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This chapter proposes a novel adaptive memetic approach for solving multi-objective
optimization problems. The proposed approach introduces the novel concept of cross-
dominance and employs this concept within a novel probabilistic scheme which makes
use of the Wigner distribution for performing coordination of the local search. Thus,
two local searchers are integrated within an evolutionary framework which resorts to
an evolutionary algorithm previously proposed in literature for solving multi-objective
problems. These two local searchers are a multi-objective version of simulated anneal-
ing and a novel multi-objective implementation of the Rosenbrock algorithm.

Numerical results show that the proposed algorithm is rather promising and, for sev-
eral test problems, outperforms two popular meta-heuristics present in literature. A real-
world application in the field of electrical engineering, the design of a control system
of an electric motor, is also shown. The application of the proposed algorithm leads to
a solution which allows successful control of a direct current motor by simultaneously
handling the conflicting objectives of the dynamic response.

1 Introduction

Many optimization problems in engineering and applied science, due to their nature,
require the satisfaction of necessities of various kinds i.e. the desired candidate solu-
tion should perform well according to various objectives. In the vast majority of these
cases, the objectives are in mutual conflict and a compromise must be accepted. More
specifically, as these objectives are usually conflicting, it is not possible to find a single
solution that is optimal with respect to all objectives. Which solution is the best depends
on the users’ utility function, i.e., how the different criteria are weighted. Unfortunately,
it is usually rather difficult to formally specify user preferences before the alternatives
are known. One way to solve this predicament is by searching for the whole Pareto-
optimal front of solutions i.e., all solutions that can not be improved in any criterion
without at least sacrificing another criterion.

For example, in control engineering, when a control system is designed, it is desir-
able that the speed response is very reactive to the input and, at the same time, contains
no overshoot and oscillations. Under-dumped responses are usually very reactive but
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contain overshoot and oscillations in the settling process; on the contrary, over-dumped
responses do not contain overshoot or oscillations but usually perform rather poorly in
terms of reactivity. It is thus necessary to partially give up both the objectives and find a
compromise, that is, a solution which is fairly reactive without excessive overshoot and
oscillations.

The well-known scalarized approach [1] i.e. to associate a weight factor (on the basis
of their importance) to each objective and then optimize the weighted sum, though in
some cases rather efficient, implicitly accepts that a ranking of the importance of the
objectives and the related proportion of how much each objective should be taken into
account with respect to the others, is known beforehand. Moreover, the weighted sum
approach has the main disadvantage that it implicitly excludes some solutions from the
search since the a priori determination of the weighted value may assign a low fitness
value to some solutions which could on the contrary be interesting in the application
viewpoint. Therefore, in many cases it is preferable to employ a multi-objective ap-
proach [1]. Since the latter considers the objectives simultaneously and leads to a set of
solutions, the user can choose by means of a decision making process the most suitable
solution amongst those that are actually available.

Due to their structure, Evolutionary Algorithms (EA) have been proven to be very
promising in multi-objective optimization and have been intensively used during the
last two decades (see the implementation proposed in [2]). As shown in [3] and
[4], Multi-objective Optimization Evolutionary Algorithms (MOEA) are very effi-
cient in finding the Pareto-optimal or near Pareto-optimal solutions. Several algorithms
have been designed for such a purpose, for example the Non-dominated Sorting Ge-
netic Algorithm II (NSGA II) [5] and the Strength Pareto Evolutionary Algorithm-2
(SPEA-2) [6].

Memetic Algorithms (MAs) are population based meta-heuristics which combine
local search components within an evolutionary framework [7]. For single-objective
optimization problems MAs, if well-designed for specific applications by taking into
account features of the fitness landscape, have been proven to outperform classical
meta-heuristics e.g. Genetic Algorithms (GAs), Evolution Strategy (ES), Particle Swarm
Optimization (PSO) etc. [8] [9]. One crucial problem in the algorithmic design of MAs
is coordination among the evolutionary framework and local search and amongst the
various local searchers [10]. The problem of local search coordination has been widely
discussed over the years. In [7] the concept of coordination and cooperation of local
searchers has been introduced, after being developed in [11]. In [10] the use of mul-
tiple local search operators having different features in order to explore the decision
space under different perspectives has been proposed. In recent years, several kinds of
adaptation and self-adaptation for coordinating the local search have been designed. In
[12] a classification of adaptive MAs is given while a tutorial which organizes the basic
concepts of MAs including the coordination of the local search is given in [13].

MAs have been recently applied to multi-objective optimization, as discussed in [14]
and several Multi-Objective Memetic Algorithms (MOMA) have therefore been de-
signed. In such design two crucial problems arise: the first is the proper definition of
local search in a multi-objective environment, the second is the balance between global
and local search in presence of many simultaneous objectives [15], [16]. This balance,
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which is strictly related to the local search coordination, is extremely difficult to be
performed and, as highlighted in the empirical study reported in [17], an adaptation is
so difficult to be defined that it might be preferable in several cases to employ simple
time-dependant heuristic rules.

This chapter proposes an adaptation scheme based on the mutual dominance between
non-dominated solutions belonging to subsequent generations uncoupled with a prob-
abilistic criterion in order to coordinate and balance the global and local search within
a MOMA. The proposed algorithm is called Cross Dominant Multi-Objective Memetic
Algorithm (CDMOMA). Section 2 gives a detailed description of the algorithmic com-
ponents and their interaction, Section 3 shows the behavior of the proposed algorithm in
an extensive amount of test cases, Section 4 analyzes a real-world engineering problem,
Section gives the conclusion of our work.

2 Cross Dominant Multi-Objective Memetic Algorithm

Let us consider a classical multi-objective optimization problem:

Minimize/Maximize
subject to

fm (x) , m = 1,2, . . . ,M

x(L)
i ≤ xi ≤ x(U)

i , i = 1,2, . . . ,n

}
(1)

where fm is the mth single objective function, a solution x is a vector of n decision

variables. Each decision variable is limited to take a value within a lower x(L)
i and an

upper x(U)
i bound. These bounds define the decision space D.

In order to solve the problem in eq. (1), the CDMOMA has been designed. The CD-
MOMA is composed of an evolutionary framework resorting the NSGA-II and two lo-
cal searchers, a multi-objective implementation of the Rosenbrock algorithm and of the
Simulated Annealing respectively, adaptively coordinated by criterion based on mutual
dominance amongst the individuals of two populations at two consecutive generations
and a probabilistic scheme.

For the sake of completeness and better understanding of the CDMOMA the clas-
sical definitions of dominance [3] are given. Without a generality loss, the following
definitions refer to the minimization of all the objective functions.

Definition 1. A solution x(1) is said to dominate the other solution x(2) (x(1) � x(2)), if
both conditions 1 and 2 are true:

1. The solution x(1) is no worse than x(2) in all objectives,
2. The solution x(1) is strictly better than x(2) in at least one objective.

Definition 2. A solution x(1) is said to strictly dominate the other solution x(2) (x(1) ≺
x(2)), if solution x(1) is strictly better than x(2) in all the M objectives.

2.1 The Evolutionary Framework

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) introduced in [5], is the
second and improved Version of the Non-dominated Sorting Genetic Algorithm pro-
posed in [18], it is an elitist multi-objective evolutionary algorithm which proves to
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have high performance in terms of both quality and distribution of the detected non-
dominated solutions.

Briefly, an initial sampling is performed pseudo-randomly within the decision space,
thus generating Spop individuals. At each generation, Spop/2 parents are selected ac-
cording to a binary tournament selection. For each pairwise comparison the winner is
the dominating individual (for definition of dominance see [1] or [3]). If the individuals
are non-dominant (to each other), the individual having a higher value in the crowding
distance is selected. The crowding distance of an individual is a measure of the distance
between the individual under examination and the other individuals belonging to the
same set of non-dominated solutions (see [5] for details).

Then, for Spop/2 times a pseudo-random value is generated. Each time, if this value
is lower than 0.1, one individual is pseudo-randomly selected and then mutated; if, on
the contrary, it is higher than 0.1, two parents are pseudo-randomly paired and undergo
crossover.

Polynomial mutation [19] and simulated binary crossover [20], [21] are employed.
Since mutation generates one child and the simulated binary crossover two children, an
offspring population composed of a number of individuals between Spop/2 and Spop is
thus generated.

This offspring population is merged to the population produced from the previous
generation. Then, according to an elitist logic, Spop individuals are selected for survival
to the subsequent generation. The survivor selection scheme sorts individuals according
to their rank i.e. divides the individuals into subsets according to their level of domi-
nance. Thus, the subset of rank 1 is the set of non-dominated solutions, the subset of
rank 2 is the set of non-dominated solutions if we remove those individuals belonging
to the first subset, the subset of rank 3 is the set of non-dominated solutions after having
removed the individuals of the first and second subset and so on. Within each subset, the
individuals are then sorted on the basis of their crowding distance. More formally, for
a given pair of individuals i and j, and indicating with ir and icd the rank and crowding
distance of i respectively, the partial order (here indicated with ≺n) is defined as:

i ≺n j IF (ir < jr) OR ((ir = jr)AND(icd > jcd))

The sorting performed amongst a set of solutions by employing the formula above is
called non-dominated sorting. The selected individuals compose the new population for
the subsequent generation.

2.2 Local Searchers

The CDMOMA employs two local searchers within the generation loop of the NSGA-II
evolutionary framework. These algorithms are a novel multi-objective implementation
of the Rosenbrock algorithm and the Pareto Domination Multi-Objective Simulated
Annealing (PDMOSA) proposed in [22]. In the following subsections a description of
these two algorithms is given.

2.2.1 The Multi-Objective Rosenbrock Algorithm

The classical Rosenbrock Algorithm [23] is a single objective algorithm that works on
a solution and attempts to improve upon it by means of a steepest descent pivot rule.
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A novel implementation of the Multi-Objective Rosenbrock Algorithm (MORA)
is proposed here. The MORA consists of the following. Starting from x, a trial is
made in all the n orthogonal directions of the n-dimensional decision space. A trial
over the ith decision variable is performed by checking the value of y = [x1,x2...xi +
stepLength,xi+1, ..,xn] where the stepLength is the step length i.e. the length of the ex-
ploratory step. When a new point y is generated, it is compared with the old one x. If
the new point is not dominated by the old one we have a success. In such a case, the
new point is retained (x = y) and the step length is multiplied by a positive factor α .
If the new point is dominated by the old one we have a failure. In this case, the vec-
tor of variables is left unchanged and the step length is multiplied by a negative factor

i = 1;
initialize stepLength;
initialize SuccessAndFailure;
while budget condition

generate next point y from point x:
y j = x j for j = 1, . . . ,n and j �= i;
yi = xi · stepLengthi;

if y is out of bounds
fk(y) = ∞ ∀ k = 1, . . . ,M;

else
evaluate y;

end-if
if x � y

stepLengthi = stepLengthi ·β ;
if SuccessAndFailurei == success

SuccessAndFailurei = successFailure;
else

SuccessAndFailurei = f ailure;
end-if

else
x = y;
stepLengthi = stepLengthi ·α;
SuccessAndFailurei = success;

end-if
if SuccessAndFailure j == successFailure ∀ j = 1, . . . ,n;

rotate base by Gram and Schmidt procedure;
initialize stepLength;
initialize SuccessAndFailure;

else-if i < n
i = i+1;

else
i = 1;

end-if
end-while

Fig. 1. MORA pseudo-code
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−1 < β < 0. According to Rosenbrock’s suggestions α = 3 and β = −0.5 have been
set [23]. As in the single objective Rosenbrock algorithm, the process is repeated until
at the least a success is followed by a failure in each direction. When such a condition is
satisfied, the orthogonolization procedure of Gram and Schmidt (see [24]) is executed
and the search, along the new set of directions, begins again. The algorithm is stopped
when a budget condition is exceeded.

According to the given definitions of “success” and “failure”, the MORA accepts a
new point only when it does not decrease performance in each of the objective func-
tions; if even one worsens, the point is discarded. Thus, the MORA handles the various
objective functions without performing a scalarization.

It must be highlighted that when, during a MORA step, a solution outside the de-
cision space is generated, the algorithm assigns an infinite value to every one of its
objectives.

Fig. 1 shows the pseudo-code of the proposed MORA. It should be noted that the
dominance condition is represented by the symbol ≺ e.g. x dominates y is expressed
by x ≺ y; analogously, x does not dominate y is expressed by x � y (see [3]). With
reference to Fig. 1, the variable SuccessAndFailure is a vector of three valued flag
variables which records for each of its elements SuccessAndFailurei the behavior of the
algorithm during the previous two steps. More specifically, it records the value f ailure
if the trial failed twice, it records the value success if the trial either succeeded twice
or succeeded after having failed, it records the value successFailure if the trial failed
after having succeeded. The latter condition determines the activation of the Gram and
Smith procedure.

2.2.2 Pareto Domination Multi-Objective Simulated Annealing

The multi-objective simulated annealing algorithm implemented here is based on the
Pareto Domination Multi-Objective Simulated Annealing PDMOSA (PDMOSA) pro-
posed in [22]. The PDMOSA works on a solution x and an auxiliary population in order
to improve upon the starting point. At each step, the current best solution is perturbed
by means of a Gaussian distribution and a perturbed solution y is thus generated. For

while budget condition
initialize y;
while y is out of the bounds of the decision space

generate y by perturbing xby means of a Gaussian distribution;
end-while
calculate all the single objective values of y;
dx = number of the population individuals dominated by x;
dy = number of the population individuals dominated by y;

replace x with y with a probability p = e
dx−dy

T ;
decrease temperature T by means of an hyperbolic law;

end-while

Fig. 2. MOSA pseudo-code
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both, current best and perturbed solution, the number of individuals of the population
which are dominated by x and y respectively are calculated. In the fashion of simulated
annealing the new solution y replaces x with a time-dependant probability. The temper-
ature is decreased by means of a hyperbolic law as suggested in [25]. For the sake of
clarity, the PDMOSA pseudo-code which highlights the working principles is shown in
Fig. 2.

2.3 Adaptation

Definition 3. Let us consider two sets of candidate solutions, namely X and Y respec-
tively. Without a generality loss, let’s assume that the cardinality of both sets is N. By
scrolling all the elements of set Y , let’s enumerate the dominance occurrences with each
element of set X . N2 comparisons are thus performed. Let us assign Λ to be this number
of dominance occurrences. The set Y is said to cross-dominate the set X with a grade:

λ =
Λ
N2 (2)

Fig. 3 gives a graphical representation of the concept of cross-dominance. The solid
lined arrow represents the dominance of the point under examination while the dash
lined arrow represents non-dominance.

This chapter proposes to use the concept of cross-dominance in order to perform an
adaptive coordination of the local search. More specifically, at the end of each genera-
tion the parameter λ is calculated:

λ =
Λ t+1

N2 (3)

where Λ t+1 is the number of dominance occurrences obtained by the comparison of the
population at generation t +1 (which plays the role of the set Y in the definition above)
with respect to the population at generation t (which plays the role of X).

f1

f2

Fig. 3. Graphical Representation of the Cross-dominance
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In this way, the algorithm can monitor the overall improvements of the population by
means of a parameter which acquires values between 0 and 1. More specifically, if λ = 1
the algorithm is making excellent improvements and all individuals of the population at
generation t +1 strictly dominate all individuals at generation t. On the contrary, if λ =
0 the algorithm is not leading to any improvement and the new population is equivalent
to the old one in terms of dominance. It must be remarked that this adaptation index
should be integrated within a fully elitist system (as the NSGA-II), thus a temporary
worsening is not allowed. In addition, it should be observed that even though λ can
acquire values between 0 and 1, most likely it will acquire values around zero (λ = 0.05
means that the population is still significantly better than the previous one).

The main idea is to design an adaptive system which automatically coordinates evo-
lutionary framework and local search components by estimating algorithmic improve-
ments, thus the necessity of the search during the optimization process.

2.4 Coordination of the Local Search

In order to perform coordination of the local search, λ is employed in a novel way.
More specifically, for each local searcher, a generalized Wigner semicircle distribution
is generated:

p(λ ) =
2

πR2

√
R2 − (λ − a)2 c(

2
πR

) (4)

where R is the radius of the distribution (the shape of the distribution depends on R), a
determines the shift of the distribution, c is the maximum value of the distribution. For
the MORA, we consider a distribution that has its maximum value equal to 0.8 for λ = 0,
and that is 0 for λ > 0.007 ( we consider just a half of the semi-elliptic Wigner distri-
bution). For the PDMOSA, we consider a function that has its maximum value equal to
0.1 for λ = 0.0125, while it is 0 for λ < 0.005 and λ > 0.02. Thus, these two distri-
butions return the probability of the local search activation dependent upon the adaptive
parameter λ . Furthermore, the MORA is applied to 25 individuals while the PDMOSA is
applied to 5 individuals pseudo-randomly selected respectively. Fig. 4 graphically shows
the probability distribution for the CDMOMA adaptive local search coordination.
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Fig. 4. Graphical Representation of the Probabilistic Scheme for the Local Search Coordination
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generate initial population pseudo-randomly;
compute the fitness values of the individuals of the initial population;
perform the non-dominated sorting;
while budget condition

execute NSGA-II generation;

apply the cross-dominance procedure and compute λ = Λ t+1

N2 ;
compute p(λ );
generate pseudo-randomly ε ∈ [0,1]
if ε < p(λ )

execute PDMOSA on 5 individuals pseudo-randomly selected,
for 3000 fitness evaluations;
replace the 5 individuals with the results of the PDMOSA;

end-if
if ε < p(λ )

execute RA on 25 individuals pseudo-randomly selected,
for 1000 fitness evaluations;

end-if
end-while

Fig. 5. CDMOMA pseudo-code

The two employed local searchers have clearly different structures in terms of pivot
rule and neighborhood generating function. It should be noted that the MORA is a steep-
est descent local searcher which explores the neighborhood of a promising solution.
On the contrary, the PDMOSA employs a simulated annealing logic which attempts to
achieve a global property during the exploration of the decision space. According to our
algorithmic philosophy, a decrease of the parameter λ during the optimization process
corresponds to a settlement of the population over a set of non-dominated solutions.
These solutions will most likely be better spread out by the evolutionary framework
without any improvement, in terms of quality, of the detected solutions. In such con-
ditions, the PDMOSA has the role of providing a new perspective into the search and
hopefully detects new non-dominated solutions in still unexplored areas of the decision
space. When, notwithstanding this action (by the PDMOSA) the populations’ new gen-
eration seems to have negligible improvements, the MORA attempts to further improve
the solutions by exploring their neighborhood. In other words, the CDMOMA attempts,
at first, to generate a set of non-dominated solutions by the NSGA-II, then combines
the actions of the evolutionary components and local searchers for improving the per-
formance of the non-dominated set and eventually employs the local search to further
improve the solutions and the NSGA-II to assure a good spread to the set.

Fig 5 shows the pseudo-code of the proposed CDMOMA.

3 Numerical Results

The CDMOMA has been tested on eight popular test problems: FON (from Fonseca
and Fleming’s study [26]), POL(from Poloni’s study [27]), KUR (from Kursawe’s study
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[28]) and five ZDT problems (from Zitzler, Deb and Tiel) selected from [29] formulated
according to the study in [30].

Table 1 lists all the test problems under examination and the related details.

Table 1. Test Problems

Prob. n Bounds Objective functions Solutions Comments

ZDT1 30 [0,1]

f1 (x) = x1

f2 (x) = g(x)
[
1−

√
x1

g(x)

]

g(x) = 1+9

n
∑

i=2
xi

n−1

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

convex

ZDT2 30 [0,1]

f1 (x) = x1

f2 (x) = g(x)
[

1−
(

x1
g(x)

)2
]

g(x) = 1+9

n
∑

i=2
xi

n−1

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

nonconvex

ZDT3 30 [0,1]

f1 (x) = x1

f2 (x) = g(x)
[
1−

√
x1

g(x) − x1
g(x) sin(10πx1)

]

g(x) = 1+9

n
∑

i=2
xi

n−1

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

convex,

disconnected

ZDT4 10

x1 ∈ [0,1]
xi ∈ [−5,5]
i = 2, ..,n

f1 (x) = x1

f2 (x) = g(x)
[
1−

√
x1

g(x)

]

g(x) = 1+10(n−1)+
n
∑

i=2

[
x2

i −10cos (4πxi)
]

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

nonconvex

ZDT6 10 [0,1]

f1 (x) = 1− exp(−4x1)sin6 (4πx1)

f2 (x) = g(x)
[

1−
(

f1(x)
g(x)

)2
]

g(x) = 1+9

⎡
⎣

n
∑

i=2
xi

n−1

⎤
⎦

0.25

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

nonconvex,

nonuniformly

spread

FON 3 [−4,4]
f1 (x) = 1− exp

(
−

3
∑

i=1

(
xi − 1√

3

)2
)

f1 (x) = 1− exp

(
−

3
∑

i=1

(
xi + 1√

3

)2
)

x1 = x2 =
= x3 ∈[

−1√
3
, 1√

3

] nonconvex

POL 2 [−π ,π ]

f1 (x) =
[
1+(A1 −B1)

2 +(A2 −B2)
2
]

f2 (x) =
[
(x1 +3)2 +(x2 +1)2

]
A1 = 0.5sin1−2cos 1+ sin2−1.5cos 2

A2 = 1.5sin1− cos 1+2sin2−0.5cos 2

B1 = 0.5sinx1 −2cos x1 + sinx2 −1.5cos x2

B2 = 1.5sinx1 − cosx1 +2sinx2 −0.5cos x2

nonconvex,

disconnected

KUR 3 [−5,5]
f1 (x) =

n−1
∑

i=1

(
−10exp

(
−0.2

√
x2

i + x2
i+1

))

f2 (x) =
n
∑

i=1

(
|xi|0.8 +5sinx3

i

) nonconvex

The CDMOMA performance has been compared with the SPEA-2 [6] and the
NSGA-II [5]. The three algorithms have been executed with a population size of 150
individuals, with a total budget of 800000 fitness evaluations. For each test problem 50
initial populations have been pseudo-randomly sampled within the respective decision
space. For each of these 50 populations the three algorithms have been independently
run. Thus, for each test problem each algorithm has been run 50 times. Fig.’s 6, 7, 8, 9,
10, 11, 12, 13 show the results obtained on selected runs.
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Numerical results on selected runs qualitatively show that the CDMOMA is able
to detect very good sets of non-dominated solutions in terms of fitness values and
spreading.

In order to also give a graphical representation of the average algorithmic perfor-
mance, for the single run of each algorithm, the final population has been sorted on the
basis of the first objective function. For each algorithm, the sorted objective function
values are averaged over each objective. Fig.’s 14, 15, 16, 17, 18, 19, 20, 21 show the
average algorithmic performance.

Numerical results indicate that the CDMOMA seems to have a promising behavior
with most of the problems under examination. In particular, in the case of the POL,
the CDMOMA has a performance comparable to that of the NSGA-II and better than
the SPEA-2; in the case of the FON, KUR, ZDT1, and ZDT3, the CDMOMA seems
to be significantly more efficient than the SPEA-2 in detecting a good set of solutions
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Fig. 16. ZDT3, average performance
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Fig. 17. ZDT4, average performance
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Fig. 19. FON, average performance
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Fig. 21. KUR, average performance

and slightly more efficient than the NSGA-II; in the case of of ZDT2, the CDMOMA
behaves slightly worse than the NSGA-II and comparably to the SPEA-2; in the case of
the ZDT6, the CDMOMA seems to behave better than the NSGA-II but worse than the
SPEA-2; in the case of the ZDT4, the CDMOMA is definitely worse than the NSGA-II
and globally comparable to the SPEA-2. Thus, it can be stated that, except in the case of
the ZDT4 test problem, the CDMOMA detects on average a set of solutions with high
performance and good spreading features.

In order to have a more quantitative comparison by means of the performance mea-
sures, ϒ and Δ (see [5] and [31]) has been carried out. The first metric ϒ measures the
extent of convergence to a known set of Pareto-optimal solutions. First, a set of 500
uniformly spaced solutions from the true Pareto-optimal front is detected. For each so-
lution obtained with an algorithm, the minimum Euclidean distance it has from the 500
chosen solutions on the true Pareto-optimal front is computed. The average of these
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Table 2. ϒ values

NSGA-II CDMOMA SPEA-2

ϒ̄ σ2
ϒ ϒ̄ σ2

ϒ ϒ̄ σ2
ϒ

ZDT1 0.0012 8.1314 ·10−9 0.0011 9.7175 ·10−9 0.0111 8.6124 ·10−6

ZDT2 0.0014 3.9939 ·10−6 0.0008 1.0723 ·10−7 0.0136 1.3993 ·10−5

ZDT3 0.0014 4.7059 ·10−9 0.0013 2.8252 ·10−7 0.0128 2.3767 ·10−5

ZDT4 19.1313 4.1036 ·101 21.7563 1.0508 ·102 23.3591 5.5884 ·101

ZDT6 0.8279 1.2301 ·10−1 0.4678 5.7394 ·10−1 0.4748 5.1439 ·10−2

FON 0.0061 4.5006 ·10−8 0.0061 3.4269 ·10−8 0.0071 1.7740 ·10−7

distances is used as the first metric ϒ . In other words, ϒ known also as the convergence
metric, is a measurement of deviation of the detected set of solutions from the true
Pareto-optimal front. Thus, it can be concluded that if ϒ ≈ 0 algorithm is efficient. It
should be remarked that this metric can be employed only when the true set of Pareto-
optimal solutions is known. Thus, it is obvious that this metric cannot be used for any
arbitrary problem.

The second metric Δ measures the extent of spread achieved among the obtained
solutions, since one of the goals in multi-objective optimization is to acquire a set of
solutions that spans the entire Pareto-optimal region. In order to compute Δ , the Eu-
clidean distance di (in the multi-dimensional codomain) between consecutive solutions
(with respect to the sorting according to one arbitrary objective function) in the obtained
non-dominated set of solutions is calculated. The average of these distances d̄ is then
calculated. Then, if the true Pareto-optimal front is known, the Euclidean distances d f

and dl between the extreme solutions and the boundary solutions of the obtained non-
dominated set are calculated. The non-uniformity metric Δ is given by:

Δ =
d f + dl +

N−1
∑

i=1

∣∣di − d
∣∣

d f + dl +(N − 1)d
, (5)

where N is the cardinality of the non-dominated set. If the true Pareto-optimal front is
not known, d f and dl are ignored by imposing d f = dl = 0. Formula (5) is thus modified:

Δ =

N−1
∑

i=1

∣∣di − d
∣∣

(N − 1)d
. (6)

For further details see [5] and [31]. Since a high spreading, in the non-dominated set of
solutions, is desired, Δ ≈ 0 characterizes a good set of solutions.

For each algorithm and each test problem, the average values ϒ̄ and Δ̄ have been
calculated over the 50 runs available. A graphical representation of the ϒ̄ and Δ̄ values
are given in Fig. 22 and 23 respectively. Since the calculation of ϒ requires the a priori
knowledge of the actual Pareto front which is unknown for POL and KUR test prob-
lems, the ϒ values related to these two problems are missing in the following analysis.
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Table 2 lists average and variance values of ϒ and Table 3 lists average and variance
values of Δ .

The quantitative analysis of the results shows that, regarding the convergence prop-
erty of the algorithms, the CDMOMA seems to have a very promising capability of
detecting a set of solutions which is similar to the true Pareto-optimal front. In particu-
lar, Fig. 22 and Table 2 show that the CDMOMA obtained the best convergence metric
ϒ for all the available test problems except the ZDT4. In the latter case, the CDMOMA
still performs better than the SPEA-2. Regarding spreading of the solutions within the
set, the CDMOMA is also rather promising. Results in Fig. 23 and Table 3 show that the
CDMOMA has a better performance than the SPEA-2 (except for the POL) and com-
parable to the NSGA-II. This finding was somehow expectable since the CDMOMA



Integrating Cross-Dominance Adaptation 343

Table 3. Δ values

NSGA-II CDMOMA SPEA-2

Δ̄ σ2
Δ Δ̄ σ2

Δ Δ̄ σ2
Δ

ZDT1 0.4108 5.6038 ·10−4 0.4003 3.5590 ·10−4 1.2347 2.8580 ·10−3

ZDT2 0.42834 6.0626 ·10−4 0.4723 7.5048 ·10−3 1.3670 2.9583 ·10−3

ZDT3 0.6147 4.1059 ·10−4 0.6126 8.1888 ·10−4 1.2306 2.8785 ·10−3

ZDT4 0.9395 2.4384 ·10−4 0.9620 1.6705 ·10−3 1.6331 9.9375 ·10−3

ZDT6 0.8521 3.6873 ·10−3 0.8359 1.1110 ·10−1 1.6178 9.1970 ·10−3

FON 0.6491 1.7710 ·10−4 0.6520 2.7579 ·10−4 0.9660 1.0791 ·10−3

POL 0.9722 2.5309 ·10−4 0.9775 6.3631 ·10−4 0.9583 2.7690 ·10−3

KUR 0.5659 3.7139 ·10−3 0.5313 2.4347 ·10−3 1.0343 2.5964 ·10−2

employs the the NSGA-II logic in its evolutionary framework and thus both algorithms
have the same sorting structure, this being an algorithmic component that heavily af-
fects the spreading in the population.

In conclusion the results from the set of benchmark problems allow the authors to
state that the proposed CDMOMA is a rather promising algorithm for multi-objective
optimization problems. According to our interpretation, employment of the local search
algorithms allows an improvement upon the evolutionary framework (NSGA-II) in de-
tection of a non-dominated set which performs highly in terms of fitness values. On
the other hand, the evolutionary framework guarantees an efficient spreading of the
solutions. The proposed adaptation seems, also, to be efficient in the coordination of
local search components. Finally, the cross-dominance criterion defined in this chapter
is an instrument for comparing two sets of solutions and thus monitor the algorith-
mic improvements. This information can be generally useful since it can be employed
as a feedback in the design of an adaptive algorithm for multi-objective optimization
problems.

4 Real World Application: Design of a DC Motor Speed Controller

Nowadays most motion actuators are set up with electric motors since they offer high
performance in terms of power density, efficiency, compactness and lightness. On the
other hand, in order to have satisfactory functioning of the motor, an effective control
is needed. Basically, an efficient motor control can be achieved either by applying a
complex and expensive control system (see [32], [33], [34], [35]) or by using a simple
and cheap control system, e.g. Proportional Integral (PI) based [36], which requires a
design often very difficult to perform. In the latter case, the control design of an electric
motor consists of detecting those system parameters that ensure a good system response
in terms of speed and current behavior. This leads to a multi-objective optimization
problem too complex for analytical solution [37]. Moreover, the application of classical
design strategy [38], [39], [40] likely leads to unsatisfactory results. Thus, during recent
years, interest in computational intelligence techniques has increased (see [41], [42] and
[43]).

This chapter attempts to apply the CDMOMA to the control design of the Direct
Current (DC) Motor whose electrical and mechanical features are shown in Table 4.
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Table 4. DC Motor Nameplate

Parameter Value

Armature resistance 2.13 Ω
Armature induction 0.0094 H
Moment of inertia 2.4e−6 Kg ·m2

Rated armature voltage 12 V
Rated armature current 1.2 A
Rated load torque 0.0213 Nm
Rated speed 400 rad/s

Fig. 24 shows the block diagram of the control scheme.
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Fig. 24. Block diagram of a DC motor control

The control scheme is based on dynamic equations of the motor:

va = Ra · ia + La · dia
dt

+ e (7)

v f = R f · i f + Lf · di f

dt
(8)

e = KΦ ·ω (9)

T = KΦ · ia (10)

J · dω
dt

= T − Tr (11)
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where va is the voltage applied to the armature circuit, v f is the voltage applied to the
excitation circuit, Ra, R f , La, Lf , ia and i f are the resistance, inductance and current for
the armature and the excitement circuits respectively, T and Tr are the electromagnetic
and load torque respectively, KΦ is the torque constant, ω is the rotor speed, J is the
moment of inertia and e is the voltage generated by the rotor of the electric machine
while rotating.

The DC motor control system is composed of two PI controllers. The first is used
to control current and the second speed. The PIs transfer functions of the current and
the speed controls are respectively Kpi + Kii

s and Kpω + Kiω
s . The speed reference is

pre-filtered through a smoothing filter to reduce overshoot and the current required by
the control in response to a speed step. The transfer function of the smoothing filter is

1
(1+τsm) .

With reference to Fig. 24, the control design consists of determining the parame-
ters Kpi, Kii, Kpω , Kiω and τsm which guarantee very small values in rise and settling
time, steady state error and overshoots. The decision space H ⊂ ℜ5 is a five dimen-
sional hyper-rectangle given by the Cartesian product constructed around solution x0

obtained by applying the classical symmetrical optimum (SO) criterion to design the
speed regulator and the absolute value optimum (AVO) criterion to design the current
regulator [44]. The lower and upper bounds of each interval have been set according to
the following equations:

xlb(i) = 10−6 · x0(i) (12)

xub(i) = 3 · x0(i) (13)

In order to evaluate the performance of each candidate solution, the four speed and load
torque step training test shown in Fig. 25 is simulated by means of Matlab/Simulink
as a discrete time control drive in order to realistically emulate an industrial dig-
ital drive. The control design of the DC Motor consists of determining a solution
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Fig. 25. Training test is a combination of speed commands and load torque
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x = [Kpi,Kii,Kpω ,Kiω ,τsm] which satisfies the following multi-objective optimization
problem:

Minimize
4
∑
j=1

oS j,
4
∑
j=1

tr j,
4
∑
j=1

ts j,
4
∑
j=1

err j

Within H

⎫⎬
⎭ (14)

where oS j is the overshoot, tr j the rise time, ts j the settling time and err j the sum of
the absolute values of the speed error in settling condition during the jth trial step.

Fig. 26 illustrates oS j, tr j, ts j and err j for the generic jth step of the training test.
Finally, it must be remarked that, since each fitness evaluation requires a computation-
ally expensive simulation test (8 s for each evaluation, see [45]), the problem is very
demanding in terms of computational overhead.

The CDMOMA has been applied and its performance compared with the SPEA-2
and the NSGA-II. For each algorithm, 25 runs have been performed with a population
size equal to 40. The average and variance values of Δ are listed in Table 5. The values
related to ϒ are obviously missing since the actual Pareto is unknown.

The results in Table 5 show that for the problem under study, the SPEA-2 seems to
have slightly better performance than the other algorithms in terms of spreading of the
solutions.

In order to detect the most suitable control design the following decision making
process has been implemented. For each algorithm, all the final populations related to

the 25 runs have been merged. At first, all the individuals having an error
4
∑
j=1

err j above

a threshold value (200 rad) are discarded. This condition means that during the entire

Table 5. Δ values for the DC Motor Control Design

NSGA-II CDMOMA SPEA-2

Δ̄ σ2
Δ Δ̄ σ2

Δ Δ̄ σ2
Δ

0.8951 2.5601 ·10−2 0.8375 1.4176 ·10−2 0.6858 1.5762 ·10−2



Integrating Cross-Dominance Adaptation 347

Table 6. Single objective values after the decision making

4
∑
j=1

oSj

4
∑
j=1

tr j

4
∑
j=1

ts j

4
∑
j=1

err j

NSGA-II 8 0.1780 0.2640 8.3330

CDMOMA 10 0.1750 0.2610 7.9150

SPEA-2 145 0.2250 0.2920 19.4240
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Fig. 27. Zoom detail of the speed response of NSGA-II solution
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Fig. 28. Zoom detail of the speed response of CDMOMA solution

training test, the overall deviation (the sum of all the deviations) of the rotor position
from the reference axis should not be more than 200 rad. Amongst the remaining so-

lutions, all the individuals having a settling time
4
∑
j=1

ts j above 0.35 s are discarded;

amongst the remaining solutions, all the individuals having a rise time
4
∑
j=1

tr j above 0.2
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Fig. 29. Zoom detail of the speed response of SPEA-2 solution

s are discarded; amongst the remaining solutions, the solution having a minimal value

in the overshoot
4
∑
j=1

oS j is eventually selected.

The single objective values given by solutions obtained at the end of the decision
making process are listed in Table 6.

It can be noticed that the solution returned by the SPEA-2 is dominated by the solu-
tions returned by both NSGA-II and CDMOMA. The performance of the NSGA-II and
CDMOMA solutions are, on the contrary, rather similar; both the algorithms seem to
have high performance for this problem.

For the sake of clarity, a zoom detail of the speed response which graphically high-
lights the difference in performance is shown in Fig. 27, 28 and 29 for the NSGA-II,
the CDMOMA and the SPEA-2 respectively.

5 Conclusion

This chapter proposes the Cross-Dominant Multi-Objective Memetic Algorithm (CD-
MOMA), which is a memetic algorithm composed of the NSGA-II as an evolutionary
framework and two local searchers adaptively integrated within the framework. The
adaptation is based on a criterion which attempts to coordinate the local search by mon-
itoring improvements in the set of non-dominated solutions. Novel contributions of
this chapter are: the implementation proposed here for the Multi-Objective Rosenbrock
Algorithm, the concept of Cross-Dominance and its employment within a Memetic
Framework, and the probabilistic scheme based on the Wigner semicircle distribution.

The CDMOMA seems very promising in several test cases by either reaching the
theoretical Pareto or outperforming the popular NSGA-II and SPEA-2. In only one test
case (ZDT4) out of eight test problems the CDMOMA failed in detecting a good set of
solutions. Numerical results related to the real-world problem analyzed here seem also
to conclude that the CDMOMA can be a promising approach.

A further improvement in the proposed approach will be in the detection of tailored
local search components for some specific applications, in the design of efficient local
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searchers which take into account the spreading property of the locally improved solu-
tion with respect to other individuals of the population and, finally, to propose a modi-
fication of the evolutionary framework in order to enhance its robustness over multiple
runs.
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