, hf ∈ N
+,

ν ∈ N
+. Iteration step k′ is set to one each time the consensus algorithm is

triggered; that is, whenever CEMBA provides a new set of output matrices n̂i,k,

and d̂i,k, which satisfy
n̂i,1 = n̂i,k,,

d̂i,1 = d̂i,k.
(13)
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Fig. 4. Consensus reaching among the networked formations

The proposed consensus algorithm is based on the following observation. As-
sume that the size of data communicated among each pair of adjacent nodes in Gc

is allowed to vary, as opposed to Assumption 1. An agent stores, at each discrete
time instant tf,k, the data communicated from its neighbor and publishes, at the
next time instant tf,k+1, the content of its internal memory. It is straightforward
to notice that the weak connectedness of the communication graph implies that a
consensus will be reached after a few iterations since all agents are in possession
of the same content. To see this fact, consider, for instance, the graph of Figure
4. The graph comprises 8 interconnected agents, with 3 UCVs per formation.

Assume that one aims at agreeing about the mean value of a variable Ii
indexed by i = arg(Fi), which is the identity of Fi. At iteration step k = 0, Fi’s
internal memory, Mi, is set to i. At k > 0, Fi communicates to its neighbors
the content of Mi and the set of all I∗, whose index ∗ belongs to Mi. Table 1
presents the content of Mi as k increases, with B = {1, ..., 8}. The table shows
that the consensus is reached after three steps since Mi = B is obtained at
k = 3 for all i ∈ {1, ..., 8}. Each agent is thus able to compute the consensus
value (1/8)

∑8
k=1 Ik.

To satisfy Assumption 1, we propose to constrain the size of the amount of
data that is communicated by Fi to its neighbors, and to randomly select such
information from Mi, as explained in the sequel. Let uj

1,i,k′ and uj
2,i,k′ be the

input variables of Fi communicated by Fj ∈ Ni at k′ ∈ N
+, where Ni stands for

the set of neighbors of Fi. The input variable uj
1,i,k′ carries the identity of only

one of the ϕ formations selected randomly, whereas uj
2,i,k′ carries the state that
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Table 1. List of identity variables stored in Miby Fi, i = 1, ...8, at each k′

M1 M2 M3 M4

k′ = 1 {1} {2} {3} {4}
k′ = 2 {1, 2, 4} {1, 2, 3, 5} {2, 3, 5} {1, 4, 6}
k′ = 3 B−\{7, 8} B−\{7, 8} {1, 2, 3, 5, 6} B−\{3, 8}
k′ = 4 B− B− B− B−

M5 M6 M7 M8

k′ = 1 {5} {6} {7} {8}
k′ = 2 {2, 3, 5, 6} {4, 5, 6, 7} {6, 7, 8} {7, 8}
k′ = 3 B−\{8} B− {4, 5, 6, 7, 8} {6, 7, 8}
k′ = 4 B− B− B− B−

is eventually used to compute the agreement. The proposed algorithm, labeled
CA(k′′), can be described as a 3-step algorithm as follows.
Step 1. (Initialization) For each formation Fi set, at tf,1,

M1,i,1 = argFi

= i,

M2,i,1 = [n̂i,1, d̂i,1].
(14)

Step 2. (Iteration of the consensus algorithm)
Step.2.1. The interconnection of Fi’s inputs with the output of neighbor Fj ∈ Nj

is described, at tf,k′ > 1, by

uj
1,i,k′ = y1,j,k′−1,

uj
2,i,k′ = y2,j,k′−1,

U1,i,k′ = {uj
1,i,k′ , j ∈ Ni}

U2,i,k′ = {uj
2,i,k′ , j ∈ Ni}.

(15)

Step.2.2. The internal memory M1,i,k′ and M2,i,k′ of Fi are updated as follows

M1,i,k′ =
{
{M1,i,k′−1, U1,i,k′} if U1,i,k′ /∈M1,i,k′−1,
M1,i,k′−1 otherwise,

M2,i,k′ =
{
{M2,i,k′−1, U2,i,k′} if U2,i,k′ /∈M2,i,k′−1,
M2,i,k′−1 otherwise,

(16)

where n̂i,1 and d̂i,1 are defined in (13).
Step.2.3. The fixed size in the amount of data communicated between vehicle
Fi and the set of its adjacent vehicles is guaranteed by determining the signals
sent by Fi as follows

y1,i,k′ = rand(M1,i,k′\Y1,i,k′−1) = i∗,
y2,i,k′ = [n̂i∗,k′ , d̂i∗,k′ ],
n̂i∗,k′ , d̂i∗,k′ ∈ M2,i,k′ ,

(17)

where Y1,i,k′−1 = {y1,i,1, ..., y1,i,k′−1}.
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Step 3. (Stopping condition) The consensus is reached at k′′hf , when k′′ ∈ N
+

is such that the equality
M1,i,k′′ = B− (18)

is satisfied for all i ≤ ϕ. Hence, all of the formations agree on the same informa-
tion state computed as

M2,i,k = 1/ϕ
ϕ∑

i=1

[n̂i,k′′ , d̂i,k′′ ], (19)

where n̂i,k′′ , d̂i,k′′ ∈M2,i,k′′ .

Remark 3. (i) As opposed to consensus algorithms in [18,19], the algorithm in
(15)-(19) reaches an agreement among the formations in finite time, although
at the expense of a requirement on data storage. (ii) For the stopping condition
in Step 3 to be implementable, {M1,i,k′ , i = 1, ..., ϕ} should be available to
formation Fi. This is not the case usually since only M1,i,k is available to Fi.
It is seen in the sequel that setting k

′′
introduced in Step 3 to some prescribed

value allows reaching an agreement with some level of confidence.
The convergence of the algorithm is illustrated by implementing (15)-(19)

in each formation Fi of B. Graph Gc is shown in Figure 4. At k′ = 1, M2,i,1
is initialized to i1ϕ. The consensus, M2,i,1 = 4.51ϕ, for all i ∈ B, is reached
at k′′hf . The empirical frequency of the number of time steps k′′ necessary to
reach the consensus is computed after 1000 simulation runs and is shown in

Fig. 5. Empirical frequency of number of time steps k
′′

necessary to reach the consensus
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Fig. 6. Cumulative distribution functions, Pr(k
′′

< x), of number of time steps neces-
sary to reach the consensus for time-invariant and time-varying graphs

Figure 5. The cumulative distribution function (solid line) in Figure 6 shows
that a 95% confidence level is achieved with k

′′
= 50 iterations. Robustness

of the algorithm is tested with an intermittent loss of communication links.
The scenario is as follows. Edges (F2, F5) and (F3, F5) are disabled when k′ is
even, whereas edges (F1, F4), and(F6, F7) are disabled when k′ is odd. Despite
the fact that the deactivation of (F6, F7) makes Gc temporarily unconnected,
a consensus is reached for every simulation run. As expected, the cumulative
distribution function (dashed line) in Figure 6 shows that the 95% confidence
level is achieved with a greater number of iterations (k′′ = 63) when compared
to the case of healthy communication links. Such result is important in practice,
where wireless communication links among cooperating vehicles are prone to
failures in complex environments.

6 Implementation of NEWTAS

NEWTAS can now be presented. Figure 7 shows the distributed architecture of
NEWTAS, which is obtained by duplicating in every Fi ∈ B the process depicted
in Figure 8. Every formation Fi executes CA(k′′) and CEMBA sequentially. More
precisely, CA(k′′) becomes the first sub-step, labeled Step.2.0, of CEMBA’s Step
2 presented in Section 3.2. Furthermore n̂i,k, and d̂i,k in CEMBA’s Step.2.6
are communicated to Fj , where j now belongs to Ni. NEWTAS implemented
in Fi can be represented, as shown in Figure 8, as a two-rate algorithm, where
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Fig. 7. Distributed implementation of NEWTAS. Formations exchange data through
communication graph Gc.

Fig. 8. NEWTAS instantiated in the computing node Fi ∈ B

the decimator enables transitions from the fast-rate subsystem to the slow-rate
subsystems. The fast-rate subsystem is composed of CA(k′′) operating at hf . The
slow-rate subsystem corresponds to CEMBA whose period is hs. The formation
communicates at the fast rate, which means that the output n̂i,k, and d̂i,k of
CEMBA are communicated every νhf . Once CA(k′′) has reached a consensus,
CEMBA proceeds from Step.2.1 to Step.2.6. Sub-steps Step.2.0-Step.2.6 are
iterated as long as the stopping condition of CEMBA (Step 3 ) is not satisfied.

7 Numerical Experiment

NEWTAS is simulated with the Simulink R© software [20]. NEWTAS is applied
to the subgraph of Gc defined as {{F1, F2, F3, F4}, EB}, where EB = {(F4, F1),
(F1, F2), (F2, F3)}. Each blue-team formation comprises 16 vehicles. Red team
R is composed of 15 tactical targets randomly positioned over a square urban
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Fig. 9. Weapon-target assignment with 64 UCVs and 15 tactical targets. Routes of
formations F1, F2, F3, and F4 are obtained with NEWTAS.

theater whose edge length is 100 units. The autonomy di of each formation is
fixed to 240 units. The utility assigned to each target is uniformly randomized
over [0, 1]. The peak of the global utility is equal to 7.86. The ground units are
located randomly although their number is an increasing function of a target’s
utility and inter-target distance. The attrition model’s parameters are as follows:
pj = 0.7, µi,j = 1, βi,j = 0.6, and qi,j = 0.3 in (1). The following parameters of
CEMBA are used in the simulation: g = 7, α = 5·10−1, ρ = 5·10−2, and k′′ = 50.

NEWTAS is implemented on a Pentium 4 processor, with 3.2 GHz clock rate
and 2 GB RAM. The execution time is 70 seconds. 31 iterations are needed
for the NEWTAS algorithm to converge. The length of the routes followed by
F1, F2, F3, and F4, shown in Figure 9, are 226, 225, 174, and 219, respectively.
The average number of healthy vehicles within F1, F2, F3, and F4 are, at the end
of the mission, 3.9, 4.6, 11.5, and 6.5, respectively, which gives a total average
number of 26.5 healthy vehicles. Note that the extremum of the global utility
is reached. The proposed NEWTAS is compared numerically with the solution
to TSP. The results obtained with a solution to TSP given in [17] are shown in
Figure 10. With the solution to TSP, the 64 vehicles of the blue team constitute
a single formation yielding a total route length of 309 units. This means each
vehicle has to travel over 309 units of distance. The number of healthy vehicles
that reach the last target is equal to 22 with the solution to TSP. Results obtained
with the TSP solution represent a 26% increase in route length with respect to
the worst route length (226) obtained with NEWTAS, and a loss of 17% more
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Fig. 10. Weapon-target assignment with 64 UCVs and 15 tactical targets. Routes are
obtained by solving the TSP applied to a single formation of 64 vehicles.

vehicles with respect to NEWTAS’s total average number of vehicles that remain
healthy until the end of the mission. This conclusion corroborates that obtained
by carrying out simulations of the low-level decision-making, shown in Figure
1, where PMP solved as a stochastic game advocates formation splitting and
merging, when needed, to reduce the risks of losing vehicles while maximizing
global weapons effect [13,15,16].

NEWTAS is now applied to 8 formations, each of which is composed of 8
vehicles, thus maintaining the number of vehicles to 64. The route length of
F1, ..., F8 are 228, 237, 196, 194, 233, 198, 204, 224, respectively, leading to an
average route length per vehicle of 213 compared to 211 when four formations of
16 vehicles are considered. The main difference comes from the average number
of healthy vehicles available at the end of the mission, which is of 12, thus,
representing a loss of 54% with respect to NEWTAS applied to 4 formations
{F1, F2, F3, F4} of 16 vehicles. This example shows that, given a fixed number
of blue-team vehicles, the selection of the size and of the number of formations
are critical parameters affecting performance.

8 Conclusions

We proposed a Network Enabled Weapon-Target Assignment Scheme (NEW-
TAS) aimed at aiding ground crews to assign targets to weapons. Such high-level
decision-making algorithm complements low-level path and munitions planning
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that is used to calculate local paths between two successive tactical targets.
The weapon-target assignment problem was formulated in such a way that a
group of weapons, or unmanned combat vehicles, are able to join into groups of
varying dimensions with the objective of maximizing a global utility function.
NEWTAS builds upon a distributed version of the cross-entropy method and
a consensus algorithm that allows reaching an agreement in finite time. Each
formation first executes a local instance of a cross-entropy-based algorithm. The
consensus algorithm is then utilized so that every formation agrees on a com-
mon set of variables that are instrumental to the computation of Markov chain
transition matrices utilized to generate the route followed by each formation.
Once the consensus is reached the cross-entropy-based algorithm iterates again
until a stopping condition is satisfied. Simulation results show the advantage of
multirouting formation-target assignment, as provided by NEWTAS, over single
routing formation-target assignment by maximizing team destruction capability
while satisfying autonomy constraints.

Future areas of research include demonstrating that the proposed distributed
cross-entropy method can efficiently be utilized to accelerate the global-utility-
seeking process when integrated to cooperative health management. A theo-
retical demonstration that the proposed consensus algorithm is effective with
time-varying graphs of large dimensions forming a jointly-connected collection
of simple graphs.
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Abstract. This work centers on the real-time trajectory planning for
the cooperative control of two aerial munitions that are attacking a
ground target in a planar setting. Sensor information from each muni-
tion is assumed available, and the individual target-location estimates are
fused in a weighted least squares solution. The variance of this combined
estimate is used to define a cost function. The problem is posed to design
munition trajectories that minimize this cost function. This chapter de-
scribes the solution of the problem by a dynamic-programming method.
The dynamic-programming method establishes a set of grid points for
each munition to traverse based on the initial position of the munition
relative to the target. The method determines the optimal path along
those points to minimize the value of the cost function and consequently
decrease the value of uncertainty in the estimate of the target location.
The method is validated by comparison to known solutions computed by
a variational method for sample solutions. Numerical solutions are pre-
sented along with computational run times to indicate that this method
proves effective in trajectory design and target location estimation.

1 Introduction

Research is in progress on the cooperative control of air armaments designed
to detect, identify, and attack ground targets with minimal operator oversight.
One class of this type of armament is wide-area search munitions, which can
be deployed in an area of unknown targets. Current development is focused on
the possibilities of enhancing munition capabilities through cooperative control.
Important work exists in the literature on the two related problems of cooper-
ative search [1,2,3] and the design of optimal trajectories for single observers
[4,5,6,7,8,9,10]. The problem of planning optimal trajectories for cooperative ob-
servers has been studied using collocation [11,12]. The problem of cooperative
attack was previously investigated using variational methods [13]. This chapter
presents a method to drastically reduce the computational expense of the pre-
viously implemented variational methods by use of the dynamic-programming
(DP) method. This problem of designing an attack trajectory that enhances
the ability to estimate the target location will be referred to as simultaneous
localization and planning (SLAP).

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 69–79.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The methods presented in this chapter will be illustrated for a planar problem
with two munitions and one stationary target. In the following section, models
for the munition motion and sensor performance are presented. Next, the SLAP
trajectory design is posed as a DP problem. The cost-sensitivity to grid resolution
is then investigated. Finally, the performance of a target-location estimation
algorithm is evaluated along the SLAP trajectories and compared to alternative
trajectories.

2 Problem Definition

A scenario will be considered with the two-dimensional plane populated by two
munitions and a single fixed target. The state of each munition is given by its
position in two dimensional space, x1 = [x1 y1]T and x2 = [x2 y2]T. A constant-
speed kinematic model is used to describe the motion of the munitions. The
heading angles of the munitions are ψ1 and ψ2, and the speed of each munition
is v. Here, the heading angles are treated as control variables.

ẋ1 = v cosψ1 ; ẋ2 = v cosψ2

ẏ1 = v sinψ1 ; ẏ2 = v sinψ2 (1)

ẋi = fi (ψi) , i ∈ {1, 2} (2)

A variable-speed model could be used; however the additional control variables
would increase the complexity of the problem and was not considered here. The
two velocities were chosen to be equal for the sake of simplicity. Additionally, each
munition is considered to carry a sensor that is capable of measuring the target
location in the x−y plane. To design trajectories that improve the estimation of
the target location, a model of the sensor measurements and their uncertainties is
needed. The target has a position described by xT = [xT yT ]T. The measurement
of the target location by each munition, z̃1 = [x̃T,1 ỹT,1]T and z̃2 = [x̃T,2 ỹT,2]T,
is modeled as shown in Equation (3).

x̃T,1 = xT + wx,1(0, σx,1) ; x̃T,2 = xT + wx,2(0, σx,2)
ỹT,1 = yT + wy,1(0, σy,1) ; ỹT,2 = yT + wy,2(0, σy,2) (3)

The measurement errors from each munition are assumed to be independent of
the errors from the other munition. The x and y measurement errors from each
individual munition, wx,i and wy,i, however, are treated as correlated Gaussian
random variables with zero mean and standard deviations of σx,i and σy,i, where
i ∈ {1, 2}. These uncertainties will drive the trajectory design, and they can be
selected to model particular sensors.

The error in the target-location measurements from an individual munition is
treated as following a zero-mean jointly-Gaussian distribution that is uncorre-
lated in the down-range and cross-range directions, relative to the true target and
munition locations. The errors in these directions, wd,i(0, σd,i) and wc,i(0, σc,i),
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Fig. 1. Measurement of the target by the ith munition and the associated error prob-
ability ellipse

can therefore be treated as independent Gaussian random variables. The stan-
dard deviations in the down-range and cross-range directions are modeled as
functions of the range from the munition to the target.

σd,i = 0.1ri ; σc,i = 0.01ri (4)

These coefficients do not correspond to specifications of any particular sensor,
but model a sensor that is more accurate when close to the target and more
accurate in the transverse direction than in the radial direction. The uncertainty
in the measurement of the target location by the ith munition is illustrated in
Figure 1.

From the down-range and cross-range variables, the errors and the covariance
matrix in the x and y coordinates can be found.[

wx,i

wy,i

]
=
[

cos θi sin θi

− sin θi cos θi

] [
wd,i

wc,i

]
(5)

Pi =
[
σ2

x,i σxy,i

σxy,i σ
2
y,i

]
=
[

cos θi sin θi

− sin θi cos θi

] [
σ2

d,i 0
0 σ2

c,i

] [
cos θi − sin θi

sin θi cos θi

]
(6)

Here, θi is the bearing angle of the target relative to the ith munition. The range
and bearing angle for each target-munition pair are computed as shown below.

ri =
√

(xT − xi)
2 + (yT − yi)

2 (7)

θi = tan−1
(
yT − yi

xT − xi

)
(8)

The measurements provided by both munitions can be fused into a single
instantaneous estimate of the target location. This is done using a weighted least-
squares estimator (WLSE) [14,15]. The measurements of the target location from
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each munition are grouped into a measurement vector z̃ = [x̃T,1 ỹT,1 x̃T,2 ỹT,2]T.
This produces a linear measurement model in terms of the target location.

z = HxT + w (9)

H =
[
1 0 1 0
0 1 0 1

]T

; w =
[
wx,1 wy,1 wx,2 wy,2

]T (10)

Here, w is the vector of measurement errors. The covariance of this error vector
is given by arranging the covariances from each munition.

R =
[

P1 0
0 P2

]
(11)

The instantaneous WLSE of the target location and the associated covariance
reduce to the following.

P =
[
σ2

x σxy

σxy σ2
y

]
=
(
P−1

1 + P−1
2

)−1
(12)

The covariance P models the uncertainty in the combined target-location es-
timate based on the positioning of the two munitions relative to the target.
The task of designing trajectories for the munitions in order to enhance the
estimation performance can now be posed as the following optimal control prob-
lem. Consider the state vector x = [x1 y1 x2 y2]T. The heading angles of the
munitions can be organized into a control vector u = [ψ1 ψ2]T. The state vec-
tor evolves according to the state equation found by grouping Equation (2),
ẋ = f(u) = [fT

1 fT
2 ]T. For boundary conditions, the initial positions of the mu-

nitions will be considered a given, and the final position of munition 1 is required
to be the target location, x1(tF ) = xT and y1(tF ) = yT . The final position of
munition 2 is free.

The goal will be to find the trajectories that minimize the following cost
function, which is based on the WLSE covariance.

J =
∫ tF

0

(
σ2

x + σ2
y

)
dt (13)

The variances of each target location are functions of the states describing the
munition configuration. Clearly, this cost function emphasizes the uncertainty
over the entire trajectory. Alternative cost functions could be defined using other
metrics of the covariance matrix, but these were not investigated here.

3 Dynamic-Programming Approach

The above nonconvex problem has previously been solved using a variational
method [13]. Although these solutions demonstrated that significant improve-
ments in the target-location estimate could be achieved, the method was too
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Fig. 2. Example of (a) path grids and (b) DAG where n = 64 and m = 168 and all
edges are directed from left to right

computationally expensive for implementation. This section describes a solu-
tion of the problem by dynamic programming (DP), with the goal of reducing
computational expense.

Whereas variational methods consider a continuous range of heading angles at
any instant in time, the approach considered here only allows a discrete number
of possible headings at discrete instants in time. Admissible trajectories were
selected considering Equation (2). The trajectories were limited to two possible
heading angles at each decision instant. In between decision points, the trajec-
tories follow constant headings. This discretization generates a grid of possible
trajectories, as illustrated in Figure 2 (a). This grid of physical points through
which the munitions may travel is referred to as the path grid. It is noteworthy
that the candidate paths are based on the simple vehicle model in Equation (2);
however, the path planning generated from this model could be applied to a
higher-order system.

The path grids were laid out for each munition and were structured such
that they were symmetric about a reference line from the initial state to the
target location. The expansion of this grid is variable about the reference line
by an angle, α. Because the results of the variational method showed that the
munitions tended to approach the target at orthogonal headings, the path grid
was of variable width to allow for outward sweeps. The degree of expansion was
determined based on the initial positions of the munitions relative to the target.

The nodes were organized into subsets of nodes that could be reached in a
given amount of time. Consequently, the time increment between layers was also
assumed constant between each layer. This time increment is calculated from
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the initial range of the munition that will strike the target, which is assumed to
always be the closer of the two munitions. The same time step is used for both
munitions in order to preserve synchronized motion of the munitions.

This algorithm implements the Bellman-Ford model for trajectory optimiza-
tion through dynamic programming in Fortran 77 [16]. Once a cost function is
defined and a cost corresponding to each possible set of paths for each muni-
tion is calculated according to Equation (13), the combinatorial possibilities of
physical node locations for the two munitions were used to form the vertices of
a directed acyclic graph (DAG) with n vertices and m edges. Each vertex repre-
sents a particular location for each munition at a particular instant in time, and
each edge corresponds to the cost value associated with the munitions traveling
to those particular locations. The graph is directed and acyclic because the paths
must follow the flow of time.

The vertices are arranged into subsets, where each subset represents a partic-
ular instant in time. Once the cost along each edge of the DAG is computed, the
algorithm marches backward in time from the last layer of vertices to the first
vertex to determine the lowest possible cost and the path that produces it. At
each subset, the optimal path is computed by comparing the costs to proceed
forward. That path and cost are then stored and the algorithm works backwards
to the preceding subset, continuing this process until it reaches the initial vertex.
The DAG associated with the path grid in Figure 2 (a) is shown in Figure 2 (b).
Solutions for this type of graph can be computed in O(m) time.

Example trajectories produced by the DP method are shown in Figures 3
and 4 using n = 64 and m = 168. The DP trajectories are also compared to
trajectories computed from the variational method. A third order curve fit was
used to obtain the smooth trajectories from the grid points of the path grids.
The trends of the DP trajectories capture those of the variational method. This
is also evidenced by a minor increase in the final cost of approximately 7.75% in
each problem, as shown in Table 1. When paired with a computational run-time
of 0.1 sec on a 2GHz PC for the DP method, and the advantage of deterministic
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Fig. 3. Problem 1 SLAP trajectories from variational (a) and DP (b) methods
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Fig. 4. Problem 2 SLAP trajectories from variational (a) and DP (b) methods

Table 1. Cost for sample SLAP trajectories

Problem DP Method Cost DP Method Cost Variational Method Cost
n = 64 n = 27

1 1.7181 ∗ 104 1.7209 ∗ 104 1.59 ∗ 104

2 2.0317 ∗ 104 2.0318 ∗ 104 1.89 ∗ 104

run time, these cost values confirm the effectiveness of this method to the SLAP
problem.

4 Cost Sensitivity to Grid Resolution

In implementing the DP method, the resolution of the path grids and the re-
sulting DAG must be selected. In order to determine an appropriate resolution,
the sensitivity of the cost to grid resolution was investigated. A lower resolution
DAG with n = 27 and m = 70 was created. The resulting increase in perfor-
mance cost was less than 1%, as shown in Table 1. This low sensitivity to grid
resolution did not motivate the investigation of resolutions greater than n = 64.

5 Estimation Performance

The impact of the trajectories on the target-location estimation can now be
evaluated. Although the trajectories were designed using a cost function based
on the variances from a continuous WLSE algorithm, the estimation performance
will be evaluated using a recursive weighted least squares estimation (RWLSE)
algorithm with discrete measurement updates. The estimates computed using
the DP trajectories are compared to estimates using the variational method and
following trajectories from the initial conditions straight to the target location
(STT trajectory). In each case, noisy measurements were simulated using the
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measurement model in Equation (4). The measurements were generated by use
of the RANDN command in MATLAB to generate a normal distribution of
random numbers.

The munition sensors were assumed to collect measurements of the target
location at a rate of 10 Hz. The RWLSE algorithm operated as follows to deter-
mine the estimate and the uncertainty at the kth time step [14,15]. The current
estimate is computed as follows.

Kk = Pk−1H
T (HPk−1H

T + R
)−1

(14)

x̂
(T )
k = x̂

(T )
k−1 + Kk

(
z̃k − Hx̂

(T )
k−1

)
(15)

The current covariance matrix is computed as shown.

Pk =
[
σ2

x,k σxy,k

σxy,k σ2
y,k

]
=
(
P−1

k−1 + HT
k R−1

k Hk

)−1
(16)

To compare the estimation performance along the different trajectories, the size
of the one-sigma uncertainty ellipsoid in the target-location estimate can be used
as a metric. At the kth time step, this is given by the product of π with the square
root of the product of the eigenvalues of Pk. In particular, the ellipsoid size at
two seconds prior to impact ((tF − 2) seconds) will be highlighted. Although tF
is different for each trajectory, at this point in time munition 1 is roughly 600 ft
from the target.

Using the initial condition of x1(0) = 0 ft, y1(0) = −2000 ft, x2(0) = 100 ft,
and y2(0) = −2000 ft, two munitions on STT trajectories correspond to a one-
sigma uncertainty ellipse with an area of 39.7 ft2 at (tF − 2) sec, with tF =
6.67, sec. When the two munitions follow the SLAP trajectories obtained through
the variational and DP methods shown in Figure 3 however, the area is reduced
as shown in Table 2. The error histories for a sample simulation with noisy mea-
surements and three-sigma error bounds (±3σx,k and ±3σy,k) generated by the
RWLSE algorithm are shown in Figure 5. Figure 5(a) shows the errors in the x
and y estimates of the target location using the variational method trajectories.
Figure 5(b) show the errors using the DP trajectories. Both trajectories give
similar, relatively good performance in estimating the target location, however
the DP trajectory has slightly slower convergence. This highlights the differ-
ence between the uncertainty ellipse area as a performance metric and the cost
function used in generating the paths.

Table 2. Area of one-sigma uncertainty ellipse

Problem STT Variational Method DP Method
1 39.7 ft2 9.1 ft2 24.5 ft2

2 40.8 ft2 9.3 ft2 23.5 ft2
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Fig. 5. Estimation errors using (a) Variational Method and (b) DP trajectories with
x2(0) = 100 ft, and y2(0) = −2000 ft
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Fig. 6. Estimation errors using (a) Variational Method and (b) DP trajectories with
x2(0) = 0 ft, and y2(0) = 2000 ft

Moving munition 2 to the initial condition x2(0) = 0 ft, and y2(0) = 2000 ft
corresponds to an uncertainty ellipse with an area of 9.3 ft2 for the variational
method trajectories. With a mesh expansion angle of π/4, the resulting uncer-
tainty ellipse area was 23.5 ft2 for the DP trajectories. For these initial conditions,
the error histories for a sample simulation with noisy measurements and three-
sigma error bounds generated by the RWLSE algorithm are shown in Figure 6.

6 Conclusions

Careful trajectory design can have a significant impact on target-location es-
timation. In this work, the DP approach was used to demonstrate that SLAP
trajectories are practical for real-time implementation. The advantage of this
approach is that discretization in both time and spatial coordinates results in
a DAG on which the corresponding problem can be solved in a deterministic



78 E.A. Doucette, A.J. Sinclair, and D.E. Jeffcoat

amount of computation. This allows grid resolution to be selected based on the
available computational resources and desired performance.

More accurate target-location estimation could allow more accurate strike
capability or the ability to attack the targets that are difficult to detect. Further
work is needed to demonstrate the impact of these estimation enhancements on
guidance and control performance. In future implementations, heuristic methods
may be developed based on insight gained from solutions of the optimal control
problem. Additionally, an algorithm could be developed to allow for an adaptive
mesh expansion angle. The DP approach will still be a useful development tool
to cheaply investigate various solutions.
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Abstract. In this chapter, a nonlinear control design is proposed for a
team of wheeled mobile robots to cooperate in a dynamically evolving
environment to track their virtual leader(s), while avoiding static and
dynamic obstacles. Toward this end, a multi-objective control problem
is formulated, and the control is synthesized by generating a potential
field force for each objective and combining them through analysis and
design. To the best of our knowledge, the proposed design is the first sys-
tematic approach to accommodate and achieve the multiple objectives of
cooperative motion, tracking virtual command vehicle(s), obstacle avoid-
ance, and oscillation suppression. Basic conditions and key properties are
derived using rigorous Lyapunov analysis and theoretical proof. The re-
sults are illustrated by several simulation examples including cooperative
motion of a team of vehicles moving through urban settings with static
and moving obstacles, as well as narrow passages.

Keywords: cooperative motion, tracking of virtual leader, obstacle avoid-
ance, oscillation suppression.

1 Introduction

Many future missions such as cooperative robot reconnaissance [1], marine mine-
sweeping [6], and formation flight control [3,10] will be implemented with dis-
tributed autonomous systems, which require formation movement capability. To
achieve this goal, the central and difficult issues are:

– cooperative formation movement control of multi-robots;
– collision avoidance naturally arising in the dynamically evolving environ-

ment;
– coupling between the above two areas.

1.1 Formation Movement Control of Multi-robots

Most existing methods dealing with formation control use one of three strategies:
behavior based, virtual structure, or leader-follower.

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 81–102.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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In the behavior based approach [1,7], a series of primitive goal oriented
behaviors (e.g., move-to-goal, avoid-static-obstacle, avoid-robot and maintain-
formation) are proposed to each robot. A weighting factor indicates the relative
importance of the individual behaviors. The high-level combined behavior is
generated by multiplying the outputs of each primitive behavior by its weight,
then summing and normalizing the results. The advantage of behavior based
approaches is that each primitive behavior has its physical meaning and the
formation feedback can be incorporated into the group dynamics by coupling
the outputs of each individual behavior. The disadvantage is that it is difficult
to formalize and analyze the group dynamics mathematically, consequently it
is difficult to study the convergence of the formation to a desired geometric
configuration.

The virtual structure approach [2,3,4,5] is inspired by the rigid body motion
of a physical object with all points in the object maintaining a fixed geometric
relationship via a system of physical constraints. The robot formation is consid-
ered as a single virtual rigid structure. Thus desired trajectories are not assigned
to each single robot but to the entire formation as a whole by a trajectory gen-
erator. The formation is maintained by minimizing the error between the virtual
structure and the current robot position. The advantage of virtual structure ap-
proaches is that it is quite easy and straightforward to prescribe the coordinated
behavior of the whole team. The disadvantage is that the virtual structure’s
position is controlled by the positions of the robots, which makes the formation
itself, be the centralized control.

In the leader-follower approach [8,9,10], some robots are designed as leaders
moving along predefined reference trajectories. The remaining robots are follow-
ers and are required to maintain a desired posture (distance and orientation)
relative to their own leader. Generally, the leader-follower controls take the fol-
lowing forms: (1) a single leader vehicle and multiple follower vehicles or (2) a
“chain” of vehicles each following the preceding vehicle (such as in automated
control of highway systems). The advantage of leader-follower is the controls re-
duce to a tracking problem which can be designed and analyzed using standard
control theoretic techniques. The disadvantage is that the formation does not
tolerate leader faults, since the leader’s predefined trajectory is independent of
the motion of each associated follower.

1.2 Collision Avoidance

Obstacle avoidance is a fundamental issue in mobile robotics. This problem
has been studied extensively at the navigation system level (path planning)
because in the real application, the objective of obstacle avoidance is always
combined with target tracking. Most existing methods of path planning use one
of two strategies: graph methods and potential field methods. Graph methods are
based on a geometrical cell-decomposition of the entire workspace and generate
an optimal path with respect to objective criteria, such as finding the short-
est collision-free path or the minimum energy cost path. The main criticism to
graph methods is that these methods require large computational resources. In
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the potential field method, the target applies an attractive force to the robot
while the obstacles exert a repulsive force onto the robot. The resultant force
determines the motion of the robot. The potential field method is particularly
useful because of its simplicity, elegance and high efficiency. Some inherent lim-
itations of potential field method have been pointed out in [11], including the
following: (1) trap situations due to local minima; (2) no passage between closely
spaced obstacles; (3) oscillations in the presence of obstacles; and (4) oscillations
in narrow passages.

Obstacle avoidance can also be solved directly in the dynamics controller,
which is normally called “avoidance control.” We define avoidance control as a
control design which guarantees that every trajectory that emanates from outside
of the prescribed avoidance set of a given dynamical system will never intersect
the set. The potential field and Lyapunov methods are applied in the design of
avoidance controls. The problem of avoidance control for a single dynamical sys-
tem has been pioneered and extensively studied by Leitmann and his coworkers
[13,14]. Sufficient avoidance conditions were given to avoid the set for all time
in [13]. In later work [14], two special cases of avoidance are considered: the
set must be avoided during a prescribed time interval (finite-time avoidance),
or the set must be avoided for all time after some quantifiable or prescribed
time interval (ultimate avoidance). Sufficient conditions are presented for these
two kinds of avoidance. A generalization of avoidance control for multi-agent
dynamic systems is studied in [12]. Sufficient conditions are provided for a class
of nonlinear dynamic systems with a special decomposed structure.

1.3 Coupling of Formation Control and Collision Avoidance

Two frameworks are presented in the literature to solve the problem. One is the
aforementioned behavior based method, in which avoidance of obstacles as well
as other robots is designed as primitive behaviors. As previously mentioned, it
is difficult to formalize and analyze the group dynamics mathematically. Conse-
quently, it is difficult to prove convergence to the desired formation and improve
the robot’s transient performance.

The other framework is leader-follower formation control based on potential
field and Lyapunov direct methods (e.g., [15,16,17]). Potential fields yield inter-
action forces between neighboring robots to enforce a desired minimum space for
any pair of robots. A virtual leader is a moving reference point that exerts forces
on its neighboring robots by means of additional similar potential field. The
purpose of the virtual leaders is to introduce the mission: to direct, herd and/or
manipulate the vehicle group behavior [15]. A properly designed potential field
function yields global asymptotic convergence of a group of mobile robots to a
desired formation, and guarantees no collisions among the robots [16]. These two
methods do not consider the obstacle avoidance issue. The leader-follower strat-
egy essentially transforms the formation control problem into a tracking prob-
lem. Based on this, the decentralized controls are designed to achieve collision
avoidance and target tacking for a single robot is proposed. It is then extended
to address the problem of coordinated tracking of a group of robots [17]. This
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method does not consider the moving obstacle and only guarantees the tracking
with a bounded error.

1.4 Outline of This Chapter

Cooperative formation control with collision avoidance is addressed in this chap-
ter. We first investigate the target tracking and collision avoidance problems for a
single agent. Instead of directly extending the single agent controls to the multi-
agents case, we incorporated it with the cooperative control design described in
[18]. The proposed decentralized control is reactive, considers the formation feed-
back, and allows topological changes in the sensing and communication networks.
Since the proposed control is based on a potential field method, its inherent os-
cillation problem is also addressed to improve group transient performance.

The rest of this chapter is organized as follows: in Section 2 we formulate the
problem of achieving a specified formation amongst a team of cooperative mobile
robots, tracking their virtual leader(s), avoiding the static/moving obstacles as
well as each other, and suppressing the excessive oscillations. In Section 3 we
propose a novel analytical control design for a single point-mass agent to achieve
target tracking and collision avoidance, unifying time-varying potential field,
nonlinear damping, and velocity-scaled force control. Basic conditions and key
properties are derived using rigorous Lyapunov analysis and theoretical proof.
In Section 4, the results are extended for networked agents by incorporating an
existing cooperative control design [18]. Section 5 presents examples and their
simulations to illustrate the design process, to demonstrate its effectiveness, and
to show performance of proposed controls . Finally, in Section 6 we conclude the
chapter and suggest some future research directions.

2 Problem Formulation

Consider a collection of point-mass agents whose dynamics are given by

q̇rµ = vrµ, v̇rµ = urµ, (µ = 1, . . . ,m) (1)

where q ∆= [x, y]T denotes the center position, v ∆= [vx, vy]T represents the veloc-
ity, and u is the control input. Thus we can define the states S(t) = (q (t) , v (t)).
Subscripts r, g and o indicate the vehicle, goal and obstacle respectively.

Given the initial configurations Srµ(t0) = (qrµ(t0), vrµ(t0)), as shown in Fig-
ure 1, the objective of this chapter can be summarized as follows:

– tracking the specified virtual leader Sgµ (t) = (qgµ (t) , vgµ (t));
– avoiding the n obstacles Soi = (qoi (t) , voi (t)) (i = 1, 2, · · ·n);
– avoiding the remaining (m− 1) agents Srj = (qrj(t), vrj(t)),

(j = 1, 2, · · · , µ− 1, µ+ 1, · · · ,m);
– suppressing the oscillation of the system trajectory.

To solve the problem, one can make the following choices without loss of gener-
ality:
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x

y

Goal

Obstacle3

Agent1

Agent3

Obstacle1

Obstacle2

Obstacle4

Agent2

Fig. 1. Illustration of cooperative formation movement with collision avoidance(Three
agents are required to maintain a triangular formation and track the goal in the pres-
ence of obstacles)

– The µth agent under consideration is represented by a 2-D circle with the
center at qrµ (t) and of radius R. The range of its sensors is also described
by a circle centered at qrµ (t) and of radius Rs.

– The ith static/moving obstacle will be represented by a convex object of any
shape (such as circle, ellipse, or polygon).

3 Target Tracking and Collision Avoidance for a Single
Agent

First, we derive a decentralized feedback control using Lyapunov-type analysis
that guarantees collision avoidance and tracking of a virtual leader for a single
robot. Then in Section 4, we extend this result to the case of networked agents
by incorporating cooperative control [18]. We then propose a novel cooperative
formation control design with collision avoidance.

To achieve these design objectives, two potential field functions are used to
generate reactive forces. Specifically, consider the following composite potential
function:

P (qr − qo, qr − qg) = Pa(qr − qg) + Pr(qr − qo), (2)

where Pa(·) is the attractive potential function and Pr(·) is the repulsive po-
tential function. Intuitively and necessarily, potential functions should have the
properties that
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Fig. 2. Typical attractive potential function versus repulsive potential function
(a:attractive potential field function; b:contour lines of attractive potential field func-
tion; c:repulsive potential field function; d:contour lines of repulsive potential field
function)

⎧⎨⎩
Pa(0) = 0, ∇Pa (s) |s=0 = 0,
0 < Pa(s) <∞ if s �= 0 and ‖s‖ is finite,
‖∇Pa (s)‖ < +∞ if ‖s‖ is finite,

(3)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr(s) = +∞ if s ∈ Ωo,
Pr(s) = 0 if s �∈ Ωo,
Pr(s) ∈ (0,∞) if s ∈ Ωo but s �∈ Ωo,
lim

s→Ωo

‖∇Pr (s)‖ = +∞ if s �∈ Ωo,

(4)

where Ωo ⊂ �2 is a compact set representing the 2-dimensional shape of the
obstacle, Ωo is the compact set which is an enlarged version of Ωo and in which
repulsive force becomes active. The above defined attractive potential function
and repulsive potential function are exemplified by Figure 2.

Furthermore, commonsense dictates that an additional detour force could
easily drive vehicle to make a detour and reach its goal. Thus we introduce a
novel conception “unit detour force vector” T (qr − qo), which has the properties
that
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∇PT
r (s)T (s) = 0, −∇PT

a (s)T (s) ≥ 0, and ‖T (s)‖ = 1. (5)

Let the vehicle control to be a reactive control of the form

uµ = −∇Pa (qrµ − qgµ) −∇Pr (qrµ − qoi) + fd (qrµ − qoi) T (qrµ − qoi)

−ξ (qrµ − qgµ) (vrµ − vgµ) + v̇gµ − η̇ (qrµ − qoi) ‖vgµ − voi‖2

−2η (qrµ − qoi) (vgµ − voi)
T (v̇gµ − v̇oi) , (6)

where the term ∇Pa (qrµ − qgµ) and ∇Pr (qrµ − qoi) are the standard reactive
control components, ξ(·) > 0 is a locally uniformly bounded function designed
to ensure stability and damp oscillations, fd (s) > 0

(
fd (s) = 0, if s /∈ Ω̄o

)
is

a locally uniformly bounded function designed to generate detouring force in
the vicinity of the obstacle, and η(·) is the force to resolve the potential con-
flict between goal tracking and collision avoidance. Vector function η(·) has the
properties that

η (s) ∆=
[
η1 (s)
η2 (s)

]
=
[

0
0

]
if s /∈ Ω̄o, (7)

and

lim
s/∈Ωo, s→Ωo

ηT (s)∇Pr (s)
‖∇Pr (s)‖ = +∞. (8)

3.1 Tracking of a Virtual Leader

The tracking problem is to ensure that the µth agent will converge to the goal
position qgµ(t) of the µth virtual leader. The following lemma provides the basic
result.

Lemma 1: The state of system (1) under control (6) converges asymptotically
to that of the virtual vehicle provided that, after a finite time instant t∗, [qg(t)−
qo(t)] �∈ Ωo for all t ≥ t∗. If [qg(t) − qo(t)] stays in or intermittently returns to
Ωo, there is no convergence of [qr(t) − qg(t)] → 0.

Proof. Proof: It follows from (1), (2) and (6) that the tracking error system is

ė1µ = e2µ

ė2µ = −∇Pa (e1µ) −∇Pr (e1µ + qgµ − qoi)
+fd (e1µ + qgµ − qoi)T (e1µ + qgµ − qoi) − ξ(e1µ)e2µ

−
[
∇η1 (e1µ + qgµ − qoi)

T

∇η2 (e1µ + qgµ − qoi)
T

]
(e2µ + vgµ − voi) ‖vgµ − voi‖2

−2
[
η1 (e1µ + qgµ − qoi)
η2 (e1µ + qgµ − qoi)

]
(vgµ − voi)

T (v̇gµ − v̇oi) ,

where e1µ = qrµ − qgµ and e2µ = vrµ − vgµ. It is straightforward to verify that,
if [qgµ(t) − qoi(t)] ∈ Ωo, e1µ = e2µ = 0 is not an equilibrium point of the error
system and hence no convergence can be achieved.
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Fig. 3. Illustration of the vector field yielded by the proposed control ((qrµ − qoi) /∈ Ω̄o)

Moreover, from the geometric viewpoint, the resultant force vector field ren-
dered by the proposed control can be illustrated in Figure 3 when (qrµ − qoi) /∈
Ω̄o. As we had mentioned in Section 2, the obstacle is assumed to be a convex
object. As shown in Figure 3, once the robot is in the set Ω̄o, it will be pushed
away from the obstacle and make a detour to reach its goal. Finally, the agent
will not stay in or intermittently be in Ω̄o which means [qrµ(t)− qoi(t)] �∈ Ωo for
all t ≥ t̄∗ (t̄∗ > t∗).

In this case, by properties (4) and (7), the system error reduces to

ė1µ = e2µ, ė2µ = −∇Pa (e1µ) − ξ(e1µ)e2µ.

Consider the Lyapunov function

L1(t) = Pa(e1µ) +
1
2
‖e2µ‖2.

It follows that

L̇1 = eT
2µ∇Pa (e1µ) + eT

2µ [−∇Pa (e1µ) − ξ(e1µ)e2µ]

= −ξ (e1µ) ‖e2µ‖2
,

which is negative semi-definite. Asymptotic stability of e1µ and e2µ can be con-
cluded using LaSalle’s invariant set theorem [19]. ��
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3.2 Obstacle Avoidance

The obstacle avoidance problem is to ensure that the agent will not enter the
given compact set Ωo provided that its initial position is not in the set. The
following lemma provides the basic result.

Lemma 2: Suppose that potential field function (2) satisfies properties (3) and
(4). Then, as long as the initial condition is not in set Ωo, system (1) under
control (6) is collision-free provided that vg(t) and vo(t) are uniformly bounded
and that qo(t) is uniformly bounded.

Proof. Let us choose the following Lyapunov function candidate:

V1(t) =
1
2

∥∥vrµ − vgµ + η(qrµ − qoi)‖vgµ − voi‖2
∥∥2

+ P (qrµ − qgµ, qrµ − qoi).

It follows from (1) and (6) that

V̇1 =
[
vrµ − vgµ + η (qrµ − qoi) ‖vgµ − voi‖2

]T [
v̇rµ + η̇ (qgµ − qoi) ‖vrµ − voi‖2

−v̇gµ + 2η (qrµ − qoi) (vgµ − voi)
T (v̇gµ − v̇oi)

]
+ (vrµ − vgµ)T ∇Pa (qrµ − qgµ) + (vrµ − voi)

T ∇Pr (qrµ − qoi)

=
[
vrµ − vgµ + η (qrµ − qoi) ‖vgµ − voi‖2

]T

[−∇Pa (qrµ − qgµ)

−∇Pr (qrµ − qoi) + fd (qrµ − qoi) T (qrµ − qoi) − ξ (qrµ − qgµ) (vrµ − vgµ)]

+ (vrµ − vgµ)T ∇Pa (qrµ − qgµ) + (vrµ − voi)
T ∇Pr (qrµ − qoi)

= ω (qrµ − qgµ, qrµ − qoi, vrµ − vgµ, vrµ − voi)

−ξ (e1µ) ‖e2µ‖2 − ηT (qrµ − qoi)∇Pr (qrµ − qoi) ‖vgµ − voi‖2
, (9)

where

ω (qrµ − qgµ, qrµ − qoi, vrµ − vgµ, vrµ − voi)

= (vgµ − voi)
T ∇Pr (qrµ − qoi) + (vrµ − vgµ)T fd (qrµ − qoi) T (qrµ − qoi)

−ηT (qrµ − qoi)∇Pa (qrµ − qgµ) ‖vgµ − voi‖2

−ηT (qrµ − qoi) ξ (qrµ − qgµ) (vrµ − vgµ) ‖vgµ − voi‖2

+ηT (qrµ − qoi) fd (qrµ − qoi)T (qrµ − qoi) ‖vgµ − voi‖2
.

Recall that ‖vgµ − voi‖ and ‖qoi(t)‖ are uniformly bounded. It follows from (3)
that ∇Pa (qrµ − qoi) and ξ (qrµ − qgµ) are uniformly bounded for (qrµ − qoi) ∈
Ωo. Hence, there exist constants c1, c2 ≥ 0 such that

|ω (qrµ − qgµ, qrµ − qoi, vrµ − vgµ, vrµ − voi)|
≤ c1 ‖∇Pr (qrµ − qoi)‖ + c2

∥∥ηT (qrµ − qgµ)
∥∥ ‖vrµ − vgµ‖ .

Therefore, we know from (8) and (9) that,

lim
(qrµ−qoi)→Ωo

V̇1 < 0 .
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Similarly we also have
lim

vrµ→∞ V̇1 < 0 .

We can draw the conclusion V1(t) is finite in any finite region for any finite
initial condition (qr(t0), qg(t0), qo(t0), v(t0), vg(t0)). Thus, V1(t) will stay finite
under the initial and collision-free conditions mentioned in the lemma. ��

3.3 Oscillation Suppression

In this section, we first investigate the nature of the inherent oscillation problem
of potential field methods. From this base, we illustrate why the proposed control
is a remedy for this problem.

Oscillation Analysis. The causes of oscillations can be classified into the fol-
lowing three types:

1. Potential field functions, especially the interaction between the attractive po-
tential field function (to the goal) and repulsive potential field function (around
the obstacle).
If the distance between an obstacle and the goal is small compared to the dis-
tance between either and the vehicle, the two similar but opposite force fields
can result in oscillation.
2. Insufficient damping, especially in the nonlinear setting.
Damping serves two purposes: (1) Stabilize the system; (2) Suppress the os-
cillation. For example, if ξ(·) > 0 is set to be zero, then the system (1) will
never converge to the goal unless the initial condition is trivially given by
(qrµ(t0) = qgµ(t0), vrµ(t0) = vgµ(t0)) .
3. Sampling and the gradient descent method.
In the gradient descent approach, the control law for a robot navigating in a
potential field uses the negative gradient direction to determine a vector that
points toward the target. Whenever we consider a discrete system and the po-
tential contour is not perfectly circular, solutions tend to exhibit oscillation,
especially in proximity to obstacles or in narrow passages.

Quasi-Monotone Convergence. We begin with the following definitions.

Definition 1: Let α(t) be a scalar function. Function α(t) is (strictly) mono-
tone decreasing over an interval if α(t2) ≤ α(t1) (α(t2) < α(t1)) for any t2 > t1
within the interval. Function α(t) is (strictly) monotone increasing if −α(t) is
(strictly) monotone decreasing. Function α(t) is (strictly) monotone if α(t) is
either (strictly) monotone increasing or (strictly) monotone decreasing. Func-
tion α(t) is (strictly) monotone convergent if it is (strictly) monotone and if
lim

t→∞α (t) = 0.

Definition 2: Let α(t) be a scalar function. α(t) is one-swing quasi-monotone
over an interval if the interval can be divided into two subintervals over each of
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which α(t) is monotone. Function α(t) is called to be one-swing quasi-monotone
convergent if it is one-swing quasi-monotone and if lim

t→∞α (t) = 0.

Consequently, any monotone function is also one-swing quasi-monotone. In gen-
eral, the converse does not always hold true. The nontrivial case of α(t) being
one-swing quasi-monotone convergent is that α(t) is convergent while |α(t)| is
monotone increasing for t ∈ [t0, t1] and monotone decreasing for t ∈ [t1,∞).
For dynamic systems of order higher than one, quasi-monotone convergence is
generally best achievable upon successfully suppressing all the oscillations. The
following lemma provides such a result.

Lemma 3: Suppose that differentiable function β(·) ∈ �2 exists to satisfy the
following properties:

β(−s) = −β(s), βT (s)β(s) =
Pa(s)

2
,

∂β(s)
∂s

=
ξ(s)
2
I. (10)

Assume that after a finite time instant t∗, [qg(t) − qo(t)] �∈ Ωo for all t ≥ t∗.
Then, the error between the state of system (1) under control (6) and that of the
virtual vehicle is one-swing quasi-monotone convergent.

Proof. Defining the state transformation

z1 = e1, z2 = e2 + β(e1),

we can rewrite the error dynamics as, as long as [qg(t) − qo(t)] �∈ Ωo

ż1 = −β(z1) + z2

ż2 = −∂Pa(z1)
∂z1

+
∂β(z1)
∂z1

[z2 − β(z1)] − ξ(z1)[z2 − β(z1)]

= −∂Pa(z1)
∂z1

− ∂β(z1)
∂z1

β(z1) + ξ(z1)β(z1)

−
[
ξ(z1)I − ∂β(z1)

∂z1

]
z2.

It follows from (10) that

ż1 = −β(z1) + z2, ż2 =
ξ(z1)

2
z2,

from which one-swing quasi-monotone convergence can be concluded using Lem-
ma 4. ��

Remark 1: We can choose the set Ω̄o to be small, thus the impact of the obstacle
is confined to a small area to suppress the oscillation. On the other hand, the
Ω̄o can not be too small due to the numerical calculation.
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Remark 2: The term fdT in (6) yields the detour force which can decrease the
chance of oscillation, while speeding up the convergence to the target.

Remark 3: The controller sampling rates must be small to suppress the oscil-
lation.

Lemma 4: Consider the differential equations

α̇1(t) = −f1(α1) + α2(t), α̇2(t) = −f2(α2), (11)

where functions fi(s) have the properties that fi(0) = 0 and dfi(s)/ds > 0 for
all s �= 0. Then, solution α1(t) is one-swing quasi-monotone convergent.
Proof. It follows from the property of f2(·) that

dα2
2

dt
= −2α2f2(α2) < 0

and hence α2(t) is strictly monotone convergent. Using the property of f1(·), we
know that

ε(t) = f−1
1 (α2(t))

is well defined, that ε(t) is also strictly monotone convergent (either ε̇(t) ≥ 0
with ε(t0) ≤ 0 or ε̇(t) ≤ 0 with ε(t0) ≥ 0), and that

α̇1(t) = −f1(α1) + f1(ε(t)) (12)
d

dt
[α1(t) − ε(t)] = −[f1(α1) − f1(ε(t))] − ε̇(t). (13)

Choose q > 1 and function h2(s) such that h2(s) is a strictly monotone in-
creasing function with h2(0) = 0 and that

|h2(s)f2(s)|
1
q ≥ |s|.

Let p > 1 be the constant such that 1/p+ 1/q = 1, and select h1(s) such that
h1(s) is a strictly monotone increasing function with h1(0) = 0 and that

|f1(s)|
1
p ≥ 1

p
|h1(s)|

1
q .

Consider Lyapunov function

V =
1
p

∫ α1

0
h1(s)ds+

2
q

∫ α2

0
h2(s)ds.

It follows from Holder’s inequality ap/p+ bq/q ≥ ab that, along the solution of
(11),

V̇ = −1
p
h1(α1)f1(α1) +

1
p
h1(α1)α2 − 2

q
h2(α1)f2(α2)

≤ −|h1(α1)f1(α1)|
1
p |h2(α2)f2(α2)|

1
q +

1
p
h1(α1)α2

−1
q
h2(α1)f2(α2)

≤ −1
q
h2(α1)f2(α2) ≤ 0,
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from which convergence of α2(t) can be concluded. One-swing quasi-monotone
convergence is analyzed below by studying four distinct cases.

Case 1: ε̇(t) ≤ 0 and α1(t0) ≥ ε(t0) ≥ 0. In this case, we know from (13) that
α1(t) ≥ ε(t) for all t ≥ t0 and consequently from (12) that α1(t) is monotone
decreasing (and convergent).

Case 2: ε̇(t) ≤ 0 and α1(t0) < ε(t0). In this case, we know from (12) that
α1(t) is monotone increasing while ε(t) is monotone decreasing. Hence, there
exists time instant t1 ∈ [t0,∞] such that α1(t1) = ε(t1), that α1(t) < ε(t) for
t ∈ [t0, t1), and that evolution of α1(t) over [t1,∞) becomes that in case 1.
Hence, α1(t) is one-swing quasi-monotone convergent.

Case 3: ε̇(t) ≥ 0 and α1(t0) ≤ ε(t0) ≤ 0. This case is analogous to case 1
except that α1(t) is monotone increasing (and convergent).

Case 4: ε̇(t) ≥ 0 and α1(t0) > ε(t0). This case is parallel to case 2 except
that, while convergent, α1(t) is first monotone decreasing and then monotone
increasing.

The proof is completed by summarizing all the cases. ��

4 Cooperative Formation Control of Networked Agents
with Collision Avoidance

4.1 Cooperative Control for Networked Systems of Canonical Form

Consider a group of networked dynamic systems given by the following canonical
form

Ẋi = AiXi +BiUi, Yi = CiXi, η̇i = gi (ηi, Xi) , (14)

where i = 1, · · · , q, li ≥ 1 is an integer, Xi ∈ �lim, ηi ∈ �ni−lim, Im×m is the
m dimensional identity matrix, ⊗ denotes the Kronecker product, Jk is the kth
order Jordan canonical form given by

Jk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0

0 −1 1
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · −1 1 0
0 0 0 · · · −1 1
0 0 0 · · · 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ �k×k,

where Ai = Jli ⊗ Im×m ∈ �(lim)×(lim), Bi =
[

0
Im×m

]
∈ �(lim)×m, Ci =[

Im×m 0
]

∈ �m×(lim), Yi ∈ �m is the output, Ui ∈ �m is the cooperative
control law to be designed, and subsystem η̇i = gi (ηi, Xi) is input-to-state
stable.

We consider the general case where exchange of output information among the
vehicles occurs only intermittently and locally. To capture this information flow,
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let us define the following sensing/communication matrix and its corresponding
time sequence {tsk : k = 0, 1, . . .}

S (t)=

⎡⎢⎢⎢⎣
S1 (t)
S2 (t)

...
Sq (t)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
s11 (t) s12 (t) · · · s1q (t)
s21 (t) s22 (t) · · · s2q (t)

...
...

...
...

sq1 (t) sq2 (t) · · · sqq (t)

⎤⎥⎥⎥⎦ ,
{
S (t) = S (tsk) , ∀t ∈

[
tsk, t

s
k+1

)
S (k) ∆= S (tsk)

,

(15)
where sii (t) ≡ 1; sij (t) = 1 if the jth vehicle is known to the ith vehicle at

time t, and sij (t) = 0 otherwise, and ts0
∆= t0. Time sequence {tsk} and the corre-

sponding changes in the row Si (t) of matrix S (t) are detectable instantaneously
and locally at the ith vehicle, but they are not predictable, prescribed or known
a priori or modeled in any way.

Cooperative controls proposed in this chapter are in the class of linear, piece-
wise constant, local feedback controls with feedback gain matrices Gi (t) ∆=
[Gi1 (t) , · · ·, Giq (t)], where i = 1, · · · , q,

Gij (t) = Gij (tsk) , ∀t
[
tsk, t

s
k+1

)
;

Gij (k) ∆= Gij (tsk) ∆=
sij (tsk)∑q

η=1 siη (tsk)
Kc, j = 1, · · · , q; (16)

where sij (t) are piecewise-constants as defined in (15) and Kc ∈ �m×m is a
constant, nonnegative, and row stochastic matrix. That is, cooperative controls
are of form

Ui
∆=
∑q

j=1
Gij (t) [sij (t) yj ] = Gi (t)Y (17)

where Y =
[
Y T

1 , · · ·Y T
q

]T
. Although S (t) is not known a priori nor can it be

modelled, S (t) is piecewise constant, diagonally positive and binary, and the
value of row Si (t) is known at time t to the ith vehicle. The above choice of the
feedback gain matrix block Gij (t) in terms of sij (t) ensures that matrices Gi (t)
are row stochastic and that control is always local and implementable with only
available information.

Theorem 1: Consider dynamics system in (14) and under cooperative control
(17). Then systems of (14) exhibit a single cooperative behavior as,

Xss = 1NqcX (t0) = c01Nq , and Yss = c01m, c ∈ �1×Nq , c0 ∈ �, (18)

where Nq = m
∑q

i=1 li provided that
i) Gain matrix Kc is chosen to be irreducible and row stochastic.
ii) Systems in (14) have a sequentially complete sensing/communication.

Proof. Please refer to [18] for a detailed proof. ��

The single cooperative behavior described in (18) does not necessarily mean
that, if Y d

ss = cd01m, the desired behavior represented by constant cd0 is achieved.
In order to ensure c0 = cd0 in (18), we must employ an adaptive version of
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cooperative control (17). To this end, a virtual vehicle representing a hand-off
operator is introduced as

Ẋ0 = −X0 + U0, Y0 (t) = X0 (t) , U0 = KcX0 (t) ,

where X0 ∈ �m with X0 (t0) = cd01m. Communication from the virtual vehicle
to the physical vehicles is also intermittent and local, thus we can introduce
the following augmented sensor/communication matrix and its associated time
sequence {t̄sk : k = 0, 1, · · ·} as:

S̄ (t) =

⎡⎢⎢⎢⎣
1 0 · · · 0
s10
...
sq0

S (t)

⎤⎥⎥⎥⎦ ∈ �(q+1)×(q+1),

{
S̄ (t) = S̄ (t̄sk) , ∀t ∈

[
t̄sk, t̄

s
k+1

)
S̄ (k) ∆= S̄ (t̄sk) ,

(19)
Accordingly, cooperative control is modified from (17) to the following adaptive
version:

Ui (t) =
q∑

j=0

sij (t)∑q
η=0 siη (t)

Kc [sij (t)Yj ], i = 1, · · · , q, (20)

where sij (t) are piecewise-constant entries of (19). Applying Theorem 1 to the
resulting augmented closed loop system renders the following corollary.

Corollary 1: Under the adaptive version cooperative control (20) with irre-
ducible and row stochastic matrix Kc, systems of (14) exhibit the desired coop-
erative behavior Y d

ss, i.e.,

Xss = 1Lq+1 ⊗ Y d
ss, and Yi,ss = Y d

ss, (Lq =
∑q

i=1
li),

if Y d
ss = cd01m for cd0 ∈ � and if their augmented sensor/communication sequence{

S̄ (k)
}

defined by (19) is sequentially complete.

4.2 Formation Calculation

A formation is defined in a coordinate frame that moves with the desired trajec-
tory relative to some other, fixed, coordinate frame. Let oj (t) ∈ �3 (j = 1, 2, 3)
be the orthonormal vectors which form the moving frame F (t). Let Oµ =
[xµ, yµ, zµ] ∈ �3 be the location of the µth agent and Od = [xd (t) , yd (t) , zd (t)]
∈ �3 be any desired trajectory of the origin of the moving frame. A formation
consists of m agents in F (t), denoted by {O1, · · · , Om},where

Oµ = dµ1 (t) o1 (t) + dµ2 (t) o2 (t) + dµ3 (t) o3 (t) , µ = 1, · · · ,m, (21)

with dµ (t) = [dµ1 (t) , dµ2 (t) , dµ3 (t)] ∈ �3 being the coordinate values of the
µth agent in the formation. The desired position for the µth agent is then
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Od
µ (t) = Od (t) + dd

µ1o1 (t) + dd
µ2o2 (t) + dd

µ3o3 (t) . (22)

where the constant vector dd
µ =

[
dd

µ1, d
d
µ2, d

d
µ3
]
∈ �3 is the desired relative posi-

tion for the µth agent in the formation. Meanwhile, oj (t) (j = 1, 2, 3) generally
can be chosen based on the attitude angles of the virtual leader(yaw ψ, pitch
θ, roll φ). Certainly, the choice of oj (t) (j = 1, 2, 3) is not unique. For example,
oj (t) can also be determined by the velocity vector of the virtual leader.

4.3 Mapping from Formation Control Problem to Cooperative
Control Problem

Through state transformations, the formation control problem for (1) can be
recast as the cooperative control design problem (14). Let the transformation be

Xµ = Oµ (t) −Od
µ (t) , (23)

Then we introduce the canonical model with Xµ = [Xµ1, Xµ2, Xµ3]
T ∈ �3, Uµ ∈

�3, and Yµ ∈ �3.

Ẋµ = λ ∗ (AµXµ +BµUµ) , Yµ = CµXµ. (24)

where Aµ, Bµ and Cµ are given by

Aµ =

⎡⎣−1 0 0
0 −1 0
0 0 −1

⎤⎦ , Bµ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , Cµ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ .
To this end, if we can design the cooperative control Uµ such that states Xµ for
all µ converge to the same steady state Xss, then it follows form Corollary 1
that

Oµ → Xss +Od
µ (t) ,

from which it can be seen that the desired formation is achieved for the whole
group, while the agents move along the desired trajectory shape.

4.4 Vehicle Level Control for Nonholonomic Agents

Consider the following kinematic and dynamic model of a unicycle,⎧⎪⎪⎨⎪⎪⎩
ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω
v̇ = F

M

, (25)

where θ is the orientation, v is the linear velocity, ω is the angular velocity, F is
the applied force and M is the mass. The top view of the unicycle is shown in
Figure 4.
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Fig. 4. Relevant variables for the unicycle (top view)

Consider the following dynamic compensator:{
ω = u2 cos θ−u1 sin θ

v
F = M (u1 cos θ + u2 sin θ)

. (26)

Note the following facts:
1. The sign of linear velocity v will determine forward or backward motion of
the vehicle.
2. Transformation (26) is singular at v = 0, i.e., when the mobile robot is not
moving.
Substituting (26) into (25) yields the following transformed system:{

ẍ = u1
ÿ = u2

. (27)

4.5 Formation Control with Collision Avoidance

Considering the dynamic system (24), where we aim to make ‖Xi −Xj‖ → 0
while at the same time ensure that ‖Oi −Oj‖2 ≥ ρs for some positive constant
ρs. The following condition is then imposed:∥∥Od

i (t) −Od
j (t)

∥∥2 ≥ ρs.

To address the collision avoidance problem, let us consider the control to be
given by

U∗
µ = Uµ +

q∑
j=1,j 	=µ

[
−∇Pr (Orµ −Orj) − η̇ (Orµ −Orj) ‖vgµ − vrj‖2

+fd (Orµ −Orj)T − η (Orµ −Orj) (vgµ − vrj)
T (vgµ − vrj)

]
+

n∑
l=1

[
−∇Pr (Orµ −Ool) − η̇ (Orµ −Ool) ‖vgµ − vol‖2

+fd (Orµ −Ool)T − η (Orµ −Ool) (vgµ − vol)
T (vgµ − vol)

]
. (28)
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Fig. 5. Experiment on a single unicycle vehicle

5 Simulation

Two simulation scenarios are presented to show the effectiveness of the proposed
control in Sections 3 and 4 respectively.

A. Target Tracking and Collision Avoidance for A Single Agent
There are only two rectangular static obstacles, (3000,11000,2000,6000)1 and
(3000,3000,2000,6000). The initial location of the virtual leader is (6000,-2000)
with the following waypoints: (3000,3000), (0,8000), and (-2000,10000). The ini-
tial location of the unicycle vehicle is (7000,-1000). The simulation result is
shown in Figure 5.

B. Cooperative Formation Control of Networked Agents with Collision Avoid-
ance
Three agents are required to execute the formation movement with the desired
triangular formation shown in Figure 6. The initial location of the virtual leader
is (1850,-1000) with the following waypoints: (1800,3000), (1900,11000), and
(1850,15000). The initial location of the above three agents are: (1850,-960),
(1930,-1040), and (1770,-1040). In the workspace, there are six rectangular static
obstacles, (700,3000,2000,6000), (700,11000,2000,6000), (3000,3000,2000,6000),

1 Data format:(center position, width, length). For example, (3000,11000) denotes the
center position. The width is 2000 and the length is 6000.
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Fig. 6. Illustration of the desired formation
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Fig. 7. Cooperative formation movement with avoiding static obstacles

(3000,11000,2000,6000), (1850,7000,60,150), and (1752.5,13700,60,150). In addi-
tion, one circular moving obstacle of radius being 10 is also considered. The
simulation result considering only the static obstacles is shown in Figure 7. The
simulation result considering all obstacle, static and moving, is shown in Fig-
ure 8. Figure 8 is zoomed in to shown the successful avoidance of the moving
obstacle, depicted in Figure 9.
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Fig. 8. Cooperative formation movement with avoiding static/moving obstacles
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Fig. 9. Cooperative formation movement with avoiding static/moving obstacles (en-
larged view)

6 Conclusions

In this chapter, we proposed a systematic approach to accommodate and achieve
multiple objectives of cooperative motion, tracking of virtual command vehicle(s),
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collision avoidance and oscillation suppression. Simulation example A confirms
the effectiveness of Lyapunov Design of multi-objective control for the single
agent proposed in Section 3. Rigorous proof of incorporation of the proposed
control for the single agent with the cooperative formation control is still needed.
The effectiveness of the incorporation has been validated by the simulation ex-
ample B. In addition, we plan to consider a variety of different feedback con-
trollers such as dynamic, adaptive types of controllers to improve the overall
performance.
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Abstract. In this chapter, we present Future Path Projection (FPP) as
a novel method for multiple Unmanned Aerial Vehicles (UAVs) with lim-
ited communication ranges to cooperatively maximize the coverage of a
large search area. For multiple cooperative UAVs to perform an effective
search mission, the critical status and sensor information collected by
each UAV must be shared with all other UAVs in the group. In an ideal
environment where there is no communication limitation, all involved
UAVs can share the necessary information without any constraints. In
a more realistic environment, UAVs must deal with limited communica-
tion ranges. The communication range limitation, however, introduces a
challenging problem for multiple UAVs to effectively cooperate. In the
proposed method, each UAV constructs an individual probability distri-
bution map of the search space which reflects predictions of the future
paths of UAVs as they move beyond their communication ranges. The
probability distribution map describes the likelihood of detecting targets
within the search space. The overall, collective UAV search patterns are
governed by decisions made by each UAV within the group, based on
each individual probability distribution map. We show that the collec-
tive search patterns generated by cooperative UAVs using the proposed
method significantly improve the search area coverage when compared to
similar search patterns produced by other mitigation strategies designed
to overcome the communication range limitation. We validate the effec-
tiveness of the proposed path projection method using simulation results.

Keywords: cooperative, unmanned aerial vehicles, limited communica-
tion, future path projection.

1 Introduction

Significant research has been conducted on mobile multi-agent systems directed
at solving problems such as target search [1], target observation [2], and cooper-
ative transportation [3]. Of particular interest is the development of multi-agent
systems composed of Unmanned Aerial Vehicles (UAVs) capable of covering vast
areas using a wide range of sensors. These systems are ideal for applications such
as surveillance, reconnaissance, rescue, and emergency site monitoring [4].

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 103–117.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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For an increasing number of applications, multiple UAV systems provide su-
perior performance compared to single UAV systems by taking advantage of the
redundancy, robustness, and cooperation potential of multiple systems. However,
to gain the advantages of no centralized control unit, cooperation intrinsically
requires some degree of communication between UAVs [5]. In practice, the co-
operation potential is often not fully achieved due to restricted communication
capabilities, such as limited communication ranges. Moreover, the bigger the vol-
ume of information a cooperative algorithm requires to be transferred between
UAVs, the greater will be the necessary communication bandwidth. In most
protocols, increased bandwidth usage ultimately leads to communication delays.
When UAVs operate based on delayed information about the states of other co-
operating UAVs, the environment, or the status of the global mission, the entire
system performance can be degraded or its stability compromised [6], [7].

Recently, strategies that aim at mitigating the impact of communication lim-
itations on the cooperation performance of multi-agent systems have been the
focus of significant research activity. Current efforts can be generally classified
into two groups: uninterrupted communication strategies that restrict the mobil-
ity of the fully connected cooperating UAVs; and unrestricted mobility strategies
that provide the agents with freedom of movement but temporarily increase the
volume of information exchanged when two or more UAVs happen to fly within
communication range of each other.

An example of an uninterrupted communication strategy can be found in
[8], where a formation control framework is applied to a set of multiple agents
with the goal of balancing the intent of each unit to contribute to the collective
mission and the requirement to maintain a single communication network by
restricting any single agent from moving beyond the communication range of
the group. Another such strategy is introduced in [9], where occasional non-
local interactions determined by an acute angle switching algorithm are shown
to generate mobile networks that robustly preserve system-wide connectivity
while seeking to cover a number of regions of interest. Approaches such as these
have the benefit of allowing agents to operate under a single network. If the
volume of exchanged information is not prohibitive, it allows for all agents to
share a common knowledge database during the entire mission. However, to
achieve and maintain a single network, the mobility of each individual agent
becomes limited, which can compromise the performance of the group.

In unrestricted mobility strategies, individual performance is not compro-
mised. However, cooperation performance is generally affected negatively since,
for the lack of a system-wide network, the UAVs must operate without access
to a common knowledge database. Without such information, the capability
of a UAV to effectively cooperate with the team becomes limited. Therefore,
unrestricted mobility strategies focus on techniques that provide additional in-
formation when communication opportunities occur as two or more UAVs fly
within a communication range of each other. Typical approaches involve the
sharing of information in the form of past states and/or past sensor readings. In
practice, the frequency and duration of such encounters tend to decrease with
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smaller communication ranges, the use of a smaller number of agents, and/or
larger mission areas. With only short intervals to transmit the knowledge accu-
mulated between encounters, greater bandwidth is necessary, which can lead to
the negative outcomes previously outlined.

In this chapter we propose a novel unrestricted mobility strategy called Future
Path Projection (FPP) that aims to mitigate the adverse effects of operating a co-
operative control algorithm under scenarios with limited communication ranges.
Our work suggests that the FPP strategy outperforms the existing approaches
without limiting UAV mobility or increasing the volume of information shared
among UAVs during their sporadic encounters. This is accomplished by having
each UAV draw a probabilistic projection of the future paths of the other UAVs
based on their operational behavior as they move beyond the communication
range.

To compare the effectiveness of the proposed FPP strategy, we implemented
two other strategies. The first is an uninterrupted communication strategy in
which UAVs have their mobility restricted by an algorithm that sets maximum
UAV-to-UAV distances in order to generate a flexible, reconfigurable chain struc-
ture that maintains the connection among all UAVs and the ground station. The
second strategy represents a classical unrestricted mobility strategy, which we
named Past Path Sharing (PPS). Similar to the proposed FPP strategy, the
PPS data exchange takes place only when two or more UAVs happen to fly,
based on their independent decentralized goals, within each other’s communica-
tion ranges. Unlike the FPP strategy, in the PPS strategy, UAVs operate based
only on deterministic past data (as opposed to probabilistic extrapolations of
future behavior), but require increased data transfer rates in order to share both
current and past data.

To measure the impact on the capability of multiple UAVs to cooperate under
different communication ranges and to quantify the level of success of the dif-
ferent mitigation strategies, we challenge a set of UAVs to perform a search for
mobile ground targets over a wide area using short range sensors. An efficient
solution for this task requires UAVs to cooperate by coordinating their flight
paths in order to provide coverage [10] by scanning the entire search area at
least once and by revisiting every section as often as possible and with similar
frequencies. In this manner, total area coverage and its evolution through time
become two measures of the degree of cooperation of a team of UAVs.

For the experiments, we make use of the approach introduced in [11] and [12].
This algorithm seeks to maximize the likelihood of detecting a mobile ground
target, and, therefore, maximize the coverage efficiency, by providing a cost func-
tion which each UAV uses to determine its next waypoint. The key characteristic
of this cost function that directly impacts the efficiency of the group coverage
is its ability to balance each UAV’s intention to fly towards the location where
the probability of detecting a target is greater, to fly away from other UAVs in
order to maximize the spread of the search, and to remain inside the designated
search area. Although the algorithm requires only that the position information
be exchanged between UAVs, as the communication range is reduced and UAVs
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have fewer opportunities to exchange information, the cost function will not be
able to account for information obtained by all other UAVs and, therefore, the
collective search will not be as effective. More importantly, the lack of knowledge
on the positions of UAVs outside the communication range deteriorates the ac-
curacy of the target detection probability map carried by each individual UAV.
The decrease in the spreading of UAVs and in the accuracy of the individual
probability distribution maps makes it easy to discern the connection between
the communication range, the degree of cooperation, and the ultimate sweep
coverage efficiency of the group.

This chapter is organized as follows. In Section II, the prototype search al-
gorithm is described and a series of simulation results demonstrate the negative
impact of running it under progressively smaller communication ranges without
any mitigation strategy. Section III describes the uninterrupted communication
strategy, and Section IV introduces two unrestricted mobility strategies: PPS
and the proposed FPP. In this section, both independent and comparative sim-
ulation results are provided for all three mitigation strategies. Section V closes
the chapter with some final observations and conclusions.

2 Cooperative Decentralized Search Algorithm

In this chapter, we assume a target is detected when the distance between a
UAV and the target is less than a given detection range. If the targets of interest
are stationary, it is possible to measure the effectiveness of the search effort by
the total area covered by the sensors onboard all involved UAVs and by how
fast this coverage was achieved. Once the entire area is covered, the probability
of detecting such targets becomes one. However, since our interest is in mobile
targets, another relevant factor is how often each location is revisited.

In order to demonstrate the impact of a limited communication range to a mo-
bile target search effort, we implemented the cooperative, decentralized search
algorithm introduced in [11]. As a distributed approach, cooperative search pat-
terns are generated by having each UAV determine its own flying path based on
the group dispersion pattern, the search history of the immediate neighborhood,
and the fuel consumption necessary for possible maneuvers. These factors are
captured in search cost Cs shown in Equation (1). By evaluating Cs for different
locations around its current position, a UAV continuously flies in the direction
of the location with the minimum search cost.

CS = (1 − P (i, j))
(

1∑
(Dk)

+
1∑
(Dl)

)
|∆φUAV|. (1)

Equation (1) is composed of four decision variables. The sum of the distances
from a UAV to its peers and the sum of the distances between a UAV and the
search area boundaries are represented by

∑
(Dk) and

∑
(Dl), respectively. The

change in the heading angle required to reach a particular location is represented
by ∆φUAV. Finally, P is the probability matrix defined over the search area, and
each element P (i, j) corresponds to the probability of detecting a target in cell
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i, j of the search area. Before the search starts, P is initialized with the same
value for all cells, which is a function of the number of targets and the size of
the search area. As a UAV flies over a cell, subjects to its sensors, and does not
detect a target; the probability of a target existing in the cell drops to zero.
However, as we consider mobile targets, as a UAV moves away from a visited
cell, the probability of a target existing in an already searched cell gradually
increases over time, making it more attractive to be revisited as time goes by.

Assuming unlimited communication range and bandwidth, by minimizing CS

each UAV attempts to fly to destinations that offer a greater probability of de-
tecting a target (i.e., areas that have not been inspected for longer times), while
maximizing distances from other UAVs, therefore maximizing the coverage of the
overall search area. At the same time, each UAV also tries to remain inside the
search area and maintain a constant heading, thereby minimizing fuel consump-
tion. Note, however, that for each UAV to maintain an accurate representation
of the current probabilistic distribution of the target locations in the matrix P ,
each UAV must know the positions of all other UAVs participating in the search
effort at all times. As can be expected, when a limited communication range is
considered, each UAV operates on an incomplete, inaccurate, individual prob-
ability distribution matrices P k (where k stands for each UAV’s identification
number) that can differ greatly from the true probability distribution matrix P ,
unless some mitigation strategy is applied.

To demonstrate the impact of limited communication ranges on the perfor-
mance of the cooperative search when no mitigation strategy is implemented,
simulation results were collected where six UAVs attempt to cover a rectangu-
lar area of 150 km by 112.5 km. Each UAV is equipped with a sensor that is
assumed to detect a target with probability one if the target is within 5 km of
the UAV, and probability zero if the distance is larger. The UAVs fly at 100
km/h and calculate the cost CS every 10 seconds at seven points equally spaced
around its current location. The UAV then chooses the point with minimum CS

as its next waypoint, but its actual heading change is limited by a maximum
turn rate of 2 degrees per second to simulate actual UAV dynamics limits. Since
no mitigation strategy is implemented, UAVs receive only the current position
information of other UAVs within their communication range, positions which
are then incorporated into each individual target detection probability matrix
P k. During each simulation run, the six UAVs were launched sequentially at five
minutes intervals and allowed to fly for six hours in order to allow long-term ef-
fects to be observed. All results presented in this chapter pertain to averages over
10 simulations for each scenario considered. A snapshot of a typical run showing
both the true collective probabilistic distribution map P and the individual P k

built by one of the UAVs can be seen in Figure 1.
As previously mentioned, since the target is mobile, the probability of a target

moving into an area that has already been searched increases over time, making it
more likely to detect a target when the same location is searched again. However,
since typically the speed of ground mobile targets is less than the speed of the
UAVs, it is safe to assume that the probability of finding a target in a location
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Fig. 1. Starting from an airfield (small square on the left), six UAVs (dark squares)
attempt to search the designated area (wide rectangle). The complete probability ma-
trix P is overlaid over the search area in the left frame, where the lighter the area,
the greater the probability of detecting a target. The individual probability matrix
P 1 built by UAV Number 1 is shown in the right frame. The circle around the UAV
Number 1 indicates its maximum communication range.

that has not yet been searched will at all times be greater than a previously
visited location. Therefore, instead of measuring the success of the cooperative
effort as the time to locate a particular target, no targets were simulated and
the degree of success of the effort is measured by observing the evolution over
time of the percentage of the total area that has been searched at least once by
at least one UAV. We refer to this quantity as the aggregated coverage, shown in
Figure 2 as the average result of 20 simulations for each scenario. As expected,
the aggregated coverage of the team decreased as the communication range was
reduced, reflecting the failure of the UAVs to efficiently cooperate due to the
increased disparities between each individual target detection probability map
and the true probability map P . At the end of a six hour simulation run, UAVs
without any communication range limitations achieved an average aggregated
coverage of 98.0%, while UAVs that operated with a 20 km communication range
achieved only 90.6%, those that were restricted to a 15 km communication range
achieved 73.8%, and those that were restricted to a 10 km communication range
achieved only 67.7%.

3 Uninterrupted Communication Strategy

The goal of this control strategy is to allow each UAV to freely move as long
as a constant communication chain linking all UAVs and the ground station is
maintained. In this manner, even though at times a UAV may not be able to
reach a desired location within the search space, the preserved communication
ensures that the true collective target detection probability map P is available
to all UAVs. Since the only critical information to be transferred within the
network is the position and heading of each UAV and the estimated position of
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Fig. 2. Evolution of aggregated search coverage over time for scenarios with no com-
munication limit (triangles), a 20 km communication range (circles), a 15 km commu-
nication range (diamonds), and a 10 km communication range (squares). No mitigation
strategy applied.

detected targets, we assume that a single communication link between UAVs is
capable of handling all the bandwidth required.

Before we introduce the modified search algorithm that will prevent UAVs
from breaking the network connectivity while searching an area, we must first
establish a network ranking system. The purpose of this ranking scheme is to
allow each UAV to know which communication link is critical to maintain its
communication with the ground station and, by extension, all other deployed
UAVs. To determine its rank, each UAV must first calculate the distances be-
tween itself and the ground station, as well as all other UAVs within its com-
munication range. If, for a particular UAV, the distance to the ground station
is less than the distance to any other UAV with a lower or equal rank, then a
direct link to the ground station is established and such UAV gains rank one.
On the other hand, if a subset of UAVs with lower or equal ranks is closer to
its location than the ground station, the UAV in question assumes a rank equal
to one plus the rank of the UAV that is closer to its present location. An ex-
ample of a possible configuration is shown in Figure 3. For this ranking scheme
to accurately represent the necessary number of hops required for a UAV to
communicate with the ground station, it is necessary that the UAVs perform
periodic rank changes one at a time. For this reason, a token passing control
mechanism is implemented to guarantee that the rank change occurs in a se-
quential manner. Since all UAVs are launched from the vicinity of the ground
station, all are initialized with rank one. With each UAV periodically ranked
according to the previously discussed procedure, a new term, N(d), is intro-
duced to the search cost as shown in Equation (2), defining the modified search
cost C

′

S .
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Fig. 3. A snapshot of the uninterrupted communication strategy managing a network
of UAVs with a 40 km maximum communication range. The lines connecting the UAVs
indicate the current information paths connecting all six UAVs and the ground station.
The numbers over the UAVs are their dynamically adjusted ranks.

C
′

S = (1 − P (i, j))
(

1∑
(Dk)

+
1∑
(Dl)

)
|∆φUAV |(1 +N(d)). (2)

The purpose of N(d) is to prevent a UAV from choosing a heading that will
cause a break in the communication network while preserving most of the search
mobility autonomy. As shown in Figure 4, the value of the term N changes
depending on the value of d, the distance from a UAV to the closest UAV with
smaller rank (or distance to the ground station if the UAV’s rank is one). For
a distance d beyond the communication range cr, the cost factor N(d) starts
at a very large number γ and linearly increases with d as shown in Equation
(3). For N(d) between zero and the point α, N(d) is zero and therefore imposes
no restriction to the search process. The region between α and cr generates a
softer early response region that provides gradual cost impact to a UAV in order
to allow it to plot feasible flight trajectories that allow it to remain within the
communication range. To minimize the mobility restrictions imposed by this
strategy, the value of α is platform dependent and should be set as high as
admissible by the dynamics of the UAV. The values that N(d) assumes within
this region are given by Equation (3).

N =

⎧⎪⎨⎪⎩
0 , if d ≤ α

min
[
γ, tan

(
(d−α)∗π
2∗(cr−α)

)]
, if α < d ≤ cr

γ(1 + d− cr) , otw.
(3)

Performing simulations with the same parameters used in the previous section,
using this uninterrupted communication strategy the average final aggregated
coverage was 95.0% for a maximum communication range of 50 km and 89.7%



Maximizing Search Coverage Using Future Path Projection 111

Fig. 4. Shape of N(d) curve for arbitrary α, cr, and γ

for a range of 40 km. For communication ranges of 30 km and smaller, even
if the algorithm resorts to a single line of UAVs stretching from the ground
station, it is not geometrically possible to reach full aggregated coverage given
the dimensions of the search area. If attempted, an aggregated coverage of 34.8%
is reached for the 20 km communication range scenario, and only 8.45% for the
10 km one.

4 Unrestricted Mobility Strategies

For the search of vast areas with multiple UAVs subject to limited commu-
nication, a different set of strategies provides unrestricted search mobility by
allowing communication to occur only sporadically when the search paths of
two UAVs, determined by the original search cost introduced in Section II, hap-
pen to be close enough to allow data to be transferred. Due to the sporadic
characteristic of the communication, all UAVs do not have access to the status
of the complete search coverage effort of the group. If the content of the com-
munications among UAVs is limited to their current positions and headings, as
implemented in the previous section, it is clear to see that as the communica-
tion range is reduced, each individual probability distribution map P k(i, j) will
become increasingly different from the other individual maps as well as from the
true collective probability distribution map P . Two strategies, PPS and FPP,
are proposed to mitigate the loss of search efficiency, caused by the disparities
between each individual probability map, while still maintaining full mobility for
the minimization of Cs. Both are described in detail in the following subsections.

4.1 Past Path Sharing

The PPS strategy approaches the problem by taking advantage of the chance
encounters between UAVs to share past knowledge in order to improve the
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accuracy of their respective individual probability maps P k(i, j). Ideally, the
most complete and accurate knowledge would be attained if the communicating
UAVs could share their entire individual probability maps P k(i, j). However, in
order to provide the minimum level of local accuracy, such maps become very
large matrices in order to represent entire search areas, resulting in a severe in-
crease in communication bandwidth requirements. Instead, in the proposed PPS,
during such chance encounters each UAV transmits within each communication
interval its current position and a set of past known visited positions (by itself
or others) along with the time they were visited, which is then transformed by
the receiving UAV into modifications in its own P k(i, j).

Although this approach requires an increase in the amount of information
transferred between UAVs, the size of the set of past locations and sensing times
transferred within each interval can be adjusted according to the bandwidth
limitations of the communication network. Furthermore, after a packet of data
is successfully sent, the next packet includes the UAV’s updated current position
and the next set of past values that pertain to even more distant instants in time.
In this manner, even for scenarios that require low bandwidth, the accuracy
of the individual P k(i, j) of the communicating UAVs is periodically improved
throughout the time the UAVs remain within communication range of each other.

In order to store and provide the past information, each UAV maintains a table
of past visited positions. Each line of the table pertains to a particular moment
in time and contains the positions of the individual UAV and the positions of all
other UAVs with known positions, leaving empty the cells for which no knowl-
edge is available. Knowledge of a UAV position can be gained either directly by
receiving position data from a communicating UAV, or indirectly through the
sharing of tables among communicating UAVs. With a set frequency, synchro-
nized among all UAVs, all cells of the table are shifted down, the oldest line at
the bottom of the table is discarded, and the current known positions are added
to the top of the table.

In actual implementation, when two UAVs happen to fly within the com-
munication range of each other, each exchanges packets containing its current
position, heading, and lines from the table, starting from the top (most recent)
and moving to the bottom with each communication opportunity. Note that as
the communication range decreases with respect to the overall search area, less
knowledge can be obtained and shared, causing the tables to become increas-
ingly sparse, a situation in which the communication toll can be reduced by the
sharing of only non-empty cells. Also, increasing the maximum length of the
table allows more knowledge to be stored from times further in the past while
requiring additional memory usage by each UAV. This also allows more infor-
mation to be exchanged when the UAVs’ flight paths happen to remain close to
each other for extended periods.

To demonstrate the impact of the PPS method on the final coverage capabili-
ties of the group, the strategy was implemented in the same simulation environ-
ment used in the previous sections. Figure 5 shows a snapshot of the coverage as
a UAV updates its map with past positions of a UAV within its communication
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Fig. 5. A simulation snapshot for the PPS strategy. The left frame shows the total
P , and the right frame shows the P k of one of the UAVs where past information on
locations visited by other UAVs are being obtained through communication with its
neighbors.

range. As we vary the communication range, an aggregated coverage of 95.0%
was reached when a 20 km communication range was available, while only 78.2%
was achieved at the 10 km communication range.

4.2 Future Path Projection

Different from the PPS strategy, which required some level of additional com-
munication load, in the FPP strategy it is not necessary that any information,
other than their current positions and headings, be exchanged between UAVs
during their chance encounters. In the PPS strategy, past information is used
with the goal of making each individual P k(i, j) approach the collective proba-
bilistic map P . On the other hand, FPP focuses on the instant when one UAV
departs from the communication range of another and modifies its P k(i, j) based
on the chance of the departing UAV visiting areas in the future, given the last
received position and heading. This process is illustrated in Figure 6.

Since UAVs are subject to dynamic limitations on their turn radius, and since
the original search cost CS has as one of its goals to maintain the same heading
in order to conserve fuel, it is reasonable to assume that the more likely path of
a UAV is in the direction of its final received heading. To also incorporate the
course changes that can occur due to the other factors within CS , the projected
path fans out from the last received heading direction with a likelihood that is
inversely proportional to the required angular change in the heading. Finally,
since the projection becomes less accurate the further it extends into the future,
the likelihood that an area is visited in the future also is reduced proportional
to its distance from the last received position. The end result is the cone shape
shown in Figure 6 with maximum likelihood (intensity) in the area immediately
ahead of the point of last communication and with gradually reduced likelihood
as either the angle of the heading, or the distance from the position of last
communication is increased over time.
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Fig. 6. As one UAV departs from the communication range of another, the FPP strat-
egy augments P k with a probabilistic projection (dotted line area in the picture) of
the departing UAV’s future path

A simulation with the same parameters used for the test of PPS was conducted
using FPP. In this simulation, the FPP strategy was allowed to extend the
projection up to 60 km away from the point at which communication was lost
with an included angle of 30 degrees. At the end of the six hours of simulation,
the application of the FPP mitigation strategy resulted in a comparable 93.9%
average aggregated coverage for the 20 km communication range scenario, and a
vastly superior response of 92.1% for the 10 km communication range scenario.
All coverage values for both the PPS and FPP cases were obtained from the
aggregated effective coverage represented by P , as opposed to the individual
perception of the target detection probability map of each P k.

Having introduced all three mitigation strategies, Figure 7 shows a compari-
son of the evolution of the aggregated coverage over time for a more demanding
scenario where communication only takes place between UAVs less than 10 km
apart. For reference, Figure 7 also displays the performance of the cooperative
decentralized search algorithm operating with unlimited communication range
and with the restricted communication range but without any mitigation strat-
egy. As expected for communication ranges at or below 30 km, the uninterrupted
communication strategy performs even worse than when no mitigation strategy
is applied, since at this range the network, although flexible, is geometrically
incapable of stretching over the entire area without losing communication with
the ground base. Applying both PPS and FPP strategies in parallel over the
same Pk map resulted in a performance level between the full communication
and no mitigation strategy scenarios, with FPP providing a superior average
aggregated coverage throughout the entire six hours. When PPS and FPP were
applied simultaneously, the end result was statistically identical to the result
when FPP was applied alone, suggesting that if FPP is applied at this commu-
nication range there is no benefit from increasing the communication bandwidth
usage to implement PPS.
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Fig. 7. Comparison of the performance of the cooperative sweep search with a 10 km
maximum communication range using the different mitigation strategies: uninterrupted
communication (asterisk), PPS (diamond), FPP (circle), and the combination of PPS
and FPP (×). For reference, curves from the system operating without any mitigation
strategy (down-facing triangle) and with full communication (up-facing triangle) are
also provided.

Figure 8 shows results equivalent to when a 20 km communication radius was
applied. As before, the uninterrupted communication strategy under-performs
since the very limited communication range still prevents it from achieving full
coverage. Comparing the performance of PPS and FPP, we notice that at this
communication range FPP outperforms PPS until approximately three and half
hours after the search starts. After that point, PPS provides superior aggregated
coverage. This behavior can be explained by the fact that in the beginning of

Fig. 8. Comparison of the performance of the cooperative sweep search with a 20 km
maximum communication range using the different mitigation strategies: uninterrupted
communication (asterisk), PPS (diamond), FPP (circle), and the combination of PPS
and FPP (×). For reference, curves from the system operating without any mitigation
strategy (down-facing triangle) and under full communication (up-facing triangle) are
also provided.
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the simulation UAVs are less likely to deviate from the paths predicted by FPP
based on their knowledge of the search area since they all depart from the same
airbase. In such situations, the choice of future waypoints will be directly influ-
enced by the projection of future paths of its neighbors, whereas knowledge of a
neighbor’s past positions will only impact the decision making of a UAV when it
changes course and if it approaches the vicinity of such locations. Different from
the results for the shorter communication range, at 20 km the benefit of com-
bining both PPS and FPP strategies becomes evident as the end result shows
the rapid initial increase in the aggregated coverage brought by FPP and the
ultimately superior result of PPS. This result suggests that combining the two
techniques can be significantly advantageous on scenarios with extremely con-
strained communication ranges. Nevertheless, it is important to note that any
usage of PPS comes with an increase in the bandwidth demand, which may not
be acceptable due to the negative consequences mentioned earlier in the chapter.

5 Conclusion

In this chapter, we showed the validity and effectiveness of the FPP strategy to
update search maps which are used by a set of cooperative UAVs to collectively,
in a probabilistic context, maximize the coverage of a large search area under
communication range limitations. The unique search problem involves mobile
ground targets emitting radio frequency signals that can turn on and off. The
nature of the targets demands a search technique that causes the cooperative
UAVs to not only efficiently cover the search area, but also to revisit areas previ-
ously searched with unexpected frequencies and patterns. The proposed method
has been shown to be effective in maintaining good search coverage with a wide
variety of communication ranges, demonstrating its value especially when the
communication range for each UAV is relatively small. We presented a com-
parative study on the performance of the proposed method against two other
methods to accommodate the communication limitation problem, one based on
an uninterrupted communication principle and the second on an uninterrupted
mobility principle. Using the search task as a testbed, we demonstrated that
the proposed FPP algorithm managed to provide a group of decentralized UAVs
operating under a limited communication range with a degree of cooperation
comparable to the one attained under the assumption of unlimited communica-
tion range.
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Abstract. In this chapter, we consider an Intelligence, Surveillance, and
Reconnaissance (ISR) scenario where a human operator is tasked to pro-
vide feedback regarding the nature of some objects of interest (OOI). The
feedback is relayed to the stochastic controller of an unmanned aerial ve-
hicle (UAV), which must determine an appropriate mission plan. A small
aerial vehicle (SAV) loiters at a high altitude where it may survey a large
territory. An operator decides which objects in the SAV’s field of view
are of interest and which are not. Then a team of micro aerial vehicles
(MAVs) are assigned individual tours to survey the OOI at a low alti-
tude. As a MAV flies over an OOI, the operator must decide if the OOI
has a feature that defines it as a target. The key parameters are the
operator’s response and the time taken for the operator to respond. The
stochastic controller takes these into account and performs an analysis
to compute expected information gain of a revisit. In previous studies
automatic target recognition (ATR) was used for making some decisions
in the SAV and the MAVs. This chapter investigates the use of human
feedback alone for target recognition. Different methods for calculating
expected information gain are examined and compared against a maxi-
mum operator delay revisit threshold.

Keywords: Dynamic Programming, Stochastic, ISR, Task Assignment.

1 Introduction

1.1 COUNTER Scenario

First it is necessary to discuss COUNTER, the scenario these algorithms are
designed for. COUNTER [1] is an acronym for Cooperative Operations in Ur-
baN TERrain, an Air Force program using a team of UAVs to investigate task
assignment and path planning algorithms for use in ISR missions in urban ar-
eas. The COUNTER team is a collection of Air Force military, Air Force civilian
and contractor engineers and is based at the Air Force Research Laboratory’s
(AFRL) Control Sciences Center of Excellence.

COUNTER uses a team of UAVs, one small aerial vehicle (SAV) and four
micro aerial vehicles (MAVs). The SAV loiters over the urban area at 1000-1500
feet above ground level (AGL), while an operator surveys the live video feed from
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the SAV for objects of interest. We assume that the objects remain stationary.
After an operator selects a collection of OOI, a task assignment algorithm assigns
a tour to each MAV that is to be launched. The MAVs fly at a much lower
altitude (50-150 feet AGL) allowing them to investigate the OOI close up and at
an acute angle which may permit them to see into vehicles and under tarpaulins
and camouflage nets. Like the SAV, each MAV is equipped with front and side
facing video cameras. This video feed is relayed back to a ground control station
where an operator attempts to classify the objects in real time as the MAVs
survey the collection of OOI.

At this point in the scenario a very important assumption becomes active.
The operator is not asked to give a response whether or not the OOI is a target
or a non-target based on his or her inspection of the video. Instead, the operator
is asked whether or not he or she has seen a unique distinguishing feature that
has been described to him or her prior to the mission. The operator may even
have a sample picture of such a feature to refer to during the mission, as was
done in a prior Air Force research effort [2]. The assumption about this feature
is that it uniquely separates targets from non-targets. An example of such a
feature may be a large gun mounted in the rear of a truck, but there are many
such possible features.

1.2 Stochastic Controller

It was anticipated that a human operator would be overwhelmed if expected
to manage MAV tour reassignments while simultaneously attempting to classify
OOI as targets or non-targets, so a stochastic controller was developed to pick
up this high level responsibility [3]. Dynamic programming is used to solve this
decision making with uncertainty problem. Developed with great detail in [3],
the state of the dynamic program is the amount of remaining fuel reserve for
revisiting an OOI, which we shall just refer to as reserve.

As mentioned before, the OOI are stationary. One way to extend this work
to non-stationary objects might be to amend the way the cost of a revisit is
computed. For instance, one might consider the cost to be an expected value,
using some probability distribution of the location of the OOI based on prior
measurements. Although this is not considered in this effort, it is a possible
future direction.

In addition to the reserve, the stochastic controller also makes use of the op-
erator’s response, the amount of time the operator took to make the response
(operator delay), and the number of remaining objects in the MAV’s tour. Given
the operator’s decision, the controller performs an information gain analysis
where it computes an expected reward for performing a revisit using a priori
probabilities that were determined experimentally [2]. These probabilities char-
acterize the target density and operator’s decision behavior. Given the operator’s
response, operator delay, reserve and remaining objects, the controller will de-
cide whether a MAV should revisit an object and modify the MAV’s flight plan
accordingly.
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Revisits are often useful because they can provide additional information re-
garding an OOI at a different approach angle. For example, a feature may only
be visible from the rear of the OOI, so if the MAV approaches from the front,
it may never see the definitive feature. In this case there may (or may not)
be sufficient information gain to perform a revisit, depending on the values of
the inputs to the controller. In the case of extremely low target density, there
might be sufficient information gain to perform a revisit even in cases where the
operator says that he or she has seen the distinguishing feature on the initial
inspection. This is due to the uncertainty in the operator’s responses, which will
be discussed later.

It should be pointed out that each MAV has a finite fuel reserve set aside
for revisits. This reserve is the state of the dynamic program that is formulated
to solve this optimization problem. The solution of the dynamic program gen-
erates a matrix of cost thresholds that will be used in the decision process. At
the moment an operator gives a response (which coincides with the moment of
decision by the controller), the expected cost of a revisit is compared to the cost
threshold which was computed in the information gain analysis. At this point
the control decision is simply a table look up. If the expected cost is less than
the cost threshold, the MAV will revisit the OOI.

1.3 Motivation

In previous publications [3,4,5,6,7] a probabilistic method was developed to de-
termine the reward values that are used in the cost function of the dynamic
program. The probabilities were developed based off of the assumption that the
MAV had an automatic target recognition (ATR) device used for classifying
OOI. The MAV would only defer to an operator for classification if the ATR
encountered an ambiguous feature.

Optical feature recognition would be problematic in application because of
additional payload constraints, communication unreliability, and highly variable
lighting conditions. Additionally, and perhaps more practically, the MAVs used
for COUNTER are simply not equipped with such a device. This was the motiva-
tion for a system that instead of employing an ATR, relies solely on an operator
for OOI classification.

1.4 Original Contributions

In this chapter, three different expected reward functions will be considered.
These functions will rely on the operator’s response from the flyover of an OOI
instead of utilizing an ATR. The number of a posteriori probabilities needed for
the reward functions will be developed. Then an analysis will be performed com-
paring the reward methods against a benchmark and each other. Performance
of each method will be discussed and a recommendation for future work will be
made.
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2 Formulation

2.1 Definition of Terms

In this system there are three main events, and they can be treated as boolean op-
erators: Feature Visibility, Operator Response, and Target Truth Status (whether
or not the OOI is an actual target). These are considered boolean because only ab-
solutes are considered. For example, the feature is either visible or not visible, the
operator indicates feature or no feature, and an OOI is either a target or it is not.
Each MAV visit can be thought of in terms of some combination of said events.
The first and second visit of a MAV will be treated as independent events, so the
subscripts denoting the visit are only important when probabilities involve events
from both visits. Below is a list of nomenclature used throughout the chapter.

v = Feature Visibility
r = Operator Response
t = Target Truth Status
θ = Feature Visibility Interval

subscript1 = First Visit
subscript2 = Second Visit
subscriptT = Boolean True
subscriptF = Boolean False

PTO = Probability of Feature Detection
1 − PFTO = Probability of Feature False Alarm

2.2 A Priori Probabilities

The probability that an object of interest is a target is assumed a priori:

P (tT ) = p , (1)
P (tF ) = 1 − p . (2)

In real scenarios, the probability that an OOI is an actual target is very low.
It could be on the order of one out of ten thousand in extremely cluttered urban
areas, Baghdad for example. For the purposes of this chapter, a much higher
probability of one out of twenty was used so that simulation time would be
minimal. Moreover, this is the a priori probability used in COUNTER flight
tests due to practicality issues. An operator confusion matrix developed in [3] is
a way of depicting the stochastic behavior of a human operator given a collection
of probabilistic events. In [3,4,5,6,7], the probabilistic event corresponding to any
given operator response was simply the target truth status. This truth status is
of course unknown to the operator but has a probability distribution described
by equations (1) and (2).
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Table 1. Operator Confusion Matrix

rT rF

P (r|vT ∩ tT ) PTO 1 − PTO

P (r|vT ∩ tF ) undefined undefined
P (r|vF ∩ tT ) 1 − PF TO PF TO

P (r|vF ∩ tF ) 1 − PF TO PF TO

The operator confusion matrix in this chapter is different from the previous
version because it accounts for an additional stochastic event, the feature visi-
bility. It is important to note that a feature cannot be visible on an OOI that
is not an actual target so the row of v = T and t = F is undefined by nature.
A design choice was made that the probability that an operator responds that
the OOI has the feature, when no feature is actually visible and the OOI is in
fact a target, would simply be the probability of a false alarm. The issue is that
even if the operator’s implication (the OOI is a target) is technically correct, it
is based on no visual evidence and should be treated as a false alarm, which is
how it will be modeled in this chapter. The operator confusion matrix actually
represents a collection of conditional probabilities, and it is shown in Table 1.

Here we should note a couple of things. First, PTO and PFTO are functions
of the assumed target distribution given by equations (1) and (2). Secondly, it is
assumed that PTO and PFTO are affected by the operator’s workload. Nominally
we suggest that as an operator’s workload increases, the probability of detec-
tion should decrease while the probability of false alarm increases. Experiments
performed by the Human Effectiveness Directorate of AFRL have investigated
this very topic [2]; however, the results of the report are limited to exclude the
public for now.

Next consider the possible feature visibility outcomes from a MAV flying over
an OOI. Each actual target is modeled as having an angle range over which the
definitive feature is visible, θ. The range of visibility divided by the total range of
angles the OOI can be viewed from is the conditional probability that a feature
is visible given that it is a target. Table 2 lists this set of a priori conditional
probabilities.

In the case of two visits, the system is modeled such that the MAVs perform
their second visit from the opposite angle of approach. This means that if a
feature was visible on the first pass, it should not be on the second and vice
versa. From this, the conditional probabilities of feature visibility for two visits

Table 2. Visibility Given Target Truth Status

vT vF

P (v|tT ) θ/2π 1 − θ/2π

P (v|tF ) 0 1
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Table 3. Visibility Given Target Truth Status

v1T , v2T v1T , v2F v1F , v2T v1F , v2F

P (v1 ∩ v2|tT ) 0 θ/2π θ/2π 1 − θ/π

P (v1 ∩ v2|tF ) 0 0 0 1

given the target truth status may be inferred. These conditional probabilities
are given in Table 3.

2.3 Reward Multiplier Probabilities

The motivation of the following exercise is to determine the probability of the
operator’s decision and target feature visibility on a second visit given the deci-
sion and visibility from the first visit. These probabilities will be used as gains
applied against reward values so that they are weighted according to the proba-
bility that they will occur. To do this, the probabilities will be broken down into
their constituent a priori sub-probability combinations. Before describing how
that is done, we first note that we seek the following:

P (r2 ∩ v2|r1 ∩ v1) =
P ((r2 ∩ v2) ∩ (r1 ∩ v1))

P (r1 ∩ v1)

=
P (r2 ∩ v2 ∩ r1 ∩ v1 ∩ tT ) + P (r2 ∩ v2 ∩ r1 ∩ v1 ∩ tF )

P (r1 ∩ v1 ∩ tT ) + P (r1 ∩ v1 ∩ tF )
.(3)

The terms in the denominator can be resolved into their a priori constituent
parts as follows:

P (r1 ∩ v1 ∩ t) = P (r1|v1 ∩ t)P (v1 ∩ t)
= P (r1|v1 ∩ t)P (v1|t)P (t) (4)

≡ P̃ (t) . (5)

The terms in the numerator may also be resolved to a priori constituents. To
do this we will begin with a definition.

Definition 1. Two events E1 and E2 are conditionally independent of event E3
if and only if

P (E1 ∩ E2|E3) = P (E1|E3)P (E2|E3) , (6)

or equivalently
P (E1|E2 ∩ E3) = P (E1|E3) . (7)

While breaking the terms in the numerator into their constituent parts, we must
assume conditional independence several times. In the equations below, condi-
tional independence is assumed as we proceed from equation (8) to equation
(9) and from equation (10) to equation (11). This assumption is not counter
intuitive, as it makes sense to assume that the operator’s response and feature
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visibility pairs from the first and second visits should be conditionally indepen-
dent of each other given the target truth status. If conditional independence
is not asserted and conventional conditional probability rules are applied, then
the operator’s response and feature visibility from the first visit would depend
on those of the second visit which violates temporal causality. With all this
considered, the terms in the numerator are broken down as follows:

P (r2 ∩ v2 ∩ r1 ∩ v1 ∩ t) = P ((r2 ∩ v2) ∩ (r1 ∩ v1)|t)P (t) (8)
= P (r2 ∩ v2|t)P (r1 ∩ v1|t)P (t) (9)

=
P (r2 ∩ v2 ∩ t)

P (t)
P (r1 ∩ v1 ∩ t)

P (t)
P (t)

=
P (r2 ∩ v2 ∩ t)P (r1 ∩ v1 ∩ t)

P (t)

=
P (r2|v2 ∩ t)P (v2 ∩ t)P (r1|v1 ∩ t)P (v1 ∩ t)

P (t)

= P (r2|v2 ∩ t)P (r1|v1 ∩ t)P (v2|t)P (t)
P (t)

P (v1|t)P (t)

= P (r1|v1 ∩ t)P (r2|v2 ∩ t)P (v1|t)P (v2|t)P (t) (10)
= P (r1|v1 ∩ t)P (r2|v2 ∩ t)P (v1 ∩ v2|t)P (t) (11)

≡ P̂ (t) . (12)

Finally, we may use equations (4) and (11) to assemble the a priori constituent
forms of the numerator and denominator in equation (3). For brevity we will
write (3) using the equivalent definitions given by equations (5) and (12),

P (r2 ∩ v2|r1 ∩ v1) =
P̂ (tT ) + P̂ (tF )

P̃ (tT ) + P̃ (tF )
. (13)

2.4 Reward Probabilities

The two conditional probabilities used to compute the reward values must also be
determined. These two probabilities are P (t|r1∩v1) and P (t|r1∩v1∩r2∩v2), and
they are decomposed into constituents in the equations below. Using equations
(4) and (5), we have

P (t|r1 ∩ v1) =
P (t ∩ r1 ∩ v1)
P (r1 ∩ v1)

=
P (r1 ∩ v1 ∩ t)

P (r1 ∩ v1 ∩ tT ) + P (r1 ∩ v1 ∩ tF )

=
P̃ (t)

P̃ (tT ) + P̃ (tF )
. (14)
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Furthermore, using equations (11) and (12), the more complicated of the two
conditional probabilities becomes

P (t|r1 ∩ v1 ∩ r2 ∩ v2) =
P (t ∩ r1 ∩ v1 ∩ r2 ∩ v2)
P (r1 ∩ v1 ∩ r2 ∩ v2)

=
P (r2 ∩ v2 ∩ r1 ∩ v1 ∩ t)

P (r2 ∩ v2 ∩ r1 ∩ v1 ∩ tT ) + P (r2 ∩ v2 ∩ r1 ∩ v1 ∩ tF )

=
P̂ (t)

P̂ (tT ) + P̂ (tF )
. (15)

Since each event is represented by a boolean value, the number of equations
needed to describe the system is simply 2n, where n is the number of boolean
events involved. For example, n = 5 in equation (15), so there are thirty-two
equations like equation (15).

2.5 Reward Functions

Two information theory reward functions from a previous effort [3] and an ad-
ditional method, where discrete reward values are assigned, will be considered
and evaluated. The range of values from the rewards is essentially arbitrary but
provides a basis for comparison of possible outcomes. These rewards will then be
scaled respectively by equation (13) from the previous section. For the purpose
of brevity while describing the three methods, let A = r1 ∩ v1 and B = r2 ∩ v2.

Method 1. We begin by defining some conditional probabilities:

P11 = P (tT |A) , (16)
P12 = P (tF |A) , (17)
P13 = P (tT |A ∩B) , (18)
P14 = P (tF |A ∩B) . (19)

Then the reward value using Method 1 can be expressed using equations (16) -
(19) and is given by the following:

R1 = log
(
P13

P14
+
P14

P13

)
− log

(
P11

P12
+
P12

P11

)
. (20)

Method 2. We begin by defining some conditional probabilities:

P21 = P (tT ∩A) , (21)
P22 = P (tF ∩A) , (22)
P23 = P (tT ∩A ∩B) , (23)
P24 = P (tF ∩A ∩B) . (24)
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Then the reward value using Method 2 can be expressed using equations (1),
(2), (16) - (19), (21) - (24) and is given by the following:

R2 =
(
P23 log

(
P13

p

)
+ P24 log

(
P14

1 − p

))
−(

P21 log
(
P11

p

)
+ P22 log

(
P12

1 − p

))
. (25)

Method 3. For method three, discrete values were chosen for the sixteen com-
binations of operator response and feature visibility for both visits. A value of
zero was assigned if the outcome was impossible, such as the feature being vis-
ible on both passes. A small reward was given if the operator was incorrect on
both passes but the situation was possible, or when the operator was correct on
the first visit but incorrect on the second visit. Moderate rewards were assigned
for the operator being incorrect on the first pass, but correct on the second.
The largest reward was given when the operator was correct on both visits. One
benefit of this method is that there is never a negative reward value, which is pos-
sible with information theory and causes saturation within the revisit threshold
function which is discussed in the following subsection.

Benchmark. A comprehensive study using Monte Carlo simulations was done to
determine the mean operator response delay. A time threshold slightly greater
than the mean delay was chosen so that it would envelope a majority of the
operator delay times. Thus, if the operator delay was less then the threshold,
the UAV would perform a revisit.

2.6 Threshold Surface Plots

Analyzing the surfaces provided by the threshold function provides a prelimi-
nary indication of how the system will respond. The threshold surface is pri-
marily based upon the operator’s response, how much reserve fuel remains, the
operator delay, how many OOI are left to visit and the expected reward [5,6,7].
These values locate the threshold for a specific revisit. Essentially, the system
determines a cost for revisit, and if the cost is less than the local threshold value
on the surface, the MAV will perform the revisit. Having a deep intuitive under-
standing of how the shape of the threshold surface impacts the response of the
system is useful but not necessary. In this analysis, we are ultimately concerned
with any saturation that occurs along the threshold value axis. Large amounts
of saturation indicate a bias towards a certain stochastic controller decision.

For Method 1, Figure 1 indicates that the case where the operator responds
with true results in a very saturated threshold surface. This means that when the
operator responds that they see a target, the stochastic controller will virtually
always perform a revisit. Whereas the case where the operator responds false
seen in Figure 2 is not as predictable.

For Method 2, Figure 3 indicates that if the operator responds with true,
then the stochastic controller will most likely not make a revisit, whereas if
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Fig. 1. Method 1 Threshold Surface Plot, Operator Response is True

Fig. 2. Method 1 Threshold Surface Plot, Operator Response is False
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Fig. 3. Method 2 Threshold Surface Plot, Operator Response is True

Fig. 4. Method 2 Threshold Surface Plot, Operator Response is False
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Fig. 5. Method 3 Threshold Surface Plot, Operator Response is True

Fig. 6. Method 3 Threshold Surface Plot, Operator Response is False
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the operator responds false, the stochastic controller will most likely perform a
revisit as shown in Figure 4.

For Method 3, there is not enough saturation in Figures 5 and 6 to defini-
tively say what the stochastic controller will decide to do given the operator’s
response.

3 Simulation and Results

Simulations were conducted to test the various reward methods. Each method
underwent 100 trials, each trial being 1200 simulation seconds long, with twenty
objects of interest and four UAVs on tour. The location, orientation, and target
truth status of the OOI were randomized for each trial. A log was kept of the
stochastic controller’s decisions throughout all of the trials, the data from which
acts as a basis for comparison between the various reward methods.

To compare the different methods, a rating system was devised. For all cases
where the stochastic controller had a UAV revisit an OOI, it added a point if
either of the following occurred:

– the operator response was true on one visit and false on the other visit and
the target truth status was true,

– the operator response was false on both visits and the target truth status
was false.

These are the best case scenarios where everything the operator indicates co-
incides with reality. The points tallied for the case where target truth status
is true and the case where it was false was kept separate because they have
a different probability of occurrence. The overall point tally for each case is
then divided by the probability of that case to determine a normalized point
system. The points for each target truth status case can then be added to-
gether to determine an overall score for that method. Table 4 summarizes the
results.

From Table 4, it can be seen that Method 2 outperforms the other methods
for the case where the operator responds false. This results from Method 2
having a strong preference to opt for a revisit if the operator responded false, in

Table 4. Simulation Results

Benchmark Method 1 Method 2 Method 3
True Score Mean 0.190 0.610 0.500 0.760

True Standard Deviation 0.419 0.803 0.674 0.842
False Score Mean 0.410 0.070 2.080 0.520

False Standard Deviation 0.911 0.432 2.977 1.453
Adjusted True 1.900 6.100 5.000 7.600
Adjusted False 0.456 0.078 2.311 1.531
Overall Score 2.356 6.178 7.311 8.178
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combination with the fact that a majority of the time the operator will respond
false on both visits. Method 3 outperforms the other methods for the case where
the operator responds true, and its overall score indicates that it is the best of
the three methods. This is because of its lack of saturation seen in Figures 5
and 6. Although it has no strong preference for either response, it performs well
on average for both, whereas Methods 1 and 2 only perform well for one of the
possible operator responses.

4 Conclusion

The effectiveness of the stochastic controller depends strongly on the reward
function. To determine the effectiveness of a variety of reward methods, hun-
dreds of simulation trials were performed and the resulting data were ana-
lyzed by a scoring algorithm. The results of the different reward methods are
strongly related to the threshold surfaces. Although threshold surface satu-
ration is not necessarily bad, it is not optimal. The method where satura-
tion was mostly avoided was the method that performed the best. It was also
shown that a discrete reward method can outperform an information theoretical
method.

Essentially, the reward function outputs two values, expected rewards for the
cases where the operator responds true or false. It may not be necessary to have
a function dedicated to the determination of these values based on probabil-
ities in the scenario. Instead, the two expected reward values could be deter-
mined using an optimization program that modulates the values over a series of
simulations.
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Abstract. Over the past decade, a few solo-robotic landing missions
have been sent to asteroids at modest cost, providing a basic understand-
ing of their environment. These missions can diversify and be improved
upon by having multiple landers which also contribute to increasing
the overall mission reliability. Since the gravity on an asteroid is low,
a wheeled vehicle would likely bounce back from hitting the surface, and
be difficult to control. Instead we consider hopping robots. We develop a
first order model of the dynamics of hoppers to estimate the total time
and distance covered from an initial bounce to a stop due to friction and
restitution coefficients. From this dynamical model, hoppers could eas-
ily investigate the surface by controlling their initial velocity; one would
just need to estimate to desired distance to be covered. To extend the
single hopper control law to collaborative landers, we apply sliding-mode
control to discrete formation control.

1 Introduction

Of the small body population (asteroids and comets), there are 5000 Near-Earth
Objects. Since these small bodies are not eroded and are believed to have formed
in the early stage of our solar system, studying small bodies on a closer scale may
answer some fundamental questions about the formation and evolution of our
solar system. Over the past decade, robotic missions such as NEAR, Stardust,
Rosetta, Hayabusa (Muses-C), and DAWN, have been sent to small bodies, pro-
viding a basic understanding of their environment. So far, only single spacecraft
or probes have been sent to these small bodies. For future scientific investi-
gations, rendezvous missions carrying small lander(s) become more interesting
as landers can perform autonomous tasks on the surface. In addition, current
plans are to include surface robots and/or multiple probes in order to assess the
soil composition, do internal and surface mapping, take multiple images, and to
increase the overall reliability of the mission.

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 135–150.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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There are challenges in sending spacecraft and landers to small bodies. First,
there are many sources of perturbations such as solar pressure or uneven gravity
fields due to non-spherical bodies. Robots have shown to be very useful in haz-
ardous situations on Earth, as well as on other planets. For instance, Spirit and
Opportunity are still sending back data from the surface of Mars. The meteo-
rological station Phoenix is scheduled to arrive to Mars in May 2008. Hence, as
part of the planetary exploration effort, we propose a robotic mission composed
of a mother ship and a number of cooperative robots for surface exploration.
Collaborative rover applications are being studied for planetary exploration [1].
However, for asteroid applications, one needs to design for very low gravity fields,
about 1/100 of the Earth’s gravity. In such environments, wheeled rovers might
be difficult to control and navigate. However, a hopper would be able to inves-
tigate a larger area in quicker time.

Previous work has looked at the dynamics of spacecraft or particles near as-
teroids and comets, for single asteroids as well as binary asteroid systems [16].
Several methods have been developed to simplify the problem while keeping in-
teresting features. For surface motion, one needs to develop a model that predicts
the distance traveled and the time it takes in order to design a control law. We
design a leaderless control taking reference on sliding-mode control techniques
[13,23]. In Section 2, we summarize the dynamical characteristics of asteroid
systems and we derive a prediction model for surface dynamics. In Section 3, we
develop a discrete control law for single and cooperative hoppers.

2 Underlying Dynamics of Asteroids

2.1 Asteroid Orbiters

Before looking at surface motion on asteroids, we first briefly summarize the
dynamics of particles, or spacecraft, in the gravitational field of an asteroid. As
a first approximation, we neglect the effect of the sun and we assume a uniform
gravitational field for the asteroid. One of the principal characteristic of aster-
oids is their irregular shape. Current and past work have looked into methods
to compute the potential of an irregular body. Werner, Scheeres and Fahne-
stock [18] have derived polyhedron potential computations to model irregularly
shaped bodies. Other methods involve the use of Lie Group computations [10]
or spherical harmonics [9].

As shown in Figure 1, we model the asteroid as a tri-axial ellipsoid. We can
write the dynamics of a spacecraft in an asteroid-fixed frame as

r̈e + 2ω × ṙe + ω × (ω × re) =
∂Ue

∂re
, (1)

where r̈e is the position vector of the spacecraft relative to the asteroid center of
mass, ω is the angular velocity of the ellipsoid, and Ue is the potential expression
of the ellipsoidal body. Ue can be written in terms of an elliptic integral [3,12,4]
and has the form

Ue =
3
4

∫ ∞

λ

φ(r, v)
dv

∆(v)
(2)
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Fig. 1. Representation of the asteroid orbiter problem

with

φ(r, v) = 1 − (x+ νr)2

1 + v
− y2

β2 + v
− z2

γ2 + v
(3)

and
∆(v) =

√
(1 + v)(β2 + v)(γ2 + v), (4)

where 0 < γ ≤ β ≤ 1, γ and β correspond to the z and y radii of the ellipsoid,
and λ satisfies φ(r, λ) = 0.

This system also allows for one integral of motion [5], the Jacobi integral,
written as

J =
1
2
(ẋ2 + ẏ2 + ż2) − 1

2
ω2(x2 + y2) − Ue, (5)

which gives an indication of the allowable regions of motion for a spacecraft.

2.2 Binary Asteroid Systems Orbiters

Some small body systems are found to be in pairs, where two asteroids orbit each
other. It is currently estimated that about sixteen percent of the Near Earth
Asteroid population may be binary systems [11]. Current interests in asteroid
missions are to better characterize the external and internal composition and to
better understand asteroid and asteroid systems formation and evolution. Hence,
sending a mission to a binary asteroid system may provide an opportunity to get
returns on both the geology and the dynamics of asteroids. Studies have looked
at the dynamics of these systems [15] and the dynamics of a spacecraft close
to them [17]. The binary asteroid orbiter is pictured in Figure 2, where M1 is
defined as the mass of the spherical shape and M2 as the mass of the ellipsoid.
The mass fraction of the system is defined as,

ν =
M1

M1 +M2
. (6)



138 J. Bellerose, A. Girard, and D.J. Scheeres

CM

rr se

ρ

x

y
M

α
M2

1

ω ω

Fig. 2. The Restricted Full Three-Body Problem

We use ρ̃ for the nondimensional position vector of the spacecraft relative to the
binary system center of mass, in a frame fixed to the ellipsoid. In this case, the
equations of motion of the spacecraft are written as

¨̃ρ + 2ω × ˙̃ρ + ω × (ω × ρ̃) =
∂U12

∂ρ̃
, (7)

where U12 is the potential expression from both the sphere and the ellipsoid. It
is expressed as,

U12 =
ν

|ρ̃ − (1 − ν)r| + (1 − ν)Ue(ρ̃ + νr) (8)

with Ue being the ellipsoid potential given by Equations (2-4).
Studies have looked at special conditions where the two bodies are locked

in space, keeping the same orientation, as well as general dynamics with small
perturbations near these equilibrium configurations. When the system is locked
in an aligned configuration, the system allows for one integral of motion, the
Jacobi integral, which can be written as

C =
1
2
v2

R − V, (9)

where vR is the speed of a particle or a spacecraft relative to the rotating frame.

2.3 Surface Motion Dynamics

Once the dynamics of asteroid system orbiters are developed, we can look at the
dynamics happening at the surface. Since there is about 1/100 of the Earth’s
gravity on an asteroid, a vehicle will bounce every time it tries to move on the



Dynamics and Control of Surface Exploration Robots on Asteroids 139

Fig. 3. Hopping motion on asteroids

surface, and hence loose traction. We develop a first order model of the dynamics
on the surface to estimate the total time and distance covered from an initial
jump to a stop due to friction and restitution coefficients. Being able to estimate
the total distance covered, we will be able to design a control system for such
applications. The hopping motion is sketched in Figure 3.

We model the surface motion in three dimensions, with a tangential t̂, normal
n̂, and cross track vectors, d̂. This frame is fixed at the initial impact point on
the surface. The normal is defined as

n̂ =
∇S

|∇S| , (10)

where S is the ellipsoid surface function expressed as S = x2 + y2

β2 + z2

γ2 −
1 = 0. Note that the normal is the unit vector in the direction of the surface
gradient. For better tracking, the tangential direction is defined as the unit vector
perpendicular to the velocity,

t̂ =
t̂ × V

|t̂ × V |
, (11)

where V is the impact velocity expressed in the binary fixed frame. And then,
the cross track unit vector is obtained from orthogonality of the tangential and
normal vectors,

d̂ = t̂ × n̂. (12)
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Note that the total acceleration acts in the normal - cross track plane. The ge-
ometry for modeling the impact dynamics is shown in Figure 4. At the impact
point, an object is subjected to a local coefficient of restitution and surface fric-
tion factor, cr and µ respectively. The velocity vn at the nth jump, just before
the next impact, is influenced by the general gravity vector g and the rotational
acceleration. By approximating the local surface as a flat surface, we can find
general expressions for the time, tn, distance, dn, and velocity components be-
tween jumps as function of the initial conditions. The total distance covered and
the time of travel are then a summation of the intervals, which are given by

dd,∞ =
2vn0vd0

gn0(1 − cr)
+

2v2
n0

gn0(1 − cr)2

(
−µcr +

gd0

gn0

)
, (13)

and

t∞ =
2vn0

gn0

(
1

1 − cr

)
, (14)

where the subscripts n and d in this case represent components in the normal
and cross track directions, respectively. Note that the magnitude and direction
of the gravity vector are obtained from the dynamics of the asteroid system, that
is, using Equation (7), and are then transformed to the surface frame.

We can validate this approximation model using the true asteroid dynamics.
In the numerical simulations, we define a new surface frame at each impact.
The velocity components after impact are then converted back into the asteroid
system frame for numerical integration until the next impact. Having defined
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the unit vectors at the surface of the ellipsoid with respect to the RF3BP fixed
frame, we can write the transformation from the surface frame to the RF3BP
frame. In general, for a jump distance below 5 meters, we find that the analytical
model agrees within 1 % with the numerical simulations.

2.4 Effect of the Ellipsoid Shape on the Surface Dynamics

An ellipsoidal body has points on its surface where an object could stay in
equilibrium. The stability of the equilibrium points depend on its spin and on its
shape parameters. One would expect that the dynamics of vehicles on the surface
of a small body are affected by these equilibria and their stability, motivating
control of the surface dynamics in order to investigate specific regions.

In [6], the authors use classical dynamics and geometrical analysis to investi-
gate the stability of surface equilibrium points for a rotating ellipsoid. For small
perturbations, a moving object on the surface of a rotating ellipsoid will tend
to stay closer to a stable equilibrium point. On the other hand, it will stay far
from an unstable region. In fact, this explains current observations of asteroids
where material is accumulated near the equator while some other asteroids have
accumulation near the poles [6]. Figure 5 shows an example where the polar
regions are stable. The curve shown is made of a series of hops under perfect
surface conditions. For asteroids with faster spin, moving vehicles tend to stay
toward the equator.

3 Robotic Mission to an Asteroid

We can integrate the underlying dynamics of asteroids described in the previous
sections to design a robotic mission for surface exploration. MINERVA, originally
designed for the Hayabusa mission is a good example of a “hopper” application,
using a torque driving system as the main driver [8,22]. Ball Aerospace also de-
signed a spherical robot having three side openings for stability at the surface
[19]. In all cases, the motion of these hoppers looks like the ballistic trajectory
shown in Figure 3. Hoppers could easily investigate the surface by controlling
their initial bounce velocity and orientation from estimating the jumping dis-
tance to be covered for a set of desired locations.

In the current work, we leave the details of a robotic mission hardware as
future studies and we will concentrate on the dynamics and control of these
cooperative robots. We assume a spacecraft in orbit about an asteroid from
which landers could be ejected for further surface exploration. A hopper would
easily move on the surface, investigating the region while taking scientific data.
The goal in sending robots for surface investigation is to maximize the search area
for mapping, imaging, and taking geological/scientific measurements or samples.
The landers could be released at one end of the asteroid, sent on a predefined
grid and move to the other end. With a spacecraft staying on a stable orbit,
they could all update their position to a central unit on the spacecraft as well
as communicate with each other through sensors in order to perform common
tasks.
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Fig. 5. Top view of the dynamics close to a stable pole. The trace is made of hops
under ideal conditions.

There are many variables to consider in making efficient moves: time and
distance to travel, fuel consumption, external disturbances, obstacles, collabo-
rative tasks, etc. Too many jumps would consume time and energy while high
jumps could be hard to track. For efficient surface investigation, we develop
a discrete control law for a single vehicle acting on its initial conditions, and
we give an extension for multiple cooperative vehicles. Many control strategies
have been considered, especially for unmanned aerial vehicles. Some of them in-
volve leader-follower approaches [7] or string and mesh-stable approaches [20,14].
Other possible approaches include virtual structures [2,21] and potential meth-
ods [24]. These methods are difficult to implement in asteroid applications. The
following sections describe the collaborative control developed in applying ideas
from sliding-mode control methodology [13,23].

3.1 Control of Hoppers

Using the surface dynamics model from Section 2.3, we attempt to minimize
the error associated with the travel. For doing so, we develop a discrete control
law by defining a control parameter affecting the error between hops. We let
the position at the n-th jump be represented in the cross track-tangential plane,
d̂ − t̂, by
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ηn =
[
dd

dt

]
. (15)

The (n+1)-st location is then the sum of the previous location and the distance
covered from jumping

ηn+1 = ηn +∆η, (16)

where we want ∆η to be solved in such a way that the error on the position
decreases in time. If we define the error at the n-th jump as

εn = ηn − ηd, (17)

where ηd is the desired end position, then we want to choose a control parameter
K such that the error decreases over each bounce, that is,

εn+1 = e−Kεn. (18)

Substituting for εn+1 and εn in Equation (18), we get

ηn+1 − ηd = (ηn − ηd)e−K (19)

or, substituting Equation (16) and solving for ∆η,

∆η = (ηn − ηd)
[
e−K − 1

]
. (20)

Hence, Equation (20) gives the distance to be covered given a desired position
and control parameter K. Using this result in the surface dynamics model, we
can invert Equation (13) to find the initial velocity component. Hence, the cross
track velocity component is given by

v0d
=
gn0(1 − cr)

2vn0

[
dd +

2v2
n0
µcr

gn0(1 − cr)2
+

2v2
n0
gt0

g2
n0

(1 − cr)2

]
. (21)

Therefore, using Equation (20), we compute a jump distance ∆η with a given
value of the control parameter K. Then, from Equation (21) we can find the
initial velocities to achieve that distance ∆η. Some results are shown in Figure
6, for a single hopper. We compare three different controlled dynamics,K = 0.75,
K = 1.5 and K = 2.5, under the same surface conditions, with cr = 0.5 and
µ = 0.5. The desired end position is set at x = −2.3 km in the binary frame
labeled ηd in Figure 6. We see that increasing the control K reduces the number
of hops necessary to reach ηd. However large values of the control parameter,
such as K = 2.5, makes the hopper overshoot ηd. Undershooting a target might
be a better strategy. For small hops, a hopper would need to relocate itself and
estimate its required distance to reach ηd again. In this case, more jumps are
needed in order to reach the objective, which takes more time but increases the
chance of success.
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Fig. 6. Controlled dynamics of a single rover with coefficient of restitution and friction
factor set to 0.5. K is the control variable and ηd is the desired end position.

3.2 Control of Cooperative Hoppers

For collaborative hoppers, we adopt a sliding-mode control strategy first devel-
oped for collaborative unmanned aerial vehicles. As described in [23], we want
a formation to navigate to a desired end point while maintaining or achieving a
certain configuration. For collaborative robots, we will use the notation ηn

i for
the i-th hopper at the n-th location. The (n+ 1)-st location is then

ηn+1
i = ηn

i +∆ηi, (22)

where, again, we want the distance, ∆ηi, to be solved in such a way that the
error on the position decreases in time. For the current application, we want
the error to take into account the absolute error, i.e., the error with respect to
its desired location, as well as the relative error for each hopper relative to its
neighbors. We define the error term as,

εni =(ηn
i − ηn

d,i) +Kr(ηn
i,j − ηn

i−1,j + ηd,i−1,j)

+Kr(ηn
i,j − ηn

i+1,j + ηd,i+1,j) +Kr(ηn
i,j − ηn

i,j−1 + ηd,i,j−1), (23)

where Kr is a weight factor giving precedence on the absolute or relative hopper
end position.
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Fig. 7. Triangular Formation for Collaborative Hoppers

Earlier work has shown mesh stability of a triangular formation as shown in
Figure 7 [23]. Hence, for the current work, as a first step we started by inves-
tigating a triangular formation of three hoppers. As for the single hopper, we
want to choose a control parameter K such that the error decreases in time,

εn+1
i = e−Kεni . (24)

And, using again the control parameter on the relative position of the hoppers,
we write the error expression for the three hoppers as

ε1 = (η1 − ηd,1) +Kr(η1 − η2 − ηd,12) +Kr(η1 − η3 − ηd,13), (25)

ε2 = (η2 − ηd,2) +Kr(η2 − η1 − ηd,21) +Kr(η2 − η3 − ηd,23), (26)

and

ε3 = (η3 − ηd,3) +Kr(η3 − η1 − ηd,31) +Kr(η3 − η2 − ηd,32). (27)

Substituting for εn+1 and εn for all three hoppers in Equation (24), we get

(ηn+1
1 −ηd,1) +Kr(ηn+1

1 − ηn+1
2 − ηd,12) +Kr(ηn+1

1 − ηn+1
3 − ηd,13) =

e−K [(η1 − ηd,1) +Kr(η1 − η2 − ηd,12) +Kr(η1 − η3 − ηd,13)] , (28)

(ηn+1
2 −ηd,2) +Kr(ηn+1

2 − ηn+1
1 − ηd,21) +Kr(ηn+1

2 − ηn+1
3 − ηd,23) =

e−K [(η2 − ηd,2) +Kr(η2 − η1 − ηd,21) +Kr(η2 − η3 − ηd,23)] , (29)

and

(ηn+1
3 −ηd,3) +Kr(ηn+1

3 − ηn+1
1 − ηd,31) +Kr(ηn+1

3 − ηn+1
2 − ηd,32) =

e−K [(η3 − ηd,3) +Kr(η3 − η1 − ηd,31) +Kr(η3 − η2 − ηd,32)] . (30)
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We can solve for ∆η1, ∆η2, and ∆η3 using Equation (22). Then, Equations
(28-30) become

∆η1(1+2Kr) −Kr∆η2 −Kr∆η3 =

ηn
1 (1 + 2Kr)(e−K − 1) + ηn

2Kr(1 − e−K) + ηn
3Kr(1 − e−K)

+ nd,1(1 − e−K) + nd,12Kr(1 − e−K) + nd,13Kr(1 − e−K), (31)

∆η2(1+2Kr) −Kr∆η1 −Kr∆η3 =

ηn
2 (1 + 2Kr)(e−K − 1) + ηn

1Kr(1 − e−K) + ηn
3Kr(1 − e−K)

+ nd,2(1 − e−K) + nd,21Kr(1 − e−K) + nd,23Kr(1 − e−K), (32)

and

∆η3(1+2Kr) −Kr∆η1 −Kr∆η2 =

ηn
3 (1 + 2Kr)(e−K − 1) + ηn

1Kr(1 − e−K) + ηn
2Kr(1 − e−K)

+ nd,3(1 − e−K) + nd,31Kr(1 − e−K) + nd,32Kr(1 − e−K). (33)

Hence, solving for the three ∆η’s gives the required distance the three hoppers
should jump to. As for the case of a single hopper, given a distance to cover, we
can invert Equation (13) to find the initial velocity components for the required
move. The overall motion is governed by the control parameters K and Kr.
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Fig. 8. Controlled dynamics of a linear robot formation with coefficient of restitution
and friction factor set to 0.5 and control parameters K=1.5 and Kr=0.5
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Fig. 9. Controlled dynamics of a triangular robot formation with coefficient of restitu-
tion and friction factor set to 0.8 and 0.1, control parameters of K=1.5 and Kr=0.5,
and a longitudinal distance to cover less than 100 meters. Hoppers 1, 2, and 3 have
reached their final position.

Preliminary results are shown in Figures 8-10 for a collinear motion test and a
triangular formation of three robots. In Figure 8, the three hoppers are released
from a common point and move along the equator, each having a different set of
final positions as indicated in the figure. Note that the control scheme assumes
the hoppers can update their position using star trackers and sensors before
making the next hop. In Figure 9, the hopper formation achieves the desired
configuration and position within two hops using control parameters K = 1.5
and Kr = 0.5, with a separation distance of less than 100 meters. We note
that reducing Kr makes the triangular path wider before reaching the desired
position.

In order to have more insight in the control efficiency, the distance to cover
was doubled in the simulation shown in Figure 10. Having a desired position far
from the starting point, we see that the dynamics of the asteroid has a strong
effect on the dynamics and control of the hoppers. In the case shown in Figure 10,
the asteroid has stable polar regions. It is clear that hoppers 2 and 3, which are
closer to these regions, are attracted to them as their trajectories bend toward
the poles. Even though the following hop attempts to correct the situation, the
hoppers are again attracted to it. Note that the paths shown in Figures 9-10 are
made of a series of jumps until the final position and configuration are achieved.
For large formation, it may be impossible to reach the desired position and
configuration.
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Fig. 10. Controlled dynamics of a triangular robot formation with coefficient of restitu-
tion and friction factor set to 0.8 and 0.1, and control parameters K=1.5 and Kr=0.5,
with a distance to cover of 200 meters while the polar region is stable. Hoppers 1, 2,
and 3 have reached their final position.

Hence, the control developed above give good results for small motion, within
100 meters. For large distance to cover, having a higher gain Kr will keep the
formation tight before reaching the final desired location, which may prevent
the hoppers to have their trajectory deflected by stable or unstable regions of
the asteroid. However, further investigation is needed in order to design an op-
timal control system valid for longer travel distances and to possibly counteract
stronger nonlinear perturbations on asteroids.

4 Conclusion

In this work, we use the dynamics of asteroid systems to develop a model for
the dynamics and control of collaborative hoppers for surface exploration on
asteroids. Many perturbations exist from having a rotating body in space. Some
regions may be difficult to access due to stable or unstable equilibrium points, or
for a rapidly rotating body, which gives a motivation for developing a control of
surface landers suitable for asteroid applications. Collaborative robots or probes
can be useful for more accurate and reliable science investigations and to access
particular regions. We developed a control law and showed simulations of single
and collaborative hopping robots in triangular formation taking into account an
absolute desired position and a relative configuration.
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Future work should involve the investigation of different regions on asteroids
for a range of asteroid systems, and for different formation configurations. Also,
one needs to include bounds on velocities to preventing the surface lander from
physically escaping the asteroid, as well as including environment uncertainties.
In addition, the control scheme can be optimized using the time of travel and
fuel consumption for different configurations and tasks.
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7 Av. Edouard Belin, 31077, Toulouse, France
achaibou@ipst.fr

3 EAMAC, The African Civil Aviation Institute,
B.P. 746, Niamey, Niger
bouattara@eamac.ne

Abstract. In this chapter is considered the problem of generation of
time efficient trajectories for N aircraft performing merging maneuvers
behind a leading aircraft. The resulting multi trajectory generation prob-
lem is first considered as a minimum time control problem. The analysis
of the resulting set of complex optimality conditions shows that the min-
imum time trajectories are produced by bang-bang control laws and can
be characterized by few geometric parameters. Based on these considera-
tions, a merging sequence is established for the N aircraft. Then regular
minimum time convergence trajectories can be defined for each aircraft
following a target generated by its own predecessor. For practical con-
siderations it appears necessary to solve on-line this problem. An off-line
exhaustive solution approach, based on reverse dynamic programming is
proposed to cover a large set of initial relative positions. Then feed for-
ward neural networks can be trained to generate on board each aircraft
guidance directives to perform efficiently the overall merging maneuver.

Nomenclature

– θij , ψi : relative and absolute headings of aircraft.
– dij , dmin : distance between aircraft and minimum horizontal separation.
– Vi, V0 : speeds of trailing and leader aircraft.
– φi, ri : bank angle and yaw rate of trailing aircraft.
– λd, λθ, λψ : co-state variables.
– µij , vij , H : dual variables, slack variables and Hamiltonian.
– li, ωi : length and turn angle of ith minimum time path section.
– t, tf , tn : current time, final time and time to point n.
– Pn, S

∗
n, S̃n : nth problem and associated solutions sets.

– xi, yi : coordinates of the ith reference point for a minimum time trajectory.
– Rmin : minimum turn radius.

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 151–166.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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– δij : minimum safe spatial separation.
– amax : maximum aircraft acceleration.
– ρ : relative separation margin.

1 Introduction

In this chapter is considered the problem of on line generation of minimum
time trajectories to be followed by N aircraft to achieve relative convergence
maneuvers. With the development of free flight and autonomous aircraft concepts
in Civil Aviation in the recent years, this problem has received increased interest.
Considering the current and predicted levels of congestion of air traffic, studies
related to the delegation to the flight crew of some tasks currently performed by
air traffic controllers are actively tackled today [1]. Among these studies, relative
guidance between aircraft has appeared to be a promising way to increase air
traffic capacity.

The objective of this chapter is to propose a solution based on cooperative
control to automatically perform simultaneous merging maneuvers. From an op-
erational point of view, and assuming normal operations, the air traffic controller
should be relieved of providing instructions to the trailing aircraft for merging
behind the leading aircraft and maintaining safe spacings between them (see
Figure 1 for an example of traffic situation). Thus, the expected benefit of such
new capabilities is an increase of air traffic capacity and safety. Enhancement of
flight crew airborne traffic situational awareness is also expected with associated
safety benefits. The feasibility of such a relative guidance device is based on
the present ability of modern aircraft to broadcast and receive suitable naviga-
tion data thanks to Automatic Dependent Surveillance-Broadcast (ADS-B) [2].
Among those transmitted navigation data, identification, position, speed and
heading are essential to achieve efficient merging maneuvers.

Fig. 1. Example of radar image at Paris-Charles de Gaulle
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Here the trajectory generation problem is first considered as a minimum time
control problem and optimality conditions (Pontryagine’s maximum principle
[3]) are derived from the mathematical formulation of a global control problem.
The analysis of the corresponding optimality conditions shows that the minimum
time trajectories resulting from optimal bang-bang control laws can be charac-
terized by few geometric parameters while regular minimum time convergence
trajectories can be defined. Then a new mathematical programming problem can
be formulated from the original optimal control problem. Since the evolution of
aircraft is in general subject to perturbations (winds, navigation and guidance
errors, etc), it appears necessary to solve on line this mathematical programming
problem according with the current situation.

Considering the complexity of the problem and since aircraft navigation dy-
namics can produce rapid relative situation changes, the effective on line res-
olution of this problem is not feasible. However a practical solution strategy,
composed of three steps, is proposed in this communication: First, taking ad-
vantage of the properties of the regular minimum time trajectories, a merging
sequence is established for the N aircraft, then an off line exhaustive solution
approach, based on reverse dynamic programming, is developed to cover a large
set of initial relative position, finally, feed forward neural networks are built
and trained to associate to current relative positions of each aircraft, guidance
directives so that they perform efficient merging maneuvers.

The chapter is organized as follows: In Section 2 the trajectory generation
problem is described and formulated, then the optimality conditions are ana-
lyzed and the regular minimum time trajectories are introduced in Section 3, a
sequencing method between merging aircraft is described in Section 4, the gener-
ation of a learning data base through reverse dynamic programming is discussed
in Section 5 , the resulting feed-forward neural networks are displayed and finally
simulations studies are presented in Section 6.

2 Problem Formulation

The case where N trailing aircraft must converge towards the trajectory of an-
other aircraft declared to be the leader is considered in this study. The aircraft
are supposed to maintain their common flight level and their respective speeds
until the convergence maneuver is completed.Then they are supposed to adopt
progressively the speed of the leader aircraft. This maneuver is considered to be
completed once the trailing aircraft satisfy the following conditions: their speed
is parallel to the leader’s speed, they follows the same track and their separations
between themselves and with the leader are larger than a minimum separation
and smaller than a maximal separation for successive aircraft on the final com-
mon track. Here, to avoid redundancies, E is the set of (N+1)N

2 pairs given by
equation (1):

E = {(1, 0), (2, 0), ..., (N, 0), (2, 1), (3, 1)..., (N − 1, N − 2), (N,N − 1)} (1)
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The adopted minimum separations take into account the minimum separation
δij imposed by the rules of Civil Aviation and the difference of speed between
aircraft:

dmin
ij =

{
δij if Vj ≥ Vi

δij + (Vi−Vj)2

amax
if Vj < Vi

(i, j) ∈ E (2)

The maximal separations at convergence are such that:

dmax
ij = dij(0)(1 + ρij) with ρij > 0 (i, j) ∈ E (3)

These bounds allow the aircraft to avoid too wide dispersion along the com-
mon track at convergence by limiting orthogonal convergence towards the com-
mon track. The equations describing the relative motion of the aircraft are
given by:

θ̇ij = (−Vj sin(θij − ψj) + Vi sin(θij − ψi))/dij (i, j) ∈ E (4)

ḋij = Vj cos(θij − ψj) − Vi cos(θij − ψi) (i, j) ∈ E (5)

ψ̇i = ri i ∈ {1, ..., N} (6)

where V0 and Vi are respectively the speed of the leading aircraft and the speed
of the ith trailing aircraft, dij(t) is the instantaneous separation between aircraft
i and j, ψ0 and ψ1 are respectively the headings of the leader aircraft and of the
ith trailing aircraft and θij is the angle of sight of aircraft j from aircraft i (see
Figure 2).

Fig. 2. Relative positions of aircraft
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A measure of the effectiveness of such a maneuver can be given by its total
duration and a minimum time convergence problem whose solution will provide
feasible convergence trajectories for the trailing aircraft is then considered. This
problem can be formulated as:

min

∫ tf

0
dt (7)

under the dynamical constraints (4), (5) and (6) and the limit conditions:

− φmax
i ≤ φi(t) ≤ φmax

i and dmin − dij(t) ≤ 0 i, j ∈ {1, ..., N} (8)

where φi, i ∈ {1, ..., N} are the bank angles of the trailing aircraft and φmax
i , i ∈

{1, ..., N} are their maximum values.
Initial conditions must be met:

dij(0) = d0
ij with dij ≥ dmin

ij , θij(0) = θ0ij (i, j) ∈ E (9)

ψi(tf ) = ψ0 i ∈ {1, ..., N} (10)

as well as final convergence conditions :

ψi(tf ) = ψ0 i ∈ {1, ..., N} (11)

and
θij(tf ) = ψ0 and dmax

ij ≥ dij(tf ≥ dmin
ij , (i, j) ∈ E (12)

The independent variable here is time t with final value tf and the control
variables appear here to be the yaw rates ri of the trailing aircraf. But since
it is supposed that all turn maneuvers are performed in stable conditions, the
following relation holds [10]:

ri = (g/Vi).tgφi i ∈ {1, ..., N} (13)

and the bank angles of the trailing aircraft φi can be taken ultimately as the
actual control variables which must be set by the lateral function of the autopilot
of the trailing aircraft. It is also worth observing that the separation at final
convergence has not been imposed here since the ordering of the trailing aircraft
is not known beforehand.

3 Characterization of Minimum Time Trajectories

Following the classical results of optimal control theory [3], a Hamiltonian H is
associated to the above minimum time optimization problem:

H(θ, d, ψi, ri, λθij , λdij , λψi , µij , νij) =

1 +
∑

(i,j)∈E

(λdij (Vj cos(θij − ψj) − Vi cos(θij − ψi))) +

λθij (−Vj sin(θij − ψj) + Visin(θij − ψi))/dij + λψiri +

µl
ij(dmin − dij + νl

ij

2
) + µh

ij(d
max
ij − dij − νh

ij

2
)) (14)
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where λdij , λθij and λψi are the co-state variables associated to the differential
equations (4), (5) and (6) which provide the rates of change of the state variables
dij , θij and ψi. When considering the minimum separation constraints, dual
variables µij are introduced as well as slack variables νij , which should be such
that:

µα
ij(t) ≥ 0 and µα

ijνij = 0 (i, j) ∈ E α ∈ l, h (15)

The optimality conditions can then be established. They are composed of the
following terms:

- The Hamilton’s canonical equations:

dX/dt = ∂H/∂λ and dλ/dt = −∂H/∂X (16)

with
X ′ = (d′, θ′, ψ′) and λ′ = (λ′d, λ

′
θ, λ

′
ψ) (17)

- The transversality conditions dealing here with initial and final conditions
for the state vector (relations (9), (10), (11) and (12)).

- The minimum principle which states that “the optimal solution is the one
which minimizes the Hamiltonian while meeting the constraints”.

Then to find the solution of this minimum time convergence problem, a sixth
order non-linear two-point boundary problem should in theory be solved. The di-
rect resolution of such problem is in numerical grounds very complex [4], [5] and
is not suited for a real time airborne implementation, especially when transporta-
tion aircraft are concerned. However, the analysis of the minimization conditions
of the associated Hamiltonian with respect to the control variable ri provides
some insight over the optimal trajectory and related operational conditions. In-
deed, the above Hamiltonian presents an affine form with respect to the control
variable since it can be written such as:

H = f(θ, d, ψ, λθ, λd, µ, ν) +
N∑

i=1

λψiri (18)

Then its minimization with respect to the control variables leads to a solution
of the “bang bang” type (here the attached asterisk indicates that the values are
those of an optimal solution)where for i = 1 to N :

r∗i = g tan(φmax)/Vi if λψi(t) < 0 (19)

r∗i = 0 and φ∗i = 0 if λ∗ψi
(t) = 0 (20)

r∗i = −g tan(φmax)/Vi if λψi(t) > 0 (21)

This type of solution has been studied in detail in [7]. It can be shown that the
corresponding optimal trajectories are composed of maximum left or right bank
angle turns according to the sign of the co-state variable λ∗ψi

(t), and by straight
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Fig. 3. Examples of regular convergence trajectories with different orders

evolutions at zero bank angle when this variable maintains the zero value. The
radius associated with the maximum bank angle turns, when performed in a
coordinated way [10], are given by:

Rmin
i = V 2

i /(g.tan(φmax
i )) i = 1 to N (22)

The number and the duration of turns and linear segments depend of the
initial relative positions of the aircraft as well as of their respective speeds.
Three main cases can be then considered:

- One where direct convergence is possible. In this case the optimal conver-
gence trajectory is composed of a straight-line segment followed by a final turn
maneuver to join the route of the leading aircraft.

- One where an initial turn is necessary to insure a converging track for the
trailing aircraft towards the route of the followed aircraft. In this case, the min-
imum time convergence trajectory is composed of two opposite maximum bank
angle turns separated by a straight-line segment.

- One where a preliminary separation maneuver is necessary before starting
convergence. In this last case the convergence trajectory will be composed of
three maximum bank angle turns separated by two straight line segments (one
of them can be reduced to an inflexion point).

A regular convergence trajectory of order n (see Figure 3 for examples of
different orders) can then be defined as a trajectory composed of a succession of
(n+1) pairs, each pair being composed of a straight line segment and a maximum
bank angle turn.

The regular convergence trajectory displayed in Figure 4 is characterized by a
succession of pairs (ωi, li). Here ωi is the angular value of the ith maximum rate
turn and li is the length of the straight line segment leading to the ith maximum
bank angle turn.
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Fig. 4. Representation of a regular convergence trajectory

4 Scheduling of the Merging Aircraft

The numerical solution of the global minimum time problem considered in the
previous sections is difficult to be obtained, mainly when considering working
conditions, so a practical solution scheme is developed here. It is supposed that
the Air Traffic Control- ATC is responsible for establishing the schedule of the
merging aircraft in a given area. Two main situations can be considered:

- One in which, ATC builds up an ordered stream of aircraft from the start by
assigning to the newest arriving aircraft the last rank in the stream. In this case,
given the optimized trajectory of the preceding aircraft, the follower optimizes
its own trajectory.

- One in which, given a preexisting bundle of aircraft, ATC decides to organize
it in a unique stream of aircraft behind a given leader aircraft. In this case,
it is necessary to assign a rank to each aircraft, so that each aircraft shouldl
merge behind the preceding aircraft on the common final track. In this situation,
the decision problem to be solved is in general quite difficult and a trade-off
must be established between the optimality and the complexity of the solution.
Indeed, complex solutions may increase the difficulty for aircraft to perform
safely the resulting maneuvers while it will be difficult for ATC to monitor the
changing traffic situation. What is proposed here, is to solve for each follower
aircraft (i = 1 to N) the problem of its merging towards the leader aircraft
(aircraft 0), ignoring the other aircraft, and then to assign rank 1 to the aircraft
performing the fastest merging maneuver. Then the rank 1 aircraft is taken as
the reference to be followed for the other merging aircraft and the process is
repeated until a rank is assigned to all merging aircraft. However, since the new
leader aircraft is not necessarily on the final track when its direct follower starts
the convergence maneuver, to avoid the generation of complex trajectories, it
appears of interest to built a shadow target representing the new leader aircraft
along the final track.
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Fig. 5. Scheduling of trailing aircraft (first aircraft)

To lessen the difficulty of the overall ranking problem, a simplification is
adopted so that instead of solving N minimum time merging optimization prob-
lems involving aircraft i (i ∈ 1, ..., N) and aircraft 0, a simple geometric problem
is considered: It is supposed that each aircraft performs a direct merging ma-
neuver towards the track of aircraft 0. This constant speed maneuver is taken
to be composed of a first turn at maximum rate, followed by a straight line
segment and a final turn. Of course, initial and final turns can be reduced to
nothing depending on the initial relative situation. With respect to the target
point behind the leading aircraft, to avoid unrealistic solutions, two situations
can be considered:

In the first situation the follower aircraft could violate the minimum separa-
tion with the leading aircraft, in that case, the first turn will be pursued until
minimum separation is guaranteed at convergence.

In the second case, a common reference relative heading, say ±π/4 is adopted
during the straight part of the convergence maneuver. In both cases, if the trail-
ing aircraft has a speed different to the one of the leading aircraft, an additional
segment along the final track must be introduced so that the trailing aircraft
can adopt the speed of the leader. This process is represented in Figure 5.

Let xi0, ti0 be respectively for aircraft of rank i, the linear position at final
convergence in heading (ψF = ψL) and in speed (VF = VL) and the time of
final convergence. Then this aircraft generates for its followers a shadow target
of speed V0 and of position:

x̃i(t) = xi0 − δxi0 + V0(t− ti0) for t ≥ 0 (23)

where δxi0 is an additional separation which can be chosen by the trailing air-
craft considering bad weather or navigation accuracy limitations. Then, the min-
imum time merging trajectory of each trailing aircraft towards its leader may be
computed.

In the next section this problem is first considered in an off-line context and
its solution is extended, through an intensive computing effort necessary to train
a neural network structure, to the on-line context.
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Fig. 6. Representation of a regular convergence trajectory (second trailing aircraft)

5 Off Line Generation of Individual Trajectories

Let Pn((li, ωi), i = 1 to n − 1) be the problem of definition of a minimum
time regular convergence trajectory of order n between a leader aircraft L and
a follower aircraft F , which, starting from the given initial conditions, satisfies
the merging constraints and the minimum separation constraints. Let S∗

n =
((li, ωi), i = 1 to n− 1) be the solution of this problem. From this solution it
is possible to build trivially feasible solutions of higher orders. For instance, for
Pn+1, a feasible solution S̃n+1 is given by:

S̃n+1 = ((li, ωi), i = 1 to n−1)⊕(ln, ωn) with lnn = 0 and ωn
n = 0 (24)

where ⊕ is a concatenation operator for chains of the above pairs.
These solutions having the same duration, it appears that problem Pn+1 must

have a performance at least equal to the one of problem Pn. This result may
appear paradoxical but it is useful to observe that the final convergence point is
not fixed and that minimum separation constraints can become active. However,
in the case in which the final convergence point is fixed, the solution of problem
Pn remains interesting since it can determine if the convergence at this given
point is feasible with an n order trajectory. It is also desirable to limit as much as
possible the number of elementary maneuvers to perform the overall minimum
time convergence maneuver so that the comfort of passengers and crews remain
at an acceptable level and the workload of air traffic controllers does not be-
come excessive. Then the proposed trajectory generation procedure adopts the
following steps:

First choose a maximum order nmax for candidate regular convergence tra-
jectories, then solve problem Pnmax . If this problem has no feasible solution, the
intended maneuver is not possible and the considered aircraft must be deleted
from the merging list.

Considering the solution of the optimization Pn, figure 4 shows that the
duration of a regular convergence maneuver (from point Mn to point M1) is
given by:
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tn =
n−1∑
k=1

(lk +Rminωk)/VF (25)

The convergence conditions can be rewritten as:

dmax ≥ xL(0) + VLtn − (xF (0) +
n−1∑
k=1

(lksin(ψ0 +
k−1∑
h=1

ωh) +

Rmin(cos(ψ0 +
k∑

h=1

ωh) − cos(ψ0 +
k−1∑
h=1

ωh)) ≥ dmin (26)

yF (0)+(
n−1∑
k=1

(lkcos(ψ0+
k−1∑
h=1

ωh)+Rmin(sin(ψ0+
k−1∑
h=1

ωh)−sin(ψ0+
k∑

h=1

ωh))) = 0

(27)

ψF (0) +
n−1∑
h=1

ωh = ψL (28)

The minimum separation constraints take the continuous form:√
(xF (t) − xL(t))2 + (yF (t) − yL(t))2 ≥ dmin ∀t ∈ [0, tn] (29)

and can be approximated by the set of discrete constraints:√
(xF (tkn) − xL(tkn))2 + (yF (tkn) − yL(tkn))2 ≥ dmin k = 1toK (30)

with t0n = 0, tkn = k�T k = 1 to K and tKn = tn (31)

The minimization of tn (equation (25) under constraints (26), (27), (28), (30)
and (31) is a non-convex mathematical programming problem. An exact method
which seems of interest here once the problem has been discretized is Dynamic
Programming [8]. This method is known to be quite efficient to construct re-
cursively a solution for a separable optimization problem. To turn separable the
above problem, constraints (30) can be changed to:

|xF (tkn − xL(tkn)| ≥ dmin for tkn ∈ TX

and |yF (tkn − yL(tkn)| ≥ dmin for tkn ∈ TY (32)

where TXand TY constitute a partition of (t0n, t1n, ..., tKn ). The optimality con-
ditions established in Section 3 have not allowed to get a practical numerical
solution to an instance (initial relative positions, aircraft speeds and final rela-
tive positions) of the minimum time convergence problem, however, they have
provided a good insight into the regular structure of optimal convergence tra-
jectories. The retained formulation for problem Pnmax does not lead as well to a
solution process which can be effectively run on board the aircraft. Nevertheless,
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Fig. 7. Inverse generation of optimal convergence trajectories sets

Fig. 8. Discretization of the convergence manoeuver relative space

if initial conditions are relaxed from problem Pnmax , it is possible to solve it
step by step, starting from final imposed convergence conditions, using a reverse
dynamic programming process. Then, it is possible to generate in sequence and
in a reverse way, the set of triplets (xs

0, y
s
0, ψ

s
0) associated to the corresponding

nmax order feasible optimal convergence trajectories. Then, if the angular range
of ω is discretized into Nω values, such as ωk = (k − 1)�ω, k = 1 to Nω,
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Table 1. Size of merging parameters neural network generators

Parameter Number of neurones in the hidden layer
Length of initial progression 35

Angle of first turn 40
Length of intermediate progression 35

Angle of second turn 40
Length of the third progression 20

Angle of final turn 30

and if the length of the straight segments is discretized into Nl values such as
lh = (h−1)�l, h = 1 to Nl , at each stage, the number of generated triplets
will be multiplied by Nl(2Nω −1). The recursive structure of the algorithm used
for the generation of the convergence trajectories is displayed in Figure 7. The
set of generated trajectories builds a tree whose root is given by (−D, 0, ψL) in
a reference frame of R2 × [0, 2π], attached to the final estimated position of the
leading aircraf. Here D is the final separation. To each point in this space are
associated the starting parameters of an optimal regular trajectory of minimal
order. This input-output data can be memorized in a data base to give grounds
to an on-line interpolation by the relative guidance computers of the merging
aircraft( Figure 8).

6 On-Line Generation of Guidance Directives

It has been shown above that possible solution trajectories present a large di-
versity of regular shapes. In general a convergence trajectory will last at least
some minutes during which the aircraft can be submitted to wind effects and to
inaccuracies of the navigation and guidance systems. Also, during this period,
the leading aircraft can be driven by the air traffic control system to modify its
flight plan or its guidance references. Then, once the convergence maneuver is
started, it will be necessary to restart repeatedly the problem of generation of
new minimum time convergence trajectories. Then it appears interesting to de-
signe a new system able to perform an on line generation of the current guidance
parameters necessary to perform a whole convergence trajectory.

Then at regular time intervals (some seconds), the relative guidance com-
puter of a trailing aircraft must assess its relative position with respect to its
predecessor, then it will check in the database of the new guidance system which
absolute guidance parameters have to be adopted momentarily to goes on effi-
ciently with the convergence maneuver. Since in many situations, no database
input is exactly identical with the current relative situation of a trailing aircraft,
an interpolation appears necessary. This can be achieved using a classical feed
forward neural network device as it has been proved to be effective in [9] (see
Figure 9 where x and y are the position, ψ is the heading and φ is the bank
angle of the trailing aircraft).
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Fig. 9. Adopted neural network structure

Fig. 10. Example of possible convergence trajectory representation on a Navigation
Display (ND) Global view

Fig. 11. Example of steady convergence maneuver

In Figure 10 the navigation display (ND) of an in trail aircraft is presented.
This in trail aircraft is to start a convergence maneuver towards flight AF332
which is estimated to last 5 minutes and 20 seconds over a distance of 40 nautical
miles. Various numerical simulation experiments involving accurate wide body
simulation models have been performed. The new guidance function has been
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Fig. 12. Example of swirling convergence maneuver

integrated into the simulated autopilot of the trailing aircraft and has provided
smooth convergent trajectories. Different case studies have been considered, in-
cluding some in which the leading aircraft follows a straight route (Figure 11)
and some in which the leading aircraft performs unexpected lateral maneuvers
(Figure12).

7 Conclusion

In this chapter the merging manoeuver of N aircraft behind a leading aircraft
has been considered. The whole problem has been first formulated as a minimum
time control problem. Optimality conditions have been derived and their analysis
has shown that the minimum time convergence trajectories can be characterized
by some few geometric parameters. Then a new mathematical programming
problem can be formulated from the original optimal control problem to generate
sets of regular convergence trajectories. This allows ATC to choose simply a
merging sequence for the N aircraft and the global merging problem can be split
in N dual leader-follower relative guidance problems. Since the flight evolution
of each aircraft is in general subject to perturbations it appeared of interest to
introduce a neural network structure to provide in real time updated directives
to the guidance system of each merging aircraft.

Here the adopted coordination principle is based on the characteristics of the
minimum time convergence trajectories since they allow the ATC to establish
the merging sequence and then they provide to each merging aircraft a guide-
way to perform autonomously its own merging maneuver.It appears that the
proposed solution is compatible with modern on board guidance systems ([11]
and [12]) and may contribute to enhance booth safety and capacity of the air
traffic system.
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1 Department of Autonomous Systems,
Swedish Defence Research Institute (FOI),

SE-164 90 Stockholm, Sweden
{johan.thunberg,petter.ogren}@foi.se

2 Optimization and Systems Theory,
Royal Institute of Technology (KTH),

SE-100 44 Stockholm, Sweden
anisi@kth.se

Abstract. Many important problems involving a group of unmanned
ground vehicles (UGVs) are closely related to the multi traviling sales-
man problem (m-TSP). This paper comprises a comparative study of a
number of algorithms proposed in the litterature to solve m-TSPs occur-
ing in robotics.

The investigated algoritms include two mixed integer linear program-
ming (MILP) formulations, a market based approach (MA), a Voronoi
partition step (VP) combined with the local search used in MA, and a
deterministic and a stocastic version of the granular tabu search (GTS).

To evaluate the algoritms, an m-TSP is derived from a planar envi-
ronment with polygonal obstacles and uniformly distributed targets and
vehicle positions.

The results of the comparison indicate that out of the decentralized
approaches, the MA yield good solutions but requires long computation
times, while VP is fast but not as good. The two MILP approaches suffer
from long computation times, and poor results due to the decomposition
of the assignment and path planning steps. Finally, the two GTS algo-
rithms yield good results in short times with inputs from MA as well as
the much faster VP. Thus the best performing centralized approach is
the GTS in combination with the VP.

1 Introduction

Often missions with systems of unmanned ground vehicles (UGVs) translate into
NP-hard problems. A way to simplify the problem is to decompose the mission
into a set of subproblems. One such decomposition is to design a task assignment
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problem which allocates tasks to the vehicles, and a path planning box which
solves the path planing problem for each vehicle. Beneath the path planning
box low level boxes dealing with trajectory planing and vehicle actuators can be
used.

If task assignment and path planning occurs in a cooperative manner,
i.e. there is no clear dividement between task assignment and path planning, it
will be referred to as cooperative task assignment and path planning (CTAPP)
or a one-box approach. On the contrary if task assignment and path planning
occurs sequentially, i.e. there is no feedback from path planning to task assign-
ment, it will be referred to as sequential task assignment and path planning
(STAPP). In [11] a taxonomy is presented over many multivehicle task assign-
ment problems.

A multivehicle system have many axis of freedom [13] such as centralized
system vs. decentralized system and explicit comunication vs. implicit communi-
cation. A good algorithm should be able to handle these different aspects. Many
algorithms have been suggested over the years, but comparative studies of the
their performance are still lacking, presenting such a comparative study is the
main contribution of the paper in hand. In [15] a comparative study over UAV
path planning, can be found.

Some of the main research directions include meta heuristic approaches such
as tabu search [4, 9, 17, 18] simulated annealing or ant colony optimization [9].
Market based approaches where the system of vehicles shall resemble a market
economy, have also drawn much attention lately [5, 16, 22, 26, 27]. Often the
missions can be formulated as mixed integer linear programming (MILP) prob-
lems [1, 6, 21]. Some MILP approaches are introduced in [14] that solve task
assignment and path planning sequentially (STAPP) for a problem similar to
the multi traveling salesman problem (m-TSP). In missions including threats,
voronoi diagrams are commonly used [2, 12]. Voronoi diagrams can also be used
in task assignment [8] or in obstacle avoidance [19].

The outline of this paper is as follows. In Section 2 the problem will be defined
on which the algorithms are compared and in Section 3, the algorithms will be
presented. Then, in Section 4 it will be described how they are implemented and
results will be presented. Finally, conclusions are drawn in Section 5.

2 Comparative Study

There are assumed to be a group of N vehicles that live on a connected compact
subset of R

2, for simplicitly a square. This set, which will be referred to as Q,
will have polygonal holes representing obstacles. Targets or tasks are defined as
points in Q that must be visited to fulfill an objective.

In this setting the algorithms will be compared on the following problem.

Problem 1 (Multi-vehicle multi-task problem). Consider N vehicles and M tar-
gets uniformly distributed on Q. Each vehicle has the capacity to visit all targets
and each target must be visited by one vehicle and one vehicle only. Find the
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optimal paths for the vehicles so that all targets are visited and either the mission
completion time (a) or the fuel consumption (b) is minimized.

Constant vehicle speed is assumed and minimizing completion time is hence
equivalent to minimizing the length of the longest path for any vehicle. Therfore,
Problem 1a is refered to as the min-max objective. Minimizing fuel consumption
for the vehicle group is further more assumed to be the same as minimizing the
total distance traveled for the vehicle group. Problem 1b is thus referred to as
the min-sum objective.

3 Algorithms

In this section we first list the algorithms being compared, and then give a more
detailed description of them. The first algorithm is the market based approach,
presented in [26]. The next two methods are two of the mixed integer linear
programming (MILP) methods presented in [14] and the fourth method is a
voronoi partitioning algorithm inspired by [8]. Also included in this study is the
granular tabu search [25] and a stochastic modification of it. The algorithms are
slightly modified to fit Problem 1 and compared in Monte carlo simulations. The
methods are not only chosen on the basis of their closeness to optimality, char-
acteristics like computational time and possibilities to work in different systems
such as decentralized or centralized ones are also important.

3.1 Market Based Approach

This market based algorithm is presented in [26] and is a CTAPP algorithm. The
algorithm will be referred to as MA. The mission is to allocate a group of targets
to a group of vehicles. For that purpose bidding rules are introduced. Assume
there are N vehicles r1, ..., rN and M currently unallocated targets t1, ..., tM .
Assume further that a set of targets Ti is assigned to each vehicle ri, i.e. there
is a set {T1, ..., TN}. Let PC(ri,Ti) denote the minimum path cost of vehicle ri
when visiting all targets in Ti. The values of PC(ri,Ti) are calculated locally
using a meta-heuristic procedure. The two team objectives are

– Problem 1a (min-sum): minT

∑
j PC(ri,Ti), and

– Problem 1b (min-max): minT maxj PC(ri,Ti)

Each unallocated target is bidden upon by vehicles in a so-called bidding
round according to a bidding rule. The vehicle with the lowest bid will win, and
the target will be allocated to that vehicle.

Bidding Rule. Robot r bids on target t the difference in performance for the
given team objective between the current allocation of targets to vehicles
and the allocation that results from the current one if robot r is allocated
target t. (Unallocated targets are ignored.)
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The advantage of having this auction based system, is that each vehicle is
decoupled from the others in the bidding process, which makes the system ro-
bust. The process will continue if a vehicle suddenly stops responding, due to a
software or hardware failure. The targets that were allocated to that vehicle will
be unallocated once again. Since an auctioneer has to be present, the system is
not fully decentralized. If the auctions are administrated by a single unit, there
will be a single point of failure. However the process can be made more robust
if the auction is administrated by a group of vehicles.

Each vehicle maintains a path visiting the targets that are allocated to it. A
bid on a target is performed in the following steps. First the target is inserted into
all possible positions of the path associated with the vehicle, and new temporary
paths are created.

Each temporary path, will now be improved by two sequentially performed
local search heuristics, or hill climbing algorithms. The first algorithm uses the
2-opt improvement rule, which takes the path and reverses the order of each
of its continuous subpaths, takes the best path and repeats the process un-
til no improvement is possible [10, 23, 26]. The second algorithm is performed
on the path that is generated by the first algorithm and uses the 1-target 3-
opt improvement rule, which takes a target and puts it between two other
targets [3, 26].

3.2 Two MILP Approaches

The mixed integer linear programming (MILP) algorithms described below can
be found in [14]. The algorithms will be referred to as MILP1 and MILP2 and are
STAPP algorithms. In accordance with [26], these algorithms are only applied
to Problem (1a), i.e. the min-max objective, and we use the notation of [15]
below.

The objective is to calculate T ∗, where

T ∗ ≡ min
j

max
A(j)i

T (j)∗i ,

is the least maximum traveling cost among all vehicles finishing all its subassign-
ments. The assignment A(j) ∈ A is one of the feasible assignments, A(j)i is the
the subassignment given to the ith vehicle, and T (j)∗i is the traveling cost for
the ith vehicle finishing all its subassignments.

Two problems are described in [15], one in which the vehicles need to return
to their start positions and one in which they do not. Only the latter one will
be considered, since it coincide with Problem 1 for the min-max objective. The
cost C0(i, k) is the cost of traveling from the start position of the ith vehicle to
the position of the kth target, and C0 is a matrix. The function η(υ, ω) is defined
as η(υ, ω) = (υ − 1)N − υ(υ − 1)/2 + ω − υ, where η ≤ υ. It is a mapping from
{1, . . . , N}×{1, . . . , N} → {1, . . . , N(N−1)} and is used to convert a two index
variable, xij into a single index variable, x̄k with k = η(i, j). The cost vector
c(η(υ, ω)) is the cost of traveling between the target υ and ω.
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An exact formulation E and two non-exact algorithms H1 and H2 are pro-
posed for the problem. The two non-exact methods are STAPP algorithms. The
exact MILP formulation E is:

FE : minimize r
M∑

k=1

ak
ij ≤ 1 ∀i, j, (1)

N∑
i=1

q∑
j=1

ak
ij = 1 ∀k, (2)

ak
ij ∈ {0, 1} ∀i, j, k, (3)
M∑

k=1

ak
i(j+1) ≤

M∑
k=1

ak
ij ∀i, j, (4)

aυ
ij + aω

i(j+1) + aω
ij + aυ

i(j+1) = 2yj
iη(υ,ω) + ỹj

iη(υ,ω) ∀i, j, υ, ω, (5)

yiη(υ,ω) =
∑

j

yj
iη(υ,ω) ∀i, υ, ω, (6)

yj
iη(υ,ω) ∈ {0, 1}, ỹj

iη(υ,ω) ∈ [0, 1] ∀i, j, υ, ω, (7)

M∑
k=1

C0(i, k)ak
i1 +

n−1∑
v=1

M∑
ω=υ+1

c(η(υ, ω))yiη(υ,ω) ≤ r ∀i, (8)

where i ∈ {1, ...,M}, j ∈ {1, ..., q} for (1), (2) and (3) or j ∈ {1, ..., q − 1} for
(4), (5), (6) and (7). Each vehicle has a capacity limit of handling q targets.
The binary variable ak

ij only equals 1 when the kth target is contained in the jth

so-called room of the ith vehicle. Each room can at most contain one vehicle,
and every vehicles must be contained in some room, (1) and (2), respectively.
The rooms of a vehicle must be filled in ascending order, (4). In (5) the binary
variable yj

iη(υ,ω) equals 1 if target υ and ω are contained in the jth and the

(j + 1)th room of the ith vehicle. If only one room is filled, ỹj
iη(υ,ω) equals 1.

In (6) the room index is reduced and the binary variable yiη(υ,ω) is used in the
total cost of each vehicle, (8). Equation (8) is the total cost of each vehicle when
finishing all its tasks. The amount of binary variables needed for E is of order
MN2q.

The only modifications that need to be done to adapt this formulation to the
formulation in Problem 1, is that the room size of each vehicle, q, equals M .
This algorithm is only implemented for the min-max objective.

The two nonexact MILP formulations H1 and H2 are two step procedures.
In the first step a partitioning MILP will run and allocate targets to vehicles,
resulting in a target set for each vehicle. In the second step FE will run on each
vehicle-target set, i.e. FE will runN times in total. The two different partitioning
methods are presented below.
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Partition H1

F1 : minimize r

subject to:
M∑

j=1

xij ≤ q ∀i, (9)

N∑
i=1

xij = 1 ∀j, (10)

C0(i, j)xij ≤ r ∀i, (11)
xi,j ∈ {0, 1} ∀i, j, (12)

where vehicle index i ∈ {1, ..., N} and target index j ∈ {1, ...,M}. This MILP re-
quires onlyMN binary variables and reduces the computation time significantly.
However in this partitioning the maximum distance between a target and a ve-
hicle is minimized, which means that an optimal solution not necessarily is the
voronoi partitioning. The voronoi partitioning is however always guaranteed to
be an optimal solution to the problem above. The binary variable xij equals one
if target j is allocated to vehicle j.

Partition H2

F2 : minimize r

subject to:

M∑
j=1

xij ≤ q ∀i, (13)

N∑
i=1

xij = 1 ∀j, (14)

yiη(j,k) ≤ xij + xik

2
≤ yiη(j,k) +

1
2

∀i, j, k (j < k) (15)

c(η(j, k))yiη(j,k) ≤ r ∀i, j, k (j < k), (16)
C0(i, j)xij ≤ r ∀i, (17)
xi,j , yiη(j,k) ∈ {0, 1} ∀i, j, k (j < k), (18)

where i ∈ {1, ..., N} and j ∈ {1, ...,M}. This program also minimizes the dis-
tance between the two targets that are assigned to the same vehicle and are
furthest away from each other. This MILP requires M2N binary variables. The
two methods of solving a partitioning problem H1 and then E, and H2 and then
E will from now on be referred to as MILP1 and MILP2 respectively.
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3.3 Voronoi Partitioning

This algorithm is a STAPP algorithm. First a task assignment process is per-
formed using a so-called Voronoi partitioning [8], then the local search described
in (MA) above is applied.

This algorithm is inspired by [8], but is not an exact implimentation. The
same partitioning technique is used. The idea is to first allocate each target to
its nearest vehicle. This is the same as constructing a so-called Voronoi diagram.
After this partitioning has been performed, each vehicle will solve a traveling
salesman problem (TSP) on its subset of targets, using the local search of (MA).
The Voronoi partitioning is polynomial in time.

3.4 Granular Tabu Search

This is a slightly adjusted version of the granular tabu search (GTS), described
in [25]. The algorithm is applicable to a broad class of combinatorial optimization
problems, but is implemented for Problem 1. Some new features are added to
make the algorithm a bit more effective, and the algorithm is adjusted to fit
both objectives; 1a (min-max) and 1b (min-sum). A stochastic variant of this
algorithm was also evaluated. These algorithms are CTAPP algorithms, and will
be referred to as GTS and SGTS respectively.

This is a meta heuristic method that is applied to a feasible starting guess,
the result of another algorithm. First one of the other algorithms are applied
to Problem 1, and a solution is generated. This solution is the input to GTS,
which aims at improving the solution further. The only constraint on the input
solution is that it is feasible. However it will work better on a good solution
because of the granularity threshold explained below.

The solution paths of all vehicles are represented by two vectors of size N+M ,
and are denoted IN and OUT . The first N elements of the vectors correspond to
the vehicle positons and the last M elements correspond to the target positions.
Each vehicle and target has a unique id-number in the interval (0,...,N+M−1).
The elements IN(i) and OUT (i) are the positions that are visited before and
after target i on the vehicle path that visits target i.

A virtual depot position is created, which has id-number N+M . The elements
IN(i) = N +M ∀i ∈ {0, ..., N − 1}. The output, i.e. OUT , of the targets that
are the last targets on a vehicle path also equals N +M . The virtual depot is
an easy way to see where a path starts and ends. Of course, the inputs of the
vehicles must always be the virtual depot.

The main idea behind tabu search heuristics are that local search or hill
climbing algorithms are used, but to avoid local minima tabu lists are introduced.
In these lists recent moves are stored and regarded as tabu, i.e. they cannot be
used. Also when a local minimum has been reached, the algorithm is forced to
make a move even though it will not improve the solution, see Figure 1. When
the solution has not been improved for n iterations the algorithm stops and the
best solution achieved during the algorithm is collected. In this algorithm an
overriding criteria is used, where moves in the tabu lists can be used if it leads
to a new global minimum.
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The term move needs to be explained further. Moves or exchange operators
operate on arcs, where an arc in this context is the directed closest path from
one target or vehicle to another target. In a k-exchange or k-opt move, k arcs are
removed and replaced by k other arcs, hence the cardinality of the neighborhod
of all possible k-exchanges is O((N +M)k). Special exchange operators that are
2-opt, 3-opt and 4-opt will be used that only has the neighborhod cardinality
O((N +M)2).

The following exchange/move operators will be used: The two exchange, the
target insertion, the two target insertion and the swap. These are illustrated in
Figure 2.

There are (N +M)2 arcs, however the arcs between the vehicles are given a
very large cost. Not all arcs are used in the algorithm, which is the core aspect
of this algorithm. Only arcs that have an associated cost that is smaller than a
certain granularity threshold υ. The threshold υ is calculated as

υ = β
z

N +M
,

where z is the cost of the solution of the input algorithm to GTS, e.g. the market
based algorithm. Running GTS with MA as input algorithm will be referred to as
GTS-MA. The threshold is a factor β of the average arc cost in the input solution
to GTS. Various values of β can be used. If the solution is not improved for a
certain number of steps, β is increased to a higher value during some consecutive
iterations, and then decreased to a lower value again.

Fig. 1. The cost at each iteration is shown for the tabu search algorithms (GTS) in a
scenario with 20 vehicles and 40 targets

When using the vectors IN andOUT the change of the cost of the total solution
when applying a move is calculated in constant time. Just to demonstrate this fact,
the exchange operator with the min-sum objective will be looked at. The exchange
is applied on arc (a1, b2) in Figure 2. The change in total cost will be

−cost(a1, OUT (a1)) − cost(IN(b2), b2)+

cost(a1, b2) + cost(IN(b2), OUT (a1)),
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Fig. 2. The four exchange operators. Here a and b are two different vehicle paths.

where OUT (a1) = a2 and IN(b2) = b1. In the stochastic version of this algo-
rithm, the best moves are not always chosen in the local search process. With some
probability, other moves can also be chosen.

This concludes the algorithm descriptions.

4 Implementation and Results

In this section we will describe the simulation environment and the results of
running the algoritms.

4.1 Simulation Environment

The simulation environment consists of two parts. In the first part a problem
instance in terms of an environment is generated, and in the second part the
algorithms are applied to this problem instance.

In the environmental generation part, first a scenario is generated according to
Problem 1. From the scenario a visibility graph is generated [20]. The third and
last step of the environmental generation process is to calculate a cost matrix.
This is a matrix where the (i,j):th entry is the optimal cost of traveling between
vehicle/target i and vehicle/target j, where element (i,j) is equal to element
(j,i). The minimum cost path between two nodes is calculated using the A*-
graph search algorithm [7].

In the second part the algorithms are compared on the same cost matrix.
All the algorithms except for the MILP methods are implemented in C++. The
MILP methods are implemented in the matlab interface of CPLEX 8.0.

4.2 Results

The results are presented in Figures 3-8. First we describe the technical details
of the data set and then we discuss the results one figure at a time.
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Fig. 3. Cost comparison for 4-vehicle problems using the min-max objective. Note that
VP and MILP1 find the highest costs, followed by MILP2 and MA while most of the
time, all (S)GTS find lower costs.

In all scenarios there are 12 rectilinear possibly nonconvex polygonal buildings.
For each combination of vehicles and targets there are 50 generated scenarios
in figure 3, and 25 generated scenarios in Figures 5-8. The MILP algorithms
are not included in Figures 5-8, because of the high computational times on
large problems. The computational times presented in Figure 4 are found using
CPLEX 8.0. on an Intel Pentium 4 2.40GHz with 512 MB ram, while the times
in Figures 6 and 8 are from simulations on an Intel Pentium M 1.6 GHz with
1280 MB ram.

Running the algoritms on a small problem of 4 vehicles and up to 11 tar-
gets we get the costs depicted in Figure 3, where it can be seen that the
GTS and SGTS find lower costs than the rest. The corresponding computation
times are an order of magnitude higher for the two MILP approaches. These are

Fig. 4. Time comparison for MILP algorithms on the 4-vehicle problems using the
min-max objective. Computation times for the other algorithms on a larger problem
can be found in Figure 6.
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Fig. 5. Cost comparisons for 20-vehicle problems using the min-sum objective. Note
that the MA is consistently better than the VP, both as stand alone algorithms and as
inputs to the (S)GTS. The best costs are found using MA-GTS and MA-SGTS.

therefore shown separately in Figure 4, where the median computation times
are shown. In fact the worst computation times on these problems were as large
as 200 seconds for the MILP1 algorithm on a problem with 4 vehicles and 10
targets.

The results from a larger problem with 20 vehicles and up to 70 targets
can be found in Figures 5-6. Here it can be seen that while the VP is
faster than the MA, the MA finds lower costs than VP. Both of MA and VP
are easily to implement in a decentralized manner to improve overall system
robustness.

If, on the other hand, centralized computations can be made, the GTS and
SGTS algorithms can improve the results of the VP considerably. Using MA or
VP as inputs to GTS or SGTS the resulting costs differ only slightly, while the
combined computation times are still much longer for the algorithms using MA
as starting solution.

The differences between the GTS and the SGTS are small. Most of the time
the GTS find better solutions than the SGTS, but sometimes the opposite holds.

Fixing the number of targets at 20 and varying the number of vehicles from
two to ten you get the results depicted in Figures 7-8. The overall trends are the
same as in Figures 5-6.

As seen above, the division of the combined task assignment and path planning
problem (CTAPP) into two separate problems (STAPP), as in VP and MILP1,2
can give lower computation times, but at the price of solution quality. The
solutions can however be improved upon using heuristics, such as the (S)GTS,
if centralized computations can be performed.

We were surprised by the performance of the algorithm proposed in [25] and
we think that heuristics such as the GTS should be considered, before trad-
ing solution quality for computation time by partitioning hard problems into
subproblems with different optimal solutions. For more results see [24].
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Fig. 6. Time comparison for 20-vehicle problems using the min-sum objective. All VP
algorithms finish well under 0.2 s, while the MA ones need up to 1.8 s. Note that the
total running time of e.g.the GTS-MA is the sum of the MA and the GTS-MA curves.

Fig. 7. Cost comparison for 20-target problems using the min-sum objective. As in
Figure 5 above, the best costs are found using MA-GTS and MA-SGTS.

Fig. 8. Time comparison for 20-target problems using the min-sum objective. As in
Figure 6, the total computational times of the MA algorithms are larger then the VP
ones.
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5 Conclusion

From the results it can be deduced that the STAPP algorithms VP, MILP1 and
MILP2 are outperformed by the CTAPP algorithms MA, GTS and SGTS. The
best algorithm was the granular tabu search, also when considering computa-
tional time. The market based algorithm (MA) is robust and easy to implement
in a decentralized system, if it is possible to run the algorithms centralized, GTS
is preferably used. On most problems, the computational times are low enough
for the best algorithms to run on-line to respond to changes in the environmental
information.
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19. Lindhe, M., Ögren, P., Johansson, K.H.: Flocking with Obstacle Avoidance: A New
Distributed Coordination Algorithm Based on Voronoi Partitions. In: Proceedings
of the 2005 IEEE International Conference on Robotics and Automation, 2005, pp.
1785–1790 (2005)

20. Overmars, M.H., Welzl, E.: New methods for computing visibility graphs. In: Pro-
ceedings of the fourth annual symposium on Computational geometry, pp. 164–171
(1988)

21. Panton, D.M., Elbers, A.W.: Mission planning for synthetic aperture radar surveil-
lance. Interfaces 29(2), 73–88 (1999)

22. Pikovsky, A., Shabalin, P., Bichler, M.: Iterative Combinatorial Auctions with Lin-
ear Prices: Results of Numerical Experiments. In: E-Commerce Technology, 2006.
The 8th IEEE International Conference on and Enterprise Computing, The 3rd
IEEE International Conference on E-Commerce, and E-Services, p. 39 (2006)

23. Renaud, J., Boctor, F.F.: A sweep-based algorithm for the fleet size and mix ve-
hicle routing problem. European Journal of Operational Research 140(3), 618–628
(2002)

24. Thunberg, J.: Task assignment and path planning for systems of surveillance un-
manned ground vehicles. Master’s thesis, The Royal Institute of Technology, KTH
(2007)

25. Toth, P., Vigo, D.: The Granular Tabu Search and Its Application to the Vehicle-
Routing Problem. INFORMS Journal on Computing 15(4), 333–346 (2003)

26. Tovey, C., Lagoudakis, M.G., Jain, S., Koenig, S.: The generation of bidding rules
for auction-based robot coordination. In: Proceedings of the 3rd International
Multi-Robot Systems Workshop, pp. 14–16 (2005)

27. Zlot, R., Stentz, A.: Market-based Multirobot Coordination for Complex Tasks.
The International Journal of Robotics Research 25(1), 73 (2006)



Optimal Control of the Weapon Operating
Characteristic with Control Inequality Constraints�

John Bode II, David Jacques, and Meir Pachter

Air Force Institute of Technology
2950 Hobson Way, Bldg 640

Wright-Patterson Air Force Base, OH, 45433, USA
{John.Bode,David.Jacques,Meir.Pachter}@Afit.edu

Abstract. Optimal employment of autonomous wide area search munitions or
unmanned aerial vehicles is considered. The air vehicle searches a battle space for
stationary targets in the presence of false targets and/or clutter. A control prob-
lem is formulated to achieve optimal scheduling of the control variables PTR, the
probability of target report, which is a reflection of the sensor’s threshold setting,
and Q, the area coverage rate. These optimal control problem formulations yield
solutions that maximize the probability of target attack while at the same time
also satisfying hard bounds on the probability of false target attacks. Analysis
has shown that the optimal solutions are sensitive to the particular relationship
between the sensor’s receiver operating characteristic parameter, c, and area cov-
erage rate, Q. In this chapter, several different heuristics for this particular rela-
tionship are studied and the optimal dynamic schedules of the sensor threshold
and area coverage rate are obtained.

1 Introduction

The use of Unmanned Aerial Vehicles (UAVs) in both surveillance and attack missions
is ever increasing. Much of this can be attributed to the promises of reduced materiel
costs and the growing uneasiness of Americans to accept casualties in military opera-
tions. UAVs have successfully been employed in reconnaissance; and recently as attack
platforms in the Middle-East and Afghanistan. A recent article from Balad Air Base,
Iraq, demonstrates this point. “The airplane is the size of a jet fighter, powered by a
turboprop engine, able to fly at 300 mph and reach 50,000 feet. It’s outfitted with in-
frared, laser and radar targeting, and with a ton and a half of guided bombs and missiles.
The Reaper is loaded, but there’s no one on board.... The arrival of these outsized U.S.
“hunter-killer” drones, in aviation history’s first robot attack squadron, will be a wa-
tershed moment even in an Iraq that has seen too many innovative ways to hunt and
kill,” says the regional U.S. air commander [1]. Plans are being developed for an ever
expanding role of these unmanned aircraft in current and future conflicts.
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Government. This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.
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The search and destroy mission involves searching, detecting, classifying, and at-
tacking targets. Different types of UAVs using Autonomous Target Recognition (ATR)
may be used. A sensor craft could autonomously locate and classify objects, then pass
the target information to a separate attack aircraft that is the shooter. In a similar way,
an Unmanned Combat Aerial Vehicle (UCAV) could autonomously locate, classify, and
destroy targets. An expendable autonomous Wide Area Search Munition (WASM) lo-
cates, classifies, and destroys a target as well as itself in the process.

In this chapter, UAVs with different quantities of warheads are considered. The
infinite-warhead case is used to mathematically model the zero-warhead sensor craft
case since it is not limited in the number of target attacks (although it is fuel/time lim-
ited). The sensor crafts mission does not terminate because it runs out of warheads, but
it continues to search and classify until the search area is covered. Therefore, a sensor
craft is mathematically equivalent to a vehicle having an infinite number of warheads.

For the scenarios considered herein, any objects reported as targets (correctly or in-
correctly) are attacked. We are obviously interested in increasing the probability of true
target attacks. This is achieved by lowering the sensor’s threshold, namely, increas-
ing the conditional probability of target report given encounter, PTR. Unfortunately, the
conditional probability of false target report given encounter, PFT R, then decreases, in-
creasing the false alarm rate, 1−PFT R. This is disastrous, in particular when the ratio
of targets to false targets is low.

We are interested in the optimal employment of UAVs. On the one hand, we are try-
ing to correctly identify and attack as many true targets as possible. This is constrained
by attempting to keep at the same time the number of misidentified targets attacked be-
low a prescribed maximum. In this chapter, we expand on the analytic derivation of the
previously established Weapon Operating Characteristic (WOC) [2] by including con-
trol inequality constraints and using the analytic expression for the Receiver Operating
Characteristic (ROC) parameter, c.

The number of false target attacks during a mission is denoted m, and the number of
target attacks is denoted n. System effectiveness can be quantified using the probability
of at least m̄ false target attacks, denoted P(m ≥ m̄), and the probability of at least n true
target attacks, denoted P(n ≥ n). The values for m̄ and n are specified by the mission
planner. From this, we can formulate the general optimal control problem

Max: P(n ≥ n)
s.t.: P(m ≥ m̄) ≤ b

m,n: ∈ Z
+

where the upper bound b is set by the mission planner. Note that m and n could take on
the value of zero but that would result in a trivial solution resulting from fact that the
conditional probability would be exactly equal to 1.

2 Search and Destroy Mission

As previously discussed, the search and destroy mission involves search, detection, clas-
sification, and attack. A“linear” search pattern is considered, as depicted in Figure 1.
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Fig. 1. Linear Battle Space Search Pattern

Figure 1 represents the three different types of UAVs; a sensor craft, a UCAV, or a
WASM searching the battle space in a swath of area at a time. Figure 1 shows a con-
stant swath width, however the pattern could be dynamically set during the course of a
mission. Further, any irregular-shaped battle space can be covered by a union of rectan-
gular regions, closely approximating the shape of the region.

Area coverage rate can be varied in a number of ways. For constant-altitude flight,
area coverage rate is the product of velocity and swath width. Thus, changing either
parameter changes the area coverage rate. Swath width is constrained by the sensor
gimbal limits and/or the sensor field of view. For a fixed sensor field of view and a
fixed velocity, increasing altitude increases the area coverage rate while at the same
time reducing the number of pixels on the target. In the present formulation, the flight
condition in terms of altitude, velocity, and swath width will all be rolled up into area
coverage rate, Q, which will be one of the two control variables. The second control
variable is PTR, which is directly determined by the sensor threshold setting.

Six different scenarios were considered by Jacques and Pachter [3]. These scenarios
allow for different search patterns, true and false target distributions, and also a finite
number of targets uniformly distributed. This chapter will consider the scenario where
a single target is uniformly distributed in a space among a Poisson field of false targets
(Scenario 1 in [3]).

The sensor reports a detected object as either a target, thereby authorizing an attack,
or a false target, thereby commanding no attack. Sensor performance is judged by how
often the sensor is correct. The probability of a target report is the conditional proba-
bility that the system correctly reports a target when a target is encountered. Selecting
a sensor threshold is tantamount to selecting the probability of target report, PT R. The
sensor can also be wrong and a target can go undetected with probability 1−PTR. Sim-
ilarly, the probability of false target report, PFTR, is the conditional probability that a
sensor reports a false target when a false target is encountered. A false target is any
entity with characteristics similar to that of a real target as seen by the sensor, e.g., clut-
ter or a decoy. By using the Receiver Operating Characteristic, ROC, to model sensor
performance, the conditional probability 1−PFT R of attacking a false target can be ex-
pressed in terms of the conditional probability of a target report. Therefore, the second
control variable will be the conditional probability of a target report, PT R.

The operating point on a ROC curve specifies PTR and PFT R. Together, PT R and PFT R

determine the entries of the “confusion matrix” shown in Table 1 which can be used
to determine the outcome of a random draw each time an object is encountered. It is
“binary” in the fact that only one of two decisions can be arrived at for any encounter,
an object is either declared a target or declared a false target.
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Table 1. Binary Confusion Matrix

Encountered Object
Target False Target

Declared Object
Target PTR 1−PFTR

False Target 1−PT R PFT R

PFT R is a dependent variable, related to PT R via the ROC. A mathematical repre-
sentation of the ROC curve produces a graph of true positive fraction PTR versus false
positive fraction 1−PFT R that starts at (0,0), and monotonically increases to (1,1). A
ROC model adapted from medical research [4] is used in this chapter

(1−PFT R) =
PTR

(1− c)PTR + c
, (1)

where the parameter c ∈ [1,∞), which represents the signal to noise ratio, is an indica-
tion of the quality of the sensor. It will also depend on the vehicle speed, which inversely
affects processing time, and engagement geometry, which includes flight altitude and
look angle. The ROC is a family of curves parameterized by c as shown in Figure 2. As
c increases, the ROC improves. As c → ∞, the area under the curve approaches unity
indicating perfect classification.

To calculate the probability of at least a certain number of target attacks, one needs
to know the probability of an exact number of attacks. Decker [5] showed that one
must distinguish between the case where all warheads are used and the case where war-
heads are left over. Both cases need to be considered to correctly calculate the overall
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probability. For the fixed warhead case, what can happen in the future is dependent on
what happened in the past. Calculating the probability of at least a certain number of
attacks involves summing all the possible mutually exclusive probabilities. Kish et al.
[2] showed that this can be done for all the scenarios, and greatly simplifies for Scenario
1. Scenario 1, recall, entails one target uniformly distributed in a Poisson field of false
targets.

3 Inequality Constraint

The analysis from Kish et al. [2] shows the control can and often does saturate by
reaching its upper limit. The control variable u = PTR is a probability; therefore, a hard
control inequality constraint, PT R = u ≤ 1, must be enforced. If the control saturates at
1, a discontinuity in the derivative of the control signal, PTR(t), will occur at an interior
point known as a corner point [6].

The notation of Hull [6] will be used throughout this chapter. No constraint is placed
on the location of the corner point for this example (natural, or free corner condi-
tions). The corner conditions discussed by Hull require that the Hamiltonian, H, and
Lagrange multiplier, λ , must be continuous across the corner. The corner time at which
the control saturation occurs, tc, can be calculated based on the relationships of the on-
boundary and off-boundary sub-arcs. Denoting the Hamiltonian where tc ≤ t ≤ T as
Hc+, the Hamiltonian where 0 ≤ t ≤ tc as Hc−, and applying the natural corner con-
dition Hc+ = Hc−, we look for solutions for both the off-boundary and on-boundary
portions of the problem. The solution is composed of an off-boundary sub-arc followed
by an on-boundary sub-arc. The on-boundary arc is used in the calculations of tc.

3.1 Modeling

The first scenario examined will assume fixed endurance, T , fixed area coverage rate,
Q, variable PTR and a Poisson field of false targets with spatial arrival rate α . The UAV
flies along a straight path with area coverage rate Q. Therefore, the only control variable
is PTR. Constant Q thus implies the ROC parameter c is constant. We wish to maximize
the probability of target attack, PTA. Thus our problem is

max
PTR

PTA, (2)

where the expression for PTA in terms of PTR will be developed subsequently.
We consider a rectangular battle space of area At , which is searched up to time t.

Thus,
At = wvt, (3)

where At is the area searched, w is the width of battle space, v is the velocity of the
UAV and t is the search time. The total battlespace area, As, is the area searched during
0 ≤ t ≤ T , where T is the search duration.

AT = wvT. (4)
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The Poisson random variable has a sample space, S, of all integers greater than or
equal to zero, and the probability of exactly k encounters is given by the Poisson prob-
ability distribution function:

P(k) = e−λ λ k

k!
, k = 0,1,2 . . . and λ > 0. (5)

We need to express the non-dimensional Poisson distribution parameter, λ , in terms of
the number of false target encounters per unit area. Using α for the spatial arrival rate
of false targets in the battle space,

λ = αAT . (6)

The false target arrival rate, α will be assumed known ahead of time from battlefield
intelligence or the enemy’s order of battle. At any time t, the expected number of false
target encounters will be

λt =
t
T

λ . (7)

In order to be able to recognize and engage the target at time t, the munition can not
have previously engaged a false target. The probability of not having encountered a
false target is

P(k=0) = e−(1−PFT R)λ t
T . (8)

It is understood that for the remainder of the derivation, PTR, PFT R, u and x will all be
functions of t. To simplify the notation, the explicit relationship will be omitted.

The time of true target attack, t, is a random variable and f (t) is its probability
density function. Using the expression for P(k=0), the target attack probability density
function [7] is

f (t) =
1
T

PTRe−(1−PFT R)λ t
T . (9)

An expression for the false target attack probability density function is similarly ob-
tained and given by

g(t) =

[
(1−PTR

t
T

)

][
e−(1−PFT R)λ t

T

][
1
T

λ (1−PFT R)

]
. (10)

From these two fundamental probability density functions, f (t) and g(t), the probabil-
ities of mission success and of no engagement can be derived as shown by Jacques and
Pachter [3]. Using these expressions, we can now start to complete the unconstrained
optimal control problem statement, leading to an objective function

J ≡ PTA =
∫ T

0
f (t)dt. (11)

We now express 1−PFT R in terms of the control variable PT R while using the ROC
relationship. The optimization problem may now be stated as

max
PT R

PTA = max
PT R

∫ T

0

1
T

PTRe
− ∫ t

0 λ ( PT R
c−(c−1)PT R

) dτ
T dt. (12)



Optimal Control of the Weapon Operating Characteristic 187

Next, we normalize by setting T = 1 and we obtain

max
PT R

=
∫ 1

0
PTRe

− ∫ t
0 λ ( PT R

c−(c−1)PT R
)dτ

dt. (13)

Our control variable is PTR, the state variable, x, is introduced and the nonlinear dynam-
ics are

.
x =

PTR

c− (c−1)PTR
. (14)

Our optimal control problem is now restated as

J∗ = max
u

PTA =
∫ 1

0
ue−λ xdt, (15)

subject to the dynamics
.
x =

u
c− (c−1)u

. (16)

A control inequality constraint is enforced because the control is a probability. However,
a slack variable, ζ , is used to obtain an equality constraint, i.e.,

u ≤ 1 ⇒ u−1 + ζ 2 = 0, (17)

along with the initial and terminal conditions:

t0 = 0, x0 = 0, t f = 1, x f = x( f ). (18)

The augmented Hamiltonian, Ĥ, is given by

Ĥ = ue−λ x + λx(
u

c− (c−1)u
)+ λu(u−1 + ζ 2). (19)

We will first consider the off-boundary case where λu = 0 and 0 ≤ t ≤ tc where tc is the
corner point at which saturation sets in. Because the control is monotonically increasing
and will saturate at the upper limit, it cannot decrease and therefore it will only have
one corner. Applying the steps outlined by Hull [6], we are able to use the first-order
differential conditions to solve the following equations using the off-boundary segment

.

λ x = −Ĥx = λ ue−λ x,

λx =
∫ t f

t0

.

λ xdt =
∫ t f

t0
λ ue−λ xdt,

x =
∫ t f

t0

.
xdt =

∫ t f

t0

u
c− (c−1)u

dt,

ζ 2 = 1−u,

Ĥu = e−λ x + λx
c

[c− (c−1)u]2
+ λu = e−λ x + λx

c
[c− (c−1)u]2

= 0.
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Solving for the optimal control variable, we obtain

u∗(t) =
−(
√

−λx(t)c)e
1
2 λ x + c

c−1
. (20)

We know from the initial conditions that x(0) = 0, so

u(0) =
−(
√

−λx(0)c)+ c

c−1
. (21)

We are interested in solving for our control, u, as a function of time. To arrive at that,
we need λx(t) and x(t) to solve for u∗(t) in Equation 20. To ensure that the control,
u(t) remains positive, we must use the negative

√
−λx(t)c root. We know that λx(t)

≤ 0 because λx(t) is monotonically increasing when c ∈ [1,∞) and that λx(t f ) = 0.
However, we are unable to analytically determine values for λx(t) and therefore we can
not get a closed-form solution for the off-boundary case to solve for tc.

For further insight, we investigate the on-boundary portion of the trajectory where
ζ = 0 and tc ≤ t ≤ T . Applying the no slack condition, we see

ζ = 0 ⇒ u = 1, (22)

the control is saturated and we are able to use the first-order differential conditions to
solve for the following equations using the on-boundary segment

.

λ x = −Ĥx = λ ue−λ x = λ e−λ x,
.
x =

u
c− (c−1)u

= 1,

x(t) =
∫ t

tc

.
xdt =

∫ t

tc
dτ = t − tc ⇒ tc = t − x(t).

We know from the boundary conditions that x(1) = 1 − tc. Rearranging the previous
equation yields tc = 1− x(1); however, we don’t know the value of x(1). We do know
that at the point of discontinuity, tc is a constant so by setting both equations for tc equal
to each other and solving for x(t) will yield

x(t) = t −1 + x(1). (23)

We can not use the continuity expression of HC+ = HC− to solve the problem because
the form of uC− would not allow for a closed-form solution. However, if we use the
on-boundary side conditions to solve for tc and make the appropriate substitution for
x(t) in the expression

.

λ x = −Ĥx = λFT ue−λFT x = λFT (1)e−λFT x = λFT e−λFT x, (24)

we obtain .

λ x = λFT ue−λFT (t+x(t)−1), (25)
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and then integrate using t = tc, we may solve for tc and obtain the following explicit
expression

tc = 1− 1
λ

ln

(
c

c−1

)
. (26)

This shows that the time of saturation, tc, is only a function of the false target density
parameter, λ , and the receiver operating characteristic parameter, c.

After solving the unconstrained case, we may solve the constrained case in a similar
fashion. The basic problem may be set up as follows: The cost to be maximized is

J =
∫ T

0
ue−λ xdt (27)

subject to the dynamics

.
x =

u
c− (c−1)u

, x(0) = 0, 0 ≤ t ≤ 1

.
y = u, y(0) = 0, 0 ≤ t ≤ 1

and the additional constraint imposed by the probability of false target attack,

PFTA =
∫ 1

0

uλ (1− y)
c− (c−1)u

e−λ xdt ≤ b. (28)

We form our augmented Hamiltonian as before including the additional constraint

Ĥ = ue−λ x + λc
uλ (1− y)

c− (c−1)u
e−λ x + λx

(
u

c− (c−1)u

)
+ λyu + λu(u−1 + ζ 2). (29)

In this particular formulation the constraint is appended as an equality constraint in
Equation 29. This will result in a solution that will force the resulting PFTA to a specific
value.

Let us begin by examining the off-boundary portion of the problem where λu = 0
and 0 ≤ t ≤ tc. Applying the first-order conditions yield

.

λ x = −Ĥx = λ ue−λ x + λ λc
uλ (1− y)

c− (c−1)u
e−λ x, λx(1) = 0 (30)

.

λ y = −Ĥy = λc
uλ

c− (c−1)u
e−λ x, λy(1) = 0 (31)

ζ 2 = 1−u (32)

Ĥu = 0 ⇒ u =
√

c
c−1

[
√

c−

√
λc(1− y)λFT + λxeλ x

1 + λyeλ x

]
. (33)

As with the unconstrained case, we need expressions for λc(t),λx(t),λy(t) in order to
solve for u(t). We are unable to solve for those analytically so a closed-form solution
using the off boundary conditions is not possible.

The on-boundary case conditions where ζ = 0 can be used as shown previously in
the unconstrained case. The solution method will be the same and it yields a similar
result for the corner point tc.
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4 Dynamic Area Coverage

We consider Scenario 1 [3], where the number of actual targets is one, with a Pois-
son distribution of false targets parameterized by the density, α(t). We assume that the
UAV flies along a straight path with area coverage rate Q(t). PT R and Q are the con-
trol variables. For fixed duration missions, a lower coverage rate increases the sensor
performance but decreases the total area searched.

For the munition problem (single warhead, k = 1), with dynamic area coverage rate
Q, and dynamic PTR, the states are

x(t) =
∫ t

0
αQ(τ) [1−PFT R (τ)]dτ (34)

y(t) =
∫ t

0

1
AB

Q(τ)PTR (τ)dτ (35)

z(t) =
∫ t

0
αQ(τ) [1−PFT R (τ)] [1− y(τ)]e−x(τ)dτ. (36)

The corresponding integrand in the Lagrange optimal control problem , L, is

L = − 1
AB

Q(t)PT R (t)e−x(t) (37)

where AB is the battle space area. Thus, the derivative state equations are

ẋ(t) = αQ(t) [1−PFT R (t)] , (38)

ẏ(t) =
1

AB
Q(t)PTR (t) , (39)

ż (t) = αQ(t) [1−PFT R (t)] [1− y(t)]e−x(t). (40)

Equation (1) becomes

[1−PFT R (t)] =
Q(t)PTR (t)

Q(t)PTR (t)+ Qn [1−PTR (t)]
, (41)

and the augmented Hamiltonian is now

Ĥ =
(
λy − e−x) 1

AB
QPTR + α

Q2PT R

QPT R + Qn (1−PTR)
[
λx + λz (1− y)e−x] . (42)

Taking the partial derivative of Ĥ with respect to the control variable PTR results in

∂ Ĥ
∂PTR

= Q

{(
λy − e−x) 1

AB
+

[λx + λz (1− y)e−x]QnαQ

[QPTR + Qn (1−PTR)]2

}
. (43)

Taking the partial derivative of Ĥ with respect to the decision variable Q results in

∂ Ĥ
∂Q

= PTR

{(
λy − e−x) 1

AB
+ α

[
λx + λz (1− y)e−x] Q2PTR + 2QnQ(1−PTR)

[QPTR + Qn (1−PTR)]2

}
.

(44)
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Fig. 3. ROC plot. Scenario 1 with dynamic-Q, dynamic-PT R, k = 1, α = 2 [1/km2], Qn = 1000,
Qmin = 10, Qmax = 20, and T = 0.5 [hr].

This produces the necessary condition[
λx + λz (1− y)e−x] [QPTR −2QnPT R + Qn] = 0. (45)

Thus, either

P∗
TR (t) =

Qn

2Qn −Q∗ (t)
, (46)

where Q∗ is the optimal area coverage rate, or

λx (t) = −λz [1− y(t)]e−x(t). (47)

This leads to the interesting result

P∗
T R (t)> 0.5, (48)

for Qn >>Q∗ (which is the case when c = 100), or better stated as P∗
TR ≈ 0.5 for all time.

In addition, the relation between P∗
T R and Q∗ does not depend on α or the value of b.

The expression for c, which determines how well a munition can discriminate be-
tween true and false targets at a given sensor threshold setting, is dependent on several
factors. If area coverage rate Q is allowed to vary, the operating point continually moves
from one ROC curve to another. Intuition dictates that better performance is expected
at slower area coverage rates since longer dwell times allow for better sensing and data
processing. When the UAV travels at a higher speed and the coverage rate increases,
worse performance can be expected. It was also assumed that experimentation would
yield a scaled nominal area coverage rate, Qn. To model these characteristics, Kish et
al. [2] used the expression for the receiver operating characteristic parameter

c =
Qn

Q
. (49)
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There is still the requirement of c > 1, thus Q < Qn. The goal is to find the optimal
combination of PT R and Q either constant, or as a function of elapsed time or area
covered. This optimal combination of PT R and Q establishes the optimal Weapon Op-
erating Characteristic (WOC). Figure 3 from [2] demonstrates the effect of varying the
false target attack constraint on the optimal values of Q and PTR. At low values of b,
PTR increases while the value of Q remains at its minimum limit. As the parameter b is
allowed to increase, PT R levels at approximately at 0.5 while Q increases, producing a
corner. As b is allowed to further increase, Q increases until it reaches its maximum and
PTR increases causing a second corner in the two input control problem. As expected,
the false positive fraction increases throughout the process.

5 The ROC Parameter c

One of the results of Kish et al. [2] was that for several scenarios, the value of P∗
TR,

was nearly equal to 0.5 when Qn >> Q∗ (which is the case when c = 100). This would
equate to the probability of correctly identifying a true target for only about half the
encounters. This did not seem like a practical solution or match with any known actual
sensor data. We have shown through the analytical approach with inequality constraints
that the original methodology was correct as we were able to reproduce the results ar-
rived at with similar mathematical techniques. Thus, the discrepancy must lie elsewhere
and the obvious choice was to revisit the original model for the Receiver Operating
Characteristic (ROC) parameter c.

The parameter c is monotonically decreasing in Q in the region of interest, where the
value of c approximately equal to 100 was chosen with values of Q in the range of 5
to 25 when a Qn of 1000 was selected for scaling purposes. This is shown in Figure 4.
Different shaped curves that met the appropriate end point condition were tested and
the most promising were that of the linear and quadratic curve fits. Figure 5 shows the
linear and quadratic curve fits along with the Kish et al. [2] expression for c. A family
of curves may be generated that meet the criteria for the values of c in the range of
interest. These may be varied as desired by using generic expressions for the curves of
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Table 2. Generic Expressions for c and P∗
TR

Class c P∗
TR

Original Qn
Q

Qn
2Qn−Q

Linear Qn
a −bQ−d abQ

−a+ad+Qn

Quadratic Qn
a −AQ2 +BQ+D −abQ+2aAQ2

−a+aD+aQ2+Qn
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Fig. 6. PTR∗ vs. Q, Qn=1000

the form shown in Table 2. Expressions for P∗
TR may be similarly by obtained and are

also shown in Table 2.
Using the same values for the coefficients that generated the curves in Figure 5,

we are able to now see the effect on P∗
TR of differing values of the expression c in

Figure 6. The linear and quadratic cases show that P∗
TR values in excess of 0.5 Kish

et al. [2] may be obtained and compare favorably to real-world values of P∗
T R. The

key is that the solutions obtained are sensitive to the chosen model for the parameter c
which is dependent on Q. The original relationship of c and Q was based upon intuition.
The research presented herein shows that there is a relationship between the values of
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P∗
TR and the expression for c. Note that the determination of which is the appropriate

formulation is left for further research.

6 Conclusions

The original formulation of the WOC optimization problem lacked control inequality
constraints to analyze the existence and location of corner points due to the saturation
of the control variables. In this chapter, using the methods of optimal control theory, the
original solution methodology is proven correct using the control inequality constraint
formulation and may be applied to all the scenarios, for both the scalar and multi-
input optimal control problems. The original results were strongly dependent on the
heuristic for the Receiver Operating Characteristic (ROC) parameter, c. Our work shows
that different heuristics for that parameter yield results more closely aligned with real-
world values for the optimal control schedules. We believe that the quadratic expression
relating the signal to noise ratio parameter c to the area coverage rate Q may be closer
to the actual characteristics of ATR modules because the value of c doesn’t change
much near the bottom of the region of acceptable Q values and then drops off sharply
as they increase. Additional expressions for the signal-to-noise ratio parameter c, based
on actual ATR module characteristics for the active and passive radar cases are needed
to obtain more desirable results.
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Abstract. In this chapter we present sensor implementation issues en-
countered in developing a team of cooperative unmanned aerial vehicles
(UAVs) for intelligence, surveillance and reconnaissance missions. UAVs
that compose the cooperative team are equipped with heterogeneous
sensors and onboard processing capability. The sensor information col-
lected by each UAV is constantly shared among the neighboring UAVs
and processed locally using Out-of-Order Sigma-Point Kalman Filter-
ing (O3SPKF) techniques. Results from flight experiments support the
effectiveness of the cooperative autonomous UAV technologies.

1 Introduction

Unmanned mobile agents used to detect and localize ground targets have nu-
merous applications ranging from intelligence collection, surveillance and recon-
naissance (ISR) in the military domain to search-and-rescue missions for civilian
purposes. We are particularly interested in developing a network of inexpensive
off-the-shelf mobile sensors that collectively deliver superior sensing performance
compared with a small number of expensive mobile sensors [1]. In a network of
cooperative sensors, optimally combining sensor information collected by the sen-
sor nodes is critical. Other challenges may also exist: 1) covert/passive sensing;
2) unknown target dynamics; 3) episodically mobile targets; 4) intermittently
occluded targets; and 5) out-of-order sensor measurements. In [2,3], we reported
a sensor fusion system that offers a novel theoretical solution for addressing these
issues using a Sigma-Point Kalman Filter (SPKF). In this chapter, we describe
our on-going efforts to develop a mobile sensor network, focusing on hardware
implementation details needed to deliver the system.

We are developing a team of unmanned aerial vehicles (UAV) that are
equipped with heterogeneous sensors and onboard processing capabilities. The
sensors include visual range (VR), infra-red (IR), and radio-frequency (RF) sen-
sors. All sensor data are processed in real-time using an onboard processor before
the data is sent to a ground station or other UAVs. The onboard processing ca-
pabilities enable our system to send and receive processed sensor information
which is much smaller in size compared to raw data (such as images) used on
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many other platforms, thus reducing the communication bandwidth required.
Typically, each UAV carries a camera (either VR or IR) sensor and a RF sensor.
In Section 2, we present the details on how each sensor is used to detect a ground
target.

When new processed sensor information is available from local sensors, each
UAV broadcasts the sensor information. Sensor information from multiple UAVs
are combined in a distributed manner; each UAV runs its own sensor fusion
algorithm independently. In Section 3, we present the method used to represent
the heterogeneous sensor information suitable for UAVs to share, followed by
the implemented sensor fusion algorithm in Section 4. Experimental results are
presented in Section 5 and we conclude the chapter with some summary remarks.

2 Target Detection with Visual-Range (VR) Sensors

Camera sensors (both VR and IR) identify the image location of a target when
it enters into the camera field of view. When VR sensors are used, the color
of the target (e.g., a red car) is used as a cue for detection. For detecting the
pixels that belong to a VR image of the target, we use a one-class Gaussian
classifier that takes the normalized red and green channel values of the pixels
as an input. Normalized red-green-blue (RGB) values have only two-degrees of
freedom. Therefore, we drop the normalized blue channel from the pixel classi-
fication. Color normalization is used to make the VR sensor less sensitive to the
lighting condition changes. Let p̂i,j = [r̂i,j , ĝi,j]T be a vector of the normalized
red and green values of a pixel pi,j in the input image, where (i, j) are the image
coordinates. Assuming the expected color of the target has a Gaussian distribu-
tion with mean p̄ and covariance Σp, we calculate the Mahalanobis distance [6],
denoted di,j , between the observed pixel value p̂ and the expected color value of
the target as follows:

di,j = (p̂i,j − p̄)TΣ−1
p (p̂i,j − p̄) (1)

where p̄ and Σp are estimated with a pre-sampled training set of the target
images. If di,j is lower than a threshold, then pi,j is classified to be a pixel
of the target, otherwise as background. The threshold is chosen appropriately
considering di,j has a Chi-square distribution with two degrees of freedom. Noise
in the pixel classification is suppressed by applying a morphological filter.

After each pixel in the image is classified, pixels are clustered to form a set
of image blobs using a recursive connected component analysis algorithm. The
algorithm scans the binary image which is the output of the pixel classification
algorithm described above. When the system meets a foreground pixel, it creates
a region that consists of the foreground pixel, and recursively grows the region by
adding foreground pixels that are connected to the region. This process creates
a set of foreground pixel blobs. The image blobs are further clustered based on a
geometric distance measure on the image. For a pair of two regions, Ra and Rb,
let ca and cb be the image coordinates of the center of mass of the two regions,
respectively, and Σa and Σb be the covariances of the image coordinates of the
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Fig. 1. VR sensor target detection algorithm

pixels in the two regions, respectively. Then, we can calculate a distance measure
ζa,b between the two regions a and b as follows:

ζa,b = (ca − cb)T (Σa +Σb)−1(ca + cb) (2)

If ζa,b is smaller than a certain threshold, the two regions are merged. Such a
merging process is repeated iteratively until no pair of regions can be merged.
After the blob merging process, the foreground image will consist of image re-
gions. Each image region denotes a detected target, and the center of the mass
of the corresponding image region denotes the location of the target in the im-
age space. As shown on Figure 1, the image location of the target is used to
calculate the bearing angle to a target. In the figure, two cars are detected after
the onboard processing of the captured image in the first frame.

3 Calculating Target Bearing Angles

In order to combine the sensor information, it must be transformed into a
workspace common to all UAVs. To describe the required transformations,
we employed three reference coordinate frames: 1) a global coordinate frame,
denoted W ; 2) a UAV coordinate frame, denoted U ; 3) a sensor coordinate
frame, denoted S. Figure 2 illustrates how these reference coordinate frames are
arranged.

In our UAVs, the sensor system computes a unit direction vector , denoted as
−→υ S in Figure 2, towards a target with respect to the sensor-specific coordinate
frame S. With the given notion of reference frames, our goal is to transform
−→υ S to a direction vector −→υ W which is defined with respect to the common
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Fig. 2. Calculating target bearing angles

global reference coordinate frame W . Note that −→υ S and −→υ W both point to the
target.

VR sensors must compute the direction vector using the image coordinates
of the target. In the following subsection, we describe how to estimate a unit
direction vector given the image coordinates of a target in a VR or IR image,
followed by subsections that illustrate the necessary coordinate transformations
to convert local sensor information to a global coordinate frame.

3.1 Calculating Target Bearing Vector Using Camera Sensors

For the task of target detection using a camera image, the calculation of −→υ S

is often referred to as solving the perspective projection model [4,5] shown in
Figure 3. Let (xt, yt, zt) be the coordinates of the target location with respect
to S, and (ut, vt) be the image coordinates of the target projected onto the
image space. Then, these two coordinates are related by the following projection
equation (called the perspective projection equation):⎡⎣sut

svt

s

⎤⎦ =

⎡⎣fx 0 cx
0 fy cy
0 0 1

⎤⎦⎡⎣xt

yt

zt

⎤⎦ (3)

where (cx, cy) are the coordinates of the image center, and fx and fy are the focal
lengths normalized by the pixel quantization ratio in both the x and y directions.
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Fig. 3. Perspective projection model

These parameters are found by performing an intrinsic camera calibration [7]1.
The image coordinates (ut, vt) are therefore related to (xt, yt, zt) as follows:

ut = fx
xt

zt
+ cx (4)

vt = fy
yt

zt
+ cy (5)

Unfortunately, this projection model only applies to an image without any
optical distortion. Usually, camera sensors introduce radial and tangential dis-
tortion to the image. For example, our camera sensor uses a fish-eye lens, which
introduces a significant amount of radial distortion as shown in Figure 4. In
order to take the distortion into account in the projection model, Equations (4)
and (5) can be modified as follows [7]:

x′t =
xt

zt
(6)

y′t =
yt

zt
(7)

x′′t = x′t + (1 + k1r
2 + k2r

4) + 2p1x′ty
′
t + p2(r2 + 2x′2t ) (8)

y′′t = y′t + (1 + k1r
2 + k2r

4) + 2p2x′ty
′
t + p1(r2 + 2y′2t ) (9)

where r2 = x′2t + y′2t and
ut = fxx

′′
t + cx (10)

vt = fyy
′′
t + cy (11)

1 We use camera calibration software provided by the OpenCV library.
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Fig. 4. Example of an image with radial distortion

Parameters k1, k2, p1, and p2 are the camera distortion parameters estimated
using the camera calibration procedure. Since we are only interested in the target
bearing angle with respect to S, we represent −→υ S as a three-dimensional unit
direction vector calculated as follows:

−→υ S =
1√

x′2t + y′2t + 1
[x′t, y

′
t, 1]T (12)

Using Equations (6) through (12), our objective of calculating −→υ S is met by cal-
culating x′t and y′t, given (ut, vt). To do so, the procedure described in Equations
(6) through (11) must be reversed. Since this process is highly non-linear and
the closed-form analytic solution to the inversion process is not always available,
a numerical solution is applied as follows:

– Step 1: Calculate x′′t and y′′t as follows:

x′′t =
ut − cx
fx

(13)

y′′t =
vt − cy
fy

(14)

– Step 2: Initialize x′t and y′t with the value of x′′t and y′′t

x′t ← x′′t
y′t ← y′′t

(15)
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– Step 3: Iteratively calculate the following equations until (x′t, y
′
t) converges:

r2 = x′2t + y′2t (16)

x′t =
x′′t − 2p1x′ty

′
t − p2(r2 + 2x′2t )

1 + k1r2 + k2r4
(17)

y′t =
y′′t − 2p2x′ty′t − p1(r2 + 2y′2t )

1 + k1r2 + k2r4
(18)

3.2 Transforming Local Sensor Information to the Global
Coordinate Frame

The required transformation of a sensor-specific direction vector −→υ S to a global
direction vector −→υ W is described using the following equation:

−→υ W = WRU
URS

−→υ S (19)

where WRU is a 3 × 3 rotational matrix that denotes the relationship between
coordinates U and W , and URS is a rotation transformation for coordinates in
S to U .

4 Sensor Fusion Using Out-of-Order Sigma-Point Kalman
Filter

As we alluded to in Section 1, the target bearing information in W is shared
among neighboring UAVs to cooperatively locate a target using the Out-of-Order
Sigma-Point Kalman Filter (O3SPKF) [3].

In [2] we showed, using a number of simulation results, that SPKF outper-
forms conventional non-linear Kalman filters, such as the Extended Kalman
Filter (EKF), in estimating the target location from highly non-linear sensor
information. In this approach, a sequential stochastic inference model is used to
estimate the state vector of a target location using sensor information. Unlike the
conventional Extended Kalman Filter, which uses a Taylor series expansion to
linearize the observation function, SPKF carefully chooses a set of points (sigma
points) from a priori probabilistic distributions of the state vector, the process
noise and the sensor noise. These points are then evaluated and the weighted
mean and covariance of the output are used for the approximation of an a pos-
teriori probabilistic distribution. For a more detailed description of our sensor
fusion approach using SPKF, readers are referred to [2].

When a specific UAV sensor fusion system processes the sensor information
shared by the neighboring UAVs, some sensor information may be out-of-order
because of nondeterministic communication and/or processing latencies. The
SPKF algorithm described in [2] is further extended to handle such out-of-order
sensor measurements efficiently [3]. In this approach, when a UAV receives out-
of-order sensor information, the system backtracks the state vector to the time
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when the out-of-order measurement was taken. Then, it uses the backtracked
state vector to generate sigma points for evaluating the sensor output function. A
detailed description of our approach to handle out-of-order sensor measurements
is presented in [3].

5 Experimental Results

Although our sensor fusion algorithm is capable of combining information from
heterogeneous sensors, our initial focus was to demonstrate the capability of
our cooperative sensor fusion algorithm using VR sensors. We compare results
of locating a ground target using one UAV and two UAVs. The UAVs were
controlled by an autonomous decentralized control algorithm (presented in [10])
to cooperatively search, detect and localize a ground target. Figure 5 shows an
example sensor image with a visible target. Such images are used to detect and
locate the target using the camera sensor detection algorithm and the sensor
fusion algorithm described earlier.

The final root-mean-square target location error for the one UAV experiment
was 10.0 meters in the East direction and 24.3 meters in the North direction,
while RMS error for the two UAV experiment was 2.7 meters in the East direction
and 5.8 meters in the North direction. In both experiments, the target location
estimates are updated for about 300 seconds. The results, in Figures 6 and 7,

Target

Fig. 5. A sample sensor image while UAVs are localizing the target (a red car)
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(a) Location estimate in the East direction with 1 UAV
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(b) Location estimate in the East direction with 2 UAVs

Fig. 6. Target location estimates in the East direction for experiments with one and
two UAVs. The solid line shows the true target location.

show the localization accuracy using two UAVs performed four times better than
the one obtained using a single UAV.

One interesting thing to note here is that, in the experiment with two UAVs,
we observe some error spikes in the target location estimates while the estimates
gradually converge to the true location. After some rigorous analysis, we con-
cluded that those errors were mainly attributed to poor synchronization of the
sensor information with UAV location and attitude. Recall that UAV location
and attitude play an important role in calculating the target bearing angle. Bet-
ter handling of such synchronization issues will be crucial for enhancing overall
accuracy of the target localization, which we plan to address in the future.

Figures 6 and 7 depict the progress of target location estimation while the
UAVs are localizing the target. Note here that we intentionally moved the target



204 Y. Yoon et al.

0 50 100 150 200 250 300 350 400
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

time (sec)

Y
 lo

ca
tio

n 
(m

et
er

s)
Estimate on Y

 

 
True Target Location
Estimated Target Location

(a) Location estimate in the North direction with 1 UAV
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(b) Location estimate in the North direction with 2 UAVs

Fig. 7. Target location estimates in the North direction for experiments with one and
two UAVs. The solid line shows the true target location.

to the North at the end of the experiment with two UAVs. It can be observed in
Figure 7-(b) that the target location estimates in the North direction increased
toward the end of the experiment. The target location estimates while the target
was moving were not considered for the RMS error calculation.

6 Conclusion

In this chapter, we present a heterogeneous sensor fusion system for localizing
mobile ground targets using multiple cooperative UAVs. Our preliminary results
validated the advantage of using multiple sensors.
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Our future research will address two issues. First, we are working on enhancing
overall target detectability. In order to do so, we are currently working on fast
image feature extraction and pattern recognition algorithms for low-resolution
images along with integrating a radio frequency detection sensor. Second, we are
trying to understand how poor synchronization between sensors and UAV posi-
tion affects the target localization accuracy. We are also working on improving
the synchronization.
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Abstract. We study the effect of limited communication range and noise on the
cooperative control of a group of swarms of mobile robots using the Particle
Swarm Optimization algorithm. The advantage of multiple swarms is the parallel
search for a common goal, in addition to the implicit parallelism built in each
independent swarm. We demonstrate the method on a problem where a group
of swarms searches for multiple similar minima or multiple similar objects in a
given domain of the plane. The algorithm is robust with respect to limited com-
munication range for range values of more than 20% of the characteristic size of
the domain. The method is applied to the problem of swarms formations, where
several swarms of mobile robots are initially dispersed over a given domain in the
plane. The formation of the group of swarms breaks down when the communica-
tion range is less than half the typical size of the formation.

1 Introduction

We consider the problem of finding multiple minima or detecting multiple objects by a
swarm of robots searching a finite domain of the plane, taking into account the effects
of limited communication range and communication noise. The problem of finding
the minima of a multimodal function with multiple local and global minima has re-
ceived attention in the literature due to important applications of this problem in many
fields of science and engineering [19,9]. With the advent of population based evolv-
ing methods, such as genetic algorithms and particle swarm algorithms, it has become
possible to find approximate solutions to complex optimization problems which were
previously considered hard or intractable. For example, Parsopoulos and Vrahatis
[12,13] have recently considered the problem of finding all global minimizers of a
multi-modal objective function using Particle Swarm Optimization (PSO). Their ap-
proach consists of applying transformations to the objective function such as deflection
and stretching techniques in order to isolate the global minima. This approach can work
in cases where the objective function is known in closed form a priori.

In the context of a swarm of robots searching for the minima of a physical property
in a real environment using a detection device, a technique based on deflection and
stretching of the objective function is not a viable approach. First, the function is not
known a priori. Second, measurements may be corrupted by noise, making the function
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noisy and more difficult to approximate by elementary functions. Moreover, trying to
generate such an objective function experimentally by scanning the domain and then
applying the stretching technique is not a promising proposition, since the problem of
mapping a domain or finding the distribution of a scalar property experimentally over
a domain is a hard problem in its own right, especially if it is to be achieved without
resorting to exhaustive search.

The original PSO algorithm is built on the premise that virtual point particles (or
agents) are moving in a virtual multi-dimensional space, searching for a minimum or
several minima without taking into account physical constraints on the motion of par-
ticles. At the same time, advances have been made in the field of collective search by
multiple robots using various approaches, in which real-world physical effects and con-
straints are taken into account. For example, random search strategies with the effect
of imperfect sensors have been studied by Gage [6,7]. Distributed exploration strate-
gies with several real autonomous robots have been studied by Hayes, Martinoli and
Goodman [8]. The idea of applying aspects of multi-robot search to improve the PSO
has been proposed recently by Pugh, Sagapelli and Martinoli [14]. The neighborhoods
of particles in the PSO algorithm were modified to incorporate physical constraints
occuring in multiple robots systems. Several variants of the PSO algorithm incorporat-
ing various definitions of the robots’ neighborhoods have been compared with a stan-
dard PSO with global neighborhood. It was shown that the modified PSO algorithms
with local neighborhoods can display superior performance on low dimensional stan-
dard benchmark problems and degraded performance on higher dimensional problems,
when compared to the standard PSO algorithm with a global neighborhood. Pugh and
Martinoli [16] also presented a single swarm multiple robot search algorithm based on
the PSO in which they studied the effects of the number of robots and communication
range. The same authors applied the PSO to the field of robot learning using a robot
control system based on neural networks [17,14].

Another approach for treating the problem of multi-modal objective functions using
the PSO algorithm is to add a mechanism of niching or speciation, borrowing ideas from
genetic algorithms. The PSO algorithm is started with a single swarm or population and
speciation occurs as the search evolves, the environment is explored and species or
niches of particles or agents develop according to their fitness function. Some niches
become spatially isolated, even preventing other particles from penetrating their space.
Another possibility is to have the species or niches dispersed over the whole search
space and coexisting together. This type of approach has been advanced by Brits, En-
gelbrecht and van den Bergh [1] in their Niche PSO algorithm. A similar approach using
multiple species PSO for multi-modal functions was proposed by Iwamatsu [10]. To the
best of our knowledge, a multiple swarm algorithm has not been applied to the field of
search with multiple swarms of robots in order to detect multiple objects scattered in a
two-dimensional domain.

We propose to solve the problem of finding multiple similar local minima or, equiva-
lently, detecting multiple similar objects, by using several swarms of autonomous robots
in parallel, at the same time. Each swarm is controlled by its own coordinating mobile
robot. Information can be exchanged between the coordinating mobile robots and a
top-level coordinating agent. The domain is divided into several sub-domains and each
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swarm is assigned its own sub-domain of action by a top-level coordinating agent. In the
context of function minimization by PSO, such a parallel algorithm can be implemented
on a multiple processor machine, where the algorithm for each separate swarm runs on
a separate processor. Coordination between the processors can be achieved by message
passing. This is in addition to the implicit parallelism which might be achievable with
a single swarm, where the trajectory of each particle in the swarm can be generated by
a separate processor [18].

We also consider the problem of swarms formations, where several swarms of mobile
robots are initially dispersed over a given domain in the plane. The group of swarms
is set into controlled motion and each swarm is assigned a goal to gather at a given
location by the top-level coordinating agent. Here also, each swarm is controlled by its
own coordinating mobile robot, which sends the coordinates of the rendezvous point to
all the robots located within its communication range. If the communication range is
not too small, the information about the gathering points will eventually reach all the
robots that come into range and the formation will be achieved.

In Section 2, we introduce a PSO formulation of the proposed cooperative con-
trol method of multiple swarms and study the effect of limited communications range
and noise on the performance of a cooperative search for multiple minima in a two-
dimensional domain. In Section 3, we study the effect of limited communication range
on multiple swarms formations and we follow with a short summary and conclusions.

2 Cooperative Control of Multiple Swarms with Limited
Communication Range

2.1 The Multiple Swarms Control Algorithm

The problem of controlling a single swarm of autonomous robots working towards a
common goal with the effects of noise and communication delay has been treated by
Crispin [5,3]. We consider the problem of controlling a group of swarms of mobile
robots working towards a common goal, such as locating multiple similar objects that
are dispersed in a domain. Another common goal is to bring the group of swarms to a
structured formation. In both problems, we include the effect of limited communication
range.

Let Ns be the number of swarms and Nr the number of robots in each swarm. Ini-
tially, the robots are mixed and randomly distributed over the domain. Let k describe
the discrete time counter, where k = 0 is the initial time t = 0 when the swarms are set
into motion and k = Nf is the number of time steps ∆t at the final time tf = Nf∆t.

Each swarm has its own coordinating robot and communication network. Informa-
tion about the robots locations within the swarm can be passed to the coordinating
robot, which is also moving with its swarm. There is a central server or command sta-
tion that tracks the motion of all the coordinating robots. Let’s call this central server
the top-level coordinating agent.

Physical effects or constraints are incorporated in order to implement the search
method by actual mobile robots. The first effect imposes a limitation on the speed of
the robot, or equivalently, a limit on the maximum distance ∆Xmax a robot can move
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in a given typical time step ∆t. Another effect taken into account is limited range and
noisy communication between the robots in a swarm and their coordinating robot. At
any given time, communication with one or more robots can be lost because that robot
has moved out of the range of its respective coordinating robot. The communication
signal can also be corrupted by noise.

In order to develop the multiple swarms control algorithm, we start with a basic PSO
algorithm for multiple swarms and we add the following constraints: a constraint on the
speed, a constraint on the communication range and communication noise. The basic
algorithm consists of minimizing a function f of n variablesx:

minimizef(x),wherex ∈ Ω ⊂ R
n andf : Ω �→ R

subject to the side constraints

xmin ≤ x ≤ xmax

where xmin and xmax lie on ∂Ω, the boundary of the domainΩ. The function f(x) can
have multiple minima. The search for minima by the Ns swarms is a directed random
walk process described by the following system of stochastic difference equations:

∆x(s, i, k + 1) = w(k)x(s, i, k) + c1r1(s, i, k)[P (s, i, k) − x(s, i, k)]
+ c2r2(s, i, k)[Pg(s, k) −X(s, i, k)] (1)

x(s, i, k + 1) = x(s, i, k) +∆x(s, i, k + 1) (2)

where s ∈ [1, Ns], i ∈ [1, Nr] and k ∈ [0, Nf ].
The variable s is a swarm counter, the variable i is a robot counter and the variable

k is the discrete time counter. Nf is the total number of time steps. The parameters
c1 and c2 are real constants that have been discussed in the PSO literature [11,2,12].
Here we use typical values of the constants that have been found to work well in many
applications. The constant c1 is called the cognitive parameter. It determines the weight
to be given to the local search in the immediate neighborhood of the particle. The con-
stant c2 is called the social parameter. It determines the weight to be given to the global
solution that was found by the swarm as a social group searching for a common goal.
The numerical values of the parameters c1 and c2 are not critical to the convergence of
the PSO algorithm. Numerical experiments conducted by Kennedy [11] suggest default
values c1 = c2 = 2 for many problems.

The variables r1(s, i, k) and r2(s, i, k) are random variables uniformly distributed
between 0 and 1. The location P (s, i, k) is the best solution found by robot i in swarm
s at time t = k and Pg(s, k) is the best solution found by swarm s at time t = k.
Recall that the independent variable x is a vector of dimension n. Therefore, r1, r2, P
andPg have the same dimension as x. In this chapter, we study swarms moving in a
two-dimensional domain which is a subset of the plane R

2, so our discussion is limited
to the case n = 2. The weight factor w(k) can be either constant or time dependent.
If it decreases with time, the search process can usually be improved as the search
approaches a local minimum point and smaller steps are needed for better resolution.
For example, the parameter w(k) can be set to decrease linearly from an initial value of
w0 = 0.8 to a final value of wf = 0.2 after Nf time steps.
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The system of equations (1)-(2) describes a directed random walk for each robot
i within each swarm s, similar to the Brownian motion of a tracer particle in a fluid.
Whereas Brownian motion is an undirected random motion, the motion of a robot in
each swarm s will start as random motion, but the distances traveled in given fixed time
steps k will eventually decrease as robot i approaches a point P (s, i, k) in the domain
where the function reaches a local minimum and as each swarm s as a whole approaches
a point Pg(s, k) of the domain where the function reaches a minimum for that specific
swarm. So for each swarm s, at any given time t = k, each robot i in swarm s has
found its best solution P (s, i, k) along its own trajectory. Comparing the values of the
function f(P ) for the set of robots in each swarm s at time k, the best solution Pg(s, k)
for the swarm s can be selected.

P (s, i, k) = argmin
k′

{f(x(s, i, k
′
))}, k′ ∈ [0, k] (3)

Pg(s, k) = argmin
i

{f(P (s, i, k))}, i ∈ [1, Nr] (4)

The following initial conditions are needed in order to start the solution of the system
of difference equations

x(s, i, 0) = xmin + r(s, i)∆xmax (5)

∆xmax = (xmax − xmin)/Nx (6)

where Nx is a typical number of grid segments along each component of the vector
x and r(s, i) are random numbers uniformly distributed between 0 and 1. Equations
(1)-(2), describing the motion of the swarms, can be written in non-dimensional form.
For example, if the domain consists of a two dimensional square domain with side
a = 1000 m by a = 1000 m, then with Nx = 100, we can use a typical distance
segment of∆xmax = a/Nx = 10 m. If we take a typical speed of an autonomous robot
as Vc = 1 m/s, then the characteristic time will be tc = ∆xmax/Vc = 10 s. We measure
x in units of∆xmax, V in units of Vc and∆t in units of tc. The equations have the same
form in non-dimensional variables.

The next step involves adding the constraints on speed and communication range.
First, a limit is placed on the magnitude of the velocity component of each robot in
any given direction. Equivalently, we can impose a constraint on the magnitude of the
distance traveled in any time step ∆t as:

|∆x(s, i, k + 1)| ≤ ∆xmax (7)

Under these assumptions, the equations of motion of each swarm become:

∆x(s, i, k + 1) = w(k)x(s, i, k) + c1r1(s, i, k)[P (s, i, k) − x(s, i, k)]
+ c2r2(s, i, k)[Pg(s, k) − x(s, i, k)] (8)

x(s, i, k + 1) = x(s, i, k) + sign [∆x(s, i, k + 1)] [min(|∆x(s, i, k + 1)|, ∆xmax)]
(9)

The signum function term sign(∆x(s, i, k+1)) is added in order to keep the original
direction of the motion while reducing the length of the step.
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We introduce a constraint on the communication range. Suppose the maximum com-
munication range is Rm. For a given swarm s at time k, let R(s, i, k) be the distance
from robot i in the swarm to the robot that is coordinating the motion of that swarm.
Without loss of generality, let’s choose the index of the coordinating robot as i = 1.
Communication is maintained when condition (10) is satisfied.

R(s, i, k) = ‖x(s, i, k) − x(s, 1, k)‖ ≤ Rm (10)

If the robot is out of communication range, that is, if R(s, i, k) > Rm, its communi-
cation link breaks down and its best solution P (s, i, k) at time k cannot be transmitted
to the coordinating robot. Therefore this robot does not participate in the search and
cannot contribute its solution to its swarm. Also, this robot cannot receive the control
signal Pg(s, k), and therefore it uses the last value of the control signal it has previously
received and kept in memory when it was within communication range. If it never came
within communication range since the beginning of the search, it uses its own value
P (s, i, k) instead of the swarm’s value Pg(s, k) in order to pursue the search. On the
other hand, if the robot is within communication range, its best solution P (s, i, k) is
transmitted and used by the coordinating robot in order to determine Pg(s, k) for the
swarm. It also uses the control signal Pg(s, k) in attempting to improve its own solution.

The effect of noisy communication signals is taken into account by adding noise to
the solution that was found by any robot in any swarm

P
′
(s, i, k) = P (s, i, k) + δN (0, 1)∆xmax (11)

where P
′
(s, i, k) is the communication signal corrupted by noise, N (0, 1) is a random

number with a normal distribution, zero mean and a standard deviation of one. δ is a
factor for setting the noise level in units of ∆xmax.

An example of a search for multiple minima in a two-dimensional domain using four
swarms is given in the next section.

2.2 Cooperative Search for Multiple Objects in a 2-D Domain

The purpose of the multiple swarms is to collectively find multiple similar minima of
a function using measurements of the function in the domain. As a numerical example
let’s consider a square domain with a side of 10 distance units (DU) by 10 DU, defined
by the coordinates xi ∈ [xi,min, xi,max] = [−5, 5].

Consider a test function of two variables f(x1, x2) with a cutoff at f(x1, x2) = fc

defined by
f(x1, x2) = min [g(x1, x2), fc] (12)

where g(x1, x2) = (cosx1)2 + (sinx2)2.
The function has multiple minima, with the objective value f = 0 at multiple points

in the domain. This function is used to simulate a search for multiple similar objects
with the same characteristic diameter and depth scattered in a landscape which is oth-
erwise flat with a constant elevation fc = 0.2. Decreasing the value of fc causes the
diameter of the objects to decrease.

The domain is divided into four sub-domains and four swarms are used to detect
four different minima at the same time. The boundaries of the sub-domains are given in
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Table 1. Parameters for the four swarms

Swarm (x1 min, x1 max) (x2 min, x2 max) Nr c1 = c2 w Nf

1 (−5, 0) (0, 5) 10 2 0.8 150
2 (0, 5) (0, 5) 10 2 0.8 150
3 (−5, 0) (−5, 0) 10 2 0.8 150
4 (0, 5) (−5, 0) 10 2 0.8 150

Table 1. Each swarm has 10 robots and the search runs for 150 time steps. When this
problem is solved with a single swarm with an equivalent total number of 40 robots,
only one object is detected. We would like the swarms to be able to detect 4 objects
with the same number of 40 robots over the same period of time. Table 1 lists the values
of the parameters used in this example.

The constraint on the maximum step length ∆x1 max or ∆x2 max that a robot can
move along the coordinates x1 or x2 is:

∆x1 max = ∆x2 max = (x1 max − x1 min)/Nx = 10DU/10 = 1DU (13)

where Nx = 10 is the number of segments along each coordinate. Figure 1 shows how
the search process evolved during the solution of this problem for a communication
range ofRm = 2 or 20% of the side of the square. The chart on the upper left shows the
random distribution of the 4 swarms of robots at the initial time k = 0. The robots of
the first swarm are denoted by circles. Robots in the second swarm are denoted by the
’+’ symbol, those in the third swarm, by the ’x’ symbol, and those in the fourth swarm,
by stars.

The upper right of the figure displays the 4 minima of the function with values close
to the minimum value f = 0 that were found by the 4 swarms at time k = Nf = 150.
The trajectories of the best solution found by each swarm are shown in the bottom left.
Here, all the robots’ locations along the trajectories are denoted by dots. As the robots
in a swarm start converging to the vicinity of an object, some of the robots will get
closer to the object, whereas the other robots in this swarm will be located at larger
distances from the object. Among the robots that are getting closer to the center of
the object, some will start detecting a value of the objective function that is less than
the cutoff value fc but greater than zero, a value which occurs at the center of the
object. For each swarm, sorting the robots according to the value of their respective
objective function, we select the robot with minimum f and plot its trajectory. Such a
robot is not of fixed identity and will vary from one run to the next. Each trajectory
shown in the figure belongs to the robot that found the best solution in each of the 4
swarms for that specific run. When implementing this method in hardware, using actual
robots searching the domain and measuring the values of the function at the points
along their trajectories, the method is an inherently parallel process, since each swarm
is autonomous and the swarms work in parallel at the same time. The motion of the
robots in each swarm is controlled by a coordinating robot, which is moving together
with the specific swarm it is controlling.

Figure 2 is for a case similar to that of Figure 1, but for a smaller communication
range of Rm = 1.2 or 12% of the side of the square domain. Here only two objects are
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Fig. 1. Search for multiple objects using Ns = 4 swarms of Nr = 10 robots in each swarm
with a communication range Rm = 2. Upper left: Initial distribution of the robots. Upper right:
Robots locations after Nf = 150 time steps. Lower left: Points visited by one robot from each
swarm that ended at a minimum distance from the center of an object. Lower right: Trajectories
of the robots shown on the lower left chart.
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Fig. 2. Same as Figure 1 but with a smaller communication range of Rm = 1.2

detected. Figure 3 is for a case similar to that of Figure 1, but for a smaller communica-
tion range of Rm = 0.5 or 5% of the side of the square domain. In this case, no objects
are detected.

Figures 4 and 5 show the combined effect of limited communication range and com-
munication noise. Figure 4 displays a case with a range Rm = 2 and noise level of
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Fig. 3. Same as Figure 1 but with a smaller communication range of Rm = 0.5
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Fig. 4. Combined effect of limited communication range and noise with Rm = 2 and δ = 1.
Ns = 4 swarms of Nr = 10 robots in each swarm. Nf = 150.

δ = 1. From the trajectories of the 4 robots, it can be seen that the robots are perform-
ing a local random search around the 4 objects with many large steps on the order of
∆X1max = 1 DU. A similar effect is obtained for a lower communication range and
the same noise level as displayed in Figure 5 for Rm = 1.2 and δ = 1.

The algorithm is robust with respect to communication constraints for rangesRm >
2, that is, range greater or equal to 20% of the side of the square domain. When the
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Fig. 5. Combined effect of limited communication range and noise with Rm = 1.2 and δ = 1.
Ns = 4 swarms of Nr = 10 robots in each swarm. Nf = 150.

range is reduced below Rm = 2, the search performance displays deterioration, which
is further accentuated by noise.

3 Multiple Swarms Formations with Limited Communication
Range

In this section we show that the method described above for finding multiple minima of
a function can be applied to the problem of bringing multiple swarms into a prescribed
formation. The problem of gathering a single swarm in a given point in the plane has
been treated in [4]. The present work is an extension of the problem to include mul-
tiple swarms with limited communication range. In this example, we consider a two-
dimensional square domain n = 2, of sides 1000 m by 1000 m. A case in which six
swarms of 20 robots each, form a triangular configuration is presented.

The final arrangement of the swarms will be around an equilateral triangle of side
a = 600 m. The base of the triangle is located at ys = −300 m. Three swarms gather
at the vertices of the triangle P1(0, ys + a

√
3/2), P2(a/2, ys) and P3(−a/2, ys). The

three other swarms gather at the mid-points on each side of the triangle with coordinates
P4(−a/4, ys + a

√
3/4), P5(a/4, ys + a

√
3/4) and P6(0, ys). These coordinates are

broadcast to the six swarms and serve as their respective control signals. The parameters
for this case are given in Table 2.

In this case, the maximum step size is ∆x1 max = ∆x2 max = 20 m= 1 DU. Figure
6 shows the motion of the swarms for a maximum communication range of Rm = 400
m, starting with a uniform random distribution of the 120 robots in the 6 swarms at
time k = 0, as shown in the upper left side of the figure. The state of the swarms at time
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Table 2. Parameters for the Swarms Formation Problem

(x1min, x1 max) (x2 min, x2 max) Nx Ns Nr c1 = c2 w Nf

(−500, 500) (−500, 500) 50 6 10 2 0.8 150

k = 50 is displayed on the upper right side of the figure. The lower left side shows the
state of the swarms at time k = 100 and the lower right displays the state at k = 200
when the final triangular formation is achieved. We can count the number of robots that
could not make it into the formation and use this number as a performance criterion. In
this case, with Rm = 400 m, 13 robots out the 120 did not make it into formation after
the given time and 6 robots remain on the boundary of the domain.
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Fig. 6. Six swarms formation with a limited communication range of Rm = 400 m. Upper left:
swarms distribution at k = 0. Upper right at k = 50. Lower left at k = 100. Lower right after
k = Nf = 200 time steps.

Figure 7 displays a case similar to Figure 6 but with a lower value of the maximum
communication range ofRm = 350 m. Here there are some 17 robots that did not reach
their target points in the formation.

Figure 8 displays a case similar to Figure 6 but with a lower value of the communi-
cation range of Rm = 300 m. There are some 35 robots out the 120 that did not reach
their target points within the given time.

With a communication range of Rm = 250 m it was not possible to achieve the
formation after 200 time steps. The communication range has to be at least half the
length of the side of the formation triangle (a = 600 m) in order to achieve formation.
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Fig. 7. Six swarms formation with a limited communication range of Rm = 350 m. Upper left:
swarms distribution at k = 0. Upper right at k = 50. Lower left at k = 100. Lower right after
k = Nf = 200 time steps.
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Fig. 8. Six swarms formation with a limited communication range of Rm = 300 m. Upper left:
swarms distribution at k = 0. Upper right at k = 50. Lower left at k = 100. Lower right after
k = Nf = 200 time steps.

4 Conclusion

A method for the cooperative control of a group of swarms of robots based on the PSO
algorithm of swarm intelligence with the effects of limited communication range and
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noise has been presented. Organizing the control of robots as multiple swarms can speed
up collaborative optimization with multiple minima or the detection of multiple objects
in parallel. The method has been demonstrated on a problem where a group of swarms
search for multiple similar minima or multiple objects in a given domain of the plane.
The algorithm is robust with respect to limited communication range for range values
of more than 20% of the characteristic size of the domain.

The method was used for swarm formations, by prescribing the final locations of the
swarms as control signals. The algorithm is robust to limited communication range as
long as it is greater than half the characteristic size of the swarms formation.

References

1. Brits, A., Engelbrecht, A.P., van den Bergh, F.: Locating Multiple Optima Using Particle
Swarm Optimization. Applied Mathematics and Computation 189, 1859–1883 (2007)

2. Clerc, M.: Particle Swarm Optimization, ISTE, Newport Beach (2006)
3. Crispin, Y.: Levy Flights in Robot Swarm Control and Optimization. In: Cooperative Net-

works, Control and Optimization, ch. 5. Edward Elgar Publishing (in print, 2008)
4. Crispin, Y.: Levy Flights in the Stochastic Dynamics of Robot Swarm Gathering. In: Pro-

ceedings of the 2nd International Workshop on Multi-Agent Robotic Systems, MARS 2006,
Setubal, Portugal (August 2006)

5. Crispin, Y.: Cooperative Control of a Robot Swarm with Network Communication Delay. In:
Proceedings of the First International Workshop on Multi-Agent Robotic Systems - MARS
2005, Barcelona, Spain (2005)

6. Gage, D.W.: Randomized Search Strategies with Imperfect Sensors. In: Proceedings of the
SPIE Mobile Robots, vol. 2058, pp. 270–279 (1993)

7. Gage, D.W.: Many Robots MCM Search Systems. In: Proceedings of the Symposium on
Autonomous Vehicles in Mine Counter Measures, Monterey, CA, pp. 4–7 (1995)

8. Hayes, A.T., Martinoli, A., Goodman, R.: Comparing Distributed Exploration Strategies with
Simulated and Real Autonomous Robots. In: Proceedings of the Fifth International Sympo-
sium on Distributed Autonomous Robotic Systems, DARS 2000, pp. 261–270 (2000)

9. Horst, R., Tuy, H.: Global Optimization, Deterministic Approaches. Springer, New York
(1996)

10. Iwamatsu, M.: Multi-Species Particle Swarm Optimizer for Multi-Modal Function Optimiza-
tion. IEICE Transactions on Information and Systems E89-D(3), 1181–1187 (2006)

11. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufman Publishers, San Fran-
cisco (2001)

12. Parsopoulos, K.E., Vrahatis, M.N.: Recent Approaches to Global Optimization Problems
Through Particle Swarm Optimization. Natural Computing 1, 235–306 (2002)

13. Parsopoulos, K.E., Vrahatis, M.N.: On the Computation of All Global Minimizers Through
Particle Swarm Optimization. IEEE Transactions on Evolutionary Computation 8(3) (June
2004)

14. Pugh, J., Segapelli, L., Martinoli, A.: Applying Aspects of Multi-Robot Search to Parti-
cle Swarm Optimization. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A.,
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Abstract. Unmanned Ground Vehicles (UGVs) equipped with surveil-
lance cameras present a flexible complement to the numerous stationary
sensors being used in security applications today. However, to take full
advantage of the flexibility and speed offered by a group of UGV plat-
forms, a fast way to compute desired camera locations to cover an area
or a set of buildings, e.g., in response to an alarm, is needed.

Building upon earlier results in terrain guarding and sensor placement
we propose a way to find candidate guard positions that satisfy a large set
of view angle and range constraints simulataneously. Since the original
problem is NP-complete, we do not seek to find the true optimal set of
guard positions. Instead, a near optimal subset of the candidate points is
chosen using a scheme with a known approximation ratio of O(log(n)).
A number of examples are presented to illustrate the approach.

1 Introduction

As the market for surveillance continues to grow, UGV-mounted cameras are be-
coming a natural complement to stationary cameras and manned patrolling. The
flexibility offered by UGVs is particularly important in cases of alarm response,
temporary replacement of stationary cameras, or when e.g., some valuable con-
tainers are stored overnight in a large harbour terminal with only perimeter
surveillance.

In this chapter we investigate how small scale UGVs, such as the one depicted
in Figure 1, can be used in surveillance and security applications. In particular
we will address the problem of autonomously finding a set of reachable camera
locations that satisfy the requirements for a given surveillance task prompted
by e.g., an alarm. We begin by giving an overview of the previous work in this
field.

There are many ways to categorize the literature related to automatic camera
positioning problems. The world models used are either two dimensional [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12] or three dimensional [6, 8, 13, 14, 15, 16, 17]. Most
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Fig. 1. Groundbot, the Surveillance UGV that will be used in real world experiments
(www.rotundus.se)

of the early papers are purely theoretical, whereas more recent work include
application areas such as robotics [5, 9, 11, 18, 19].

When studying camera positioning problems, the choice of an appropriate
camera model is an important part of the problem statement. While many papers
consider only occlusion constraints, some also deal with explicit range constraints
[2, 15, 16, 18], while others incorporate limited field of view [2, 6, 9, 18, 20] or
resolution constraints [2, 18].

There are also a number of different problem objectives present in the lit-
erature. Most of the early papers focus on finding a general upper bound on
the number of guards, as a function of the environment complexity in terms
the number of so-called vertices and holes. These formulations include the well
known Art gallery problem [1].

Even though many of the proofs mentioned above are constructive and can be
used to place guards in specific problem instances, other algorithms tailored to
solving such specific instances have been proposed. The Minimum point guard
problem was defined by Eidenbenz [13] as the problem of finding the minimal
set of guard positions that cover an area. This problem is known to be NP-hard
[21], as is the problem of finding a set of guards whose cardinality is at most
1 + ε times the optimum [22].

Greedy approximation schemes have been proposed [3, 13] and analyzed using
a transcription to the so-called Minimum set cover problem [13]. These greedy
schemes however need a set of candidate guard positions to choose from and the
choice of such positions have been studied using convex covers [23]. Other ways
of finding candidate positions include vertex coloring [17] and an approximate
so-called visibility index [16]. Tentative observer positions can also be found by
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partitioning the whole 3D-space using a huge set of planes or surfaces indicating
where the number of visible vertices changes [9, 13]. Other approaches include
randomized search [24] and random sampling [4]. A paper by Vazques et al.,
[19], introduce the new concept of Viewpoint entropy and use exhaustive search
to maximize this entropy in terms of camera position. Finally, an algorithm
for viewpoint computation considering an arm-mounted stereo camera was pre-
sented in a paper where the authors propose a number of interesting constraints
and perform the viewpoint optimization using a genetic algorithm [18].

In this chapter, we use the idea of focusing on the surfaces where the visible set
changes [9, 13] and introduce image quality constraints such as range and angle
of incidence into the computations to find a set of candidate guard positions.

The organization of this chapter is as follows. In Section 2, we state our
problem and propose a solution in Section 3. Examples illustrating the approach
are presented in Section 4. Finally, the chapter is concluded in Section 5.

2 Problem Formulation

The problem we study is closely related to the Minimum point guard problem
defined by Eidenbenz [13]. Here however, we incorporate explicit constraints on
camera field of view, as well as image resolution in terms of pixels per meter of
surveyed building. This problem is motivated by situations where one wants to
either make sure that no one exits the buildings, or when movements in windows
need to be monitored e.g., to look for snipers (see Remark 1). Formally we define
the problem as follows

Problem 1. (Minimum wall guard problem)
Let W = {(pi, qi) : pi, qi ∈ R

2} be a set of line segments corresponding to the
walls that needs to be surveyed. Furthermore, let O ⊂ R

2 be the union of all
obstacles.

The Minimum wall guard problem is the problem of finding a minimum set
S ⊂ R

2 of points on the ground plane such that every wall wi in W is guarded
by a point sj in S. By guarded we mean that sj and wi satisfy the constraints
in Definitions 1, 2 and 3.

Definition 1 (Visibility constraint). A wall wi = (pi, qi) ∈ W is visible to a
point guard sj ∈ S if the solid triangle (sj , pi, qi) does not intersect the interior
of the obstacle set O.

Definition 2 (Resolution constraint). Given a camera field of view α and
image quality constants stating that every segment of length δa of the wall being
surveyed must cover at least a fraction k ∈ (0, 1) of the image, a wall wi =
(pi, qi) ∈W and a point guard sj ∈ S satisfies the resolution constraint if

||r − sj || ≤
δa cos(φ)
kα

(1)

for all points r in wi, where φ is the angle of inclination, i.e., the angle between
the line (r, sj) and the normal of wi.
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Fig. 2. Note how the boundary of the camera positions satisfying the resolution con-
straints in Equation (1) corresponds to a circle, denoted Cres in Definition 4. As seen
above, the distance ||r − si|| = δa cos(φ)

kα
is smaller than ||r − sj || = δa cos(0)

kα
.

α

α

α

Fig. 3. Camera view angle constraint circle Cfov for a wall of length a and a camera
field of view of α

The definition is illustrated in Figure 2, where it can be seen that the points
corresponding to equality in Equation (1) trace out a circle. This circle is denoted
Cres in Definition 4 below.
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Remark 1. The above definition is motivated by the fact that computer vision
algorithms often need at least some given number of pixels across a given object
in order to do recognition with reasonable accuracy.

To handle field of view limitations we make the following definition.

Definition 3 (Field of view constraint). Given a camera view angle limit
α, the wall wi = (pi, qi) ∈ W and a point guard sj ∈ S satisfies the field of view
constraint if

∠(pi, sj , qi) ≤ α, (2)

i.e., the angle between (pi, sj) and (qi, sj) is less than α.

It is well known [9] that Equation (2) will constrain the camera to be outside a
circle segment as depicted in Figure 3. This circle is denoted Cfov in Definition
4 below.

Having defined the problem we are trying to solve, we now go on to describe
the solution we propose.

3 Proposed Solution

In this section, we begin by giving an overview of the algorithm, and then de-
scribe the various steps in detail. The main idea is to carefully construct a set of
candidate guard positions, and then choose a subset of these by transcribing the
problem to a Minimum set cover problem, which in turn is solved by a known
approximation method.

We propose the following algorithm to find a solution to Problem 1.

Algorithm 1

1. Find the candidate guard set S as defined below.
2. Calculate the walls guarded by each s ∈ S, using Definitions 1, 2 and 3.
3. Transcribe the problem of finding a subset of S that guards all walls W to a

Minimum set cover problem [13].
4. Solve the Minimum set cover problem using a greedy approach with approx-

imation factor O(log(n)) [13].

3.1 The Candidate Set S

To specify the set S in Step 1 of the algorithm, we need the following set of
definitions.

Definition 4 (Constraint circles Cres and Cfov). Given a wall wi = (pi, qi):
Let Cres(x) be the set of sj yielding equality in Equation (1), when r = x.
Furthermore, let Cfov(wi) be the set of sj yielding equality in Equation (2).

Given these circles we go on to define the area satisfying both Definition 2 and
3, i.e., both resolution and field of view constraints.
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Definition 5 (The Region Rrf). Given a wall wi = (pi, qi) and letting h
denote the convex hull of a set we define the region as follows

Rrf(wi) =
(
h(Cres(pi)) ∩ h(Cres(qi))

)
\ h(Cfov(wi))

(3)

i.e., the set of all camera positions satisfying Definition 2 and 3 for a given
wall wi.

The set Rrf is depicted for two different field of view angles α, in Figure 4.

Fig. 4. View angle and resolution constraints for two different view angles. The dark
gray region shows the feasible set for a camera with view angle α = 90◦ and the light
gray for a camera with view angle α = 45◦.

In order to take occlusions into account below, we first note that the obsta-
cles that affect candidate points within Rrf (wi) lie either inside of Rrf(wi), or
inbetween Rrf (wi) and wi. Thus we define the following

Definition 6 (RO). The set RO is defined as follows

RO = h(wi ∪Rrf (wi)) (4)

i.e., the convex hull of the wall wi and the region satisfying Definitions 2 and 3.

The area RO is dashed in Figure 5.
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Remark 2. Note that if objects in RO occlude vision from all of Rrf (wi) to the
corresponding wall wi, then Problem 1 has no feasible solution.

It is now time to define the candidate set S . Note that a good camera position
obviously belongs to the set Rrf (wi) for one or more walls wi. Therefore, we
look at intersections of constraint boundaries inside of Rrf(wi).

Definition 7 (The Candidate Set S). Let locc(wi) be the set of lines, that
pass through either pi or qi, and intersect the boundary, but not the interior of
O ∩RO(wi). Then let Locc(wi) be the set of line segments Locc(wi) ⊂ locc(wi) ∩
Rrf (wi) that are beyond the respective obstacles O, from the wall point of view.
Furthermore, let Ω be as follows

Ω = (∪j{Cres(pj) : (pj , qj) ∈W})
∪ (∪j{Cres(qj) : (pj , qj) ∈ W})
∪ (∪j{Cfov(wj) : wj ∈ W})
∪ (∪j{Locc(wj) : wj ∈W})

i.e., the set of all constraint boundaries in terms of arcs and line segments. The
candidate set S is defined to be the set of all intersections of an element in Ω
with another element of Ω.

The sets S and Ω for a single wall and three external obstacles are illustrated
in Figure 5.

Remark 3. To obtain the set S requires O(n2) computations, where n is the
number of vertices of buildings and obstacles in the area.

3.2 Calculation of Guarded Walls

When the set S of candidate guard positions is found, the number of walls w ∈ W
satisfying Definitions 1, 2, and 3, are computed for each s ∈ S. If all walls that
can be guarded by a single position do not fit into one single camera view due to
the field of view limitation, this candidate position is duplicated and stored with
all possible maximal combinations of guarded walls and corresponding viewing
directions. Thus to each s ∈ S a viewing direction ψ(s) and a set of guarded
walls W (s) are assigned.

3.3 Transcription to the Minimum Set Cover Problem

The Minimum set cover problem is defined as follows [13].
Problem 2 (Minimum set cover problem). Let E = {e1, . . . , en} be a finite set of
elements, and let Θ = {θ1, . . . , θm} be a collection of subsets of E, i.e., θj ⊆ E.
The Minimum set cover problem is the problem of finding a minimum subset
Θ′ ⊆ Θ such that every elements ei ∈ E belongs to at least one subset in Θ′.
We say that E is covered by Θ′.
By identifying the elements with walls, ei = wi, and subsets with guarded walls
θj = W (sj) we see that finding the minimal set of guarding positions is the same
thing as finding the minimum set cover, i.e., solving Problem 2.
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Fig. 5. Construction of the candidate set S. To reduce the size of S even further,
intersections that occur between an obstacle and the wall of interest can be removed.

3.4 Solving the Minimum Set Cover Problem

Problem 2 is NP-hard [13] and hence hard to solve to optimality in practice.
However, it is known that a standard greedy algorithm gives an approximation
ratio of O(log(n)), where n is the number of subsets [13]. The greedy algorithm
simply adds the guarding position in S that covers the largest set of walls first.
Then these walls are removed from the list of uncovered walls, and a new guard-
ing position is chosen that covers the largest set of walls from the remaining list.
This procedure is iterated until all walls are guarded.

Remark 4. Note that the greedy approach described above is just one choice of
solution to the Minimum set cover problem. Any other way of finding a good
solution to this subproblem works just as well in the proposed approach.

Having discussed the problem formulation and proposed algorithm in detail, we
move on to the example Section.
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4 Example Problems

In this section we will apply the proposed algorithm to two example problems,
one fairly straightforward with a single building, and one more complex with
four irregularly shaped buildings.

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Fig. 6. A single building. The sets Rrf (wi) are shown in solid curves and the corre-
sponding circles Cres and Cfov are dotted. The solution candidates are shown as circles
and the chosen camera positions as asterisks (*). Note that a two guard solution is fea-
sible due to the fact that the sets Rrf overlap slightly near (25,25), (-25,25), (-25,-25)
and (25,-25).

The first example is depicted in Figure 6. The sets Rrf (wi) are shown, as
well as the resulting candidate positions and final UGV positions. Note that the
overlapping Rrf make a two guard solution feasible. The corresponding field of
view cones are shown in Figure 7.

To illustrate the effect of the image resolution constraint we increase k in
Equation (1), corresponding to the required number of pixels per meter of sur-
veyed object. The new setting makes it impossible for a single UGV to see two
different walls with acceptable resolution. As can be seen in Figure 8, there is
no overlap between the Rrf sets. In this new problem, one UGV for each wall
is needed to solve the problem. Again, the corresponding field of view cones are
shown in Figure 9.

In Figure 10, a more complex scenario is depicted. As can be seen, seven UGVs
are required to cover the 19 walls of the four buildings. Note that although
no explicit obstacles are present, the buildings themselves serve as obstacles
occluding the view of the UGVs.

The order in which the guard positions where chosen can be deduced from the
dashed lines in Figure 10. Since the greedy algorithm picks the positions guarding
a large number of walls first we see that the UGVs near (-10,37) and (80,10),
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Fig. 7. The detailed solution to the problem of Figure 6. The guards are denoted by
asterisks (*) and dashed lines are drawn between the guards and the walls they guard.
Furthermore, the field of view cones are illustrated in solid lines.
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Fig. 8. The same scenario as in Figure 6, but with much tougher resolution constraints.
Again, candidates are denoted by circles and the chosen UGV positions are shown using
asterisks (*). Note that a two UGV solution is not feasible.

guarding four walls each, were chosen first. Then the two UGVs near (15,-20)
and (39,70), guarding three walls were picked. Finally, the ones at (40,25) and
(-10,0), guarding two walls, and the one at (40,-10), guarding one wall, were
chosen to achieve high quality surveillance of all designated walls.



Towards Optimal Positioning of Surveillance UGVs 231

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Fig. 9. The detailed solution of the problem in Figure 8. Four UGVs are required to
guard all four walls with the required image quality.
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Fig. 10. A complex scenario with 19 walls to be guarded. The solution requires seven
guards to guard all walls while satisfying occlusion, resolution and field of view con-
straints. As in Figure 7 above, asterisks (*) are guard positions, dashed lines show what
walls are guarded by whom, and solid cones illustrate field of view limitations.
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5 Concluding Remarks

In this chapter, the problem of positioning a team of UGVs to get a good situ-
ational awareness was studied. By extending previous work on terrain guarding
we were able to include realistic field of view and resolution constraints into
the formulation. The resulting problems were solved using an approximation
scheme on a carefully selected set of candidate guard positions. Two examples
were solved to illustrate the approach.
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Abstract. Multitarget tracking (MTT) hinges upon the solution of
a data association problem in which observations across scans are
partitioned into tracks and false alarms so that accurate estimates of
true targets can be recovered. In this chapter, we describe a method-
ology for solving this data association problem as a maximum weight
independent set problem (MWISP). This MWISP approach has been
used successfully for almost a decade in fielded sensor systems using
a multiple hypothesis tracking (MHT) framework, but has received
virtually no attention in the tracking literature, nor has it been
recognized as an application in the clique/independent set literature.
The primary aim of this chapter is to simultaneously fill these two
voids. Second, we show that the MWISP formulation is equivalent to
the multidimensional assignment (MAP) formulation, one of the most
widely documented approaches for solving the data association problem
in MTT. Finally, we offer a qualitative comparison between the MWISP
and MAP formulations, while highlighting other important practical
issues in data association algorithms that are commonly overlooked by
the optimization community.

Keywords: Maximum weight independent set problem, maximum clique
problem, multidimensional assignment problem, multiple hypothesis
tracking, multitarget tracking.

1 Introduction

Multitarget tracking (MTT) is a vital requirement of surveillance systems em-
ploying one or more sensors to collect information from an environment of in-
terest. The goal of an MTT system is to form and maintain tracks on targets
of interest using scans of detections furnished by the sensors. Two essential ele-
ments of an MTT algorithm include (1) data association, whereby scans of data
are partitioned into sequences of detections, or tracks, as well as false alarms, and
(2) estimation/prediction, in which quantities such as the current and future po-
sition, velocity, and acceleration of each target are computed. The primary focus
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236 D.J. Papageorgiou and M.R. Salpukas

Fig. 1. Actual and “dummy” observations per scan

of this chapter is on the former issue as it arises in multiple hypothesis tracking,
widely regarded as the preferred method for structuring the data association
problem in modern MTT systems [6].

We assume that a surveillance system, comprised of one or more sensors,
collects observations on an area of interest. An observation1 refers to all the
observed (or measured) quantities, e.g., kinematic data, included in a detection
output from a sensor. A scan or data frame refers to any set of input observa-
tions that are produced at the same time, or within the same time interval, with
the stipulation that at most one observation per target appears in a given scan.
We consider S scans of observations, denoted Z(k), each with mk observations
(or measurements), for k = 1, . . . , S. Letting zk

ik
denote the ikth observation on

scan k, we have Z(k) =
{
zk

ik

}mk

ik=1. For notational convenience in defining false
alarms as well as tracks with missed detections, we include a so-called dummy
observation, denoted by zk

0 , in each scan of observations Z(k). We define a track
hypothesis, or simply, a track, as a sequence of (actual and/or dummy) obser-
vations Zi1i2···iS ≡

{
z1

i1
, . . . , zS

iS

}
. For example, in Figure 1, assuming we have

collected only k = 4 scans of observations, Z1,1,0,1 =
{
z1
1 , z

2
1 , z

3
0 , z

4
1
}

represents
a track of three actual observations and one missed observation (a dummy ob-
servation) on scan 3. The sequence Z0,0,2,2 represents a track that initialized on
scan 3 because the first of its two non-dummy observations occurred on scan 3.

The term data association in MTT refers to the manner in which observations
are assigned to existing or newly initiated tracks, or are otherwise designated
as spurious observations, a.k.a. false alarms. There are several ways to classify
data association approaches, but the two most common are based on (1) the

1 The terms observation, detection, measurement, report, and plot are used inter-
changeably in the literature.
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number of observations permitted to be assigned to a track (“one-to-one” ver-
sus “many-to-one” data association) and (2) the number of data frames used
in the association process (“sequential” versus “deferred” decision logic) [5].
These classes are not orthogonal, e.g., there exist one-to-one single frame and
one-to-one multi-frame approaches. In many legacy and, in fact, many present
day MTT systems, data association is performed sequentially, whereby observa-
tions from a scan are “permanently” assigned2 to tracks or designated as false
alarms prior to processing the subsequent scan of observations. Notable one-to-
one sequential approaches include individual nearest neighbor and global nearest
neighbor (sequential most probable hypothesis tracking), which relies on a two-
dimensional linear assignment algorithm [8]. The fundamental deficiency with
these approaches occurs when many tracks compete for the same observations
in high contention scenarios resulting in an unacceptable number of misassocia-
tions, and, ultimately, poorly formed (or “noisy”) tracks. Well known many-to-
one sequential techniques include probabilistic data association (PDA) and joint
PDA (JPDA) [1].

The most prominent (and widely implemented) deferred decision logic method
is known as multiple hypothesis tracking (MHT), or more specifically, “track-
oriented” MHT (TOMHT), which frequently involves the generation of multiple
track hypotheses corresponding to the same true target. The underlying premise
of the MHT framework is that by retaining more than one track per target
ambiguities that arise in observation-to-track association (for example, due to
crossing tracks or splitting tracks) have a better chance of being resolved as
more scans of observations are collected. At the same time, storing multiple
track hypotheses comes at a price, namely, increased processing, memory, and
computation. Maintaining high quality tracking performance, while keeping com-
putational costs low, is an essential requirement of any MHT algorithm, and is
arguably as much of an art as it is a science. The MHT framework discussed in
this chapter has been proven to work for both surface (i.e., ground and sea) and
air tracking [7]. It has been used for almost a decade on several single sensor and
multiple sensor programs [13]. For multisensor scenarios, each sensor reports its
observations to a centralized tracker and biases in the observations are removed
(to the extent possible) so that the tracker treats each scan of observations just
as it would for a single sensor. If two sensors report observations at the same
time, these scans are ordered according to some rule and the process continues
as normal.

The first MHT framework was proposed by Reid [26] as a fully Bayesian
technique for evaluating the probabilities of sequences of observations having
2 Many authors describe the observation-to-track association used in a global near-

est neighbor approach as being an “irrevocable” assignment, but this is not strictly
followed in practice. Designers of tracking algorithms are well aware of the short-
comings of single hypothesis tracking in difficult scenarios and often include ad hoc
logic to re-assign observations by re-processing the last several scans of observations
if existing tracks do not appear to be well formed. However, since the rules and crite-
ria for reforming tracks are more scenario- and application-dependent, this approach
is rarely mentioned in the literature.
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originated from targets in a surveillance region. This approach, known as “hypo-
thesis-oriented” MHT (HOMHT) because it directly computes probabilities
of global (joint) observation-to-target association hypotheses, is seldom imple-
mented due to the complexity of treating joint hypotheses. On the other hand,
the TOMHT approach has gained widespread acceptance due to the simplic-
ity of working with (i.e., propagating, updating, and pruning) individual tracks
and the availability of efficient, albeit suboptimal, algorithms for partitioning
observations into tracks and false alarms [16,6,3].

The philosophy of partitioning observations into tracks and false alarms was
first formalized by Morefield [17] in which he formulated a 0-1 integer program-
ming problem, specifically a maximum weighted set packing problem, to ensure
that, on each scan of an N -scan window, an observation is assigned to no more
than one track. Capponi [10] took a closely related, but slightly modified, ap-
proach in which he formulated and solved a maximum weighted set partitioning
problem. Today, the most well documented approach is to cast the partitioning
problem as a multidimensional assignment problem (MAP) over an (N+1)-scan
sliding window. The MAP formulation and its various solution methods have
received extensive attention in the literature, see, e.g., Bar-Shalom [2], Deb et
al. [12], Pasiliao et al. [19], Pattipati et al. [20], Poore [21,22], and Popp et al.
[24]. To the mathematical programming community, the MAP should be under-
stood as nothing more than an integer programming problem in which we wish
to find the most likely set of tracks (based on a cost minimization to be discussed
below) subject to the constraint that, on every scan, each actual observation be
assigned to no more than one track or otherwise be designated as a false alarm.3

1.1 Contributions of This Chapter

In this chapter, we describe an alternative formulation to the data association
problem in which observation partitioning in an (N + 1)-scan sliding window
is cast as a maximum weight independent set problem. Unlike Morefield’s set
packing approach and the various MAP approaches in which observations in an
(N + 1)-scan window are explicitly partitioned into tracks and false alarms (i.e.,
by explicitly imposing a constraint on each observation), the MWISP approach
implicitly partitions the observations. We believe that this contribution is sig-
nificant for several reasons. First, the MWISP is a renowned discrete optimiza-
tion problem that has received far more attention in the optimization literature
than the MAP. More importantly, given the pervasiveness of the MWISP (and
its weighted and unweighted clique and vertex packing counterparts discussed
below) in numerous scientific applications completely unrelated to multitarget
tracking, literally hundreds of algorithms, both exact and heuristic, have been
developed, tested, and refined to solve it [4]. Second, because this approach has
been proven to work in operational MHT software using non-state-of-the-art
MWISP solvers, we believe that recognition of this alternative formulation could

3 It should be noted that the MAP can be made even more general by allowing ob-
servations to be assigned to more than one track, see, e.g., Poore [21].
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open the floodgates to even more efficient MHT algorithms with superior per-
formance. To the best of our knowledge, this chapter is the first to formally
recognize the MWISP formulation as a legitimate mathematical program-
ming formulation of the observation-to-track assignment problem in an MHT
framework.

As a second contribution, we establish that solving the MWISP is equivalent
to solving the MAP over the same (N + 1)-scan window. By equivalence, we
mean that a solution to the MWISP is optimal if and only if it is optimal to
the corresponding MAP. This fact should not be too surprising given that both
implementations have been studied and used for years. The equivalence between
the maximum weighted set packing and MWISP formulations is (informally)
shown in Chapter 7.2 of [8] for a tracking audience, but has been known in the
optimization literature for decades (see, e.g., Section 1.3 of [9]).

2 The Maximum Weight Independent Set Problem

Before describing the MHT framework, we take a brief, but necessary, tangent to
present the maximum weight independent set problem (MWISP). The MWISP is
an eminent combinatorial optimization problem, which has received widespread
attention in the optimization literature. In this section, we formally introduce
the MWISP and provide its linear integer programming formulation. For a com-
prehensive survey of various formulations, complexity results, algorithms, and
applications, we refer the reader to Bomze et al. [4] and their extensive list of
over 300 references.

We start by defining an independent set and a clique. Let G = (V,E) be
an arbitrary undirected graph with vertex set V = {1, . . . , n} and edge set E
consisting of m edges. Vertices i and j are said to be adjacent if the graph
contains the edge (i, j). An independent set (also known as a stable set or vertex
packing) is any subset S of vertices whose elements are pairwise nonadjacent.
The maximum (cardinality or unweighted) independent set problem (MISP) is
that of finding a set of independent vertices with the largest cardinality. If each
vertex also has an associated positive weight wi, then the maximum weight(ed)
independent set problem (MWISP) is a related problem in which we wish to find
a set of independent vertices with the largest total weight. Finding a maximum
weighted or unweighted independent set in an arbitrary graph is NP-hard and
the associated decision problem is NP-complete (see, for example, [14]). As will
soon become apparent, the observation partitioning problem encountered in our
MHT framework arises naturally as a MWISP in which vertices correspond to
tracks and edges correspond to incompatibilities between tracks.

A related problem of interest that has received even more attention in the
literature than the MISP is the maximum (cardinality or unweighted) clique
problem (MCP). A clique in a graph is a set of vertices that are pairwise adjacent.
Thus, the maximum (cardinality) clique problem is that of finding the largest
subset of vertices in a graph that share an edge with every other vertex in the
set. The maximum weight clique problem (MWCP) arises when each vertex also
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has an associated positive weight wi. Solving the MCP/MWCP is equivalent to
solving the MISP/MWISP on the complement graph of G, denoted Ḡ, where
Ē = (i, j) ∈ V, i �= j and (i, j) /∈ E. The key point is that all algorithms
developed for the MCP/MWCP are applicable to the MISP/MWISP, and vice
versa, depending on whether we operate on the graph G or its complement Ḡ.

The MWISP has a number of equivalent mathematical programming formula-
tions as a linear integer programming (IP) problem or as a continuous nonconvex
optimization problem. We mention the most common of the IP formulations,
which is known as the edge formulation:

max
x

n∑
i=1

wixi

s.t. xi + xj ≤ 1, ∀(i, j) ∈ E
xi ∈ {0, 1}, for i = 1, . . . , n

where the decision variable xi takes value one if vertex i belongs to the indepen-
dent set, and zero otherwise.

3 Track Scoring

In order to compare various partitions of the observations, most commonly
known as global hypotheses, a maximum a posteriori probabilistic expression
is customarily used [3]. This framework has received extensive attention in the
literature, so we only highlight the essential points that surface in subsequent
sections.

Associated with each track is a track score. Track scores serve as cost co-
efficients in the various discrete optimization formulations used to rank global
hypotheses. The track score is simply the log likelihood ratio that the sequence of
observations that form this track originated from a true target versus from false
alarms. In particular, Sittler’s [27] original likelihood ratio is a straightforward
application of Bayes’ rule:

LR =
P
{
z1

i1
, . . . , zS

iS
|H1

}
P0 {H1}

P
{
z1

i1
, . . . , zS

iS
|H0

}
P0 {H0}

where H1 (H0) is the hypothesis that the sequence of observations originated
from a single true target (false alarms); P

{
z1

i1 , . . . , z
S
iS
|Hi

}
is the probability

density function of collecting the sequence of observations
{
z1

i1
, . . . , zS

iS

}
under

the hypothesis Hi; and P0 {Hi} is the a priori probability of hypothesis Hi,
namely, the believed density of true targets in the area of interest for H1 and
that of false alarms for H0. As MTT is an on-going process, track scores are
computed recursively from scan to scan as follows. The track score at scan k is
LLR(k) = LLR(k − 1) +∆LLR(k), where

∆LLR(k) =
{

log(1 − PD) if no update on scan k,
∆Lu(k) if track update on scan k.
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As one might expect, the track score decreases when no observation is associated
with a track on scan k since the probability of detection PD is always less than
unity, hence log(1 − PD) < 0. On the other hand, the track score typically
increases by the amount ∆Lu(k) when an observation is used to update the
track on scan k. The magnitude of the increase depends on a number of factors
including (1) the residual error between the actual observation and the predicted
observation, (2) the error (covariance matrix) in the track state, (3) the expected
probability density of false alarms, (4) PD, and, possibly, (5) signal intensity
(e.g., signal-to-noise ratio). See Chapter 6 of [8] for various formulae concerning
the score increment ∆Lu(k). The track score is the sole component needed to
determine the validity of a track. One typically prunes a track once its track
score falls below a given threshold.

Having defined a score for each track, one can determine the score of a global
hypothesis by summing the scores of the tracks in that hypothesis.4 From these
global hypothesis scores, we can compute global hypothesis probabilities as fol-
lows: As described in [BlP99], let Ti denote track i, LTi its score, and LHj the
score of a given global hypothesis Hj , i.e., LHj =

∑
Ti∈Hj

LTi . Suppose that it
is possible to enumerate all global hypotheses. Then, the probability P{Hj} of
global hypothesis j can be computed using all J hypotheses5:

P {Hj} =
exp

(
LHj

)
1 +

∑J
i=1 exp (LHi)

. (1)

Furthermore, the probability of a particular track Ti, sometimes referred to as a
global track probability, not to be confused with the probability of track validity
defined above, is the sum of the probabilities of all hypotheses that contain the
track:

P {Ti} =
∑

j∈{1,...,J|Ti∈Hj}
P {Hj} . (2)

This global track probability could then be used for track deletion.

4 An MHT Framework

In this section, we outline a track-oriented MHT framework in which the
observation-to-track association problem for determining the best global hy-
pothesis and track probabilities is formulated as a MWISP. Reviewing this MHT
framework is helpful for several reasons. First, as there is a possible exponential
explosion in the number of track hypotheses formed in any MHT framework,
4 The ability to simply sum the scores of the tracks in a global hypothesis relies on

some essential independence assumptions that are commonly made, see, e.g. [21]
Equations (2.7). Another standard assumption, which we follow, is that false alarms
have a score of zero in any partition.

5 Along with all J nontrivial global hypotheses, the denominator includes the term
e0 = 1 to account for one trivial hypothesis – that all observations are false alarms,
which has a score of zero.
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Fig. 2. A high-level flowchart of a track-oriented MHT framework is shown on the left.
The global hypothesis formation step can be solved using any one of the optimization
formulations on the right.

real-time systems must have mechanisms for limiting the number of tracks to
ease processing. Track formation, clustering, and pruning are three such mecha-
nisms discussed below. Second, the flow of the algorithm is important because,
without it, the reader familiar with the MHT framework of Poore [21,22] may
not understand how the MWISP formulation arises in our MHT algorithm and
how track incompatibility lists are generated and maintained. The following de-
scription parallels that given by Blackman in Chapter 16 of [8] and [6], yet is
minimalist in that we avoid discussion of the numerous extensions that could be
added to a TOMHT framework. Throughout, it will be helpful to refer to the
flow diagram of the algorithm provided in Figure 2.

We begin by describing a hierarchy of data structures that are often main-
tained in MHT algorithms to encapsulate related information, to improve com-
putational efficiency, and to aid in creating a seamless interface with the user.
These data structures, shown in Figure 3, are clusters, families, tracks, and ob-
servations. Tracks and observations were introduced in the opening section, but
we repeat here to highlight this hierarchy that a track is composed of (in fact,
is a sequence of) observations. In a similar manner, a family (of tracks) is com-
posed of multiple tracks corresponding to the same target. We define a family,
sometimes called a track family, as a set of tracks all emanating from a sin-
gle root observation. In TOMHT, multiple track hypotheses are constructed for
each postulated target based on the target’s dynamic model and the association
of observations. For each postulated target, it is convenient both conceptually
and computationally to create a family (of tracks) or what Kurien [16] refers
to as a target tree. Initially, the root observation of a family denotes the first
observation associated with a new postulated target. Branches within a family
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Fig. 3. Hierarchy of data structures maintained in an MHT algorithm

represent various tracks for this target and are formed as different observation-
to-track assignments are hypothesized. As an example using the tracks from
Figure 1, suppose that k = 4 and that tracks Z1,1,0,1, Z1,1,1,1, and Z1,2,2,2 repre-
sent three tracks associated with the same postulated target, i.e., three branches
in a family whose root observation is z1

1 . The target tree depiction of this family
is shown in Figure 4(a).

In practice, a family data structure stores a list (not a tree) of tracks in the
family with pointers to each of these tracks, a common root observation shared
by all tracks in the track list, the status and score of the highest scoring track,
and various other data. The status of a family is useful to the user and typically
includes at least three categories: ‘tentative,’ ‘confirmed,’ and ‘lost.’ Whereas a
‘tentative’ track is typically a track with only a handful of observations and a
low track score, a ‘confirmed’ track is generally considered to be a track with a
sufficiently long history of observations, a high track score, and that has been
found to be in at least one of the best global hypothesis formed thus far in the al-
gorithm. The root observation is typically updated with N -scan pruning, which
we describe below. Finally, clusters are composed of one or more families and are
an effective data structure for decomposing the observation-to-track association
problem into smaller independent problems. Intuitively, when targets are suf-
ficiently separated such that their observations can be grouped into individual
clusters, one can perform the steps in Figure 2 independently on each cluster.

All MHT algorithms face two diametrically opposed objectives: storing as few
tracks as possible to keep computational efficiency high, while simultaneously re-
taining multiple observation-to-track association hypotheses for each postulated
target until enough data is available to make an irrevocable decision. Ideally,
we would like an algorithm that could simultaneously process all scans of data
and produce an optimal partition of the entire data set. This approach, however,
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is not practical because the computational requirements grow at an exponential
rate. One almost universally accepted technique for mitigating the combinatorial
explosion in track hypotheses is to apply an approximation technique known as
N -scan pruning to track families [16].

There are at least two approaches to N -scan pruning and the difference lies in
the definition of the parameter N . Suppose that we have collected observations
up to and including scan k, updated existing tracks with these observations,
and initiated new tracks. In one approach – the one we adopt in this chapter –
the assignment of observations before scan k − N , for k > N , is fixed for the
remainder of the algorithm while the observations in the N+1 scans k−N, . . . , k
are not yet permanently assigned. Upon finding the best global hypothesis, we
obtain a set of families each with a single track in this optimal hypothesis. Note
that some families may not have a track in the best global hypothesis. For each
track in this hypothesis, we trace the track’s sequence of observations from scan
k back to scan k −N + 1 (i.e., counting scan k, we trace the track back a total
of N scans). If the track (and, hence, the family) had been initiated before scan
k−N +1, we reset the root observation of the family to the observation zk−N+1

ik−N+1

in this track’s sequence of observations and delete other branches of the prior
root observation in the family. Otherwise, the family was initiated within the N -
scan window {k −N + 1, . . . , k} and the root observation need not be updated.
For families not in the best global hypothesis, the rules for N -scan pruning are
typically application dependent; in this chapter, we advocate applying N -scan
pruning to these families as well using the highest score track in the family. Thus,
the two consequences of N -scan pruning are that observations on scan k − N
become permanently assigned to tracks (or are designated as false alarms) for
the remainder of the algorithm and track branches are deleted.

An example of this type of N -scan pruning for a family of three tracks –
Z1,1,0,1, Z1,1,1,1, and Z1,2,2,2 from Figure 1 – with root observation z1

1 is shown
in Figure 4. In this example, suppose track Z1,1,1,1 is found to be in the best
global hypothesis and that an N -scan pruning technique, with N = 3, is used.
Then, we trace track Z1,1,1,1 back 3 scans to its observation on scan 2, which,
in this case, is z2

1 , reset the root observation of the family to z2
1 , and delete the

track/branch Z1,2,2,2.
In the variant of N -scan pruning given above, the parameter N refers to

the number of scans, counting the current scan, that we trace back to find a
new root observation. Another common variant is to define N as the number
of actual observations we trace back to find this new root observation. This
variant is popular when there is a high probability of not receiving an observation
for a particular target on every scan. For example, if three sensors are passing
observations to a centralized MHT algorithm, it may be the case that only one
or two of the sensors report observations on a particular subset of targets at a
given time. The choice of N is highly dependent on the tracking application and
the throughput limitations of the system. In addition, the value of N can be set
adaptively depending on the processing lag in the system.
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Fig. 4. An example of a family’s root observation and branches before and after N-scan
pruning

Having established the basic framework of the algorithm, we now discuss the
particular steps in the algorithm.

4.1 Formation and Maintenance of Tracks and Families

Let τk and
{
T k

jk

}τk

jk=1
be the number and set, respectively, of existing tracks just

prior to processing observations from scan k+ 1 in step 3 of Figure 2, where the
jkth such track is T k

jk
=
{
z1

i1
, . . . , zk

ik

}
. By “existing track,” we mean a track that

the algorithm has kept in memory for further processing. Similarly, let φk and{
F k

lk

}φk

lk=1
be the number and set, respectively, of families at this stage of the

algorithm. There are three types of tracks which emerge after a new scan of data
is processed. First, all existing tracks are extrapolated without an observation to
the time of the next scan to account for the possibility that no observation was
collected for that track, i.e., T k

jk
becomes T k+1

jk+1
=
{
z1

i1 , . . . , z
k
ik
, zk+1

0

}
. Second,

for each existing track T k
jk

at scan k, we create a new (child) track for each
observation zk+1

ik+1
that “gates” with T k

jk
, i.e., is reasonably close to where the

predicted observation would fall. These tracks represent new branches in the
family. Finally, each observation zk+1

ik+1
forms a newly initiated track and family,

since it could potentially be a new target. In total, the set of tracks present
immediately after processing Z(k + 1) is{
T k+1

jk+1

}
= {extrapolated tracks}∪{updated tracks}∪{newly initiated tracks} .

Thus, subsequent to “processing” observations from scan k+1 in step 3 of Figure
2, we could have as many as τk+1 = τk + τkmk +mk tracks and φk+1 = φk +mk
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families in memory. For practical implementations, the number of tracks and
families maintained in storage must be kept below some threshold in order to
meet computational time requirements. Methods to do so are discussed in [8].

For our purposes, two tracks are said to be compatible if they do not share
any observations, i.e., if no non-dummy observation appears in more than one
sequence. (In the event of possibly unresolved targets, that is, when two or more
closely-spaced targets generate a single observation on a given scan, two tracks
may be permitted to share an observation, but this issue lies outside the scope
of this work. Daum [Dau94] describes the significance of this largely neglected
issue.) Similarly, a global (joint) hypothesis is defined as a collection of tracks
that do not share any actual observations.

From the above description, it should be clear that many tracks may share
an observation and will, therefore, be incompatible with one another based on
the typical assumption that one observation can be associated with at most one
track. Consequently, unlike other MHT algorithms in the literature, we maintain
an incompatibility list (ICL) for each track, which will later be used for clustering
and for solving a MWISP to identify the most likely set of (compatible) tracks.
An ICL can be either explicit or implicit. Whereas an explicit ICL contains
all existing tracks with which a given track is incompatible, an implicit ICL
contains a subset of these tracks with the understanding that a given track is
incompatible with other tracks (e.g., by definition, a track is incompatible with
every other track in its family). For sake of presentation, we assume an explicit
ICL is maintained.

A naive but straightforward procedure for updating track ICLs after gating
observations with tracks on scan k can be done in O

(
mkτ

2
k−1

)
time, where

τk−1 is the number of existing tracks upon entering the “Track Formation”
step in Figure 2. The procedure works as follows: For each observation zk

ik
, for

ik = 1, . . . ,mk, consider all pairwise comparisons of tracks that were updated
with zk

ik
, and update each track’s ICL to reflect this incompatibility.

4.2 Track-Level Pruning and Confirmation

As mentioned in Section 3, the score associated with a track is the log like-
lihood ratio of the probability that the track was generated from true target
returns to the probability that all observations are false alarms. This score rep-
resents the probability that a track is a valid target. The track-level pruning
process simply compares this track-level probability to a suitably chosen dele-
tion threshold. Additional application specific pruning, such as kinematic prun-
ing of targets that are going too fast for the target type, can also be applied at
this time. The tracks that fail this test are deleted and the surviving tracks are
tested for confirmation. Once all tracks in a family have been pruned, the family
is pruned.

The rules for confirming a track family must balance the requirement to mini-
mize false track confirmation versus the requirement to minimize track reporting
time. False track confirmation can cause confusion to the display operator, in-
creased sensor loading, and added processor burden. Delayed track confirmation
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can cause engagement delay and, if the system needs to aim the sensor at con-
firmed targets in a timely manner, missed detections. Common rules for track
confirmation are based on score, probability, and number of detection thresholds.

4.3 Track Clustering

Clustering is an important preprocessing step used for decomposing the set of
families into smaller disjoint subsets to improve computational efficiency since
the processing within each cluster can be done independently from other clusters.
A cluster is composed of families whose tracks share at least one observation.
A cluster can include tracks that do not share observations directly. For exam-
ple, if track 1 is incompatible with track 2 and track 2 is incompatible with
track 3, then all three tracks are in the same cluster. Clusters can be deter-
mined from scratch on each scan by applying a breadth-first or a depth-first
search over the ICLs of all tracks. For real-time applications, clustering is not
performed from scratch at every scan; rather, a more efficient procedure is used
(see, e.g., [16]).

4.4 Global Hypothesis Formation

At this point in the algorithm, we have a set of families
{
F k

lk

}φk

lk=1
and a set of

tracks
{
T k

jk

}τk

jk=1
, many of which may be incompatible with one another, and

we wish to determine the most likely global (joint) hypothesis, i.e., collection
of tracks that do not share any observations. The motivation for computing the
best global hypothesis is twofold. First, the best global hypothesis represents the
most likely set of tracks given the data received, which is useful information for
the user (e.g., a human operator, a higher-level entity in the system, or another
algorithm). Second, the best global hypothesis is used when performing N -scan
pruning. The global hypothesis formation step also serves another important
purpose in our MHT framework, which is often not performed in other (e.g.,
Poore’s [22]) MHT algorithms. Namely, we attempt to enumerate a sufficient
subset of the global hypotheses with the aim of computing approximate global
hypothesis probabilities and track probabilities as shown in Equations (1) and
(2), which, in turn, will be used for further track pruning; tracks with an approx-
imate probability below some threshold are pruned. This method of probability
pruning has also been used in speech recognition [15].

The global hypothesis formation problem can be formulated as any one of
the combinatorial optimization problems listed in the box on the right of Fig-
ure 2. Below, we describe how the MWISP and MAP formulations arise nat-
urally as mathematical representations of this problem and then prove their
equivalence.

Global Hypothesis Formation Formulated as a MWISP. We begin
with the MWISP formulation. As noted above, we assume that a set of tracks{
T k

jk

}τk

jk=1
exists on scan k just prior to entering the global hypothesis formation
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Table 1. Pertinent data for tracks in Figure 1

Track ID Observation Sequence ICL Score
1 Z0,0,2,2 {4,6} -2.3
2 Z1,1,0,1 {3,4} 3.4
3 Z1,1,1,1 {2,4,5} 9.1
4 Z1,2,2,2 {1,2,3,5,6} 7.5
5 Z2,2,1,0 {3,4,6} 4.8
6 Z3,2,3,2 {1,4,5} 10.1

step in Figure 2 and that clusters have been formed. For each cluster, we create
an undirected graph G with vertex set V = {1, . . . , τ ′k} and edge set E, where τ ′k
is the number of tracks with a positive score in that cluster. Each vertex corre-
sponds to a track and has a weight wi equal to that track’s score. An edge (i, j)
is present in E if track/vertex i is incompatible with track/vertex j and note
that these incompatibilities are available with a single lookup through a track’s
ICL. This is precisely the description of the MWISP given in Section 2. Solving
this MWISP to optimality yields the best global hypothesis for this cluster, and
will be used as output for the user and for N -scan pruning. As an example,
let N = 3 and consider the six tracks shown in Figure 1. Table 1 includes the
pertinent data required for creating an instance of the MWISP.

Using this data, the MWISP created to perform global hypothesis formation
is shown in Figure 5. Although there are six tracks, only five are included in
the MWISP because only positive score tracks will contribute to the best global
hypothesis, which in this case consists of tracks (track IDs) 3 and 6.

Fig. 5. The undirected graph associated with the MWISP for the tracks in Table 1
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Note that all observations in the (N + 1)-scan window not assigned to a
track in a given global hypothesis are implicitly assumed to be false alarms
in that hypothesis. In order to compute track probabilities, we also enumerate
a sufficient subset of global hypotheses, which correspond to feasible solutions
(i.e., suboptimal independent sets) for this instance of the MWISP. Let H denote
the set of global hypotheses (independent sets) formed. Since we would like to
compute track probabilities for all tracks in the cluster, we loop over all global
hypotheses in H and attempt to create new hypotheses by including tracks with
negative scores. This results in a larger set H ′ of global hypotheses/independent
sets from which we will compute approximate global hypothesis probabilities
and, subsequently, track probabilities.

The MWISP instances encountered in MTT, in general, do not possess any spe-
cial structure for which polynomial-time solution methods exist. This fact should
not be too surprising given the discussion and the proof to follow that shows the
equivalence between the MWISP and the MAP, which is known to be NP-hard.

Global Hypothesis Formation Formulated as a MAP. We now describe
how the MAP can be used in lieu of the MWISP to find the best global hy-
pothesis in our MHT framework. Note that the MAP formulation that arises
in our MHT framework differs from the variants in Poore’s framework [21] in
which only a subset of the tracks are considered when performing track contin-
uation and initiation. In addition, our description differs from that given in [8]
as we emphasize the family data structure as one should use in implementation;
conceptually, the descriptions given here and in [8] are the same.

Recall that clusters are composed of one or more families and families are
composed of a set of incompatible tracks, all of which represent a track hypothesis
for the same target. In order for the MAP formulation to be applicable, we must
impose one further restriction than in the MWISP formulation: each family must
have a root observation (dummy or actual) in some scan s ∈ {k −N, . . . , k}
of the (N+1)-sliding window. A family whose root observation occurs on scan
k − N corresponds to a family that has existed for more than N scans, while
families whose root observation occurs on some scan s ∈ {k −N + 1, . . . , k} was
initialized within the last N scans.

Our goal is to assign the actual observations, which have not yet been perma-
nently assigned, over the N+1 scans k−N, . . . , k to existing tracks or otherwise
designate them as false alarms. After which, we will perform N -scan pruning, fix
the assignment of observations on scan k−N , and proceed to the next step of the
algorithm. To avoid notational clutter, we re-index the N +1 scans 1, . . . , N +1.
For a given cluster, suppose there are m0 families with at least one positive
score track. We index these families i0 = 1, . . . ,m0 so that the (N + 2)-tuple{
F k

i0 , z
1
i1 , . . . , z

N+1
iN+1

}
denotes a positive score track in family F k

i0 composed of the

sequence of actual or dummy observations
{
z1

i1
, . . . , zN+1

iN+1

}
in the (N + 1)-scan

window. We include a dummy family i0 = 0 to account for false alarms that ap-
pear in this window. Notice that we allow two or more families to have the same
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root observation.6 For each positive score track in family F k
i0

, for i0 = 1, . . . ,m0,
we define a binary decision variable zi0i1···iN iN+1 such that

zi0i1···iN iN+1 =

{
1 if track

{
F k

i0 , z
1
i1 , . . . , z

N+1
iN+1

}
is in best global hypothesis

0 otherwise

and cost coefficients ci0i1···iN iN+1 equal to the negative score of this track. Fol-
lowing standard practice, we set c0···0 = 0. We can now state the integer linear
programming formulation of an (N +2)-dimensional assignment problem, which
yields an optimal partitioning of the observations in this (N + 1)-scan window:

min
z

m0∑
i0=0

m1∑
i1=0

· · ·
mN+1∑

iN+1=0

ci0···iN+1zi0···iN+1 (4a)

s.t.
m1∑

i1=0

· · ·
mN+1∑

iN+1=0

zi0···iN+1 = 1, for i0 = 1, . . . ,m0 (4b)

m0∑
i0=0

· · ·
mk−1∑

ij−1=0

mk+1∑
ij+1=0

· · ·
mN+1∑

iN+1=0

zi0···iN+1 = 1,

for ij = 1, . . . ,mj and for j = 1, . . . , N (4c)
m0∑

i0=0

· · ·
mN∑

iN=0

zi0i1···iN iN+1 = 1, for iN+1 = 1, . . . ,mN+1 (4d)

zi0i1···iN iN+1 ∈ {0, 1}, ∀i0, . . . , iN+1 (4e)

The constraints (4b) – (4d) can be interpreted as follows: Every actual obser-
vation must be assigned to exactly one track, where a track in an N -scan pruning
framework is an (N + 2)-tuple of the form

{
F k

i0
, z1

i1
, . . . , zN+1

iN+1

}
. In order for the

above MAP to be feasible, we must also include decision variables z0···0ij0···0
with cost coefficients c0···0ij0···0 = 0, for ij = 1, . . . ,mj , for j = 1, . . . , N + 1,
to correspond to observations that are designated as false alarms, as well as
decision variables zi00···0 with cost coefficients ci00···0 = 0, for i0 = 1, . . . ,m0,
to correspond to families that are not updated in this window. As a final note,
the summations need not include all mk observations, for k = 1, . . . , N + 1, but
rather only those observations used by positive score tracks in the cluster being
processed.

For comparison, we now describe the MAP instance corresponding to the
MWISP shown in Figure 5. Consider again the tracks in Figure 1 and the cor-
responding data in Table 1. As before, let N = 3 for N -scan pruning. We can
6 Although rare, two families may have the same current root observation when N-

scan pruning is applied. For example, when two targets cross or one target splits
into two targets, we may only receive one (possibly unresolved!) observation per
scan at the time when they cross or begin to split. Under our standard “one-to-one”
assumption, this one observation can be assigned to at most one track.
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Table 2. Data for the MAP instance using tracks in Figure 1

Track ID Obs. Sequence Family Dec. Variable Cost Coeff.
2 Z1,1,0,1 F 4

1 z1,1,1,0,1 -3.4
3 Z1,1,1,1 F 4

1 z1,1,1,1,1 -9.1
4 Z1,2,2,2 F 4

1 z1,1,2,2,2 -7.5
5 Z2,2,1,0 F 4

2 z2,2,2,1,0 -4.8
6 Z3,2,3,2 F 4

3 z3,3,2,3,2 -10.1

find the best global hypothesis by solving a 5-dimensional assignment problem.
To do so, we assume that tracks (track IDs) in Table 1 are organized as follows:
Tracks Z1,1,0,1, Z1,1,1,1, and Z1,2,2,2 belong to family F 4

1 , track Z2,2,1,0 belongs
to family F 4

2 , track Z3,2,3,2 belongs to family F 4
3 , and track Z0,0,2,2 belongs to

family F 4
4 . Since Z0,0,2,2 has a negative score, family F 4

4 is not included in the
MAP instance, so m0 = 3. These tracks are shown in Table 2. As described
above, in order for the MAP instance to have a feasible solution, we must also
include decision variables for false alarms and for families that were not updated
in the 4-scan window. All other decision variables, corresponding to tracks that
were never formed or already pruned, are undefined or can be considered to have
infinite cost. The optimal solution z∗MAP to this MAP instance will be z∗1,1,1,1,1
= z∗3,3,2,3,2 = z∗2,0,0,0,0 = z∗0,2,0,0,0 = z∗0,0,0,2,0 = 1 and all other decision variables
equal to zero. This solution is equivalent to the best global hypothesis found
with the MWISP formulation in Figure 5.

Equivalence of the MWISP and the MAP Formulations. We can prove
that the MWISP and (N+2)-dimensional assignment problems for N -scan prun-
ing are equivalent, i.e., a solution is an optimal solution to the MWISP if and
only if it is an optimal solution to the MAP. Verifying that the two formulations
are equivalent is important for the following reason. In general, it is not difficult
to show that an instance of the MAP can be transformed into an instance of
the MWISP [14]. However, the converse is not true. That is, given an arbitrary
MWISP instance (i.e., an undirected graph of edges and weighted vertices), one
cannot simply transform it into a MAP instance because the notion of dimen-
sions does not exist for the MWISP.

As done above, we assume that a set of tracks
{
T k

jk

}τk

jk=1
and families{

F k
lk

}φk

lk=1
exist on scan k just prior to entering the global hypothesis forma-

tion step in Figure 2 and that clusters have been formed. We also require every
family to have a root observation in some scan s ∈ {k −N, . . . , k}. This root
may be an actual or dummy observation. The idea behind the proof is to first
show that a feasible solution to the MWISP must also be feasible to the MAP
and then to show that if this solution is also optimal to the MWISP it must also
be optimal to the MAP. We only show one direction since one can use reverse
logic to show the other direction.

Proposition 1. The MWISP and MAP formulations presented above are equiv-
alent.
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Proof. Let z′MWISP be an optimal solution to the MWISP and let z∗MWISP

be the union of (the tracks in) z′MWISP and all remaining observations in the
cluster, which have been implicitly designated as false alarms. First, notice that
z′MWISP is an independent set, which, by definition, means that all tracks in
z′MWISP are compatible with one another, that at most one track per family is
used, and that each observation per scan has been assigned to at most one track.
Consequently, z∗MWISP is a partition of the (N + 1) scans of observations and
satisfies constraints (4c), (4d), and (4e). Furthermore, since at most one track per
family is used, if we interpret all families F k

i0
, for i0 = 1, . . . ,m0, that did not have

a positive score track in this hypothesis to be of the form
{
F k

i0
, z1

0 , . . . , z
N+1
0

}
,

then z∗MWISP satisfies constraints (4b) as well and must be a feasible solution to
the MAP. To show that z∗MWISP is optimal to the MAP, suppose to the contrary
that there exists some other solution z′MAP such that −c(z′MAP ) > w(z∗MWISP ),
where c(z) is the sum in (4a) and w(z) is sum of track scores in an independent
set z. Immediately, we have a contradiction since the tracks in z′MAP , by virtue of
satisfying the MAP constraints, form an independent set. In this case, z∗MWISP

cannot be optimal contradicting our initial assumption. ��

5 Qualitative Discussion Comparing the MWISP and the
MAP Formulations

In this section, we offer a qualitative comparison of the MWISP and MAP for-
mulations in the global hypothesis formation step of our MHT framework. The
MWISP formulation has been employed in tactical MHT software whereas the
MAP formulation has been demonstrated to work on test data with prototype
software. However, to the best of our knowledge, no formal quantitative com-
parison between the two has been made.

Theoretically, we believe that the MAP formulation is more appealing than
the MWISP formulation for two reasons. First, the MAP is a natural extension
of the two-dimensional linear assignment problem formulation that is custom-
arily used in single scan MTT algorithms. Second, numerous researchers have
shown that for large problem instances found in MTT applications, various La-
grangian relaxation-based algorithms are capable of solving these instances in
real-time within some quantifiable accuracy. Indeed, it is this quantifiable ac-
curacy, which emerges through the approximate duality gap of a Lagrangian
relaxation algorithm, that makes the MAP formulation theoretically attractive.

Algorithmically, both approaches have their fortes and foibles. In our opinion,
the MWISP formulation has at least two advantages in our MHT framework.
First, the MWISP and the data structures needed to implement an algorithm
to solve it are conceptually simpler than the MAP. No two-dimensional linear
assignment problem solvers, nonsmooth optimization techniques, subgradients,
or Lagrangian relaxation algorithms are needed. (We recognize that these tech-
niques are well studied and that they have been shown to be applicable in real-
time systems.) Second, powerful local search methods for the MWISP make it
far easier to enumerate tens of thousands of global hypotheses, including an



The MWISP for Data Association in MHT 253

optimal and many near optimal hypotheses, (in less than a second) to be used
for computing approximate global hypothesis probabilities. The same cannot be
said for local search techniques for the MAP formulation. The MAP instances
encountered in MTT are typically very sparse because many observation-to-track
associations are never considered through gating, which motivates the use of data
structures that allow for sparse representation, e.g., a forward-star representa-
tion [18]. As reported in [23], performing local search with the same effectiveness
as one can using the MWISP formulation can be relatively unwieldy. Similarly,
“constructive” algorithms for the MAP, e.g., algorithms like a branch-and-bound
or a greedy randomized adaptive search procedure (GRASP) which iteratively
select a track from a neighborhood of tracks that preserve feasibility of the global
hypothesis, require more time to generate this neighborhood. To understand this,
realize that a MWISP local search method can determine with a single lookup
whether or not another track is incompatible with it by looking at its incompat-
ibility list. A branch-and-bound [19] or GRASP [25] method for the MAP must
ensure that by introducing a new track into the global hypothesis, the global
hypothesis remains feasible, which takes several lookups, at most (N + 2) – the
number of dimensions of the MAP, regardless of the representation.

On the other hand, the approximate duality gap furnished by Lagrangian
relaxation algorithms for the MAP is not only a “nice” theoretical property, but
it is equally as valuable algorithmically since it provides clear cut termination
criteria, e.g., “stop trying to find a better partition once the duality gap is below
x%.” At the same time, its importance should not be overstated. In most MTT
applications, an entire loop of the steps shown in Figure 2 must be performed
in a matter of seconds or less. After completing the computationally intensive
step of updating and propagating tracks, finding the best global hypothesis and
performing track-level pruning must be done in as little as one-tenth of a second
in some systems. Thus, while at first glance the number of lookups may seem
irrelevant, real-time systems must perform these operations in far less time than
is typically allotted in other applications in which the MWISP and the MAP
arise.

6 Conclusions

We have shown that it is possible to formulate the observation-to-track associa-
tion problem arising in multiple hypothesis tracking as a MWISP. Although this
formulation has been known for some time, it has never been formally recog-
nized. Blackman [8,6] only describes a “breadth-first . . . and A* search method”
as an algorithm for solving this formulation. Moreover, the survey by Pattipati
et al. [20] never even mentions this formulation. We believe that this problem
recognition is valuable as it provides an opportunity for state-of-the-art MWISP
algorithms to be applied when current methods are inadequate. Finally, we have
shown that this formulation is equivalent to the more popular MAP formulation
in the context of our MHT framework.
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Abstract. This chapter provides a concise and up-to-date analysis of
the foundations of performance robustness of a linear-quadratic class of
cooperative decision-making with respect to variability in a stationary
and stochastic environment. The dynamics of large-scale and intercon-
nected dynamical systems corrupted by a standard stationary Wiener
process include decision activities that are controlled by decentralized
decision makers. Basic assumptions will be that cooperative decision
makers form a coalition and have access to the current value of the
states of the systems. The performance robustness and uncertainty of
the coalition is now affected by other non-cooperative participants such
as model deviations and environmental disturbances, named Nature. A
decentralized model-following approach where interactions among coali-
tive decision makers are represented by reduced order models, is taken to
derive various local decisions without intensive information interchanges.
Decentralized decision strategies considered here collaboratively optimize
an advanced multi-objective criterion over time where the optimization
takes place with high regard for possible random sample realizations by
Nature who may more likely not be acting in concert. The implemen-
tation of decision gain parameters in the finite horizon case is shown to
be feasible. The inherent decision structure now has two degrees of free-
dom including: one, state feedback gains with state measurements that
are robust against performance uncertainty; and two, interactive feed-
back gains that minimize differences between the actual and desirable
interactions.

1 Introduction

The study of cooperative games is concerned with the behavior of systems con-
strained by differential equations with some number of independent activity
levels determined by decision makers, each of whom has a separate objective
functional he wishes to optimize. Since the objectives are possibly conflicting,
decision makers therefore enter into binding agreements for achieving mutual
benefits. Furthermore, every decision maker may have all the information on
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the state dynamics of the shared interaction model and objective functionals of
other decision makers. All decision makers are able to implement their decisions
without restrictions. Works in deterministic multi-person decision problems were
initiated by [8] and [9] when a set of policies which is optimal for one decision
maker, may have rather negative effects on the evolution of interaction from
another decision maker’s point of view. More recently, people have begun to ex-
amine the general problem in which more than two decision makers attempt to
improve their performances with respect to all realizations of the environmental
disturbances, named Nature. For a detailed discussion of these results, see [6]
and [7]. Significant advances in these works involve: 1) whether it is possible to
construct beliefs that reflect genuine uncertainty about Nature’s mixed random
realizations, yet are narrow enough to permit learning on performance robust-
ness with respect to variability in the stochastic environment and 2) the support
of beliefs should, on the one hand, encompass mixed random strategies, reflect-
ing uncertainty about Nature and, on the other hand, needs to include strategies
that actually are optimal for decision makers given the support of their beliefs.

The aforementioned developments and formulations are motivated by the need
of uncertainty analysis which evaluates the impact of uncertainty caused by
stochastic disturbances on system performance and has long been recognized
as an important and indispensable consideration in reliability-based design [2]
and incorporation of aversion to specification uncertainty [4]. The research in-
vestigation considered here includes a general discussion on the formulation of
multi-person, and multi-objective criteria, coordination and control problems
that involve uncertainty, performance robustness, information decentralization
and potential conflicts of interest between cooperative decision makers and Na-
ture. Possible solution concepts for such decision problems are also proposed as
the extension of the account [6] in the areas of minimal information interchanges
and balances of local objectives and global objectives. Having said that, all re-
spective measures of performance of cooperative decision makers are viewed as
random variables with Nature’s mixed random realizations. The action space of
Nature regarding all realizations of the underlying stochastic process is assumed
to be common knowledge. Included with the present work are some novel an-
swers to the following open research problems: i) Cooperative decision makers do
not comply with the traditional average measure of performance; ii) An effective
knowledge organization and construct that can be able to extract the knowledge
of higher-order characteristics of the shared performance distributions; and iii)
Collaborative decision strategies that guarantee performance robustness with
multiple attributes beyond performance averaging as such variance, skewness,
flatness, etc. of the probability density function of the common performance,
just to name a few.

The chapter is organized as follows. In Section 2 the multi-person decision
problem against Nature, together with the definitions of performance-measure
statistics and their supporting equations associated with the Chi-squared ran-
dom measure of performance is presented. Problem statements for the resulting
Mayer problem in dynamic programming are given in Section 3. Construction
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of a candidate function for the value function and the calculation of decen-
tralized efficient Pareto decision strategies accounting for multiple attributes of
performance robustness are included in Section 4, while conclusions are drawn
in Section 5.

2 Problem Formulation

Before going into a formal presentation, it is necessary to consider some con-
ceptual notations. To be specific, for a given Hilbert space X with norm || · ||X ,
1 ≤ p ≤ ∞ and a, b ∈ R such that a ≤ b, a Banach space is defined as follows

Lp
F(a, b;X) �

{
φ(·) = {φ(t, ω) : a ≤ t ≤ b} � φ(·) is an X-valued Ft-measurable

process on [a, b] withE

{∫ b

a

||φ(t, ω)||pXdt
}
<∞

}
(1)

with norm

||φ(·)||F ,p �
(
E

{∫ b

a

||φ(t, ω)||pX dt

})1/p

(2)

where the elements ω of the filtered sigma field Ft of a sample description space
Ω that is adapted for the time horizon [a, b], are random outcomes or events.
Also, the Banach space of X-valued continuous functionals on [a, b] with the
max-norm induced by || · ||X is denoted by C(a, b;X). The deterministic version
of (1) and its associated norm (2) is written as Lp(a, b;X) and || · ||p.

Now a class of stochastic multi-person decision problems with a set of decision
makers denoted by N � {1, 2, . . . , N} and a typical element by i is considered.
An underlying filtered probability space (Ωi,Fi, {Fi}t≥t0>0,Pi) is defined with
a stationary pi-dimensional Wiener process wi(t) � wi(t, ωi) : [t0, tf ]×Ωi �→ R

pi

on a finite horizon [t0, tf ] and the correlation of independent increments

E
{
[wi(τ) − wi(ξ)][wi(τ) − wi(ξ)]T

}
= Wi|τ − ξ|, Wi > 0

for the environmental uncertainties, named Nature from now on which are be-
yond the control of decision maker i. A mathematical description that defines
an information flow structure and some level of interactions of decision maker i
within the i-th subsystem and with the uncertain behaviors ωi ∈ Ωi of Nature

dxi(t) = (Ai(t)xi(t) +Bi(t)ui(t) + Ci(t)zi(t) + Ei(t)di(t))dt+Gi(t)dwi(t) (3)

xi(t0) = x0
i

where all the coefficients Ai ∈ C(t0, tf ; Rni×ni), Bi ∈ C(t0, tf ; Rni×mi), Ci ∈
C(t0, tf ; Rni×qi), Ei ∈ C(t0, tf ; Rni×ri), and Gi ∈ C(t0, tf ; Rni×pi) are deter-
ministic matrix-valued functions. Furthermore, it should be noted that
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xi ∈ L2
Fi

(t0, tf ; Rni) is the ni-dimensional state of the i-th subsystem with the
initial state x0

i ∈ R
ni fixed, ui ∈ L2

Fi
(t0, tf ; Rmi) is the mi-dimensional control

decision, and di ∈ L2(t0, tf ; Rri) is the ri-dimensional known disturbance.
The interaction zi ∈ L2

Fi
(t0, tf ; Rqi) is the qi-dimensional process for decision

maker i that is a function of the other subsystem state variables

zi(t) =
N∑

j=1,j 	=i

Lij(t)xij(t) , i ∈ N . (4)

Therefore, the process zi is not available at the subsystem level i. It is then
desired to have decentralized decision making without intensive communications
that subsequently involves the selection of a crude model of reduced order for
the interactions among the decision makers. The actual interaction zi(·) is now
approximated by an explicit model-following of the type

dzmi(t) = (Azi(t)zmi(t) + Ezi(t)dmi(t))dt +Gzi(t)dwmi(t) , (5)

zmi(t0) = z0
mi

whereAzi ∈ C(t0, tf ; Rqi×qi) is an arbitrary deterministic matrix-valued function
which describes a crude model for the actual interaction zi(·). For instance, Azi

can be chosen to be the off-diagonal block of the global matrix coefficient A cor-
responding the partition vector zi(·). Other coefficients Ezi ∈ C(t0, tf ; Rqi×rmi)
and Gzi ∈ C(t0, tf ; Rqi×pmi) are deterministic matrix-valued functions of the
stochastic differential equation (5). The uncertainty and robustness of the in-
teraction zmi(·) produced by the model is affected by the known disturbance
dmi ∈ L2(t0, tf ; Rrmi) and Nature wmi(t) � wmi(t, ωmi) : [t0, tf ] × Ωmi �→ R

pmi

is an pmi-dimensional stationary Wiener process with {Fmi}t≥t0>0 defined as its
filtration on a complete filtered probability space (Ωmi,Fmi, {Fmi}t≥t0>0,Pmi)
over [t0, tf ] with the correlation of independent increments

E
{
[wmi(τ) − wmi(ξ)][wmi(τ) − wmi(ξ)]T

}
= Wmi|τ − ξ|, Wmi > 0 .

In addition, the local models of dynamics (3) and interaction prediction (5) in
the absence of known disturbances and stationary environments are assumed to
be uniformly exponentially stable. For instance, there exist positive constants η1
and η2 such that the pointwise matrix norm of the closed-loop state transition
matrix associated with the local dynamical model (3) satisfies the inequality

||Φi(t, τ)|| ≤ η1e
−η2(t−τ) ∀ t ≥ τ ≥ t0 .

The pair (Ai(t), [Bi(t), Ci(t)]) is pointwise stabilizable if there exist bounded
matrix-valued functions Ki(t) and Kzi(t) so that the closed-loop system dx(t) =
(Ai(t) +Bi(t)Ki(t) + Ci(t)Kzi(t)) xi(t)dt is uniformly exponentially stable.

With the approach considered here, there is a need to treat the actual inter-
action zi(·) as the control process that is supposed to follow the predicted in-
teraction process zmi(·). Thus, this requirement leads to the classes of admissible
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decisions associated with (3) to be denoted by Ui × Zi ⊂ L2
Fi

(t0, tf ; Rmi) ×
L2
Fmi

(t0, tf ; Rqi). Given (ui(·), zi(·)) ∈ Ui×Zi, the 3-tuple (xi(·), ui(·), zi(·)) shall
be referred to as an admissible 3-tuple if xi(·) ∈ L2

Fi
(t0, tf ; Rni) is a solution of

the stochastic differential equation (3) associated with ui(·) ∈ Ui and zi(·) ∈ Zi.
Under the assumptions of x0

i ∈ R
ni , z0

mi ∈ R
qi , ui(·) ∈ Ui, and zi(·) ∈ Zi, there

are tradeoffs among the closeness of the local states from desired states, the size
of the local decision levels, and the size of the locally mismatched interactions,
and the decision maker i has to carefully balance the three in order to achieve
his local performance. Mathematically, there assumes existence of an integral-
quadratic form (IQF) performance-measure Ji : R

ni × R
qi × Ui × Zi �→ R

Ji(x0
i , z

0
mi;ui(·), zi(·)) = xT

i (tf )Qf
i xi(tf ) +

∫ tf

t0

[
xT

i (τ)Qi(τ)xi(τ)

+ uT
i (τ)Ri(τ)ui(τ) + (zi(τ) − zmi(τ))TRzi(τ)(zi(τ) − zmi(τ))

]
dτ (6)

where respective design parameters Qf
i ∈ R

ni×ni , Qi ∈ C(t0, tf ; Rni×ni), Ri ∈
C(t0, tf ; Rmi×mi), and Rzi ∈ C(t0, tf ; Rqi×qi) representing relative weightings
for terminal states, transient states, decision levels and interaction mismatches
are deterministic and positive semidefinite with Ri(t) and Rzi(t) invertible.

The aggregate autonomy-interaction arrangement that locally depicts the as-
pirations and interaction details of decision maker i, then requires the following
augmented subsystem variables and parameters

xai(t) �
[
xi(t)
zmi(t)

]
; x0

ai �
[
x0

i

z0
mi

]
; wai(t) �

[
wi(t)
wmi(t)

]
. (7)

The respective tradeoff decision levels and preferences (6) for decision maker i
is rewritten as follows

Ji(x0
ai;u(·), zi(·)) = xT

ai(tf )Qf
aixai(tf ) +

∫ tf

t0

[
xT

ai(τ)Qai(τ)xai(τ)

+ uT
i (τ)Ri(τ)ui(τ) + zT

i (τ)Rzi(τ)zi(τ) − 2xT
ai(τ)Sai(τ)zi(τ)

]
dτ (8)

where the quadratic weightings at local performance are given by

Qf
ai �

[
Qf

i 0
0 0

]
; Qai(τ) �

[
Qi(τ) 0

0 Rzi(τ)

]
; Sai(τ) �

[
0

Rzi(τ)

]
(9)

subject to the local dynamics for strategic relations

dxai(t) = (Aai(t)xai(t) +Bai(t)ui(t) + Cai(t)zi(t) +Dai(t))dt+Gai(t)dwai(t)

xai(t0) = x0
ai (10)

with the corresponding system parameters

Aai(t) �
[
Ai(t) 0

0 Azi(t)

]
; Bai(t) �

[
Bi(t)

0

]
; Cai(t) �

[
Ci(t)

0

]
(11)

Dai(t) �
[
Ei(t)di(t)
Ezi(t)dmi(t)

]
; Gai(t) �

[
Gi(t) 0

0 Gzi(t)

]
; Wai �

[
Wi 0
0 Wmi

]
. (12)
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Next, all decision makers decide to act cooperatively via an enforceable negoti-
ation that comes from a coalitive game defined by

– A finite set of decision makers S � {1, . . . , S} ⊂ N
– A collection of decision sets indexed on S, i.e., {Uj}j∈S and {Zj}j∈S

– A measure of performance, Ji : R
ni+qi ×Πj∈SUj ×Πj∈SZj �→ R.

By cooperation, it seems reasonable that all decision makers would prefer to have
information exchanges for coalitive coordinations that result in some cooperative
outcomes that no one improves his performance without negatively affecting that
of another. Hence, only those outcomes motivate the concept of Pareto efficiency.

Definition 1. Efficient and Collective Decisions.
For any random realization ωai ∈ Ωai drawn by Nature, coalitive decisions ûS

and ẑS are Pareto efficient if

(ûS , ẑS) ∈ argmin
uS∈US ,zS∈ZS

{
J1(x0

a1;uS, zS), . . . , JS(x0
aS ;uS, zS)

}
(13)

where US � Πj∈SUj and ZS � Πj∈SZj. Furthermore, the corresponding point
(J1(x0

a1; ûS , ẑS), . . . , JS(x0
aS ; ûS , ẑS)) ∈ R

S is called a Pareto solution. The set
of all Pareto solutions is called the Pareto frontier.

In the subsequent analysis, the following set of parameters, Ξ represents for
cooperative profiles

Ξ �
{
ξ = (ξ1, . . . , ξS) ∈ R

S |ξi > 0 and
S∑

i=1

ξi = 1

}
.

Proposition 1. Efficient Pareto Parameterizations.
Let ξ ∈ Ξ and ωai ∈ Ωai. If

(ûS , ẑS) ∈ argmin
uS∈US ,zS∈ZS

{
S∑

i=1

ξiJi(x0
ai;uS , zS)

}
(14)

then (ûS , ẑS) is Pareto efficient.

Since the performance-measures (8) are convex functions on a convex set US×ZS

with convex constraints (10), the problem of finding all Pareto efficient strate-
gies for the linear quadratic game with a vector-valued objective criterion is
equivalent to the problem of solving an S − 1 parameter family of optimization
problems with scalar-valued objective criteria [5].

Proposition 2. Necessary and Sufficient Conditions.
Suppose US ×ZS is convex and realized performance measure Ji is convex. ûS ∈
US, ẑS ∈ ZS are efficient if and only if there exits ξ ∈ Ξ such that ûS and ẑS

are the corresponding Pareto-efficient decision strategies obtained as

(ûS , ẑS) = argmin
uS∈US ,zS∈ZS

{
Jξ(x0

a;uS, zS) �
S∑

i=1

ξiJi(x0
ai;uS, zS)

}
. (15)
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However, there are, in general, many Pareto solutions which depend on parame-
ters ξ and Nature’s actions ωai. This observation raises the question as to which
one is the best. To address this question, the present work suggests an emerging
arena of what is called performance robustness for stochastic cooperative games
against Nature based upon the cumulant-based control theory, in conjunction
with the concept of Pareto efficiency.

From the aspect of interaction management within a cooperative environment,
the coalitive-conscious formulation which takes into account of model uncertain-
ties, coalitions and Nature actions, requires that

xa(t) �

⎡⎢⎣ xa1(t)
...

xaS(t)

⎤⎥⎦ ; wa �

⎡⎢⎣wa1(t)
...

waS(t)

⎤⎥⎦ (16)

which leads to the quadratic measure of performance

Jξ(x0
a; ûS(·), ẑS(·)) = xT

a (tf )Qf
axa(tf ) +

∫ tf

t0

[
xT

a (τ)Qa(τ)xa(τ)

+ ûT
S (τ)Ra(τ)ûS(τ) + ẑT

S (τ)Raz(τ)ẑS(τ) − 2xT
a (τ)Sa(τ)ẑS(τ)

]
dτ (17)

where the quadratic weightings for the coalitive measure of performance are

Sa(τ) � diag(ξ1Sa1(τ), . . . , ξSSaS(τ))

Qf
a � diag(ξ1Q

f
a1, . . . , ξSQ

f
aS); Qa(τ) � diag(ξ1Qa1(τ), . . . , ξSQaS(τ)); (18)

Ra(τ)� diag(ξ1R1(τ), . . . , ξSRS(τ)); Raz(τ)� diag(ξ1Rz1(τ), . . . , ξSRzS(τ))

subject to the aggregate dynamics strategically coordinated for the coalition S

dxa(t) = (Aa(t)xa(t) +Ba(t)ûS(t) + Ca(t)ẑS(t) +Da(t))dt +Ga(t)dwa(t)

xa(t0) = x0
a (19)

provided that

Aa(t) � diag(Aa1(t), . . . , AaS(t)); Ba(t) � diag(Ba1(t), . . . , BaS(t));

Ca(t) � diag(Ca1(t), . . . , CaS(t)); DT
a (t) �

[
DT

a1(t) . . . D
T
aS(t)

]
; (20)

Ga(t) � diag(Ga1(t), . . . , GaS(t)); Wa � diag(Wa1, . . . ,WaS) .

Since the significance of (17) and (19) is linear-quadratic in nature, it is of-
ten argued that the actions of cooperative decision makers should be func-
tions of the states. The restriction of decision strategy spaces to the set of
so-called Markov functions can be justified by the assumption that decision
makers participate in the cooperative game where they only have access to the
current time and state of the interaction. Therefore, it amounts to consider-
ing only those feedback Pareto strategies which permit linear feedback synthe-
ses γ̂si : [t0, tf ] × L2

Fai
(t0, tf ; Rni+qi) �→ L2

Fai
(t0, tf ; Rmi) and γ̂z

si : [t0, tf ] ×
L2
Fai

(t0, tf ; Rni+qi) �→ L2
Fai

(t0, tf ; Rqi)
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ûsi(t) = γ̂si(t, xai(t)) � Ki(t)xai(t) + pi(t) (21)

ẑsi(t) = γ̂z
si(t, xai(t)) � Kzi(t)xai(t) + pzi(t) (22)

where admissible matrix-valued decision gains Ki ∈ C(t0, tf ; Rmi×(ni+qi)) and
Kzi ∈ C(t0, tf ; Rqi×(ni+qi)) as well as vector-valued decision affine functions pi ∈
C(t0, tf ; Rmi) and pzi ∈ C(t0, tf ; Rqi) will be appropriately defined, respectively.

Having local mechanisms (21)-(22) for information sampling in place, coalitive
decision makers simultaneously implement Pareto efficient strategies so that the
awareness of the corresponding interaction process is maintained up to date

ûS(t) =

⎡⎢⎣ ûs1(t)
...

ûsS(t)

⎤⎥⎦ =

⎡⎢⎣K1(t) 0 0

0
. . . 0

0 0 KS(t)

⎤⎥⎦
⎡⎢⎣ xa1(t)

...
xaS(t)

⎤⎥⎦+

⎡⎢⎣ p1(t)...
pS(t)

⎤⎥⎦
� K(t)xa(t) + p(t) , (23)

ẑS(t) =

⎡⎢⎣ ẑs1(t)
...

ẑsS(t)

⎤⎥⎦ =

⎡⎢⎣Kz1(t) 0 0

0
. . . 0

0 0 KzS(t)

⎤⎥⎦
⎡⎢⎣ xa1(t)

...
xaS(t)

⎤⎥⎦+

⎡⎢⎣ pz1(t)
...

pzS(t)

⎤⎥⎦
� Kz(t)xa(t) + pz(t) . (24)

For the given (t0, x0
a) and subject to the decision strategies (23)-(24), the coali-

tion S forms a global awareness of the interaction dynamics (19) as follows

dxa(t) =
(
(Aa(t) +Ba(t)K(t) + Ca(t)Kz(t))xa(t)

+Ba(t)p(t) + Ca(t)pz(t) +Da(t)
)
dt+Ga(t)dwa(t) , xa(t0) = x0

a (25)

and the realized measure of coalitive performance (17) becomes

Jξ(x0
a;K(·), p(·);Kz(·), pz(·)) = xT

a (tf )Qf
axa(tf )

+
∫ tf

t0

{
xT

a (τ)
[
KT (τ)Ra(τ)K(τ) +KT

z (τ)Raz(τ)Kz(τ) − 2Sa(τ)Kz(τ)
]
xa(τ)

+ 2xT
a (τ)

[
KT (τ)Ra(τ)p(τ) +KT

z (τ)Raz(τ)pz(τ) − Sa(τ)pz(τ)
]

+ pT (τ)Ra(τ)p(τ) + pT
z (τ)Raz(τ)pz(τ)

}
dτ . (26)

Within the view of the linear-quadratic structure of the decision problem, the
performance-measure (26) for cooperative decision makers is clearly a random
variable with Chi-squared type. Hence, the uncertainty of performance distri-
bution must be assessed via a complete set of higher-order statistics beyond
the statistical averaging. It is therefore necessary to develop a mathematical
construct and support of the beliefs on performance uncertainty to extract the
knowledge in definite terms of performance-measure statistics for the coalition
S. This is done by adapting the results in [6].
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Theorem 1. Performance-Measure Statistics.
Let the pairs (Aa, Ba) and (Aa, Ca) be uniformly stabilizable on [t0, tf ] in the
cooperative game governed by (25) and (26). Then, for any given k ∈ Z

+, one
obtains the k-th cumulant associated with the performance-measure (26) as

κk(t0, x0
a) = (x0

a)TH(t0, k)x0
a + 2(x0

a)T D̆(t0, k) +D(t0, k) (27)

where the cumulant components {H(α, r)}k
r=1, {D̆(α, r)}k

r=1 and {D(α, r)}k
r=1

evaluated at α = t0 satisfy the supporting matrix-valued differential equations
(with the dependence of H(α, r), D̆(α, r) and D(α, r) upon the admissible K,
Kz, p and pz suppressed)

d

dα
H(α, 1) = − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T H(α, 1)

−H(α, 1) [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)] −Qa(α)

−KT (α)Ra(α)K(α) −KT
z (α)Raz(α)Kz(α) + 2Sa(α)Kz(α) (28)

d

dα
H(α, r) = − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T H(α, r) (29)

−H(α, r) [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

H(α, s)Ga(α)WaG
T
a (α)H(α, r − s) , 2 ≤ r ≤ k

d

dα
D̆(α, 1) = − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T D̆(α, 1)

−H(α, 1) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)]

−KT (α)Ra(α)p(α) −KT
z (α)Raz(α)pz(α) + Sa(α)pz(α) (30)

d

dα
D̆(α, r) = − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T D̆(α, r)

−H(α, r) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)] , 2 ≤ r ≤ k (31)

d

dα
D(α, 1) = −2D̆T (α, 1) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)]

− Tr{H(α, 1)Ga(α)WaG
T
a (α)}

− pT (α)Ra(α)p(α) − pT
z (α)Raz(α)pz(α) (32)

d

dα
D(α, r) = −2D̆T (α, r) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)]

− Tr{H(α, r)Ga(α)WaG
T
a (α)} , 2 ≤ r ≤ k (33)

where the terminal-value conditions H(tf , 1) = Qf
a, H(tf , r) = 0 for 2 ≤ r ≤ k;

D̆(tf , r) = 0; and D(tf , r) = 0 for 1 ≤ r ≤ k.
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Clearly then, the compactness offered by logic from the state-space model
description (25) has been successfully combined with the quantitativity from
a-priori probabilistic knowledge of Nature’s noise characteristics. Thus, the un-
certainty of coalitive performance (26) can now be represented in a compact and
robust way. Subsequently, the time-backward differential equations (28)-(33) not
only offer a tractable procedure for the calculation of (27) but also allow the
incorporation of a subclass of linear feedback syntheses so that coalitive stake-
holders i, for all i ∈ S are actively mitigating the performance uncertainty. Such
performance-measure statistics are therefore, referred as “information” statistics
which are extremely valuable for shaping the coalitive performance distribution.

3 Problem Statements

Suffice it to say here that all the performance-measure statistics, or equiva-
lently cumulants (27) depend in part of the known initial condition xa(t0). Al-
though different states xa(t) will result in different values for the traditional
“performance-to-come”, the cumulant values are however, functions of time-
backward evolutions of the cumulant-generating variables H(α, r), D̆(α, r) and
D(α, r) that totally ignore all the values xa(t). This fact therefore makes the
new optimization problem as being considered in cumulant-based control par-
ticularly unique as compared with the more traditional dynamic programming
class of investigations. In other words, the time-backward trajectories (28)-(33)
should be considered as the “new” dynamical equations from which the resulting
Mayer optimization and associated value function in the framework of dynamic
programming [3] thus depend on these “new” state variables H(α, r), D̆(α, r)
and D(α, r).

For notational simplicity, k-tuple variables H, D̆ and D are introduced as
the states of multi-attribute projection of future status of (26) with H(·) �
(H1(·), . . . ,Hk(·)), D̆(·) � (D̆1(·), . . . , D̆k(·)) and D(·) � (D1(·), . . . ,Dk(·)) where
each element Hr ∈ C1(t0, tf ; Rn×n) of H, each element D̆r ∈ C1(t0, tf ; Rn) of D̆
and each element Dr ∈ C1(t0, tf ; R) of D have the representations of Hr(·) =
H(·, r), D̆r(·) = D̆(·, r) and Dr(·) = D(·, r) with the right members satisfying
the dynamic equations (28)-(33) given n �

∑S
i=1(ni + qi), m �

∑S
i=1mi and

mz �
∑S

i=1 qi. Subsequently, the convenient mappings are defined by

Fr : [t0, tf ] × (Rn×n)k × R
m×n × R

mz×n �→ R
n×n

Ğr : [t0, tf ] × (Rn×n)k × (Rn)k × R
m×n × R

mz×n × R
n × R

mz �→ R
n

Gr : [t0, tf ] × (Rn×n)k × (Rn)k × R
m × R

mz �→ R

with the rules of action

F1(α;H;K,Kz) � − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T H1(α)
−H1(α) [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]

−Qa(α) −KT (α)Ra(α)K(α) −KT
z (α)Raz(α)Kz(α) + 2Sa(α)Kz(α) ,
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Fr(α;H;K,Kz) � − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T Hr(α)
−Hr(α) [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

Hs(α)Ga(α)WaG
T
a (α)Hr−s(α) , 2 ≤ r ≤ k

Ğ1(α;H, D̆;K,Kz; p, pz) � − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T D̆1(α)
−H1(α) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)]

−KT (α)Ra(α)p(α) −KT
z (α)Raz(α)pz(α) + Sa(α)pz(α)

Ğr(α;H, D̆;K,Kz; p, pz) � − [Aa(α) +Ba(α)K(α) + Ca(α)Kz(α)]T D̆r(α)
−Hr(α) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)] , 2 ≤ r ≤ k

G1(α;H, D̆; p, pz) � −2D̆T
1 (α) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)]

− Tr{H1(α)Ga(α)WaG
T
a (α)} − pT (α)Ra(α)p(α) − pT

z (α)Raz(α)pz(α)

Gr(α;H, D̆; p, pz) � −2D̆T
r (α) [Ba(α)p(α) + Ca(α)pz(α) +Da(α)]

− Tr{Hr(α)Ga(α)WaG
T
a (α)} , 2 ≤ r ≤ k.

Now it is straightforward to establish the product mappings

F1 × · · · × Fk : [t0, tf ] × (Rn×n)k × R
m×n × R

mz×n �→ (Rn×n)k

Ğ1 × · · · × Ğk : [t0, tf ] × (Rn×n)k × (Rn)k× R
m×n× R

mz×n× R
n× R

mz �→ (Rn)k

G1 × · · · × Gk : [t0, tf ] × (Rn×n)k × (Rn)k × R
m × R

mz �→ (R)k

along with the corresponding notations F � F1 × · · · × Fk, Ğ � Ğ1 × · · · × Ğk

and G � G1 × · · · × Gk. Thus, the dynamic equations (28)-(33) for performance
uncertainty and robustness can be rewritten as follows

d

dα
H(α) = F(α;H(α);K(α),Kz(α)) , (34)

d

dα
D̆(α) = Ğ(α;H(α), D̆(α);K(α),Kz(α); p(α), pz(α)) , (35)

d

dα
D(α) = G(α;H(α), D̆(α); p(α), pz(α)) (36)

where the terminal-value conditions H(tf ) � Hf = (Qf
a , 0, . . . , 0), D̆(tf ) � D̆f =

(0, . . . , 0) and D(tf ) � Df = (0, . . . , 0).
Note that the product system (34)-(36) uniquely determines H, D̆, and D once

the admissible 4-tuple (K,Kz, p, pz) is specified. Hence, H, D̆, and D are consid-
ered as H(·,K,Kz, p, pz), D̆(·,K,Kz, p, pz), and D(·,K,Kz, p, pz), respectively.
The performance index for the multi-person stochastic game can be formulated
in terms of admissible K, Kz, p, and pz.
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Definition 2. Performance Index.
Let k ∈ Z

+ and the sequence µ = {µr ≥ 0}k
r=1 with µ1 > 0. Then, for the given

initial condition (t0, x0
a), the performance index for the coalition S

φ0 : {t0} × (Rn×n)k × (Rn)k × R
k �→ R

+

over a finite optimization horizon is defined by

φ0

(
t0,H(·,K,Kz, p, pz), D̆(·,K,Kz, p, pz),D(·,K,Kz , p, pz)

)
�

k∑
r=1

µrκr(K,Kz, p, pz) =
k∑

r=1

µr

[
(x0

a)THr(t0,K,Kz, p, pz)x0
a

+ 2(x0
a)T D̆r(t0,K,Kz, p, pz) + Dr(t0,K,Kz, p, pz)

]
(37)

where all the parametric design freedom µr’s considered here by the
coalition S, represent for strategic coordination and co-design towards
the coalitive performance robustness. All solutions {Hr(α,K,Kz, p, pz)}k

r=1,
{D̆r(α,K,Kz, p, pz)}k

r=1 and {Dr(α,K,Kz, p, pz)}k
r=1 when evaluated at α =

t0 satisfy the time-backward differential equations (34)-(36) together with the
terminal-value conditions Hf = (Qf

a, 0, . . . , 0), D̆f = (0, . . . , 0), and Df =
(0, . . . , 0).

Remark 1. The performance index (37) associated with the coalition S is a
weighted summation of some “information” statistics with µr representing mul-
tiple degrees of shaping the probability density function of the Chi-squared ran-
dom measure of performance (26) given Nature’s mixed random realizations. If
all the cumulants of (26) remain bounded as the realized performance-measure
(26) arbitrarily closes to 0, the first cumulant dominates the summation and the
cumulant-based optimization problem reduces to the classical Linear-Quadratic-
Gaussian (LQG) control problem for one decision maker.

For the given (tf ,Hf , D̆f ,Df ), the class Ktf ,Hf ,D̆f ,Df ;µ of admissible 4-tuple
(K,Kz, p, pz) is then defined.

Definition 3. Admissible Feedback Gains and Affine Inputs.
Let compact subsets K ⊂ R

n×n, Kz, P ⊂ R
m, and P z ⊂ R

mz be the sets of al-
lowable matrices and vectors. Then, for the given k ∈ Z

+, µ = {µr ≥ 0}k
r=1 with

µ1 > 0, the sets of matrix-valued feedback gains Ktf ,Hf ,D̆f ,Df ;µ ∈ C(t0, tf ; Rm×n)
and Kz

tf ,Hf ,D̆f ,Df ;µ
∈ C(t0, tf ; Rmz×n) in addition to the sets of vector-valued

affine inputs Ptf ,Hf ,D̆f ,Df ;µ ∈ C(t0, tf ; Rm) and Pz
tf ,Hf ,D̆f ,Df ;µ

∈ C(t0, tf ; Rmz)

with respective values K(·) ∈ K, Kz(·) ∈ Kz, p(·) ∈ P , and pz(·) ∈ P z are
admissible if the resulting solutions to the time-backward differential equations
(34)-(36) exist on the finite horizon [t0, tf ].

The optimization problem for the stochastic cooperative game with uncertainty
and robustness where instantiations are aimed at reducing coalitive performance
dispersion and constituent strategies are robust to Nature’s stochastic variability,
is stated.
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Definition 4. Optimization Problem.
Suppose that k ∈ Z

+ and the sequence µ = {µr ≥ 0}k
r=1 with µ1 > 0 are fixed.

Then, the cumulant-based optimization problem over [t0, tf ] is given by the min-
imization of the coalitive performance index (37) over all K(·) ∈ Ktf ,Hf ,D̆f ,Df ;µ,
Kz(·) ∈ Kz

tf ,Hf ,D̆f ,Df ;µ
, p(·) ∈ Ptf ,Hf ,D̆f ,Df ;µ, and pz(·) ∈ Pz

tf ,Hf ,D̆f ,Df ;µ
subject

to the time-backward dynamical constraints (34)-(36) for α ∈ [t0, tf ].

Since a direct dynamic programming approach is taken here, it is therefore nec-
essary to introduce the value function V(ε,Y, Z̆,Z) which is continuously differ-
entiable for the stochastic cooperative game starting at (ε,Y, Z̆,Z).

Definition 5. Value Function.
The value function V : [t0, tf ] × (Rn×n)k × (Rn)k × R

k �→ R
+ ∪ {+∞} asso-

ciated with the Mayer problem defined as V(ε,Y, Z̆,Z) is the minimization of
φ0

(
t0,H(·,K,Kz, p, pz), D̆(·,K,Kz, p, pz),D(·,K,Kz , p, pz)

)
over all admissible

4-tuple of K(·) ∈ Ktf ,Hf ,D̆f ,Df ;µ, Kz(·) ∈ Kz
tf ,Hf ,D̆f ,Df ;µ

, p(·) ∈ Ptf ,Hf ,D̆f ,Df ;µ,

and pz(·) ∈ Pz
tf ,Hf ,D̆f ,Df ;µ

subjected to some (ε,Y, Z̆,Z) ∈ [t0, tf ] × (Rn×n)k ×
(Rn)k × R

k.

The development illustrated here for cumulant-based control theory is motivated
by the excellent treatment in [3], and is intended to follow it closely. Unless other-
wise specified, the dependence of trajectory solutions H, D̆, and D on admissible
K, Kz, p, and pz is now omitted for notational clarity.

Theorem 2. Necessary Conditions.
The value function associated with the coalition S evaluated along any time-
backward trajectory corresponding to decentralized decision strategies feasible for
its terminal states is an increasing function of time. Moreover, the value function
evaluated along any optimal time-backward trajectory is constant.

It is important to note that the properties aforementioned are necessary condi-
tions for optimality. The theorem in the sequel shows that these conditions are
also sufficient for optimality and serve as a construction of potential candidates
for the value function.

Theorem 3. Sufficient Condition.
Let W(ε,Y, Z̆,Z) be a real-valued function defined on [t0, tf ]×(Rn×n)k×(Rn)k×
R

k such that W(ε,Y, Z̆,Z) = φ0(ε,Y, Z̆,Z).
Let tf , Hf , D̆, Df be given terminal-value conditions and let, for each 3-tuple

trajectory (H, D̆,D) corresponding to the 4-tuple coalitive strategy (K,Kz, p, pz)
in Ktf ,Hf ,D̆f ,Df ;µ×Kz

tf ,Hf ,D̆f ,Df ;µ
×Ptf ,Hf ,D̆f ,Df ;µ×Pz

tf ,Hf ,D̆f ,Df ;µ
, the real func-

tion W(α,H(α), D̆(α),D(α)) be finite and time-backward increasing on [t0, tf ].
If (K∗,K∗

z , p
∗, p∗z) is a coalitive choice in Ktf ,Hf ,D̆f ,Df ;µ × Kz

tf ,Hf ,D̆f ,Df ;µ
×

Ptf ,Hf ,D̆f ,Df ;µ × Pz
tf ,Hf ,D̆f ,Df ;µ

such that for the corresponding 3-tuple trajec-

tory (H∗, D̆∗,D∗), W(α,H∗(α), D̆∗(α),D∗(α)) is constant then this choice of
(K∗,K∗

z , p
∗, p∗z) is the optimal and W(tf ,Hf , D̆f ,Df ) = V(tf ,Hf , D̆f ,Df ).



270 K.D. Pham

Definition 6. Reachable Set.
Let the reachable set Q be defined as follows

Q �
{

(ε,Y, Z̆,Z) ∈ [t0, tf ] × (Rn×n)k × (Rn)k × R
k

such thatKtf ,Hf ,D̆f ,Df ;µ×Kz
tf ,Hf ,D̆f ,Df ;µ×Ptf ,Hf ,D̆f ,Df ;µ×Pz

tf ,Hf ,D̆f ,Df ;µ �= 0
}
.

Moreover, it can be shown that the value function is satisfying a partial differ-
ential equation at each interior point of Q at which it is differentiable.

Theorem 4. HJB Equation-Mayer Problem.
Let (ε,Y, Z̆,Z) be any interior point of the reachable set Q at which the
value function V(ε,Y, Z̆,Z) is differentiable. If there exists an optimal 4-tuple
strategy (K∗,K∗

z , p
∗, p∗z) ∈ Ktf ,Hf ,D̆f ,Df ;µ × Kz

tf ,Hf ,D̆f ,Df ;µ
× Ptf ,Hf ,D̆f ,Df ;µ ×

Pz
tf ,Hf ,D̆f ,Df ;µ

, then the partial differential equation of the cooperative game

0 = min
K∈K,Kz∈Kz,p∈P,pz∈P z

{
∂

∂ε
V(ε,Y, Z̆,Z)

+
∂

∂ vec(Y)
V(ε,Y, Z̆,Z) · vec(F(ε;Y;K,Kz))

+
∂

∂ vec(Z̆)
V(ε,Y, Z̆,Z) · vec(Ğ(ε;Y, Z̆;K,Kz; p, pz))

+
∂

∂ vec(Z)
V(ε,Y, Z̆,Z) · vec(G(ε;Y, Z̆; p, pz))

}
(38)

is satisfied together with V(t0,H0, D̆0,D0) = φ0(t0,H0, D̆0,D0) and vec(·) the
vectorizing operator of enclosed entities. The optimum in (38) is achieved by the
4-tuple (K∗(ε),K∗

z (ε), p∗(ε), p∗z(ε)) of the optimal decision strategy at ε.

Finally, the following theorem gives the sufficient condition used to verify optimal
decisions for the coalition S.

Theorem 5. Verification Theorem.
Fix k ∈ Z

+. Let W(ε,Y, Z̆,Z) be a continuously differentiable solution of the
HJB equation (38) and satisfy the boundary condition

W(t0,H0, D̆0,D0) = φ0

(
t0,H0, D̆0,D0

)
. (39)

Let (tf ,Hf , D̆f ,Df ) be a point of Q; 4-tuple (K,Kz, p, pz) in Ktf ,Hf ,D̆f ,Df ;µ ×
Kz

tf ,Hf ,D̆f ,Df ;µ
× Ptf ,Hf ,D̆f ,Df ;µ × Pz

tf ,Hf ,D̆f ,Df ;µ
; and H, D̆, and D the corre-

sponding solutions of the equations (34)-(36). Then, W(α,H(α), D̆(α),D(α)) is
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time-backward increasing in α. If (K∗,K∗
z , p

∗, p∗z) is a 4-tuple in Ktf ,Hf ,D̆f ,Df ;µ×
Kz

tf ,Hf ,D̆f ,Df ;µ
× Ptf ,Hf ,D̆f ,Df ;µ × Pz

tf ,Hf ,D̆f ,Df ;µ
defined on [t0, tf ] with corre-

sponding solutions, H∗, D̆∗ and D∗ of the dynamical equations such that

0 =
∂

∂ε
W(α,H∗(α), D̆∗(α),D∗(α)) +

∂

∂ vec(Y)
W(α;H∗(α), D̆∗(α),D∗(α))

· vec(F(α;H∗(α);K∗(α),K∗
z (α))) +

∂

∂ vec(Z̆)
W(α,H∗(α), D̆∗(α),D∗(α))

· vec(Ğ(α;H∗(α)), Z̆∗(α);K∗(α),K∗
z (α); p∗(α), p∗z(α))

+
∂

∂vec(Z)
W(α,H∗(α), D̆∗(α),D∗(α))vec(G(α;H∗(α), Z̆∗(α); p∗(α), p∗z(α)) (40)

then, 4-tuple (K∗,K∗
z , p

∗, p∗z) in Ktf ,Hf ,D̆f ,Df ;µ × Kz
tf ,Hf ,D̆f ,Df ;µ

×
Ptf ,Hf ,D̆f ,Df ;µ × Pz

tf ,Hf ,D̆f ,Df ;µ
is optimal and

W(ε,Y, Z̆,Z) = V(ε,Y, Z̆,Z) (41)

where V(ε,Y, Z̆,Z) is the value function.

Remark 2. To have a cooperative solution from the choice (K∗,K∗
z , p

∗, p∗z) ∈
Ktf ,Hf ,D̆f ,Df ;µ × Kz

tf ,Hf ,D̆f ,Df ;µ
× Ptf ,Hf ,D̆f ,Df ;µ × Pz

tf ,Hf ,D̆f ,Df ;µ
well defined

and continuous for all α ∈ [t0, tf ], the trajectory solutions H(α), D̆(α) and
D(α) to the dynamical equations (34)-(36) when evaluated at α = t0 must then
exist. Therefore, it is necessary that H(α), D̆(α) and D(α) are finite for all
α ∈ [t0, tf ). Moreover, the solutions of the dynamical equations (34)-(36) exist
and are continuously differentiable in a neighborhood of tf . Applying the results
from [1], these trajectory solutions can further be extended to the left of tf as
long as H(α), D̆(α) and D(α) remain finite. Hence, the existence of unique and
continuously differentiable solutions to the equations (34) through (36) is certain
if H(α), D̆(α) and D(α) are bounded for all α ∈ [t0, tf ). As a result, the candidate
value function W(α,H, D̆,D) is continuously differentiable as well.

4 Coalitive Pareto Decision Strategies

Recall that the optimization problem being considered herein is in “Mayer form”
and can be solved by applying an adaptation of the Mayer form verification the-
orem of dynamic programming given in [3]. In the framework of dynamic pro-
gramming, it is often required to denote the terminal time and states of a family
of optimization problems as (ε,Y, Z̆,Z) rather than (tf ,Hf , D̆f ,Df ). Stating
precisely, for ε ∈ [t0, tf ] and 1 ≤ r ≤ k, the states of the performance robust-
ness (34)-(36) defined on the interval [t0, ε] have the terminal values denoted by
H(ε) ≡ Y, D̆(ε) ≡ Z̆ and D(ε) ≡ Z.

Since the performance index (37) is quadratic affine in terms of arbitrarily
fixed x0

a, this observation suggests a solution to the HJB equation (38) may be
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of the form as follows. It is assumed that (ε,Y, Z̆,Z) is any interior point of the
reachable set Q at which the real-valued function

W(ε,Y, Z̆,Z) = (x0
a)T

k∑
r=1

µr(Yr + Er(ε))x0
a

+ 2(x0
a)T

k∑
r=1

µr(Z̆r + T̆r(ε)) +
k∑

r=1

µr(Zr + Tr(ε)) (42)

is differentiable. The parametric functions of time Er ∈ C1(t0, tf ; Rn×n), T̆r ∈
C1(t0, tf ; Rn) and Tr ∈ C1(t0, tf ; R) are yet to be determined. Furthermore, the
time derivative of W(ε,Y, Z̆,Z) can be shown to be

d

dε
W(ε,Y, Z̆,Z) = (x0

a)T
k∑

r=1

µr

(
Fr(ε;Y;K,Kz) +

d

dε
Er(ε)

)
x0

a

+ 2(x0
a)T

k∑
r=1

µr

(
Ğr(ε;Y, Z̆;K,Kz; p, pz) +

d

dε
T̆r(ε)

)

+
k∑

r=1

µr

(
Gr(ε,Y, Z̆; p, pz) +

d

dε
Tr(ε)

)
. (43)

The substitution of this hypothesized solution (42) into the HJB equation (38)
and making use of (43) results in

0 ≡ min
K∈K,Kz∈Kz,p∈P,pz∈P z

{
(x0

a)T

(
k∑

r=1

µr
d

dε
Er(ε)

)
x0

a +
k∑

r=1

µr
d

dε
Tr(ε)

+ 2(x0
a)T

(
k∑

r=1

µr
d

dε
T̆r(ε)

)
+ (x0

a)T

(
k∑

r=1

µrFr(ε;Y;K,Kz)

)
x0

a

+ 2(x0
a)T

(
k∑

r=1

µrĞr(ε;Y, Z̆;K,Kz; p, pz)

)
+

k∑
r=1

µrGr(ε;Y, Z̆; p, pz)

}
. (44)

Differentiating the expression within the bracket of (44) with respect to K, Kz,
p, and pz yields the necessary conditions for an extremum of (37) on [t0, ε],

0≡
(
BT

a (ε)
k∑

r=1

µrYr + µ1Ra(ε)K

)
M0 +

(
BT

a (ε)
k∑

r=1

µrZ̆r + µ1Ra(ε)p

)
(x0

a)T

0 ≡
(
CT

a (ε)
k∑

r=1

µrYr + µ1Raz(ε)Kz − µ1S
T
a (ε)

)
M0

+

(
CT

a (ε)
k∑

r=1

µrZ̆r + µ1Raz(ε)pz

)
(x0

a)T
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0 ≡
(
BT

a (ε)
k∑

r=1

µrYr + µ1Ra(ε)K

)
x0

a +BT
a (ε)

k∑
r=1

µrZ̆r + µ1Ra(ε)p

0≡
(
CT

a (ε)
k∑

r=1

µrYr + µ1Raz(ε)Kz−µ1S
T
a(ε)

)
x0

a + CT
a(ε)

k∑
r=1

µrZ̆r + µ1Raz(ε)pz

Because all the M0 � x0
a(x0

a)T , (x0
a)T , and x0

a have arbitrary ranks of one , it
must be true that

K = −(µ1Ra(ε))−1BT
a (ε)

k∑
r=1

µrYr , (45)

Kz = −(µ1Raz(ε))−1CT
a (ε)

k∑
r=1

µrYr +R−1
az (ε)ST

a (ε) , (46)

p = −(µ1Ra(ε))−1BT
a (ε)

k∑
r=1

µrZ̆r , (47)

pz = −(µ1Raz(ε))−1CT
a (ε)

k∑
r=1

µrZ̆r . (48)

Replacing these results (45)-(48) into the right member of the HJB equation
(38) yields the value of the minimum

(x0
a)T

(
k∑

r=1

µr
d

dε
Er(ε)

)
x0

a + 2(x0
a)T

(
k∑

r=1

µr
d

dε
T̆r(ε)

)
+

k∑
r=1

µr
d

dε
Tr(ε)

+ (x0
a)T

{
−
[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsYs

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsYs + Ca(ε)R−1
az (ε)ST

a (ε)

]T k∑
r=1

µrYr

−
k∑

r=1

µrYr

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsYs

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsYs + Ca(ε)R−1
az (ε)ST

a (ε)

]
− µ1Qa(ε)

− µ1

k∑
s=1

µsYsBa(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqYq

− µ1

[
−

k∑
s=1

µsYsCa(ε)(µ1Raz(ε))−1 + Sa(ε)R−1
az (ε)

]
R−1

az (ε)
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·
[
− (µ1Raz(ε))−1CT

a (ε)
k∑

q=1

µqYq +R−1
az (ε)ST

a (ε)

]

+ 2µ1Sa(ε)

[
− (µ1Raz(ε))−1CT

a (ε)
k∑

s=1

µsYs +R−1
az (ε)ST

a (ε)

]

−
k∑

r=2

µr

r−1∑
v=1

2v!
v!(r − v)!

YvGa(ε)WaG
T
a (ε)Yr−v

}
x0

a

+ 2(x0
a)T

{
−
[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsYs

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsYs + Ca(ε)R−1
az (ε)ST

a (ε)

]T k∑
r=1

µrZ̆r

−
k∑

r=1

µrYr

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsZ̆s

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsZ̆s +Da(ε)

]

− µ1

k∑
s=1

µsYsBa(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqZ̆q

+ µ1

[
−

k∑
s=1

µsYsCa(ε)(µ1Raz(ε))−1 + Sa(ε)R−1
az (ε)

]
Raz(ε)(µ1Raz(ε))−1CT

a (ε)

·
k∑

q=1

µqZ̆q − µ1Sa(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsZ̆s

}

− 2
k∑

r=1

µrZ̆r

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsZ̆s

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsZ̆s +Da(ε)

]

− Tr

{
k∑

r=1

µrYrGa(ε)WaG
T
a (ε)

}

− µ1

k∑
s=1

µsZ̆sBa(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqZ̆q

− µ1

k∑
s=1

µsZ̆sCa(ε)(µ1Raz(ε))−1Raz(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
q=1

µqZ̆q . (49)
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It is now necessary to exhibit {Er(·)}k
r=1, {T̆r(·)}k

r=1, and {Tr(·)}k
r=1 which ren-

der the left side of the HJB equation (38) equal to zero for ε ∈ [t0, tf ], when
{Yr}k

r=1, {Z̆r}k
r=1, and {Zr}k

r=1 are evaluated along the solution trajectories of
the dynamical equations (34) through (36). With a careful examination of the
expression (49), it reveals that

d

dε
E1(ε) =

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

H1(ε)

+ H1(ε)

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]
+Qa(ε)

+
k∑

s=1

µsHs(ε)Ba(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqHq(ε)

+

[
−

k∑
s=1

µsHs(ε)Ca(ε)(µ1Raz(ε))−1 + Sa(ε)R−1
az (ε)

]
R−1

az (ε)

·
[
− (µ1Raz(ε))−1CT

a (ε)
k∑

q=1

µqHq(ε) +R−1
az (ε)ST

a (ε)

]

− 2Sa(ε)

[
− (µ1Raz(ε))−1CT

a (ε)
k∑

s=1

µsHs(ε) +R−1
az (ε)ST

a (ε)

]
(50)

d

dε
Er(ε) =

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

Hr(ε)

+ Hr(ε)

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]

+
r−1∑
v=1

2v!
v!(r − v)!

Hv(ε)Ga(ε)WaG
T
a (ε)Hr−v(ε) , 2 ≤ r ≤ k (51)
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d

dε
T̆1(ε) =

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

D̆1(ε)

+ H1(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) +Da(ε)

]

+
k∑

s=1

µsHs(ε)Ba(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqD̆q(ε)

−
[
−

k∑
s=1

µsHs(ε)Ca(ε)(µ1Raz(ε))−1 +Sa(ε)R−1
az (ε)

]
Raz(ε)(µ1Raz(ε))−1CT

a (ε)

·
k∑

q=1

µqD̆q(ε) + Sa(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) (52)

d

dε
T̆r(ε) =

[
Aa(ε)−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)+Ca(ε)R−1
az (ε)ST

a (ε)

−Ca(ε)(µ1Raz(ε))−1CT
a(ε)

k∑
s=1

µsHs(ε)

]T

D̆r(ε)+Hr(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a(ε)

·
k∑

s=1

µsD̆s(ε) − Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) +Da(ε)

]
, 2≤ r≤ k (53)

d

dε
T1(ε) = 2D̆1(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) +Da(ε)

]
+ Tr

{
H1(ε)Ga(ε)WaG

T
a (ε)

}
+

k∑
s=1

µsD̆s(ε)Ba(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqD̆q(ε)

+
k∑

s=1

µsD̆s(ε)Ca(ε)(µ1Raz(ε))−1Raz(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
q=1

µqD̆q(ε) (54)
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d

dε
Tr(ε) = 2D̆r(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε) +Da(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε)

]
+ Tr

{
Hr(ε)Ga(ε)WaG

T
a (ε)

}
, 2 ≤ r ≤ k (55)

will work. Furthermore, the boundary condition (39) requires that

(x0
a)T

k∑
r=1

µr(H0
r +Er(t0))x0

a +2(x0
a)T

k∑
r=1

µr(D̆0
r + T̆r(t0))+

k∑
r=1

µr(D0
r +Tr(t0))

= (x0
a)T

k∑
r=1

µrH0
r x

0
a + 2(x0

a)T
k∑

r=1

µrD̆0
r +

k∑
r=1

µrD0
r .

Thus, matching the boundary condition yields the initial value conditions
Er(t0) = 0, T̆r(t0) = 0 and Tr(t0) = 0 for the parametric time-forward differential
equations (50)-(55).

Applying the 4-tuple decision strategy specified in (45)-(48) along the solution
trajectories of the time-backward differential equations (34)-(36), these equations
become the time-backward Riccati-type differential equations

d

dε
H1(ε) = −

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

H1(ε)

−H1(ε)

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]
−Qa(ε)

−
k∑

s=1

µsHs(ε)Ba(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqHq(ε)

−
[
−

k∑
s=1

µsHs(ε)Ca(ε)(µ1Raz(ε))−1 + Sa(ε)R−1
az (ε)

]
R−1

az (ε)

·
[
− (µ1Raz(ε))−1CT

a (ε)
k∑

q=1

µqHq(ε) +R−1
az (ε)ST

a (ε)

]

+ 2Sa(ε)

[
− (µ1Raz(ε))−1CT

a (ε)
k∑

s=1

µsHs(ε) +R−1
az (ε)ST

a (ε)

]
(56)
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d

dε
Hr(ε) = −

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

Hr(ε)

−Hr(ε)

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]

−
r−1∑
v=1

2v!
v!(r − v)!

Hv(ε)Ga(ε)WaG
T
a (ε)Hr−v(ε) , 2 ≤ r ≤ k (57)

d

dε
D̆1(ε) = −

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

D̆1(ε)

−H1(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) +Da(ε)

]

−
k∑

s=1

µsHs(ε)Ba(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqD̆q(ε)

+

[
−

k∑
s=1

µsHs(ε)Ca(ε)(µ1Raz(ε))−1 +Sa(ε)R−1
az (ε)

]
Raz(ε)(µ1Raz(ε))−1CT

a (ε)

·
k∑

q=1

µqD̆q(ε) − Sa(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) (58)

d

dε
D̆r(ε) = −

[
Aa(ε) −Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsHs(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsHs(ε) + Ca(ε)R−1
az (ε)ST

a (ε)

]T

D̆r(ε)

−Hr(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε)
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−Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε) +Da(ε)

]
, 2 ≤ r ≤ k (59)

d

dε
D1(ε) = −2D̆1(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε)

−Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε)+Da(ε)

]
−Tr

{
H1(ε)Ga(ε)WaG

T
a (ε)

}

−
k∑

s=1

µsD̆s(ε)Ba(ε)(µ1Ra(ε))−1Ra(ε)(µ1Ra(ε))−1BT
a (ε)

k∑
q=1

µqD̆q(ε)

−
k∑

s=1

µsD̆s(ε)Ca(ε)(µ1Raz(ε))−1Raz(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
q=1

µqD̆q(ε) (60)

and, for 2 ≤ r ≤ k

d

dε
Dr(ε) = −2D̆r(ε)

[
−Ba(ε)(µ1Ra(ε))−1BT

a (ε)
k∑

s=1

µsD̆s(ε) +Da(ε)

− Ca(ε)(µ1Raz(ε))−1CT
a (ε)

k∑
s=1

µsD̆s(ε)

]
− Tr

{
Hr(ε)Ga(ε)WaG

T
a (ε)

}
(61)

where the terminal-value conditions H1(tf ) = Qf
a, Hr(tf ) = 0 for 2 ≤ r ≤ k;

D̆r(tf ) = 0 for 1 ≤ r ≤ k; and Dr(tf ) = 0 for 1 ≤ r ≤ k. Thus, whenever these

equations (56)-(61) admit solutions {Hr(·)}k
r=1,

{
D̆r(·)

}k

r=1
, and {Dr(·)}k

r=1,

then the existence of {Er(·)}k
r=1,

{
T̆r(·)

}k

r=1
, and {Tr(·)}k

r=1 satisfying the equa-

tions (50)-(55) are assured. By comparing the time-forward differential equations
(50)-(55) to those of time-backward equations (56)-(61), one may recognize that
these sets of equations are related to one another by

d

dε
Er(ε) = − d

dε
Hr(ε) ,

d

dε
T̆r(ε) = − d

dε
D̆r(ε) ,

d

dε
Tr(ε) = − d

dε
Dr(ε) , 1 ≤ r ≤ k .

Enforcing the initial value conditions of Er(t0) = 0, T̆r(t0) = 0, and Tr(t0) = 0
uniquely implies that

Er(ε) = Hr(t0) −Hr(ε) ,

T̆r(ε) = D̆r(t0) − D̆r(ε) ,
Tr(ε) = Dr(t0) −Dr(ε)
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for all ε ∈ [t0, tf ] and yields a value function

W(ε,Y, Z̆,Z) = (x0
a)T

k∑
r=1

µrHr(t0)x0
a + 2(x0

a)T
k∑

r=1

µrD̆r(t0) +
k∑

r=1

µrDr(t0)

for which the sufficient condition (40) of the verification theorem is satisfied.
Therefore, the extremal decision laws (45)-(48) minimizing (37) become optimal

K∗(ε) = −(µ1Ra(ε))−1BT
a (ε)

k∑
r=1

µrH∗
r(ε) , (62)

K∗
z (ε) = −(µ1Raz(ε))−1CT

a (ε)
k∑

r=1

µrH∗
r(ε) +R−1

az (ε)ST
a (ε) , (63)

p∗(ε) = −(µ1Ra(ε))−1BT
a (ε)

k∑
r=1

µrD̆∗
r(ε) , (64)

p∗z(ε) = −(µ1Raz(ε))−1CT
a (ε)

k∑
r=1

µrD̆∗
r(ε) . (65)

Theorem 6. Cumulant-based Cooperative Strategies.
Consider the multi-person cooperative game (17)-(19) whose pairs (Aa, Ba) and
(Aa, Ca) are uniformly stabilizable on [t0, tf ]. Let k ∈ Z

+ and the sequence µ =
{µi ≥ 0}k

i=1 with µ1 > 0. Then, the optimal coalitive decision laws are given by

K∗(α) = −Ra(α)−1BT
a (α)

k∑
r=1

µ̂rH∗
r(α) , (66)

K∗
z (α) = −Raz(α)−1CT

a (α)
k∑

r=1

µ̂rH∗
r(α) +R−1

az (α)ST
a (α) , (67)

p∗(α) = −Ra(α)−1BT
a (α)

k∑
r=1

µ̂rD̆∗
r(α) , (68)

p∗z(α) = −Raz(α)−1CT
a (α)

k∑
r=1

µ̂rD̆∗
r(α) (69)

where normalized preferences µ̂r � µr/µ1’s are mutually chosen by S for strategic
coordination towards co-design of the coalition performance robustness. Optimal
supporting solutions {H∗

r(α)}k
r=1, {D̆∗

r(α)}k
r=1, and {D∗

r(α)}k
r=1 are satisfying

the time-backward matrix-valued and vector-valued differential equations

d

dα
H∗

1(α) = − [Aa(α) +Ba(α)K∗(α) + Ca(α)K∗
z (α)]T H∗

1(α)

−H∗
1(α) [Aa(α) +Ba(α)K∗(α) + Ca(α)K∗

z (α)] −Qa(α)

− (K∗)T (α)Ra(α)K∗(α) − (K∗
z )T (α)Raz(α)K∗

z (α) + 2Sa(α)K∗
z (α) (70)
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d

dα
H∗

r(α) = − [Aa(α) +Ba(α)K∗(α) + Ca(α)K∗
z (α)]T H∗

r(α)

−H∗
r(α) [Aa(α) +Ba(α)K∗(α) + Ca(α)K∗

z (α)]

−
r−1∑
s=1

2r!
s!(r − s)!

H∗
s(α)Ga(α)WaG

T
a (α)H∗

r−s(α) , 2 ≤ r ≤ k (71)

d

dα
D̆∗

1(α) = − [Aa(α) +Ba(α)K∗(α) + Ca(α)K∗
z (α)]T D̆∗

1(α)

−H∗
1(α) [Ba(α)p∗(α) + Ca(α)p∗z(α) +Da(α)]

− (K∗)T (α)Ra(α)p∗(α) − (K∗
z )T (α)Raz(α)p∗z(α) + Sa(α)p∗z(α) (72)

d

dα
D̆∗

r (α) = − [Aa(α) +Ba(α)K∗(α) + Ca(α)K∗
z (α)]T D̆∗

r(α)

−H∗
r(α) [Ba(α)p∗(α) + Ca(α)p∗z(α) +Da(α)] , 2 ≤ r ≤ k (73)

d

dα
D∗

1(α) = −2(D̆∗
1)

T (α) [Ba(α)p∗(α) + Ca(α)p∗z(α) +Da(α)]

−Tr{H∗
1(α)Ga(α)WaG

T
a(α)}−(p∗)T(α)Ra(α)p∗(α)−(p∗z)

T(α)Raz(α)p∗z(α) (74)

d

dα
D∗

r (α) = −2(D̆∗
r)T (α) [Ba(α)p∗(α) + Ca(α)p∗z(α) +Da(α)]

− Tr{H∗
r(α)Ga(α)WaG

T
a (α)} , 2 ≤ r ≤ k (75)

where the terminal-value conditions H∗
1(tf ) = Qf

a, H∗
r(tf ) = 0 for 2 ≤ r ≤ k;

D̆∗
r(tf ) = 0 for 1 ≤ r ≤ k; and D∗

r (tf ) = 0 for 1 ≤ r ≤ k.

Remark 3. Note that the order of cooperative decision strategies (66)-(69) is
too large for implementation at the outset. However, there are special properties
that are used for the reduced-order decision strategies. In this case all the block
diagonal properties of (18), (20) and (21)-(22) are reflected in the properties of
the cumulant-supporting equations (70)-(75). With the terminal-value conditions
remained diagonally dominant, the total solutions of (70)-(75) are therefore, in
the block diagonal form and are summarized in the following results.

Theorem 7. Cumulant-based and Decentralized Decisions.
Consider the stochastic cooperative game (17)-(19) with multiple decentralized
decision makers i ∈ S whose pairs (Aai, Bai) and (Aai, Cai) are uniformly sta-
bilizable on [t0, tf ]. Let k ∈ Z

+ and the sequence µ = {µi ≥ 0}k
i=1 with µ1 > 0.

Then, the optimal decentralized decision laws are given by
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K∗
i (α) = −(ξiRi)−1(α)BT

ai(α)
k∑

r=1

µ̂rH∗
ir(α) , (76)

K∗
zi(α) = −(ξiRzi)−1(α)

[
CT

ai(α)
k∑

r=1

µ̂rH∗
ir(α) + ξiS

T
ai(α)

]
, (77)

p∗i (α) = −(ξiRi)−1(α)BT
ai(α)

k∑
r=1

µ̂rD̆∗
ir(α) , (78)

p∗zi(α) = −(ξiRzi)−1(α)CT
ai(α)

k∑
r=1

µ̂rD̆∗
ir(α) (79)

where normalized preferences µ̂r � µr/µ1’s are mutually chosen by S for strategic
coordination towards co-design of the coalition performance robustness. At the
local levels, optimal supporting solutions {H∗

ir(α)}k
r=1, {D̆∗

ir(α)}k
r=1, {D∗

ir(α)}k
r=1

satisfy the time-backward matrix-valued and vector-valued differential equations

d

dα
H∗

i1(α) = − [Aai(α) +Bai(α)K∗
i (α) + Cai(α)K∗

zi(α)]T H∗
i1(α) (80)

−H∗
i1(α) [Aai(α) +Bai(α)K∗

i (α) + Cai(α)K∗
zi(α)] − ξiQai(α)

− (K∗
i )T (α)ξiRi(α)K∗

i (α) − (K∗
zi)

T (α)ξiRzi(α)K∗
zi(α) + 2ξiSai(α)K∗

zi(α)

d

dα
H∗

ir(α) = − [Aai(α) +Bai(α)K∗
i (α) + Cai(α)K∗

zi(α)]T H∗
ir(α)

−H∗
ir(α) [Aai(α) +Bai(α)K∗

i (α) + Cai(α)K∗
zi(α)]

−
r−1∑
s=1

2r!
s!(r − s)!

H∗
is(α)Gai(α)WaiG

T
ai(α)H∗

i,r−s(α) , 2 ≤ r ≤ k (81)

d

dα
D̆∗

i1(α) = − [Aai(α) +Bai(α)K∗
i (α) + Cai(α)K∗

zi(α)]T D̆∗
i1(α)

−H∗
i1(α) [Bai(α)p∗i (α) + Cai(α)p∗zi(α) +Dai(α)]

− (K∗
i )T (α)ξiRi(α)p∗i (α) − (K∗

zi)
T (α)ξiRzi(α)p∗zi(α) + ξiSai(α)p∗zi(α) (82)

d

dα
D̆∗

ir(α) = − [Aai(α) +Bai(α)K∗
i (α) + Cai(α)K∗

zi(α)]T D̆∗
ir(α)

−H∗
ir(α) [Bai(α)p∗i (α) + Cai(α)p∗zi(α) +Dai(α)] , 2 ≤ r ≤ k (83)

d

dα
D∗

i1(α) = −2(D̆∗
i1)

T (α) [Bai(α)p∗i (α) + Cai(α)p∗zi(α) +Dai(α)] (84)

−Tr{H∗
i1(α)Gai(α)WaiG

T
ai(α)}−(p∗i )

T(α)ξiRi(α)p∗i (α)−(p∗zi)
T(α)ξiRzi(α)p∗zi(α)
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d

dα
D∗

ir(α) = −2(D̆∗
ir)

T (α) [Bai(α)p∗i (α) + Cai(α)p∗zi(α) +Dai(α)]

− Tr{H∗
ir(α)Gai(α)WaiG

T
ai(α)} , 2 ≤ r ≤ k (85)

where the terminal-value conditions H∗
i1(tf ) = ξiQ

f
ai, H∗

ir(tf ) = 0 for 2 ≤ r ≤ k;
D̆∗

ir(tf ) = 0 for 1 ≤ r ≤ k; and D∗
ir(tf ) = 0 for 1 ≤ r ≤ k.

Remark 4. The results listed here illustrate the fact that all the higher-order
statistics associated with the Chi-squared random measure of performance are
now incorporated with a class of local feedback decision strategies. Such decen-
tralized decision laws shown in Figure 1, making use of these information statis-
tics, are therefore robust and adaptable to uncertain environments. Consequently,
these cooperative decision makers take active roles to mitigate all variations in
performance caused by Nature’s mixed random realizations and the coalition is
finally capable of shaping the performance distribution and robustness as illus-
trated in Figure 2.

5 Conclusions

The present work presents a new innovative and generalized solution concept to
address multiple attributes of performance robustness which is widely recognized
as the unresolved issue in stochastic control and Linear-Quadratic (LQ) decision
problems. The framework based upon performance-measure statistics has three
distinguishing aspects in the learning process. First, the learning rule is more
sophisticated because it involves a rule for decision makers to forecast the behav-
iors of the coalitive performance and a rule for responding to random actions by
Nature. Second, the criterion of performance that cooperative decision makers
use to evaluate how they are doing in maintaining preferable shapes of the coal-
itive performance, is selected with high regard for possible random sample path
realizations by Nature. The third aspect involves a notion of regularity property
of the learning process where best responses with no regret lead to sample-
by-sample behaviors for cooperative decision makers against uncertain actions
employed by Nature. For instance, these decentralized feedback decision gains
operate dynamically on the time-backward histories of the cumulant-supporting
equations from the final to the current time. In addition, it is noted that these
cumulant-supporting equations also depend on Nature’s a-priori probabilistic
characteristics. Therefore, cooperative decision makers have traded the property
of the certainty equivalence principle as they would obtain from the special case
of LQ decision problems, for the adaptability to deal with uncertain environ-
ments. Future work will be another attainment of cumulant-based solutions in
multi-person decision problems for complex situations: (i) performance robust-
ness via a desired statistical description, (ii) cooperative decision selection via
output feedback information patterns, and (iii) confrontations among coalitive
decision makers and adversaries.
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Abstract. In this work, we introduce a framework to design cooperation
schemes among solvers, some of them done with a complete search and
others with an incomplete search. We also include a parameter control
criteria that guides the cooperation among solvers in order to improve
the collaborative strategy. Our framework can be used to solve both Con-
straint Satisfaction Problems (CSP) and Constraint Satisfaction Optimi-
sation Problems (CSOP). The tests are carried out on instances of the
vehicle routing problem used to test a solvers cooperation for CSOP. The
empirical results obtained show the substantial gain of collaborating.

1 Introduction

Constraint satisfaction problems (CSPs) occur widely in artificial intelligence.
They involve finding values for problem variables which satisfy all the con-
straints. For simplicity we restrict our attention here to binary CSPs, where
the constraints only involve two variables. Constraint Satisfaction Optimisation
Problems (CSOP) consists in assigning values to variables in such a way that
a set of constraints is satisfied and an objective function is optimized. Nowa-
days, complete and incomplete techniques are available to solve both kind of
problems. Constraint Programming is an example of complete techniques where
a sequence of Constraint Satisfaction Problems (CSP) is solved by adding con-
straints that impose better bounds on the objective function until an unsatisfi-
able problem is reached. Local search techniques are incomplete methods where
an initial solution is improved considering neighbourg solutions. The advantages
and drawbacks of each of these techniques are well-known: complete techniques
allow, when possible, global optimality but when we deal with hard problems it
takes a lot of time, or in the worst case, they do not give a solution. Incomplete
methods give solutions very quickly but they remain local. Recently, the integra-
tion of these approaches has been studied and it has been recognized that hybrid
approaches should give good results when none is able to solve a problem. Prest-
wich [5] proposes a hybrid approach that sacrifices completeness of backtracking
methods to achieve the scalability of local search. His method outperforms the
� Partially Supported by the Fondecyt Project 1080110.
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best local search algorithms. Jussien and Lhomme [2] present an hybrid tech-
nique where local search performs over partial assignements instead of complete
assignements, and it uses constraint propagation and conflict based heuristics to
improve the search. They applied their approach on open-shop scheduling prob-
lems with encouraging results. In this work, we introduce a framework to design
cooperation schemes among solvers, some of them performing a complete search
while others an incomplete one. The biggest difference between our approach
and the hybrid algorithms is that we use each solver as it is, designing a high
level cooperation. This chapter is organised as follows: In Section 2 we introduce
the general framework for cooperation. Section 3 briefly describes a cooperation
scheme to solve CSP using min-conflicts [4] as an hill-climbing algorithm helped
by forward checking. In Section 4 we apply a collaborative strategy to solve
CSOP using forward checking helped by an external hill-climbing procedure.
Parameter control heuristics are discussed in Section 5. In Section 6 we present
the results of the tests using instances of the vehicle routing problem. Finally,
in Section 7 we present conclusions and future research directions.

2 General Framework for Cooperation

Our idea for solvers to cooperate is to take advantage of the efficiency of both
kind of techniques: complete and incomplete approaches. In the following, we will
call the initial solver i-solver and the collaborative one c-solver. In our approach,
i-solver begins solving a CSP, if this solver is stuck trying to find a solution, the
collaborative algorithm detects this situation and gives this information to a
c-solver method, in charge of quickly finding a new feasible solution.

The communication between c-solver and i-solver depends on both, the direc-
tion of the communication and the kind of cooperation. For instance, a coopera-
tion algorithm to solve CSOP could begin with a complete algorithm as i-solver,
then could pass the control to an incomplete c-solver. This incomplete algorithm
could receive the variable values previously found by i-solver and try to find a
new better solution applying some heuristics. As another example, the algorithm
could give information about the local optima that it found, considering in this
case i-solver as an incomplete approach. This information modifies the bound
of the objective function constraint, and c-solver that uses a complete approach
could work trying to find a solution for this new problem configuration. Roughly
speaking, we expect that helping i-solver by c-solver, will reduce the algorithm
search tree by discarding some branches or by focusing the search where it has
a higher probability to obtain the optimal value.

In Figure 1, we ilustrate the general cooperation strategy.

3 Cooperation in Constraint Satisfaction Problems

A Constraint Satisfaction Problem (CSP) is a set of variables V = {X1, . . . , Xn},
their related domainsD1, . . . , Dn, and θ, a set of η constraints between these vari-
ables. A variable must be instantiated from values within its domain. The domain
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Procedure Cooperating Solvers (i − solver, c − solver, P)
Begin /* Procedure Cooperating Solvers */
While (Not OK-Solution)

While ((Not max-stuck-i-solver) and (Not OK-Solution))
pre-solution-from-i-solver = i − solver(P )
If (Not OK-solution)

While ((Not max-stuck-c-solver) and
(Not OK-Solution))
Pri = pre-solution-from-i-solver
pre-solution-c-solver = c-solver(Pri)
P = pre-solution-c-solver

EndWhile
Else solution = pre-solution-from-i-solver

EndWhile
EndWhile
End /* Procedure */

Fig. 1. Cooperating Solvers Strategy

sizes are respectively m1, . . . ,mn, where m equal the maximum of all mi. Each
variableXj is relevant (denoted by “be relevant to” �), for a subset Cj1 , . . . , Cjk

of constraints where {j1, . . . , jk} is some subsequence of {1, 2, . . . , η}. A binary
constraint has exactly two relevant variables. A binary CSP can be represented
by a constraint graph where nodes are the variables and arcs are the constraints.
We talk about inconsistency or constraint violation when the relevant vari-
ables for a given constraint do not have values that can satisfy the constraints.
An instantiation of the variables that satisfies all the constraints is a solution
of the CSP.

Definition 1. (Instantiation)
An Instantiation I is an assignment from a n-tuple of the variables
(X1, . . . , Xn) → D1 × . . . × Dn, such that it gives a value from its domain to
each variable in V.

Definition 2. (Partial Instantiation)
Given Vp ⊆ V , a Partial Instantiation Ip is an assignment from a j-tuple of
variables (Xp1 , . . . , Xpj ) → Dp1 × . . . ×Dpj , such that it gives a value from its
domain to each variable in Vp.

Remark: We speak about satisfaction (or conflicts) of Cα in Ip iff all the relevant
variables of Cα are instantiated

3.1 A Hill-Climbing Algorithm Helped by Forward Checking

In this Section we address how forward checking can help a Hill-climbing
procedure when it is searching for a solution for a Constraint Satisfaction
Problem. Forward Checking is a classical complete approach to solve CSP that
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instantiates the variables following some order and filters them during the search.
We remark that this technique focuses on exploiting the search space, and it is a
good algorithm to accomplish this kind of task. The most well-known incomplete
algorithm to solve CSP is Min Conflicts proposed by Minton [4]. In this approach
a local search procedure begins with a complete instantiation and it is modified
by randomly choosing a variable and selecting a value for this variable from
its domain, so that the number of constraint violations that are reduced. Using
this algorithm many complex problems have been solved like scheduling and
planning. However, this method has two drawbacks: It can quickly get stuck in a
local optima, and it is not able to detect when a problem does not have a solution.
Thus, we propose here to use forward checking, as c-solver to help the hill-
climbing algorithm which is the i-solver, to tackle these problems. Figure 2 shows
this collaboration. When the hill-climbing method gets stuck in a local optima it
gives the best complete instantiation that it found to the collaborative algorithm.
This algorithm constructs a partial instantiation by discarding from the complete
instantiation the variables with conflicts. Then it gives the partial instantiations
(variable, value) to forward checking which constructs the associated branch and
normally continues the execution filtering and searching the values of the rest of
the variables not still instantiated on this branch. In this context hill-climbing
gives to forward checking the “promising branch” to have a solution for the CSP
problem.

Procedure Cooperating HC with FC for CSP (C, i − solver, c − solver)
Begin /* Procedure Cooperating HC with FC for CSP */
While (Not OK-Solution)

While ((Not max-stuck-i-solver) and (Not OK-CSP-Solution))
pre-solution-from-i-solver = i − solver(C)
If (Not OK-CSP-solution)

While ((Not max-stuck-c-solver) and (Not OK-CSP-Solution))
branch-solution-c-solver = c-solver(pre-solution-from-i-solver)

EndWhile
Endif

EndWhile
EndWhile
End /* Procedure */

Fig. 2. Cooperating HC with FC for CSP

4 Cooperation in Constraint Satisfaction Optimisation
Problems

As in CSP, to solve a Constraint Satisfaction Optimisation Problem (CSOP)
consists of assigning values to variables in such a way that a set of constraints is
satisfied. But, a CSOP has also an objective function that must be optimized.
Thus, the goal here is to find the best variable instantiation.
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4.1 General Algorithm with Propagation

Constraint Programming deals with optimisation problems, CSOPs, using the
same basic idea of verifying the satisfiability of a set of constraints that is used
for solving CSPs. Asuming that one is dealing with a minimisation problem, the
idea is to use an upper bound that represents the best possible solution obtained
so far. Then we solve a sequence of CSPs each one giving a better solution with
respect to the optimisation function. More precisely, we compute a solution s to
the original set of constraints C and we add the constraint f < f(s), where f
represents the optimisation function and f(s) represents the evaluation of f in
the solution s. Adding this constraint restricts the set of possible solutions to
those that give better values for the optimisation function, while still satisfying
the original set of constraints. When, after adding such a constraint, the problem
becomes unsatisfiable, the last feasible solution obtained so far represents the
global optimal solution [1]. Very efficient hybrid techniques, such as Forward
Checking, Full Lookahead [3] or even more specialised algorithms, are usually
applied to solve the sequence of CSPs. Figure 3 presents this basic optimisation
scheme.

Procedure Basic Optimisation in Constraint Programming
Begin

s = GenerateFeasibleSolution(C)
best-solution = s
solution-value = f(s)
While Problem has solution

s = GenerateFeasibleSolution(C & f < solution − value)
best-solution = s
solution-value = f(s)

EndWhile
End /* Procedure */

Fig. 3. Basic Constraint Programming Algorithm for CSOP

In this approach, the goal is to find the solution named Global-Solution of
a constrained optimisation problem with the objective function Min f , and its
constraints represented by C. The cooperating strategy is an iterative process
that begins to try solving the CSP associated to the optimisation problem using
an initial i-solver. This algorithm has an associated converge condition criteria,
i.e., when it becomes enable to find an instantiation in a reasonable either time
or number of iterations. The pre-solution-from-i-solver corresponds to the
variables values instantiated until now. When i-solver is stopped because it
has reached the converge condition, c-solver, continues taking as input the
pre-solution-from-i-solver. c-solver uses it to find a near-optimal-solution
for the optimisation problem until it reaches a local optimality. A new CSP is
defined including the new constraint that indicates that the objective function
value must be lower than the value found either by i-solver or by c-solver.
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4.2 Forward Checking Helped by Hill-Climbing

In the last Section we refer the approach to help hill-climbing by forward checking
when it must solve a Constraint Satisfaction Problem. In this Section we briefly
describe a basic cooperation scheme between forward checking and hill-climbing
to solve Constraint Satisfaction Optimisation Problems.

Forward Checking focuses on finding a solution on the branch coming from
the first variable instantiated. When it gets stuck in its search on this branch, it
may be useful to help it to do both actions: to abort this search and to go exploit
another one. On the other hand, hill-climbing, a classical incomplete technique,
beginning with a complete initial instantiation does exploration by changing
the initial instantiation, and it continues the exploitation of the search space
perturbing the complete instantiation by applying local moves. Because hill-
climbing focus its search by exploiting the neighboor of the initial instantiation
can converge very quickly to a local optima. The collaborative algorithm uses
this local optima as a new bound for forward checking in order to identify what
is the most promising branch to exploit after aborting.

Procedure Cooperating Solvers for CSOP (f, C, i − solver, c − solver)
Begin /* Procedure Cooperating Solvers for CSOP */
While (Not OK-Global-Solution)

While ((Not max-stuck-i-solver) and (Not OK-CSP-Solution))
pre-solution-from-i-solver = i − solver(C)
If (Not OK-CSP-solution)

While ((Not condition max-stuck-c-solver) and
(Not OK-CSP-Solution))
Pri = pre-solution-from-i-solver
near-optimal-solution-c-solver = c-solver(Pri, f)
Bound = near-optimal-solution-c-solver

EndWhile
Else Bound = pre-solution-from-i-solver
C = C & f < Bound

EndWhile
EndWhile
End /* Procedure */

Fig. 4. Cooperating Solvers Strategy for CSOP

5 Parameter Control

The goal of implementing solvers that cooperate is to improve the efficiency
of the algorithms compared to their performance alone. In the collaborative ap-
proaches that we presented in the last Sections we observe that the collaborative
algorithms must take some actions during the search. However, to identify both
when hill-climbing gets stuck in a local optima and when a branch that forward
checking is exploiting is no a promising branch to continue searching are com-
plex tasks. This problem is similar to find the good parameters for metaheuristic
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algorithms. It has been adressed in the metaheuristics community as parameter
control. The parameter control problem itself is complex. There are many strate-
gies to implement parameter control [7]. The simplest one is to allways change
the parameter values, after a fixed number of iterations, by incrementing them
with a fixed value. The most sophisticated one is the adaptive dynamic param-
eter control [7], where the algorithm itself changes its parameter values in order
to do more, either exploration or exploitation depending on the execution. We
can see that collaborative algorithms also have parameters. For instance, when
hill-climbing helps forward checking, the collaborative algorithm must define any
criteria that it considers to abort the exploitation of this branch (e.g., a number
of iterations, elapsed time, value of the evaluation function). On the other hand,
when forward checking helps hill-climbing, the collaborative algorithm must also
define when it considers that hill-climbing finds a local optima, for example after
some iterations, or after a given amount of applied moves. Our key idea here is
to include the parameter control task into the collaborative algorithm using a
dynamic and adaptive strategy according to the search. In this way we use in
our approaches the following heuristics:

1. For CSOP:
– If Forward Checking (FC) converges in a depth of the tree search and it

cannot go ahead for a number of iterations, then it is time to give the
control to Hill-Climbing (HC).

– When HC is searching for the new bound and it cannot improve its best
found pre-solution, FC takes control, searching for a solution of the new
CSP

2. For CSP:
– If HC obtains an instantiation with at least k variables without conflicts,

then FC takes the control in order to find a value for the rest of the
variables.

– If FC cannot obtain a solution in this branch, that means for HC that
it is not useful to continue searching here, and it must begin at another
point.

6 Evaluation and Comparison

In this Section, we first explain the problems that will be used as benchmarks
and then we present the results obtained using our cooperative approach.

6.1 Test Problems for CSOP

In order to test our schemes of cooperation, we use the classical Capacity Vehicle
Routing Problem (CVRP). In the basic Vehicle Routing Problem (VRP), m
identical vehicles initially located at a depot must deliver discrete quantities of
goods to n customers, each one having a demand for goods. A vehicle has to
make only one tour starting at the depot, visiting a subset of customers, and
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returning to the depot. In CVRP, each vehicle has a capacity, extending in this
way the VRP. A solution to a CVRP is a set of tours for a subset of vehicles
such that all customers are served only once and the capacity constraints are
respected. Our objective is to minimise the total distance travelled by a fixed
number of vehicles to satisfy all customers.

Our problems are based on instances C101, R101 and RC101, proposed by
Solomon [6] belonging to classes C1, RC1 and R1, respectively. Each class de-
fines a different topology. Thus, in C1 the location of customers are clustered.
In R1, the location of customers are randomly generated. In RC1, instances are
generated considering clustered groups of randomly generated locations of cus-
tomers. These instances are modified to include capacity constraints. We named
the so obtained problems as instances c1, r1, and rc1. These problems are hard
to solve for a complete approach. The goal of our tests is to evaluate and to
compare the search made by a complete algorithm, in contrast to its behaviour
when another algorithm, which does an incomplete search, is incorporated into
the solution process.

6.2 Evaluating Forward Checking with Iterative Improvement

The goal of our test is to evaluate and to compare the search made by a stand
alone complete algorithm, with its behaviour when an incomplete algorithm
is introduced to the search process. For the tests we have selected two well
known techniques: Forward Checking (FC) from Constraint Programming and
Hill Climbing or Iterative Improvement from Local Search. Forward Checking is
a technique specially designed to solve CSP, based on a backtracking procedure,
but it includes filtering to eliminate values that the variables cannot take in any
solution to the set of constraints. Some heuristics have been proposed in the
literature to improve the search of FC. For example, in our tests we include the
minimum domain criteria to guide the instantiation of the variables. Thus, the
first variable instantiated by FC has the smallest domain size.

On the other hand, local search works with complete instantiations. We select
iterative improvement which is especially designed to solve CVRP. The charac-
teristics of our iterative improvement algorithm are:

– The Initial Solution is obtained from FC.
– The moves are made by the 2-opt operator proposed from Kernighan.
– The acceptance criterium is ”best improvement”.
– It works only with feasible neighbourhoods.

The first step in our research was to verify the performance of applying a
standard FC algorithm to solve problems c1, r1, and rc1 as defined above. Table 1
presents the obtained results. For each instance, we show the time at which
the partial solution has been found and the corresponding evaluated objective
function. All times one in milliseconds.

Thus, reading the last row of columns t and z for the r1 instance, we can see
that the best value of z = 375.66 is obtained for the objective function after
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Table 1. Application of Forward Checking

r1 rc1 c1
# t z t z t z
1 30 431.39 29803 383.32 37063 248.36
2 180 431.38 31545 367.00 37754 245.53
3 210 431.16 35200 364.61 40629 234.44
4 260 425.41 109537 359.83 40719 233.90
5 270 418.62 111180 357.78 40719 231.78
6 410 414.20
7 560 404.92
8 560 398.13
9 1091 392.03
10 38014 391.76
11 38014 385.21
12 38014 383.53
13 51694 377.33
14 51694 375.66
15 106854 375.66

15 iterations in 106854 seconds. In the same way, we can see that for instance
rc1, the best value obtained by the application of FC is z = 357.78 after 5
iterations in 111180 seconds, and for instance c1, the value z = 231.78 is also
obtained after 5 iterations in 40719 seconds. For all applications of FC in this
work, we consider a limit of 100 minutes to find the optimal solution and carry
out optimality proofs. This Table only shows the results of applying FC for
solving each instance; we cannot deduce anything about these results because
we are solving three differents problems.

Our idea to make these two solvers cooperate is to help FC when the problem
becomes too hard for this algorithm, and take advantage of HC that could be
able to find a new bound for the search of the optimal solution. In our approach,
FC first finds a solution to a CSP. Then, this solution is used to compute a bound
for the optimal value of the problem. If FC has problems trying to find a solution,
the collaborative algorithm detects this situation and gives this information to
a HC method that is charged with quickly finding a new feasible solution. The
communication between FC and HC depends on the direction of communication.
Thus, when the algorithm gives the control to HC from FC, HC receives the
variable values previously found by FC, then the algorithm accepts the move, if
and only if it improves the current solution.

When the control is from HC to FC, HC gives information about the local
optima that it has found. This information modifies the bound of the objec-
tive function constraint, and FC tries to find a solution for this new problem
configuration.

Roughly speaking, we expect that using HC, FC will reduce its search tree
cutting some branches using the new bound for the objective function. On the
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other hand, HC focuses its search when it uses an instantiation previously found
by Forward Checking on an area of the search space where it has a higher
probability to obtain the optimal value.

The first scheme of cooperation that we have tried consists in:

1. We first try to apply FC looking for an initial solution.
2. Once a solution has been obtained, we try to apply HC until it cannot be

applied any more, i.e., a local optimum has been reached.
3. Then, we try again both algorithms in the same order until the problem

becomes unsatisfiable or a limit time is achieved.

The results of applying this scheme are presented in Table 2.

Table 2. Trying Hill-Climbing after Forward Checking

r1 rc1 c1
# s t z s t z s t z
1 FC 30 431.39 FC 29803 383.32 FC 37063 248.36
2 HC 470 392.03 HC 30023 341.42 HC 37344 211.22
3 HC 820 379.62 HC 30214 294.99 HC 37654 197.30
4 HC 1090 358.99 HC 38090 194.07
5 HC 1360 353.66 HC 38330 191.05
6 HC 38580 189.05
7 HC 38810 187.44

In order to verify the effect of applying HC inmediately after the application
of FC, we try the same cooperation scheme but we give the possibility to FC to
be applied several times before trying HC. The idea is to analyse the possibility
to improve bounds just by the application of FC. As we know that FC can need

Table 3. Trying Hill-Climbing two seconds after Forward Checking

r1 rc1 c1
# s t z s t z s t z
1 FC 30 431.39 FC 29803 383.32 FC 37063 248.36
2 FC 180 431.38 FC 31545 367.00 FC 37754 245.53
3 FC 210 431.16 FC 33200 364.61 FC 39629 234.44
4 FC 260 425.41 HC 35491 294.99 FC 40719 233.90
5 FC 270 418.62 FC 40729 231.78
6 FC 410 414.20 HC 43165 197.89
7 FC 560 404.92 HC 43465 194.86
8 FC 560 398.13 HC 43795 191.45
9 FC 1091 392.03 HC 44025 189.45
10 HC 3803 379.62 HC 44265 187.85
11 HC 4083 358.99 HC 44505 187.44
12 HC 4374 353.66
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a lot time to get a new solution, we establish a limit of two seconds. If this limit
is reached and FC has not yet return a solution, we try to apply HC. The results
of this second scheme of cooperation are presented in Table 3.

We can make the following remarks concerning these results:

– Surprisingly, when solving each instance, both cooperation schemes found
the same best value.

– The first scheme of cooperation (Table 2) always takes less time than the
second one (Table 3). In fact, the total time is mainly due to the time
expended by FC.

– In general, applying both cooperations schemes, the results are better, in
terms of z, than applying FC alone.

7 Conclusions

The main contribution of this work is that we have presented a framework to
design cooperative strategies integrating solvers for combinatorial constrained
problems. The results reported show that Hill Climbing can help Forward Check-
ing by adding bounds during the search procedure. This is based on the well-
known idea that adding constraints, can usually improve the performance of
Constraint Programming. We have also tested a collaboration strategy using
randomly generated binary CSP. We remark that when HC is charged with
solving Constraint Satisfaction Problems, FC can help it, taken only the vari-
ables without conflicts from the solution found by HC and to find quickly the
rest of the variables values to complete a good instantiation. If FC cannot find
a complete instantiation, it is able to decide that there is not a solution ahead
and that it is not useful to continue searching moves on this branch. Thus, HC
can continue its search from another point. Nowadays, considering that the re-
search carried out by each community separately has produced good results,
we strongly believe that future research will consider the integration of both
approaches.
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Abstract. Today’s state-of-the-art, real-time distributed systems re-
quire sophisticated software engineering techniques to support a diverse
set of mission requirements. This chapter discusses an event-driven ap-
proach to the design of such systems in the context of a fully-functional
search and localization application intended for unmanned aerial vehi-
cles. Here, the discussion focuses on the basic design principles that form
the foundation of the distributed, scalable, and cross-platform implemen-
tation, and it provides an evaluation of the system’s performance on a
set of representative tasks. The main contribution of this effort consists
of a modular software framework that is well-suited for solving problems
in distributed intelligence and autonomous robotic systems. This frame-
work is an enabling technology that integrates different functional com-
ponents, such as sensing, analysis, and control into one cohesive platform.
This solution employs off-the-shelf commercial technologies, resulting in
a low-cost implementation that exhibits both robustness and flexibility.

Keywords: cooperative search and localization, distributed sensor net-
works, multi-threaded design, intelligent systems.

1 Introduction

The main goal of this research is to develop an autonomous, cooperative, and
heterogeneous Multiple Unmanned Aerial Vehicles (MUAVs) system that uses
heterogeneous on-board sensors to search, detect, and locate moving ground tar-
gets. The necessary technologies have matured to make an implementation on
hardware UAVs possible. A non-trivial challenge for the implementation is the
integration of the associated control, sensor, and communication technologies.
The subject of this chapter is a high-performance software architecture that
merges interdependent air-to-air-to-ground control, sensor, and communication
network functionalities into a cohesive intelligence, surveillance, and reconnais-
sance (ISR) system [1]. A novel aspect of our approach is the event-driven soft-
ware implementation. Instead of relying on an explicitly-programmed flow of
information and control through the entire system, each individual UAV reacts
autonomously and independently to several indeterministic mission events. This
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chapter explains and illustrates how a methodical application of parallel software
engineering techniques resulted in a multi-threaded, cross-platform, distributed
software operating environment that optimizes utilization of available process-
ing resources to improve the MUAVs system performance on the ISR task. This
novel approach relies on widely-available off-the-shelf hardware and software
products, and places a significant emphasis on the practical aspects of develop-
ing and deploying a functional ISR system. The solution consists of three major
components: surveillance aircraft, ground station infrastructure, and a suite of
supporting technologies for archiving and processing mission data.

To detect mobile ground targets (e.g., vehicles) we developed a fully au-
tonomous unmanned aerial vehicle (UAV) platform, equipped with an on-board
PC/104+ computer running the Linux operating system. In order to do so, our
research team identified and incorporated several different types of sensors into
the UAVs: the planes search for targets using a camera, covering both visual
(VR) and infrared (IR) ranges. We also developed a unique prototype radio
frequency (RF) sensor, capable of locating targets based on their radio emis-
sions; this new sensor was tested successfully in both a laboratory setting and in
an actual field deployment. These and several other airborne components com-
prise the heterogeneous on-board processing system (HOPS). Mission objectives
and search progress are specified and monitored via the multiple UAVs ground
station (MUGS), which consists of a wireless communication relay and several
Windows-based laptops running avionics and ISR-specific software. Figure 1 il-
lustrates a typical ISR scenario, and shows how the different components of the
MUAV system may be deployed in the field.

The MUAV ISR system also includes an archive and visualization station,
called SUDS (short for server unit for display and storage), that uses the 3D
Google Earth rendering engine and a Microsoft SQLServer database back-end
to display real-time status of multiple UAVs as they perform search, detection,
and localization of ground vehicles. This ISR platform is a complete function-
ing prototype, thoroughly tested in software simulation, hardware-in-the-loop
configuration, and in actual flight testing.

The chapter begins with an overview of the MUAV software architecture, fo-
cusing on the multi-threaded and event-driven aspects of the implementation.
The discussion then highlights the key aspects of the software modules respon-
sible for communication, sensor processing, and mission control. It is followed
by a performance analysis of the framework based on a broad range of statistics
collected during flight testing, and then examines the fault-tolerance properties
of the implementation. The last section in the chapter summarizes the design
trade-offs and offers ideas for future work in this area.

2 Motivation

This software engineering effort originated in response to a problem of component
integration. Research and development activities performed by the Sensor-based
Intelligent Robotics Laboratory at US Air Force Academy produced a set of
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Fig. 1. An envisioned ISR scenario, in which multiple UAVs use heterogeneous sensors
to locate mobile ground targets. The autonomous UAVs first form an airborne sensor
and communication network, and then share the obtained sensor data to cooperatively
search the area of interest. Note that the UAVs may form a multi-hop communication
relay to report their findings to the ground station operator, although these individual
navigational decisions are made separately by each UAV, without the need of explicit
commands from a human observer.

requirements that a field-ready ISR implementation had to satisfy [2]. The sys-
tem design called for multiple unmanned aircraft to carry a suite of different
sensors, and the UAVs were tasked with locating several mobile targets on the
ground. The aerodynamic control of the airframe was delegated to the Piccolo II
autopilot, manufactured by Cloud Cap Technologies [5]. The autopilot on-board
each UAV received periodic waypoint updates from the HOPS Control sub-
system based on the UAV status, sensor observations, and the pertinent sensor
and control data communicated by neighboring UAVs. When a target is detected,
the target’s location is estimated and updated with each additional sensor mea-
surement obtained by an on-board sensor, or a target estimate communicated by
a neighboring UAV. The sensor fusion process combines local and remote sensor
measurements via a novel Kalman filter capable of processing out-of-order ob-
servations [3]. The functional components of this MUAV platform are shown in
Figure 2. The sophistication of this design, its emphasis on the UAV autonomy
by means of on-board processing of large amounts of data, and the resulting need
to support multiple third-party hardware components necessitated an equally so-
phisticated software framework that unified the separate functionalities into a
single real-time application. The software platform had to be agile enough to
support an active research project, as requirements and specifications changed
frequently. But at the same time, it also had to be robustly fault-tolerant in
order to insure the safety of the airplanes.

Because the MUAV software framework unifies several different ISR function-
alities into one application, it should be viewed as an enabling technology for
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Fig. 2. A functional component overview of the MUAV system, showing the combined
requirements of autonomous flight and ISR operations

the algorithms and mission strategies that were developed in [1]. The software
architecture owes much of its design to the reactive nature of a typical ISR mis-
sion, during which the aircraft monitors an area of interest and then alters its
course in response to several events, such as the “target detected” signal from the
on-board sensor fusion process, or the “help is needed” message received from
another UAV. When a priori information about the target is limited, it is imprac-
tical to pre-program all of the UAV actions in advance. Furthermore, scripted
surveillance missions become easy to subvert as soon as the search strategy is
understood by the adversary. On the other hand, the use of fully autonomous,
intelligent agents capable of real-time mission task planning based on the latest
field observation data gives rise to a sophisticated and robust reconnaissance
system.

Another noteworthy aspect of the MUAV design is the modularization of all
sub-systems, such as the communication, sensor network, and navigation plan-
ning. Building and delivering a functioning ISR system requires a great deal
of creative collaboration, subject to strict financial and scheduling constraints.
An effective approach to managing the risks and uncertainties is to separate
shared functionalities, such as communication and data archiving, so that con-
current development can take place on as many components as possible. This
is why the software was architected using a multi-tiered hierarchical structure,
with well-defined component interfaces that consist of a small set of decentral-
ized command instructions. The remaining sections of this chapter provide more
detail on this disciplined design.
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3 MUAV Software Architecture

One of the most challenging software requirements that had to be addressed by
the implementation is the need for cross-platform operation. The Linux operating
system (OS) was selected for managing aircraft systems due to its open source
model, which made it possible to perform modifications to the operating system’s
kernel in order to adapt to specific hardware, and to take advantage of useful
network utilities, such as the MobileMesh dynamic routing protocol [7]. On the
other hand, Microsoft Windows XP was chosen as the OS for the ground station
components because of a larger Windows user base, and the high likelihood
of Windows being a more familiar work environment for the MUAV system
operators. Because of time and budget limitations, it was not practical to develop
custom versions of both Linux and Windows components. To satisfy the multi-
OS requirement, all of the MUAV software is built using the Qt cross-platform
development framework [9], so that only very specific and isolated functionality,
such as access to the universal serial bus (USB) devices or remote connections to
the database are operating system dependent – the rest of the implementation
will function “out of the box” on any platform that supports the Qt toolkit.

The Qt framework is a very powerful and feature-rich platform: it provides
OS-independent modules for multi-threading and concurrent process execution,
networking, structured query language (SQL) database access, and tools for
graphical user interface (GUI) design. The Qt toolkit comes with comprehensive
documentation, which greatly reduced the learning time for the MUAV devel-
opment team. Furthermore, Qt is an event-driven architecture. This important
aspect deserves a more in-depth discussion.

3.1 Event-Driven Design

Event-driven programming is a variation (or extension) of the more widely used
object-oriented design methodology. Using the event-driven terminology, an ob-
ject is an entity with an internal state, which can be observed by other objects.
The internal state of an object is likely to alter as a result of changes in the
state of the other objects in the system. Such state transitions are represented
by events, and the logic of a program (e.g., what an event-driven program does)
is determined by what events are produced, and how they are processed by the
other objects that constitute the program. In other words, event-driven objects
are aware of their environment, and they can react independently to changes
in their environment. Thus, each event-driven object is a reactive automaton,
programmed in advance with a set of behaviors that determine how this object
affects and is affected by other components of the program.

An event-based program differs from a typical object-oriented implementation
in its lack of explicit command directives between objects. For instance, consider
the case of an aircraft losing a connection to the ground station due to a radio
failure. With a “standard” object-oriented approach, the communication sub-
system would contain a reference to the avionics control module, which it might
then use to instruct the aircraft to abort the mission and return back to the
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base. In this case, the RETURN-TO-BASE directive is an explicit command issued
by the communication module to the avionics controller, and the logic of what
to do upon loss of the radio link is contained within the communication module.
Now consider an event-driven implementation, where the communication mod-
ule does not issue commands directly to the avionics sub-system. Instead, the
communication object will first emit a LINK-DOWN signal, and after the avion-
ics object detects this event, it will then execute the RETURN-TO-BASE behavior.
Note that in the event-driven design, the logic of what the aircraft does in case of
a hardware malfunction resides inside the avionics controller – arguably a more
intuitive assignment than the communication sub-system in the object-oriented
approach. In addition, there may be several other conditions that might trigger
the RETURN-TO-BASE behavior, or it may also be possible that there are cases
where the loss of a radio should not abort the rest of the mission. Hence, instead
of having multiple sub-systems control the motion of the UAV, the avionics sub-
system retains exclusive control of the aircraft throughout the mission, and it
decides autonomously on the optimal action based on all of the events produced
by other sub-systems. Thus, the event-driven approach helps to improve the pro-
gram’s cohesion, by reducing the number of separate places in the code where
decisions are computed.

In addition to increasing the program’s cohesion, the event-driven method
can also reduce module coupling by eliminating the need for explicit references
to other modules in the system. For instance, using the previous example, an
event-based communication sub-system does not even need to know about the
avionics module – all it needs to do is produce proper state transition signals,
which then can be interpreted by any vehicle control module that may be ac-
tive at the time the signal is emitted. In fact, this is exactly the approach used
during ground-based test and validation of the MUAV software framework, for
which autonomous ground vehicles (AGVs) are employed instead of airplanes.
To support this advanced functionality, the software implements two separate
event-driven hardware controllers, one for the UAVs and another for the ground
robots. Thus, the system can be made to operate in two very different config-
uration modes by simply activating the appropriate controller. This allows the
MUAV development team to perform extensive performance testing along with
the validation of new code on the ground, without endangering the expensive
UAVs. All that is required of the ground crew is to connect (in software) the
navigation signals to the AGV robot controller module, and the rest of the sys-
tem then behaves exactly as it did before, without any explicit changes to the
software. The Qt framework ensures that such modifications are easy and fast
to perform.

Readers who have prior experience with event-driven programming will find
Qt’s approach to inter-module communication straightforward. Every Qt en-
tity can be described via a set of signals, which correspond to some observable
property of the object (see Figure 3). For instance, when a mission-planning
agent calculates a new waypoint, it emits the NEW-WAYPOINT signal. In turn,
the aircraft navigation module listens for this signal (among many others), and
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Fig. 3. Qt’s event-driven architecture is based around signals (e.g., notification events
emitted as a result of state transitions) and slots (e.g., methods that execute in response
to connected signals). Timer objects may be used to dispatch periodic events.

after detecting the signal’s emission, it responds by invoking one of its slots,
i.e., special methods that can be “connected” to signals. In other words, an ob-
ject’s slots determine the object’s responses to changes observed in the system,
while an object’s signals are used to inform others of new changes. So in the
previous waypoint example, one might connect the NEW-WAYPOINT signal to a
CHANGE-HEADING slot of the UAV navigation module.

3.2 Event-Driven Implementation

The most intriguing aspect of an event-driven implementation is the unusual
way the MUAV software components interact – there is no top-level control
loop, and there is no predefined program execution path. Instead, every object
within the system is controlled by events, because a component’s response to an
event is determined only by the slots that have been associated with that signal.
A brief reflection on the practical ramifications of this design reveals that it is no
longer possible to accurately predict exactly when any given function or slot will
execute, and the precise order in which an event might be processed by different
objects cannot be predicted. Instead, the system is best thought of as a large
collective of independent agents that monitor and respond to a predetermined
set of events. Thus the only reliable method of system analysis is to estimate the
upper and lower bounds of when the execution of a given event handler might
take place.

What is then the practical advantage of such an approach? For one, it achieves
the important software engineering goal of decoupling the system into separate
components that can be developed in parallel, thus reducing the total production
time. As mentioned previously, another benefit is the increase in the cohesion
of the modules: event-driven objects have few explicit dependencies on other
components, so the individual modules can be activated and deactivated quickly,
without disturbing other parts of the program. This provides an easy but safe
mechanism to significantly alter the system’s behavior in mid-flight (such as
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switching from autopilot to manual pilot control). This run-time dynamic system
configuration feature proved to be a natural fit for the ISR problem, simplifying
the MUAV software implementation.

Consider the event when the UAV first detects a target and several actions
must be taken: the new sensor observation has to be fed into the on-board
sensor fusion module, the control mode needs to be switched from search to
tracking, information about the new target sighting has to be communicated to
other UAVs, and the ground station operator must be notified of the detection.
The sub-systems sensor fusion, control, and communication are affected by this
event. Thus, if a procedural programming approach were to be followed, then the
software designer would have to write an external condition statement to process
the target detection event, directly invoking the necessary functions of each sub-
system. Not only does this result in the unnecessary and undesired coupling of
otherwise independent sub-systems, it moves the decision-making logic outside
of the sub-system module, making component reuse more difficult. On the other
hand, using the event-based paradigm, each sub-system manager can simply
“listen” for the target detection event, and act on it independently of all the
others. Exactly how each sub-system reacts to any given event is determined
solely by the sub-system’s programmer. And the decision algorithm remains
encapsulated inside the module, making it easy to rearrange and interchange the
modules to satisfy different mission requirements. This is exactly the mechanism
that gives the ground crew the ability to replace the interface module for the
UAV autopilot with one for AGV rovers, and safely perform initial validation
of new untested features on the ground, all without making any changes to the
main MUAV program.

The theme of modularization with heavy component reuse is very pronounced
in the MUAV software implementation. The cross-platform support of the Qt
framework allows for the same implementation of internal data structures and
functional operators to be used on both the Linux-based aircraft and the
Windows-operated ground station. Furthermore, because the focus of this re-
search effort is on the collaborative aspects of the surveillance problem, com-
munication between airborne UAVs plays a central role in the system. This fact
must be reflected prominently in the software. In addition to information being
transmitted from neighboring UAVs and the ground station, each vehicle also
manages a large set of internal data. For instance, aerial images captured by
the on-board camera are analyzed by Target Detection software; when a tar-
get is detected, the Target Detection module outputs a set of bearing angles,
which are then passed into the UAV Sensor Fusion module (see Figure 4) for
further processing. The Sensor Fusion module operates on the information re-
ceived from local as well as remote sensors to provide the Mission Control module
with a likely position of the ground target. In turn, the Mission Control mod-
ule uses the information about the state and location of cooperating UAVs and
mission objectives provided by a human observer to compute a desired flight
path which is then sent to Vehicle Control for maneuvering the aircraft into
a desired trajectory. The large volume of information, its irregularity, and the
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intermittent nature necessitate a regulation mechanism for the data flow, to
ensure that sudden bursts or interruptions in the information stream do not
jeopardize the mission. In the MUAV software architecture, the management
and coordination of the various sub-systems (along with their input and output
data) is performed via the sub-system manager objects, connected together as
depicted in Figures 4 and 5, which show the functional block diagrams of the
MUAV software for both the aircraft and the ground station components.

As can be observed in Figures 4 and 5, the UAV and the ground station
software packages have a similar, symmetric structure. The main purpose of a
sub-system manager, outlined as a hexagon in the diagrams, is to encapsulate the
functionality of the given sub-system, and to isolate it as much as possible from
all the other unrelated activities performed by the UAV. The shared module of
the two MUAV components is the communication sub-system, which is used in
both aircraft and ground station operations. During the mission, a variety of
messages are constantly exchanged among the UAVs and the ground station –
a process facilitated by the Communication Manager. The rest of the system
data flows in a similar manner – exchanged by the managers of the internal
sub-systems via the Qt signal-slot mechanism. For example, the Communication
Manager enables other sub-system managers to send and receive their respective
mission messages, obtain the network address associated with the UAV, and
to intercept commands from the human supervisor. The On-board Hardware
Manager on the other hand, is tasked with overseeing UAV hardware, such as the
autopilot, and maintaining a real-time record of flight-related status information.

As was mentioned before, the hierarchical organization of the implementation
makes it possible to alter the MUAV configuration at run-time by simply turning
on and off the respective sub-system manager. The common Dispatcher object,
shown in the center of the HOPS and MUGS diagrams (see Figures 4 and 5,
respectively), provides a structured interface for connecting and disconnecting
sub-system components. In addition, the Dispatcher provides shared memory
storage and uniform access to system resources, such as the system clock, or
UAV position and attitude information. The implementation supports both high-
level interrupt handling and regular polling models for information processing.
An example of an interrupt-driven process is the update of the HOPS Sensor
Fusion module in response to target detection events produced by the Sensors
sub-system. A more traditional polling method is used to read the serial port
interface of the autopilot when updating the current UAV state information.
Likewise, on the ground station, the GUI sub-system generates events when the
human operator interacts with the MUAV user interface, while the Performance
Monitor, a component inside the MUGS ISR Mission sub-system, uses an internal
timer to produce a database record for a “global snapshot” of the system state at
regular time intervals for post-mission analysis (see Figure 5). The next section
contains a more detailed overview of the MUAV Communication and the HOPS
Sensors sub-systems – two practical examples that illustrate how the ideas of
event-driven design impact a real-world software application.
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Fig. 4. Conceptual view of the internal organization of the heterogeneous on-board
processing system (HOPS). Each distinct functionality of the aircraft (e.g., sensing,
control, etc) is encapsulated inside an independent sub-system governed by a separate
sub-system manager. The top-level sub-system managers facilitate data flow between
the internal modules, and provide a generic representation of the functional capabilities
of the MUAV system.

Fig. 5. Internal sub-system structure of the multiple UAVs ground station (MUGS)
component. Similar to the HOPS software structure, the ground station software is
a collection of independent, reactive sub-systems that collaborate via a generic inter-
face that exposes the functional capabilities of each module, without requiring explicit
command and data links between the individual objects that comprise the interacting
sub-systems.
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4 MUAV Software Implementation Details

Before presenting specific details on the implementation of the MUAV Com-
munication and HOPS Sensors sub-systems, it is necessary to briefly list the
overall software and hardware specifications of the MUAV system. Most of the
MUAV software is written in C++ using the open source edition of Qt [9].
In addition, several third-party application programming interfaces (APIs) and
libraries, also written in C/C++, provide support for the on-board UAV hard-
ware, such as the Piccolo II autopilot [5], Axis 212 PTZ digital camera [4], and
the Opal Kelly Field-Programmable Gate Array (FPGA) board [8]. On-board
sensor processing and real-time mission planning are carried out using the Kon-
tron PC/104+ computer with a 1.8 GHz Intel Pentium M processor and 1 GB of
main system memory [6], running the Linux operating system. MUAV aircraft
communicate with each other and with the ground station by using a commer-
cial 802.11b extended-range radio, configured for an ad-hoc wireless network.
Since the Qt framework features powerful multi-threading capabilities, each sub-
system depicted in Figures 4 and 5 is implemented as a separate Qt execution
thread. The concurrency of the independent modules allows the system to op-
timize resource utilization, something that will be addressed in more detail in
Section 5.

4.1 MUAV Communication Sub-system

In order to locate targets quickly and accurately, the solution of the collabora-
tive ISR problem requires a robust communication network. One of the goals of
this project is to design a communication infrastructure capable of supporting
arbitrary types and numbers of messages for both Windows and Linux operating
environments. The MUAV communication system provides an acknowledgment
of important messages (such as sensor configuration data), and also provides an
application level time-to-live support by limiting the number of message retrans-
missions. The Communication sub-system manager is in charge of four message
queues, each with a different priority; this allows the system to prioritize all
network traffic (see Figure 4). The message queues in turn connect to persistent
network sockets, allowing multiple UAVs to maintain active communication links
with each other and with the ground station throughout the mission. In addition
to regular message traffic, carried over the standard transmission control pro-
tocol and the Internet protocol (TCP/IP) network sockets, the MUAV software
also supports streaming of live video from the UAV – a feature that makes use
of the unreliable, but low-overhead user datagram protocol (UDP) client-server
connections.

The preceding section described the event-oriented design philosophy that
shapes the MUAV system. Many events within the MUAV software are imple-
mented as communication messages (e.g., TARGET-DETECTED). In fact, because
each message structure consists of just the payload data and a small header
containing information about the source of the event and its time stamp, almost
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all of the internal data in the system is stored as a sub-type of a generic com-
munication message. This approach reduces the number of expensive memory
allocation operations needed during the system’s operation, and simplifies the
implementation with a common interface to all of the MUAV data. Since every
MUAV data object derives from one common parent type, implementation of
some extremely useful functions (e.g., creating archive logs) is trivial. The use
of a common message type also allows for a straightforward and efficient flow of
message data throughout the system. When a new message needs to be trans-
mitted, the corresponding message object is serialized into a binary data stream.
Each specific message type provides its own implementation for this function-
ality, but the first 16 bits always encode a unique type identifier. The MUAV
Communication Manager implements a message handler registry that allows
MUAV sub-system managers to request event notification when a message of
particular type is detected. When the data stream is received on the destination
host, the type identifier is used as an index into the message handler registry, and
all sub-system managers who registered for messages of the same type are im-
mediately notified. Of course the Communication Manager never needs to know
the contents of the message, nor is it affected by how the other managers handle
the message – it simply routes the data and waits for another message to arrive.
A common ancestral type shared by all of the MUAV messages makes it easy to
implement a generic processing routine for all possible MUAV events, without
forcing the Communication Manager to know how to interpret each message
type. This gives the Communication Manager the flexibility to handle arbitrary
messages without being affected by future additions of new messages or changes
in the version of the existing message types. A simplified example scenario of
requesting a UAV video stream is depicted in Figure 6.

Fig. 6. A sample execution sequence of MUAV message processing. In (A), sub-system
managers inform the Communication Manager of the message types they would like to
receive. This registration process can be carried out at any time, allowing the MUAV
sub-systems to dynamically modify their event-handling capabilities. In (B), the arrival
of new network messages causes the Communication Manager to create new MUAV
communication message events, which are then routed in (C) to all the sub-system
managers that are currently registered for this type of the event.
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4.2 HOPS Sensors Sub-system

The ability of the UAVs to localize ground targets depends to a large extent on
the Sensor Network component of the MUAV system. From the software stand-
point, the two main challenges are the integration of different hardware interfaces
and the coordination of data flow through the rest of the system. Figure 7 shows
a diagram of the MUAV sensor network module, simplified to include only the
camera and radio sensor interfaces. The other very important component of the
MUAV sensor network is the Sensor Fusion module (see Figure 4). A detailed
description of this module is omitted from this chapter because it is not relevant
to the current discussion of software engineering methodology, but it is covered
in detail by Plett, et al. [3].

As can be inferred from the structural symmetry depicted in Figure 7, the
HOPS Sensor Network consists of similar data processing and interface mod-
ules, once again highlighting the theme of component reuse that is important
in both the MUAV design and implementation. The Sensor Network Manager
oversees two separate sensor-specific managers – the camera and the RF con-
trollers. These controllers provide a convenient hardware abstraction, allowing
for a clean separation and partition of hardware specific functionality into much
smaller, and more streamlined Driver objects, which act as Qt adapters between
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the high-level event-driven representations of the hardware and the low-level de-
vice drivers. As noted in Figure 7, the RF sensor uses a USB interface (provided
by the OpalKelly FPGA board [8]), while the Axis camera is equipped with an
embedded web server [4], which is accessed via the hypertext transfer protocol
(HTTP). However, in spite of the different interfaces, both sensors output simi-
lar data, namely a bearing to the target (estimated from RF and visual sensor
data), and an elevation to the target (camera data only). Because of the similar-
ity in the sensor outputs, the Sensor Network Manager can relay sensor results
to both the on-board Sensor Fusion module and the other UAVs participating
in the search for the location of a target via a remote network link.

A noteworthy aspect of the MUAV Sensor Network implementation is the
method of initiating and processing sensor readings. The MUGS user interface
allows the MUAV system operator to turn on and off the individual sensor
sub-systems to fit a variety of different missions. In most cases, a Qt timer
object is used to periodically request and transmit data acquired by the sensor.
In this way, the on-board camera manager can start a video streaming timer
that initiates a downlink of a new surveillance image to the ground station
every 125 milliseconds, while starting another timer to transmit the detected
target’s radio signature once every five seconds. Furthermore, these timers are
dynamic: they can either be adjusted manually by the ground station operator
or automatically by the Sensor Network Manager in response to different events.

In particular, the camera is a good example of a shared resource – it pro-
vides a single JPEG image for each HTTP request. Thus, when the operator is
streaming UAV video to the ground station, and the UAV is using the camera to
search for the target, two separate threads must use concurrency primitives, such
as mutexes and read-write locks, to obtain the images. In addition, the require-
ments of the two processes are different – the real-time ISR video feed uses a
stream of low-quality images with fast frame rates, while the target sensor needs
high-quality, high-resolution data at a much slower refresh rate. Multi-threading
and a combination of different timers allow the HOPS Sensor Network Manager
to satisfy these two different goals in a structured, well-defined manner. Since
both of these processes require camera images that differ only in their param-
eters (e.g., size, quality, etc), the same HTTP driver can concurrently accept
requests for target imagery as well as the surveillance video stream. The em-
pirical performance of the MUAV Sensor Network on real data collected during
flight testing is the main topic of the next section.

5 MUAV Software Performance Analysis

As mentioned in the previous section, the HOPS camera sensor is a shared
resource that provides image data needed for target detection, as well as the
surveillance video for display on the MUGS user interface. Also, keep in mind
that these two processes operate independently of each other. Therefore, it makes
sense to examine how the system performance is affected by the interaction of
these two functionalities. Figure 8 shows a plot of the surveillance video frame
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Fig. 8. Surveillance video throughput measured on the MUGS ISR display. The first
150-second period has less variance than the second sample due to the absence of
competition for the camera sensor from the target detection process, which was turned
on at approximately t = 150. Note that the average video frame rate remains nearly
constant at the desired 8 fps rate.

rate prior to and after the initialization of the target VR sensor. For this test
flight, the video timer was configured with a 125 millisecond timeout, yielding
the desired video frame rate of 8 frames per second (fps). The plot in Figure 8
shows a time trace of the observed video frame rate on the MUGS ISR display.
This data accounts for several factors, including network latency and concurrent
processing of multiple tasks on both HOPS and MUGS. Note that the average
frame rate is consistent with the expected 8 fps rate. However, after approx-
imately 150 seconds, which coincided with the activation of the target image
processing thread, the variability of the frame rate increased significantly – the
timing period in the curve is less regular, and the variance of the measured video
frame rate is higher. In fact, the standard deviation of the first 150-second period
is 2.64, which then increases to 3.82 in the following 150-second sample. This
increase in the variance demonstrates how the HOPS software is adapting to the
increased demand for the camera – it attempts to maintain the specified 8 fps
rate (as indicated by the nearly constant mean), but it does so via “catch up”
video transmissions that compensate for delays incurred while waiting for the
camera sensor to process the high-resolution target image data.
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Fig. 9. Typical output of the airborne HOPS camera sensor (the target, a red car, is
outlined with the yellow circle for clarity). After the target has been detected, the UAV
will attempt to orbit around the estimated position of the moving target.
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Fig. 10. Performance of the MUAV Sensor Network in localizing the target. During
this flight, the target vehicle was identified approximately 12 min into the flight, and
once localized, the UAV was able to maintain a lock on the target position for the
majority of the remaining flight time.

Another very important performance metric for the ISR task is the UAVs’
ability to locate the target. This includes finding the target through a given
search process, and then maintaining an orbit around the moving vehicle. The
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Fig. 11. The HOPS Control sub-system uses the output of the Sensor Network module
to compute the next waypoint. For this flight, the ideal waypoint generation period is
2 sec, and the bound on the timing error was found to be ±0.3 sec, with the 8% total
fault rate.

on-board image processing engine uses camera images, like the one shown in
Figure 9, to identify features that could represent the target. As was discussed
in Section 4.2, the output of both the RF and camera sensors is an estimated
bearing to the target. This output from local on-board sensors is fused together
inside the Sensor Fusion module with observations relayed by other UAVs to
provide the HOPS Mission Control Manager (see Figure 4) with the estimate
of the target’s position in the global coordinate frame [3]. The stability of this
estimate is shown in Figure 10, which contains a binary representation of the
Sensor Fusion output (i.e., the target has been either localized or not). From the
data in this plot, observe that it took the UAVs approximately 12 minutes to first
detect and then localize a red vehicle, and that the UAVs maintained a lock on
the target’s position for almost the entire remainder of the mission. There were,
however, a few isolated interruptions in the target localization status, which can
be attributed to the periodic occlusions of the target by the aircraft’s landing
gear (see Figure 9), and an occasional wind gust, that blew a lightweight UAV
away from its intended flight path, thus causing it to lose sight of the target.

Recall that the HOPS Control sub-system uses the output of the MUAV Sen-
sor Network to control the UAV’s flight path. Intuitively, issuing more frequent
updates of the flight path, using the most recent sensor data, is likely to improve
the speed and accuracy of the target localization task. Thus the ability of the
HOPS software to support a fast waypoint update rate is important. Given the
configuration of the avionics and aircraft actuator controls, the optimal waypoint
update rate was calculated to be one new waypoint every two seconds. The plot
in Figure 11 shows that the on-board Control Manager is able to maintain this
level of performance well – the maximum deviation in the waypoint period never
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exceed 0.3 seconds, and deviations from the ideal 2 second period occurred only
8% of the time. Referencing the earlier analysis of the video frame rates (shown
in Figure 8), a similar “catch-up” behavior in the waypoint timings is evident: a
“lag” in the waypoint generation (denoted by upward peaks in Figure 11) is soon
followed by a shorter waypoint generation period (represented by the downward
peaks), meaning that the HOPS Control software strives to provide stable way-
point input to the autopilot in the face of a variable, event-driven load on the
system.

6 Conclusions and Future Work

This chapter presented a complete implementation of an autonomous airborne
sensor network tasked with locating ground targets. The event-driven software
architecture enabled a transition from the previous work based on simulation
and analytical experiments to a fully-functioning prototype, with real unmanned
aerial vehicles performing search and localization of ground targets. Implementa-
tion of each software module as a stand-alone unit with a well-defined set of mod-
ification signals and an ability to react to changes in other parts of the system,
made it possible to construct a scalable and robust framework for conducting
collaborative intelligence gathering, surveillance, and reconnaissance missions.
The scalability and versatility of this solution have been thoroughly verified by
executing the ISR mission using autonomous ground vehicles prior to the testing
on UAVs, and also through an evaluation of a variety of control strategies using
real aircraft hardware and emulated sensor input provided by a sophisticated
hardware-in-the-loop simulator engine. The ability to reuse these software com-
ponents for other tasks is a definite advantage, and has already proved useful in
the context of senior design projects being developed by US Air Force Academy
cadets. In the end, the event-driven approach made it possible to meet the time
requirements for the software deliverables and to satisfy the practical constraints
of this project. The use of the sophisticated Qt programming framework is what
enabled a small research and development team to write, test, and experimen-
tally validate over 43,000 lines of cross-platform C, C++, and MATLAB code
in less than six months.

This experience supports the conclusion that the event-driven software de-
sign approach, combined with the support of the Qt programming framework,
is an extremely effective and practical way to design a distributed network of
intelligent autonomous agents. Encapsulation of the decision algorithms inside
isolated modules is a straightforward and effective approach to reducing system
debugging time. Diligent and consistent separation of system functionality, along
with various data sources, allows for frequent reuse of existing functional com-
ponents, which is highly conducive to concurrent development of the software in
a team-based environment.

However, in order to realize these advantages, one has to sacrifice some
of the determinism in the system. It is possible that the lack of a linear execution
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algorithm for all of the sub-systems in this complex system may present a chal-
lenge when trying to analyze and document the system. Because of the prac-
tical restriction and consequent reliance on common off-the-shelf hardware and
software tools, the system occasionally demonstrated sub-optimal performance
in some of its multi-threaded components. In particular, the implementation
proved ill-suited for precise time synchronization of parallel tasks, such as ob-
taining the exact location of the aircraft at the time a sensor reading is being
taken, or enforcing strict bounds on communication delays. It is expected that
some of these timing issues can be addressed through an improved infrastructure,
such as the use of a real time operating system (RTOS). However, this design
methodology does mandate strict isolation of all on-board software components,
and this in turn prevents efficient simultaneous access to different hardware de-
vices. So, in order to gain access to the needed information, some sub-system
managers are forced to request the needed data from the other managers, and
the extra time required to service such requests occasionally degrades perfor-
mance of the system by increasing the uncertainty of a target position estimate.
In practice, however, these small variations do not seem to have a significant
impact. Therefore, it was determined that this kind of an error is an accept-
able design trade off, consistent with the long-term goals and constraints of this
project.

Another point that should be considered is the scalability of the event-driven
approach. It is well known that concurrent execution of multi-threaded software
requires a certain amount of computational overhead, such as the implementa-
tion and use of synchronization primitives, as well as an occasional duplication
of shared data to allow for more efficient processing of large data sets. In ad-
dition, one should not ignore the overhead associated with the management
of event queues and signal processing costs. While the extra time needed to
service an event is typically much smaller than a standard memory allocation
routine [9], whenever the system generates a very high number of events (e.g.,
more than a thousand timer events per second), this overhead becomes an im-
portant limiting factor for a distributed system. The cross-platform capability
of the MUAV framework is extremely beneficial in reducing the development
time; regretfully, it is also the cause of several inefficiencies that could otherwise
be eliminated using a platform-specific implementation. But it is important to
realize that these challenges are inherent in any large-scale distributed system.
The event-driven paradigm remains a promising alternative to more monolithic,
sequentially-oriented implementations. Both the laboratory and field experience
with the MUAV framework has shown that it is ideal for supporting a large
research project, especially when the final system specification may not be fi-
nalized until late in the development cycle. Due to its agile nature and its focus
on creating independent, stand-alone functional modules without explicit in-
terdependencies, the event-driven paradigm created a structured development
environment in which all of the different modules could be integrated into a
robust and efficient ISR application.
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Abstract. In this work, we propose a new data processing architecture
as well as track association and fusion algorithms to improve target clas-
sification and tracking accuracy using distributed and, possibly, legacy-
sensor platforms. We present a robust data fusion algorithm that can
incorporate target classes/types at the fusion center when receiving sen-
sor reports and/or local tracks. We aim to tackle the following technical
challenges in feature aided tracking.

– Unknown number of targets: When the fusion center does not
have any prior knowledge on the number of targets in the surveillance
area, track fusion becomes extremely difficult especially when targets
are closely spaced.

– Measurement origin uncertainty: The local tracker does not
know which measurement comes from which target and each local
tracker may provide false tracks or incorrect target types. Conse-
quently, the fusion center does not know which local tracks are from
the same target and fusion has to be made based on imperfect data
association.

– Tracks from legacy sensor systems: Existing trackers often have
very different filter designs. Some may be based on the state-of-the-
art multiple model algorithm while some on the fixed gain Kalman
filter. Thus some trackers can report both target state estimate and
the associated covariance to the fusion center, but others may only
provide target state estimate without the covariance information.
Those legacy sensor systems require special treatment in the devel-
opment of fusion algorithms.

Our track association framework can also incorporate tracks with ex-
tended feature points and kinematic constraints, which improves both
data association and tracking accuracy.

1 Introduction

In multi-sensor multi-target tracking, each sensor can have its own target state
estimate based on the local measurements. In order to form a global picture
of the existing tracks, it is necessary to associate multiple local tracks and to
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obtain the global target state estimate [15]. Under this tracking configuration,
the fusion center needs to associate and fuse local tracks on demand, which in
general is less frequent than the measurement made at each local sensor [13].
The problem of track-to-track association — a prerequisite for the fusion of
tracks — has been considered initially in the literature for tracks described by
kinematic states [5]. Recently, it has been generalized to include additional (con-
tinuous valued) feature and (discrete valued) attribute variables which pertain
to those tracks [8,10,47]. Examples of features are radar cross-section and tar-
get length. Examples of attributes are number of engines of an aircraft and
type of emitter/waveform. Target classifications include platform (e.g., fighter,
bomber, etc.), type (e.g., F-14, B-1, etc.), and class (e.g., F-14D, B-1B). A de-
tailed discussion of target features, attributes and classification can be found in
[16,17,18,19,20]. These approaches allow the search for the maximum likelihood
(ML) or maximum a posteriori (MAP) association. Feature-aided track associ-
ation was presented in [38,36,37,15]. A comprehensive procedure for incorpora-
tion of attributes and their possible dependence on the features was presented
in [45,26,25] and shown to be amenable to obtain the MAP association of tracks
from two sensors using linear programming. Feature aided tracking (FAT) has
been studied using belief filter [9] and interacting multiple model approach [44].
Classification-aided tracking with measurement-to-track association via multi-
dimensional assignment (MDA) was discussed in [4]. However, these approaches
can not handle the case where the number of targets is unknown.

We will present the data processing architecture as well as track association
and fusion algorithms for improved target classification and tracking accuracy
using both kinematic and non-kinematic sensory data from distributed and,
possibly, legacy-sensor platforms. In addition, our robust data fusion algorithm
can incorporate target classes/types at the fusion center when receiving sensor
reports and/or local tracks. Figure 1 shows the data processing flowchart of the
track association and track fusion algorithms that can operate with different
types of local trackers. Note that track fusion has to operate under imperfect
track association where it is crucial to provide accurate assessment of the fused
target state estimate.

We aim to address the following technical challenges in feature aided tracking.
(i) Unknown number of targets: When the fusion center does not have any prior
knowledge on the number of targets in the surveillance area, track fusion becomes
extremely difficult especially when targets are closely spaced. (ii) Measurement
origin uncertainty: The local tracker does not know which measurement comes
from which target and each local tracker may provide false tracks or incorrect
target types. Consequently, the fusion center does not know which local tracks
are from the same target and fusion has to be made based on imperfect data
association. It is generally believed that the data association is more challenging
at the measurement level than at the track level. However, a systematic proce-
dure to quantify the performance loss due to measurement origin uncertainty
for feature aided track fusion is of great need. (iii) Tracks from legacy sensor
systems: Existing trackers often have very different filter designs. Some may be
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Fig. 1. Data processing flowchart of track association and fusion among different types
of local tracks

based on state-of-the-art multiple model algorithms while others on the fixed
gain Kalman filter. Thus some trackers can report both target state estimate
and the associated covariance to the fusion center, but others may only provide
target state estimate without the covariance information. Those legacy sensor
systems require special treatment in the development of an estimation fusion
algorithm [46].

The rest of the chapter is organized as follows. Section 2 formulates the track
association problem of testing whether multiple tracks are from the same tar-
get using kinematic and feature/classification information. Section 3 presents
the general track association problem and its efficient multiframe assignment
solution. Section 4 extends the track association problem to the cases where
extended feature points are available for each track. Junction matching via as-
signment and convex programming is presented to efficiently find the best feature
correspondences. Section 5 presents the robust track fusion algorithm where the
cross-covariance between local estimation errors can not be precisely known. Sec-
tion 6 considers the track fusion problem where the legacy sensor systems can
only provide the local tracks without error covariance information. Section 7
provides simulation study of the proposed track association and robust track
fusion algorithms. Concluding summaries are given in Section 8.

2 Association of Multiple Tracks to a Single Target

Consider the problem of associating M local tracks from M local sensor sys-
tems. Each tracker provides the local target state estimate and possible target
recognition or classification on the ID information. We are interested in testing
whether these M local tracks are from the same target. To simplify the analysis,
we first consider the case of testing two hypotheses, namely, all local tracks are
from the same target vs. all local tracks are from different targets.
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2.1 Track Association Using Multiple Local State Estimates

We first assume that only the target state information of M local trackers is
available. Consider the hypothesis

H0 : all track estimates are from the same target.
Traditional approaches reject H0 only when the computed test statistic falls
outside a predetermined confidence region, say an interval with 95% probability.
However, there is no control of the misassociation probability since the alternative
hypothesis is unspecified. Here we consider a typical alternative given by
H1 : all track estimates are from different targets.
Clearly, it is a composite hypothesis depending on the target distribution in
a surveillance region. We will use a representative hypothesis for H1 which is
simple and the likelihood function does not depend on the target state. Denote
by xi the true state of the i-th target. If we assume the surveillance region V
is finite and its volume is V , without knowing the target density, we can assign
uniform prior to each target state, i.e., p(xi) = 1/V for i = 1, ...,M . Note that
perfect sensor registration is assumed at the fusion center. Otherwise, sensor bias
has to be removed using the technique developed in [34].

Denote by x̂i the local estimate from the i-th sensor. It is assumed that the
estimation error is Gaussian with zero mean and covariance Pi. This is often
the case when each local tracker uses a Kalman filter to recursively estimate the
target state. Under hypothesis H0 that M local state estimates are from the
same target, i.e., x1 = x2 = · · · = xM = x, we have

x̂ ∆=

⎡⎢⎢⎢⎣
x̂1
x̂2
...
x̂M

⎤⎥⎥⎥⎦ = Hx+ w ∆=

⎡⎢⎢⎢⎣
I
I
...
I

⎤⎥⎥⎥⎦ x+

⎡⎢⎢⎢⎣
w1
w2
...
wM

⎤⎥⎥⎥⎦ (1)

where w ∼ N (0,P) and P is the estimation error covariance given by

P =

⎡⎢⎢⎢⎣
P1 P12 · · · P1M

P21 P2 · · · P2M

...
. . .

...
PM1 PM2 · · · PM

⎤⎥⎥⎥⎦ . (2)

The crosscovariance Pij between the estimation errors from local trackers i and
j is due to the common process noise used in the dynamic equation [5]. The
true target state x is usually unknown. To simplify the analysis, we assume a
Gaussian prior of the true target state, i.e., x ∼ N (x0, P0). Note that the true
state is correlated with the local estimation error. The covariance between x and
the estimation error from local tracker i is obtained by

Cxwi

∆= E[xw′
i] − E[x]E[wi]′ = E[(x̂i − wi)w′

i] = −Pi (3)
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where the last equality follows the principle of orthogonality assuming the local
estimates are optimal within the linear class [6]. Thus we have

Cxw
∆= E[xw′] − E[x]E[w]′ = [−P1 − P2 · · · − PM ] . (4)

The state prediction at the fusion center can also be used as the prior if the fusion
center assumes a kinematic model to propagate the target state [32]. However,
the prediction error is also correlated with the state estimation error of each local
tracker. Finding the exact crosscovariance between the prediction error from the
fusion center and the estimation error from a local tracker is a nontrivial issue.
Hence throughout the chapter we assume that the fusion center only associates
and fuses local track estimates without doing its own state prediction.

Note that the additive Gaussian noise assumption under H0 implies a surveil-
lance region of infinite volume which violates the assumption underH1. However,
a truncation of a normal density over V requires additional computation which
makes the resulting likelihood function complicated. To simplify the analysis, we
further assume that the volume of the surveillance region is large enough com-
pared with the uncertainty on the target state so that the truncation probability
is small and thus negligible. Note also that V −1, while having a physical dimen-
sion in the likelihood function under H1, is really a constant whose exact value
will only scale the likelihood ratio. With the above assumptions, the likelihood
ratio between the two hypotheses can be written as

Λ(x̂) =
p(x̂|H0)
p(x̂|H1)

= VM

∫
V
N
([

x̂
x

]
;
[
Hx
x0

]
,

[
P C′

xw
Cxw P0

])
dx. (5)

If we assume that the integral is over the whole state space, then by completing
the quadratic form, we have the log-likelihood ratio given by

lnΛ(x̂) = −1
2
(x̂′P−1x̂ − x̄′P̄−1x̄) + c, (6)

where

c = M lnV − 1
2
x′0P

−1
0 x0 − 1

2
ln|2πP| − 1

2
ln|2πP0| +

1
2
ln|2πP̄ |, (7)

x̄ = Gx̂ + (I − GH)x0, (8)

P̄ = P0 − GP0G′, (9)

G = Cxx̂C
−1
x̂ , (10)

Cxx̂ = [P0 − P1 P0 − P2 · · · P0 − PM ] (11)

Cx̂ =

⎡⎢⎢⎢⎣
P0 − P1 P0 + P12 − P1 − P2 · · · P0 + P1M − P1 − PM

P0 + P21 − P2 − P1 P0 − P2 · · · P0 + P2M − P2 − PM

...
. . .

...
P0 + PM1 − PM − P1 P0 + PM2 − PM − P2 · · · P0 − PM

⎤⎥⎥⎥⎦ .
(12)
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Note that if H0 is accepted, then the fused target state estimate is (8) with
the error covariance (9). Equations (8)–(9) are the linear minimum mean square
error (LMMSE) estimator for the problem (1) [33]. The log-likelihood ratio test
statistic is a quadratic function of x̂.

If prior the mean x0 is unavailable, then we can not use (6) to test the two
hypotheses. In this case, we assume that the target state has a noninformative
prior, i.e., p(x) = 1

V , |V | → ∞, and thus P−1
0 → 0. We further assume that the

state and local estimation errors are uncorrelated, i.e., Cxw = 0. With the above
assumptions, the likelihood ratio between the two hypotheses can be written as

Λ∗(x̂) =
p(x̂|H0)
p(x̂|H1)

= VM−1
∫
V
N (x̂;Hx,P)dx, (13)

and by completing the quadratic form, the log-likelihood ratio becomes

lnΛ∗(x̂) = −1
2
x̂′[P−1 − P−1H(H ′P−1H)−1H ′P−1]x̂ + c∗, (14)

where

c∗ = (M − 1)lnV − 1
2
ln|2πP| + 1

2
ln|2π(H ′P−1H)−1|. (15)

If H0 is accepted, the fused state estimate is

x̄LS = (H ′P−1H)−1H ′P−1x̂, (16)

with the covariance matrix given by

P̄LS = (H ′P−1H)−1. (17)

It is the weighted least squares solution to the problem

min
x

(x̂ −Hx)′P−1(x̂ −Hx). (18)

The above fusion rule is also optimal in the maximum likelihood sense [12] and
we will further discuss this in Section 5.

Another important point is that the log-likelihood ratio test statistic (13) can
also be written as

lnΛ∗(x̂) = −1
2
(x̂ −Hx̄LS)′P−1(x̂ −Hx̄LS) + c∗. (19)

Thus the hypothesis testing becomes a goodness-of-fit term being compared with
a threshold. Under H0, the test statistic

Tx(x̂) = (x̂ −Hx̄LS)′P−1(x̂ −Hx̄LS) (20)

has a chi-square distribution with (M − 1)nx degrees of freedom where nx is the
dimension of target state x. Let K be an (M −1)nx ×Mnx matrix with full row
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rank that satisfies KH = 0. Denoting ŷ = Kx̂, then, for example, we have the
differences between the local track estimates given by

ŷ ∆=

⎡⎢⎢⎣
x̂2 − x̂1
x̂3 − x̂1

· · ·
x̂M − x̂1

⎤⎥⎥⎦ = Kx̂, (21)

when K is chosen as

K =

⎡⎢⎢⎢⎣
−I I 0 · · · 0
−I 0 I · · · 0
... · · ·

...
−I 0 0 · · · I

⎤⎥⎥⎥⎦ . (22)

Under H1 we have ŷ ∼ N (0,Pŷ) where

Pŷ =

⎡⎢⎢⎢⎣
P1 + P2 − P21 − P12 P1 + P23 − P21 − P13 · · · P1 + P2M − P21 − P1M

P1 + P32 − P31 − P12 P1 + P3 − P31 − P13 · · · P1 + PM3 − P31 − P1M

· · ·
. . . · · ·

P1 + PM2 − PM1 − P12 P1 + PM3 − PM1 − P13 · · · P1 + PM − PM1 − P1M

⎤⎥⎥⎥⎦ .

(23)

The test statistic Ty(ŷ) = ŷ′(Pŷ)−1ŷ is also chi-square distributed with (M −
1)nx degrees of freedom which was also rigorously derived in [3]. Next, we will
show that all tests based on ŷ from such a linear transform are equivalent no
matter which local track estimate is used to compute the differences.

Theorem: For any (M −1)nx ×Mnx matrix K with full row rank that satisfies
KH = 0, the test statistic Ty(ŷ) is chi-square distributed with (M−1)nx degrees
of freedom and Ty(ŷ) = Tx(x̂).

Proof: By definition we have

Ty(ŷ) = ŷ′(Pŷ)−1ŷ = x̂′K′(KPK′)−1Kx̂. (24)

Denote by

Q ∆= K′(KPK′)−1K, (25)

and
R ∆= P−1 − P−1H(HP−1H ′)−1H ′P−1. (26)

It is easy to verify that
QH = RH = 0, (27)

and
KPQ = KPR = K. (28)

Thus
KP(Q − R)PK′ = 0. (29)
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Since KP, Q and R have the same rank and both Q and R are in the null space
of H , we have Q = R and thus

Tx(x̂) = x̂′Rx̂ = x̂′Qx̂ = Ty(ŷ). QED

The above result tells us that the association of multiple local tracks amounts
to a chi-square test where the uniform prior is assumed for the target state in the
Bayesian formulation. The association of two local tracks in [5] is a special case
of the above general test. When the noninformative prior assumption is violated,
the popularly used chi-square test (14) will no longer be Bayesian optimal.

2.2 Track Association with Classification Information

This subsection discusses the track association of a single target with classi-
fication information which is assumed to be independent of the target state
estimates. The target classification information, e.g., target identity, if available
from the local tracker, should be used for the hypothesis testing to determine
whether M local estimates are from the same target. It does not help in track
fusion once a decision is made. We assume that each local tracker provides the
probabilities of a target belonging to a finite number of classes which are inde-
pendent of the target state estimate. Let L be the total number of classes and
pi = [pi1 ... piL]T be the output of the classifier from the i-th local tracker. The
output of the classifier is a vector of the posterior probabilities, which is de-
scribed as the classification vector [43] — the probability that the target belongs
to a particular class conditioned on all measurements up to the current time.

GivenM local classification outputs p1, ...,pM , the two hypotheses being con-
sidered for possible track association are H0 : all track estimates are from the
same target and H1 : all track estimates are from different targets. We are in-
terested in obtaining the joint likelihood functions Λ(p1, ...,pM |Hi) (i = 0, 1)
or, in this case, the probabilities P (p1, ...,pM |Hi) (i = 0, 1) which requires the
knowledge on the dependency among local classifiers. Characterizing the depen-
dency among local classifiers is very challenging especially when the classification
algorithms at local sensors are different. Next, we highlight the solution in the
simplest case and leave the general situation regarding the fusion of classifier out-
puts for future research. In the following it is assumed that (a) the classification
errors are independent among the local classifiers and (b) the local estimates are
from the same target only when they belong to the same class. With the above
assumptions and equal prior probabilities for the two hypotheses, we have

P (p1, ...,pM |H0) =
L∑

j=1

M∏
i=1

pij , (30)

P (p1, ...,pM |H1) = 1 − P (p1, ...,pM |H0). (31)

An example of two-classifier and two-class case is given in Table 1 under the
simplified assumptions. It is clear that accurate local classifiers can improve the
discrimination capability between the two hypotheses.
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Table 1. Common and different origin probabilities based on local classifiers

Case 1 Case 2 Case 3 Case 4
p1 [0.5 0.5] [0.8 0.2] [0.2 0.8] [0.9 0.1]
p2 [0.2 0.8] [0.2 0.8] [0.9 0.1] [0.9 0.1]

P (p1,p2|H0) 0.5 0.32 0.26 0.82
P (p1,p2|H1) 0.5 0.68 0.74 0.18

Under the conditional independence assumption between the state and clas-
sification output, the log-likelihood ratio can be expressed as

lnΛ∗(x̂,p1, ...,pM ) = ln
[

p(x̂|H0)
p(x̂|H1)

P (p1,...,pM |H0)
P (p1,...,pM |H1)

]
= − 1

2 x̂
′[P−1 − P−1H(H ′P−1H)−1H ′P−1]x̂

+lnP (p1,...,pM |H0)
P (p1,...,pM |H1) + c∗

(32)

where, with the uniform prior of the target state, the constant term c∗ is given
in (15). Since P (p1, ...,pM |H0) and P (p1, ...,pM |H1) are in general data depen-
dent, the test statistic is no longer chi-square distributed.

Remark 1: The classification results from each local classifier can be consid-
ered as “priors” in the test (32) without the target state information and would
replace any existing priors or naive priors as classification information is re-
ceived. The derivation of (30)–(31) relies on the deterministic relation between
target class and its origin. It can be relaxed provided the fusion center has the
knowledge of the confusion matrix Ci = [cinm] of local classifiers i where

cinm
∆= P (declare class m|true class is n) n = 1, . . . , L, m = 1, . . . , L (33)

are the elements of Ci (i = 1, ...,M).

2.3 A Numerical Example

We want to study the effectiveness of the track association test for a different
number of local sensors with various cross correlation coefficients. To make it
simple, we assume that the local estimates are scalars with unknown means and
unit variances. The cross correlation coefficients between two local estimates is
denoted by ρ. We choose various values of ρ, namely, 0, 0.1, 0.3, 0.5, when the
local tracks correspond to the same target. The hypothesis H0 is that all local
estimates correspond to the same target with its location uniformly distributed
within the surveillance region of length V = 10. The hypothesis H1 is that all
local estimates correspond to different targets with their locations uniformly
distributed within the surveillance region. In this case, the separation of two
targets is random and it depends on the volume of the surveillance region. No
prior knowledge is assumed in this case. The test based on (24) is used to compute
the receiver operating characteristic (ROC) curves [31] for the cases of testing
whether N local tracks correspond to the same target. In a ROC curve, the
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Fig. 2. ROC curves for the track association test with a different number of local
estimates and various cross correlation coefficients

probability of false alarm PFA refers to the probability of declaring H1 when H0
is true while the probability of detection PD refers to the probability of declaring
H1 when H1 is true. Figure 2 shows the ROC curves for the track association test
with 2, 3, and 4 local track estimates and various cross correlation coefficients.
1000 random realizations are used for each hypothesis with fixed ρ and N to
compute these curves. We can see that the test power increases as N increases for
fixed V since theH0 hypothesis becomes more distinguishable when more targets
are uniformly distributed within the surveillance region. The cross correlation
between the local track estimates is beneficial in terms of the test power under
a given false alarm rate for all cases. As ρ increases, the alternative hypothesis
becomes more distinguishable which improves the decision accuracy. However,
once H0 is declared, the variance of the fused track estimate becomes larger. We
defer the simulation study using realistic tracking scenarios to Section 7.

3 General Track Association Via Multidimensional
Assignment

We want to consider the association of local tracks to more than one target. The
problem can be formulated as finding the best hypothesis regarding the track-
to-target correspondence which has been studied extensively in the framework
of multiple hypothesis tracking (MHT) [7]. A promising approach to solve the
MHT problem is to treat it as a multidimensional assignment problem [2]. Here



Robust Track Association and Fusion with Extended Feature Matching 329

we first present the assignment formulation for track-to-track association from
two sensors and then extend the formulation to the multiple sensor case. Assume
sensor 1 has a list of N1 tracks and sensor 2 has a list of N2 tracks. Tracks from
each local sensor are considered as coming from different targets. One wants
to find all common origin tracks among the local sensors. Define the binary
assignment variable χij as

χij =
{

1 track i from sensor 1 and track j from sensor 2 are from the same target,
0 otherwise.

(34)

Denote by λij the likelihood ratio of track i from sensor 1 and track j from
sensor 2 being from the same target vs. from different targets which is defined
as in (5) with M=2. Note that one can not directly compare two likelihood
functions with different dimensions. In order to formulate the joint hypothesis
for tracks corresponding to multiple targets, the log-likelihood ratio is used in the
assignment cost function, which is a dimensionless quantity. If we assume that the
track association events among different track pairs are independent, then the 2-
D assignment formulation finds the most likely (joint) track-to-target association
hypothesis by solving the following constrained optimization problem.

min
χij

N1∑
i=1

N2∑
j=1

cijχij (35)

subject to
N1∑
i=1

χij ≤ 1, j = 1, ..., N2 (36)

i.e., each local track from sensor 2 can be associated with at most one target;

N2∑
j=1

χij ≤ 1, i = 1, ..., N1 (37)

i.e., each local track from sensor 1 can be associated with at most one target;

χij ∈ {0, 1}, i = 1, ..., N1, j = 1, ..., N2 (38)

i.e., the association is binary; the cost is

cij = −lnλij . (39)

As shown in [14] this problem can be solved optimally using linear programming
by relaxing the integer constraint. Efficient algorithms such as the modified auc-
tion algorithm can also be applied to the above 2-D assignment problem [30,2].

When local tracks from multiple sensors need to be associated with multiple
targets, a multidimensional assignment formulation is a natural extension of the
2-D assignment case. Assume there are S local sensors (S ≥ 3) where sensor Si
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provides a list of Ni tracks to the fusion center. Define the binary assignment
variable χi1i2...iS as

χi1i2...iS =
{

1 tracks i1, i2, ..., iS are from the same target,
0 otherwise. (40)

We allow a subset of the set of indices {i1, i2, ..., iS} to be zero in the assignment
variable meaning that no local track from a particular list corresponds the target
being considered. Denote by λi1i2...iS the likelihood ratio of the local tracks i1,
i2, ..., iS being from the same target vs. from different targets. If we assume that
there are M nonzero indices corresponding to the local tracks from M sensors,
then λi1i2...iS can be computed using (5). The S-D assignment finds the most
likely hypothesis by solving the following integer program.

min
χi1i2...iS

N1∑
i1=1

N2∑
i2=1

· · ·
NS∑

iS=1

ci1i2...iSχi1i2...iS (41)

subject to ∑N2
i2=0 · · ·

∑NS

iS=0 χji2...iS ≤ 1, j = 1, ..., N1∑N1
i1=0

∑N3
i3=0 · · ·

∑NS

iS=0 χi1ji3...iS ≤ 1, j = 1, ..., N2
...∑N1

i1=0 · · ·
∑NS−1

iS−1=0 χi1i2...iS−1j ≤ 1, j = 1, ..., NS

(42)

i.e., each local track can be assigned to at most one target;

χi1i2...iS ∈ {0, 1}, i1 = 0, 1, ..., N1, i2 = 0, 1, ..., N2, · · · , iS = 0, 1, ..., NS (43)

i.e., the track-to-target association is binary. In (41) the assignment cost is

ci1i2...iS = −lnλi1i2...iS (44)

if there are at least two nonzero indices within the set {i1, i2, ..., iS}. Otherwise,
we let ci1i2...iS = 0. The above integer program is in general NP-hard [27] for
S ≥ 3. However, efficient algorithms exist to find a suboptimal solution via
Lagrangian relaxation (see, e.g., [2,14]).

The solution of the above S-D assignment problem is the most likely joint
hypothesis and it can be used to fuse the local track estimates being declared
as from the same target. While this hypothesis is the most likely one, if the
second most likely joint hypothesis has a cost close to the first one, the use of
the best solution alone is potentially misleading. In such a case the next-to-
best hypothesis should also be considered. In general, an algorithm that finds
the top M solutions to the S-D assignment problem is needed for a composite
display of the track estimates [1]. A practical approach to obtain the M -best
solutions to the S-D assignment problem can be found in [41]. Its computational
load is considerably heavier than finding only the single best solution of the
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S-D assignment problem. Since this approach depends on solving a set of S-D
assignment subproblems, it yields suboptimal solutions for S ≥ 3. The number
of hypotheses being considered depends on the ratio of the total cost of the
M -th most likely and the most likely one. In practice, the hypotheses with
individual cost less than 1% of the most likely hypothesis are dropped from the
list of the solutions, although in some application domains these may want to
be maintained [42,30].

Next, we present a way to estimate the posterior probability of each hypothesis
from the top M most likely solutions. Denote by {Θl}M

l=1 the M -best (top-M)
hypotheses corresponding to the solutions of the S-D assignment problem (41)
and by {Cl}M

l=1 the costs associated with these solutions, i.e.,

Cl =
N1∑

i1=0

N2∑
i2=0

· · ·
NS∑

iN=0

ci1i2...iNχ
l
i1i2...iN

, (45)

where χl
i1i2...iN

is determined by the joint hypothesis Θl. Assuming equal priors
and the true track-to-target correspondence Θ belongs to one of the M -best
hypotheses, then the probability that Θl is the true sequences of the joint track-
to-target associations is

P (Θl|Θ ∈ {Cl}M
l=1) =

e−Cl∑M
n=1 e

−Cn
. (46)

Note that those joint hypotheses with small probabilities are ignored due to the
exponential growth of the total number of feasible associations.

3.1 A Numerical Example (Continued)

We continue using the example presented in Section 2.3 to evaluate the track
association accuracy for the multiple target case. We assume that the local tracks
are scalars with unknown means and unit variances. The correlation coefficients
between two local track estimates is 0.1 when the local tracks correspond to
the same target. When the local tracks correspond to different targets, the true
target locations are uniformly distributed within the surveillance region (−5, 5).
We consider the association of two local tracks from each sensor and evaluate
the probability of finding the correct hypothesis using the assignment algorithm.
The hypotheses being considered are

H1 : Each sensor has two tracks from the same two targets with their locations
at −3 and 2, respectively.
H2 : Each sensor has one track from the same target with its location at −3 and
the other track from different targets.
H3 : Each sensor has two tracks and all tracks correspond to different targets.

For each hypothesis with S local sensors, we generate 5000 random scenarios
and estimate the probability of making a correct decision as shown in Table 2. We
can see the performance degradation of hypotheses H1 and H3 compared with
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Table 2. Probability of declaring the correct hypothesis for two target association
problem

S P (“H1”|H1) P (“H2”|H2) P (“H3”|H3)
2 0.42 0.38 0.74
3 0.66 0.32 0.82
4 0.79 0.28 0.88

the ROC curves from a single target test in Figure 2. As the number of sensors
increases, the performance improves for hypotheses H1 and H3 but degrades
for hypothesis H2. Note that H2 is more difficult to declare than the other two
hypotheses due to the the limited separation among different targets. The issue
becomes more critical as the number of sensors increases. For the scenario being
considered here, a single best solution is misleading since the probability of its
correctness is fairly low especially under H2.

4 Improved Track Association Via Extended Junction
Matching

In principle, matching the observed feature points to the predicted ones can be
done in a “pointwise” manner by using the well established data association tech-
niques in the multiple target tracking of “point” targets, e.g., joint probability
data association (JPDA), multiple hypothesis tracking (MHT) [7], or multiframe
assignment algorithm [40]. However, when extended feature points are available
for each track such as those from image based trackers, it is highly beneficial to
solve the data association problem using junctions rather than individual feature
points since by doing global pointwise association, the key information carried
through the topology of a junction is largely ignored. In addition, the size of the
association problem can be significantly reduced at the junction level compared
with the pointwise assignment. In the following, we formulate the junction asso-
ciation algorithm by employing two efficient optimization frameworks, namely,
assignment and convex programming.

4.1 Measuring Similarity between Junctions

Junction association requires a well defined similarity measure between two junc-
tions (e.g., from a predicted and observed frames, respectively). One needs to
construct a meaningful and appropriate measure of closeness between two junc-
tions which utilizes the information carried through the topology and geometry
to the full extent.

In computer vision, the closeness between two features, being characterized
here as two sets of points, is usually measured by the Hausdorff set distance
or its generalizations. Numerous similarity metrics based on Hausdorff distance
have been proposed to handle outliers, occlusions, or other uncertainties arising
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in image matching [28], [21]. For two given junctions J̄ = {η̄0; η̄1, . . . , η̄n̄} and
J = {η0; η1, . . . , ηn} the Hausdorff distance H(J̄ , J) would be defined as

H(J̄ , J) = max(h(J̄ , J), h(J, J̄)) (47)

where

h(J̄ , J) = max0≤ı̄≤n̄ min0≤i≤n ||η̄ı̄ − ηi|| (48)

and || · || is some vector norm. It measures the degree of mismatch between the
point-sets J̄ and J by the distance of the point in J̄ that is farthest away from
any point in J and vice versa. This implies that every point of J is within a
distance H(J̄ , J) from some point of J̄ and vice versa, but no explicit one-to-
one matching is obtained even if n̄ = n, e.g., many points of J can be close to
the same point of J̄ . In addition, the Hausdorff distance also ignores important
information carried in junction topology (i.e., the connections between the center
location and the end-points) and junction geometry (e.g., the orientation of the
junction segments). Apparently, direct usage of the Hausdorff distance is not the
best choice for measuring the closeness of junctions.

As a measure of the closeness between two junctions J̄ and J we define the
following distance metric

d(J̄ , J) = ‖η̄0 − η0‖ +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
n̄ min

{j1,...,jn̄}⊆{1,2,...,n}

n̄∑
i=1

φiji ‖η̄i − ηji‖ ifn̄ ≤ n

1
n min

{i1,...,in}⊂{1,2,...,n̄}

n∑
j=1

φij i

∥∥η̄ij − ηj

∥∥ ifn̄ > n

(49)

where || · || is a vector norm, and φ = φ(	 (η̄ − η̄0, η − η0)) is a weighting factor.
The proposed measure is tailored to the junction structure and inherently

based on the idea of one-to-one point-wise assignment, and accounts for both the
junction topology (links between center and end-points) and junction geometry
(orientation of the junction segments). Next we discuss some details and provide
a justification of the proposed junction closeness measure (49).

The vector norm || · || can be the Euclidean 2-norm. However, since the pre-
diction and observation are subject to random errors, a better alternative is to
measure the statistical distance between two points (vectors) η̄ and η. If the
prediction and observation covariances, Sη̄ and Sη, respectively, are available,
we use the Mahalanobis distance [35]

‖η̄ − η‖ = (η̄ − η)′S−1
η̄η (η̄ − η) (50)

where Sη̄η = Sη̄ + Sη. Typically, as a result of the junction detection [29] the
observation covariance Sη of an end-point η is much “larger” than that of the
center-point η0 (i.e., Sη0). Using the statistical norm takes this effect into account
by giving more “trust” to the distance between center points.

The weighting factor φ = φ(	 (η̄− η̄0, η− η0)) of the distance ‖η̄ − η‖ between
two endpoints η̄ and η is a design parameter. It is introduced to account for
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the orientation of junction segments [η̄0, η̄] and [η0, η] and is a function of the
angle α = 	 (η̄ − η̄0, η − η0) between vectors η̄ − η̄0 and η − η0. The idea is to
monotonically increase the point distance ‖η̄ − η‖ as α increases and vise versa.
This provides a highly desirable property of the modified distance φ|| · || – once
the center η0 of J is assigned to the center η̄0 of J̄ (see (49)) then, the smaller
the angular deviation α of a junction segment [η0, η] of J from [η̄0, η̄] is, the
closer [η0, η] to [η̄0, η̄] is. In other words, matchings η ←→ η̄ with large angular
deviations α are penalized by assigning a large distance φ(α)||η̄−η||. If two points
η′ and η′′ of J are at about the same distance from η̄, i.e., ‖η̄ − η′‖ ≈ ‖η̄ − η′′‖,
then η′ will be considered to be closer to η̄ than η′′ if and only if it is directionally
closer to η̄, i.e., if α′ = 	 (η̄ − η̄0, η

′ − η0) < α′′ = 	 (η̄ − η̄0, η
′′ − η0). A linear

penalty function in |α| with the desired properties has the form

φ(α) = c+ b
|α|
π
, α ∈ [−π, π] (51)

where b > 0 and c > 0 are parameter to be specified by the designer. For exam-
ple if c = b = 1 then φ(0) ‖η̄ − η‖ = ‖η̄ − η‖, φ(±π

2 ) ‖η̄ − η‖ = 1.5 ‖η̄ − η‖, and
φ(±π) ‖η̄ − η‖ = 2 ‖η̄ − η‖. Computing α explicitly could be computationally
burdensome in some applications and can be avoided by using the easily com-
putable cos(α) instead. Since |α|

π ≈ 1
2 [1 − cos(α)] another definition of weighting

function which has a behavior quite similar to that of (51) is

φ(α) = c+
b

2
[1 − cos(α)] , (52)

with

cos(α) =
(η̄ − η̄0) · (η′ − η0)
||η̄ − η̄0|| ||η′ − η0||

,

where · is the dot product and || · || is the Euclidean norm.
The min-operation in (49) amounts to determination of the best pointwise

assignment, with respect to the weighted Mahalanobis distances φ|| · || [35] used
as the assignment cost between the set of end-points of J̄ (or J) and a subset
of end-points of J (or J̄ ) with the same cardinality. Thus, the computation of
the distance (49) is itself equivalent to solving a 2-D point assignment problem.
Note that in practical applications each junction usually has a limited number of
end-points (say a maximum of 5) and the min-operation in (49) can be feasibly
computed by brute-force enumeration.

Note that the normalization factor 1/n̄ (resp. 1/n) in (49) indicates the aver-
age (arithmetic mean) weighted distance φ|| · || of the optimal point assignment
being used to form the distance d(J̄ , J) instead of the sum of all weighted dis-
tances. This makes d(J̄ , J) invariant of the rank (number of endpoints) of J .
Otherwise, a junction with lower rank may have smaller distance in junction
matching as compared to a junction with higher ranks even if the latter has
better pointwise match than the former.
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4.2 Junction Association Via 2-D Assignment

We first consider the junction association as the matching problem between two
frames. After the junction detection module the observation of an object is rep-
resented in the two dimensional measurement space (camera frame) as a set
of junctions with J (j) = {η(j)

0 ; η(j)
1 , . . . , η

(j)
nj }, j = 0, 1, . . . ,M where η(j)

0 and
η
(j)
1 , . . . , η

(j)
nj denote respectively the location and end-points of the j-th junction.

It is assumed that the state estimation module provides a set of predicted junc-
tions with J̄ (i) = {η̄(i)

0 ; η̄(i)
1 , . . . , η̄

(i)
n̄i

}, i = 0, 1, . . . , M̄ based on the state estimate
at the previous time, the target motion model, and possibly occlusion and ap-
pearance models. The association of the observed and predicted junction sets is
described as the one-to-one mapping through the assignment variables

χij =
{

1 ifJ (j) ←→ J̄ (i),
0 otherwise,

(53)

for j = 0, 1, . . . ,M, i = 0, 1, . . . , M̄ . Note that χ0j means that the observed
junction J (j) is not associated with any of the predicted junctions J̄ (i), i =
1, . . . , M̄ (e.g., it is either a newborn junction or a false detection) and χi0
means that the predicted junctions J̄ (i) is not associated with any of the observed
junctions J (j), j = 1, . . . ,M (as a result of occlusion or missed detection in the
current frame).

Let cij be the cost of the association between J (j) and J̄ (i), j = 0, 1, . . . ,M,
i = 0, 1, . . . , M̄ then the junction association problem can be cast into the fol-
lowing two dimensional (2-D) assignment problem

min
χij

M̄∑
i=0

M∑
j=0

cijχij (54)

subject to ∑M

j=0
χij = 1, i = 1, . . . , M̄ , (55)∑M̄

i=0
χij = 1, j = 1, . . . ,M, (56)

χij ∈ {0, 1} (57)

The 2-D assignment problem (54)-(57) can be solved efficiently by a number of
algorithms such as the modified auction algorithm, Jonker-Volgenant-Castanon
(JVC) algorithm and the signature methods, which have been quite successful
for multiple “point” target tracking [40]. Here we implemented the modified
auction algorithm summarized as below.

The dual of the above 2-D assignment problem can be written as

min
λi,µj

⎧⎨⎩
M̄∑
i=1

λi +
M∑

j=1

µj

⎫⎬⎭ (58)
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subject to

λi + μj ≥ −cij , i = 1, ..., M̄ , j = 1, ..., M (59)
λi ≥ −ci0, i = 1, ..., M̄ (60)

where λi and μj are Lagrangian multipliers. The dual problem is equivalent to

min
μj

⎧⎨⎩
M̄∑
i=1

max
{

max
j

[−cij − μj ], −ci0

}
+

M∑
j=1

μj

⎫⎬⎭ (61)

Clearly, we can define the cost for 2-D junction matching problem (54 55), ( ),
56( ) as

cij = d(J̄ (i), J (j)) for i = 1, . . . , M̄ , j = 1, . . . , M. (62)

Unfortunately, the costs c0j and ci0 can not be expressed using a distance con-
cept. Note that c0j models the event that a new junction, namely, J (j), appears
in the current data frame and ci0 models the event that an existing junction,
namely, J̄ (i), disappears in the current data frame. The probabilistic models of
these events depend on the sensor characteristics, junction detection algorithm
(e.g., PD and Pfa of a junction location/endpoint), possible scene occlusion,
object geometry, which requires a lot of prior information.

4.3 Junction Association Via Convex Programming

Two-Frame Matching. As a better alternative to (54), we propose the overall
cost for matching between two junction sets given by

M̄∑
i=1

M∏
j=1

d(J̄ (i), J (j))
[mink �=i d(J̄ (k), J (j))minl�=j d(J̄ (i), J (l))]

1
2

· χij , (63)

which needs to be minimized subject to the one-to-one matching constraints
(55)–(56). This feature matching formulation not only considers the distance
between matched junctions but also those junctions close to the matched one.
In principle, a matched junction without strong competitors is preferred. Note
that the above constrained optimization problem is no longer a 2-D assignment
problem since the objective function is not the sum of the individual assignment
costs.

Next, we treat the junction matching problem in a general convex program-
ming framework which can handle an arbitrary twice differentiable objective
function. Denote by q = vec({χij}). By relaxing the integer constraint, the
objective function f(q) becomes continuous with q which takes a value in a
bounded set Q = {q ∈ RM̄M : 0 ≤ qi ≤ 1, ∀i}. Note that f(q) may contain
several local minima which makes it difficult for a gradient descent algorithm to
find the global minimum. If we assume that f(q) is twice differentiable and each
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entry of the Hessian matrix of F (q) is continuous (denoted by Hf
ij(q)), then

there exists a set of finite values di given by

di ≥ 1
2

⎡⎣max
q∈Q

M̄M∑
j=1,j 	=i

|Hf
ij(q)| + max

q∈Q
|Hf

ii(q)|

⎤⎦ . (64)

We use {di} to construct a new objective function f0 given by

f0(q) = f(q) +
M̄M∑
i=1

diq
2
i −

M̄M∑
i=1

diqi. (65)

The new objective function has the property that

Hf0
ii (q) >

M̄M∑
j=1,j 	=i

|Hf0
ij |, ∀i, (66)

which imposes a positive strictly dominant diagonal to the Hessian matrix of
f0(q). A function with strictly positive diagonally dominant matrix is strictly
positive definite. Hence f0(q) is strictly convex for q ∈ Q. Note that for any
integer solution q∗, we have f0(q∗) = f(q∗). Therefore, the optimal solution to
f0(q), if having all integer elements, is also the global minimum of f(q∗).

By changing the objective function to f0(q), we can write the new optimiza-
tion problem as follows.

q∗ = arg min
q
f0(q) = argmin

q
f(q) +

M̄M∑
i=1

diq
2
i −

M̄M∑
i=1

diqi (67)

subject to
Aq ≤ b, 0 ≤ q ≤ 1 (68)

where

A =
[
1′

1×M ⊗ IM̄×M̄

1′
1×M̄

⊗ IM×M

]
, b =

[
1M̄×1
1M×1

]
, (69)

and ⊗ is the Kronecker product. It can be shown that A is totally unimodular
and relaxation of integer constraint on q does not change the minimum of the
original problem [11].

Extension to Multiframe Feature Matching. We want to extend the con-
vex programming formulation to the case of multiframe junction association
which can be solved in polynomial time. Assume that we have a set X con-
taining N predicted junctions and measured junction sets Y1, ..., YS from S
frames. Denote by P = [P1 ... PS ] the association matrix where Pi denotes
the correspondence matrix between X and Yi as in the 2-D matching case.
Let qi = vec(Pi) and q = [qT

1 ... qT
S ]T . For frame i, the constraints on qi is

Aiqi ≤ bi, i.e., any track in X can be assigned to at most one measurement in
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Yi and any measurement in Yi can be assigned to at most one track in X. Then
the multiframe junction matching problem can be formulated as the following
constrained optimization problem.

q∗ = arg min
q
f(X,Y1, ...,YS ,q) (70)

subject to
Aq ≤ b, 0 ≤ q ≤ 1, (71)

where

A =

⎡⎢⎣A1
. . .

AS

⎤⎥⎦ , b =

⎡⎣b1
· · ·
bs

⎤⎦ . (72)

We assume the objective function is continuous in q and twice differentiable.
Using similar technique as in the two frame case, we can construct a new objec-
tive function f0(q) which is strictly convex and has a unique global minimum
q∗ coincides with (70). We have shown that the constraint matrix Ai is totally
unimodular for i = 1, ..., S. It can be shown that the block diagonal matrix A
is totally unimodular since the row selection only applies to a submatrix of A.
Thus the optimal solution given by (70) will not change by relaxing the integer
constraint on q [11].

5 Robust Track Fusion

5.1 Track Fusion as a Regularized Least Squares Problem

The local track estimates, if originating from the same target, can be fused by
the global track estimation via equations (8)–(9) which is optimal within the
linear estimators. When a noninformative prior is used for the target state at
the fusion center, equations (8)–(9) become the least squares solution (16)–(17)
which is optimal only within the class of linear unbiased estimators [33]. Note
that the least squares solution minimizes the data fitting error rather than the
mean square estimation error. This makes it possible to improve the estima-
tion accuracy by exploring biased estimators. Various modifications of the least
squares estimator have been proposed in [24,22,23]. The general guideline is that
a biased estimator can reduce the mean square error when the variance being
reduced is larger than the squared bias term. In the sequel, we present a scalar
modification of the least squares estimator, which results in a regularized track
fusion formula.

Recall the linear model for track fusion problem given in Section 2

x̂ = Hx+ w, (73)

where w ∼ N (0,P). The least squares (LS) solution to the problem minx(x̂ −
Hx)′P−1(x̂−Hx) is given by (16)–(17). To find an estimator that can reduce the
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mean square estimation error of the LS solution, we introduce a multiplicative
scalar bias term b and assume the regularized estimator (RE) has the form

x̂RE = bx̂LS. (74)

The RE class includes shrunken estimators, an example of which is the well-
known James-Stein estimator [24]. To find the optimal bias, we want to solve
the following problem which directly minimizes the trace of the mean square
error matrix.

min
b
E[(bx̂LS − x)′(bx̂LS − x)] (75)

The solution is given by

b =
E[(x̂LS)′x]
E[(x̂LS)′x̂LS]

, (76)

where, after some algebraic manipulations, the two terms in the numerator and
denominator are

E[(x̂LS)′x] = tr[xx′] = ||x||2, (77)

E[(x̂LS)′x̂LS] = tr[xx′ + (H ′P−1H)−1] = ||x||2 + tr[(H ′P−1H)−1]. (78)

Thus the optimal bias is

b =
||x||2

||x||2 + tr[(H ′P−1H)−1]
. (79)

We can see that the optimal bias is always less than 1 which implies that regular-
ization can always reduce the mean square error compared with the LS solution
(b = 1). Note that the optimal bias depends on the unknown parameter x which
can be replaced by the estimate x̂LS. The resulting estimator is a nonlinear func-
tion of x̂. In practice, if we assume that x has a bounded norm, i.e., ||x||2 ≤ B,
then the bias can be chosen as

b =
B

B + tr[(H ′P−1H)−1]
, (80)

which makes the resulting regularized estimator linear. Note that the regularized
estimator with bias given by (80) also minimizes the worst case regret [23]. It
achieves the uniform Cramer-Rao lower bound under the same bounded bias
gradient for each element of x [22]. The mean square error of the regularized
estimator is

PRE = (1 − b)2xx′ + b2(H ′P−1H)−1, (81)

where the unknown state x can be replaced by its estimate. It is easy to verify
that

tr[PRE] =
||x||2tr[(H ′P−1H)−1]

||x||2 + tr[(H ′P−1H)−1]
< tr[PLS]. (82)

Note that the regularized track fusion is useful only when the noninformative
prior of the target state is used at the fusion center.
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5.2 A Numerical Example (Continued)

We continue using the example presented in Section 2.3 to compare the mean
square error of the track fusion algorithms. In this scalar track fusion problem,
we assume the true location at −3 which is somewhere in the middle of the
surveillance region with |V | = 10. We vary the correlation coefficient between
the local estimation errors and plot the mean square error (MSE) of the fused
estimate for the number of local trackers N = 2, 3, 4. Figure 3 shows the mean
square errors of the least square fusion algorithm vs. the regularized fusion with
optimal bias. We can see that the MSE gap between the LS and RE solution
increases as the cross correlation coefficient ρ increases. The gap becomes smaller
as the number of local trackers increases. For any fixed value x, the RE solution
has a large performance gain when the variance of the LS solution is large.
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Fig. 3. Mean square errors of the fused estimates using least squares and regularization
for different numbers of the local estimates for x = 3

6 Track Fusion with Legacy Track Sources

6.1 Problem Formulation

In this section the problems of track association and track fusion with legacy track
sources are formulated assuming the trackers are Kalman filters. To simplify the
discussion, we consider a one dimensional tracking example with target motion
given by a discretized continuous time white noise acceleration (DCWNA)
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model [6]. For asynchronous sensors this model should be used in order to handle
the white process noise for all values of the sampling interval consistently.

The state and measurement equations are1 for sampling interval T

x(k + 1) = Fx(k) + v(k) =
[

1 T
0 1

]
x(k) + v(k), (83)

z(k) = Hx(k) + w(k) = [1 0]x(k) + w(k), (84)

where v(k) is the zero mean white process noise sequence with covariance

E[v(k)v(k)′] ∆= Q(T ) = Q(tk+1 − tk) =

[
T 3

3
T 2

2
T 2

2 T

]
q̃, (85)

where q̃ is the (continuous time) process noise power spectral density (PSD)2

and w(k) is zero mean white measurement noise sequence, uncorrelated with the
process noise, with variance

E[w(k)2] = σ2
w. (86)

The target maneuvering index is defined as

λc =

√
q̃T 3

σ2
w

. (87)

Then the steady state filter gain is [6]

W =
[
α

β

T

]′
, (88)

where
α = β

√
u, (89)

β =
12

6(u+
√
u) + 1

, (90)

u =
1
3

+

√
1
12

+
4
λ2

c

. (91)

The state estimation covariance matrix is given by

P =
[
p11 p12
p12 p22

]
=

[
α β

T
β
T

β(α−β/2)
(1−α)T 2

]
σ2

w. (92)

1 This describes the motion along one coordinate. For motion in 2 or 3 dimensions, the
model will consist of 2 or 3 such models with an appropriate stacked state vector.

2 See [6] for a discussion on why it is incorrect to call this the variance of the process
noise.
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The above result is valid for the steady state of the DCWNA filter, but only
with the optimal values of α and β as given in (89)–(90) [6].

A legacy tracker uses a fixed gain W , not necessarily the optimal one, in
each of its α-β filter updates and sends the state estimates to the fusion center,
typically, without covariance information. Since track association and track fu-
sion algorithms require such information in order to combine local tracks from
different sources, a procedure to obtain this missing information is discussed
next.

6.2 Approximation of the Estimation Error Covariance

Because of the time-varying target-sensor geometry, an α-β filter, even though
it uses fixed gains, is not necessarily in steady state. This is due to the non-
stationarity of the measurement noises, which is accounted for next. Our model
will assume that the tracking filter has a “slowly varying” (quasi-)steady state.
The covariance of the target state estimate will be evaluated accounting for the
fact that the sensor measurements (typically in polar or spherical coordinates
for a radar), while having uncorrelated measurement noises between their com-
ponents (range, azimuth/crossrange), have a coupling (correlation) between the
track state estimation errors in different Cartesian coordinates.

Coupling Between Coordinates and Nonstationarity. For tracking in
more than one dimension of the measurement space, the measurement covari-
ance is converted from the sensor coordinates (typically polar or spherical) into
the coordinates in which the state is defined (usually Cartesian). This will result
in the correlation between the state estimation errors in the Cartesian coordi-
nates. It is important to preserve the coupling between the coordinates when
the uncertainty ellipse for position is elongated and slanted, e.g., a “cigar” with
the main axis at 45◦ or 135◦. Neglecting the correlation between the coordinates
would yield a much larger uncertainty region.

To preserve the coupling between the state space coordinates due to the mea-
surements, the fusion center should run the Joseph form of the covariance update
at time k [6]

P (k) = [I −WH ][FP (k − 1)F ′ +Q][I −WH ]′ +WR(k)W ′, (93)

with the appropriate sampling interval. The reason the Joseph form is needed
is that the legacy filter gain is not optimal and only this equation is valid for
the covariance (actually MSE matrix) update when arbitrary filter gains are
used. The process noise covariance Q should be selected by the fusion center
to model the target motion uncertainty to the extent possible. The filter gain
W in (93) should be the same as in the legacy filter. The measurement noise
covariance R(k) in (93) is the covariance of the measurements converted from
polar to Cartesian. The measurement conversion should be linearized at the
latest measurement or the measurement prediction using the latest state. When
P (k−1) is unavailable at the fusion center, one can assume that P (k−1) = P (k)
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in (93), resulting in an algebraic Riccati equation. This will yield a (slowly) time-
varying covariance matrix that accounts for the nonstationarity of measurement
noise.

Approximation of the Estimation Error Covariance of Legacy Trackers
with Partial Information. When the communication network can provide a
coarsely quantized 2-dimensional root mean square (RMS) position error, de-
noted as RMSp, to the fusion center, the estimation error covariance can be
obtained as follows.

We shall model RMSp as the (steady state) error of two independent α-β
filters, one in the range direction, the other in the cross-range direction. Denote
the measurement noise RMS values in these directions as σr and σ×r , respec-
tively. These are assumed to be known, based on the radar specifications and
the radar-target geometry.

The position gains for these two filters are, according to (88),

αr = α(λcr ), (94)

and
α×r = α(λc×r ), (95)

respectively, where the corresponding target maneuvering indices are, similar to
(87),

λcr =

√
q̃T 3

σ2
r

, (96)

and

λc×r =

√
q̃T 3

σ2×r

, (97)

with q̃ the process noise PSD that models the motion uncertainty (in both the
range and cross-range directions, uncorrelated between them) and T the sam-
pling interval.

The RMS position error from the above filters is, based on (92), given by

RMSp =
√
αrσ2

r + α×rσ2×r. (98)

Assuming the value of RMSp is available and the measurement noise variances
are known, one can solve (98) (after substituting (96)–(97) into (94)–(95) and
the result into (98)) to find q̃. Once this is obtained, one can use (92) or (93)
to reconstruct (approximately) the covariance of the entire state estimate. Note,
however, that while this is in a Cartesian coordinate system, this system is
aligned with the line of sight from the radar to the target and it has to be rotated
into the local common Cartesian system, which is, typically, East-North.

The above procedure allows to reconstruct (approximately) the track estima-
tion error covariance from a coarsely quantized position RMS error, assumed
to be conveyed by a communication network. A similar approach can be taken
when RMSp is a position prediction error, as well as for the 3-dimensional case.



344 H. Chen et al.

Asynchronous Sensors. For asynchronous sensors, the state prediction (to
the time for which fusion will be carried out) based on the legacy tracker’s latest
estimate should be used by the fusion center. Assume that the fusion is done at
time k and the most recent estimate at the fusion center from the legacy tracker
is x̂(κ) at time3 κ, with κ < k. Then the fusion center needs to (i) approximate
the estimation error covariance P (κ) at time κ using (92) or (93) and (ii) apply
the standard prediction equations given by

x̂(k) = F (k, κ)x̂(κ), (99)

P (k) = F (k, κ)P (κ)F (k, κ)′ +Q(k, κ), (100)

to obtain the state prediction and the error covariance for time k. For the motion
model (83), Q(k, κ) is given by (85) with T = tk − tκ.

Thus what is needed to evaluate the covariance of the estimate from a legacy
tracker are:

– the sampling interval,
– the process noise PSD,
– the measurement noise covariance.

It should be noted that the parameters based on which the legacy tracker
has been designed are unlikely to be the same as listed above. Thus, what the
fusion center should do is to replicate the performance of the legacy tracker to
the extent possible.

6.3 Approximation of the Crosscovariance of the Estimation Errors

When two local tracks have correlated estimation errors, assuming they use the
same target motion and measurement models, in the steady state, the crossco-
variance matrix is given by [5]

P× = [I −WH ][FP×F ′ +Q][I −WH ]′. (101)

The above Lyapunov matrix equation can be solved numerically for any given
target maneuvering index. For a distributed tracking system, the calculation of
the crosscovariance using (101) is not practical.

The following approximation is considered [12]. Denote by P ij the approxi-
mate crosscovariance matrix between local tracks i and j. Each element of P ij ,
which is a 2 × 2 matrix for the model considered in (83), is approximated by
constant correlation coefficients as follows

P ij
lm = ρlm

[
P i

llP
j
mm

] 1
2 , l,m = 1, 2, (102)

where ρ11 is the position-position correlation coefficient, ρ12 is the position-
velocity correlation coefficient and ρ22 is the velocity-velocity correlation
coefficient.
3 We use for simplicity the notations κ and k instead of tκ and tk.
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Fig. 4. Correlation coefficients vs. target maneuvering index for DCWNA model

Assuming equal variances of the measurement error for both sensors, we can
solve the Lyapunov equation for the steady state DCWNA model. The result-
ing crosscorrelation coefficients between the estimation errors from the two local
trackers, namely the position component ρ11, the velocity component ρ22, then
position-velocity component ρ12, are shown in Figure 4 for the target maneu-
vering index within (0.05, 2). The results are similar to those in [12] where the
discrete time white noise acceleration model is used.

7 Simulation Study

We consider a ground target tracking scenario where three sensors are located at
(−50, 0)km, (0, 187)km, and (50, 0)km, respectively. All three sensors measure
the target range and bearing with the same standard deviations of the measure-
ment error given by σr = 50m and σb = 2mrad. The sampling interval of sensors
1 and 2 is T1 = T2 = 2s while the sampling interval of sensor 3 is T3 = 5s.

The two targets are initially at (0, 86.6)km and (0.4, 86.6)km, respectively.
Both targets move in parallel with a speed of 300m/s. The motion of the two
targets is characterized as follows. Both targets initially move toward south-
east on a course of approximately −135◦. Then at t = 15s both targets make
a course change with a constant turn rate of 4◦/s (acceleration of about 2.1g
over a duration Tman of about 11s) and heads toward east. Both targets make
a second course change at t = 35s with a constant turn rate of 4◦/s and heads
toward north-east. The trajectories of the two targets are shown in Figure 5
where the true target positions are indicated at the time instances at which
a measurement is made by one of the three sensors. The total time for the
two targets to complete the designated trajectories is 60s. Note that the target
range is around 100km to each sensor at the beginning, where the standard
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Fig. 5. Target trajectories with true positions at the times when measurements are
made by the sensors

deviation of the crossrange measurement is around 200m. Thus the tracker has
measurement origin uncertainty when updating the target state estimates. The
true target motion has the random acceleration modeled by the white process
noise spectrum q = 1m2/s3 in each realization. We assume that the two targets
have unity detection probability by each sensor and no false measurements. This
setting will make the track association error fairly small so that the estimation
accuracy is mainly determined by the fusion algorithm.

We first evaluate the junction matching performance using assignment and
convex programming algorithm based on synthetic images of 200 by 200 pixels.
Ten junctions are generated from the the extended targets and each junction has
a rank ranging from 1 to 4 with equal probability. The end points are generated
with uniformly distributed angles and length from 5 to 30 pixels to the center.
The matching frame has the same image size with all points of the junctions
being perturbed with equal probability to one of the four directions (left, right,
up and down) for up to k pixels. Figure 6 shows the percentage of correct track
associations using extended feature matching versus that using the center of
the track. As the distance between the two targets decreases, the percentage
of correct track associations also decreases. Nevertheless, the track association
accuracy using junction matching is superior to that with the best point-wise
assignment.

To study the track fusion performance, two tracking configurations for per-
formance comparison are implemented as follows.
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Fig. 6. Comparison of junction matching and point based track association, 500 Monte
Carlo runs

(i) A centralized estimator which uses an interacting multiple model (IMM)
filter [6] with two models and sequentially updates the target state with mea-
surements from sensors 1–3. This IMM estimator has a discretized continuous
white noise acceleration (DCWNA) model [6] with a low process noise PSD
ql to capture the uniform target motion and a DCWNA model with a high
process noise PSD qh to capture the two turns. We use ql = 1m2/s3 and
qh = 8000m2/s3 which, for Tman = 11s, corresponds to a target average ac-
celeration of

√
qh/Tman ≈ 2.6g. The process noise is the same in the east and

north directions of the Cartesian coordinates and uncorrelated between these
coordinates. The transition between the modes is modeled according to a con-
tinuous time Markov chain with the expected sojourn times ([6], Section 11.7.3)
in these modes given by 1/λ1 and 1/λ2, respectively. These correspond to ex-
ponential sojourn time distributions with parameters λ1 and λ2, respectively.
The transition probability matrix between the two models (generalized version
of equation (11.6.7-1) in [6]) from any time t1 to time t2 is [39]

Π(t2, t1) =
1

λ1 + λ2

[
λ2 + λ1e

−(λ1+λ2)T λ1 − λ1e
−(λ1+λ2)T

λ2 − λ2e
−(λ1+λ2)T λ1 + λ2e

−(λ1+λ2)T

]
, (103)

where T = |t2 − t1|. For the scenario used in simulation, we chose λ1 = 0.05s−1

and λ2 = 0.1s−1. For the centralized IMM estimator, 2-D assignment is used to
solve the measurement-to-track association problem and the most likely hypoth-
esis is chosen for the filter update.

(ii) In the decentralized tracking configuration each sensor uses an IMM es-
timator and the fusion center fuses the local estimates every TF = 10s using
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Fig. 7. Comparison of the RMS position errors for centralized IMM estimator (con-
figuration (i)) and three local IMM estimators
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Fig. 8. Comparison of the RMS velocity errors for centralized IMM estimator (con-
figuration (i)) and three local IMM estimators

all local state estimates and the corresponding covariances with approximate
crosscovariances. For each local IMM estimator, 2-D assignment is used to solve
the measurement-to-track association problem and the most likely hypothesis
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Fig. 9. Comparison of the NEES for centralized IMM estimator (configuration (i))
and three local IMM estimators
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Fig. 10. Comparison of the RMS position errors for centralized IMM estimator (con-
figuration (i)), track fusion from three IMM estimators (configuration (ii)); local IMM
estimator from sensor 1 also shown

is chosen for the filter update. The track-to-track association is based on the
most likely hypothesis obtained by solving the 3-D assignment among three lo-
cal trackers. If the local tracks are declared as from the same target, then the



350 H. Chen et al.

10 15 20 25 30 35 40 45 50 55 60
10

20

30

40

50

60

70

80

Time

R
M

S
 v

el
oc

ity
 e

rr
or

 (
m

/s
)

Target 1
Sensor 1
Centralized Est.
Track Fusion

10 15 20 25 30 35 40 45 50 55 60
10

20

30

40

50

60

70

80

Time

R
M

S
 v

el
oc

ity
 e

rr
or

 (
m

/s
)

Target 2
Sensor 1
Centralized Est.
Track Fusion

Fig. 11. Comparison of the RMS velocity errors for centralized IMM estimator (con-
figuration (i)), track fusion from three IMM estimators (configuration (ii)); local IMM
estimator from sensor 1 also shown
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track-to-track fusion is carried out using regularized track fusion with approxi-
mate cross covariance. The crosscovariance used at the fusion center is calculated
with ρ11 = 0.15, ρ12 = 0.25 and ρ22 = 0.7 to obtain the crosscovariance matrix
between local track pairs. Regularized track fusion is used with the bias b given
by (79) with bounded norm of x in all cases. 100 Monte Carlo runs are used to
compare the estimation accuracy and the filter credibility of the two tracking
configurations.

Figure 7 shows the RMS position errors at the fusion center for the central-
ized IMM estimator and three local IMM estimators. The improvement of the
tracking accuracy is fairly large for both targets and during both non-maneuver
and maneuver segments. The position errors do not increase significantly during
target maneuver. Figure 8 shows the corresponding RMS velocity errors for the
centralized estimator and the local estimators. We can see that tracking accu-
racy does not improve too much because the sensors do not directly measure the
velocity state. The velocity errors increase during the two maneuver segments
with certain delay after the maneuver onset time. Figure 9 shows the normalized
estimation error squared (NEES) [6] at the fusion center for the above four es-
timators. The NEES is an indication of the filter credibility for linear Gaussian
dynamics. The lower and upper bound based on the 95% confidence interval
of the chi-square distribution is also shown in the figure. We can see that the
IMM estimator is conservative about its mean square estimation error when the
target has a nearly constant velocity while it becomes optimistic during target
maneuver. These plots provide the tracking performance of the ideal centralized
tracker as well as the autonomous local trackers.

Figure 10 shows the RMS position errors at the fusion center for the above two
tracking configurations as well as that by sensor 1 alone served as a baseline. We
can see that the track fusion of the three local IMM estimates (configuration (ii))
yields nearly the same RMS position error as that of the centralized estimator
(configuration (i)). Figure 11 compares the corresponding RMS velocity errors.
We can see that the track fusion has smaller RMS velocity error when the targets
have a nearly constant velocity but larger RMS velocity error after the targets
start maneuver. Overall, the proposed assignment solution to the track-to-track
association is very effective when the quality of the local tracks is good. Figure 12
shows the NEES at the fusion center for the above two tracking configurations.
The lower and upper bound based on the 95% confidence interval of the chi-
square distribution is also shown in the figure. We can see that the distributed
track fusion yield larger NEES than the centralized estimator during the target
turns. This indicates that the fused track is optimistic about its mean square
estimation error. Thus caution has to be exercised when fusing the local estimates
that are not credible on their own NEES statistics.

8 Conclusions

We used the Bayesian procedure to formulate the track association problem and
provided algorithms that can solve a large scale distributed tracking problem
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where many sensors track many targets. When noninformative prior of the target
state is assumed, the single target test becomes a chi-square test and it can be
extended to the multiple target case by solving a multidimensional assignment
problem. When a target has multiple feature points, we formulated the track
association problem as junction matching and provided efficient algorithms to
solve the corresponding problems via assignment and convex programming. With
the noninformative prior assumption, the optimal track fusion algorithm can be
a biased one where the regularized estimate has smaller mean square estimation
error. A robust track fusion algorithm based on regularization was presented
which modifies the optimal linear unbiased fusion rule by a less-than-unity scalar.
When legacy sensor systems provide tracks without error covariance information,
we provided a practical way of approximating the error covariance and cross-
covariance between local estimates. Simulation results indicate the effectiveness
of the proposed track association and fusion algorithm through a three-sensor
two-target tracking scenario.
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Optimal Cooperative Thermalling of Unmanned
Aerial Vehicles

Andrew T. Klesh, Pierre T. Kabamba, and Anouck R. Girard

University of Michigan, 1320 Beal Ave, Ann Arbor, MI 48105

Abstract. Motivated by cooperative exploration missions, this chapter
considers the use of thermals to increase the altitudes of multiple un-
manned aerial vehicles (UAVs). The mission of the UAVs is to travel
through a given area and identify updrafts. The UAVs communicate to
each other the location of each rise or fall in their altitude to form a
map of the area. This imperfect map can then be used to identify areas
of interest that may be potential thermals. The subsequent problem of
utilizing these thermals is addressed from the viewpoint of information
collection based on Shannon’s channel capacity equation. This method
yields paths that achieve the intended result, to elevate the aircraft to
higher altitudes, while benefiting from cooperation. Several illustrations
are given.

1 Introduction

This chapter is devoted to the problem of planning the paths of multiple vehi-
cles thermalling in a given area. By thermalling we mean gaining altitude from
updrafts.

The key idea of this work is to recognize and exploit the similarity between
finding thermals and general exploration. Specifically, the identification of ther-
mals can be viewed as an exploration process where the object of interest is the
thermal, the sensor measures the aircraft’s altitude and the collector of infor-
mation is the UAV. Thus properties for time-optimal exploration paths are also
properties of time-optimal thermalling paths. The identification of these similar
properties is the main conceptual contribution of this chapter.

UAVs and other autonomous systems are increasingly used in long endurance
missions[20]. While today’s literature discusses UAVs as one of the most common
types of autonomous systems, here we are interested solely in aircraft. The most
common use of these systems is the collection of data for intelligence, surveil-
lance and reconnaissance missions for which long endurance and high-altitude
are often requirements. An example of such a mission is one of in situ weather
reconnaissance[5], where the placement of UAVs around a forming storm is crit-
ical to the research. Moreover, it is often the case that gaining altitude quickly
is of paramount importance (since inclement weather forms quickly). This mo-
tivates the time-optimal path planning problem formulated and solved in this
chapter.

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 355–369.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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The literature on thermalling focuses on two aspects 1) the identification
of thermals and 2) the utilization of thermals. For identification, much of the
current literature uses a spiral path of a single UAV[3, 19] to discover thermal
activity. This approach is similar to that of manned gliders [29]. The utilization
of thermals with single autonomous aircraft has been accomplished at NASA
Dryden [1, 2, 3] but to date there has been no work on cooperatively identifying
thermals for later use.

A large body of research has been published in recent years about motion
control of autonomous vehicles. Although an exhaustive overview of the state of
the art is beyond the scope of this chapter, a brief review of the most relevant
literature is as follows.

Many methods exist for solving the basic trajectory-planning problem [14].
However, not all of them solve the problem in its full generality. For instance,
some methods require the workspace to be two-dimensional and the obstacles, if
any, to be polygonal. Despite many external differences, the methods are based
on a few different general approaches: roadmap [14, 16, 28], cell decomposition
[17, 22, 23, 24, 28], potential field [4, 13, 15] and probabilistic [9, 27]. Optimal
control approaches have also been studied in [7] and [25]. A survey of this work
reveals that no study has been completed for finding time-optimal trajectories
for thermalling.

Based on an integrated systems model, the problem of cooperative exploration
for autonomous vehicles is formulated as an optimal path planning problem
where the states are the Cartesian coordinates of the vehicles and the altitude
gained from thermals in the area, the objective function is the total mission time,
and the boundary conditions are subject to inequality constraints that reflect
the requirements of altitude gain. The present chapter studies this optimization
problem and provides the following original contributions:

– An integrated model of aircraft and thermals is presented.
– The necessary conditions for optimality are derived using this model.
– Similarities are shown between time-optimal thermalling and time-optimal

exploration.
– The effect of uniform noise on the thermal model is shown to be negligible.

The remainder of the chapter is as follows. In Section II, the integrated model
is presented. In Section III, the problem is formulated as an optimal control
problem. Section IV describes cooperative methods to identify thermals. The
necessary conditions for optimality are derived in Section V and the similari-
ties between exploration and thermalling are described in Section VI. Section
VII presents several examples and Section VIII describes conclusions and fu-
ture work. Appendix A provides the necessary conditions for optimality of the
exploration problem.

2 Modeling

In this section the model used throughout the chapter is presented. The model
consists of two parts: the aircraft model and the thermal model.
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2.1 Aircraft Model

The aircraft kinematic model is based upon a modified unicycle vehicle model
[21]:

ẋi = v cos(ψi), 1 ≤ i ≤ n, (1)
ẏi = v sin(ψi), 1 ≤ i ≤ n, (2)
˙zij = Wzij , (3)

żi =
m∑

j=1

˙zij , 1 ≤ i ≤ n. (4)

where xi, yi and zi are the Cartesian coordinates of the ith aircraft, v is the speed
of the aircraft, ψi is the heading of the ith aircraft,Wzij is the vertical component
of jth thermal acting upon the ith UAV, zij is the amount of vertical altitude
gained by the ith UAV from the jth thermal, m is the number of thermals and
n is the number of aircraft. For simplicity, v is assumed to be the same for all
aircraft. The aircraft are assumed to be powered and have the ability to maintain
constant altitude flight.
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2.2 Thermal Model

A thermal is formed from differences in local air temperature. A typical thermal
has a high velocity center and negative low velocity segments on either side of
the center. A typical thermal model is shown in Figure 1.

The equation representing this model is:

Wzij (rij) = Wz,maxe
−
(

rij
Rj

)2
[
1 −

(
rij
Rj

)2
]
, (5)

where,

rij =
√

(xi − aj)2 + (yi − bj)2, (6)

and where rij is the range from the ith UAV to the center of the jth thermal,
Wz,max is the maximum velocity of the thermal, Rj is a scaling factor acting
upon the jth thermal, and (aj , bj) are the Cartesian coordinates of the jth
thermal. Typical thermals have R values between 100 and 1000 m [19].

To represent this model in 3-D space, this model is rotated about the z-axis
producing Figure 2.

Fig. 2. 3-D Thermal Model
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2.3 Model Summary

In summary, the integrated model is as follows. The heading of the aircraft and
vertical velocity determine the position of the aircraft through (1) - (4). The
vertical velocity of the aircraft is only changed due to external disturbances as
shown in (4) and (5) respectively.

3 Problem Formulation

The problem treated in this chapter is motivated by the goal of minimizing the
total mission time required for n UAVs to collectively identify some of the m
thermals in a given area and use them to rise at least a specified distance. By
rising a specified distance from each thermal (rather than an overall gain), the
UAVs are able to sample the thermals and better form their map. The UAVs
have no unique thermal sensing capability, but rely instead on mapping their
vertical velocity over time and sharing this map. Here, we do not consider the
bandwidth or communication issues involved in sharing this map. Hence the
problem in this chapter is two fold:

1. Collectively identify the location of thermals in a given area.
2. Gain at least a specified amount of altitude from each identified thermal.

4 Thermal Identification

To increase the altitude of the UAVs through the use of thermals, the vertical
updrafts must first be identified and targeted. The location of the thermals
is not known a priori to the UAVs and no thermal sensing device is onboard
the UAV. Instead, the UAVs are assumed to fly in constant altitude flight and
any vertical disturbance is mapped. The recorded vertical velocities provide a
picture-estimate of the thermal activity in the area.

The UAVs first fly in a spiral covering pattern to identify vertical disturbances
as shown in Figure 3. It is assumed that each UAV will only gain or lose altitude
due to external wind and will do so without changing bank angle. As the UAVs
slowly spiral out, they keep store of an internal map of their position and the
vertical disturbances at that location. Each internal map is shared to form a
large common map. The more UAVs present, the more detailed and accurate
the shared map will be.

A threshold filter is applied to the map to identify the most promising peaks
of vertical velocity. As the approximate width, R, of the thermal is known, we
use the collected information to form an estimated center of the thermal activity
as shown in Figure 4.

Similar methods have been successfully used by single UAVs [1, 2, 3, 19]. There
is a great deal of future work still to be accomplished in the area of cooperative
identification of thermals in the presence of less than ideal conditions. Some work
has been completed on this topic in the area of communication issues [8, 18, 26].
More work is needed to generalize these results.
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5 Time-Optimal Thermalling

The method of cooperatively identifying thermals in Section 4 uses a shared
map of vertical disturbances. This allows the use of any aircraft to improve the
map without specialized thermal sensors. Once the thermals have been identified
cooperatively, each UAV can individually gain at least the specified height from
each thermal.

Analysis of this problem reveals several similarities to the time-optimal in-
formation collection problem discussed in [10, 11, 12]. We will highlight these
similarities in this section and from them draw useful conclusions about time-
optimal thermalling.

5.1 Optimal Thermalling

Once the thermals are identified, the dynamic optimization problem is motivated
by the requirement to minimize, with respect to the time-history of the heading
angles, the total mission time, i.e.,

min
ψi(·)

tf , (7)

subject to (1)-(5) and boundary conditions:

xi(0) = x0
i , 1 ≤ i ≤ n, (8)

yi(0) = y0
i , 1 ≤ i ≤ n, (9)

zij(0) = z0
ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m (10)

zi(0) = z0
i , 1 ≤ i ≤ n, (11)

zij(tf ) ≥ 1, 1 ≤ j ≤ m. (12)

5.2 Optimal Path Planning

In this subsection, we derive the necessary conditions for optimality, adapted
from [6]. With states [xi, yi, zij , zi]T , 1 ≤ i ≤ n, 1 ≤ j ≤ m and control inputs
ψi, 1 ≤ i ≤ n, the Hamiltonian is:

H =
n∑

i=1

m∑
j=1

λzijWz,maxe
−(

rij
Rj

)2 [1 − (
rij
Rj

)2] +
n∑

i=1

λzi(
m∑

j=1

żij)

+
n∑

i=1

λxiv cos(ψi) +
n∑

i=1

λyiv sin(ψi) + 1, (13)

where λxi , λyi , 1 ≤ i ≤ n λzi , 1 ≤ i ≤ n and λzij , 1 ≤ i ≤ n, 1 ≤ j ≤ m are
costate variables.

In this problem formulation, there are no control constraints.
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The state equations, derived from (13), are:

˙zij = Wz,maxe
−(

rij
Rj

)2
[1 − (

rij
Rj

)2], 1 ≤ i ≤ n, 1 ≤ j ≤ m, (14)

ẋi = v cos(ψi), 1 ≤ i ≤ n, (15)
ẏi = v sin(ψi), 1 ≤ i ≤ n, (16)

żi =
m∑

j=1

żij , 1 ≤ i ≤ n. (17)

The costate equations are:

˙λzij = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (18)

˙λxi
=

m∑
j=1

−
2Wz,maxe

−(
rij
Rj

)2

[1 − (
rij
Rj

)2]λzij
(−a + x)(−1 +

(1.5+rij )(−2.5R+rij )

R2 )(−1.5 − rij)

rij

,

1 ≤ i ≤ n, (19)

˙λyi
=

m∑
j=1

−
2Wz,maxe

−(
rij
Rj

)2

[1 − (
rij
Rj

)2]λzij
(−b + y)(−1 +

(1.5+rij)(−2.5R+rij )

R2 )(−1.5 − rij)

rij

,

1 ≤ i ≤ n, (20)

˙λzi = 0, 1 ≤ i ≤ n. (21)

The first-order optimality conditions are:

0 = vλyi cos(ψi) − vλxi sin(ψi), 1 ≤ i ≤ n. (22)

The boundary conditions for this problem are:

xi(0) = x0
i , 1 ≤ i ≤ n, (23)

yi(0) = y0
i , 1 ≤ i ≤ n, (24)

zij(0) = 0, 1 ≤ i ≤ n, (25)

zi(0) = z0
i , 1 ≤ i ≤ n, (26)

zij(tf ) ≥ 1, 1 ≤ j ≤ m, (27)
λxi(tf ) = 0, 1 ≤ i ≤ n, (28)
λyi(tf ) = 0, 1 ≤ i ≤ n, (29)

λzij (tf )

{
= 0 if zij(tf ) > 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

free, otherwise, 1 ≤ i ≤ n, 1 ≤ j ≤ m,
(30)

λzi(tf ) = 0, 1 ≤ i ≤ n. (31)

The flight paths that satisfy the first order necessary conditions (14)-(22) will
be referred to as extremal paths.
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5.3 Discretization Procedure

To obtain numerical approximations of optimal paths, we discretize the problem
as follows. For a chosen integer p ≥ 1, we subdivide the interval [to, tf ] into p
subintervals [to, t1], [t1, t2], ..., [tp−1, tf ] of equal duration. In each subinterval we
assume that the control inputs are constant, i.e., (ψi(t)) = (ψig ), t ∈ [tg, tg+1],
where the parameters ψig , 0 ≤ g ≤ p− 1, are initially unknown.

We treat the parameters ψig , 0 ≤ g ≤ p− 1, and tf as inputs to a nonlinear
optimization problem. As an initial choice, in all subintervals we choose ψig =
0 and tf = to + TM where TM is a maximum duration allowed. Constraints
upon this problem are imposed from the boundary conditions (23)-(31). From
(7), the objective function is the total mission time. We then numerically solve
for optimal flight paths using the MATLAB R© Optimization Toolbox function
fmincon and the ordinary differential equation solver ode45. We will call this
strategy the discretization method.

6 Properties from General Exploration

The problem of time-optimal thermalling is very similar to another problem:
time-optimal exploration. We can use the characteristics and properties of time-
optimal exploration to infer similar characteristics for time-optimal thermalling.
Specifically, the identification of thermals can be viewed as an exploration process
where the object of interest is the thermal, the sensor measures the aircraft’s
altitude and the collector of information is the UAV. Thus properties for time-
optimal exploration paths are also properties of time-optimal thermalling paths.

In the generalized exploration problem, the objective is to minimize the total
mission time required for n autonomous vehicles to collect a specified amount of
information aboutm objects of interest in a given area. The vehicles are assumed
to have onboard sensors. Each sensor has a channel of limited bandwidth over
which information is collected. In the neighborhood of each object of interest
there exists a visibility disk, within which information can be collected. Outside
of the visibility disk for a particular object, no information can be collected
about that object. The visibility disk is assumed isotropic, i.e., the rate at which
information is collected depends only upon the range from the object to the
explorer, not on the azimuth.

Several differences exist between exploration and thermalling. In exploration,
the ith UAV cooperatively collects information to increase the information state
of the jth object of interest. In thermalling, the ith UAV gains altitude from
all of the m thermals to increase its own altitude. Second, cooperative missions
in exploration seek to collectively gain information while in thermalling, coop-
eration is used to identify potential thermals. Although these differences exist,
many properties are still shared between the two problems.

6.1 Modeling

The model in the exploration consists of two parts: the vehicle kinematics model
and the informatics model.
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Kinematics Model. The kinematics model for the autonomous vehicles is
given by:

χ̇i = fi(ui), 1 ≤ i ≤ n, (32)

where χi is the position vector, fi describes the kinematics and ui is the control,
of the ith vehicle.

Informatics Model. Let Ij , 1 ≤ j ≤ m denote the information collected about
the jth object of interest. Its rate of change is given by:

İj = ρj(χ1, ...,χn, w1, ..., wn), 1 ≤ j ≤ m, (33)

where the functions ρj , 1 ≤ j ≤ m satisfy:

ρj(χ1, ...,χn, w1, ..., wn)

{
= 0,χ1, ...,χn /∈ Dj ,

> 0, otherwise,
(34)

wi is the bandwidth of the sensor on the ith vehicle, and Dj is the isotropic
visibility disk centered on the jth object of interest. Without loss of generality,
assume that the required amount of information is one bit for each object. When
the ith vehicle is within the visibility disk of the jth object, i.e., χi ∈ Dj , the
object is considered visible. Otherwise the object is invisible to the vehicle. Define
D to be the union of all visibility disks Dj , 1 ≤ j ≤ m, i.e., D = ∪m

j=1Dj .

6.2 Properties of General Exploration

Here we emphasize relevant properties of time-optimal exploratory paths.

Proposition 1: If the objects of interest are isolated, then the optimal flight
paths consist of sequences of straight lines (far from the objects of interest) con-
nected by short turns (near the objects of interest).

A proof is provided in [11] for the general exploration problem.
Furthermore, from the optimality condition (42) the magnitudes of the time-

rate of change of the control are:

u̇i =

n∑
j=1

ρj(χ1, ...,χn, w1, ..., wn)
∂f (ui)
∂ui

n∑
i=1

λχi

d

dt

(
∂f(ui)
∂ui

) . (35)

When χi /∈ D, (34) and (35) indicate that ui is constant. Otherwise, the rate
of change of ui depends on the rates at which information is collected about
visible objects, confirming Proposition 1.

We seek to exploit the similarity between information collection and altitude
collection. Here we can view the object of interest as the thermal, the rate
of information collection as a rate of vertical climb and Dj as Rj . From the
similarity in the problems, we expect the properties presented to be evident in
time-optimal thermalling.
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6.3 Sensor Noise

The aircraft in the problem do not have the same limitations as other au-
tonomous systems. Since they are outside, GPS provides a good estimate of
their position. The thermal model, however, can be inaccurate. Consider (5),
which is used to provide sensor information.

A modified model with a uniform random noise component is:

Wzij (rij) = Wz,maxe
−
(

rij
Rj

)2
[
1 −

(
rij
Rj

)2
]

+WNoise, (36)

where WNoise is the term representing the uniform random noise.
We now seek to find time-optimal flights subject to the expected value of the

altitude gained, or E[zij ] ≥ 1.
A Monte-Carlo simulation, with uniform noise added in the manner of (36),

was run with an arbitrary 314 iterations. Noise was added with a fixed amplitude
for 20 iterations, then the amplitude was increased. Analysis of the resulting
flight paths show that the average flight path was very near the original noise
free path. Furthermore, the RMS error of the flight path has no correlation
with the amplitude of the simulated noise. While work needs to be completed,
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Fig. 5. Effect of noise in the thermal model on total mission time
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Fig. 6. Flight path and ground track of a UAV flying amongst three thermals

indications are that model noise will not increase the constraints on this problem.
The result of this study is presented in Figure 5.

7 Thermalling Examples

Figure 6 demonstrates an example flight path of a single UAV among three
thermals. The straight lines and short curves, predicted from the properties of
general exploration, are evident in the ground track of the aircraft. Though the
UAV drops in altitude between the thermals, it satisfies its boundary conditions
by at least gaining a specified height by each thermal.

8 Conclusions and Future Work

This chapter has presented techniques for the identification and utilization of
thermals. The problem of time-optimal thermalling is phrased in terms of alti-
tude gain and vehicle kinematics. This formulation exploits the similarity be-
tween thermalling and exploration. We have shown that the identification of
thermals can be completed cooperatively and using the same techniques as sin-
gle UAVs. General properties for the utilization of thermals have been drawn
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from exploration problems. Furthermore, the presence of uniformly random in-
accurate models has been shown to be negligible.

In future work, larger numbers of aircraft and thermals will be considered.
Communication error will be introduced and the work may be extended to a
time-varying environment.
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Appendix A: Necessary Conditions for the Generalized
Exploration Problem

In this section, we derive the necessary conditions for optimality adapted from
[6]. With states [Ij ,χi]T , 1 ≤ i ≤ n, 1 ≤ j ≤ m and control inputs ui, 1 ≤ i ≤ n,
the Hamiltonian is:

H =
m∑

j=1

λIjρj(χ1, ...,χn, w1, ..., wn) +
n∑

i=1

λχif(ui) + 1, (37)

where λχi , 1 ≤ i ≤ n and λIj , 1 ≤ j ≤ m are costate variables.
In this problem formulation, we have no user-imposed control constraints.
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The state equations, derived from (37), are:

İj = ρj(χ1, ...,χn, w1, ..., wn), 1 ≤ j ≤ m, (38)
χ̇i = f (ui), 1 ≤ i ≤ n. (39)

The costate equations are:

˙λIj = 0, 1 ≤ j ≤ m, (40)

˙λxi = −
m∑

j=1

λIj

∂ρ(χ1, ...,χn, w1, ..., wn)
∂χi

, 1 ≤ i ≤ n. (41)

The first-order optimality conditions are:

0 = λχi

∂f(ui)
∂ui

, 1 ≤ i ≤ n. (42)

The boundary conditions for this problem are:

χi(0)χ0
i , 1 ≤ i ≤ n, (43)

Ij(0) = 0, 1 ≤ j ≤ m, (44)
Ij(tf ) ≥ 1, 1 ≤ j ≤ m, (45)

λχi(tf ) = 0, 1 ≤ i ≤ n, (46)

λIj (tf )

{
free if Ij = 1, 1 ≤ j ≤ m,

= 0 otherwise.
(47)
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Abstract. We propose a two-layer scheme to control a set of vehicles
moving in a formation.

The first layer, the trajectory controller, is a nonlinear controller since
most vehicles are nonholonomic systems and require a nonlinear, even
discontinuous, feedback to stabilize them. The trajectory controller, a
model predictive controller, computes centrally a bang-bang control law
and only a small set of parameters need to be transmitted to each vehicle
at each iteration.

The second layer, the formation controller, aims to compensate for
small changes around a nominal trajectory maintaining the relative po-
sitions between vehicles. We argue that the formation control can be, in
most cases, adequately carried out by a linear model predictive controller
accommodating input and state constraints. This has the advantage that
the control laws for each vehicle are simple piecewise affine feedback laws
that can be pre-computed off-line and implemented in a distributed way
in each vehicle.

Although several optimization problems have to be solved, the control
strategy proposed results in a simple and efficient implementation where
no optimization problem needs to be solved in real-time at each vehicle.

1 Introduction

In this chapter we propose a control scheme for a set of vehicles moving in a
formation. Vehicle formations are used in several applications, both in military
and civilian operations, such as surveillance, forest fire detection, search missions,
automated highways, exploration robots, among many others (see e.g., [20]).
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The control methodology selected is a two-layer control scheme where each
layer is based on model predictive control (MPC). Control of multi-vehicle for-
mations and/or distributed MPC schemes have been proposed in the literature.
See the recent works [5,22] and references therein.

The reason why two-layers are used in the control scheme is because there are
two intrinsically different control problems:

– the trajectory control problem: to devise a trajectory, and corresponding
actuator signals, for the formation as a whole.

– maintain the formation: change the actuator signals in each vehicle to com-
pensate for small changes around a nominal trajectory and maintain the
relative position between vehicles.

These control problems are intrinsically different because, on the one hand, most
vehicles (cars, planes, submarines, wheeled vehicles) are nonholonomic (cannot
move in all directions). On the other hand, while the vehicles are in motion, the
relative position between them in a formation can be changed in all directions
(as if they were holonomic).

As an example consider a vehicle whose dynamics we are familiar with: a car.
Consider the car performing a parking maneuver or performing an overtaking
maneuver. See figures 1 and 2.

Fig. 1. Car in a parking maneuver: cannot move sideways

In the first situation, we are limited by the fact that the car cannot move
sideways: it is nonholonomic. It is a known result that we need a nonlinear
controller, allowing discontinuous feedback laws, to stabilize this system in this
situation [23,3].

In the second, the vehicle is in motion and small changes around the nomi-
nal trajectory can be carried out in all directions of the space. In an overtaking
maneuver we can move in all directions relative to the other vehicle. This fact
simplifies considerably the controller design. In fact, a linear controller is an ap-
propriate controller to deal with small changes in every spatial direction around
a determined operating point.
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Fig. 2. Car in an overtaking maneuver: can move in all directions relative to the other
car

For a different approach that also decouples the path following from the inter-
vehicle coordination problem see [11].

The other option here is to design and use controllers based on the Model
Predictive Control technique. Several reasons support this option.

MPC is known to be a technique that deals appropriately and explicitly with
constraints. In fact, many researchers argue that the capacity of dealing naturally
and effectively with constraints is the main reason for the industrial success of
MPC; see e.g., [18,15,21].

In the problem of controlling a vehicle formation, the constraints on the tra-
jectory are an important problem characteristic:

– to avoid collisions between the vehicles in the formation;
– to avoid obstacles in the path; and,
– for other reasons of safety or reliability of operation (e.g., minimum altitude

or velocity in a plane).

Therefore, constraints should be appropriately dealt with. A possible way to
deal with constraints is to use unconstrained design methods combined with a
“cautious” approach of operating far from the constraints (e.g., imposing large
distances between the vehicles in the formations). But, such procedures would,
in general, reduce the performance that would be achievable by operating closer
to the limits [12].

Another possible approach is to push the trajectory away from the constraints
by penalizing a vehicle close to an obstacle or other vehicle (e.g., potential field
approaches, or other optimization-based approaches that do not impose explicitly
the constraints), but these methods do not guarantee that the constraints will
be satisfied.

Here, we use MPC imposing explicit constraints both on the vehicle inputs
and on the vehicle trajectory.

Another advantage of MPC is that, because MPC is an optimization-based
method, it has desirable performance properties according to the performance
criteria defined. In addition, it has intrinsic robustness properties [17].
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The major concern in using such a technique is often the need to solve opti-
mization problems in real-time which might be difficult for fast systems. However,
there are recent results on particular parameterizations for the optimal control
problems involved that allow MPC to address fast systems (see e.g., [1]). We shall
see that the control strategy proposed appropriately deals with this problem.

2 The MPC Framework

Consider a nonlinear plant with input and state constraints, where the evolution
of the state after time t0 is predicted by the following model.

ẋ(s) = f(s, x(s), u(s)) a.e. s ≥ t0, (1a)
x(t0) = xt0 ∈ X0, (1b)
x(s) ∈ X ⊂ IRn for all s ≥ t0, (1c)
u(s) ∈ U a.e. s ≥ t0. (1d)

The data of this model comprise a set X0 ⊂ IRn containing all possible initial
states at the initial time t0, a vector xt0 that is the state of the plant measured
at time t0, a given function f : IR × IRn × IRm → IRn, and a set U ⊂ IRm of
possible control values.

We assume this system to be asymptotically controllable on X0 and that for
all t ≥ 0 f(t, 0, 0) = 0. We further assume that the function f is continuous and
locally Lipschitz with respect to the second argument.

The construction of the feedback law can be accomplished by using a sampled-
data MPC strategy [10]. Consider a sequence of sampling instants π := {ti}i≥0,
with a constant inter-sampling time δ > 0 such that ti+1 = ti + δ for all i ≥ 0.
Consider also the control horizon and predictive horizon, Tc and Tp, with Tp ≥
Tc > δ, and an auxiliary control law kaux : IR×IRn → IRm. The feedback control
is obtained by repeatedly solving online open-loop optimal control problems
P(ti, xti , Tc, Tp) at each sampling instant ti ∈ π, every time using the current
measure of the state of the plant xti .

P(t, xt, Tc, Tp): Minimize∫ t+Tp

t

L(s, x(s), u(s))ds +W (t+ Tp, x(t+ Tp)), (2)

subject to:

ẋ(s) = f(s, x(s), u(s)) a.e. s ∈ [t, t+ Tp], (3)
x(t) = xt,

x(s) ∈ X for all s ∈ [t, t+ Tp],
u(s) ∈ U a.e. s ∈ [t, t+ Tc],
u(s) = kaux(s, x(s)) a.e. s ∈ [t+ Tc, t+ Tp],
x(t+ Tp) ∈ S. (4)
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The domain of this optimization problem is the set of admissible processes,
namely pairs (x, u) comprising a control function u and the corresponding state
trajectory x which satisfy the constraints of P(t, xt, Tc, Tp). A process (x̄, ū) is
said to solve P(t, xt, Tc, Tp) if it minimizes (2) among all admissible processes.

Note that in the interval [t + Tc, t + Tp] the control value is determined by
kaux and therefore the optimization decisions are all carried out in the interval
[t, t+ Tc].

We call design parameters those variables present in the open-loop optimal
control problem that are not from the system model (i.e., variables we are able
to choose); these comprise the control horizon Tc, the prediction horizon Tp, the
running cost function L, the terminal cost function W , the auxiliary control law
kaux, and the terminal constraint set S ⊂ IRn. The choice of these variables is
important to obtain certain properties for the MPC strategy, such as stability,
robustness, or performance (see e.g., [19,7,9] for a discussion on to choose the
design parameters).

The MPC algorithm performs according to a receding horizon strategy, as
follows.

1. Measure the current state of the plant x∗(ti).
2. Compute the open-loop optimal control ū : [ti, ti + Tc] → IRn solution to

problem P(ti, x∗(ti), Tc, Tp).
3. Apply to the plant the control u∗(t) := ū(t; ti, x∗(ti)) in the interval [ti, ti+δ)

(the remaining control ū(t), t ≥ ti + δ is discarded).
4. Repeat the procedure from (1.) for the next sampling instant ti+1 (the index
i is incremented by one unit).

The resultant control law u∗ is a “sampling-feedback” control since during
each sampling interval, the control u∗ is dependent on the state x∗(ti). More
precisely, the resulting trajectory is given by

x∗(t0) = xt0 , ẋ∗(t) = f(t, x∗(t), u∗(t)) t ≥ t0, (5)

where
u∗(t) := ū(t;  t!π, x

∗( t!π)) t ≥ t0, (6)

and the function t �→  t!π gives the last sampling instant before t, that is

 t!π := max
i

{ti ∈ π : ti ≤ t}. (7)

Similar sampled-data frameworks using continuous-time models and sampling
the state of the plant at discrete instants of time were adopted in [4,7,8,6,16]
and are becoming the accepted framework for continuous-time MPC. It can
be shown that with this framework it is possible to address — and guarantee
stability, and robustness of the resultant closed-loop system — a very large class
of systems, which are possibly nonlinear, time-varying, and nonholonomic.
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3 The Two-Layer Control Scheme

As discussed, we propose a two-layer control scheme. The top layer, the trajec-
tory controller, is applied to the group of vehicles as a whole. The trajectory
controller is a nonlinear controller since most vehicles are nonholonomic sys-
tems and require a nonlinear, even discontinuous, feedback to stabilize them.
The main ideas for the controller used in this section follow closely the results
from [9].

The bottom layer, the formation controller, is computed and applied to
each vehicle individually. The formation controller aims to compensate for small
changes around a nominal trajectory maintaining the relative positions between
vehicles. We argue that the formation control can be adequately carried out by
a linear model predictive controller accommodating input and state constraints.
This has the advantage that the control laws for each vehicle are simple piece-
wise affine feedback laws that can be pre-computed off-line and implemented
in a distributed way in each vehicle. The main reference for this controller
is [2].

4 The Vehicle Formation Models

4.1 Nonholonomic Vehicle Model for the Trajectory Controller

The framework developed here could easily be adapted to vehicles moving in 2D
or 3D and having various dynamics. Nevertheless, we will explore a simple case of
a a differential-drive mobile robot moving on a plane, Figure 3, and represented
by the following kinematic model:

ẋ(t) = (u1(t) + u2(t)) · cos θ(t) (8)
ẏ(t) = (u1(t) + u2(t)) · sin θ(t) (9)
θ̇(t) = (u1(t) − u2(t)), (10)

with θ(t) ∈ [−π, π], and the controls u1(t), u2(t) ∈ [−1, 1].
The coordinates (x, y) are the position in the plane of the midpoint of the axle

connecting the rear wheels, and θ denotes the heading angle measured from the x-
axis. The controls u1 and u2 are the angular velocity of the right and left wheels,
respectively. If the same velocity is applied to both wheels, the robot moves
along a straight line (maximum forward velocity when u1 = u2 = umax = 1).
The robot can turn by choosing u1 �= u2 (when u1 = −u2 = 1 the robot turns
counter-clockwise around the midpoint of the axle).

The velocity vector is always orthogonal to the wheel axis. This is the non-slip
or nonholonomic constraint

(ẋ, ẏ)T (sin θ,− cos θ) = 0. (11)

Therefore, the vehicle model is a nonholonomic system. It is completely control-
lable but instantaneously it cannot move in certain directions. It is known that
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θ

y

x

Fig. 3. A differential-drive mobile robot

this class of systems requires a nonlinear controller to stabilize it. Furthermore,
the controller must allow discontinuous (or alternatively time-varying) feedback
control laws. See [13] for a discussion on the control of nonholonomic systems,
[3,23] for the need to use discontinuous feedbacks, and [8] for MPC of nonholo-
nomic systems.

4.2 Linearized Vehicle Model for the Formation Controller

For the reasons explained above, to control the relative position between the
vehicles in the formation, compensating for small deviations around a nominal
trajectory, we might use linear control methods.

Consider that one of the vehicles is the reference vehicle. It might be the for-
mation leader, or any of the vehicles in the formation, or we might even want to
consider an additional nonexistent vehicle for modeling purposes. Consider that
the formation moves at the nominal linear velocity vn = (u1n + u2n)/2, with
u1n = u2n being the nominal velocities of the wheels. Let vl be the linear veloc-
ity added to the nominal linear velocity, and vw the angular velocity. Assume
that θ is small, so that cos θ " 1 and sin θ " θ. We thus have the simplified
model

ẋ(t) = (vn(t) + vl(t)) (12)
ẏ(t) = (vn(t) + vl(t))θ(t) (13)
θ̇(t) = vw(t). (14)

We consider a linearized model for each of the differential drive mobile robots
with the z1 axis aligned with the velocity of the reference vehicle .⎡⎣ ż1ż2

ż3

⎤⎦ =

⎡⎣0 0 0
0 0 vn

0 0 0

⎤⎦⎡⎣ z1z2
z3

⎤⎦+

⎡⎣1 0
0 0
0 1

⎤⎦[ vl

vw

]
(15)
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Fig. 4. Reference frame for the Linearized vehicle model aligned with the reference
trajectory

For computation purposes, it is convenient to use a discrete-time model here.
The discrete-time model, converted using zero order hold with sample time h, is⎡⎣ z1(t+ h)

z2(t+ h)
z3(t+ h)

⎤⎦ =

⎡⎣1 0 0
0 1 vnh
0 0 1

⎤⎦⎡⎣ z1(t)z2(t)
z3(t)

⎤⎦+

⎡⎣h 0
0 0
0 h

⎤⎦[ vl(t)
vw(t)

]
(16)

which we will simply denote as

ż(t+ h) = Az(t) + Bv(t). (17)

4.3 Formation Connections Model

Consider M vehicles and a reference vehicle (that might not exist) that follows
exactly the trajectory predicted by the trajectory controller.

Consider that the M + 1 vehicles are nodes of a directed graph G = (V,E),
which is a directed tree rooted at the reference vehicle. That is, all vertices are
connected, there are no cycles, and all edges are directed in a path away from
the root. Associate to each vertex i a triplet zi(t) = (zi

1(t), z
i
2(t), z

i
3(t)) with the

relative position with respect to the reference vehicle at time t. Also, associate
with each edge (i, j) ∈ E a pair z̃ij = (z̃ij

1 , z̃
ij
2 ) with the desired position in

the plane of vehicle j with respect to vehicle i. The desired relative positions
are defined a priori and define the geometry of the formation that we want to
achieve. For node i we define its parent node Pi = j such that (i, j) ∈ E. See
Figure 5.

The objective of the formation controller is to maintain the geometry of the
formation, that is, the relative positions between the vehicles should be kept
as close as possible to the desired relative positions. We define for each vehicle
i with parent j a performance index that penalizes the difference between the
desired and actual relative positions of the vehicles.
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Fig. 5. A tree modelling the formation connections

J i =‖(z̃ij
1 , z̃

ij
2 , 0) − (zj(N) − zi(N))‖2

P +

+
N−1∑
t=1

‖(z̃ij
1 , z̃

ij
2 , 0) − (zj(t) − zi(t))‖2

Q + ‖(v(t), w(t))‖2
R. (18)

5 The Controllers

5.1 Trajectory Controller

The controller used here follows closely the results in [9]. We use bang-bang
feedback controls. That is, for each state, the corresponding control must be at
one of the extreme values of its range. The exception is the target set Θ (here a
small ball centered at the origin) where the control is chosen to be zero.

The feedbacks, when outside the target set, are defined by a switching surface
σ(x) = 0. The control will attain its maximum or minimum value depending
on which side of the surface the state is. More precisely, for each component
j = 1, . . . ,m of the control vector, define

kj(x) =

⎧⎨⎩
0 if x ∈ Θ,
umax

j if σj(x) ≥ 0,
umin

j if σj(x) < 0.
(19)

The function σj is a component of the vector function σ, and is associated with
the switching surface σj(x) = 0 which divides the state-space in two.

These surfaces must be parameterized in some way to be chosen in an opti-
mization problem. Therefore, we define them to have a fixed part σaux, possibly
nonlinear, and a variable part σΛ which is affine and defined by the parameter
matrix Λ.

σ(x) = σaux(x) + σΛ(x). (20)

For each component j = 1, 2, . . . ,m, the equation σΛ
j = 0 is the equation of a

hyperplane which is defined by n+ 1 parameters as

σΛ
j (x) := λj,0 + λj,1 x1 + . . .+ λj,n xn. (21)
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The half-spaces σΛ
j (x) ≥ 0 and σΛ

j (x) < 0 are not affected by multiplying all
parameters by a positive scalar, therefore we can fix one parameter, say λj,0, to
be in {−1, 0, 1}. In total, for all components of the control vector, there will be
m× (n+ 1) parameters to choose from. By selecting the parameter matrix

Λ :=

⎡⎣ λ1,0 · · ·λ1,n

· · ·
λm,0 · · ·λm,n

⎤⎦ , (22)

we define the function

σΛ(x) = Λ

[
1
x

]
, (23)

and therefore we define the switching function σ by (20) and we define the feedback
law kΛ by (19). Each component of the feedback law can be described as

kΛ
j (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x ∈ Θ,

umax
j if

[
σaux(x) + Λ

[
1
x

]]
j

≥ 0,

umin
j if

[
σaux(x) + Λ

[
1
x

]]
j

< 0.

(24)

In our example the switching surfaces, for each control component, are planes
in the state-space IR3 and can be described by 4 real parameters. The surface,
and therefore the feedback, are defined by a parameter matrix Λ ∈ IR2×4.

The feedbacks are obtained by solving, in a receding horizon strategy, the
following optimal control problems with respect to matrices Λ ∈ IR2×4.

MinimizeΛ1,...,ΛNc∈IR2×4

∫ t+Tp

t

L(x(s), u(s))ds+W (x(t+ Tp)) (25)

subject to (26)
x(t) = xt,

ẋ(s) = f(x(s), u(s)) a.e. s ∈ [t, t+ Tp], (27)
x(s) ∈ X for all s ∈ [t, t+ Tp],
x(t + Tp) ∈ S, (28)

where

u(s) = kΛi(x( s!π)) s ∈ [t+ (i− 1)δ, t+ iδ), i = 1, . . . , Nc, (29)
u(s) = kaux(x( s!π)) s ∈ [t+ (i− 1)δ, t+ iδ), i = Nc + 1, . . . , Np. (30)

In this optimal control problem, the control horizon Tc and prediction horizon
Tp satisfy Tc = Ncδ and Tp = Npδ with Nc, NP ∈ IN and Nc ≤ Np.
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The guarantee of stability of the resulting closed loop system can be given
by a choice of design parameters satisfying a sufficient stability condition. The
following set of design parameters [9] guarantees stability:

L(x, y, θ) = x2 + y2 + θ2, (31)

W (x, y, θ) =
1
3
(r3 + |θ|3) + rθ2 with r =

√
x2 + y2, (32)

Tp =
2π
3
, (33)

S := {(x, y, θ) ∈ IR2 × [−π, π] : φm(x, y) ≤ θ ≤ φM (x, y)∨
∨ (x, y, θ) ∈ Θ ∨ (x, y) = (0, 0)}. (34)

5.2 Formation Controller

For each vehicle i, with parent j, compute the control solving the constrained
linear quadratic optimal control problem:

Minimize over sequences {v1, . . . , vN−1}

J =‖(z̃ij
1 , z̃

ij
2 , 0) − (zj(N) − z(N))‖2

P +

+
N−1∑
t=1

‖(z̃ij
1 , z̃

ij
2 , 0) − (zj(t) − z(t))‖2

Q + ‖v(t)‖2
R (35)

subject to

z(t+ h) = Az(t) +Bv(t) t = 0, . . . , N − 1,
z(0) = z0,

vmin ≤ v(t) ≤ vmax t = 0, . . . , N − 1, (36)
(zij

1 , z
ij
2 , 0) ≤ z(t) − zj(t) ≤ (z̄ij

1 , z̄
ij
2 , 0) t = 1, . . . , N, (37)

Dz(t) ≤ d t = 1, . . . , N. (38)

Here, constraints (36) are limits on the inputs. Constraints (37) set a
maximum and minimum distance to the parent vehicle, and inequalities (38)
are general constraints to accommodate, for example, forbidden zones of the
state-space.

The matrices involved in the performance index are chosen to satisfy Q =
Q′ $ 0, R = R′ % 0, and P solving the Lyapunov equation P = A′PA + Q.
This strategy has, for each vehicle and in the conditions stated, guaranteed
exponential stability [2,19].

One of the major advantages of this controller is the fact that the feedback
laws obtained from solving the linear quadratic regulator with constraints are
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Fig. 6. State-space regions for the reference vehicle PWA control law

continuous piecewise affine (PWA) functions [2], i.e. , for a certain region of the
state-space Rk (which is a polytope) the control law is affine

u(t) = Fkz(t) +Gk if z(t) ∈ Rk. (39)

In Figure 6 we can see the different state-space regions (195 polytopes) corre-
sponding to different affine control laws for the reference vehicle.

This way, the parameters of the PWA feedback (matrices Fk and Gk for each
region Rk) can be determined explicitly a priori, off-line, by multi-parametric
programming (e.g., using MPT - Multi Parametric Matlab Toolbox [14]). Each
vehicle just has to store the parameters of the PWA feedback function. No opti-
mization nor other complex computations are involved in real-time. Only lookup
table operations are needed for each vehicle.

The stability of the whole formation is easy to establish. This is because, with
the strategy above, the trajectory of each vehicle is exponentially stable with
respect the desired relative position to its parent vehicle. As there is exactly one
path from each vehicle to the reference vehicle, stability of any vehicle easily
follows recursively.

If more general graphs are allowed, comprising not only trees but also admit-
ting loops, the stability analysis is considerably more complex. For results on
stability considering more general graphs see [5].

5.3 Integration of the Two Control Layers

In each vehicle, the control given by the Trajectory Controller plus the control
given by the Formation Controller are applied. Therefore, we have to consider
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control limits in each layer in such a way that the physical limits are respected.
The Trajectory Controller (bang-bang feedback) can only use part of the limit
(70% in our simulations) leaving the rest to the Formation Controller.

For the Trajectory Controller, the bang-bang feedback is computed centrally
and then the switching surface parameters (a 2×4 matrix per sampling period)
are communicated to each vehicle. The frequency of update might be relatively
low, and is dictated by the information from the outside (the formation) world
of new obstacles in the trajectory, possibly identified by the sensors, that might
alter the main path.

For the Formation Controller, the PWA feedback law is computed a priori,
off-line, and implemented in each vehicle.

6 Conclusions

Model Predictive Control was shown to be an adequate tool for control of vehicles
in a formation: it deals explicitly and effectively with the constraints that are
an important problem feature; recent results on parameterized approaches to
the optimal control problems allow addressing fast systems as well as allowing
efficient implementations.

Although several optimization problems have to be solved, none need to be
solved in real time by each of the vehicles. Part of the problem can be solved a
priori, off-line, and an explicit control law can be implemented in each vehicle as
a lookup table; the other part can be solved centrally and only a few parameters
(a 2×4 matrix) need to be transmitted to all vehicles in each sampling period.
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6. Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.: State and output feedback nonlin-
ear model predictive control: an overview. European Journal of Control 9, 190–206
(2003)

7. Fontes, F.A.C.C.: A general framework to design stabilizing nonlinear model pre-
dictive controllers. Systems & Control Letters 42, 127–143 (2001)



384 F.A.C.C. Fontes, D.B.M.M. Fontes, and A.C.D. Caldeira

8. Fontes, F.A.C.C.: Discontinuous feedbacks, discontinuous optimal controls, and
continuous-time model predictive control. International Journal of Robust and
Nonlinear Control 13(3–4), 191–209 (2003)

9. Fontes, F.A.C.C., Magni, L.: Min-max model predictive control of nonlinear sys-
tems using discontinuous feedbacks. IEEE Transactions on Automatic Control 48,
1750–1755 (2003)

10. Fontes, F.A.C.C., Magni, L., Gyurkovics, E.: Sampled-data model predictive con-
trol for nonlinear time-varying systems: Stability and robustness. In: Allgower,
F., Findeisen, R., Biegler, L. (eds.) Assessment and Future Directions of Nonlin-
ear Model Predictive Control. Lecture Notes in Control and Information Systems,
vol. 358, pp. 115–129. Springer, Heidelberg (2007)

11. Ghabcheloo, R., Pascoal, A., Silvestre, C., Kaminer, I.: Non-linear co-ordinated
path following control of multiple wheeled robots with bidirectional communication
constraints. International Journal of Adaptive Control and Signal Processing 21,
133–157 (2007)
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Application of Monkey Search Meta-heuristic to
Solving Instances of the Multidimensional

Assignment Problem

Alla R. Kammerdiner, Antonio Mucherino, and Panos M. Pardalos

University of Florida, Gainesville, FL

Abstract. This study applies a novel metaheuristic approach called
Monkey Search for solving instances of the Multidimensional Assignment
Problem (MAP). Monkey Search is a global optimization technique in-
spired by the behavior of a monkey climbing trees. The combinatorial
formulation of the MAP in order to incorporate the matrix representa-
tion of feasible solutions is considered. The developed software procedure
is tested on randomly generated instances of the MAP, and the results
of the numerical experiments are presented in this study.

1 Introduction

Many practical problems can be formally described as an instance of the Multidi-
mensional Assignment problem (MAP). In particular, the MAP arises from data
association problems arising in multiple target tracking and sensor fusion [20].
It can also be found in air traffic control, satellite launching, surveillance, dy-
namic facility location, capital investment, and even in tracking the motion of
elementary particles [2, 18, 21].

Multidimensional Assignment problems are characterized by a very large num-
ber of local minima [9]. Furthermore, the number of feasible solutions grows
exponentially with an increase in problem parameters [9,11]. This inherent com-
plexity of the MAP creates serious difficulties in solving MAP instances of high
dimensionality. Most solution methods applied to the MAP are enumerative in
nature, and rely on some kind of local neighborhood search. Therefore, due to
the large sizes of the problems with even moderate dimensionality and cardi-
nality parameters, exact approaches are rather time consuming. This suggests
investigating suboptimal approaches, which could allow one to efficiently explore
the structure of the problem surfaces in order to find feasible solutions whose
value is sufficiently close to optimal.

The Greedy Randomized Adaptive Search Procedure (GRASP) is one of the
few heuristic approaches applied to the MAP [1, 13, 16]. Other heuristic ap-
proaches employed to solve the MAP includes Simulated Annealing [4] and Tabu
Search [14].

In this study, we apply a heuristic called Monkey Search, which is a novel meta-
heuristic method for global optimization recently proposed by Seref et al. [15,23].
Similar to other metaheuristic algorithms such as ant colony optimization, this

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 385–397.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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method is motivated by animal behavior. Loosely speaking, Monkey Search im-
itates the behavior of a monkey climbing trees in its search for food [15]. The
procedure builds trees of solutions in such a way that two new branches stem
from the current feasible solution to the neighboring solutions. When the monkey
discovers a better solution, it remembers it. Later, on its way down, the mon-
key marks the corresponding branches, and then uses these marks for deciding
what branches to climb up again. This marking strategy reflects the monkey’s
intentions to focus on a part of a tree where it has already found some good
solutions.

The Monkey Search procedure was tested on the global optimization problem
of finding stable conformations of clusters of atoms regulated by the Lennard
Jones potential energy and by the Morse potential energy. The experiments
showed Monkey Search to be more effective than some other metaheuristic meth-
ods such as Simulated Annealing and Harmony Search [15, 24].

One of the advantages of Monkey Search is its flexibility, which arises naturally
from the definition of the transformations creating the neighboring solutions.
More specifically, the solution transformations builds on the ideas and strategies
borrowed from other heuristics and optimization approaches. Monkey Search can
incorporate these diverse techniques in a unique way.

This paper is organized in the following manner. Section 2 presents a formu-
lation of the MAP as a combinatorial optimization problem, and discusses some
relevant previous results. Section 3 introduces the Monkey Search metaheuris-
tic. We utilized the Monkey Search method to solve randomly generated MAP
instances. The results of our experiments are reported in Section 4. Finally, the
last section provides some conclusions and future research directions.

2 The Multidimensional Assignment Problem

The Multidimensional Assignment Problem (MAP) represents a special type of
assignment problem, and can be viewed as a generalization of the well-known
Linear Assignment Problem (LAP). In fact, the LAP investigates a question of
finding a one-to-one correspondence between two sets of n items, so that the
total cost of such an assignment is minimized. Although the MAP is also about
finding an exact correspondence with minimum total cost, the correspondence
in the MAP case must be found among three or more different sets of the same
cardinality.

The MAP was first introduced by Pierskalla as a three-dimensional exten-
sion of the LAP [17], and generalized to the assignment in n-dimensions [19].
Although Pierskalla formulated the MAP as a zero-one integer programming
problem [19], several alternative formulations have been given to the MAP. One
of such formulations is based on graph theory, where the problem is described
from the standpoint of finding a partition of the vertex set of a d-partite graph
into n pairwise disjoint cliques of minimum cost [3]. Another formulation of MAP
is as a combinatorial optimization problem [12].
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Here we consider the MAP formulation from the combinatorial optimization
point of view as follows:

minimize
∑

1≤i≤n

ciπ1(i)...πd−1(i), subject to π1, . . . πd−1 ∈ Πn, (1)

where d is a dimensionality parameter of the MAP, n is a MAP parameter
signifying the cardinality of each set, cj1j2...jd

(with 1 ≤ jk ≤ n, and 1 ≤ k ≤
d) denote the assignment cost coefficients, and Πn is the set of all possible
permutations of elements in the set {1, 2, . . . , n}.

Simply put, a given MAP is specified by a d-dimensional cubic matrix of
cost coefficients of the size nd. Thus, solving the MAP means finding such a
permutation of the rows and columns of the costs matrix that minimizes the
sum of the diagonal elements.

One of the advantages of using the combinatorial formulation (1) of the MAP
is that it admits a clear and convenient representation of each feasible solution
of the MAP by the following n× d matrix:⎛⎜⎜⎜⎝

π1(1) π2(1) . . . πd(1)
π1(2) π2(2) . . . πd(2)

...
...

. . .
...

π1(n) π2(n) . . . πd(n)

⎞⎟⎟⎟⎠ = (π1 π2 . . . πd) , (2)

where the d columns πi = (πi(1) πi(2) . . . πi(n))�, 1 ≤ i ≤ d, of the matrix are
permutations from Πn.

For a given matrix representation (2) of a feasible solution, the associated
solution cost is

z = cπ1(1)π2(1)...πd(1) + cπ1(2)π2(2)...πd(2) + . . .+ cπ1(n)π2(n)...πd(n). (3)

It is worth noting that the solution is invariant under any permutation of rows
in the solution matrix. This follows from the fact the individual summands
cπ1(i)π2(i)...πd(i) and cπ1(j)π2(j)...πd(j), i �= j, in the expression (3) can be in-
terchanged without affecting the solution value z.

However, we must point out that the matrix representation (2) is not unique.
One of the ways to guarantee a one-to-one correspondence between the feasi-
ble solutions and their respective matrix representation is by setting the first
column to be an identity permutation ı. As a matter of fact, it is sufficient to
specify a permutation πj ∈ Πn of arbitrary fixed column j of the matrix rep-
resentation of feasible solutions in order to obtain a one-to-one correspondence
between all feasible solutions of the MAP and their representations as matrices
of permutations [11].

For additional information about various formulations, solution methods, spe-
cial cases and applications of the MAP, the interested reader is referred to [12].
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3 The Monkey Search

Monkey Search is a meta-heuristic approach for global optimization. Its ba-
sic idea was originally proposed in [23], and successively elaborated and imple-
mented in [15]. Monkey Search resembles the behavior of a monkey climbing
trees in its search for food. The main assumption in this approach is that a
monkey is able to survive in a jungle of trees because it is able to focus its food
searches where it previously found good food. When the monkey climbs up a
tree for the first time, it can only choose the branches of the tree in a random
way, because it does not have any previous experience on that tree. However,
when the monkey climbs up the tree again, it tries to follow the paths that led
it to good food, allowing the monkey to discover a set of connected branches of
the tree in which there are good food resources.

In Monkey Search, food is represented by suitable solutions of a global opti-
mization problem to be solved. These solutions lie on the top of the branches
of virtual trees that a virtual monkey climbs. The quality of these solutions is
evaluated through the value of the objective function which has to be optimized.
A branch represents a perturbation that creates the solution at the top of the
branch when it is applied to the solution at the root of the branch. In Mon-
key Search, the trees are not pre-existing, instead they are built as the monkey
climbs. At the start, the monkey is positioned at the root of the tree, and it has
a solution associated to the root. Since this is the first time the monkey climbs
this tree, the tree actually does not exist yet, and therefore its branches have to
be created. Here we assume that all trees have a binary structure, i.e., unless we
are at a tree leaf, only two branches are attached to a given solution. Therefore,
two new branches are randomly built: two possible perturbations are applied to
the current solution, and two new solutions are generated and placed at the top
of these two branches. At this point, the monkey has to choose between which of
the two branches to climb next. Since it does not have any previous experience
on this tree, it chooses the branch in a random way. Once the chosen branch is
climbed, the monkey is situated at the top of that branch. As before, the mon-
key needs to climb up new branches, and hence two other branches are created
that have as root the solution in which the monkey is currently climbing. This
procedure continues until the monkey reaches the top of the tree. Every time the
monkey climbs a branch up, it updates its current solution. Moreover, it keeps
in mind the best solution found on its way up.

When the monkey has climbed the tree all the way up to its top, it needs
to climb down. The ability of the monkey to remember previously discovered
branches is simulated in the Monkey Search procedure as follows. Every time
the monkey climbs down a branch, it marks that branch with the best solution
which can be found climbing that branch up. This is done so that the monkey
can exploit the information later, when it climbs up the tree again. On its way
down, the monkey can either return to the root of the tree, and restart climbing
up from there, or it can decide to restart climbing up from a certain branch.
This is controlled by a random mechanism so that the respective parameter is
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adjusted in order to force the monkey to come back toward the root of the tree
with an appropriate probability.

When the monkey decides to restart climbing up, it encounters some previ-
ously visited branches on its way up. It then climbs these branches again. The
monkey chooses between one of the two tree branches based on the marks it
left before. Naturally, the monkey has greater probability of choosing a branch
leading to better solutions, and this probability increases with the quality of
the solution the branch leads to. Since this mechanism is based on probabilities,
the monkey can choose to climb a branch that was rejected previously. When
this happens, the monkey finds new previously unknown branches on its way
up. From this point on, the monkey starts climbing up the tree as it did at the
start: two new branches are created by applying two random perturbations to
the current solution, and one of those is chosen in a totally random fashion. A
flowchart describing the general behavior of the monkey climbing a tree is given
in Figure 1.

NO 

YES 

NO 

YES 

YES 

NO 

Fig. 1. The behavior of a monkey climbing a tree

Figure 2 shows the possible behavior for a monkey during the Monkey Search.
In the tree in Figure 2(a), the monkey has climbed from the root of the tree to
its top. The path in bold represents the set of branches that have been chosen by
the monkey. Whereas, all the other branches have not been climbed. When the
monkey reached the top of the tree, it started to come back branch by branch,
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(a) (b) 

Fig. 2. Two phases of the behavior of a monkey climbing a tree: (a) the monkey climbs
the tree from the root to the top, then it climbs back and stops in the location marked
with the bold circle; (b) the monkey restarts climbing up: in this case, the monkey
climbs some previously explored branches and also some newly generated branches

marking all the branches it passed. In this example, we suppose that the monkey
decided to restart climbing up from the solution marked with a bold circle in
the figure. The new path the monkey follows is marked in bold in Figure 2(b).
The first branch the monkey climbs up has been previously climbed. The second
branch is still unexplored: from that branch on, the monkey needs to climb
new branches of the tree. In the process of climbing up and down, the best
solution ever discovered is kept updated and saved. When all the paths in the
tree have been explored, the monkey stops climbing the tree, and the obtained
result corresponds to the best solution found during the whole search.

The Monkey Search procedure is based on a set of parameters that influence
the convergence of the algorithm. The height of the trees is the total number
of branches that the monkey can climb from the root to the top. The number
of paths the tree contains is represented by the number of times the monkey
starts climbing up the same tree. Two other parameters deal with the memory
of the Monkey Search heuristic. In order to avoid local minima, a predetermined
number of best solutions found on each individual tree is kept in memory. In
fact, every time the monkey stops climbing a tree because it has reached the
allowed total number of paths, it starts climbing a new tree from a different root
solution. The best solutions are kept in memory, so that the monkey can select
either one of the best solutions or a combination of them as a root of a new tree.
The memory size is, therefore, a parameter of the method, as is the number of
trees that the monkey starts climbing from a random solution. This is done at
the beginning (“warm-up”) stage of the algorithm in order to spread the search
in different areas of the domain of the objective function.

The Monkey Search procedure stops when all the solutions in memory are
sufficiently close to one another. For this reason, the cardinality of the best
solutions set is one of the most important Monkey Search parameters. A small
cardinality may, indeed, cause the method to stop in a local optima. On the other
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hand, although keeping too many solutions in memory allows the possibility of
the search finding the global optimum, it may be too expensive computationally.
As often is the case when dealing with meta-heuristic methods, a trade-off needs
to be found, and this parameter can be tuned by classic trial and error procedure
on the particular problem to be solved.

The perturbations in the Monkey Search play an important role. They can be
totally random, as is done in the standard Simulated Annealing algorithms [10],
but they can also be customized and tailored to the problem to solve. The
idea is to exploit strategies borrowed from other meta-heuristic searches, such
as Genetic Algorithms [8], Harmony Search [6], Tabu Search [7], etc., and/or
develop perturbations which are inspired by the problem itself. If a certain set
of perturbations is defined, then the perturbation to be applied for generating
a new branch can be chosen from the set with a uniform probability. Another
way of selecting the transformation for generating a new solution is by assigning
higher probabilities of being selected to those perturbations that, so far, have
been the most successful. Monkey Search has been shown more efficient than
other meta-heuristic searches on difficult problems. Details about the Monkey
Search and the comparisons to other meta-heuristics can be found in [15, 24].

4 Experimental Results

This section discusses some technical aspects of solving MAP instances via the
Monkey Search algorithm, including the perturbations applied to feasible solu-
tions.

Since each feasible solution of the MAP admits a matrix representation (2),
we utilized this representation for constructing the perturbations. In order to
obtain new feasible solutions from the current solution, we employed basic ran-
dom transformations, as in the standard Simulated Annealing algorithm [10].
Particularly, a matrix representation (2) of the current solution is transformed
in the following fashion. First, one of the columns, say j, is selected at random
according to a discrete uniform distribution. Next, two elements of the j-th col-
umn, say πj(i1) and πj(i2), i1 < i2, are selected at random, and interchanged.
In other words, by applying this perturbation, the j-th column

(πj(1) . . . πj(i1) . . . πj(i2) . . . πj(n))�

in the matrix representation of the current solution is replaced by the corre-
sponding permuted column

(πj(1) . . . πj(i2) . . . πj(i1) . . . πj(n))�

in the new solution. In addition, we considered an extension of the transforma-
tion by allowing several interchanges to be performed at once. In such transforma-
tions, we randomly selected multiple columns whose elements were interchanged.
It is noteworthy to state that the transformations inspired by other heuristic ap-
proaches (e.g., Genetic Algorithm [8], and Tabu Search [7]) may also be imple-
mented.
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We ran some numerical experiments to test the effectiveness of Monkey Search
in solving MAP instances by using the above perturbations for generating new
feasible solutions.

The experiments are performed on a computer with an Intel CPU T2500 at
2 GHz, and 1 GB RAM. The algorithm was implemented in the C++ program-
ming language using CodeBlocks compiler.

As noted in [22], randomly generated assignment problems has been used
extensively in prior studies to assess the effectiveness of heuristic methods. In our
study, the Monkey Search approach is tested on randomly generated instances of
the MAP with parameters n = 4 and d = 5. Each MAP instance is obtained by
generating a set of independent random assignment cost coefficients according to
a continuous uniform distribution on [0, 1]. Despite the moderate values of n and
d, the cardinality of the feasible solutions set for such MAP instances is 331,776,
since the number of feasible solutions is given by N = (n!)d−1. Moreover, the
number of local optima is also significant, as can be seen from Table 1.

Table 1. Number of local minima for the MAP instances with n = 4 and d = 5

statistic value normalized w.r.t. N

minimum 958 0.29%
mode 1,207 0.36%
average 1,221.084 0.37%
maximum 1,460 0.44%

The parameters for the Monkey Search are set as follows.

– The maximum number of trees allowed equals 40;
– The maximum tree height is 70;
– The maximum number of best solutions kept in the memory is limited to 10;

and
– The probability of the monkey to restart climbing up the tree when it is

currently climbing down the tree is set to 0.94.

To investigate the role that is played by the number of interchanged pairs in
the Monkey Search procedure, we tested random perturbations with different
number of the pairs of interchanged elements. The number of interchanges per-
formed in each transformation varied between 1 and 4. 500 MAP instances (with
n = 4 and d = 5 and independent uniformly distributed cost coefficients) were
generated using different random seeds. Four different versions of the Monkey
Search procedure based on the perturbations with a fixed number of interchanged
pairs (s = 1, 2, 3, 4) were tested. Each MAP instance was solved by four modifica-
tions of the Monkey Search procedure, and by enumeration. The latter approach
was used to find the global optimum solution for each random instance. The ex-
ecution times for the enumeration and the Monkey Search procedures, as well
as the objective function values of the MAP global optimum and the solutions
found by each Monkey Search version were recorded.
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Fig. 3. The average execution times for the Monkey Search versions based on 1, 2, 3,
and 4 interchanges in one perturbation

The execution times for the enumeration algorithm are compared to the av-
erage run times for the modifications of the Monkey Search algorithm based on
the perturbations with one, two, three and four pairs of interchanged indices.
The results are illustrated in Figure 3.

Notice that the fastest average run time of 0.373946 seconds was obtained by
solving the MAP instances using the Monkey Search version, where a new feasi-
ble solution was generated by only a single interchange of two elements in each
perturbation. The Monkey Search implementations that required additional in-
terchanges were slower, with four-interchange version being the slowest (0.615768
sec). On the other hand, all the Monkey Search modifications were shown to run
significantly faster (over 12 times) than the enumeration procedure, which took
approximately 7.8551975 seconds.

The average objective values of the solutions found by all four versions of the
Monkey Search procedure are compared to the average global optimum obtained
via enumeration. The results are presented in Figure 4. The figure shows that
the Monkey Search implementation, which incorporates the perturbation with
a single interchange, as well as the implementation that transforms a current
feasible solution by interchanging a pair three times, are able to find a solution
that is on average closer to the MAP global optimum, than the solutions obtained
by the two-interchanges and the four-interchanges Monkey Search procedures.

The last observation is also supported by the histograms of the normalized
differences between the global optimum of a random MAP instance and the
corresponding solution found by each Monkey Search version. Each difference
between the Monkey Search solution value and the respective global value is
normalized with respect to the global value of a given MAP. Hence, each nor-
malized difference of the objective values is a percentage of the global optimum.
The corresponding histograms are derived for all four Monkey Search implemen-
tations, and presented in Figure 5. The frequency for the differences between
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the objective values of Monkey Search solutions and the global optimum nor-
malized with respect to the global for the procedures with one-, two-, three-,
and four-interchanges are presented in Table 2. The frequency values are given
as the percentage of the total number of MAP instances. The column of bins lists
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Table 2. Frequency of the normalized differences between the objective values of Mon-
key Search solutions and the global optimum for the procedures with one-, two-, three-,
and four-interchanges

Bin of Norm. Frequency
Differences 1-interchange 2-interchanges 3-interchanges 4-interchanges

0 43.80% 28.20% 40.40% 26.20%
12.5 13.80% 11.80% 14.00% 11.40%

25 9.20% 11.00% 11.40% 11.60%
37.5 7.80% 9.80% 8.80% 10.60%

50 6.40% 7.00% 5.60% 9.80%
62.5 6.20% 6.20% 5.40% 5.40%

75 2.40% 5.20% 2.80% 4.40%
87.5 2.00% 4.40% 2.40% 4.40%
100 1.60% 3.80% 1.20% 1.80%

112.5 1.60% 3.40% 2.00% 4.00%
125 0.60% 1.00% 1.20% 1.40%

137.5 1.20% 1.40% 1.40% 1.80%
150 0.60% 1.60% 1.00% 2.20%

162.5 0.80% 1.20% 0.40% 1.20%
175 0.40% 0.40% 0.60% 0.60%

187.5 0.40% 0.80% 0.20% 0.40%
200 0.80% 1.20% 0.40% 1.00%

More 0.40% 1.60% 0.80% 1.80%

the upper bound values in the range of the differences normalized with respect
to the MAP global values. From Table 2, it is clear that the single interchange
Monkey Search procedure is able to find the best solutions of the MAP in highest
percentage of instances.

5 Conclusion

In this chapter, a novel metaheuristic approach called the Monkey Search was
applied to solving instances of general Multidimensional Assignment Problem.
The constructed transformation of feasible solutions are based on the convenient
matrix representation of the MAP, which follows from the MAP formulation
as a combinatorial optimization problem. Transformations with several inter-
changed pairs of elements in the column were considered. Our numerical experi-
ments indicate that for solving the MAP instances, the Monkey Search procedure
appears to be significantly faster than the total enumeration approach. Further-
more, our numerical analysis of the Monkey Search algorithms, which incorpo-
rate the perturbations characterized by different numbers of interchanged pairs,
has shown that the Monkey Search approach based on the single-interchange
transformations is not only the fastest among all four implementations, but it
is also more likely to find solutions close to the global optimum. Although the
procedure based on the one-interchange transformations and the one based on
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three-interchanges perturbation have comparable likelihood of terminating with
solutions that are closer to the global optimum of a given MAP instance. The
execution time of the three-interchanges version is significantly longer than the
single-interchange Monkey Search.

We continue our investigation of the Monkey Search approach for solving the
MAP, by analyzing the performance of this new heuristic on different MAP in-
stances. In particular, this includes considering additional randomly generated
instances, and using different MAP parameters n and d. Also we are working
on implementing other types of transformations of the MAP solutions and com-
paring their performance. For instance, one of the further steps is incorporating
the perturbation, which interchanges the elements in such a way as to give the
higher probability to an interchange that improves the solution value. Finally,
we plan to experiment with Monkey Search using a set of different types of
transformations of the feasible solutions in the same run.
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Abstract. We extend the results presented in a previous paper which fo-
cused on deterministic formulations of the wireless network jamming

problem. This problem seeks to determine the optimal number and place-
ment locations for a set of wireless jamming devices to sufficiently suppress
a communication network according to some specified criterion. We now
introduce robust variants of those formulations which account for the fact
that the exact topology of the network to be jammed may not be known
entirely. Particularly, we consider instances in which several topologies
are considered likely, and develop robust scenarios for placing jamming
devices which are able to suppress the network regardless of which can-
didate topology is realized. We derive several formulations and include
percentile constraints to account for a variety of scenarios. Case studies
are presented and the results are analyzed. We conclude with directions
of future research.

1 Introduction

Research on suppressing and eavesdropping communication networks has seen
a surge recently in the optimization community. Two recent papers by Com-
mander et al. [5,6] represent the current state-of-the-art. These problems have
several important military applications and represent a critical area of research
as optimization of telecommunication systems improve technological capabilities
[12]. In [5], the authors develop lower and upper bounds for the optimal num-
ber of wireless jamming devices required to suppress a network contained in a
given area such as a map grid. In this work, there were no a priori assumptions
made about the topology of the network to be jammed other than the geograph-
ical region in which it was contained. This problem is particularly important in
the global war on terrorism as improvised explosive devices (IEDs) continue to
plague the coalition forces. In fact, IEDs account for approximately 65% of all
combat injuries in Iraq [11]. These homemade bombs are almost always deto-
nated by some form of radio frequency device such as cellular telephones, pagers,
and garage door openers. The ability to suppress radio waves in a given region
will help prevent casualties resulting from IEDs [4].

M.J. Hirsch et al. (Eds.): Optimization & Cooperative Ctrl. Strategies, LNCIS 381, pp. 399–416.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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In [6] the wireless network jamming problem (wnjp) was introduced
and several formulations derived. In the wnjp, the topology of the network is
assumed and various objectives can be considered, from jamming all the com-
munication nodes to constraining the connectivity index of the nodes. In this
chapter, we introduce robust variants of those formulations which account for
the fact that the exact topology of the network to be jammed may not be known
entirely. Particularly, we consider instances in which several topologies are con-
sidered likely, and develop robust scenarios for placing jamming devices which
are able to suppress the network regardless of which candidate topology is re-
alized. The overarching goal is to develop robust formulations with respect to
the uncertainties in the information about the network. These models will pro-
vide a more realistic interpretation of combat scenarios in urban and dynamic
environments.

The organization of the chapter is as follows. In Section 2, we derive several
formulations of the robust wireless network jamming problem (r-wnjp).
In Section 3, we review several percentile measures and incorporate percentile
constraints into the models in Section 4. The results of several case studies are
presented in Section 5 and the results are analyzed. We conclude with directions
of future research.

2 Problem Formulations

Denote a graph G = (V,E) as a pair consisting of a set of vertices V , and a
set of edges E. All graphs in this chapter are assumed to be undirected and
unweighted. We use the symbol “b := a” to mean “the expression a defines the
(new) symbol b” in the sense of King [9]. Finally, we will use italics for emphasis
and small caps for problem names.

We assume that the communication network to be jammed comprises a set
M = {1, 2, . . . ,m} of radio devices which are outfitted with omnidirectional an-
tennas and function as both transmitters and receivers [6]. Further we assume
that the coordinates of the nodes and various parameters such as the frequency
range are given by probability distributions. For example, we can assume that a
Kalman filter provides some estimate of the locations of the nodes. In a deter-
ministic setup, the topology, which represents the communication pattern, could
be represented by a graph in which an edge connects two nodes if they are within
a certain communication threshold.

As for the set of jamming devices, we assume that they too are outfitted
with omnidirectional antennas with the effectiveness of a jamming device on
a communication node being inversely proportional to their squared distance.
Suppose that the set of jamming devices is giving by N = {1, 2, . . . , n}, and
we are given a set potential locations in which to place them. Figure 1 pro-
vides an example of the communication network and the potential jamming
device locations. Moreover, each potential location j has an associated cost
cj , j = 1, 2, . . . , n. We can describe the jamming power received by network node
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Fig. 1. Example network shown with potential jamming device locations

i located at a point (ξi, ηi) ∈ R × R, from jamming device j ∈ N located at
(x, y) as

dj(ξi, ηi) ≡ dij :=
λ

(xj − ξi)2 + (yj − ηi)2
, (1)

where λ ∈ R is a constant. Without the loss of generality, we can let λ = 1. We
say that node i ∈ M located at (ξi, ηi) is jammed if the total energy received at
this point from all jamming devices exceeds some threshold value Ci. That is,
node i is jammed if

n∑
j=1

dj(ξi, ηi) ≥ Ci. (2)

As mentioned above, we are considering robust formulations of the wnjp.
Since the exact locations of the network nodes are unknown, we assume that
a set of intelligence data has been collected and from that a set S of the most
likely scenarios have been compiled. We assume that for scenario s ∈ S both the
node locations {(ξs

1, η
s
1), (ξ

s
2 , η

s
2), . . . , (ξ

s
m, η

s
m)} and the set of jamming thresholds

{Cs
1 , C

s
2 , . . . , C

s
m} are modeled. We make no assumption on the equality of the

number of devises to be jammed in the different scenarios. Therefore, we define
for each scenario s ∈ S, the set Ms = {1, 2, . . . ,ms} which represents the set of
nodes to be jammed, where ms represents the number of nodes in scenario s. For
example, the networks shown in Figure 2 represent a set of possible topologies
for the network to be jammed.
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Fig. 2. Four example scenarios are shown

2.1 The Robust Connectivity Index Problem

Given a graph G = (V,E), the connectivity index of a node is defined as the
number of nodes reachable from that vertex, i.e., if there exists a path between
two nodes. The first formulation of the wnjp we consider imposes constraints
on the connectivity indices of the network nodes. The degree to which the con-
nectivity index of a given node is constrained may be determined by its relative
importance or how crucial it is for maintaining connectivity among many compo-
nents. It is at the discretion of the analyst whether to assign arbitrary values to
each node or use some heuristic for determining a relative importance. One way
to determine the connectivity indices is to identify the so-called critical nodes
of the graph and impose relatively tighter constraints on these nodes. Critical
nodes are those vertices whose removal from the graph induces a set of discon-
nected components whose sizes are minimally variant [1]. Critical node detection
has been recently applied to interdicting wired communication networks [4], to
network security applications [2], and most recently to the analysis of protein-
protein interaction networks in the context of computational drug design [3].

Suppose for example that for the scenarios shown in Figure 2 the maximum
allowable connectivity index is set to 3 for each node. Then the objective of the
robust connectivity index problem (rcip) is to determine the minimum
number and locations for the jamming devices so that each node has no more
than 3 neighbors in each of the four scenarios presented. Figure 3 provides an
example solution for this case.

Suppose that communication between two nodes in the communication graph
is said to be severed if at least one of the nodes is jammed. Then the objective
of the robust connectivity index problem (rcip) is to determine the min-
imum required jamming devices such that the connectivity index of each node i
in each scenario s does not exceed some predefined values Ls

i . In order to define
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Fig. 3. The optimal solution for the networks in Figure 2 is given for the case when
the maximum connectivity index is 3 for all nodes

the corresponding mathematical formulation we must define the following func-
tions. First let ys : Ms × Ms �→ {0, 1} be a surjection where ys

ij := 1 if there
exists a path from node i to node j in the jammed network according to scenario
s ∈ S. Next let the function zs : Ms �→ {0, 1} be a surjective function where zs

i

returns 1 if node i is not jammed in scenario s ∈ S. Finally, let xi, i = 1, . . . , n
be a set of decision variables where xi := 1 if a jamming device location i is
utilized. If ck and dij are as defined in Equation 1, then we can formulate the
rcip as the following optimization problem.

(RCIP) min
n∑

k=1

ckxk (3)

s.t.
ms∑
j=1
j 	=i

ys
ij ≤ Ls

i , ∀ i ∈ Ms, ∀ s ∈ S, (4)

M(1 − zs
i ) >

n∑
k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈ Ms,

∀ s ∈ S, (5)
xj ∈ {0, 1}, ∀ j ∈ N , (6)
zs

i ∈ {0, 1}, ∀ i ∈ Ms, ∀ s ∈ S, (7)
ys

ik ∈ {0, 1}, ∀ i, k ∈ Ms, ∀ s ∈ S, (8)

where M ∈ R is some large constant.
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In a manner similar to that shown in [6], we can formulate an equivalent
integer programming formulation as follows. First let vs : Ms × Ms �→ {0, 1}
and vs′

: Ms ×Ms �→ {0, 1} be respectively defined as

vs
ij :=

{
1, if (i, j) ∈ Es,

0, otherwise,
(9)

and

vs′

ij :=

{
1, if (i, j) exists in the jammed network of scenario s,
0, otherwise.

(10)

An equivalent integer program is then given by

(RCIP-1) min
n∑

k=1

ckxk, (11)

s.t.
ys

ij ≥ vs′

ij , ∀ i, j ∈ Ms, ∀ s ∈ S, (12)
ys

ij ≥ ys
iky

s
kj , k �= i, j; ∀ i, j ∈ Ms, ∀ s ∈ S, (13)

vs′

ij ≥ vs
ijz

s
jz

s
i , i �= j; ∀ i, j ∈ Ms, ∀ s ∈ S, (14)

m∑
j=1
j 	=i

ys
ij ≤ Ls

i , ∀ i ∈ Ms, ∀ s ∈ S, (15)

M(1 − zs
i ) >

n∑
k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈ Ms,

∀ s ∈ S, (16)
xj ∈ {0, 1}, ∀ j ∈ N , (17)
zs

i ∈ {0, 1}, ∀ i ∈ Ms, ∀ s ∈ S, (18)
ys

ij ∈ {0, 1} ∀ i, j ∈ Ms, ∀ s ∈ S, (19)
vs

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S, (20)

vs′

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S. (21)

We establish the equivalence of formulations rcip and rcip-1 in the following
theorem. The proof follows similarly to a result for the single scenario problem
in [6].

Theorem 1. If rcip has an optimal solution, then rcip-1 has an optimal solu-
tion. Furthermore, any optimal solution x∗ of the integer programming problem
rcip-1 is an optimal solution of the optimization problem rcip.

Proof. It is easy to see that if communication nodes i and j are reachable in the
jammed network of a given scenario s ∈ S, then ys

ij = 1 in rcip-1. Indeed if i
and j are reachable, then there exists a sequence of pairwise adjacent vertices

{(i0, i1), . . . , (im−1, im)}, (22)
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where i0 = i and im = j. By inducting along the vertices, we can establish the
fact that ys

i0,ik+1
= 1 for all k = 1, . . . ,m. To do this, first note that from (12)

we have that ys
ik,ik+1

= 1. Then if ys
i0,ik

= 1, then by (13) we have that

ys
i0,ik+1

≥ ys
i0,ik

ys
ik,ik+1

= 1. (23)

This completes the induction step. Thus far we have shown that

m∑
j=1
j 	=i

ys
ij ≥ connectivity index of node i.

Let F be the objective function in rcip-1 and rcip. Furthermore, suppose
(x∗, y∗) and (x̂∗, ŷ∗) represent optimal solutions for each formulation respec-
tively. Then so far, we have confirmed that

F (x∗) ≥ F (x̂∗). (24)

It is easy to verify that (x̂∗, ŷ∗) is feasible in rcip-1. This follows from the def-
inition of ys

ij in rcip and the fact that (x̂∗, ŷ∗) satisfies the feasibility constraints
in rcip. This proves the first statement of the theorem. Hence from rcip-1, we
have that

F (x∗) ≤ F (x̂∗). (25)

Therefore using (24) and (25), we have

F (x∗) = F (x̂∗). (26)

Now define ys such that

ys
ij := 1 ⇔ j is reachable from i when scenario s is jammed by x∗. (27)

Using the above results, we know that (x∗, ys) is feasible in rcip-1, and hence
optimal. Also from the construction of ys it follows that (x∗, ys) is feasible in
rcip. According to (26), we can conclude that x∗ is also optimal for rcip. Thus
the theorem is proved.

With the previous theorem, we have established a one-to-one correspondence
between the two formulations. By using some standard techniques, we can now
reformulate rcip-1 into the following integer linear program

(RCIP-2) min
n∑

k=1

ckxk (28)

s.t.
ys

ij ≥ vs′

ij , ∀ i, j = 1, . . . ,Ms, ∀ s ∈ S, (29)
ys

ij ≥ ys
ik + ys

kj − 1, k �= i, j; ∀ i, j ∈ Ms, ∀ s ∈ S, (30)

vs′

ij ≥ vs
ij + zs

j + zs
i − 2, i �= j; ∀ i, j ∈ Ms, ∀ s ∈ S, (31)
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m∑
j=1
j 	=i

ys
ij ≤ Ls

i , ∀ i ∈ Ms, ∀ s ∈ S, (32)

M(1 − zs
i ) >

n∑
k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ i ∈ Ms,

∀ s ∈ S, (33)
xj ∈ {0, 1}, ∀ j ∈ N , (34)
zs

i ∈ {0, 1}, ∀ i ∈ Ms, ∀ s ∈ S, (35)
ys

ij ∈ {0, 1} ∀ i, j ∈ Ms, ∀ s ∈ S, (36)
vs

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S, (37)

vs′

ij ∈ {0, 1}, ∀ i, j ∈ Ms, ∀ s ∈ S. (38)

Theorem 2. If rcip-1 has an optimal solution, then rcip-2 has an optimal
solution. Further, any optimal solution x∗ of rcip-2 is an optimal solution of
rcip-1.

Proof. For binary variables, notice that the following equivalence holds

ys
ij ≥ ys

iky
s
kj ⇔ ys

ij ≥ ys
ik + ys

kj − 1. (39)

Then the only other difference between the formulations are the two constraints:

vs′

ij = vs
ijz

s
jz

s
i (40)

vs′

ij ≥ vs
ij + zs

i + zs
j − 2 (41)

In a manner similar to (39) above, it is easy to verify that (40) implies (41).
Therefore the feasible region of rcip-2 includes the feasible region of rcip-1.
With this we have the first statement of the theorem.

As in the previous proof, let F represent the objective function in rcip-1 and
rcip-2 and let x∗ and x̂∗ represent respective optimal solutions. Then it follows
that

F (x∗) ≥ F (x̂∗). (42)

Let (x∗, ys∗, v
′s∗, zs∗) be an optimal solution for formulation rcip-2. Now, define

v
′′s∗ as follows:

v
′′s∗
ij :=

{
1, if vs

ij + zs∗
i + zs∗

j − 2 = 1,
0, otherwise.

(43)

Notice that if v
′s∗
ij ≥ v

′′s∗
ij then (x∗, ys∗, v

′′s∗, zs∗) is feasible in rcip-2 according
to constraint (29) (i.e., ys

ij ≥ v
′′s∗
ij ). Furthermore, (x∗, ys∗, v

′′s∗, zs∗) is optimal
in rcip-2 as the the objective value is F (x∗), which is optimal by definition.
Using (43), (v

′′s∗, zs∗) satisfies:

v
′′s∗
ij = vs

ijz
s∗
j z

s∗
i . (44)
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Using this we have that (x∗, ys∗, v
′′s∗, zs∗) is feasible for rcip-1. If x̂∗ is an

optimal solution of rcip-1 then it follows that

F (x̂∗) ≤ F (x∗) (45)

On the other hand, we have shown in (42) above, that

F (x∗) ≤ F (x̂∗). (46)

(45) and (46) together imply F (x1) = F (x∗). The last equality proves that x∗ is
an optimal solution of rcip-1. Thus, the theorem is proved.

Finally, we have the following theorem which establishes the equivalence between
the optimization problem rcip and the integer linear programming formulation
rcip-2 [6].

Theorem 3. If rcip has an optimal solution, then rcip-2 has an optimal solu-
tion. Moreover, any optimal solution of rcip-2 is an optimal solution of rcip.

Proof. The proof follows directly from Theorem 1 and Theorem 2.

2.2 Robust Node Covering Problem

What follows is a robust formulation of the optimal node covering problem
presented in wnjp. As before, we are given Ms, the set of nodes to be jammed.
We are also given the set of potential locations for the jamming devices, N . The
objective of the robust network covering problem (rncp) is to minimize
the number of jamming devices required to suppress communication on all of the
nodes for each of the scenarios. Recall from Equation (2) that a node in a given
scenario is said to be suppressed if the cumulative amount of energy received by
that node from all jamming devices exceeds some threshold level. Let ck, ds

ik,
and Cs

i be as defined previously. Also, recall that the decision variable xk := 1
if a jamming device is installed at location k ∈ N . With this, we can formulate
the rncp as follows.

(RNCP) min
n∑

k=1

ckxk, (47)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i , i = 1, 2, . . . ,ms, s = 1, 2, . . . , S, (48)

xk ∈ {0, 1}, k = 1, 2, . . . , n, (49)

The rncp is NP-hard which can be easily shown by a reduction from the
multidimensional knapsack problem [7]. With this in mind, we recognize
that solving large-scale instances is unreasonable, thus we must seek alterna-
tive solution methods. One possible way of doing this is accepting the fact that
jamming a sufficient percentage of the network nodes will suffice given the in-
tractability of the problem. We now examine the r-wnjp with the inclusion of
percentile constraints.
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Fig. 4. A graphical depiction of VaR and CVaR

3 Percentile Constraints

As demonstrated in the seminal paper on deterministic network jamming prob-
lems [6], it is often the case that a network can be sufficiently neutralized by
suppressing communication on a fraction of the total nodes. This can be accom-
plished by the inclusion of percentile constraints into a mathematical model. In
this section, we review two commonly used risk measures and derive formulations
of the rcip and a rncp.

3.1 Review of Value at Risk (VaR) and Conditional Value at Risk
(CVaR)

The first percentile constraint we examine is the simplest risk measure used in
optimization of robust systems and is known as the Value at Risk (VaR) measure
[8]. VaR provides an upper bound, or percentile on a given loss distribution. For
example, consider an application in which a constraint must be satisfied within
a specific confidence level α ∈ [0, 1]. Then the corresponding α-VaR value is
the lowest value ζ such that with probability α, the loss does not exceed ζ
[10]. In economic terms, VaR is simply the maximum amount at risk to be lost
from an investment. VaR is the most widely applied risk measure in stochastic
settings primarily because it is conceptually simple and easy to incorporate into a
mathematical model [6]. However with this ease of use come several complicating
factors as we will soon see. Some disadvantages of VaR are that the inclusion
of VaR constraints adds to the number of discrete variables in a problem. Also,
VaR is not a so-called coherent risk measure, implying among other things that
it is not sub-additive.

Another commonly applied risk measure is the so-called Conditional Value-
at-Risk (CVaR) developed by Rockafellar and Uryasev [13]. CVaR is a more
conservative measure of risk, defined as the expected loss under the condition
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that VaR is exceeded. A graphical representation of the relationship between
CVaR and VaR is shown in Figure 4. In order to define CVaR and Var we need
to determine the cumulative distribution function for a given decision vector
subject to some uncertainties. Suppose f(x, y) is a performance (or loss) function
associated with a decision vector x ∈ X ⊆ Rn, and a random vector y ∈ Rm

which is the uncertainties that may affect the performance. Assume that y is
governed by a probability measure P on a Borel set, say Y [6]. The loss f(x, y)
for each x ∈ X is a random variable having a distribution in R induced by y.
Then the probability of f(x, y) not exceeding some value ζ is defined as

ψ(x, ζ) := P{y|f(x, y) ≤ ζ}. (50)

By fixing x, the cumulative distribution function of the loss associated with the
decision x is thus given by ψ(x, ζ) [15].

Given the loss random variable f(x, y) and any α ∈ (0, 1), we can use equation
(50) to define α-VaR as

ζα(x) := min{ζ ∈ R : ψ(x, ζ) ≥ α}. (51)

From this we see the probability that the loss f(x, y) exceeds ζα(x) is 1 − α.
Using the definition above, CVaR is the conditional expectation that the loss
according to the decision vector x dominates ζα(x) [13]. Thus we have α-CVaR
denoted as φα(x) defined as

φα(x) := E{f(x, y)|f(x, y) ≥ ζα(x)}. (52)

In order to include CVaR and VaR constraints in optimization models we
must characterize ζα(x) and φα(x) in terms of a function Fα : X × R �→ R

defined by

Fα(x, ζ) := ζ +
1

(1 − α)
E{max {f(x, y) − ζ, 0}}. (53)

In the seminal paper on CVaR [13], Rockafellar and Uryasev prove that as
a function of ζ, Fα(x, ζ) is convex and continuously differentiable. Moreover,
they show that α-CVaR of the loss associated with any x ∈ X , i.e., φα(x), is
equal to the global minimum of Fα(x, ζ), over all ζ ∈ R. Further, if Aα(x) =
argminζ∈R Fα(x, ζ) is the set consisting of the values of ζ for which F is min-
imized, then Aα(x) is a non-empty, closed and bounded interval and ζα(x) is
the left endpoint of Aα(x). In particular, it is always the case that ζα(x) ∈
argminζ∈R Fα(x, ζ) and ψα(x) = Fα(x, ζα(x)) [13].

This result gives a linear optimization algorithm for computing α-CVaR. It
is a result of the convexity of Fα(x, ζ), that we are able to minimize CVaR for
x ∈ X without having to numerically calculate φα(x) for every x. This has been
shown by Rockafellar and Uryasev in [14]. Further, it has been shown in [14] that
for any probability threshold α and loss tolerance ω, that constraining φα(x) ≤ ω
is equivalent to constraining Fα(x, ζ) ≤ ω.
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3.2 Robust Jamming with Percentile Constraints

Now that we have theoretical groundwork for the VaR and CVaR percentile
measures, we develop formulations of the robust jamming problems incorporating
these risk constraints. We begin with the robust node covering problem.
Since we are given a set of possible network scenarios, we would like to develop
a formulation for the rncp in which the optimal solution will be guaranteed to
cover some predetermined fraction α ∈ (0, 1) of the network nodes, regardless of
the scenario realized. To do this, we can include α-VaR constraints in the rncp

as follows. First we define the surjection ρs : Ms �→ {0, 1} by

ρs
i :=

{
1, if node i is jammed in scenario s,
0, otherwise.

(54)

Then we can formulate the robust node covering problem with Value-at-
Risk constraints as

(RNCP-VaR) min
n∑

k=1

ckxk, (55)

s.t.
n∑

k=1

ds
ikxk ≥ Cs

i ρ
s
i , ∀ s ∈ S, ∀ i ∈ Ms, (56)

ms∑
i=1

ρs
i ≥ αms, ∀ s ∈ S, (57)

xk ∈ {0, 1}, ∀ k ∈ N , (58)
ρs

i ∈ {0, 1}, ∀ s ∈ S, ∀ i ∈ Ms, (59)

Notice that to include the VaR constraints an additional ms binary variables are
required for each scenario s ∈ S.

In a similar manner, we can incorporate VaR constraints into the rcip by
introducing ωs : Ms �→ {0, 1} as

ωs
i :=

{
1, connectivity index of node i is constrained on scenario s,
0, no requirement on connectivity index of node i.

(60)

Using this we have

(RCIP-VaR) min
n∑

k=1

ckxk (61)

s.t.

M(1 − zs
i ) >

n∑
k=1

ds
ikxk − Cs

i ≥ −Mzs
i , ∀ s ∈ S,

∀ i ∈ Ms, (62)
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ms∑
j=1
j 	=i

ys
ij ≤ Ls

iω
s
i +M(1 − ωs

i ), ∀ s ∈ S, ∀ i ∈ Ms, (63)

ms∑
j=1

ωs
j ≥ αms, ∀ s ∈ S, (64)

xk ∈ {0, 1}, ∀ k ∈ N , (65)
zs

i , ω
s
i ∈ {0, 1}, ∀ s ∈ S, ∀ i ∈ Ms, (66)

ys
ik ∈ {0, 1}, ∀ s ∈ S, ∀ i, k ∈ Ms, (67)

where M ∈ R is some large constant. As with the RNCP-VaR formulation, an
additional ms binary variables are required for each scenario s ∈ S. We will see
in the following section the dramatic effect that the inclusion of VaR constraints
has on the computability of optimal solutions.

In order to develop formulations incorporating CVaR constraints, we must
derive an appropriate loss function for each problem. We will begin with the
rncp. As in [6], we introduce the function fs : {0, 1}n ×Ms �→ R defined by

fs(x, i) := Cs
i −

n∑
j=1

xjd
s
ij . (68)

Given a decision vector x representing the placement of the jamming devices,
the loss function is defined as the difference between the energy required to jam
network node i, namely Cs

i , and the cumulative amount of energy received at
node i due to x over each scenario [6]. With this we can formulate the rncp

with CVaR constraints as follows.

(RNCP-CVaR) min
n∑

k=1

ckxk, (69)

s.t.

ζs +
1

(1 − α)ms

ms∑
i=1

max

{
Cs

min −
n∑

k=1

ds
ikxk − ζs, 0

}
≤ 0, ∀ s ∈ S, (70)

xk ∈ {0, 1}, ∀ k ∈ N , (71)
ζs ∈ R, ∀ s ∈ S. (72)

The CVaR constraint (70) implies that for the (1−α) ·100% of the worst (least)
covered nodes, the average value of f(x) is less than or equal to 0.

In a similar manner, we can formulate the robust connectivity index

problem with the addition of CVaR constraints. As before, we need to define
an appropriate loss function. We define the loss function f ′s for a network node i
in scenario s as the difference between the connectivity index of i and the maxi-
mum allowable connectivity index Ls

i which occurs as a result of the placement of
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the jamming devices according to x. That is, let f ′ : {0, 1}n × Ms �→ Z be
defined by

f ′s(x, i) :=
ms∑

j=1,j 	=i

ys
ij − Ls

i . (73)

With this, the cip-cvar formulation is given as follows.

(RCIP-CVaR) min
n∑

k=1

ckxk, (74)

s.t.

ζs +
1

(1 − α)ms

ms∑
i=1

max

⎧⎪⎪⎨⎪⎪⎩
ms∑
j=1
j 	=i

ys
ij − Ls

max − ζs, 0

⎫⎪⎪⎬⎪⎪⎭ ≤ 0, ∀ s ∈ S, (75)

xk ∈ {0, 1}, ∀ k ∈ N , (76)
ys

ik ∈ {0, 1}, ∀ s ∈ S, ∀ i, k ∈ Ms, (77)
ζs ∈ R, ∀ s ∈ S, (78)

where Ls
max is a maximum allowable connectivity index under scenario s which

occurs as a result of the placement of the jamming devices. The constraint on
CVaR provides that for the (1−α) ·100% of the worst cases, the average connec-
tivity index will not exceed Lmax. Notice that to include the CVaR constraint, we
only add real variables to the problem. The continuous nature of CVaR variables
versus the discrete nature of the VaR variables will explain the vast difference
in the computation times in the case studies presented in the following section.

4 Case Studies

In this section, we present some preliminary numerical results comparing the
performance and solution quality of the proposed formulations. The experiments
were performed on a PC equipped with a 1.4MHz Intel Pentium R 4 processor
with 1GB of RAM, working under the Microsoft Windows R XP SP2 oper-
ating system. The optimal solutions for the case studies were calculated using
CPLEX 9.0.

The problem set considered is relatively small, but provides some insights into
the solutions obtained using VaR and CVaR constraints. The network consists
of 20 nodes which must be jammed. For this problem, we consider five network
scenarios. We note here that the jamming thresholds of the nodes do not depend
upon the scenarios. As for the placement of the jamming devices, we use the
same approach as in [6], which consists of 36 potential locations located on the
vertices of a uniform grid placed over the region containing the network. One
network scenario showing the potential locations of the jamming devices is shown
in Figure 1. The remaining scenarios are depicted in Figure 2.
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4.1 Node Covering Problems

We begin by examining the robust node covering problem. For the first case
study, we consider the rncp with Value-at-Risk constraints. The loss threshold is
.9 which implies that the covering constraints must be satisfied for at least 90%
of the network nodes. The optimal solution requires 9 jamming devices. CPLEX
computed the solution for this problem in 18 seconds. The results of this instance
are provided in Table 1. The table shows the total jamming level as a percentage
of the jamming threshold received by each node in each scenario. Notice that all
but 7 (over all scenarios)were totally jammed; however, for those nodes not totally
jammed VaR constraints provide no guarantee that they will receive any jamming
energy whatsoever. Though not an important factor in this case, this fact could
potentially lead to problems in large-scale instances of the problem.

Next, we examine the same problem only replacing the VaR constraints with
Conditional Value-at-Risk constraints. As before, the loss threshold is .90, imply-
ing that the maximum allowable losses (uncovered nodes) exceeding VaR must
be no greater than 10%. Interestingly, the optimal solution in this case also re-
quires 9 jamming devices. However this solution was computed in 0.922 seconds.
The results from this study are shown in Table 2. Notice in this case that with the
same number of jamming devices all but 2 nodes (across all scenarios) were totally
jammed. We see that not only is this solution better in terms of the total number
of jammed nodes, but it was also computed in an order of magnitude less time.

Table 1. Network coverage with VaR constraints. The total jamming level (%) for
each scenario is shown.

Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 100 100 79.31
14 100 100 100 100 100
15 100 75.74 100 100 100
16 86.45 81.86 100 57.84 100
17 100 100 100 100 100
18 100 100 100 100 100
19 100 100 100 100 100
20 86.47 100 100 65.24 100
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Table 2. Network coverage with CVaR constraints. The total jamming level (%) for
each scenario is shown.

Node Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
1 100 100 100 100 100
2 100 100 100 100 100
3 100 100 100 100 100
4 100 100 100 100 100
5 100 100 100 100 100
6 100 100 100 100 100
7 100 100 100 100 100
8 100 100 100 100 100
9 100 100 100 100 100
10 100 100 100 100 100
11 100 100 100 100 100
12 100 100 100 100 100
13 100 100 97.25 100 100
14 100 100 100 100 100
15 100 100 100 100 100
16 100 100 100 93.93 100
17 100 100 100 100 100
18 100 100 100 100 100
19 100 100 100 100 100
20 100 100 100 100 100

4.2 Connectivity Index Problems

Now we discuss the results of the case study for the rscip with VaR and CVaR
constraints. In this case, both maximum connectivity indices are set to L = 3.
Again, the VaR threshold is .90. The optimal solution for this problem (without
percentile constraints) is shown in Figure 3. This solution requires 4 jamming

Fig. 5. The optimal solution with VaR constraints for the networks in Figure 2 is given
for the case when the maximum connectivity index is 3 for all nodes



Robust Wireless Network Jamming Problems 415

devices and was computed in 3 minutes, 58 seconds. The solution using VaR
constraints is shown in Figure 5. This solution also required 4 jamming devices,
but took 8 hours, 49 minutes, 43 seconds to compute. The same solution was
also obtained using CVaR constraints in a time comparable to the original for-
mulation. Even for this small example, we see that including VaR constraints
in an optimization model often leads to drastic increases in computation times.
This provides more evidence that using CVaR constraints instead is usually more
efficient and provides appropriate solutions.

5 Conclusion

In this chapter, we develop models for jamming communication networks under
uncertainty. This work extends prior work by the authors in which deterministic
cases of the problems were considered [4,6]. In particular, we have developed
formulations for jamming wireless networks when the exact topology of the un-
derlying network is unknown. We have used scenario based techniques which
provide robust solutions to the problems considered. Future areas of research in-
clude investigating the required number of scenarios to accurately model the sta-
tistical properties of the data. Due to the complexity of the problems considered,
heuristics and advanced cutting plane techniques should also be investigated.
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Abstract. The performance of a cooperative team depends on the views
that individual team members build of the environment in which they
are operating. Teams with many vehicles and sensors generate a large
amount of information from which to create those views. However, band-
width limitations typically prevent exhaustive sharing of this informa-
tion. As team size and information diversity grows, it becomes even
harder to provide agents with needed information within bandwidth
constraints, and it is impractical for members to maintain any detailed
information for every team mate. Building on previous token-based algo-
rithms, this chapter presents an approach for efficiently sharing informa-
tion in large teams. The key distinction from previous work is that this
approach models differences in how agents in the team value knowledge
and certainty about features. By allowing the tokens passed through the
network to passively estimate the value of certain types of information
to regions of the network, it is possible to improve token routing through
the use of local decision-theoretic models. We show that intelligent rout-
ing and stopping can increase the amount of locally useful information
received by team members while making more efficient use of agents’
communication resources.

1 Introduction

Emerging and envisioned systems involve hundreds or thousands of autonomous
platforms cooperating in an environment to achieve complex joint objec-
tives [6,1]. These systems will generate incredible volumes of sensor data that
need to be fused and disseminated to the platforms that need the produced
information. In a distributed system, getting sensor data to platforms that re-
quire it in a timely manner while respecting tight communication constraints
is a key problem. Algorithms to achieve this goal are critical to the success of
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teams of autonomous systems for applications ranging from tracking [6] to force
protection [1] to searching for lost hikers [2].

The problem of distributed data fusion is a broad one, where many success-
ful solutions have been developed for specific problem instances. The specific
problem addressed in this chapter is characterized by three properties: (1) large
numbers of agents generate a large volume of data about many features, (2)
each agent gains different value from information about different features, e.g.,
an agent will be more interested in features in its spatial vicinity, and (3) the
value an agent gains from information about a particular feature is not precisely
known to the rest of the team in advance. While previous solutions have dealt
with problems having one or two of these properties, using techniques ranging
from particle filters [7] to Bayesian filters [3] to decision theory [8], there are
no previous solutions that can handle distributed fusion problems with all three
characteristics.

In many situations, especially in heterogeneous teams, agents will require
information at varying levels of precision. In many approaches, this distinction
is lost altogether, and information is distributed equally among teammates in
this situation. However, this is highly inefficient when most of the agents do not
need high precision about most of the features. For instance, a ground robot
may require very extensive information about the position of nearby ground-
level obstacles, while an aerial robot might need only rough estimates of large
ground obstacles over a wide area. Notice that the agents that need particular
information are not always the same as those that sense it. In this case, the aerial
robot can use its perspective to get very detailed ground obstacle data over a
wide area. Often, very few agents will attribute high value to precise knowledge of
a particular feature, while equally few will be able to sense relevant information
about that feature. For example, in a large team in a large outdoor environment,
a few robots might be descending into a canyon. Information about the canyon,
which might only be visible to a few robots exploring the cliffs above, is extremely
valuable to this small subset. In situations like these, information must be shared
asymmetrically, i.e., not all agents will receive the same information or even the
same amount of information.

In this work, individual sensor readings are encapsulated into tokens and
“pushed” from agent to agent. Each agent decides whether to continue to for-
ward the token based on how useful to the team it believes the reading is. By
encapsulating sensor readings and utilizing unique identifiers, we can altogether
avoid the “double-counting” problem faced by other methods that condense or
splice belief representations. In addition, sensor readings are usually compact,
can be exchanged between agents with different filter algorithms, and are atomic
and unordered.

In previous work [9], if the agent chose to forward the token, it did so randomly.
In an asymmetric information environment this strategy is inefficient since, on
average, all agents will receive the same information regardless of their need for
that information. In this chapter, this inefficiency is addressed by building on
the following two key ideas.
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First, instead of considering the problem of whether to forward a token inde-
pendent of where to forward it, we can combine both into a decision problem.
Given a known cost of communication, we can estimate the value to the team
of either forwarding the token to some teammate or terminating it, and use
decision-theoretic methods to determine the optimal action. Previously received
tokens encapsulate observations that influence the probabilities for the decision
problem, e.g., receiving an observation indicating that a token was not useful
to the previous agent along with information about a particular feature may
indicate that it would not be useful to send another reading of the same feature
to that agent in the near future.

However, if an agent only considers the impact of its routing on neighbors,
its routing decisions can significantly impair communications throughout the
network by redirecting tokens to greedy, suboptimal paths. The second key idea
is to avoid making these myopic decisions about if and where to route the token
by requiring the agent that has the token to estimate the token’s impact on
agents in other parts of the network. Our key insight here is that the token itself
is an ideal carrier and accumulator for this information. If each token captures
information about the agents it visits, it might be possible for recipient agents
to make better estimates of the value of that information to the team. This,
in turn, has the potential to improve the routes that agents use for subsequent
tokens. However, in a large team, it is impractical for tokens to carry individual
information about each visited agent. Instead, we have the token itself contain
the aggregated estimate of the value to the team along a given path, calculated
and updated by each agent it visits. This way, the decisions made by an agent can
be based on summarized network statistics, while the estimate itself involves only
constant time computations at each agent. We demonstrate that these simple
estimates can improve the routing of tokens through a small worlds network
(in which each node has relatively few neighbors, but any pair of nodes can be
connected by a short path [10]) while maintaining or reducing the number of
communications required.

2 Problem Statement

This section formally describes the problem addressed by this chapter. Agents
A = {a1, . . . , am} are a team with a joint objective in a partially observable
domain. Decisions about actions by the agents are based on state variables
X(t) = {x1(t), . . . , xn(t)} that describe their environment. These state variables
can have any mathematical type (e.g., discrete, continuous, boolean) as long as
the following functions are defined appropriately.

Agents take readings with their sensors. These sensors are imperfect, thus
agents must use a filter to estimate a distribution over each of the state vari-
ables. Agent a has a probability distribution over X at time t of Pa(X(t), t).
While agents need not be homogeneous, it is assumed that each agent’s filter
can handle sensor readings from any other agent’s sensor. Communication be-
tween agents is assumed to be fixed cost and point-to-point, with agents able
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to communicate directly with a known, static subset of teammates at any time,
which are referred to as neighbors. No assumptions are made about the spatial
or informational association between agents, but the communications network
as a whole is assumed to have a small world property [10]. Denote by Na the set
of neighbors with which agent a can communicate. Let κ be the cost of a single
communication, and denote by Mt the cumulative number of communications
made before time t.

The performance of the team will be adversely affected whenever its mem-
bers’ estimates of the state of environment differ from the actual state of the
environment. The information difference of a single agent is ∆a(X,Pa(X(t), t))
(e.g., Kullback-Leibler divergence, or a similar measure). The bigger ∆a(•), the
higher the value of the divergence. However, depending on their current activi-
ties, individual agents’ performance will not be equally effected by divergence.
In general, they will only need to know precisely some values, while others can
be coarsely understood or not known at all. Specifically, the cost of ∆a(•) diver-
gence to an agent a at a particular time is: c(a,∆a(•)) → R. For example, if a
ground robot were traveling quickly across rugged terrain, the cost of divergence
for a state variable representing the position of a nearby obstacle might be quite
high, since it could potentially endanger the robot. The same variable might
have a low cost of divergence for an aerial robot, as it would pose no threat and
would not affect the decisions that the robot needed to make.

As agents receive sensor readings, they are integrated into Pa(X(t), t) via
some filter φ, P ′

a(X(t), t) = φ(Pa(X(t), t), s). The only assumption made about
the filter is that it is always better to have more sensor readings. Using the cost
of information divergence and filter equations, the value of that sensor reading
to a is

v(s, a) = c(a,∆a(X,P ′
a(X(t), t))) − c(a,∆a(X,Pa(X(t), t))) ,

i.e., the change in cost. We assume v(s, a) ≥ 0. In a situation where a team
of robots were estimating the location of a landmark, this value would be high
for a high precision readings that could significantly improve robots’ estimates.
In contrast, if the robots already knew the position of the landmark to a high
degree of accuracy, a noisy sensor reading would change very little, and so it
would map to a small value. The value of s to the whole team is

V (s) =
∑
a∈A

v(s, a) .

The objective is to pass sensor readings around the team such that the total cost
to the team is minimized after communication costs are considered:

min
∑
a∈A

c(a,∆a(X,Pa(X(t)))) + κ ·Mt . (1)

Although omitted in the above expression for clarity, this minimization cov-
ers the space of potential paths through the network of every sensor reading
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generated over the time interval. Note that agents cannot directly measure
∆a(X,Pa(X(t), t)). Instead, agents estimate v(s, a) directly, using their filters
and domain-specific knowledge of x. For example, aerial robots receiving ground
obstacle information would realistically be able to determine that such informa-
tion was of little value to them, regardless of the accuracy of their filter. Denote
this estimation function as v̂(s, a).

3 Algorithm

An agent cannot directly observe the value gained by its neighbors for a given
token. However, it can get observations of the value gained by previous tokens
of the same type that previously visited its neighbors. There also exists some
transition function that determines how the value at the neighbors decreases as
they receive tokens from various sources. An agent a is then faced with choosing
an action from the set of possible actions Ψ , defined as

Ψ =

{ ⋃
b∈Na

Ab

}⋃
S

where Ab is the action of forwarding the token to neighbor b, and S is the action
of stopping the token.

This token-based algorithm will be effective if tokens are delivered to team
members who gain information from the sensor reading on the token. Thus,
a policy for propagating a token around the team has two components: (1)
determining whether to further propagate the token and, if so, (2) to whom to
send the token.

The problem of estimating future value from only passively observed token
traffic is hard. For divergence-based value functions, the state transition function
upon receiving a token is often non-linear. In addition, there is the problem of
repeating visits. If an agent a receives a token from an agent b that has a history
of high-value, it is likely that sending a token of the same type to b will also
result in high value. However, a token that has already been sent to b will not
gain much additional value, as it will likely be revisiting nodes. Thus, we also
need to estimate the likelihood that agents in b’s neighborhood have already
received a token, and either converge to a tree-like structure or rapidly update
value estimates to compensate.

Given these issues, it is impractical to try and create an exact value or tran-
sition model based on the actual movement of tokens. We instead create a local
heuristic framework for solving this decision problem based on the following in-
sights: (1) the average value that an agent gains from tokens of a particular type
is distributed in a roughly Gaussian way, and the mean of this value can be
reasonably approximated, (2) we can represent a near-optimal solution to this
problem as a probability distribution over the discrete action space, (3) many
tokens move through the network, so at least a few will travel over each link,
and (4) while agent-token value will change over time, it will change slowly with
respect to the token movement through the network.



422 P. Velagapudi et al.

We have tokens of various types Γ = {T1, T2, . . . , T|Γ |}. Each type of token
contains data related to the corresponding state variable, i.e. T1 contains data
about x1, T2 about x2, and so forth. A token τ of type T ∈ Γ is defined as a
tuple containing three elements: τ =< s, b, E >, where s is the sensor reading
about xi, b is the previous agent visited, and E � ET

ab is the expected value of
sending a token of type T from agent a to its neighbor b. This is computed every
time a token is to be forwarded from an agent b to an agent a. We describe the
details of this process below.

Each agent a maintains a decision matrix Da, of dimension |Γ | × (|Na| + 1)
from which it samples its routing actions. Each column of the matrix represents
the possible actions that agent a has for a token. Columns 1 to |Na| are the
actions of routing to the neighbors of a, while column |Na| + 1 is the action
of stopping the token. Each row in the matrix represents a type of token from
set Γ . Element Da[T, ψ] is the probability of executing an action ψ ∈ Ψ when
given a token of type T ∈ Γ . Thus, each row of Da is a well-formed probability
distribution, satisfying

Da[T, ψ] ≥ 0 ∀ψ ∀T∑
ψ

Da[T, ψ] = 1 ∀T .

Each agent also maintains a value matrix Va of dimension |Γ | × (|Na| + 1) that
contains its value estimates for each potential routing action. Once again, each
column of the matrix is an action, and each row denotes a type of token. Element
Va[T, ψ] is the estimated value gained by the team if action ψ ∈ Ψ is performed
on a token of type T ∈ Γ .

When an agent a receives a token of type T ∈ Γ , it samples an action from the
distribution in the respective row of Da. If that action is to send to a neighbor
b, then the agent computes the expected value estimate

ET
ba = v̂(s, a) +

∑
c∈Na\{b}

(Da[T,Ac] · Va[T,Ac] − κ) . (2)

Intuitively, this is simply the expected value of sending a packet from agent
b to agent a, using an expectation estimate that incorporates a split-horizon.
This value is then stored in the token, and the selected action of forwarding is
performed. If the stopping action is selected, the token is simply deleted. While
this estimate does not include an explicit discount factor, the probabilities used
in the expectation are later constrained to be strictly less than one. In practice,
they effectively act as implicit discount factors.

3.1 Heuristic Updates of Da and Va

As tokens are received by an agent a ∈ A, Da and Va are updated based on
the incoming value estimates. We define two heuristic functions that govern this
behavior. First, a value update function λ is applied to incorporate the estimate
contained in a received token τ into the value matrix Va:
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Va ← λ(Va, τ.E) . (3)

Then, a decision update function π uses the updated value matrix to refine the
decision matrix Da:

Da ← π(Da, Va) . (4)

Value estimation (λ). Each agent maintains an estimate of the value of each type
of token, based on a simple adaptive learning rule. This estimate is calculated
using a learning rule of the form

Va[T,Ab]
λ←− (1 − α) · Va[T,Ab] + α · τ.E (5)

where α is the value learning factor, and τ.E is the expected value estimate in the
received token τ . This will compute a weighted average of the new measurement
and the current estimate. The larger the value of α, the more sensitive the value
estimation to noise. If α is too small then value estimation will not respond fast
enough to the system dynamics.

Routing (π). We define a heuristic for updating the decision matrix Da that
follows the intuition: If routing action ψ is n-times more useful than action
ψ′, then action ψ should be n-times more likely to occur than action ψ′. Here,
“usefulness” is represented by the value estimate. This intuition is embodied in
the simple update rule

wT
ψ = Va[T, ψ] + 1 − min

φ∈Ψ
Va[T, φ] (6)

Da[T, ψ] π←− (1 − ε) ·
wT

ψ∑
φ∈Ψ

wT
φ

+
ε

|Ψ | (7)

where wT
ψ is the weight of action ψ for a token of type T . Here, the minimum value

is subtracted and an offset of one is added to project the estimated value Va[T, ψ]
into the range [1,+∞). This conveniently allows the weight to be normalized to
obtain probabilities in the row of Da corresponding to T . A small constant factor
ε is used to ensure that every route is selected with some non-zero probability,
thus preventing situations where agents never receive tokens from a particular
neighbor.

Combining the two update rules, we formulate the token handling procedure
that each agent performs when receiving or generating a token. The resulting
algorithm is summarized in Algorithm 1.

4 Experimental Results

In this section, we describe an empirical evaluation of our approach, which we
refer to below as a proportional routing policy. A simulator was constructed to
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Algorithm 1. Handle token.
1: τ ← getToken()
2: ψ ∼ Da[τ.T ]
3: if (ψ �= S) then
4: Calculate Eτ.T

ba using Equation 2
5: end if
6: Va = λ(Va, τ.E)
7: Da = π(Da, Va)
8: if (ψ �= S) then
9: τ.E = Eτ.T

ba

10: send(τ )
11: else
12: delete(τ )
13: end if

evaluate this policy in a scenario of 500 agents performing 1-D target tracking.
This simple setup was sufficiently complex to test the basic dynamics of a large
team without introducing irrelevant effects that could obfuscate the performance
of the policy. The agents were connected by a small worlds communication net-
work, with an average of about 7 communications links to other agents. 1% of
the agents were equipped with simulated sensors that generated Gaussian esti-
mates of the target position every 5 time steps, emulating a discrete sampling
rate. Every agent maintained a local Kalman filter using a static motion model
with high process noise. As there was only one state variable, we used only one
type of token, i.e. |Γ | = 1. The target was initialized at a random Gaussian
position, and proceeded to follow a constant velocity trajectory for the duration
of the simulation. Each trial was run for 104 time steps. Results were averaged
over 10 trials for each condition.

Agent a’s need for an accurate estimate was represented by a weight Ca. The
distribution of information need over the team was bimodal, with a small pro-
portion of the agents having high need, N (106, 105), and the remainder having
low need, |N (0, 1)|. The objective was to minimize the weighted KL-divergence
of the team at the end of the simulation, defined as the following sum:

WD =
∑
a∈A

Ca ·∆a(X,Pa(X(t), t))

∣∣∣∣∣
t=104

Note that this is the first term in the original cost function in Equation 1,
applied using KL-divergence as the divergence metric. The value approximation
function used by the agents was the covariance of the agent’s filter multiplied by
the information need constant. By separating this from the communications cost,
it was possible to analyze the tradeoffs agents made between communications
and value under the test conditions.

Two policies were tested, the proportional routing policy, and a random rout-
ing policy. The random policy simply routed each token uniformly randomly for
a constant number of transmissions, then terminated it.
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Fig. 1. A comparison of the random and proportional routing policies over changing
interest levels

In the first experiment, the weighted divergence of the policies was studied as
the percentage of high-Ca and sensor-equipped agents was simultaneously varied.
For fair comparison, each trial of the proportional policy was matched with a trial
of the random policy which was adjusted such that policies had the same average
number of token communications. The resulting weighted divergence in Figure 1
shows that the proportional policy outperforms the random policy in situations
where both few agents are high-Ca and few are producing the relevant sensor
readings. Specifically, this was the case when the high-Ca and sensor-equipped
percentages were below 5%.

As a baseline, the random policy was tested to determine the effects of aver-
age token transmissions on weighted divergence. Figure 2 shows that the random
policy’s weighted divergence drops rapidly as the average number of communi-
cations increases at small numbers of transmissions, but flattens asymptotically
after about 10 transmissions. This suggests that there may not be much benefit
to tokens having extremely long lifetimes, as they will not improve the weighted
divergence any further.

Fig. 2. The effects of increasing token lifetime while using the random policy
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(a) Weighted divergence is logarithmically affected
by cost. (some outliers are not visible)

(b) Number of token transmissions decreases
log-sigmoidally as cost increases.

Fig. 3. Proportional routing policy behavior over changing communications cost

Next, an experiment was done to evaluate the effects of the communications
cost on the proportional policy. By varying the cost, the behavior of the policy
can be adjusted to prioritize decreasing communications over increasing value.
In Figure 3, communications cost proportionally impacts the average number of
communications, while the relationship with weighted divergence is less evident.
It is possible that the reduction of transmissions more directly impacts longer,
suboptimal routes before shorter, high-Ca ones, mitigating the effects of the cost
increase. This is consistent with the previous observation that token lifetimes
above some threshold provided diminishing returns in weighted divergence.

Closer examination of an individual trial, shown in Figure 4, provides insight
into the behavior of the algorithm. Weighted divergence steadily increased dur-
ing periods when high-Ca agents did not receive sensor readings, then dropped
sharply when readings were delivered. The spacing and magnitude of these ramps
suggest that the proportional routing policy reduces weighted divergence by be-
ing more consistent in its delivery of sensor readings to high-Ca agents.
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(a) The proportional policy begins routing to high-
Ca agents to reduce divergence sharply.

(b) Both policies use the same total number
of token transmissions, but the proportional
policy uses its transmissions more conserva-
tively.

Fig. 4. A comparison of the random and proportional routing policies over a single trial

These experiments show that the proportional policy is relatively more effec-
tive than the random policy when low percentages of the team are producing
and consuming sensor readings. This is a region where many current methods
are inefficient, hence, this situation exemplifies the type of problem for which
this algorithm was designed. The policy is also capable of dynamically adjust-
ing the number of communications as cost increases, while maintaining effective
routing. Finally, we see diminishing returns in value as token lifetimes are in-
creasing, suggesting that reasonably short lifetimes are sufficient to maintain low
weighted divergence over the team.

5 Related Work

Much previous work focuses on sending beliefs after filtering has occurred, which
requires precautions to be taken to avoid “double-counting”, in which multiple
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filter updates include information derived from the same sensor reading. One
frequent solution to this problem is imposing an acyclic structure over the net-
work [4] [5], which introduces scalability and dynamics issues. In contrast, this
work assumes updates are generated for individual sensor readings. By treating
each reading atomically, hashing mechanisms can trivially handle the problem
of receiving the same information multiple times by storing a history of token
hashes and ignoring revisiting tokens, while still allowing information to be for-
warded anonymously, which is useful in a large team [3]. These token histories
need only be temporary, as individual tokens have relatively short lifetimes. Note
that individual readings could be replaced by any other atomic method of infor-
mation sharing, such as exchanging particles between team members’ particle
filters [7].

Token-based methods have been shown to be effective in large-scale team
coordination tasks, including the task of information sharing [12]. Using only
information pushed forward in tokens, Xu demonstrates that adaptive prob-
abilistic routing can improve team performance [11]. However, these previous
approaches to information sharing do not explore token termination conditions,
and require tokens or agents to store path histories over their lifetime. Other
related methods include a dynamic optimization-based strategy for computing
token lifetimes under assumptions of random routing with peer- to-peer commu-
nication [9], and an adaptive routing method that uses learning rules similar to
Equation 5 to self-optimize routing over dynamic networks.

6 Conclusions

This chapter presented a novel approach to sharing information in large teams
using tokens. In contrast to previous work, it was assumed that members of the
team had vastly different needs for the information generated by other agents
in the team. In our experiments, this need was concentrated among a small
percentage of the team. Under these situations, this approach adjusts local rout-
ing and stopping probabilities to improve information sharing performance over
the team. Empirical results demonstrate this efficiency in a simple simulated
tracking problem despite the sparse information agents had with which to make
routing decisions.

The experiments also show a number of interesting properties of this approach
and the problem of information sharing in teams with asymmetric need. One
surprise was the unexpectedly high performance of a random routing policy in
reducing divergence, even in highly asymmetric situations. Analytically, it may
be possible to bound the optimality of random routing in this problem, and use it
as a baseline for comparing other techniques. In contrast, this approach seemed
to lose efficiency when faced with large numbers of interested agents. However,
hybrid approaches might be possible within this token framework that can
use the proportional routing heuristic when routing information destined for a
small subset of agents in a team, then switch to a different heuristic when routing
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more commonly desired information, all using the same estimation methods. If
this framework can be extended to work across a wider range, it will provide a
lightweight, dynamic approach to sharing information in teams with asymmetric
information needs.
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Abstract. The increasing use of unmanned vehicles in civilian
(metropolitan traffic monitoring, rapid assessment of disaster areas)
and military (reconnaissance, target identification, tracking and engage-
ment) domains has driven critical requirements for the interoperabil-
ity of manned-unmanned systems. In this work, we provide the design
and the development of a flight mission simulator structured for joint
real-time simulation across manned-unmanned fleets, and the mission
control center. The hardware structure within the network simulator is
tailored to mimic the distributed nature of each of the vehicle’s pro-
cessors and communication modules. Open-source flight simulation soft-
ware, FlightGear, is modified for networked operations and it is used as
the 3D visualization element for the pilot and the mission controls. The
UAV dynamics and low-level control algorithms are embedded within the
xPC target computers. Equipped with 3D flight simulation displays and
touch-screen C2 interface at the desktop pilot level, the platform also
allows us to rapidly prototype and test pilot-unmanned fleet supervisory
control and pursuit-evasion game designs. In addition, the unique design
enables seamless integration of real unmanned air vehicles within a sim-
ulated scenario. Hardware-in-the-loop testing of network bus compatible
mission computers and avionics systems provides us with validation of
the C2 architectures and the hardware designs on a realistic lab-scale
platform before the actual flight experiments.

1 Introduction

During the last decade, Unmanned Air Vehicles (UAVs) have enjoyed practical
success at scenarios involving reconnaissance, surveillance and active tracking.
Independent of the role of the unmanned system (ranging from support scenarios
to scenarios that are only achievable by customized unmanned vehicles), there
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are two major drivers that make such systems favorable over manned vehicles.
These are the physical working conditions (such as remote locations with harsh
terrain or chemical or radioactive spill) and the scenario constraints (such as
uninterrupted day long service) that make the operation of manned systems or
vehicles impractical, risky or just cost ineffective.

With the ever growing involvement of UAVs in complex application areas
(such as dynamically changing urban rescue operations), the types and the num-
ber of tasks easily outgrow one vehicle’s (or a set of UAV operators’ command
and control) limited capabilities and thus require a fleet of UAVs to work au-
tonomously in a collaborative fashion to achieve desired operational goals. In ad-
dition, the increasing use of unmanned vehicles in civilian and military airspace
domains has driven critical requirements for the interoperability of manned-
unmanned systems – rather this be for pure collision-avoidance purposes (sense-
avoid) or for achieving common mission goals that require significant coordinated
actions (mark-image) [7].

In order to benefit from all of these growing capabilities of UAVs, it is essential
to develop new control structures and algorithms that allow manned-unmanned
system interoperability [4] as abstracted in Figure 1. In addition, the increasing
complexities in missions and the safety-critical requirements on the avionics
systems demand that all the control and coordination algorithms, the avionics
hardware and the vehicles be tested on realistic testbeds [2,9] before using them
in the real mission scenarios [6,19].

Towards this end, an experimental network mission simulator, as shown in
Figure 2, is developed for joint real-time simulation across manned-unmanned
fleets, and the mission control center. The in-house developed mission simulator
allows rapid prototyping, software-in-the-loop (SIL) and hardware-in-the-loop
(HIL) testing of various coordination algorithms among manned and unmanned
fleets, and the mission control center. Open-source flight simulation software,
FlightGear [16], is modified for networked operations and it is used as the 3D
visualization element for the pilot and the mission controls. The manned vehicle
dynamics, UAV dynamics and low-level control algorithms are embedded within
the xPC computers using Matlab/Simulink rapid prototyping technique for real-
time execution of the mathematical models and control algorithms. Equipped
with touch-screen C2 interface at the pilot station, the platform also allows us to
rapidly prototype and test pilot-unmanned fleet supervisory control designs [3].

The mission simulator is structured around two distinct bus systems repre-
sented by the visualization and the mission layer. In addition, the hardware
structure within the network simulator is tailored to mimic the distributed na-
ture of each of the vehicle’s processors and communication modules. This allows
rapid integration of new hardware elements to both the simulation units, and
to the simulation scenario. As such, hardware-in-the-loop testing of network bus
compatible in-house developed micro-avionics systems [14] is carried out at flight
controls and mission planning levels. One distinct feature of the mission simu-
lator is the ability to integrate real unmanned air or ground vehicles within the
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Fig. 1. An overview of the distributed command-control (C2) problem in which a
mission is carried out by human operators, and unmanned-manned vehicles. All entities,
both humans and vehicles, can be considered as members of a cooperative team working
towards accomplishing a common goal. From a software engineering point of view,
entities carry common software objects, such as human operators (who can be airborne
co-pilots or commanders in the mission control center) can be represented by Command
and Control Interfaces (C2I). This functional commonality is carried out to the mission
simulator design requirements.

simulation scenario coupled with virtual unmanned and manned vehicles. This
allows in-flight testing of vehicles in simulated scenarios.

However these capabilities require data exchange across not only similar units
(UAVs), but also across dissimilar units (ground stations, manned vehicles).
In addition, the communication and data distribution in the mission layer of
the cooperative unmanned-manned vehicle network is complicated by mission-
driven information flow requirements. While achieving fleet-level coordination,
the unmanned-manned airborne fleet network must also remain in communica-
tion with other non-fleet entities such as commander units as well as ground
stations, information nodes [13] which forward requests and enhance situational
awareness.

Figure 3 illustrates the cooperative unmanned-manned vehicle network from
a communication and information distribution perspective. Each entity within
this network, such as unmanned-manned vehicle or ground asset, has several
local information sources such as sensors, embedded-computers or C2 interfaces.
This information may be purely payload data about the environment or could
involve the states of the vehicle. In addition, this information can be propagated
to the network for data fusion, or this data set may be commands or mission
related requests that need to be delivered to an individual vehicle or a group of
vehicles in the network in order to achieve the predefined mission collaboratively.
Because of such mission-driven information flow requirements, a standalone
and multi-functional module is needed for communication and information
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Fig. 2. General architecture of Cooperative Manned-Unmanned Network Simulator

distribution with other entities in the overall network. Driven by this need, we
have developed a standardized Command and Information Distribution Module
(CID) as a part of the mission simulator hardware. Figure 4 shows the work-
ing concept diagram of this module. The module has several communication
interfaces including Ethernet, CAN and serial link allowing rapid integration of a
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Fig. 3. A conceptual view of the Communication and Information Distribution Prob-
lem shows vehicles as nodes, embedded computers and sensors as local information
sources, and communication modules

Fig. 4. Working Concept of the Communication and Information Distribution Module

variety of additional piloted simulation vehicles, virtual or real unmanned vehi-
cles to the existing simulation both at the visualization and the mission layer.

The organization of this work is as follows: In Section 2, we present the general
design and the architecture of the mission simulator. First, the unique elements
of the visualization layer: simulation control center and the networked Flight
Gear implementation is introduced. Second, the CID module which plays an
important role within the mission layer is described. In Section 3, the manned
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simulator and its software/hardware elements are introduced. In this section,
as a part of C2 implementations, the prototype of a Human-Machine-Interface
display system is described. These units not only serves as the primary flight
display, but also serves as airborne (in manned simulation) pilot/operator su-
pervisory control device for unmanned air vehicle fleets in coordinated missions.
In Section 4, unmanned vehicle simulator components including virtual and real
vehicles are illustrated. In this section, two distinct mission simulator experi-
ments are described. The first experiment involves hardware-in-the-loop test-
ing of a fleet level autonomous target/task assignment algorithm implemented
across a UAV network [10]. The second experiment is software-in-the-loop testing
of real-time probabilistic trajectory planning [11,12] and mode-based nonlinear
control [18] algorithms for a UAV operating within a city-like complex and dense
environment. The chapter concludes with the on-going research activities aimed
at extending the capabilities of the mission simulator.

2 General Design and Architecture of the Simulator

The general design of the mission simulator is structured around two layers: the
visualization and mission layer. These two layers represent two different data
bus structures and data flows. As seen in Figure 2, simulation elements such as
piloted vehicle simulator, unmanned vehicles, real unmanned vehicles (ground
vehicles and micro-UAVs), ground stations and the simulation control computers
carry distinct wired and wireless connections to these two data layers.

Visualization Layer entails the passage of the visualization and simulation
related data packets (i.e. packets which result in a coherent visual picture of
the whole scenario to the operators and the simulator pilot) across the wired
ethernet network using UDP packets. The visualization layer uses open-source
FlightGear flight simulator packet structure to allow direct integration to the
flight simulator visualization elements. These visualization elements include the
three panel environment display for the pilot of the manned simulator (as shown
in Figure 5) and the pilot/operator panel for tactical/simulation displays. The
Mission Layer is accomplished via wireless communications (serial and Ethernet)
across each unique entity existing within the simulation using predefined data
packet numbers and structures. Mission critical data such as target assignments,
payload readings, commands and requests are delivered through this wireless
mission layer link.

The reason for this layered approach stems from the need to differentiate
the real operational wireless communication links in mission scenarios from the
wired communication links to obtain visualization and simulation information
for manned vehicle simulator and the operators. This break-up of layers not
only represents a realistic mission implementation, but also allows HIL testing
and analysis of wireless network structures (point-to-point, point-to-multi point,
ad-hoc) that mimic the real operational communication links as it would be im-
plemented and experienced in a real mission. The modular design of the mission
simulator elements is tailored according to the need for joint real-time simulation
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Fig. 5. Multiple monitor visualization as seen by the pilot during a joint mission with
unmanned helicopters

across groups of manned and unmanned fleets, and the mission control centers.
As such, the hardware structure within the network simulator is tailored to
mimic the distributed nature of each of the vehicle’s processors and communi-
cation modules. Note that the layered bus approach to the visualization and the
mission layer allows direct integration of new manned and unmanned simulation
elements within the scenario once linked to the corresponding wired and wireless
buses.

In the next two subsection, we will review the structure of the simulation
control center and basic building blocks of the visualization and the mission lay-
ers. These are the FlightGear software implementation used in the visualization
layer, and the communication and information distribution modules used in the
mission layer. In the two sections to follow the hardware and software elements
for both manned and unmanned vehicle simulations, and the C2 implementa-
tions in typical mission scenarios, will be discussed.

2.1 Simulation Control Center and FlightGear: Visual Layer
Implementation

Network simulator visualization requires integration of components with differ-
ent specific purposes. Visualization includes cockpit simulation with multiple
displays and a tactical interface for visualizing simulation objects on a 2D map.
Integration of these components requires multiple node communication over the
Ethernet network. Underlying network packet structure is the key point of the
communication. Well defined packet structure of the network also enables the
expendability of visualization with any additional visualization component such
as a 3D projected visualization or another display system for piloted simulation.
For this reason, an open source flight simulator with networked operation option,
FlightGear and its OpenSceneGraph visualization element, is used for both sim-
ulation and visualization of the mission scenario. The packet structure within the
visualization layer follows the FlightGear native data format identified by three
distinct packet structures: Dynamic States Packet (D), FlightGear Multiplayer
Packet (M) and Flight Dynamics Packet (FDM). D packets represent vehicle
dynamic states such as position, orientation and velocity information supplied
by the computers running the mathematical model of each of the manned and
unmanned vehicles. M packets include information about position, orientation,
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velocity and the model of aerial vehicle. FDM packets include generic type and
configuration information about the aerial or ground vehicles.

The simulation and the visualization is controlled by the simulation control
center consisting of three elements: simulation operator computer, world com-
puter and the FlightGear server:

Operator Panel is used for configuring the network setting of the simulator.
All information about the simulation (numbers of manned-unmanned computers,
IP addresses of the machines) are input from this GUI.

World Computer is used for controlling of the packet traffic of the visual-
ization layer. Basically, an in-house developed program called State Sender runs
on this computer and makes packet conversion from Dynamic (D) packet to the
Multiplayer (M) or Flight Dynamic Model (FDM) packets. M and FDM pack-
ets are needed for visualization of the simulation. State Sender, being an add-on
module to FlightGear, basically is a piece of C++ code that takes dynamic states
information of a vehicle or any other simulation object and when it receives such
information it makes the packet conversion. All the unmanned-manned comput-
ers which run the mathematical models of the vehicles (xPC computers) in the
simulator send their states as Dynamic (D) packet to these programs at a spe-
cific frequency and State Sender programs convert the dynamic (D) packet to
the multiplayer (P) packet and send them to the FlightGear server and the 3D
Multi-monitor visualization systems of manned simulator. In addition to that,
for the manned simulator, the State Sender program makes a dynamic (D) to
Flight Dynamic Model (FDM) packet conversion and sends the FDM packets
to the 3D Multi-monitor visualization system for cockpit visualization of the
manned simulator.

FlightGear Server (fg server) is “an Internet and LAN based multiplayer
server for the FlightGear Project. It provides services to link pilots together so
they can see each other when flying”1. Fg server is designed for communicating
with FlightGear only. However, if the data structures of FlightGear are imple-
mented, other programs may send packets to, and thus talk with fg server. Since
both FlightGear and fg server projects are open-source projects, group simula-
tion of aerial and ground vehicles can be accomplished easily with a separate
program that carries the main data structures as implemented in FlightGear. Fg
server in mission simulator runs in a separate computer, listening for incoming
connections. The protocol for exchanging packets in fg server is UDP. Through
the Fg server not only we can create a complete list and picture of all the simula-
tion elements within the mission, but also generate tactical display information
to the pilot/operator and the simulation controllers by linking to the server.

2.2 Communication and Information Distribution Module (CID):
Mission Layer Implementation

CID module is an in-house developed communication and information distri-
bution module for heterogenous teams of unmanned and manned vehicles, and

1 http://fgms.sourceforge.net/
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Fig. 6. Basic CID module structure: thread interactions and shared data

ground assets. The module implements a customized routing algorithm that
takes the data from these different communication interfaces and routes to the
destination addresses according to the real-time updated routing tables. CID
module’s objective is to gather control messages which are sent by other enti-
ties in the network from control channels, and serve the requests or commands
according to the control message types. Figure 4 shows the working concept
diagram of this module.

The module has several communication interfaces including Ethernet, CAN
and serial link. Our first hardware implementation of the module is based on
a PC-104 structured card stack which includes ethernet, CAN and serial links.
Currently, the module code is being ported to run on Gumstix hardware mod-
ules to result in considerable weight advantage as a stand-alone unit. Each local
processor unit of a vehicle and the remote CID modules of other vehicles are
connected to the module with both data and control channels. Data about envi-
ronment, states, or other specific information are gathered from local units and
distributed to specific destinations via data channels. Also, routing of informa-
tion flow is changed according to the commands, requests and special messages
taken via the control channels.
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The software CID module is written in C++ and boost thread library was used
for thread management [8,17]. General architecture of the software was developed
as modular as possible by using a highly object oriented design methodology.
Figure 7 illustrates an overview of the class hierarchy used in the software. Since
there are numerous threads need to be synchronized during execution of the
code, classical thread synchronization problems were encountered (producers-
consumers and readers-writers problems). Monitor concept with Mesa semantic
is utilized in order to solve these classic problems.

Functional Semantics. The operation of the CID module can be separated
into four systems: configuring, controlling, forwarding and transporting infor-
mation systems. There are three main packet types as depicted in Figure 7 Use
Case diagram: configuration packet, control packet, and data packet. First of
all, the CID module has to be configured according to special configuration data
which includes the name of the communication interfaces, parameters, address
of units and the other CID modules in the networks. When the module turns
on, Configure System handles all operations related with initialization of connec-
tion tables, creation of controller objects and all other control communication
interfaces.

Basically, the CID module operates in two different planes: the control plane,
and forward plane. Parsing of control messages taken via control channels and
controlling of the data channels are handled in the control plane. Control In-
formation use case handles operation related with parsing of control messages.
One controller objects running in this plane manages the preparation of the data
communication interface object and the forwarder objects according to control
messages. This object can control the information flow by updating routing
tables of forwarder objects. Forwarding plane is responsible for the continu-
ous or periodic routing of the data taken via data channel. Forwarding Infor-
mation use case has several subtasks related with updating of routing table,
periodic and continuous routing operations. There may be some data routing
requests from other clients, and in this case controller object can update the
routing table by using routines of forwarding plane. Routing of information may
be requested as continuously or periodically. These two planes heavily use low
level functions which are implemented in Transport Information use case and
these two planes perform the actual process of sending and receiving a packet
received on a logical interface to an outbound logical interface. Transport In-
formation use case includes operations about configuration of several physi-
cal communication interfaces including CAN, Ethernet and Serial. Low level
send and receive operations are implemented by functions in this use case. The
overall module software implementation is tested under several cases transmit-
ting data between not only similar units, but also dissimilar units. The specific
test cases used for inter-vehicle and intra-team data include ad-hoc network
structures resulting from Ground Station and Mission Coordination Computer
connections.
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3 Manned Vehicle Simulation

Manned vehicle simulation system as shown in Figure 8 consists of a generic pilot
station and a dedicated computer rack. The generic pilot station is equipped
with both standard helicopter (cyclic, pedal, collective, throttle) and aircraft
(thrust, flap) pilot input devices. In addition, the pilot could employ a four
degrees of freedom joystick as a side stick. The pilot console includes a selection
of switches (such as engine, autopilot, stability augmentation system (SAS) on-
off) and warning lights (such as altitude, engine failure) that can be configured
for different operational needs and conditions. This is illustrated in Figure 9. The
pilot station is equipped with a three-monitor visualization system that provides
scenery information of the flight scenario from FlightGear. The computer rack
system includes a set of dual bus (CAN and ethernet) connected computers
for pilot input A/D conversion, real-time execution of the vehicle mathematical
model, mission and flight controls, and C2 pilot/operator interface. Following
the schematic in Figure 8, we present in detail each of the elements within the
pilot station, the computer rack system, and their respective working schemes.

3D Multi-monitor Visualization. Multiple Display System enables 3D cock-
pit simulation in FlightGear environment. Multiple monitor configurations re-
quire three separate personal computers to be connected with each other through
the Ethernet network. Multiple display synchronization property of FlightGear
provides flight dynamics (rather this be native to FlightGear or external driven
by a computer) exchange between two or more FlightGear programs running in

Fig. 8. Components of the manned simulation
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Fig. 9. The pilot panel and the connection of the pilot controls to the simulator

different computers. Computers used for multiple display system are equipped
with high capacity graphics cards, and these cards are connected to wide screen
LCD monitors. Each of these monitors are configured and located to certain po-
sitions for establishing realistic cockpit simulation. In cockpit simulation mode,
two computers run their simulation with the FDM packets that they receive
from the main computer which is accepted to be the central (or main) com-
puter. Specifically for the piloted simulator, central computer running Flight-
Gear (rather this be in native or external dynamics mode) captures the flight
dynamics of the current aircraft, and sends them to the left and right computer
over the visualization layer.

xPC Computer–Dynamics. The mission simulator has the capability of simu-
lating a wide-range of vehicle dynamics including both FlightGear’s built-in and
in-house developed aircrafts’ and helicopters’ models. The Mathworks’s xPC
Target product is used for real-time simulation of different vehicle dynamics
and testing of different control algorithms. Therefore, dynamic models of several
types of air vehicles such as helicopters (EC-120, Vario) and fighter aircrafts (F-
16, F-4) have been developed in Matlab/Simulink environment, and then these
models are compiled into C code via Real-Time Workshop. Finally, the automat-
ically generated C code is downloaded to a low-cost computer, named as xPC
Computer, running the xPC Target real-time kernel via Ethernet connection.

One of the dynamic models that is frequently used in the mission simulator is
a high fidelity model of an F-16 aircraft from a NASA report [15]. This model in-
cludes a six degrees of freedom full envelope flight dynamics, implements engine
and atmosphere models, and has four direct input channels of an aircraft; eleva-
tor, aileron, rudder and throttle. In addition, the model is enhanced to include
actuator saturations and rate limitations.

This model can also be used as a good representation of flight dynamics of an
unmanned combat air vehicle. By designing reference tracking control laws, it is
possible to autonomously fly agile maneuvers with the aircraft. In general it is a
very challenging task to describe general motion of an unmanned air vehicle, and
design a single control law that handles the complete reference tracking needs
for such maneuvers. From the inspection of the well known smooth aerobatic
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Fig. 10. Mode Based Agile Maneuvering

maneuvers and more complex combat maneuvers, we see that this task can be
quantized by decomposing general maneuvers to maneuver modes. Via these
modes both the system dynamics and the control task is simplified. Using these
modes, we have developed a structured finite state automaton that spans the
full-flight-envelope maneuvers and designed nonlinear sliding manifold control
system to the maneuver sequences resulting from this automaton [18]. Figure 10
represents the agile maneuverability of this control approach, flying the F-16
autonomously through a series of complex combat maneuvers.

xPC Computer/Pilot Input, Control Panel A/D IO. This xPC computer
employs a set of National Instruments A/D input-output card, CAN interface
card, and in-house built multiplexers. As illustrated in Figure 9, the control
inputs from the pilot including flight controls and the console come in the form
of both analog and digital signals. The signals are converted to CAN messages
through this unit. Later, the pilot input CAN messages are fed back to the xPC
computer executing the dynamic model.

xPC Computer/Controller. This computer provides the ability to implement
the controller (stability augmentation or autopilot algorithm) of the manned
vehicle external to the dynamic model. Due to its fast development and rich
built-in blocks, Matlab/Simulink environment is chosen for development of the
controller algorithms.
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Fig. 11. Event-Driven Decision Support Architecture

Mission Coordination Computer. (MCC) is used for coordination between
other manned-unmanned vehicles in the fleet when performing a mission col-
laboratively. Higher level planning and coordination algorithms are run on this
computer. Specific usage of the MCC, which is also an integral component of
the unmanned vehicles will be described in the next section. One of the unique
applications associated with the mission simulator is development of new human-
machine-interface designs that provide unmanned vehicle group command and
control capability to the pilot/operator screens. An extension of the primary
flight displays with this capability is illustrated in the next subsection.

3.1 C2 Application: Expansion of the Human-Machine-Interface
(HMI) to Decision-Support System for Manned and Unmanned
Fleets

Distributed command and control of vehicles in a dynamically changing environ-
ment is a challenging problem as the number of the vehicles and complexity of the
mission increases. In order to solve this challenging problem, one approach that
can be used is to change the role of manned vehicle from low level commanding
of unmanned vehicle to supervisory commanding [3]. However, it is not always
feasible to apply basic supervisory command and control for a large number
of unmanned vehicles performing complex missions with strict time constraint.
Therefore, a decision support or autonomous decision-making system can be de-
signed for the commander that decrease the workload. Figure 11 illustrates the
overall process of such a decision making support system.
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Fig. 12. Primary Flight Display of the manned simulation

A key part of such an event-driven process interaction hinges on the UAVs
to autonomously coordinate the target/task assignments and distributions. The
experimental illustration of this within the mission simulator will be illustrated
in the next section. However, it is important to note that supervisory control
and interruption is desired in all mission critical phases. Towards this goal, we
have developed a Human-Machine-Interface display systems which allow this
supervisory control capability over unmanned vehicle networks over the manned
simulation platform. In addition to showing manned vehicle flight information
data, this computer also tracks and monitors the action of unmanned vehicle
fleet within the joint mission.

On the primary pilot interface flight and mission information is displayed
in 5 separate screens. These screens are MAP, Primary Flight Display (PFD),
Synthetic Vision System (SVS), Engine Display Unit (EDU), and Health and
Usage Monitoring System (HUMS). The primary display functionality is illus-
trated in Figure 12. SVS [1,5] screen provides significant situational awareness
with 3D view of terrain and aerial vehicles. A view of SVS system is shown in
Figure 14.

In addition, a C2 pilot/operator interface module is designed as a GUI based
program that interacts with the pilot. This module can be seen in Figure 13.
Basically, this interface takes dynamic model packets of each vehicle and other
commands from different components of network simulator as inputs, and then
serves this information on a 2D map to the pilot as basic as possible. This
interface mainly has two parts; a 2D map which shows other vehicles, way
points, trails, and a command panel that contains several commands like as-
signing a vehicle for a specific task. It has capability of interactive assign-
ment of next waypoint by simply ”touching” an aerial vehicle in view of the
screen.
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Fig. 13. Command and Control Interface GUI

Fig. 14. SVS screen view

The display hardware consists of a PC with touchscreen LCD displays. The
PC has TCP port for intercommunication between the display and the mission
simulator, and USB ports are used for various data loadings such as streaming
video, terrain databases, and data recordings such as flight data. The touchscreen
input capability provides smooth operator interfacing and a flexible software de-
sign environment. The interface software consists of separately developed graph-
ical objects tightly coupled with each other based on a state machine. Every
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object in the object oriented hierarchy is run by a state machine. The operator
can navigate though screens by an adaptive menu, which changes its navigation
button positions and functions.

Current work on the interfaces is aimed at a) increasing ergonomics of tactical
operations and navigational experience by means of an 3D artificial tunnel-in-
the-sky which has real-time reshaping capability for pursuit-evasion and navi-
gation scenarios, and b) enabling voice control commands for the C2 interfaces
across manned-unmanned vehicle joint operations.

4 Unmanned Vehicle Simulation

Unmanned vehicle simulation integration within the mission simulator can be
achieved through virtual vehicles and real unmanned vehicles. The virtual un-
manned simulation is run on a rack of standard PCs which has four compo-
nents: mission coordination computer (MCC), xPC computer/controller, xPC
computer/dynamics, and CID module. As there are two types of informa-
tion flow in the network, namely mission information and visualization in-
formation, there are two different communication buses: CAN and Ethernet
bus. CAN bus is used for mission related information flow, while Ethernet is
used for data flow to the visualization system. The components of the vir-
tual unmanned vehicle (VUV) simulation is shown in the Figure 15. The
real unmanned vehicles connect to the mission layer through their own CID
module and vehicle information data is transported to the visualization layer
through the mission simulator’s own dedicated CID module which collects data
from micro-air or ground vehicles naturally flying or driving outside the lab
environment.

In the next subsections, we review the C2 mission algorithmic implementations
on both the virtual and the real unmanned vehicles.

4.1 Virtual Unmanned Air Vehicle

The simulation rack structure of the virtual unmanned air vehicle is identical to
the manned system except for the pilot controls and the C2 interface computers.
The system consists of four computers including the CID module. Each individ-
ual vehicle has to use CID module in order to join the mission network. This
CID module implements a simple communication protocol that is used among
components of the network for communication and information distribution.
xPC Computer/Dynamics is used for executing the dynamics algorithm of
the unmanned vehicle in real-time, while the control computer provides the
closed-loop control and command functionality. Mission Coordination Computer
is used for coordination between other manned-unmanned vehicles in the fleet
when performing a mission collaboratively. The program structure that is imple-
mented on MCC, has three sub modules; communication module, flight mission
module, and task module. As shown in Figure 16, the Flight Mission Module
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Fig. 15. Components of Virtual Unmanned Vehicle Simulation

Fig. 16. Mission Coordination Computer Program Architecture

is responsible for data flow control and sequencing between tasks. CID module
is used for communication with other MCCs, and the task modules may be any
special coordinated planning algorithm such as task assignment or a specific
pursuit and evasion implementation between two vehicles.

In the next subsection, we review a specific implementation of an autonomous
large-scale target-task assignment algorithm as implemented across a UAV net-
work within the mission simulator.
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4.2 C2 Implementation: Hardware-in-the-Loop Testing of a
Large-Scale Autonomous Target-Task Assignment Problem for
a UAV Network

As a first step coordination algorithm implementation within the mission simu-
lator, we considered one of the basic problems. The problem consists of n targets
to be visited by m UAVs and the vehicles should autonomously find the way-
point selections that results in the minimum total path traveled by the UAV
fleet. In addition, all the mission coordination and the communication between
the units had to be done autonomously without any human intervention. To ad-
dress the first step of this problem, we have developed a large-scale distributed
task/target assignment method that allows autonomous and coordinated task-
assignment in real-time for a UAV fleet. By using delayed column generation
approach on the most primitive non-convex supply-demand formulation, a com-
putationally tractable distributed coordination structure (i.e. a market created
by the UAV fleet for tasks/targets) is exploited. This particular structure is
solved via a fleet-optimal dual simplex ascent in which each UAV updates its
respective flight plan costs with a linear update of way-point task values as
evaluated by the market. The complete theoretical treatment and algorithmic
structure of this problem can be found in [10]. The basic implementation of this
within the network simulator is given in Algorithm 1:

In this particular experiment, we use the Mission Coordination Computers
(MCCs) to embed the real-time implementation of the task/target assignment
algorithm and run simulations if they are in a real mission. Vehicle dynamics
and the low level control algorithms for each UAV are embedded within their
unique xPC target modules. These modules simulate an autonomous UAV which
receives a sequence of targets from a UDP based communication channel and
executes these commands to reach the targets. MCCs run a C program that is
used as a bridge for the communication layer between the UAVs and the Mat-
lab based computation layer of each of the UAVs. Each UAVs MCC send its
respective targets to the UAV control systems during the execution of the target
assignment algorithm. The world computer which is responsible for simulation of
the mission informs the MCCs if a new target appears in the scenario. Figure 17
provides a detailed look at the computational behavior of the algorithm. The
data points correspond to average values of 600 different simulation scenarios.
Note that a total of 250 targets can be solved across 5 UAVs in approximately
50 seconds. This illustrates the real-time implementation capability of the algo-
rithm in comparison to the only off-line capable standard integer programming
approach [10]. The numeric solution to a scenario covering 500 waypoints with
dynamic pop-ups is given in Figure 18. Figure 19 provides the extensive numer-
ical verification of the restricted horizon polynomial-time computational growth
property of this distributed formulation.

4.3 Real Unmanned Air and Ground Vehicle Simulation

One of the unique features of the mission simulator is the fact that the existing
real unmanned micro-air and ground vehicles within the laboratory can connect
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Algorithm 1. Distributed Synchronized Implementation of Autonomous
Target-Task Selection Algorithm for ith UAV
Input: n waypoint positions and the ith UAVs position.
Output: The fleet shortest path optimal waypoint assignments for ith UAV

PHASE I: Initialization
1: Compute the distances between the waypoints and form the n × n matrix V
2: Compute the distance to the waypoints and form the n × 1 matrix di

3: for every possible path ith UAV can travel do
4: Add the path to the matrix Di

5: Calculate the cost of this path to vector ci

6: end for
7: Read the (n + m) × (n + m) initial predefined B route matrix from memory
8: Communicate The costs for corresponding paths in the initial B matrix to start

the master iteration
PHASE II: Dual Simplex Ascent

9: repeat
10: Solve the restricted master iteration and find the dual variables vector: [π µ]′ =

[c̄′
1 . . . c̄′

m]′B−1

11: Remove the ineffective flight path (if any) with maximum cost
12: Solve the sub-problem corresponding to the ith UAV by updating the flight

costs: cq
i updated = cq

i − πdq
1 − µi

13: Select the minimum negative cq
i updated (sub-problem cost) and the associated

path
14: Exchange the selected path and its flight cost and the paths and the associated

costs generated by other vehicles
15: Insert the first feasible flight path with minimum cost solution and its cost to

the restricted master problem.
16: until There are no paths with negative subproblem costs

Fig. 17. The computational behavior of the algorithms shows strong correlation with
the number of way-points per UAV given a particular snap-shot of scenario
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Fig. 18. The waypoint routes for a random pop-up task-target assignment for four
vehicles. The algorithm is implemented further in the receeding horizon mode for five
hundred waypoints.

Fig. 19. The numeric computational complexity analysis suggests polynomial-time
growth for restricted time horizons

to the mission simulation scenario using their customized CID modules. This
feature not only provides in-flight verification capability of mission coordination
algorithms, but also creates a financially less cumbersome testing environment in
which some of the vehicles are simulated instead of being flown. Figure 20 shows
how the laboratory unmanned air and ground vehicles are perceived within the
mission network once connected to the mission simulator through their respective
CID modules.

Mission Coordination Computer. In the avionics system of the unmanned
vehicles, instead of a desktop PC, an embedded PC104 computer and an ARM
processor is used for mission planning algorithms.

MPC555/Controller. Similarly, in the real avionics system an embedded
MPC555 computer is used for running the real-time controller algorithms. Since
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Fig. 20. Components of Real Unmanned Simulation

this embedded processor can also be programmed by Matlab/Simulink, there is
almost no extra effort to modify the controller algorithms used in xPC computer
in virtual simulations. This results in the ability of software-in-the-loop verified
algorithms to be directly ported to the real hardware for hardware-in-the-loop
and real flight testing.

Real UAV/UGV Avionics System and the hardware-in-the-loop in-
tegration to the mission simulator. A collection of in-house modified real
UAVs/UGVs (including a Vario Acrobatic Helicopter, Trainer 60 fixed wing plat-
form and a 1/8 scale Humvee [9]) each equipped with sensors, embedded proces-
sors can be connected to the mission simulator during simulated scenarios. The
cross-platform compatible architecture of the in-house developed microavionics
system [14] is illustrated in Figure 21 and it used on all the unmanned platforms
with minor modifications. This bus based microavionics system is structured
around a main CAN bus and all the components including flight and mission
controller boards and sensors communicate with each other via this bus. Since
each sensor has different type communication interface such serial or I2C links,
a simple circuit named SmartCan with universal interface is designed to connect
these sensors to the CAN Bus. SmartCAN basically makes packet conversion be-
tween different types of communication interfaces to the CAN interface. These
vehicles can be operated autonomously or remotely by a human pilot. The op-
eration mode selection is achieved by the means of a switch board that allows
switching of the controls. In addition to the standard hardware-in-the-loop test-
ing capability for flight controllers, the mission simulator also allows debugging of
flight test problems through hook-up of the CAN Simulator to the network. The
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Fig. 21. Cross-platform compatible micro-avionics system and the hardware-in-the-
loop integration to the mission simulator

CAN Simulator machine is capable of playing back and emulating the sensory
information of flight test data collected in the flight tests.

Ground Station. Ground station computer, as seen in Figure 22, is used for
tracking the vehicle and the mission data, creating new missions, and sending
special commands to any vehicle while the mission is being performed. This
computer is also connected to the network via CID module like other vehicles.

The complete integration of the real unmanned vehicle platform (including
ground stations) also enables us to do complete mission related performance

Fig. 22. Ground Station GUI
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tests of the real-time control algorithms on actual hardware not only outside,
but also in the laboratory. For complex and risky tests involving agile maneuvers
in city-like dense environments, mission simulator is utilized for software in-the-
loop testing of path planning and control algorithms. In the next subsection,
we review two probabilistic flight trajectory planning and controls algorithms
designed as a part of the mission simulator development.

4.4 Software-in-the-Loop Testing: Flight Trajectory Planning and
Controls in Complex Environments

Motion planning and trajectory tracking control system design for autonomous
execution maneuvers in complex environments in search of tasks/targets is a
low level enabling technology for UAV operations driven by performance goals.
Towards this goal, we have developed a probabilistic trajectory planner that
uses distinct flight modes from which almost any aggressive maneuver (or a
combination of) can be created. This allows significant decreases in control input
space and thus search dimensions, resulting in a natural way to design controllers
and implement trajectory planning using the closed-form flight modes.

Fig. 23. Mode-Based trajectory generation strategy and complete solution of and dy-
namically feasible path planner

For fixed-wing UAVs a three-step probabilistic trajectory planner, as shown
in Figure 23, is utilized to solve the motion planning problem. In the first step,
the algorithm rapidly explores the environment through a randomized reach-
ability tree (RRT) search using approximate line segment models. In order to
decrease the computational time, we disregard the vehicle’s dynamic constraints
and use RRT for searching only the configuration space of vehicle. The resulting
connecting path is converted into flight way points through a line-of-sight seg-
mentation. These way points are refined with a single-query Probabilistic Road
Map (PRM) planner that creates dynamically feasible flight paths by applying
the feasibility constraints of the aircraft model. These feasibility constraints are
characterized by a hybrid representation of aircraft dynamics. The general mo-
tion of the aircraft has been divided into a discrete set of maneuver modes which
has continuous flight dynamics and with each mode there is associated feasibility
constraints such as flight envelope and actuator saturation limitations. The prob-
lematic issue of narrow passages is addressed through non-uniform distributed
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Fig. 24. Probabilistic B-Spline trajectory generation strategy and example solution
path result of an unmanned helicopter

capture regions, which prefer state solutions that align the vehicle to enter the
milestone region in line with the next milestone to come. Detailed explanations
of the related algorithms for this implementation can be found in [12].

For helicopter like Vertical Take-Off and Landing (VTOL) systems, a vari-
ant two step planner as illustrated in Figure 24 is used for solving the motion
planning problem. In the first step, the planner explores the environment us-
ing RRT algorithm. The resulting connecting path is converted into flight way
points through a line-of-sight segmentation to filter long detours. Remaining
points, named as way points, generally appear in entering and exiting regions
of the narrow passages that are formed between the obstacles. We segment the
hard path planning problem to a series of small path generating problems on
these locations by adding way-points. In the second step, each consecutive way
point is connected with third-order B-spline curves that represent constant in-
ertial acceleration paths and these curves are repaired probabilistically until a
dynamically feasible path is obtained. Since B-Spline curves have local support
property, these repairing processes can be made on local interest of path. De-
tailed demonstrations of this algorithm can be found in [11].

With these two distinct flight planning and controls approaches, we can test
the coordination algorithms while ensuring that the target/task assignments
in complex and dense environments can be achieved within the existing flight
envelopes of the vehicles.

5 Conclusions

In this work, an experimental mission simulator has been developed for joint sim-
ulation of manned and unmanned vehicle fleets. This platform serves not only
for testing of distributed command and control algorithms and interfaces, but
also provides real device hardware-in-the-loop test and real flight test vehicle in-
tegration capabilities within simulated scenarios. As such, it provides a realistic
test platform to demonstrate and validate research on C2 algorithms and en-
abling technologies for joint manned-unmanned operations. Current research on
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this platform is focused on modifying hardware and algorithms with STANAG
compliant devices and message formats, adding speech command capability for
human operator and pilots, and providing augmented reality concept to the SVS
screen by integration of real time streaming video from real unmanned vehicles
flying in simulated scenarios.
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Ögren, Petter 31, 167, 221
Ouattara, Baba 151

Pachter, Meir 119, 181
Pack, Daniel 103, 195, 299
Papageorgiou, Dimitri J. 235
Pardalos, Panos M. 385, 399
Pham, Khanh D. 257
Pollak, Eytan 81
Prokopyev, Oleg 417

Qu, Zhihua 81

Rabbath, C.A. 47
Rehbock, Volker 1
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