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Preface

This book presents a very first comprehensive collection of works on multi-
objective Memetic algorithm (MOMAs). The application of sophisticated
evolutionary computing approaches for solving complex problems with multi-
ple conflicting objectives in science and engineering have increased steadily in
the recent years. Within this growing trend, Memetic algorithms (MAs) are,
perhaps, one of the most successful stories, having demonstrated better efficacy
in dealing with multi-objective (MO) problems as compared to its conventional
counterparts. MAs are population-based metaheuristic search methods that are
inspired by Darwinian principles of natural selection and Dawkins notion of a
meme defined as a unit of cultural evolution that is capable of local refinements.
In diverse contexts, memetic algorithms have also been used under the name of
hybrid evolutionary algorithms, Baldwinian evolutionary algorithms, Lamarkian
evolutionary algorithms, or genetic local search.

There is a large volume of works on the application of MAs to real-world
problems- a fact that is reflected by the number of special sessions and issues in
upcoming conferences and journals. Nonetheless, researchers are only beginning
to realize the vast potential of multi-objective MAs and there remain many open
topics in its design. This edited book represents the first endeavor to reflect the
most recent advances in the field, and to increase the awareness of the com-
puting community at large on this effective technology for MO problems. This
edition consists of invited papers written by leading researchers in the field to
demonstrate the current state-of-the-art in the theory and practice of MOMAs.
The book is organized for a wide readership and can be read by engineers, re-
searchers, senior undergraduates and graduate students who are interested in
the field of MAs and MO optimization. The assumed background for the book
is some basic knowledge of evolutionary computation.

This book is divided into four parts. Part I contains of two chapters, pro-
viding readers with an insight to the challenges of MO optimization and the
implementation issues of MOMAs. The opening chapter by Gideon on “Evo-
lutionary Multi-Multi-Objective Optimization - EMMOO” examines the opti-
mization of different MO problems, which are coupled by common components.
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This necessitates the consideration of multiple MO problems simultaneously to
discover satisfactory designs. The next chapter “Implementation of Multiobjec-
tive Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack
Problem Case Study” by Ishibuchi et al discuss the various implementation is-
sues in MOMAs for combinatorial optimization problems. Extensive studies are
made to examine the impact of several factors such as the frequency of local
search, the choice of initial solutions for local search and the handling of infea-
sible solutions.

The classification of subsequent chapters into three parts is based on how
information and knowledge of the problem is utilized or exploited in MOMA.

• Knowledge infused in design of problem-specific operators.
• Knowledge propagation through cultural evolution.
• Information exploited for local improvement.

Part II considers how knowledge can be infused into design of problem-specific
operators and algorithms. In the first chapter “Solving Time-Tabling Problems
using Evolutionary Algorithms and Heuristics Search” by Srinivasan and Zhang,
the evolutionary algorithm is combined with heuristics, which ensures that all
constraints are satisfied, to solve the real-world time-tabling problem of the
Electrical and Computer Engineering Department in the National University
of Singapore. The next chapter “An Efficient Genetic Algorithm with Uniform
Crossover for the Multi-Objective Airport Gate Assignment Problem” by Hu
and Di Paolo, presents a genetic algorithn with a novel encoding scheme which
represents the relative positions between aircraft in the queues to gates. The
encoding scheme facilitates the design of a new uniform crossover operator that
ensures the feasibility of new solutions. Knowledge of how noise affect solu-
tion assessment is utilized by Lee et al in the next chapter “Application of
Evolutionary Algorithms for Solving Multi-objective Simulation Optimization
Problems” in the design of a multi-objective optimal computing budget allo-
cation (MOCBA) algorithm. Working within the framework of the MOEA, the
MOCBA adapts the number of evaluations necessary based in statistical ob-
servations of the noisy solutions. An memetic framework incorporating aspects
of wrapper and filter feature selection methods for the optimization of classi-
fiers is presented in “Feature Selection Using Single/Multi-Objective Memetic
Frameworks ” by Zhu et al. In this chapter, the wrapper method is embodied
within the evolutionary process while the filter method is introduced as a lo-
cal learning procedure. The next two chapters presents a class of evolutionary
algorithms that approximates computationally expensive fitness functions with
meta-models to reduce computational time. Radial basis functions are used as
local metamodels in “Multiobjective Metamodel-Assisted Memetic Algorithms”
by Georgopoulou and Giannakoglou for the design of a gas turbine power plant
and the aerodynamic design of a cascade airfoil. These local metamodels are
also exploited as cost-free evaluation functions for the local search process to
accelerate convergence. In the chapter “Multi-Objective Robust Optimization
Assisted by Response Surface Approximation and Visual Data-Mining” by Shi-
moyama et al, the MOEA is hybridized with the Kriging model for response
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surface approximation and the self-organizing map is applied in the final stage
for easy visualization of complicated tradeoff information. A convergence accel-
erator operator comprising of a neural network which learns the inverse mapping
between the decision and objective space is presented in “A Convergence Accel-
eration Technique for Multiobjective Optimisation ” by Adra et al. The operator
works by by first suggesting some desired solutions and then applying the neural
network to predict the location of these solutions in the decision variable space.

Knowledge propagation in the form of cultural evolution is considered in Part
III. The first article, “Risk and Cost Tradeoff In Economic Dispatch Including
Wind Power Penetration Based on Multi-objective Memetic Particle Swarm Op-
timization” by Lingfeng and Singh, presents a Memetic particle swarm optimiza-
tion approach to find a resonable tradeoff between system risk and operational
cost for the energy dispatch problem of wind power penetration. In this chap-
ter, different fuzzy membership functions are used to reflect the various desires
toward the wind power penetration and a synchronous particle local search is
also applied to improve convergence. The agents of the multiagent collaborative
search algorithm (MACS) presented in “Hybrid Behavioral-Based Multiobjec-
tive Space Trajectory Optimization”by Vasile are similarly endowed with both
individualistic and social behaviors. A domain decomposition technique is also
incorporated to improve consistency and efficiency of the MACS. In the third
chaper, a new algorithm inspired by the physical phenomena of particle me-
chanics is suggested for high-dimensional problems in “Nature-Inspired Particle
Mechanics Algorithm for Multi-objective Optimization” by Feng and Lau.

The exploitation of information for local improvement is considered in Part
IV. In “Combination of Genetic Algorithms and Evolution Strategies with Self-
Adaptive Switching”, Okabe et al suggest combining genetic algorithm (GA) and
evolutionary strategies in a common MOMA framework, with GA as the global
searcher and ES as the local search operator. Issues such as discretization error,
self-adaptation and adaptive switching, arising from the combination of GA and
ES are also discussed. The chapter “Comparison between MOEA/D and NSGA-
II on the multi-objective travelling salesman problem” by Peng et al describes
an algorithm that decomposes the MO problem into multiple subproblems using
different scalarizing functions. The same functions are used by the 2-opt local
search heuristic process. In “Integrating Cross-Dominance Adaptation in Multi-
objective Memetic Algorithms” by Caponio and Neri, MO version of simulated
annealing and Rosenbrock algorithm are applied as local search operators within
the MOEA. The balance between local search and genetic operators are main-
tained by an adaptive probablistic scheme. The optimization of dynamic MO
landscapes is considered by Ray et al in “A Memetic Algorithm for Dynamic
Multiobjective Optimization”. In this chapter, the MOMA utilizes an orthog-
onal epsilon-constrained formulation to deal with multi-objectivity and uses a
sequential quadratic programming solver to improve tracking performance. An
unique approach of incorporating co-evolution and local search into differential
algorithm is described by Soliman et al in “A Memetic Coevolutionary Multi-
objective Differential Evolution Algorithm”. A multiobjective memetic algorithm
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which incorporates a simulated annealing algorithm as the local search operator
for aerodynamic shape optimization is described in “Multiobjective Memetic Al-
gorithm and its Application in Robust Airfoil Shape Optimization” by Song. In
this chapter, local search is performed on each objective function while treating
other objective functions as constraints.

We would like to express our appreciation to everyone who has made the publi-
cation of this edited book possible. First of all, we are grateful to all contributors,
who are leading experts in the field of evolutionary computation, for their high-
quality contributions. We are also grateful to Professor Janusz Kacprzyk for the
opportunity to edit this book. We also acknowledge the editorial assistance from
Springer during the preparation of the book.

May 2008 Chi-Keong Goh
Yew-Soon Ong
Kay Chen Tan
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Evolutionary Multi-Multi-Objective
Optimization - EMMOO

Gideon Avigad

Mechanical Engineering Department, Ort Braude College of Engineering,
Karmiel, Israel
gideona@braude.ac.il

In this chapter the recently introduced multi-Multi-Objective Optimization Problem (m-
MOOP) is described and a new evolutionary approach is suggested for its solution.
The m-MOOP is a problem, which may be defined as a result of a demand to find
solutions for several different multi-objective problems that are to share components.
It is argued and explained here, why posing the m-MOOP as a common MOOP, is
not an option and other approaches should be considered. The previously introduced
Evolutionary Multi-Multi Objective Optimization (EMMOO) algorithms, which solve
m-MOOPs, including the sequential, and the simultaneous one, are compared here with
a new approach. The comparison is based on the loss of optimality measure.

In the chapter another extension to the suggested EMMOOs is considered and posed
as a challenge. It is associated with a local search, which should be most important to
the problem in hand both for improving results as well as for guarantying robustness.
The chapter concludes with a discussion on the generic nature of the m-MOOP and on
some possible extensions of the suggested EMMOOs to other fields of interest.

1 Introduction

Sharing components among products is an effective way to cut costs. Expenses are
decreased through the reduction in components design time as well as through savings
in manufacturing costs and inventory (e.g., [1]). Robertson and Ulrich, [2] point out
that “By sharing components and production processes among products, companies can
develop differentiated products efficiently, increase the flexibility and responsiveness
of their manufacturing processes, and take market share away from competitors that
develop only one product at a time.” An example of the importance of sharing concerns
Black & Deckers universal electric motor. According to Lehnerd [3], in the 1970s Black
& Decker developed a family of universal motors for their power tools in response
to a new double insulation safety regulation. Prior to that, they used different motors
in each of their 122 basic tools with hundreds of variations. By paying attention to
standardization and exploiting platform scaling around the motor stack length, material
costs dropped from $0.77 to $0.42 per motor while labor costs fell from $0.248 to
$0.045 per motor, yielding an annual savings of $1.82M per year. Another example
is Airbus, which has enjoyed a competitive advantage over Boeing due to improved

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 3–26.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



4 G. Avigad

commonality, particularly in the cockpit. The A330 cockpit is common to all other
Airbus types while Boeings 767-400 cockpit is common only with the 757. According
to [4], “ This has enabled the A330-200, a less efficient “shrink” of a larger aircraft, to
outsell Boeings 767-400ER, a more efficient “stretch” design of a smaller aircraft.”

Most of the attempts to share components between products are associated with the
design of a product family. A product family is a group of related products that share
common components and/or subsystems yet satisfy a variety of market niches (e.g.,
[5]). The level in the product hierarchy at which commonality is pursued varies; it can
be focused on production processes (e.g., [6]), on modules (e.g., [7]), on product plat-
forms (e.g., [8]) or on common components (e.g., [9]). According to [1], two types of
component sharing can be used when selecting a product platform. The first is compo-
nent sharing, in which one or more components are common to several products. The
second is the sharing of “scaled” versions of components. Mathematically this can be
described as variable sharing. The component sharing is directly related to the scope
of this chapter.

Simpson [5] designates two main approaches to search for communality in product
platforms, including single stage and two-stage methods. Single-stage approaches seek
to optimize the product platform and the corresponding family of products simultane-
ously. On the other hand two-stage approaches optimize the platform first, and then,
instantiate the individual products within the family during the second stage. An exam-
ple for the two-stage approach is the work of Rai and Allada, ([10]). In their work, the
first step of the procedure performs a multi-objective optimization using a multi-agent
framework to determine the Pareto-design solutions for a given module set. The sec-
ond step performs post-optimization analysis to determine the optimal platform level
for a related set of product families and their variants. An example for the one-stage
approach is a MOEA approach, which has been taken by Simpson and DSouza, ([11]).
They used NSGA-II to facilitate a structured GA ([12]), with a commonalty as a part
of a one-stage optimization algorithm. The objectives of the problem in [11] are the
variation in design variables and a deviation function from a given goal. This means
that the original multi-objective problem, which is common to all products, is posed as
an auxiliary MOP, so that the degree of communality serves as an added objective.

The main difference between the m-MOOP approach, which was introduced in
[13, 14], and other works on family of designs (e.g., [11]) lies in the consideration
of different MOPs, which are coupled by common components. Here, the products do
not share the same objective space and therefore neither a utility of objectives nor a
common objective space setting is applicable. The products in the m-MOOP are not
associated with different niches of the same market, as is the case of the family of
designs, but rather with different markets. To further explain the difference between
an m-MOOP and a family of designs, it is noted that the same cockpit for different
aircrafts is not an applicable example to the current approach. Rather, consider for ex-
ample a search for a robotic arm to move an object from one place to the other, coupled
with a search for a mobile robot to move another object. The objectives associated with
the search for the robotic arm might be the minimization of the integral square of the
end- effector’s error and the minimization of its deflection. The search for a mobile
robot may be associated with the maximization of the object transfer speed and the
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Fig. 1. A motor is shared by two products, each associated with a different MOP

minimization of the overall control force. The coupling between the MOPs is dictated
by the need to use the same motor for both designs. This is illustrated in Fig. 1.

Till now there are two papers addressing the m-MOOP. In [13] the problem has
been formulated, measures to assess the performances of different algorithms have been
introduced and a sequential approach to solve the problem has been suggested. Draw-
backs, which were identified in [13], were attended in [14] by introducing a simulta-
neous approach. It is noted that the name Multi-Multi Objective Optimization has also
been used in [15]. The work of [15], has addressed a need for posing a problem as a
multi-MOP. Nevertheless, the problem of [15] deals with one objective space and its
mapping according to different contexts to multi problems.

This chapter is organized as follows. In sub-section 2.1, following [13], the problem
definition is given. This is followed by two short discussions. The first, deals with the
name m-MOOP and gives some justifications to it (sub-section 2.2). The second high-
lights the interesting aspects of the m-MOOP (sub-section 2.3). In sub-section 2.4, the
loss of optimality measure, which has been introduced in [13], is explained. Sub-section
2.5, describes the existing approaches for the search for solutions to the m-MOOP and
introduces a new one. In sections 2.6 and 2.7 a possible extension towards hybridization
of the search for solutions to m-MOOPs and the generic nature of the problem are re-
spectively, briefly discussed. Section 3, describes formerly obtained results and reports
on some recent ones, which concern the new approach. Finally section 4 discusses the
results and suggests possible directions for future work.

2 Problem Definition and Solution Approaches

2.1 Problem Definition

In the classical multi-objective search problem, such as dealt with in [16], the set of
Pareto optimal solutions is sought from the set of all possible particular solutions. Any
particular solution is characterized by specific values of the problem’s decision vari-
ables representing a point in the problem’s decision space. The set of Pareto optimal
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solutions is found by comparing the performances of all particular solutions in the ob-
jective space, for non-dominance. The representation, in the objective space, of the set
of non-dominated solutions is known as the Pareto front. The classical MOP is com-
monly formalized as follows:

minF(x) (1)

s.t. x ∈ X⊆ S⊆ Rn

where x is the vector of decision variables. In general, x might be subjected to equality
and/or inequality constraints, which commonly include some bounds on the decision
variables. A solution x ∈ X ⊆ S ⊆ Rn, which satisfies all the constraints, is called a
feasible solution. The set X, of all feasible solutions, is called the feasible region in
the search space S. The MOP deals with minimizing y=F(x), the vector of K objective
functions where,

F(x)=[f1(x), f2(x),. . . , fK(x)]T (2)

It can be shown that problems involving maximization, or a mixture of both min and
max with respect to different objectives, may easily be transformed to the above prob-
lem. Furthermore, it should be noted that usually, due to contradicting objectives, there
is no single solution to the above problem. The interest, in the classical MOP, is there-
fore on the trade-offs with respect to the objectives. The well-known concept of Pareto
dominance supports exploring such trade-offs. The development of an optimality-based
Pareto front in the objective space is based on a comparison between solutions using
the idea of vector domination ([17]). Somewhat defiantly from the common MOP, the
problem of the m-MOOPs is formulized as:

min F(x,y)

s.t. =

{
x∈X⊆S⊆Rn

y=ym; m= 1, . . . ,nmop; ym ⊆Um ⊆RDm
(3)

where x = [x1,x2, . . . ,xn]Tandym = [y1
m,y2

m, . . . ,yDm
m ]T

where F(x,y) = {Fm(x,ym), for m = 1, . . . ,nmop} (4)

Fm(x,ym) = [fm
1 (x,ym), fm

2 (x,ym), . . . , fm
Km

(x,ym)]T

The m-MOOPs is a problem, which involves nmop objective spaces and their as-
sociated design spaces. The design spaces possess communality through a common
sub-space X. The relations between the design spaces and the objective spaces may be
elucidated by considering a 2-MOOPs problem and by observing Fig. 2. The figure de-
picts two design spaces (left side of the figure). The search space of MOP1 is associated
with three parameters; x, y1

1,y
2
1. The search space of MOP2 is also associated with three

parameters; x, y1
2,y

2
2. Thus in equations 3 and 4, D1=D2= K1=K2=2. It is observed that

x is the common component. Each such solution has its performances in its related ob-
jective space (see the points pointed at by arrows at the right panels of the figure). The
performances are computed by using the objective functions of each MOP.
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Fig. 2. The design and objective spaces of a bi-MOOP with a bi-objective problems

2.2 The Name m-MOOP- a Justification

The term “multi-MOOP” sounds like a pretentious name. MOP is fine, as it is recog-
nized as a well defined and important problem, but m-MOOP? Is the name justified by
its carrier? An advocate may argue that de-facto the problem may be posed as a MOP
thus claiming that the name is unjustified. Here the view is different. This different view
is based on two aspects. These aspects are related to: a. the design problem from which
the m-MOOP orientates from, b. the possibility of using a posed MOP as a way to solve
an m-MOOP.

Aspect a: A MOP stays a MOP even though it is solved by posing it is as a single
objective problem by aggregating the objective functions into a utility function! This
means that the nature of the problem determines its name and not the approach by
which it is solved. Each of the MOOPs of a multi-MOOP is a MOP by itself that may be
attended by a totally different team of decision makers, possibly orienting from different
fields of interest. The only relation between these teams may be a requirement posed
by the firm executive board or the factory engineer in chief. No one would claim that
designing an aircraft and designing a vessel that share between them some bolts (I am
exaggerating to make the point) is a single MOP. Therefore de-yore, the problems are
different but de-facto they are coupled by the requirement of commonality between
their solutions.

Aspect b: Posing the m-MOOP as a MOP is unrealistic from the algorithmic point of
view. To elucidate this claim, examine a simpler problem where instead of considering
an m-MOOP consider two single objective problems, coupled by common components.
For example let one problem involve the optimization of the speed of a car and the other
involves the optimization of the weight of a boat. Suppose that there is a need to use
the same motor for both. Would anyone suggest that the two problems would be amal-
gamated into a MOP? MOP of what? There are no dominance relations here as the per-
formances are not related to the same space. In the same manner in the case of MOPs;
what is the dominance relation between two solutions, which there performances be-
long to several objective spaces? Maybe a surrogate space might be used to project
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these performances into a single point? In any case for now it seems that approaching
the solution of the problem by this way is problematic to say the least. Therefore based
on the above, the name multi-MOOP seems suitable for this kind of problems.

2.3 The Interesting Aspects of m-MOOPs

m-MOOPs possess some very interesting characteristics that may result in various sit-
uations. These situations are most relevant to both the understanding of the problem as
well as its solution. To elucidate these features a bi-MOOP bi-objective problem (i.e.,
each MOP of the m-MOOP, is associated with two objectives), is used. One of MOP1’s
solution’s performances in the related objective space is depicted as a blank point ‘A’
in Fig. 2 (left panel). A solution to the other MOP, MOP2, which utilize the same com-
ponent as the solution of MOP1, has performances, which are depicted as a blank point
‘B’ in MOP2 objective space (right panel). The performances are within the feasible
spaces of the objective spaces of both MOPs. These feasible spaces are designated by
encircling them with continuous curves. The Pareto front of each MOP, is designated
by a thick curvature.

Improving the performances of solution ‘A’, by changing its parameters, may lead
to a solution, which belong to the Pareto set. This means, that its performances will
belong to the Pareto front, of MOP1. If the change of parameters include a change in
the communal components, it is possible that the solution of MOP2 will be improved
such that it belongs to the Pareto set of MOP2 and its performances would be a part
of MOP2 Pareto front. These improvements are designated, in both panels of Fig. 3,
by arrows pointing from the initial performances (designated by A and B) towards the
improved performances (points A1 and B1 respectively). Another possible case is that
improving the performances of a solution in MOP1, so that it becomes a part of the
Pareto set of MOP1, may result in performances in MOP2, which are worst than the
initial performances. This is shown by following the change of performances of A and
B to A2 and B2 respectively. Yet another case may occur. While improving the perfor-
mances of a solution A to performances at A3, the performances at B may be shifted to

Fig. 3. Interesting cases associated with the m-MOOP
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(a) (b) (c)

Fig. 4. Different situations, which might be associated with an m-MOOP

B3 or even B4. This implies that it is possible that a solution belonging to a Pareto set
of one MOP is associated (through the common components) to an infeasible solution
in MOP2 and vice versa. One last phenomenon that should be highlighted is when a so-
lution is changed such that its solution’ performances are shifted from point A1 to A2.
As a result the best performances in MOP2 may be shifted from B1 to B5; nonetheless
they might also be shifted from B5 to any other point in the objective space, including
point B4!

Based on the above different phenomena that might be associated with solving m-
MOOPs, consideration should be given to the understanding of what are the purposes of
the optimization. Naturally it would be very good if the solution to the m-MOOP would
correspond to solutions, which belong solely to the Pareto fronts of the problem’s MOPs.
Nonetheless, as discussed in the previous section, it is not always the case. Some possible
situations are depicted in Fig. 4. In Fig. 4a, all solutions for the m-MOOP belong to the
MOPs fronts, which are designated by bold curves. In Fig. 4b, the solutions to the m-
MOOP belong to the Pareto set of one MOP (shown as bold curve in the upper panel)
but are sharing components with solutions of the other MOP, which are not part of its
MOP’s front (this is designated in the lower panel, by a bold and dashed curves for the
shifted and the Pareto front, respectively). In Fig. 4c, the solutions are not associated
with none of the Pareto sets of the individual MOPs. This is designated in both panels
by bold curve (shifted fronts) and dashed curves (the individual MOPs’ Pareto fronts).
In the latter case, trying to improve the Pareto set of one MOP causes a deterioration of
performances in the other MOP. An important note is that the cases, which are depicted
in Fig. 4b and Fig. 4c, might be both, solutions to the same m-MOOP.

So, if an m-MOOP may have several possible situations associated with its solu-
tion, what do we aim for? The answer is; to the best possible. So, what is the best?
The answer is not straightforward. One view which has been one of the main issues
in product family design (e.g., [18], is to try and find common components such that
the performances in all products are not much worst than when no demand for com-
monality exists. In such works, it has been recognized that commonality often causes a
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penalty with respect to individual product performance (e.g., [19]). According to [19],
the design challenge is how to maximize commonality and optimize the family prod-
ucts, while satisfying individual constraints and minimizing performance losses. In
[13] a fundamental measure that allows assessing the results and comparing between
approaches to solve an m-MOOP, has been introduced and termed: Loss Of Optimality
Measure (LOM).

2.4 The Loss of Optimality Measure (LOM)

The LOM is based on the proximity indicator, ([20]) and has been initially presented in
[14]. For each MOP, a representing set OSm, m=1,., nmop is found such that it is spread
diversely on the MOP’s Pareto front. It serves as the optimal approximation set. If the set
may not be found analytically the representing set is a set found by individually running
each MOP to find OS∗m, m=1,. . ., nmop. The minimal Euclidian distance between the j-th
evolved solution within the m-th MOP with a representative of a set, ASm, which is the
front achieved in the last generation (of the m-MOOPs algorithm), Dm

j,ASm→OS∗m
is found.

The measure termed Loss of Optimality Measure, LOM, is computed as follows:

LOM = max(LOMm)

where LOMm =
Dm

j,ASm→OS∗textm

Bm m=1, . . . ,nmop

where Bm is the maximal Euclidean distance between solution performances within the
m-th MOP. This serves as a scaling factor. A lower LOM means less loss of optimal-
ity and is viewed as an advantage. The LOM for a bi-objective problem is depicted in
Fig. 5. It is noted that considering the worst case over all MOPs and solutions, coin-
cides with the notion of Pareto. That is, the uncertainty towards the preferences of the
objectives is not removed, and any solution might be selected as a result of such a later-
in-design, articulated preferences. Naturally, when the time to decide arrives, a DM may
choose a solution associated with the smallest LOM (by taking a min over LOMm).

When comparing between algorithms and approaches to solve an m-MOOP, other
measures have been also suggested in [13] and [14]. These measures are associated

Fig. 5. The Loss of Optimality Measure assessment
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with computational aspects rather than with the solutions performances aspects. The
measures include the Waste of Resources Measure (WRM) and the Computational time
measure. These measures have been shown to be important issues in comparing between
the different possible solution approaches. In this chapter the focus is on performances,
thus the LOM and not the other introduced measures is the focus. The interested reader
is referred to [13] and [14] for details on comparisons based on the omitted measures.

2.5 Possible Approaches to Solve an m-MOOP

Currently there are several approaches for the solution of an m-MOOP. The approaches
are depicted schematically in Fig. 6, and shortly related to, thereafter.

Fig. 6. Different approaches to the solution of an m-MOOP

1. Sequential approach: This approach has been introduced in [13] (see left most
schematic description in Fig. 6). In this approach the MOPs of the m-MOOP are solved
sequentially. The common components of the optimal set, which are found by solving
the first MOP, are used as constants for the solution of the other MOPs. The method is
explained and demonstrated in sections 2.5.1 and 3 respectively.

2. Simultaneous approach: This approach has been introduced in [14] (see second
from left schematic description in Fig. 6). It is explained and demonstrated in sections
2.5.2 and 3 respectively.

3. Posed single objective: In this approach, which is introduced hereby, the MOPs’
populations cooperate in order to reduce the loss of optimality (see sub-section 2.4).
The m-MOOP is therefore posed as a single objective problem. Such posing dose not
involves an aggregation function of the initial objective functions, but rather a newly
imposed objective. This approach is introduced and initial results are reported upon, in
sections 2.5.3 and 3 respectively.

2.5.1 The Sequential EMO Approach
The sequential approach is designed to solve the MOOPs by a stepwise approach. In
such an approach, one of the MOOPs is solved, gaining its front. The optimal set for that
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(a) (b) (c)

Fig. 7. Obtaining the m-MOOP front by a sequential approach

MOOP contain x∗. The search for the set x∗ is then relaxed and the remaining MOPs
are optimized using its values as constants. This means that the problem in equation 3
is decomposed to:

min(f(x,y)) if m=1

min
x∗=con

(f(x,y)) if m �= 1 (5)

The EMO implementation is associated with solving sequentially nmop MOPs by us-
ing a MOEA (e.g., NSGA-II) as detailed in the following pseudo algorithm.

Pseudo algorithm for the sequential m-EMO

a. Choose one of the MOPs and use an EMO to find (x,y1)∗
b. For i=2,. . . ,nmop use x∈(x,y1)∗ within an EMO search to find (x,y1)∗ for all i�=1
c. For i=2,. . . ,nmop perform non dominance sorting to (x,y1)∗
d. If ∃x∈(x,y1)∗∧x/∈(x,y1)∗ yi=2,. . . ,nmop eliminate this solution in MOP1

To elucidate the sequential approach and its implementation within an m-MOOP re-
fer to Fig. 7a-c. Fig. 7a depicts the front of a MOP, out of 2-MOOPs, which is solved
first (step ‘a’ above). Each solution performances, is designated with a different sym-
bol, emphasizing that each may be associated with different values for the communal
parameters (the x parameters). Using each of the x values found by the solution of
the first MOP, may result in a front when the second MOP is solved (step ‘b’ above).
This means that for each point in the objective space of the first MOP there may be a
set of solutions’ performances in the second objective space. These are designated by
corresponding symbols in Fig. 7b.

Following the demand for optimality of solutions to all MOPs, the fronts depicted
in Fig. 7b are sorted for non-dominance to result in the front (step ‘c’ above), which
is depicted in Fig. 7c. As a last step (step ‘d’ above), the solution which is associated
with the diamond in Fig. 7a is removed (as it is not associated with optimal solutions in
both MOPs). The solution to the m-MOOP is the two fronts, which are depicted in both
Fig. 7a and 7c after eliminating the diamond solution in Fig. 7a.

From the study, which has been conducted and reported on in [13] the sequential
approach seems to possess several drawbacks including: a) not all solutions on the front
of one MOP have optimal corresponding solutions in other MOPs. This means that
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there is an apparent waste of computational resources. b) The results are dependent
on the sequential order in which the MOPs are selected and solved. This means that
different fronts and therefore different solutions will be obtained for different sequential
orders. c) The overall computation time is highly dependent on the order at which the
sequential approach is implemented. d) Loss of optimality might be substantial in cases
such as in Fig. 4c. e. All measures and results are highly depended on the selection of
the sequential order at which the MOPs are solved. Thus if there is a clear preference
to one of the products (MOP) it should be solved first.

The above drawbacks should be resolved mainly by taking a new approach, which
solves the problem simultaneously. Such a simultaneous approach has been introduced
in [14] and is explained in the following section.

2.5.2 Simultaneous EMO Approach
Solving the m-MOOP simultaneously by using evolution means that, the population
should include individuals that may evolve all problems’ solutions and are to share
its resources. This approach may be viewed as a MOO problem that is built from the
overlap of several component MOO problems and creates a MOO problem that is nearly
decomposable. Such a view could be related to the approach of solving a composition
of problems taken by Watson and Pollack [21]. Nonetheless in [21] the notion of divide
and conquer is a fundamental one. That is, an individual build from two different ones
survives if and only if it is better than the composing individuals. This is in contrast
to the approach introduced in [14]. Taking a divide and conquer approach for the m-
MOOP seems problematic as the commonalty dictates an inseparable coupling between
the codes of the solutions for the different MOPs. Moreover, the situation described
in Fig. 4c (where the solution involves a loss in all MOOPs), contradicts the basic
understanding of coevolution by imposing an evolution where its solutions are worst
than those obtained by evolving each population separately.

In nature, a composition may be an individual having more than one chromosome
set from different species (e.g., [22]). Such a composition is termed allopolyploidy and
is limited in the sense that it usually involves closely related species. Any structured
GA ([11]) may be viewed as an allopolyploidy. In a structured GA the success of a
particular set within an individual determines the probability of the individuals survival.
Such individuals have been used for engineering design (e.g., [23]). An individual that
initially holds the code of more than one concept, and can therefore be regarded as a
specie, (e.g., [24]), has been used in several former investigations (e.g., [25, 26]). In
those works, a compound individual holds a genetic code of different concepts. In [25],
the decision on a concept that is to be represented by the individual has been a result
of decoding the concepts’ competition code. This means that an individuals survival
from one generation to the next depends on the solution of one of the species, which
are encoded within that individual. In [26], the survival of an individual depends on
the worst case/cases of all the solutions decoded from that individual. This means that
an individual may have a cluster of representations within the objective space and the
survival of that individual depends on the success of a part or all its representatives in the
objective space. In the approach presented in [14], all the individual’s decoded solutions
participate in the determination of the individuals probability for survival. Moreover the



14 G. Avigad

success of the individual solutions is not measured within one multi-objective space but
rather in several such spaces.

A Simultaneous Approach seems to be an appropriate approach to overcome the
sequential approach deficiencies. This is mainly important within the context of this
chapter, as related to deficiency ‘d’, (see previous section). It is expected that because
there is no preference to one MOP over the others, the pressure applied by such a search
will be towards the fronts of all MOPs. Therefore it is assumed that there will not be
a front/s of MOP/s that will contribute more than others to the loss of optimality and
therefore a decrease in the loss of optimality is expected.

In the simultaneous approach, all MOPs are solved simultaneously while a search for
communal components is conducted across the MOPs. The EMO approach suggested
in [14] utilizes a structured individual and some unique procedures as explained in the
following.

Algorithmic features. In this section the algorithmic features, which were introduced
in [14] are described. This is followed by the description of the simultaneous EMMOO
(see also [14]).

Multi problem individual: While searching for a solution to the m-MOOP, a pressure
should be applied towards optimal solutions of all MOPs. The search is conducted by
utilizing a Multi Problem Individual (MPI), which holds the code for all design param-
eters of the MOPs. In other words, an MPI codes the x vector and the ym; m=1,· · · ,nmop

(see section 2 for nomenclature). Such an MPI is depicted in Fig. 8.
The MPI holds the code of all design variables of all MOPs. The entire MPI’s code is

decoded and the resulting set of variables is utilized to compute the performances of the
MPI related solutions for all the MOPs. A population of such MPIs is evolved within an
EMO. It is noted that no overlap is assumed between variables of the different MOPs
excluding the x variables.

Subjective Utility Rank (SUR): In the m-MOOP, an MPI is associated with more than
one solution (one for each MOP), and therefore may be related to different levels of

Fig. 8. The structure of the MPI
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non-dominance. These levels are a result of the performances of the MPI related solu-
tions, with respect to the other performances in all MOPs’ objective spaces. The proba-
bility of an MPI to survive in the evolution should consider the optimality of the MPIs
solutions in all of these spaces. This consideration leads to the need to find a measure
that will represent the MPI’s optimality in all MOPs. This is done as explained in the
following.

Perform a non-dominated sorting (see [16]) for each of the nmop problems and find
for each problem the fronts, Frm

i , {i=1,, Nm
r ; m=1,.., nmop} where Ntextm

r is the number
of fronts in the m-th MOP, in a generation. For the j-th MPI for all j=1,..,2N, find a
vector of ranks such that rankj=(rank1

j ,. . . rankm
j ,. . . rank

nmop
j . Assign each of the MPIs

a SUR, such that the j-th individual is assigned a SUR:

SURj =
nmop

∑
m=1

rankm
j +

∑nmop
m=1 rankm

j − ranklow
j

nmop−1
(6)

where, rankm
j , is the level of non-dominance of the j-th individual in the m-th MOP.

ranklow
j =min(rankj) is the lowest level of dominance associated with the j-th individual.

The first expression on the right ensures that as the sum of all ranks of an MPI is
lower, a lower rank is assigned to the MPI. This applies a pressure towards optimality
of all MOPs solutions. The second expression on the right ensures a transverse pressure
towards low loss of optimality. To further explain the SUR, suppose that one individual
is associated with two ranks of 1 and 5 while another individual has solutions that
are ranked 3 and 3. For both individuals the first expression value is 6, none the less the
SURs are 9 and 6. This means that a pressure is applied towards solutions with low ranks
in all MOPs. It is noted that this last expression is that makes the current introduced
approach superior over the P-MOOP approach (see example for further explanations).

Subjective Crowding Distance: When considering crowding in the simultaneous m-
MOOP, the crowding of each MPI in all MOPs has to be considered for the assignment
of a crowding to the MPI. It is suggested to assign a crowding to each MPI as explained
in the following.

For each of the MPIs compute the crowding distances associated with the nmop
performances points in the objective spaces (see e.g., [16]). This means that the j-th
MPI will have nmop crowding distances dm

j ; m=1,, nmop. It is noted that this distance is
normalized with respect to each objective and therefore it is intrinsically normalized for
all MOPs. Assign each of the MPIs a subjective crowding distance:

Dj = ∞if ∃dm
j = ∞ for all m = 1, . . . ,nmop (7)

Dj = 2 · · ·max(dm
j )− ∑nmop

m=1 max(dm
j )−dm

j

nmop−1

Equation 7 ensures that an MPI which codes a boundary solution at any of the MOPs
will not disappear. If none of the solutions associated with the MPI are boundary solu-
tions, then the distance assigned to it has two main effectors. One effect is of the first
expression of equation 7. It assigns an initial distance according to the maximal dis-
tance that an MPI is associated with. This has the same motivation as before, namely to
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prefer MPIs which have a high crowding distance at any of the MOPs. The second ex-
pression on the right penalizes the initial crowding, based on the other distances an MPI
is associated with. The highest value an MPI can get is twice the maximal distance and
the lowest is its maximal crowding over all MOPs. For example suppose that one MPI
of a 4-MOOP is associated with the distances of 0.8, 0.8, 2, and 3, while the other has
the distances of 1, 2, 2, 3. Using equation 7, both MPIs are assigned initially a value of
6. Nonetheless the final values of the distances are 4.2 and 4.66 respectively, giving the
second MPI a higher probability for survival as it contributes more across the MOPs.

Simultaneous EMO for the m-MOOP. The EMO approach taken in [14] utilizes the
MPI within an EMO algorithm. The algorithm is based on NSGA-II ([16]) with modifi-
cations, which allow a simultaneous solution of all the MOPs taking into consideration
the need for commonality. The choice of NSGA-II is based on the need to allow a fair
comparison with the sequential approach of [13], which utilized NSGA-II to search for
the different MOPs fronts. The simultaneous approach algorithm and its explanation
are hereby given (see further details in [14])

Simultaneous m-EMO

a. Initialize a parent population Pt, of MPIs, with a size n, n= |Pt|.
b. Duplicate Pt to produce an identical population Qt (an artificial offspring popula-

tion).
c. Combine parent and offspring populations to create Rt= Pt∪ Qt.
d. Decode each of the MPIs’ of Rt, to obtain a solution to each of the nmop problems.
e. For each MPI and for each of its nmop solutions find the performances in the objective

space.
f. Find all MPIs’ SURs (see equation 6).
g. For each SUR, find its set of MPIs, SRr r=1,. . ., nr.
h. Initialize a new parent population Pt+1 = /0. Set a SUR counter r=1. While |Pt+1|+

SRr ≤ n, include the set SRr in the new parent population: |Pt+1|=|Pt+1|+SRr and
set r=r+1.

i. Complete the filling of Pt+1 with the most widely spread n-|Pt+1|MPIs using Lr where
Lr=sort(Dr,>).

j. Create offspring population Q∗t+1 from Pt+1 by Tournament Selection. This selection
is done by choosing randomly n times, two MPIs from Pt+1 and comparing them by
tournament as follows:
j1. If their SURs are different the MPI with the lower SUR is the winner and is

placed in Q∗t+1.
j2. If their SURs are equal the MPI with the larger subjective crowding distance is

the winner and is placed in Q∗t+1.
k. Perform Crossover to obtain Q∗∗t+1.
l. If stropping criteria is not met go to ‘c’.
m. Present the MPIs, solutions’performances that are assigned with the lowest SUR.

In step ‘a’ and ‘b’, two populations of MPIs are initialized. The initialization of the
second population is done by duplicating the first one. Such an initialization is done to
save computations. In step ‘c’, as done in NSGA-II [16], the populations are merged
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to find the combined population R. In step ‘d’ the combined population’s MPIs are
decoded (in a case of a binary code) to extract each of the MPIs solutions to all MOPs.
These solutions are used in step ‘e’to find the performances of each MPI in all MOPs.
In step ‘f’ by using equation 1, the SUR for each MPI is found. In step ‘g’, the MPIs
population is sorted into ranks according to the MPIs SURs. These ranks are associated
with utility values and not with the original non-dominance levels. In step ‘h’, the elite
population is filled with MPIs beginning with SR1. This filling is commenced while an
entire set SRr may be added. If the room left for filling the elite population is smaller
than the number of MPIs in the filling set the continuation of the process is altered.
The alternation, which is described in step ‘i’, consists of adding to the elite population
the most uncrowned individuals, which are sorted, based on the subjective crowding
distance. In steps j-l, the algorithm is similar to that of NSGA-II [16], but using the
MPIs’ SURs and subjective crowding distances, instead of individual s’ non-dominance
levels and crowding distances. In step ‘m’, the fronts are presented. Here the presented
individuals are those that have the lowest existing SUR. It is noted that this SUR=nmop,
for cases where the LOM=0. In other cases this is no longer valid, and higher SURs
may be associated with the MOPs’ resulting fronts.

The simultaneous approach possesses some drawbacks. These drawbacks were dis-
cussed in [14] and include: a. the need for increasing the dimension of the population
as the number of MOPs involved with the m-MOOP increases, b. inconsistency of the
results. Following the fact that the fitness is based on a utility function (see equation
6), there are cases where perturbations occur. Such perturbations cause the results not
to converge to specific fronts. These expected perturbations, lead to a need to either at-
tend and control these perturbations or otherwise avoid them by taking a new approach.
Moreover, the need to sort the population nmop times, impose a computationally expen-
sive procedure (the non-dominance sorting). To avoid the above problematic issues a
new approach is hereby suggested. It does not include sorting or a utility function.

2.5.3 A New Approach- Posed Single Objective Problem
The new approach resembles the simultaneous approach as far as its use of the same
structured MPI. It is associated with the same purpose of that of the simultaneous ap-
proach, that is, to reduce the LOM. Here this demand is set as the only objective for the
evolution. While striving to comply with such a demand, it may happen that optimality
is not attained (see Fig. 4b, 4c).

In contrast to the simultaneous approach, which utilize the dominance relations
within the m-MOOPs’ associated MOPs in order to reduce the LOM, here the evo-
lution is directly heading for reducing the LOM. This means that the m-MOOP is set
as a single objective problem, with minimizing the LOM as the only objective. With re-
spect to such posing it is noted that in order to prevent premature convergence, niching
should be generally used. Considering niching in single objective problems, it seems
that it may be important for the following two cases. In the first case there are a set
of communal components, which are associated with a similar LOM. The second is a
case where there is a preferred common component (with the lowest LOM) followed by
less good solutions (with higher LOMs). The two cases and their correlation to a single
objective problem are depicted in Fig. 9.
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Fig. 9. Posing the m-MOOP as a single objective problem

In the upper depicted case all solutions are associated with the same LOM while in
the lower depicted case the common component associated with the solutions ‘1’ in
both MOP has the lowest LOM (highest 1/LOM). The search procedure adapts a basic
Genetic Algorithm with a small modification (restricted niching) and is described in the
following:

Simultaneous m-EMO

a. Find all MOOPs of the m-MOOP fronts to serve as the optimal sets
b. Initialize a parent population Pt, of MPIs, with a size n, n= |Pt|.
c. Decode each of the MPIs’ of Pt, to obtain a solution to each of the nmop problems.
d. For each individuals j=1,. . . ,np compute the maximal loss of optimality over all

MOPs. Mj=maxm Dm
OS∗m→j,ASm

e. Assign fitness, Fiti, to the i-th individual according to:
Fiti= 1

Mj+ε
,

where ε is used to avois infinite fitness.
f. Penalize the fitness of all MPIs by implementing a restricted niching as follows:

fit∗i = fiti
mi

where mi is a sharing function:

mi = shi(dx
i,j)

where shi(dx
i,j) =

{
1− dx

i,j
σ , ifdx

i,j < σ

g. Perform crossover
h. Perform mutation
i. Perform selection

2.6 Hybrid Approaches, Is It an Option?

Hybridization associated with evolutionary computation is a well recognized and de-
veloping paradigm. Hybridization might involve the incorporation of knowledge within
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the evolutionary search. Such knowledge might be inserted as a result of an a-priory un-
derstanding of the problem (e.g., initial population) or during the search (e.g., adapted
mutation rate). Hybridization has shown to improve the performances of EMOs by
speeding the convergence to the Pareto front by allowing a reduction of the compu-
tational affords (i.e., reducing the number of function evaluations, see e.g., [27]). In
the case of m-MOOPs, hybridization becomes more complicated. This declaration has
several origins including;

a. One of the interesting situation associated with m-MOOPs (see sub-section 2.3)
is that improving one MOP’s performances may results in a deterioration of the perfor-
mances associated with the other MOPs. Thus a local search within one MOP should
be coupled with a local search in the other MOPs. Currently, such coupling seems like
a challenge. It is noted that some of the situations considered in sub-section 2.3, makes
the consideration of robustness of m-MOOPs’ solutions a real pain. The scenarios of
one of the MOPs’ solutions may be associated with various behaviors in the other MOPs
with no clear understanding of what is the worst case,

b. Excluding the sequential approach; the other approaches are based on the evolution
of MPIs. This means that mutation is conducted across the entire code and not per MOP.
Thus control of the EC process by altering mutation/other-operators is problematic as
it has an effect across all MOPs. One way to overcome this deficiency is to consider
separation of the populations into different sets and evolving simultaneously. Such a
separation may lead to a new set of approaches to the solution of m-MOOPs.

2.7 Generic Nature of the Problem and Its Related Solution Approaches

Although the former two publications, [13] and [14], are utilizing an engineering exam-
ple and sharing of mechanical components, it seems that the problem is generic. Apart
from widening its use for other commonality aspects (e.g., common manufacturing pro-
cesses etc), the m-MOOP may be related to other fields of interest. For example consider
a problem, where two mobile robots’ trajectories have to be planned. One robots’ mis-
sion is to travel from a start point to a target point while minimizing the travel distance
as well as minimizing the detection to an opponent located at the target point (see e.g.,
[28]). The other robot is associated with a Multi-objective traveler salesman problem.
Suppose that these robots should meet at a certain point (for refueling etc). This means
that the trajectories are bound to pass through a certain location in a mutual time step.
It is clear that the problem is an m-MOOP. Other fields such as scheduling, and Com-
ponent Based Software Development, CBSD, (e.g., [29]) might be also associated with
the m-MOOP.

3 Examples

In this section bi-MOOP examples are given to demonstrate the two formerly intro-
duced approaches and the new one. In all of the following examples NSGA-II with
20 individuals per MOP, 50% cross-over and 5% mutation is used over 300 genera-
tions. An 8 bit code is used for all design parameters. The simulations were done using
MATLABTM.
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3.1 Academic Example1

In the first example the sequential and the simultaneous EMOs are utilized to solve a
bi-MOOPs, which is associated with fronts of the MOPs:

MOP1 : min(f1
1, f

1
2) where, f1

1 = x

f1
2 = 1 + y2

1−x+ 0.2sin(πx)
and:−2.0 ≤ x≤ 2.0,−2.0≤ y1 ≤ 2.0

MOP2 : min(f2
1, f

2
2) where, f2

1 = −10(e0.2(x2+y2
2)0.5

+ 1

f2
2 = (x−0.5)2 +(y2−0.5)2

and:−2.0 ≤ x≤ 2.0,−2.0≤ y1 ≤ 2.0

Comparing the results as obtained by the sequential approach (Fig. 10a) with those
obtained by the simultaneous approach (Fig. 10b), is done by using the LOM (see
section 2.4).

(a) (b)

Fig. 10. a: Sequential approach, b: Simultaneous approach

The values for the LOM computed for the sequential approach and the simultane-
ous approach are; LOM=0.015, LOM= 0.013, respectively. From these results it may
be observed that the LOM is low and similar in both approaches. The small loss is a
consequence of the fact that both MOPs fronts are associated with communal compo-
nents (x values), which lie within the feasible searched interval. In [13] a mechatronic
example has also been used. It showed similar results.

3.2 Academic Example2

The m-MOOP is associated with the following objectives:

MOP1 : min(f1
1, f

1
2)where, f1

1 = x1

f1
2 = x2
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Fig. 11. Sequential development of the m-MOOP’s solutions

with constraints that allow a development of a Pareto front: g1=x1+ x2-3≥ 0, g2=x2+
30x1-3≥ 0, , g3=x2+ 0.05x1+0.15 and: 0.01≤ x1≤10, 0.01≤ x2≤10

MOP2 : min(f2
1, f

2
2)where, f2

1 = x1 + 2(y−5)
f2
2 = x2 + 2(y−5)

where x1 and x2 are the communal parameters and 5≤y≤6
In this example the equations have been chosen in such a way that when solutions

become more optimal in one MOP their corresponding solutions in the other MOP are
less optimal (the situation of Fig. 4c). The fronts of both MOPs are analytically identical
although associated with different Pareto optimality sets. Solving each MOP separately,
MOP1 is associated with optimal solutions where 0.01≤ x1 ≤ 3 and 0.01≤ x2 ≤ 3 while
MOP2 is associated with 7≤ x1 ≤ 10 and 7≤ x2 ≤ 10. Using the sequential approach of
[13] to solve this problem, results in the fronts, which are depicted in Fig. 11.

The front of one MOP is designated by blank squares whereas the related solutions
of the second MOP (sequentially found) is designated by black squares. It can be seen
from Fig. 4, that the loss of optimality (starting either with MOP1 or with MOP2) is
9.9 and that the LOM is also the minimal possible loss of optimality. It is inherent to
the relation between the objectives of MOP1 and MOP2 that moving the front of one
MOP backwards (from optimality) will result in the movement of the second MOPs’
solutions towards more optimality. Therefore, as explained in section 3, it is expected
that a simultaneous search of the MOPs will result in a pressure towards both fronts not
preferring one MOP over the other. Fig. 12a, depicts the performances of the population
R1 in MOP1 (which is associated with both P1 and Q1) designated by squares. Fig. 12b
depicts the performances of the same population in MOP2 designated by circles. In
each of these figures the elite population (found according to step ‘h’ of the SA), P2,
performances are highlighted by filled symbols.

Inspection of figures Fig. 12a and 12b reveals that the elite population performances
are concentrated at the middle of the entire set of performances in both MOPs. This
means that the search pressure is not concentrated at optimal solutions for each MOP
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(a) (b)

Fig. 12. MOP1 and MOP2 initial and elite populations

Fig. 13. The MOPs’ fronts found by using the SA

but rather at solutions, which guaranty less loss of optimality in the MOPs. Running the
simultaneous algorithm results in the fronts, which are depicted in Fig. 13, where the
fronts of each MOP (found separately) are designated by continuous lines. It is depicted
that the loss of optimality in the simultaneous approach is less than that is obtained by
the sequential approach (7.2 instead of 9.9 respectively). Moreover, almost half of the
solutions are associated with a loss of optimality of 4.95! (that is approximately half the
loss obtained by using the sequential approach).

The posed single objective approach has been implemented for this problem. For
σ = 0.2 the results are depicted in Fig. 14.

In Fig. 14, the results are shown for σ = 0.2. Running this problem again and again
for different values of σ , showed two major influences of that parameter on the results.
The first is the influence on the LOM and the second is the influence on the spread.
These influences are depicted in Fig. 15. The left panel of Fig. 15 depicts the effect
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Fig. 14. The resulting front for the posed single objective, with σ = 0.2

Fig. 15. Statistical results showing the effect of changing σ on the LOM (left panel) and on the
spread (right panel)

of changing σ on the LOM. The results where based on the 30 individuals population
and repeating the run for each σ ,30 times. It is depicted that at σ = 0.2 the LOM is the
minimal (compared with the other tested values). More over most (95%) of the popula-
tion is associated with a loss of optimality, which is less than 5.2. As grows the LOM
is higher as well as the difference in the LOM between runs. The right panel of Fig. 15
depicts the effect of changing σ on the spread of solutions’ performances. The spread
has been assessed by calculating the percentage of different solutions’ performances in
the total population’s performances. Therefore high percentage of different solutions
together with a low LOM is desirable. When depicting Fig. 14 it is observed that such
desirable result may be found, nevertheless based on the statistical results this is not
always the case.

It is clear that there is a need to tune σ for the case in hand in order to improve the
LOM. In any case the spread shows inconsistency. A possible approach to solve this
issue is addressed in the following section.
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4 Discussion and Future Work

In this chapter the previously introduced m-MOOP is discussed including two ap-
proaches to solve the problem, namely the sequential and the simultaneous approaches.
A comparison between these approaches based on the loss of optimality measure shows
the advantages of the latter over the former. Perturbations associated with the simultane-
ous approach, warrants the introduction of yet another approach. The newly introduced
approach concerns the evolution of MPIs based on their success in reducing the LOM.
The amalgamation of several MOPs into a single objective problem, which is not a
utility function of some sort, is a totally new approach to solve m-MOOPs. Although
the initial study has shown some promising results, further studies should be conducted
especially in relation to the tunable parameter.

The statistical results obtained for the new approach warrants for an approach which
will overcome both the need to tune a parameter and to improve the consistency of
results. Such an approach that may solve these problems might be to use the sequential-
optimization approach, which has been introduced in [30] combined with the posed
single objective approach. In such a method, the m-MOOP is solved as a posed single
objective problem with no niching mechanism. This is followed by running the opti-
mization again with constraining the common components, which were found in the
first run, preventing them from being the results again. This may be sequentially prac-
ticed until enough solutions are gained.

A different approach might be to consider a solution by taking game theory ap-
proaches. For example the m-MOOP might be posed as a multi objective game between
players, where each tries to optimize the performances of a solution within its multi-
objective space. The players are nevertheless bound to the game rules, which pose the
restriction of commonality. This situation might be related to Nash equilibrium. From
Wikipedia: In game theory, the Nash equilibrium (named after John Forbes Nash, who
proposed it) is a solution concept of a game involving two or more players, in which
no player has anything to gain by changing only his or her own strategy unilaterally.
If each player has chosen a strategy and no player can benefit by changing his or her
strategy while the other players keep theirs unchanged, then the current set of strategy
choices and the corresponding payoffs constitute a Nash equilibrium. Stated simply,
you and I are in Nash equilibrium if I am making the best decision I can, taking into ac-
count your decision, and you are making the best decision you can, taking into account
my decision. Likewise, many players are in Nash equilibrium if each one is making
the best decision (s)he can, taking into account the decisions of the others. However,
Nash equilibrium does not necessarily mean the best cumulative payoff for all the play-
ers involved; in many cases all the players might improve their payoffs if they could
somehow agree on strategies different from the Nash equilibrium. This means that if
there was no demand for minimizing the LOM, a strategy where the MOPs do not in-
teract could (and does) yield better results in several cases. The game theory approach,
will possibly call for the need to use a separate population for each of the MOPs. Such
a separation should advance hybridization as discussed in sub-section 2.6. Future work
should also include a comparison between the introduced approaches for more than
two coupled MOPs. Further studies should also test the approach for more compound
industrial problems.
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In this chapter, we discuss various issues related to the implementation of multiobjec-
tive memetic algorithms (MOMAs) for combinatorial optimization problems. First we
explain an outline of our MOMA, which is a hybrid algorithm of NSGA-II and lo-
cal search. Our MOMA is a general framework where we can implement a number of
variants. For example, we can use Pareto dominance as well as scalarizing functions
such as a weighted sum in local search. Through computational experiments on multi-
objective knapsack problems, we examine various issues in the implementation of our
MOMA. More specifically, we examine the following issues: the frequency of local
search, the choice of initial solutions for local search, the specification of an acceptance
rule of local moves, the specification of a termination condition of local search, and
the handling of infeasible solutions. We also examine the dynamic control of the bal-
ance between genetic operations (i.e., global search) and local search during the execu-
tion of our MOMA. Experimental results show that the hybridization with local search
does not necessarily improve the performance of NSGA-II whereas local search with
problem-specific knowledge leads to drastic performance improvement. Experimental
results also show the importance of the balance between global search and local search.
Finally we suggest some future research issues in the implementation of MOMAs.

1 Introduction

It has been demonstrated in the literature [1, 5, 7, 15, 26] that the search ability of evolu-
tionary optimization algorithms can be improved by the hybridization with local search.
Such a hybrid algorithm has often been referred to as memetic algorithms [27]. Imple-
mentation of memetic algorithms for single-objective optimization has been discussed
in details [6, 23, 24, 25]. Self adaptation of search strategies in memetic algorithms has
also been discussed for single-objective optimization under the name of multi-meme
algorithms [23] and adaptive memetic algorithms [29, 30].

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 27–49.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Whereas most memetic algorithms have been developed for single-objective op-
timization, real-world application problems usually involve multiple objectives. It is
well-recognized that evolutionary algorithms are suitable for multiobjective optimiza-
tion because a number of non-dominated solutions can be simultaneously obtained by
their single run. Currently evolutionary multiobjective optimization (EMO) is one of
the most active research areas in the field of evolutionary computation. Whereas a large
number of multiobjective evolutionary algorithms (MOEAs) have been proposed in the
literature [2], we do not have many studies on memetic algorithms for multiobjective
optimization.

In single-objective memetic algorithms (SOMAs), their local search part is driven
by the same objective function as in their evolutionary part. That is, the same objective
function is used in global search and local search. Thus the hybridization of evolu-
tionary algorithms with local search is straightforward in the design of SOMAs. This
is not the case in the design of multiobjective memetic algorithms (MOMAs) because
local search is basically a single-objective optimization technique for finding a single
optimal solution (while global search in MOMAs are supposed to search for a large
number of non-dominated solutions with respect to multiple objectives). Thus we need
to implement a local search procedure that can handle multiple objectives for the im-
plementation of MOMAs.

The first MOMA, which is called a multiobjective genetic local search (MOGLS)
algorithm, was proposed by Ishibuchi and Murata in 1996 [13]. In MOGLS, a weighted
sum fitness function is used in parent selection and local search while Pareto domi-
nance is used for updating a secondary population (i.e., an archive population). In order
to search for a large number of non-dominated solutions with a wide range of objec-
tive values, the weight vector in the weighted sum fitness function is randomly updated
whenever a pair of parent solutions is chosen for crossover. The same weight vector is
used in local search for an offspring solution generated by genetic operations from the
chosen parents. The performance of MOGLS was examined for flowshop scheduling
[14]. A variant of MOGLS with higher search ability was proposed by Jaszkiewicz [18].
It was demonstrated by Jaszkiewicz [19] that his MOGLS [18] outperformed other MO-
MAs (i.e., M-PAES [21] and the original MOGLS [13, 14]) and a well-known MOEA
(i.e., SPEA [32]).

M-PAES (memetic Pareto archived evolution strategy) by Knowles and Corne [21] is
an MOMA where Pareto dominance is used for comparing the current solution and its
neighbor in local search. When they are non-dominated with each other, they are com-
pared using a crowding measure based on a grid-type partition of the objective space.
The performance of M-PAES was examined for multiobjective knapsack problems in
[21] and degree-constrained multiobjective minimum-weight spanning tree problems
in [22].

One advantage of local search over global search in MOMAs is its efficiency. That is,
local search is much faster than global search in MOMAs. This is because local search is
based on the comparison between the current solution and its neighbor while the fitness
evaluation of an individual in evolutionary multiobjective optimization is based on its
relation to the entire population. Moreover there exist efficient methods for evaluating
local moves in many combinatorial optimization problems such as traveling salesman
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problems. Thus MOMAs are usually much faster than MOEAs if their computation
times are compared under the same number of examined solutions.

In this chapter, we discuss various issues related to the implementation of MOMAs
through computational experiments on multiobjective 0-1 knapsack problems:

(a) Frequency of local search: How often should we use local search during the execu-
tion of MOMAs (e.g., every generation or every ten generations)?

(b) Choice of initial solutions for local search: Which solutions should we use as initial
solutions for local search (e.g., all solutions or only a few solutions)?

(c) Choice of an acceptance rule for local moves: How should we compare the current
solution with its neighbor (e.g., weighted sum or Pareto dominance)?

(d) Duration of local search: How many neighbors should we examine during local
search from each initial solution (e.g., only a few neighbors or a large number of
neighbors)?

(e) Constraint handling: How should we handle constraint conditions (e.g., repair or
penalty)?

(f) Timing of local search: When should we use local search (e.g., only in the first or
final generation, or in every generation)?

(g) Control of local search intensity: How should we control local search intensity (e.g.,
increase or decrease the local search application probability)?

As an MOMA, we use a hybrid algorithm of NSGA-II [3] and local search. Our
MOMA is a general framework where we can implement various variants to examine
the above issues. It is demonstrated through computational experiments that the perfor-
mance of NSGA-II is not always improved by simply hybridizing it with local search.
Its performance is, however, drastically improved by the hybridization when we use
local search with a weighted sum-based repair scheme. That is, the use of problem-
specific local search drastically improves the performance of NSGA-II. Experimental
results also demonstrate the importance of the balance between local search and global
search. For example, the performance of NSGA-II is severely degraded when we spend
too much computation time on local search.

In this chapter, we first explain our MOMA in Section 2. Next we examine the
above-mentioned issues through computational experiments in Section 3. Then we sug-
gest some future research directions in Section 4. Finally we conclude this chapter in
Section 5.

2 Multiobjective Memetic Algorithms

2.1 Basic Framework of Our Multiobjective Memetic Algorithm

Let us consider the following k-objective maximization problem:

Maximize f(x) = ( f1(x), f2(x), ..., fk(x)), (1)

subject to x ∈X, (2)
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where f(x) is a k-dimensional objective vector, fi(x) is its i-th element (i.e., i-th objec-
tive) to be maximized, x is a decision vector, and X is a feasible region of x. When the
following two conditions are satisfied, a feasible solution x ∈X is said to be dominated
by another feasible solution y ∈X (i.e., y dominates x: y is better than x):

∀i, fi(x)≤ fi(y) and ∃ j, f j(x) < f j(y). (3)

When this relation does not hold for a pair of solutions, they are non-dominated with
each other. That is, x and y are non-dominated with each other when we can not say
which is better between them using the Pareto dominance relation in (3). If there is
no solution y in a solution set that dominates x, x is a non-dominated solution in that
solution set. When all solutions are non-dominated, the solution set is called a non-
dominated solution set.

If there is no feasible solution y (in the feasible region X in (2)) that dominates x,
x is said to be a Pareto-optimal solution of the multiobjective optimization problem in
(1)-(2). The set of all Pareto-optimal solutions is the Pareto-optimal solution set. Its
projection on the objective space is called the Pareto front. Evolutionary multiobjective
optimization is to find a set of non-dominated solutions that well approximates the
Pareto-optimal solution set (i.e., the Pareto front in the objective space).

As an MOMA, we use a hybrid algorithm of NSGA-II and local search. Our MOMA
is a general framework where we can implement various variants [16]. The generation
update mechanism of our MOMA is illustrated in Fig. 1.

From the current population in Fig. 1, an offspring population is generated by ge-
netic operations. Local search is applied to some offspring. An improved population is
constructed by offspring improved by local search. Good individuals are selected from
the current, offspring and improved populations to form the next population.

Let us denote the population size as Npop. The size of the offspring population is
the same as the current population. That is, Npop offspring are generated by genetic
operations. The size of the improved population depends on the number of offspring to
which local search is applied (i.e., offspring used as initial solutions for local search). It
also depends on the ability of local search to improve current solutions and its duration
from each initial solution.

Current
Population

Offspring
population

Improved
population

Next
population

Genetic
operations

Local
search

Pareto
ranking

Fig. 1. Generation update in our multiobjective memetic algorithm (MOMA)
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The outline of our MOMA is written as follows:

[MOMA]

Step 1: P = Initialize(P)
Step 2: While the stopping condition is not satisfied, do
Step 3: P′ = Genetic Operations(P)
Step 4: P′′ = Local Search(P′)
Step 5: P = Generation Update(P∪P′ ∪P′′)
Step 6: End while
Step 7: Return Non-dominated(P)

First an initial population with Npop solutions is randomly generated in Step 1. Then
Steps 3-5 are iterated until a pre-specified stopping condition is satisfied. Finally non-
dominated solutions in the final population are presented as the final result of the exe-
cution of our MOMA.

Step 3 of our MOMA is exactly the same as NSGA-II [3]. That is, each solution
in the current population is evaluated by Pareto sorting in the following manner. First
the best rank (i.e., Rank 1) is assigned to all the non-dominated solutions in the cur-
rent population. Rank 1 solutions are tentatively removed from the current population.
Next the second best rank (i.e., Rank 2) is assigned to all the non-dominated solutions
in the remaining population. In this manner, ranks are assigned to all solutions in the
current population. The rank of each solution is used as the primary criterion in parent
selection. A crowding distance is used as the secondary criterion to differentiate be-
tween solutions with the same rank (for details, see [2, 3]). Using Pareto sorting and
the crowding distance, Npop pairs of parents are selected from the current population by
binary tournament selection with replacement. An offspring solution is generated from
each pair of parents by crossover and mutation to form an offspring population P′ with
Npop offspring.

In Step 4, we use the following weighted sum fitness function for local search:

f (x) = λ1 f1(x)+λ2 f2(x)+ · · ·+λk fk(x), (4)

where λ = (λ1,λ2, ...,λk) is a non-negative weight vector. In this chapter, we first gen-
erate a set of uniformly distributed weight vectors using the following formulation as in
Murata et al. (2001):

λ1 +λ2 + · · ·+λk = d, (5)

λi ∈ {0,1, ...,d} for i = 1,2, ...,k. (6)

For example, we have six weight vectors (2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1,
1), (0, 0, 2) when the value of d is specified as d = 2 for three-objective problems (i.e.,
k = 3). In our computational experiments, the value of d is specified as d = 100 for
k = 2 (101 weight vectors), d = 13 for k = 3 (105 weight vectors), d = 7 for k = 4 (120
weight vectors) and d = 6 for k = 6 (462 weight vectors).

In Step 4, first a weight vector is randomly drawn from the weight vector set gener-
ated in the above-mentioned manner. Then an initial solution for local search is selected
from the offspring population P′ using tournament selection with replacement. In order
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to choose a good initial solution for local search, we use a large tournament size (20 in
our computational experiments). Local search is applied to the chosen initial solution
with the local search application probability PLS. The same weighted sum fitness func-
tion with the current weight vector is used for local search from the initial solution until
local search is terminated. In local search, a neighbor is randomly generated from the
current solution. When a better neighbor is found, the current solution is replaced with
that neighbor. That is, we use the first move strategy where local search accepts the first
improved neighbor instead of the best improved neighbor in the neighborhood of the
current solution. After the replacement of the current solution, local search is applied
to the updated current solution. The total number of examined neighbors in a series of
local search from the initial solution is used as the termination condition in our MOMA.
We denote this parameter as NLS (i.e., NLS is the total number of examined neighbors
in a series of local search from each initial solution).

The selection of an initial solution and the probabilistic application of local search
with the local search application probability PLS are iterated Npop times in each genera-
tion where Npop is the population size.

It should be noted that a weight vector is randomly drawn whenever an initial so-
lution for local search is to be selected. This means that local search from each initial
solution is governed by the weighted sum fitness function with a different weight vector.
This is to search for a variety of Pareto-optimal solutions with a wide range of objective
values in the objective space.

2.2 Variants of Our Multiobjective Memetic Algorithm

Since our MOMA is a general framework of a hybrid algorithm of NSGA-II with lo-
cal search, we can implement its various variants [16]. For example, Pareto dominance
instead of the weighted sum fitness function can be used for comparing the current so-
lution with its neighbor in local search. Local search does not have to be used in every
generation. It can be periodically used (e.g., every two generations or every ten genera-
tions). In its extreme case, local search can be used in only the initial or final generation.
Moreover, we can dynamically change the local search application probability PLS dur-
ing the execution of our MOMA. That is, we can use a different local search application
probability in each generation of our MOMA.

Using these variants, we examine various issues related to the implementation of
MOMAs in the next section. We also examine some problem-specific implementation
issues such as constraint handling and repair.

3 Computational Experiments

3.1 Test Problems

As test problems, we use nine multiobjective knapsack problems of Zitzler and Thiele
[32]. They are denoted as 2-250, 2-500, 2-750, 3-250, 3-500, 3-750, 4-250, 4-500 and
4-750 where “k-n” means a k-objective n-item problem. The k-n knapsack problem in
[32] is written as follows:
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Fig. 2. Dominated region by a non-dominated solution set with three solutions

Maximize f (x) = ( f1(x), f2(x), ..., fk(x)), (7)

subject to
n

∑
j=1

wi jx j ≤ ci, i = 1,2, ...,k, (8)

x j = 0 or1, j = 1,2, ...,n, (9)

where
fi(x) =

n

∑
j=1

pi jx j, i = 1,2, ...,k. (10)

In this formulation, x is an n-dimensional binary vector, pi j is the profit of item j
according to knapsack i, wi j is the weight of item j according to knapsack i, and ci is
the capacity of knapsack i. Each solution x is handled as a binary string of length n.

Each variant of our MOMA is applied to each test problem 50 times. All experimen-
tal results reported in this chapter are average results over 50 runs.

3.2 Performance Measure

We use the hypervolume measure [31] to evaluate a non-dominated solution set ob-
tained by each run of our MOMA. The hypervolume measure is the area (volume or
hypervolume) of the dominated region by a non-dominated solution set. In Fig. 2, we
show the dominated region by three non-dominated solutions x1, x2 and x3 in a two-
dimensional objective space. The hypervolume measure is the area of the shaded region
in Fig. 2. As we can see from Fig. 2, we need a reference point for calculating the hy-
pervolume measure. In Fig. 2, the origin of the objective space is used as the reference
point. In our computational experiments, we also use the origin of the objective space
as the reference point for the calculation of the hypervolume measure. For details of the
calculation of the hypervolume measure, see the text book by Deb [2] on evolutionary
multiobjective optimization.
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For the two-objective test problems (i.e., 2-250, 2-500 and 2-750), we also use the
concept of attainment surfaces [4] to visually demonstrate the average performance
of each variant of our MOMA. The attainment surface is the boundary of the non-
dominated region of a non-dominated solution set (e.g., bold lines in Fig. 2). Since a
single non-dominated solution set is obtained by a single run of each variant of our
MOMA, we obtain multiple attainment surfaces by its multiple runs. We use the 50%
attainment surface as an average result over those runs. See the text book by Deb [2]
for details of the calculation of the 50% attainment surface.

A number of performance measures have been proposed to evaluate the quality of
non-dominated solution sets in the literature (e.g., see [2, 33]). No performance mea-
sures can simultaneously evaluate various aspects of non-dominated solution sets [33].
For example, the generational distance (GD) can only evaluate the proximity of non-
dominated solution sets to the Pareto front:

GD(S) =
1
|S| ∑x∈S

min{dxy | y ∈ S∗}, (11)

where S is a non-dominated solution set, S∗ is the set of all Pareto-optimal solutions,
and dxy is the distance between a solution x and a Pareto-optimal solution y in the
k-dimensional objective space:

dxy =
√

( f1(x)− f1(y))2 + · · ·+( fk(x)− fk(y))2. (12)

In some computational experiments in this chapter, we use this measure for the per-
formance evaluation of our MOMA together with the hypervolume measure. We also
use the following simple measure, which is called the range in this chapter, to evaluate
the diversity of non-dominated solution sets in the k-dimensional objective space:

Range(S) =
k

∑
i=1

[max
x∈S
{ fi(x)}−min

x∈S
{ fi(x)}]. (13)

We mainly use the hypervolume measure because it evaluates the quality of non-
dominated solution sets by taking into account their proximity to the Pareto front as
well as their diversity along the Pareto front. It also has other good properties as a
performance measure (for characteristic features of various performance measures, see
[33]). Recently the hypervolume measure has been used for performance evaluation in
many studies in the EMO community.

3.3 Conditions of Computational Experiments

When we apply NSGA-II to our k-n test problem, we use the following parameter
specifications:

Population size: 200 individuals,
Crossover probability: 0.8 (uniform crossover),
Mutation probability: 1/n (bit-flip mutation),
Termination condition: 2000 generations.
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It should be noted that the mutation probability is specified by the number of items
(i.e., n: string length). Various variants of our MOMA are executed under the same
computation load as NSGA-II (i.e., the same total number of examined solutions as
NSGA-II: 400,000 solutions). In local search, a neighboring solution is generated by
applying the bit-flip operation to each bit of the current solution with the probability
4/n.

In our MOMA, we examine the following parameter specifications:

Local search application probability: PLS =0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1,
Termination condition of local search: NLS =0, 1, 2, 5, 10, 20, 50, 100.

Local search is applied to each initial solution (selected from the current popula-
tion) with the probability PLS. When local search is applied to an initial solution, NLS

neighbors are examined in total in a series of local search from the initial solution. We
examine all the 8×8 combinations of the above-mentioned eight values of PLS and NLS.
It should be noted that our MOMA is exactly the same as NSGA-II when PLS = 0 and/or
NLS = 0. This is because local search is not used when PLS = 0 and/or NLS = 0.

In NSGA-II and our MOMA, solutions in an initial population are randomly gener-
ated. Such a randomly generated solution does not always satisfy the constraint condi-
tions in (8). Infeasible solutions are also generated by genetic operations (i.e., crossover
and mutation) and local moves (i.e., bit-flip operations in local search). In order to trans-
form an infeasible solution into a feasible one, we use a repair procedure based on a
maximum profit/weight ratio as in Zitzler and Thiele [32]. That is, we remove items
from an infeasible solution in ascending order of the following maximum profit/weight
ratio until all the constraint conditions in (8) are satisfied:

q j = max{pi j/wi j | i = 1,2, ...,k}, j = 1,2, ...,n. (14)

The repair of infeasible solutions is implemented in the Lamarckian manner. That is,
repaired strings are used in genetic operations in the next generation. For the compar-
ison between the two repair schemes (i.e., Lamarckian and Baldwinian), see Ishibuchi
et al. [12].

When we use the weighted sum fitness function in (4), we can utilize the information
on the current weight vector λ = (λ1,λ2, ...,λk) when repairing infeasible solution as
in Jaszkiewicz [19, 20]. More specifically, we remove items from an infeasible solution
in ascending order of the following weighted profit/weight ratio until the constraint
conditions are satisfied:

q j =
k

∑
i=1

λi pi j

/
k

∑
i=1

wi j, j = 1,2, ...,n. (15)

In this chapter, we refer to these two repair schemes as the maximum ratio repair and
the weighted ratio repair. It should be noted that the weighted ratio repair is applicable
to infeasible solutions only when we have the weight vector. Thus we always use the
maximum ratio repair for infeasible solutions generated by genetic operations. We also
use the maximum ratio repair when we use Pareto dominance in local search.

In Fig. 3, we demonstrate the difference between these two repair schemes using
the 2-500 test problem. We applied the maximum ratio repair to an infeasible solution
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Fig. 3. Illustration of different repair schemes

denoted by an open circle in Fig. 3. Then we obtained a feasible solution B in Fig. 3. We
also applied the weighted ratio repair to the same infeasible solution using two weight
vectors: λ = (0.9,0.1) and λ = (0.1,0.9). When the weight for the first objective was
large, we obtained a feasible solution C with a large first objective value. On the other
hand, we obtained a feasible solution A with a large second objective value when the
weight for the second objective was large. Similar feasible solutions were obtained from
the weighted ratio repair with λ = (0.5,0.5) and the maximum ratio repair (the result
with λ = (0.5,0.5) is not shown in Fig. 3).

For comparison, we also examine a penalty function method for constraint handling.
In the penalty function method, we first combine the constraint condition for each knap-
sack in (8) into the corresponding objective function in (10) using a penalty parameter
α as follows:

gi(x) = fi(x)−α ·max

{
0,

n

∑
j=1

wi jx j− ci

}
, i = 1,2, ...,k. (16)

Then the k-objective knapsack problem with the k-constraint conditions in (8)-(10)
is handled as the following k-objective knapsack problem with no constraints (except
for the 0-1 conditions):

Maximize g(x) = (g1(x),g2(x), ...,gk(x)), (17)

subject to x j = 0 or 1, j = 1,2, ...,n. (18)

It should be noted that we do not need any repair mechanisms in (17)-(18). In our
computational experiments, we examine various values of α . The modified objective
vector g(x) instead of the original f (x) is used in our MOMA (i.e., for the multiob-
jective fitness evaluation in NSGA-II and for local search) in the case of the penalty
function method. For example, the following weighted sum fitness function is used in
local search:

g(x) = λ1g1(x)+λ2g2(x)+ · · ·+λkgk(x). (19)
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It should be noted that the performance of our MOMA with the penalty function
method is evaluated with respect to the original objective vector f (x) using only feasible
solutions in the final population.

It has been demonstrated that the performance of NSGA-II on knapsack problems
strongly depends on the choice of a repair scheme [11, 12]. This is also the case in our
computational experiments in this chapter. In the following subsections, we first report
experimental results with the maximum ratio repair where the same repair scheme is
used for global search and local search. Then we demonstrate the effect of using the
weighted ratio repair for local search on the performance of our MOMA. The penalty
function method is also compared with the two repair schemes.

3.4 Experimental Results with Maximum Ratio Repair

In this subsection, we use the maximum ratio repair for global search and local search.
In Fig. 4, we show experimental results on the 2-500 and 4-500 test problems by our
MOMA with the weighted sum-based local search. The height of each bar in Fig. 4
shows the average value of the hypervolume measure for the corresponding combina-
tion of the local search application probability PLS and the termination condition of
local search NLS. It should be noted that our MOMA is exactly the same as NSGA-II
when PLS = 0 and/or NLS = 0. That is, the left-most column and the bottom row in each
plot in Fig. 4 can be viewed as experimental results of NSGA-II.

In Fig. 4, we can observe performance improvement of NSGA-II by the hybridization
with local search when the two parameters PLS and NLS are appropriately specified. We
can also observe severe performance deterioration when PLS and NLS are too large.
This is because almost all computation time was spent by local search around the top-
right corner of each plot in Fig. 4. For example, when PLS = 1 and NLS = 100, local
search examines 20,000 neighbors in each generation while global search generates
200 offspring. These observations in Fig. 4 show the importance of the global-local
search balance in the implementation of MOMAs [17].

As shown in Fig. 4, good results were obtained when PLS ·NLS was not too large or
too small. More specifically, good results were obtained around the band-like region
satisfying 1 ≤ PLS ·NLS ≤ 2 in each plot of Fig. 4. In each generation, Npop offspring
were generated by genetic operations while Npop ·PLS ·NLS neighbors were examined in
local search of our MOMA. Thus PLS ·NLS can be viewed as the ratio of local search
over global search. When this ratio was too large (i.e., around the top-right corner in
each figure in Fig. 4), global search of NSGA-II was not fully utilized in our MOMA
because almost all computation time was spent by local search. As a result, good results
were not obtained. On the other hand, when this ratio was too small (i.e., around the
bottom-left corner), local search was not fully utilized in our MOMA.

In Fig. 5, we show experimental results by our MOMA with the Pareto dominance-
based local search. From the comparison between Fig. 4 and Fig. 5, we can see that
better results were obtained by the weighted sum-based local search in Fig. 4 than the
Pareto dominance-based local search in Fig. 5. In Fig. 5, we can not observe any im-
provement in the performance of NSGA-II (PLS = 0 and/or NLS = 0) by the hybridiza-
tion with local search (i.e., PLS > 0 and NLS > 0).
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Fig. 4. Hypervolume measure by our MOMA with the weighted sum-based local search where
the maximum ratio repair scheme was used in global search and local search

0.0 .01
.02 .05

.1
.2 .5

1.0
0

1
2

5
10

20
50

100

3.6

3.7

3.8

3.9

4.0

4.1

LSP
LSN

)10(HV 8×

 (a) 2-500 test problem

0.0 .01 .02 .05 .1
.2 .5

1.0
0

1
2

5
10

20
50

100

0.8

0.9

1.0

1.1

1.2

1.3

LSP
LSN

)10(HV 17×

 (b) 4-500 test problem

Fig. 5. Hypervolume measure by our MOMA with the Pareto dominance-based local search
where the maximum ratio repair scheme was used in global search and local search

Whereas we can see from Fig. 4 that the performance of NSGA-II was improved by
the hybridization with local search, the performance improvement is not impressive in
each plot of Fig. 4. That is, the simple hybridization with local search did not drastically
improve the performance of NSGA-II.

3.5 Experimental Results with Weighted Ratio Repair

In this subsection, we use the weighted ratio repair in the weighted sum-based local
search. In Fig. 6, we show experimental results on the 2-500 and 4-500 test problems
by our MOMA with the weighted sum-based local search. We can observe clear per-
formance improvement of NSGA-II (with PLS = 0 and/or NLS = 0 in Fig. 6) by the
hybridization with local search (with PLS > 0 and NLS > 0).
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Fig. 6. Hypervolume measure by our MOMA with the weighted sum-based local search where
the weighted ratio repair was used for local search
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Fig. 7. 50% attainment surfaces by NSGA-II and our MOMA on the 2-500 problem

In order to visually demonstrate the improvement by the hybridization with local
search, we show the 50% attainment surfaces by NSGA-II and our MOMA with PLS =
0.02 and NLS = 100 for the 2-500 test problem in Fig. 7 together with the true Pareto-
optimal solutions. We can see that the hybridization of local search drastically improved
the performance of NSGA-II with respect to the diversity of solutions along the Pareto
front.

The two repair schemes are compared using the generational distance for the 2-500
test problem in Fig. 8. It should be noted that the smaller values of this measure mean
the better proximity of solution sets to the Pareto front. It should be also noted that the
experimental results are exactly the same between the two plots in Fig. 8 in the case of
NLS = 0 and/or PLS = 0. In this case, our MOMA is actually the same as NSGA-II with
no local search. We can see from Fig. 8 that the hybridization with local search did not
improve the convergence property of NSGA-II (i.e., it did not decrease the generational
distance). On the contrary, the use of too much computation time on local search (i.e.,
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Fig. 8. Comparison between the two repair schemes in our MOMA using the generational dis-
tance for the 2-500 test problem
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Fig. 9. Comparison between the two repair schemes in our MOMA using the range measure for
the 2-500 test problem

around the top-right corner in each plot of Fig. 8) degraded the convergence (especially
in the case of the maximum ratio repair).

In the same manner as Fig. 8, the two repair schemes are compared using the range
measure in Fig. 9. We can observe in Fig. 9 that the use of the weighted ratio repair
significantly increased the diversity of solutions in our MOMA in comparison with the
maximum ratio repair. We obtained the same observation for the other test problems.
For example, we show experimental results on the 4-500 test problem in Fig. 10. In
Fig. 10 (a), we can also observe a negative effect of too much local search on the diver-
sity of solutions (around the top-right corner).

3.6 Choice of Initial Solutions for Local Search

We examined other implementation issues using our MOMA with the weighted ra-
tio repair in the weighted sum-based local search. First, let us discuss the choice of
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Fig. 10. Comparison between the two repair schemes in our MOMA using the range measure for
the 4-500 test problem
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Fig. 11. Experimental results by our MOMA where the selection pressure in the selection of
initial solutions for local search was weaker than Fig. 6. The tournament size was 20 in Fig. 6
while it was 2 in this figure.

initial solutions for local search. In the above-mentioned computational experiments in
Fig. 6, we used the weighted sum-based tournament selection with tournament size 20
in the selection of initial solutions for local search. We also performed computational
experiments using binary tournament selection. Experimental results are summarized in
Fig. 11. From the comparison between Fig. 6 and Fig. 11, we can see that the perfor-
mance of our MOMA was deteriorated by decreasing the tournament size in the selec-
tion of initial solutions for local search.

We also examined the case of random selection of initial solutions for local search.
In this case, initial solutions were randomly chosen for local search from the offspring
population in each generation. Experimental results are summarized in Fig. 12. From
the comparison of Fig. 12 with Fig. 6 and Fig. 11, we can see that the performance of
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Fig. 12. Experimental results by our MOMA where initial solutions for local search were ran-
domly chosen from the offspring population in each generation
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Fig. 13. Illustration of the waste of computation time by local search. The initial solution A was
improved by local search to the final solution B denoted by the closed circle.

our MOMA was further deteriorated by the random choice of initial solutions for local
search. This means that the choice of good solutions is essential in our MOMA.

The deterioration in the performance of our MOMA by the random choice of initial
solutions for local search can be explained by the waste of time for improving poor solu-
tions. This is illustrated in Fig. 13 where local search is applied to solution A. While the
initial solution A is significantly improved by local search, the final solution B denoted
by the closed circle in Fig. 13 is still a poor solution if compared with other solutions.

3.7 Frequency of Local Search

Next we discuss the frequency of local search. Whereas we used local search in every
generation of our MOMA in the previous computational experiments, it is possible
to use local search less frequently. We examined two specifications of the frequency
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Fig. 14. Experimental results by our MOMA where local search was employed every five
generations
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Fig. 15. Experimental results by our MOMA where local search was employed every ten
generations

of local search: every five generations and every ten generations. In order to maintain
the same global-local search balance, we used a five (ten) times larger value as the
termination condition NLS of local search than the case of every generation when local
search was employed every five (ten) generations. Experimental results are summarized
in Fig. 14 and Fig. 15. From the comparison of Fig. 6 with Fig. 14 and Fig. 15, we can
see that similar results were obtained from the three specifications of the local search
frequency (i.e., every generation, every five generations, and every ten generations).
This is because we used the same global-local search balance in the three cases by
adjusting the local search termination condition NLS.

3.8 Constraint Handling

In this subsection, we compare the penalty function method with the two repair schemes:
maximum ratio repair and weighted ratio repair. In our computational experiments, we
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Table 1. Comparison between the penalty function method and the two repair schemes. The best
result is highlighted by bold face for each test problem.

Test Repair Penalty function method

Problem Maximum Weighted α = 0.5 α = 1 α = 5 α = 10 α = 50

2-250 1.000 1.038 0.939 0.967 0.999 0.999 0.995
2-500 1.000 1.047 0.962 0.979 0.999 0.998 0.993
2-750 1.000 1.053 0.965 0.983 0.994 0.993 0.987
3-250 1.000 1.075 0.838 0.936 0.986 0.986 0.987
3-500 1.000 1.101 0.890 0.961 0.989 0.988 0.985
3-750 1.000 1.115 0.902 0.966 0.989 0.987 0.984
4-250 1.000 1.106 0.786 0.881 0.895 0.886 0.864
4-500 1.000 1.157 0.831 0.905 0.919 0.901 0.876
4-750 1.000 1.179 0.858 0.917 0.921 0.910 0.888

examined five specifications of the penalty parameter: α = 0.5, 1, 5, 10, 50. Only fea-
sible solutions in the final population were used in the calculation of the hypervolume
measure. The local search application probability PLS and the termination condition of
local search NLS were specified as PLS = 0.1 and NLS = 20 in all computational experi-
ments in this subsection. We chose these values of PLS and NLS since good results were
obtained in Fig. 6 from this combination.

Experimental results are summarized in Table 1 where all results (i.e., hypervolume
values) are normalized using those by the maximum ratio repair. For each test problem,
the best result is highlighted by bold face. From this table, we can see that much better
results were obtained by the weighted ratio repair than the penalty function method. In
all cases, the penalty function method was inferior to even the maximum ratio repair in
Table 1.

3.9 Dynamic Control of Global-Local Search Balance

In this subsection, we discuss the effect of dynamically changing the local search ap-
plication probability PLS. As in the previous subsection, we specified the termination
condition of local search NLS as NLS = 20 in all computational experiments in this sub-
section. When the local search application probability PLS was constant, we specified
it as PLS = 0.1. We examined the linear increase of PLS from 0 to 0.2 and its linear
decrease from 0.2 to 0. We also examined two extreme cases where local search was
employed only in the initial or final generation. In these two extreme cases, PLS was
specified as PLS = 1 only in the first or final generation. The value of NLS was speci-
fied as NLS = 1320 so that the overall global-local search balance was the same in all
computational experiments in this subsection.

Experimental results are summarized in Table 2 where all results (i.e., hypervolume
values) are normalized using those by the case of the constant value of the local search
application probability PLS (i.e., PLS = 0.1). For each test problem, the best result is
highlighted by bold face. In Table 2, the worst results were obtained for almost all test
problems (especially for the four-objective test problems) when we used local search
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Table 2. Effect of dynamically changing the local search application probability. The best result
is highlighted by bold face for each test problem.

Test Constant Two extreme cases Linear change

Problem (0.1) Initial Final Increase Decrease

2-250 1.0000 0.9994 0.9978 1.0001 0.9998
2-500 1.0000 0.9918 0.9944 0.9998 0.9986
2-750 1.0000 0.9815 0.9889 0.9987 0.9973
3-250 1.0000 1.0009 1.0113 1.0040 1.0000
3-500 1.0000 0.9924 1.0029 1.0030 0.9974
3-750 1.0000 0.9823 0.9994 1.0021 0.9947
4-250 1.0000 0.9954 1.0453 1.0113 0.9964
4-500 1.0000 0.9824 1.0438 1.0124 0.9930
4-750 1.0000 0.9698 1.0455 1.0086 0.9880

Table 3. Experimental results with PLS = 0.05 (constant). Except for the local search application
probability (i.e., the overall balance between global and local search), we used the same settings
in Table 2 and Table 3.

Test Constant Two extreme cases Linear change

Problem (0.05) Initial Final Increase Decrease

2-250 1.0000 0.9929 0.9926 1.0014 1.0012
2-500 1.0000 0.9745 0.9875 1.0006 0.9994
2-750 1.0000 0.9590 0.9801 1.0003 0.9989
3-250 1.0000 0.9946 0.9984 1.0063 1.0022
3-500 1.0000 0.9743 0.9859 1.0064 1.0008
3-750 1.0000 0.9466 0.9762 1.0074 1.0000
4-250 1.0000 0.9887 1.0265 1.0191 1.0041
4-500 1.0000 0.9583 1.0096 1.0210 1.0014
4-750 1.0000 0.9332 1.0020 1.0186 0.9977

only in the first generation. Similar performance was obtained from three cases: con-
stant, linear increase and linear decrease. Difference in the average hypervolume values
in these three cases is less than 1% for almost all test problems. For the four-objective
test problems, the best results were obtained by the use of local search only in the final
generation. This may be because NSGA-II worked well for preparing a wide variety of
initial solutions for local search. Since NSGA-II did not work well on many-objective
problems, the use of local search only in the initial solution is not a good idea. In this
case, good solutions found in the first generation by local search can be lost by global
search in NSGA-II.

Since the application probability of local search and its termination condition were
specified as PLS = 0.1 and NLS = 20 in Table 2, the balance between global and lo-
cal search was 1 : 2 (it is calculated as 1 : PLS ·NLS). When we modified it as 1 : 1 by
specifying the constant local search application probability as 0.05 (instead of 0.1 in
Table 2), we obtained experimental results in Table 3. From Table 3, we can see that the
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best results were obtained from the linear increase of the local search application prob-
ability for almost all test problems. We can also see that better results were obtained
for several test problems by the linear decrease than the constant specification. On the
other hand, we can observe a clear deterioration in the performance of our MOMA in
the two extreme cases (except for the use of local search in the final generation for the
four-objective test problems). We also examined other settings of computational experi-
ments. Then we obtained different observations from those in Table 2 and Table 3 (e.g.,
see [10]). These experimental results suggest that the choice of an appropriate control
strategy of the local search application probability strongly depends on the problem
and the parameter specifications. Thus the self-adaptation of the local search applica-
tion probability, which is a future research issue for multiobjective optimization, seems
to be a better idea than the use of a pre-specified control strategy.

4 Future Research Issues

It has been pointed out by some studies [8, 9, 20] that Pareto dominance-based MOEAs
such as NSGA-II [3] and SPEA [32] do not work well on many-objective problems.
This is because almost all solutions in each generation become non-dominated with
each other when we apply MOEAs to many-objective problems. This means that Pareto-
dominance can not generate a strong selection pressure toward the Pareto front. Thus
the convergence of solutions to the Pareto front in Pareto dominance-based MOEAs is
severely deteriorated by the increase in the number of objectives. From the same reason,
Pareto dominance-based local search does not work well for many-objective problems
[28].

In Fig. 16, we show experimental results of our MOMA on a six-objective 500-item
test problem. We used the weighted sum-based local search with the weighted ratio
repair in Fig. 16. We generated the 6-500 test problem in the same manner as in [32].
The performance of our MOMA was examined by the hypervolume measure in Fig. 16
(a) and the CPU time in Fig. 16 (b).

As shown in Fig. 16 (a), the performance of NSGA-II (with PLS = 0 and/or NLS = 0)
was drastically improved by the hybridization with local search (PLS > 0 and NLS > 0).
This is because the selection pressure toward the Pareto front was introduced by the
use of the weighted sum-based local search. At the same time, the CPU time of NSGA-
II was drastically decreased by the hybridization. NSGA-II, which found solution sets
with the smallest average value of the hypervolume measure in Fig. 16 (a), spent the
longest average CPU time in Fig. 16 (b). This is because the multiobjective fitness
evaluation in NSGA-II is more time-consuming especially in the case of many-objective
problems than the weighted sum-based fitness evaluation.

As shown in Fig. 16, our MOMA worked on many-objective problems much bet-
ter than NSGA-II. The design of MOMAs for many-objective problems and their
performance evaluation are promising future research issues. This is because Pareto
dominance-based MOEAs do not work well on many-objective problems. That is, a
new framework of evolutionary multiobjective optimizers is needed for the handling of
many objectives.
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Fig. 16. Experimental results on the 6-500 test problem by our MOMA with the weighted ratio
repair in the weighted sum-based local search

Another promising future research issue is the self-adaptation of local search strate-
gies in MOMAs. Whereas this issue has been discussed in a number of studies for
single-objective optimization in SOMAs [23, 29, 30], almost all existing MOMAs use
fixed local search strategies.

The hybridization of local search with other population-based search algorithms such
as particle swarm optimization (PSO) may be a promising future research area in MO-
MAs. Performance comparison among different frameworks of MOMAs (e.g., GA-
based, PSO-based, etc.) seems to be an interesting future research issue.

It is also required to develop problem-specific MOMAs for real-world applications.
As we have already demonstrated in this chapter, the use of domain knowledge often
drastically improves the performance of MOMAs. The success of MOMAs on real-
world applications will help the development of the field of MOMAs. Thus real-world
applications of MOMAs are required for further development of MOMAs.

5 Conclusions

In this chapter, we demonstrated that the performance of NSGA-II can be significantly
improved by the hybridization with local search. One important issue in the imple-
mentation of such a hybrid algorithm for multiobjective optimization (i.e., MOMA) is
the balance between global search and local search. The performance of NSGA-II was
often degraded by the hybridization when this balance was inappropriate. Another im-
portant issue is the use of problem-specific knowledge in local search. When we used
the same operator as mutation for local search (i.e., bit-flip operation with the maximum
profit ratio repair), the performance improvement of NSGA-II by the hybridization was
not impressive. On the other hand, the use of the weighted ratio repair in the weighted
sum-based local search drastically improved the performance of our MOMA. That is,
the performance of NSGA-II was drastically improved by the hybridization with lo-
cal search when we used problem-specific knowledge in local search. We also demon-
strated that the use of local search only in the initial generation was not a good idea.
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Good results were obtained when we used local search throughout the execution of our
MOMA or only in the final generation.

This work was partially supported by Grant-in-Aid for Scientific Research (B):
KAKENHI (17300075).
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The university time-tabling problem deals with scheduling classes into available times-
lots without violating any constraints of time, venue and personnel. This problem is
considered to be of complexity NP and therefore takes a lot of time to solve manu-
ally. In this chapter, a new approach to solve these by using a multi-layered-algorithm
combining evolutionary algorithms and heuristic search has been attempted. Instead of
considering all the constraints equally and in a concurrent manner, different types of
constraints are handled by different techniques in separate layers. An evolutionary al-
gorithm first generates sequences of classes, and a heuristic function is then applied to
estimate the cost (in terms of number of timeslots needed) to satisfy all the constraints,
which is then used by the evolutionary algorithm to rate its individuals. The heuristic
function has the advantage of giving results quite quickly. The implementation of this
algorithm on actual data obtained from a large university department has been very
successful in solving complicated scheduling problems. Indeed, it takes less than thirty
seconds to give multiple feasible solutions to this complex real-life time-tabling prob-
lem with vast search space (around 10180 possibilities).

1 Introduction

The design of timetables for academic institutions is a challenging problem due to a
large number of constraints and a vast amount of classes, students and lectures. Further-
more, there exists no standard solution to this problem as different academic institutions
face different variations of this problem each semester. Solving the timetable schedul-
ing has been shown to be a very complex and time-consuming problem. It can take up
to a few weeks for university staff to find manually a feasible solution which might
not be optimal. Generated timetables are considered feasible if the set of so-called hard
constraints are all respected.

Time-tabling problems can be defined as Constraint Satisfaction Problems (CSP). A
CSP is defined by a set of variables, a domain for each variable, and a set of constraints
[1, 2]. The possible states of a CSP are defined by the values that the variables are
assigned to on their domain. The relations between values are defined by constraints.
A solution to the CSP is a state in which none of the constraints are violated. In the
time-tabling problems different type of constraints are present, such as clashes in time
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(classes must be scheduled into available timeslots), space (lectures must be held in
rooms with sufficient capacity) and personnel (lecturers can not hold two classes at the
same time). These constraints can be further divided into two types.

• Hard constraints - constraints that directly determine the feasibility of solutions, a
solution to the problem cannot violate any of these constraints. For example, two
lectures can not be held in the same room at the same time.

• Soft constraints - constraints that determine the quality of solutions, but not the
feasibility of solutions, violations to soft constraints should be avoided

CSP are classified as NP problems [7]. However, checking whether a solution is fea-
sible for CSP can be reduced to polynomial time. A discrete CSP can always be solved
by brute force. For this, all the possible combinations of assigned variable values are
generated and tested to see if all the constraints are satisfied. Such algorithms can take
a very long (but finite) amount of time when the search space is vast. These algorithms
waste a large portion of the running time on looking through state trees which already
contains constraints violation. That is, if the values of any two of the variables are
clashing, then whatever the values of the other variables, a feasible solution can not be
found. In order to solve this problem, many different techniques have been tested. The
first techniques used mimicked the way humans would solve this problem [11]. Ad-
vanced computational methods have also been tried, such as genetic algorithms [10],
simulated annealing [4], and neural networks [5]. A modified evolutionary algorithm
with multiple context reasoning was also found effective in solving a mid-scale time-
tabling problem but not able to solve a more complicated problem. [8] Algorithms with
have also been presented. Compared to all of the above techniques, advanced software
engineering [3] and rule-based language [6] techniques have been found to be superior
in terms of the capability of incorporating different types of constraints.

The discussions are organized as follows. Section 2 defines the timetabling problem,
section 3 details the algorithm proposed. Section 4 shows the comparative results be-
tween the proposed algorithm and conventional evolutionary techniques. Finally, con-
clusions are drawn in Section 5.

2 The Time-Tabling Problem

2.1 General Form

A typical time-tabling problem can be represented as shown below.

• A set of P classes {C1, C2, C3, , Cp}
• A set of Q available timeslots {T1, T2, T3, TQ}, each of which has its own set of

available classrooms
• A set of hard constraints which determines the validity of a solution
• A set of soft constraints which determines the quality of a solution

Given the number of classes and available timeslots, since there are up to Q possible
ways to schedule every single class, the number of possible states can be written as

Nstates = QP (1)

Examples of constraints are given in Table 1.
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Table 1. Illustration of constraints

Constraint Domain illustration Examples

Time Time clashing between classes Affiliated classes must not be held at
the same time, since some students
need to attend all of these classes

Venue Venue clashing between classes No more than one class should be held
in any lecture theatre at the same time

Personnel Personnel (students or teachers) clash-
ing between classes

- None of the students or teachers
should be required to attend more than
one class at a time
-None of the teachers should be re-
quired to teach for more than three
consecutive hours

2.2 The NUS ECE Time-Tabling Problem

The time-tabling problem in Department of Electrical and Computer Engineering
(ECE) at the National University of Singapore was used to test the algorithm devel-
oped. The data taken from the year 2001/2002 involves 68 modules, 114 classes and 90
lecturers. All classes have to be scheduled in a total of 65 timeslots.

The ECE time-tabling problem involves the scheduling of three different levels of
classes: ECE2 (Year 2), ECE3/4 and M Sc classes (The first year is done in another
department). There are 20 ECE2 classes to be scheduled, and the rooms available are
only one large lecture theatre and some small tutorial rooms. There are altogether 50
available timeslots, (10 timeslots a day, 5 days a week) some of which are reserved
for laboratory sessions. Constraints involved in ECE2 time-tabling problem are mainly
hard constraints which include time, venue and teacher constraints.

The scheduling of ECE3/4 classes is more complicated. There are 72 classes to
be scheduled into 50 timeslots with limited room resources. As the students have
more freedom in choosing their modules, there are more constraints than in the ECE2
timetable. A number of MSc classes are to be scheduled in evening timeslots. 22 3-hour-
classes have to be scheduled into the 15 evening timeslots (3 hours, 5 days a week). The
MSc. Timetable does not pose much problem on its own, but clashes must be avoided
when combining it with the previous timetables. Some of the constraints that are spe-
cific to the department are highlighted below.

• Timeslots for lectures shall be assigned with even hours, i.e. 8am, 10am, 12pm, etc
• Any lecturer should not be teaching for more than 3 consecutive hours
• Any lecturer should not be teaching for more than 4 hours in one day

It should be noted that the scheduling processes of different levels of are inter-dependent,
since they must share available resources such as lecturer theatres and lecturers. The
complexity of the ECE Time-tabling problem can be estimated as follows. Since there
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are 20 ECE2 classes to be scheduled into 50 timeslots, 66 ECE3/4 classes to be sched-
uled into 50 timeslots, and 22 MSc classes to be scheduled into 15 timeslots, the total
number of possible timetables is

Ntimetables = 5020×5066×1522 ≈ 10172 (2)

This number is extremely high (as a comparison, only 1018 seconds have passed since
the Big-bang) and brute search methods would take billions of years, hence the need
for more refined techniques.

A previous research done in 2001 successfully presented a modified evolutionary
algorithm that partially solved the ECE time-tabling problem [8]. However it could
only successfully schedule all the ECE2 classes and failed to give a feasible solution to
the entire ECE time-tabling problem.

3 Proposed Algorithm

3.1 Main Idea

The principle behind the working of the algorithm is to divide the problem into different
layers, each layer being solved in a different manner. Furthermore, the problem can be
divided into four steps.

1. Generate a time-table of ECE2 classes
2. Based on the result from 1, generate a time-table of ECE3/4 classes
3. Based on the result from 1 and 2, generate a time-table of MSc classes
4. Combine the results from 1, 2 and 3, generate the time-table for all ECE classes

For each of these steps the algorithm uses two layers to find a solution. The first layer
uses evolutionary computation to rearrange the set of classes, and the second layer uses
a heuristic function to find the best mapping of the rearranged set of classes onto the set
of timeslots, as can be seen in Fig 1.
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Fig. 1. Architecture of the two-layer algorithm
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3.2 The Time-Tabling Process

The time-table scheduling is done as a two step process.

• Generate a ordered sequence of classes
• Break the sequence into ordered segments

The first segment will be scheduled in the first timeslot; classes in the second segment
will be scheduled in timeslot two, etc. The heuristic function in step 2, finds the best
possible timetable using the order of classes created in step 1. Then, the number of time
slots needed, is used as the fitness value for the evolutionary algorithm in step 1. Step 2
is a form of brute search, as all the possible states are tested. However, since the order of
the classes is fixed, there are not that many states. In a similar manner, the search space
for the evolutionary algorithm is limited to the possibilities of ordering P elements, the
size of the search space can be calculated as

S1 = P! (3)

The size of the search space for step 2 is the number of possibilities to divide the P
classes in Q slots. For this, Q-1 ‘cuts’ are made into P+1 elements (as the first timeslots
may be unoccupied). The resulting search space can be given by

S2 = CQ−1
P+1 (4)

3.3 Evolutionary Algorithm

Evolutionary algorithm is used to generate the ordered sequence of classes. Permutation
encoding has been chosen as the encoding scheme: a chromosome is represented by
a sequence of integers corresponding to the index of the class. The chromosome is
directly the order of the classes in the ordered sequence. Selection of parents is done
using rank selection, so that even the worst individuals have a (small) chance of being
selected.

Mutation is done by swapping a couple of values, and single-point cross-over is used.
Since both the mutation rate and crossover rate are chosen to be strictly inferior to 1,
some of the parents are replaced intact into the next generation. This is done to ensure
that there are always some good individuals in the population.

3.4 First Approach to Heuristics Function

The goal of the heuristic function is to place ‘cuts’ in the ordered classes which are then
mapped sequentially into the timeslots. The sequence of classes can not be modified at
this stage: all the classes before the first cut are to be scheduled in timeslot 1; all the
classes in between the first and the second cut are to be scheduled in timeslot 2, and so
on. At the same time, the heuristics function must ensure that the resulted segmentation
must not violate any constraints. Finally, the function returns the minimum number of
segments to obtain a constraint-violation-free solution, which will be then used as the
fitness for the evolutionary algorithm. The flowchart of the heuristics function is shown
in Fig. 2.
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Fig. 2. Flowchart of the heuristics function

The heuristics function always tries to schedule the next class into the current times-
lot. A check is then conducted to see whether any constraint is violated. If all the con-
straints are satisfied, the algorithm will carry on with next class. If any violation of
constraints is detected, the algorithm will undo the last scheduling (which caused the
violation) and try again with the next timeslot. The whole process ends when there are
no more classes to be scheduled. The returned value is the total number of timeslot used.

3.5 Improved Heuristics Function

As previously mentioned, the heuristics function quickly estimates the quality of so-
lutions that can be induced from the input. The heuristics function could not alter the
order of the classes; however, although this greatly accelerates the process, it also re-
stricts the behavior of the heuristics function and prevents it from doing the scheduling
in more intelligent ways. To further improve the behavior of the heuristics function,
the rule set has been revised. The new heuristics function still schedules the classes
in the order they are given by the evolutionary algorithm, however, instead of starting
the search from the previous time slot the algorithm restart from the first timeslot at
each new class. This can be seen in Fig. 3. The resulted heuristics function performs a
variation of greedy search, which always follows the way that seems to maximize the
outcome at the current stage. Greedy algorithms often perform quite well. They tend to
find solutions quickly, although they do not always find the optimal solutions [7].

The new heuristics function will always try to schedule the next class from the
sequence into an existing timeslot (non-empty timeslot, with other classes already
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Fig. 3. Flowchart of the improved heuristics function

scheduled). Only when it fails to schedule the next class into any of the existing times-
lots, it starts trying empty timeslots. It should be noticed that in the worst case, the
improved heuristics function behaves in the same manner as the original heuristics func-
tion: the worst case happens when the algorithm fails to schedule the current class into
any of the used timeslots; and has to try unused timeslots. This is indeed what happens
in the original heuristics where the algorithm only tries to schedule the current class in
either the current timeslot or unused timeslots (without trying to schedule the current
class in previous timeslots). Therefore, the improved heuristics function is always better
than (in the worst case, as good as) the original one. Of course, the improved heuristic
function can be more time consuming.

In some situations, the improved heuristics function may give a solution to a random
input which is a good as the global optimum. However, this is not generally true because
in a complicated time-tabling problem that involves a huge number of classes and con-
straints, the quality of the solution given by this algorithm is strongly correlated to the
input sequence. Therefore, evolutionary algorithm techniques still need to be applied
on top of the heuristics function.

4 Application and Simulation Results

4.1 Overview

The proposed algorithm has been tested with an actual time-tabling problem, the
scheduling for the ECE department of NUS, where it has shown its capability of
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handling complicated real-life instances of time-tabling problems. Simulations done
on the two-layered-algorithm with the original heuristics function has shown that it was
not efficiently enough to handle the NUS ECE time-tabling problem. However, simu-
lation results have shown that the improved heuristics function performs much better
than the original heuristics function.

4.2 Test Methods

The algorithm was implemented using Java, and Microsoft Access (to manage the
database of classes, timeslots and constraints) and run on a Windows-based PC with
an Intel Pentium4 CPU running at 2.13GHz. Without the knowledge about the global
optimal solution, the evolution process is allowed to go until the generation number
reaches a preset value in all the test runs. The smallest value of chromosome cost in the
last generation was then compared with the number of available timeslots. As defined
in the cost function (the heuristics function), the cost of chromosomes represents the
number of timeslots needed to schedule all classes. Hence, any cost value less than the
number of available timeslots means that this chromosome could be mapped to a valid
solution.

The program tries first to do the scheduling of ECE2 classes with the corresponding
constraint settings. If a feasible solution is found, the program continues to schedule
rest of the classes (ECE3/4 classes) using corresponding constraint settings. Testing on
scheduling of MSc. classes are not to be conducted at this stage.

The parameter set (for the evolutionary algorithm process) chosen in this test stage is
determined on a trial and error basis. The dataset used is the actual dataset of academic
year 2001/2002.

4.3 Scheduling of the ECE2 Classes Using the Original Heuristics Function

The ECE2 time-tabling problem involves 10 modules, each of which have both 2 hours
of lecture (conducted in consecutive timeslots) and 1 hour of tutorial, therefore 20
classes are to be scheduled. There are altogether 50 available timeslots. Parameters
used in the evolutionary algorithm are given below.

• Population Size = 200
• Maximum Generation = 100
• Crossover Rate = 0.95
• Mutation Rate = 0.005

Five test runs are conducted. The program takes about 3 seconds to complete the entire
evolution process in each run. In all test runs, the algorithm was able to successfully
find feasible solutions. In fact, all test runs found a solution that needed 36 timeslots
to schedule all of the ECE2 classes, which is much smaller than the actual number of
available timeslots which in out case is 50.

The following figures are obtained from one of the test runs. Fig. 4 shows the perfor-
mance of the algorithm in terms of minimal cost of chromosomes across generations.
As the best cost converges, the percentage of chromosomes with the best value starts to
converge rapidly to 100% as can be seen in Fig. 5.
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Fig. 4. Performance plot in scheduling of ECE2 classes - Minimal cost of chromosomes versus
Number of generations

Fig. 5. Convergence plot in scheduling of ECE2 classes Percentage of chromosomes with small-
est cost versus Number of generations

4.4 Scheduling of ECE3/4 Classes

Compared with the scheduling of ECE2 classes, the scheduling of ECE3/4 classes is
more complicated. The scheduling involves 33 modules, each of which has both 2 hours
of lecture and 1 hour of tutorial to be scheduled resulting in 66 classes. There are alto-
gether 50 available timeslots. Furthermore, there are more constraints than in the ECE2
set. Parameters in the evolutionary algorithm are modified as shown below.
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• Population Size = 500
• Maximum Generation = 300
• Crossover Rate = 0.95
• Mutation Rate = 0.005

Fig. 6. Performance plot in scheduling of ECE3/4 classes - Minimal cost of chromosomes versus
Number of generations

Fig. 7. Performance plot in scheduling of ECE3/4 classes - Minimal cost of chromosomes versus
Number of generations



Solving Time-Tabling Problems 63

Five test runs are conducted. The program takes about 50 seconds to complete each
test run. In all the test runs, the program was able to present feasible solutions, which fits
all of the ECE3/4 classes into the 50 available timeslots. Fig. 6 shows the performance
of the program in one of the successful test run.

Compare to the plot in the ECE2 test run (Fig. 5), a much smaller portion (around
10%) of the chromosomes actually reach the smallest chromosome cost as can be seen
on Fig. 7.

The algorithm using the original heuristic function is efficient enough to do the
scheduling of ECE2 classes in a very short time (only a few seconds for a run). The
algorithm has also shown its ability to do the scheduling of ECE3/4 classes. In most
of test runs, the algorithm was able to find a feasible solution. However, the running
time is too long (nearly one minute). It should be foreseen that the algorithm may fail
to give feasible solutions in practical time, when facing more complicated problems.
Therefore, the overall efficiency of the algorithm should be further improved, and the
use of the improved heuristic function is justified.

4.5 Simulation Results with the Improved Heuristics Function

The simulations were repeated with the improved heuristics function. All simulations
were conducted on the same platform, using the same dataset. In the scheduling of
ECE2 classes, the following parameters (applied in the evolutionary algorithm) were
used.

• Population Size = 50
• Maximum Generation = 20
• Crossover Rate = 0.95
• Mutation Rate = 0.005

Five test runs were conducted. On the test platform, the running time of the algorithm
was less than 1 second. In all the test runs, the algorithm successfully found feasible
solutions that needed 36 timeslots to schedule all of the classes. Simulation results have
shown that the improved heuristics function has a very good response to random inputs.
In fact, even from the first generation of chromosomes, it successfully finds a solution
that is as good as the final solution. This can raise the question of the necessity of
the evolutionary algorithm. Moreover, the evolutionary algorithm is very successful in
improving the convergence of chromosome cost values. Most chromosomes’ cost value
quickly converges to the smallest value during the evolution.

A feasible solution was retained, and the test was continued with the scheduling of
MSc classes, in which the following parameters were used.

• Population Size = 10
• Maximum Generation = 5
• Crossover Rate = 0.95
• Mutation Rate = 0.005

A total of five test runs were conducted, each taking less than one second to complete.
In all test runs, the program successfully scheduled 20 MSc classes into 12 timeslots
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Fig. 8. Performance plot in scheduling of ECE3/4 classes - Minimal cost of chromosomes versus
Number of generations

Fig. 9. Convergence plot in scheduling of ECE2 classes Percentage of chromosomes with small-
est cost versus Number of generations

without violation of any constraint. The experimental results shows that, similar to the
scheduling of ECE2 classes, the algorithm was able to find feasible solutions which are
as good as the final solution from the first generation onwards. In the last generation of
evolution, all chromosomes’ cost converges to the best value. Once more, the necessity
of the evolutionary algorithm is doubtful.
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Testing on scheduling of ECE3/4 was conducted, based on the combined result of a
feasible schedule of MSc classes, and the schedule of ECE2 classes found before. In
the scheduling of ECE3/4 classes, the following parameters were used.

• Population Size = 100
• Maximum Generation = 50
• Crossover Rate = 0.95
• Mutation Rate = 0.005

A total of 5 test runs were conducted, each taking about 10 seconds to complete. In
all of the test runs, the program successfully found feasible solutions that needed 47
timeslots to schedule all classes. Performance plots of one of the test runs are shown in
Fig. 8 and 9.

The improved heuristics function performs satisfactorily even with randomly gen-
erated input sequences. On top of it, the evolutionary algorithm successfully helps in
increasing the overall fitness of the whole population. More than 90% of the chromo-
somes have their cost value quickly converge to the lowest value. This behavior can be
helpful as it can give the user different timetables of equal quality, and the user can then
chose that best fits his needs.

4.5.1 Performance of the Improved Heuristics Function without Evolutionary
Algorithm

It has been shown in previous sections that the improved heuristics function has a very
good response towards random inputs (without the help of evolutionary algorithm). In
this section, we shall consider this characteristic in more detail, by adding more com-
plexity to the problem, so random search is made more difficult. In previous simula-
tions, ECE2 and ECE3/4 classes were scheduled separately by the algorithm (though
the process is inter-dependent). However, in this section, the algorithm performs the

Fig. 10. Performance of the improved heuristics function with random inputs
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Fig. 11. Performance plot in scheduling of ECE2 and ECE3/4 classes - Minimal cost of chromo-
somes versus Number of generations

Fig. 12. Convergence plot in scheduling of ECE2 andECE3/4 classes Percentage of chromo-
somes with smallest cost versus Number of generations

scheduling of both ECE2 and ECE3/4 classes together. It is easy to see that such an
arrangement makes the scheduling process much more complicated than previous ones.
Moreover, one more constraint has been added into the time-tabling problem to make
it more complicated and follow real-world scenario. Timeslots between 1400hrs and
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1700hrs on Fridays are reserved (Friday afternoons). No classes are to be scheduled
into these timeslots.

To consider the performance of the improved heuristics function on its own, the evo-
lutionary algorithm process was removed from the overall algorithm. In the simulation
run, 10000 random sequences were used as inputs for the improved heuristics function.
Fig. 10 shows the simulation results.

From the graph, we can conclude that when the target problem gets more complicated,
the heuristics function by itself is not effective enough to solve the problem. The heuris-
tics function could only manage to schedule these classes into more timeslots (ranging
from 51 to 76) than the actual number of available timeslots (50), which is not feasible.
In practice, it failed to schedule all ECE2 and ECE3/4 classes into available timeslots
after trying all of the 10000 random inputs. Now, the improved heuristics function is
tested with the evolutionary algorithm giving the input sequences. Working together,
the problem was solved easily. The following parameters were used in the simulation.

• Population Size = 100
• Maximum Generation = 50
• Crossover Rate = 0.95
• Mutation Rate = 0.005

The algorithm took 16 seconds to complete the process and gave feasible solutions
that needed 50 timeslots to schedule all ECE2 and ECE3/4 classes. As can been seen
from Fig. 11, a feasible solution (50 timeslots) was found in 5 generation, so only 500
individuals were needed, whereas with random inputs, no solution was found even with
20 times as more inputs (10000 random inputs).

4.5.2 Performance Comparison between Heuristic Functions

Table 2 shows the effectiveness of the improved heuristics function when compared
with the original heuristic function. Obviously, the multi-layered-algorithm performs
much better with the improved heuristics function than with the original one.

Table 2. Comparison between algorithms with different heuristics function

Heuristics function Original heuristics Improved heuristics
used with EA function function

Scheduling of ECE2 classes Passed Passed
Time needed for ECE2 classes 3 seconds < 1 second

Timeslots needed for ECE2 classes 36 36
Scheduling of ECE3/4 classes Passed Passed

Time needed for ECE3/4 classes 50 seconds 10 seconds
Timeslots needed for ECE3/4 classes 50 47

Scheduling of MSc classes N/A (not conducted) Passed
Scheduling of ECE3/4 classes N/A (not conducted) Passed

in one step
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Table 3. Comparison of results

Heuristics function Original heuristics Improved heuristics
used with EA function function

Scheduling of ECE2 classes Passed Passed
Time needed for ECE2 classes 60 seconds < 1 second

Timeslots needed for ECE2 classes 45 36
Scheduling of ECE3/4 classes Failed Passed

Time needed for ECE3/4 classes N/A (Failed) 10 seconds
Timeslots needed for ECE3/4 classes N/A (Failed) 47

Scheduling of MSc classes N/A (not conducted) Passed

4.5.3 Comparison of Different Approaches

A previous research on automating the time-tabling process for ECE department was
done using the same data (ECE classes) to test it [8]. This approach used only a modi-
fied evolutionary algorithm (without any heuristics). Since the same data set is used, a
comparison can be done with the algorithm detailed above, and the results are shown in
Table 3. Both algorithms successfully performed the scheduling of the ECE2 classes.
However, the pure evolutionary approach failed to schedule the ECE3/4 classes into
available timeslots and hence failed to give a solution to the entire ECE time-tabling
problem.

The algorithm presented with improved heuristic approach is superior to the previous
approach when facing an identical problem dataset.

5 Conclusion

In this chapter, the possibility of solving university time-tabling problems with an al-
gorithm that combines evolutionary computational techniques and heuristics search has
been presented. Two implementations with different heuristics functions have been de-
tailed and tested. Experimental results on these algorithms with real data from the NUS
ECE time-tabling problem have shown their effectiveness in solving a practical time-
tabling problem. The combine use of evolutionary algorithms and heuristic functions
has shown to be much more successful than evolutionary algorithms alone or heuristic
functions alone (using random inputs). The algorithm has been tested against a previ-
ous algorithm on the same dataset and its superiority both in speed and quality of the
solutions has been shown.

Future development may focus on applying the similar algorithm to other schedul-
ing problems, such as cargo scheduling in ports or train scheduling. In this algorithm,
all constrains were treated as hard constraints, so all the solutions found were of high
quality. However, end-users might want to specify many soft constraints which might
saturate this algorithm. A multi-objective approach could then be taken, and soft con-
straints could then be conditional (constraint A or B has to be respected).
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Genetic Algorithms (GAs) have a good potential of solving the Gate Assignment Prob-
lem (GAP) at airport terminals, and the design of feasible and efficient evolutionary
operators, particularly, the crossover operator, is crucial to successful implementations.
This paper reports an application of GAs to the multi-objective GAP. The relative posi-
tions between aircraft rather than their absolute positions in the queues to gates are used
to construct chromosomes in a novel encoding scheme, and a new uniform crossover
operator, free of feasibility problems, is then proposed, which is effective and efficient
to identify, inherit and protect useful common sub-queues to gates during evolution.
Extensive simulation studies illustrate the advantages of the proposed GA scheme with
uniform crossover operator.

1 Introduction

As a major issue in Air Traffic Control (ATC) operations, the Gate Assignment Problem
(GAP) at airport terminals aims to assign aircraft to terminal gates to meet operational
requirements while minimizing both inconveniences to passengers and operating costs
of airports and airlines. The term gate is used to designate not only the facility through
which passengers pass to board or leave an aircraft but also the parking positions used
for servicing a single aircraft. These station operations usually account for a smaller
part of the overall cost of an airlines operations than the flight operations themselves.
However, they can have a major impact on the efficiency with which the flight schedules
are maintained and on the level of passenger satisfaction with the service [1], [2].

Most airline companies create monthly or quarterly Master Flight Schedules (MFSs)
containing flight numbers and along with the corresponding arrival and departing times.
The ground controllers use the MFSs to examine the capacity of gates to accommodate
proposed schedules. There are several considerations that can bear on the decisions,
such as aircraft size and servicing requirements, idle time of gates, flight crew and air-
craft rotation, passenger walking distance, baggage transport distance, ramp congestion,
aircraft waiting time, and use of remote parking stands. In the past few decades, many
optimization methods have been reported to improve the gate assignment operation at
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airport terminals by focusing on one or two of the above considerations. For instance,
passenger walking distance has been widely studied in the GAP research, and meth-
ods such as branch-and-bound algorithms [2], [3], integer programming [4], linear pro-
gramming [5], expert systems [6], [7], heuristic methods [1], tabu search algorithms [8]
and various hybrid methods [9], [10] were reported to minimize this distance. Baggage
transport distance has been relatively less discussed in the GAP literature [1], [11]-[13],
but the algorithms developed to solve the minimum passenger walking distance GAP
can be easily extended to the case where baggage transport distance needs to be consid-
ered [1]. During the peak hours, it often happens that, particularly at hub airports, the
number of aircraft waiting to dwell exceeds the number of available gates. In this case,
aircraft waiting time on the apron should also be minimized [9], [14], [15]. The gate
idle time is a criterion often used to assess the efficiency of using gate capacity [16].
However, the multi-objective GAP is relatively less discussed in literature. Reference
[17] reported some interesting results, where passenger walking distance and passenger
waiting time were both considered, the GAP was modelled as a zero-one integer pro-
gram, and a hybrid method was developed based on the weighting method, the column
approach, the simplex method and the branch-and-bound technique.

As large-scale parallel stochastic search and optimization algorithms, GAs have a
good potential for solving NP-hard problems such as the GAP. For instance, reference
[15] developed a GA to minimize the delayed time during the gates reassignment pro-
cess, but the walking distance was not included. Reference [16] proposed a unified
framework to specifically treat idle time of gates in the previous GAP models, and
then developed a problem-specific knowledge-based GA. This paper aims to shed a lit-
tle more light on how to design efficient GAs for the multi-objective GAP (MOGAP),
where passenger walking distance, baggage transport distance, and aircraft waiting time
on the apron need to be considered simultaneously. The design of highly efficient evo-
lutionary operators, i.e., mutation and crossover, is crucial to successful applications
of GAs to the GAP. Basically, mutation can increase the diversity of chromosomes in
GAs to exploit the solution space, while crossover, in order to help GAs to converge to
optima, needs to identify, inherit and protect good common genes shared by chromo-
somes, and at the same time to recombine non-common genes. Due to the stochastic
nature of mutation and crossover, it is not an easy task to design efficient evolutionary
operators free of the feasibility problem. For instance, infeasible solutions were partic-
ularly discussed in [16], where the mutation operator, rather than introducing diversity,
was used to repair infeasible chromosomes generated by a conventional one-point split
crossover operator.

This paper attempts to develop an infeasibility-free GA for the multi-objective GAP.
Since crossover is often a main source of infeasible chromosomes, effort is particularly
put on the design of a novel uniform crossover operator free of the feasibility problem.
To this end, the relative positions between aircraft rather than the absolute positions of
aircraft in the queues to gates is used to construct chromosomes in the new GA. As
a result of the new uniform crossover operator, the design of mutation operator can
concentrate on the original purpose of diversifying chromosomes.
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2 Problem Formulation of the MOGAP

As mentioned before, there are quite a few different considerations in the GAP, and
the MOGAP in this paper will focus on three of them: passenger walking distance,
baggage transport distance, and aircraft waiting time on the apron. Passenger walking
distance has a direct impact on the customer satisfaction. The typical walking distances
in airports considered are: (I) the distance from check-in to gates for embarking or orig-
inating passengers, (II) the distance from gates to baggage claim areas (check-out) for
disembarking or destination passengers, and (III) the distances from gate to gate for
transfer or connecting passengers. Baggage transport distance occurs when baggage is
transferred between aircraft and baggage claim areas. Basically, these distances can be
reduced by improving the method by which scheduled flights are assigned to the airport
terminal gates. Aircraft waiting time on the apron is the difference between the planned
entering time to gates and the allocated entering time to gates. Due to the shortage
of gates at peak hours, some scheduled aircraft have to wait extra time on the apron,
which could end up with delayed departure and even cause passengers miss connec-
tion flights. Although this kind of ground delay is more tolerable than airborne delay in
terms of safety and costs, it largely affects the customer satisfaction. Besides, aircraft
waiting time can help address another big issue in the GAP: the efficiency of using gate
capacity, which is often represented by how even the distribution of idle times is. In the
minimum distance GAP, some special constraints have to be included in order to avoid
most aircraft being assigned to a same single gate, which however can automatically
be ensured by minimizing aircraft waiting time. Therefore, in the MOGAP, we will
construct an objective function by combining the above three considerations. A simple
way to conduct gate assignment is the first-come-first-served (FCFS) principle accord-
ing to the planned entering time to gates, but the result is usually not optimal or even
not near-optimal, because the FCFS principle does not take into account the layout of
airport terminals. Even for a queue at a single gate, the FCFS principle is not the first
option, mainly because different aircraft may have different ground time and different
number of passengers. Obviously, putting ahead an aircraft with more passengers and
less ground time could bring benefits, even if its planned entering time is later. Fig.1
gives a simple illustration of the MOGAP.

Suppose NAC aircraft need to be assigned to NG gates during a given time period
[TS,TE ]. Let Pi and Gi denote the planned entering time to gates and the ground time of
the ith aircraft in the original set of aircraft under consideration, respectively. Assume
Pi and Gi to be known in advance. In this paper, the planned entering time to gates for
arrival aircraft is assumed to be the scheduled arrival time to the airport (Ai), and the
planned entering time for departing aircraft is the scheduled departure time (Di) minus
the ground time, i.e., Pi = Di −Gi. Let Qg denote the queue at gate g, Qg( j) is the
jth aircraft in Qg, g = 1, . . . ,NG, j = 1, . . . ,Hg, and Hg is the number of aircraft in Qg

satisfying

NG

∑
g=1

Hg = NAC (1)
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Fig. 1. Illustration of the MOGAP

Qg( j) = i means the ith aircraft in the original set is assigned as the jth aircraft to dwell
at gate g. The allocated entering time to gates (Ei) for the ith aircraft in the original set
can then be calculated as

EQg( j) =

{
PQg( j), j = 1

max(PQg( j),EQg( j−1) +GQg( j−1)), j > 1
j = 1, . . . ,Hg,g = 1, . . . ,NG (2)

The waiting time on the apron for the ith aircraft in the original set is

Wi = Ei−Pi, i = 1, . . . ,NAC. (3)

For the sake of simplicity of modeling, besides the NG real gates, the entrance/exit
of the airport terminal is usually considered as a dummy gate (e.g., see [1]), and we call
it gate NG + 1 in this paper. Associated with this dummy gate NG + 1, we introduce a
dummy aircraft NAC + 1. Of course there is no real aircraft queue for this dummy gate,
except the dummy aircraft which dwells at the dummy gate all time.

Three data matrices, Mp ∈ R(NAC+1)×(NAC+1), MPWD ∈ R(NG+1)×(NG+1), and MBTD ∈
R(NG+1)×(NG+1), are used to record the number of passengers transferred between
aircraft, passenger walking distances between gates, and baggage transport distances
between gates, respectively. Given i ≤ NAC and j ≤ NAC, the value of MP(i, j) is the
number of passengers transferred from aircraft i to aircraft j, MP(i,NA + 1) records the
number of arriving passengers from aircraft i to exit, i.e., the dummy aircraft NA + 1,
and MP(NA + 1, j) the number of departing passengers from entrance to aircraft j. For
those passengers who just pass by the airport with a long-haul aircraft, we assume they
do not leave the aircraft when the aircraft stops at the airport. Therefore, we always
have MP(i, i) = 0 for i = 1, . . . ,NAC +1. MPWD(i, j) are the passengers walking distance
from gate i to gate j, and MBT D(i, j) the baggage transport distance from gate i to gate
j. Although MPWD(NG + 1,NG + 1) = 0, we do not have MPWD(i, i) �= 0, i = 1, . . . ,NG,
because, even though passengers transfer between two aircraft which are successively
assigned to the same gate, they still need to leave the first aircraft and wait in a certain
terminal lounge before they can board the second aircraft. Similarly, for MBT D(i, i) one
has MBTD(NG + 1,NG + 1) = 0, but MBTD(i, i) �= 0. Besides these three matrices, we
still need a data vector: VG = [ν1, . . . ,νNAC+1], where 1≤ νi ≤ NG +1 indicates that the
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ith aircraft in the original set is assigned to gate νi, and νNAC+1 ≡ NG + 1 means the
dummy aircraft NAC + 1 is always assigned to the dummy gate NG + 1.

Now we can calculate the total passenger walking distance (TPWD), the total bag-
gage transferring distance (TBTD), and the total passenger waiting time (TPWT) as

JT PWD =
NG+1

∑
g=1

Hg

∑
j=1

NAC+1

∑
i=1

MP(Qg( j), i)MPW D(g,νi), (4)

JTBT D =
NG+1

∑
g=1

Hg

∑
j=1

NAC+1

∑
i=1

MP(Qg( j), i)MBT D(g,νi), (5)

JTPW T =
NAC

∑
i=1

Wi

NAC+1

∑
j=1

(MP(i, j)+ MP( j, i)), (6)

respectively. In the MOGAP of this paper, the following weighted objective function is
used to cover these three aspects:

JMOGAP = αJT PWD +βJTBTD +(1−α−β )φJTPWT , (7)

where α and β are tuneable weights to adjust the contributions of TPWD, TBTD and
TPWT,

α+β ≤ 1,0≤ α ≤ 1,0≤ β ≤ 1, (8)

and φ is a system parameter to make the waiting time comparable to the distances. In
this paper, the distances are measured in meters, and the times measured in minutes.
Assuming the average passenger walking speed is 3km/h, then 1 minute waiting time
for a passenger can be considered as 50 meters extra walking distance for him/her. In
this paper, we take the half, i.e., set φ = 25 because we assume that for passengers
walking is physically more uncomfortable than waiting.

The MOGAP can now be mathematically formulated as a minimization problem:

minQ1,...,QNG
JMOGAP, (9)

subject to (1) to (8). Clearly, how to assign aircraft to different gates to form NG

queues and how to organize the order of aircraft in each queue compose a solution,
i.e., Q1, . . . ,QNG , to the minimization problem (9). Unlike other existing GAP models,
the above formulation of the MOGAP needs no binary variables due to the usage of
Q1, . . . ,QNG .

3 A GA with Uniform Crossover for the MOGAP

In this section we will report a new GA with uniform crossover for the MOGAP (The
proposed new GA will be denoted as GAUC hereafter). For comparative purposes, we
will also discuss two other GAs, particularly to compare their chromosome structures
and crossover operators.
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3.1 New Chromosome Structure

Basically, grouping aircraft according to gates, i.e., assigning aircraft to different gates,
is one of the most important steps in the GAP, because it has direct influence on both
walking distances and idle times of gates. If aircraft waiting time on the apron is not un-
der consideration, then optimal grouping plus the FCFS principle can produce the best
way of utilizing the gates at airport terminals. The GA proposed in [16] was designed
based on aircraft grouping information. The structure of its chromosome is illustrated
in Fig.2.(b), where a gene C(i) = g means the ith aircraft in the original set of aircraft
is assigned to dwell at gate g, in other words, gate g is assigned to aircraft i. Hereafter,
we call aircraft grouping as gate assignment. Clearly, the GA based on gate assignment
is not concerned about the order of aircraft in the queue to each gate, which is crucial
to the minimization of aircraft waiting time on the apron.

Fig. 2. Chromosome structures (see text)

As discussed before, different aircraft may have different number of passengers and
different ground time, and therefore, switching the positions of some aircraft in a FCFS-
principle-based queue could reduce the total passenger waiting time, which is another
criterion to assess the level of customer satisfaction with the service. The GA proposed
for the arriving sequencing and scheduling problem in [18] can be modified and ex-
tended to handle the position switching in the GAP. The chromosome structure is illus-
trated in Fig.2.(c), where one can see the absolute positions of aircraft in queues to gates
are used to construct chromosomes, i.e., a gene C(g, j) = i means the ith aircraft in the
original set of aircraft is assigned as the jth aircraft to dwell to gate g. Apparently, the
underlying physical meaning of a chromosome, i.e., queues to gates, is expressed in a
straightforward way by the absolute-position-based structure. However, it is difficult to
carry out genetic operations on common genes, i.e., to identify, to inherit and to protect
them, in these chromosomes based on absolute position of aircraft.

Basically, common genes should be defined as those sub-structures or sections which
are shared by some chromosomes and play an important role in evolving the fitness of



A Uniform Crossover GA for Multi-Objective Airport Gate Assignment 77

Fig. 3. Two definitions of common genes in the MOGAP

chromosomes. In the MOGAP, walking distances are sensitive to gate assignment, while
relative position between aircraft in queues affects aircraft waiting time. In the evolu-
tionary process, if many fit chromosomes assign a same gate to a same aircraft, and/or
apply the same order to a same pair of successive aircraft in a queue, it is likely that
this gate assignment and/or this relative position will also appear in the fittest chromo-
somes. Therefore, the same gate assignment and the same relative position are used to
define common genes in the MOGAP. Fig.3.(a) and Fig.3.(b) illustrate these two defini-
tions. From Fig.3.(a) one can see that the gate assignment based chromosome structure
makes it very easy to identify common genes, i.e., if C1(i) =C2(i), then these two genes
are common genes. However, this structure has no information for identifying common
relative position between aircraft in queues. An absolute position based chromosome
structure has sufficient information for identifying both common gate assignment and
common relative position, but unfortunately extra computationally expensive proce-
dures are required.

The GAUC introduced in this paper will use the information of both gate assignment
and relative position, not absolute position, to construct chromosomes. As illustrated in
Fig.2.(d), a chromosome in the GAUC is a matrix with a dimension of (NAC +1)×NAC,
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where the first NAC×NAC genes, i.e., C(i, j), i = 1, . . . ,NAC, j = 1, . . . ,NAC, record rela-
tive positions between aircraft in queues, and the last NAC genes, i.e., C(NAC +1, j), j =
1, . . . ,NAC, record gate assignments. If C(i, i) = 1 and C(NAC +1, i) = g, this means the
ith aircraft in the original set of aircraft is assigned as the first aircraft to dwell at gate g;
If C(i, j) = 1 and C(NAC + 1, j) = g, this means aircraft j is assigned to follow aircraft
i to dwell at gate g. As illustrated in Fig.3.(c), with this new structure, common genes
under both definitions can be easily identified: If C1(i, j)&C2(i, j) = 1, then they are
common relative position; If C1(NAC + 1, j) = C2(NAC + 1, j), then they are common
gate assignment.

Feasibility is a crucial issue in the design of a chromosome structure. For the struc-
ture based on gate assignment, if aircraft waiting time is allowed, which is the case
in the MOGAP, then there is no feasibility problem as long as 1 ≤ C(i) ≤ NG for any
i = 1, . . . ,NAC. For another two structures, some special constraints must be satisfied.
The feasibility of chromosomes based on absolute position of aircraft is defined by two
constraints: (I) each aircraft appears once and only once in a chromosome, and (II) if
C(g, j) > 0, then C(g,h) > 0 for all 1≤ h < j. For the GAUC proposed in this paper, a
feasible chromosome must satisfy the following constraints according to the underlying
physical meaning in the MOGAP:

NAC

∑
i=1

NAC

∑
j=1

C(i, j) = NAC, (10)

NAC

∑
j=1

C(i, j)

{
≤ 2, C(i, i) > 0

≤ 1, C(i, i) = 0
(11)

NAC

∑
i=1

C(i, j) = 1, (12)

1≤
NAC

∑
i=1

C(i, i) = N̄G ≤ NG, (13)

∑
C(NAC+1, j)=g, j=1,...,NAC

C( j, j) = 1for anyg ∈ Φ̄G, (14)

where, without losing the generality, it is assumed that only N̄G gates in all NG gates are
assigned to aircraft and Φ̄G denotes the set of assigned gates. Constraints (10) to (14)
are actually a new version of the two feasibility constraints for chromosomes based on
absolute position. From constraints (10) to (11), one can derive that there may often be
some empty rows, no more than N̄G empty rows, in the matrix. If the ith row is empty,
then it means aircraft i is the last aircraft to dwell to gate C(NAC + 1, i).

Actually, constraints (10) to (14) will rarely be used in the GAUC. In the initial-
ization of a chromosome, the following procedure can efficiently generate a feasible
chromosome only with a need to check against constraint (13):

Step 1: Create a (NAC + 1)× NAC matrix with all entries set as 0. Let U =
{1, . . . ,NAC} represent the original set of aircraft, and let ΦG = {1, . . . ,NG} be the
set of gates.
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Step 2: While U �= /0, do

Step 2.1: For 1 ≤ i ≤ NAC, if one more new C(i, i) = 1 will violate Constraint
(13), then randomly choose an existing C(i, i) = 1, let g = C(NAC + 1, i), and
go to Step 2.2. Otherwise, choose i ∈U and g ∈ ΦG randomly, set C(i, i) = 1,
C(NAC + 1, i) = g, and remove i from U and g from ΦG, i.e., let U = U −{i}
and ΦG =ΦG−{g}.
Step 2.2: Regardless of C(i, i), if there is no non-zero entry in row i, then ran-
domly choose j ∈ U , set C(i, j) = 1, C(NAC + 1, j) = g, and remove j from
U , i.e., let U = U −{ j}. Otherwise, find the C(i, j) = 1, let i = j, and repeat
Step 2.2.

3.2 Mutation Operator

Mutation is used by GAs to diversify chromosomes in order to exploit solution space
as widely as possible. In the case of MOGAP, the mutation operation should be able to
reassign an aircraft to any gate at any order. Therefore, we need two mutation operators:
(I) one to shift randomly the positions of two successive aircraft in a same queue, and
(II) the other to swap randomly aircraft in two different queues, or to remove an aircraft
from one queue, and then append it to the end of another queue. The chromosome
structure based on gate assignment only supports the second mutation. The structure
based on absolute position supports both as denoted as follows:

Mutation I: C(g, j)↔C(g, j + 1), j = 1, . . . ,Hg−1,g = 1, . . . ,NG.
Mutation II: C(g1, j) ↔ C(g2,k), j = 1, . . . ,Hg1 and k = 1, . . . ,Hg2 + 1,g1 �=

g2,g1 = 1, . . . ,NG,g2 = 1, . . . ,NG.

In the GAUC, the above two mutation operators need to be re-designed as the fol-
lowing in order to fit in the chromosome structure based on both gate assignment and
relative position between aircraft in queues:

Mutation III: Randomly choose a non-zero gene, say, C(i, j) = 1. If there exist a
C( j,m) = 1 (and maybe further a C(m,h) = 1), then change the values of some genes
by following the instructions given in Fig.4.(a).

Mutation IV: Randomly choose two non-zero genes, say, C(i, j) = 1 and C(h,x) = 1
(there may be C( j,m) = 1 and/or C(x,y) = 1), which have different assigned gates, i.e.,
C(NAC + 1, j) �= C(NAC + 1,x). Then reset the values of some genes by following the
instructions given in Fig.4.(b).

The mutation operations given in Fig.4 automatically guarantee the feasibility of
resulting chromosomes as long as the original chromosomes are feasible.

3.3 Crossover Operator

There has long been a strong debate about the usefulness of crossover, and some people
consider crossover as a special case of mutation, which is true in many designs of GAs
[22]. However, we believe the fundamental role of crossover is different from that of
mutation. Mutation aims to diversify chromosomes, while crossover can converge them
by identifying, inheriting and protecting their common genes. As it is well known, it



80 X.-B. Hu and E. Di Paolo

Fig. 4. Mutation operators in GAUC

is crucial for GAs to keep a good balance between diversity and convergence in the
evolutionary process, which is really a challenging task in the design of GAs. The
difficulties in the design of highly efficient crossover operators do not and also should
not mean that crossover is useless. Otherwise, we should expect to see a natural world
dominated by single gender species, which however we all know is not true. Therefore,
as a nature-inspired algorithm, GAs should have some primary tasks, to identify, to
inherit and to protect good/useful common genes in chromosomes, only or at least
mainly for crossover.

Uniform crossover is probably the most wildly used crossover operator because
of its efficiency in not only identifying, inheriting and protecting common genes, but
also re-combining non-common genes [19]-[21]. Fig.5, using the chromosome struc-
ture based on gate assignment, compares uniform crossover with another also wildly
used crossover operator: one position split crossover. From Fig.5 one can see that the
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Fig. 5. Uniform crossover vs. on position split crossover

uniform crossover is actually a (NAC−1)-position-split crossover, which is obviously
much more powerful than the one position split crossover in terms of exploiting all
possibilities of recombining non-common genes.

To design an effective and efficient uniform crossover operator to handle common
relative position between aircraft in queues is a major objective of this paper. Although
the chromosome structure based on absolute position of aircraft contains the informa-
tion of relative position, due to the feasibility issue in chromosomes, it is very difficult
to design an effective crossover operator to identify, inherit and protect common rel-
ative positions. However, for comparative purposes, here we still manage to design a
crossover operator for the absolute position based chromosome structure:

If {C1(1, j), . . . ,C1(NG, j)} = {C2(1,k), . . . ,C2(NG,k)} �= {0, . . . ,0}
then C1(., j)↔C2(.,k)

(15)

Equation (15) requires the set of all jth aircraft in C1 to be the same as the set of all
kth aircraft in C2. This crossover does not often cause feasibility problems. Actually, it
has no feasibility problem if the following constraint is added

C1(g, j) > 0,C2(g,k) > 0 for all g = 1, . . . ,NG (16)

However, what this crossover operator does is not what a crossover operator is ex-
pected to do, supposing we want to identify, inherit and protect those common genes
defined by either gate assignment or relative position between aircraft. Actually the
above crossover operator can be considered as a combination of Mutation I and II.

A focus of this paper is to design an effective and efficient crossover operator which
can identify, inherit and protect both common gate assignment and common relative po-
sition between aircraft in queues to gates, and at the same time which can exploit all pos-
sibilities of re-combining non-common genes. The feasibility issue of the new crossover
operator should be addressed in a computationally cheap way. With the new chromo-
some structure illustrated in Fig.2.(d) and the definitions of common genes shown in
Fig.3.(c), we propose a novel uniform crossover operator described as the following
procedure, which is further illustrated by Fig.6:
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Fig. 6. Uniform crossover operation in GAUC

Step 1: Given two parent chromosomes C1 and C2, calculate C3 to locate common
genes

C3(i, j) = C1(i, j)&C2(i, j),

C3(NAC + 1, j) =

{
C1(NAC + 1, j), C1(NAC + 1, j) = C2(NAC + 1, j)
0 C1(NAC + 1, j) �= C2(NAC + 1, j)

(17)

i = 1, . . . ,NAC, j = 1, . . . ,NAC,

i.e., C3(i, j) = 1 or C3(NAC +1, j)> 0 means this location has a common gene shared
by C1 and C2.
Step 2: Assign gates to C3 by referring to C1 and C2. Basically, C3(NAC + 1, j) is
set as C1(NAC + 1, j) or C2(NAC + 1, j), and C3( j, j) is set as C1( j, j) or C2( j, j),
j = 1, ,NAC, at a half-and-half chance, subject to Constraint (14). Let C4 = C3.
Step 3: Indicate infeasible genes related to relative positions in C4: Set C4(i, i) =−1
for i = 1, . . . ,NAC; If C3(i, j) = 1 for i �= j, then set C4(m, j) =−1 and C4(i,m) =−1
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for m = 1, . . . ,NAC; if C3(i, i) = 1, then set C4(m, i) = −1 for m = 1, . . . ,NAC.
C4(i, j) �= 0 means this location will not be considered when a new relative posi-
tion between aircraft needs to be set up.
Step 4: While ∑C3(i, j) < NAC, i = 1, . . . ,NAC, and j = 1, . . . ,NAC, do

Step 4.1: Randomly choose j, such that ∑C3(i, j) = 0, i = 1, . . . ,NAC.
Step 4.2: Suppose C1(i1, j) = 1 and C2(i2, j) = 1, i1 = 1, . . . ,NAC, and i2 =
1, . . . ,NAC. If C3(NAC +1, i1) = C3(NAC +1, i2) = C3(NAC +1, j) and C4(i1, j) =
C4(i2, j) = 0, then set i3 = i1 or i3 = i2 at a half-and-half chance; Else if
C3(NAC + 1, in) = C3(NAC + 1, j) and C4(in, j) = 0, n = 1 or 2, then set i3 = in;
Otherwise, randomly choose i3 such that C3(NAC + 1, i3) = C3(NAC + 1, j) and
C4(i3, j) = 0.
Step 4.3: Set C3(i3, j) = 1, C4(i3, j) = 1, C4(m, i3) =−1 and C4(i3,m) =−1 for
m = 1, . . . ,NAC.

Clearly, with the above crossover procedure, all common genes are efficiently identi-
fied, inherited and protected, and all possibilities of feasibly re-combining non-common
genes can be exploited. As will be proved later, this uniform crossover is a very power-
ful search operator in the proposed GA.

3.4 Heuristic Rules

To further improve the performance of GA, e.g., to stimulate necessary and/or poten-
tially useful local search, the following problem-specific heuristic rules are introduced:

• To help the algorithm to converge fast, not all of the new chromosomes are ini-
tialized randomly, but some are generated according to the FCFS principle. This
is because, according to the real-world GAP operation, an FCFS-based solution is
fairly reasonable, and an optimal or sub-optimal solution is often not far away from
such an FCFS-based solution. Therefore, initializing some chromosomes according
to the FCFS principle can effectively stimulate the local search around the FCFS-
based solution.

• When initializing a chromosome randomly, we still follow the FCFS principle but
in a loose way, i.e., an aircraft with an earlier Pi is more likely to be assigned to the
front of a queue. This rule is also used to increase the chance of local search around
the FCFS-based solution.

• If two aircraft have a same Pi, or their Pis are within a specified narrow time window,
then the one with more passengers stands a better chance to be allowed to dwell first.
This rule may help to reduce the total passenger waiting time significantly.

• For the sake of diversity, in each generation, a certain proportion of worst chromo-
somes are replaced by totally new ones.

• Like in [18], the population in a generation, NPopulation, and the maximum number
of generations in the evolutionary process, NGeneration, are adjusted according to NAC

in order to roughly keep the level of solution quality

NPopulation = 30 + 10(round(max(0,NAC−10)/5)), (18)

NGeneration = 40 + 15(round(max(0,NAC−10)/5)). (19)
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Fig. 7. Two-sided parking terminal layout

4 Simulation Results

The terminal layout has a big influence on the cost-efficiency of daily airport operations
[23]. In our study, a typical terminal layout, two-sided parking terminal, is used, as
illustrated in Fig.7. The terminal is assumed to have 20 gates. The data matrix MPWD

and MBTD, i.e., distances for passenger walking and baggage transporting, are generated
according to (20) to (23)

MPWD(n,m) = MPW D(m,n) = d1 + d2|nrem(n)−nrem(m)| (20)

MPWD(n,NG + 1) = MPWD(NG + 1,n) = d3 + d2|nrem(n)−5.5| (21)

MBTD(n,m) = MBT D(m,n) = d4 + d5|nrem(n)−nrem(m)| (22)

MBTD(n,NG + 1) = MBT D(NG + 1,n) = d6 + d5|nrem(n)−5.5| (23)

where n = 1, . . . ,NG, m = 1, . . . ,NG, and d1 to d6 are constant coefficients which can
roughly determine the terminal size and the gate locations,

nrem(n) =

{
rem(n,11), n < 11

rem(n−10,11), n≥ 11
(24)

and rem is a function that calculate the remainder after division.
Traffic and passenger data are generated randomly under the assumption that the

capacity of an aircraft varies between 50 and 300, the ground time span at a gate is
between 30 and 60 minutes, and all aircraft are planned to arrive or depart within a
period of one-hour time window. The congestion condition is indicated by NAC. For
comparative purposes, the GA reported in [18] is extended to solve the MOGAP. As
discussed in Section 3, this extended GA employs the chromosome structure based
on absolute position, and its crossover is actually a more complex mutation operator.
Therefore, it is denoted as GACMO, in order to distinguish from the proposed GAUC
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Fig. 8. Fitness levels in a test

with uniform crossover. Due to limited space, here we only give in Table 1 the results
of a relatively simple case study, in order to illustrate how different GAs optimize gate
assignment. In this test, JMOGAP under GAUC is about 5% smaller than that of GACMO,
and Fig.8 shows how the fitness, i.e.−JMOGAP, changes in the evolutionary processes of
GACMO and GAUC. From Fig.8.(a), one can see that the largest fitness of a generation
in GAUC increases more quickly than that in GACMO, which means GAUC, which
uses the new chromosome structure and uniform crossover, has a faster convergence
speed than GACMO, which is designed based on absolute position of aircraft and has
a crossover only equivalent to a combination of Mutation I and II. Actually, on average
in this test, it takes GAUC 2.7778 generations to make a breakthrough in the largest
fitness, while for GACMO, it takes 4.7619 generations. From Fig.8.(b) one can see that
the average fitness of a generation in GAUC increases faster and stays larger than that in
GACMO. This implies GAUC can effectively improve the overall fitness level, which
is probably because the new uniform crossover proposed in this paper really works well
in identifying, inheriting and protecting good common genes.

However, to get general conclusions about different GAs, we need to conduct exten-
sive simulation tests, where NAC is set as 30, 60 or 90 to simulate the situation of under-
congestion, congestion, or over-congestion, and one of the single-objective functions
in (4) to (6) or the multi-objective function in (7) is used. For each NAC and objective
function, 100 simulation runs are conducted under each GA, and the average results are
given in Table 2 to Table 5, from which we have the following observations:

• Overall, GAUC is about 3%∼ 10% better than GACMO in terms of the specific ob-
jective function, which illustrates the advantages of the new chromosome structure
based on relative position of aircraft in queues to gates and of the proposed uniform
crossover operator based on the new structure.

• In the cases of single-objective GAP, as given in Table 2 to Table 4, GAUC achieves
a better performance at the cost of other non-objective criteria. For instance, in
Table 2, GAUC gets a smaller TPWD by sacrificing TAWT (total aircraft wait-
ing time). TPWD and TBTD share a similar trend of change, i.e., if GAUC has a
smaller/larger TPWD than GACMO, then it also has a smaller/larger TBTD. This is
probably because both TPWD and TBTD, in a similar way, are determined largely
by the terminal layout.



86 X.-B. Hu and E. Di Paolo

Table 1. Result of gate assignment in a single test

AC Pi(min) Gi(min) GACMO GAUC
Code Ei(min) Gate Ei(min) Gate

1 28 40 28 3 28 3
2 26 50 26 16 26 16
3 5 40 5 9 5 9
4 12 45 12 7 12 7
5 43 50 43 19 43 19
6 27 45 27 4 27 4
7 34 40 34 2 34 2
8 10 35 10 12 10 12
9 48 30 48 12 48 12

10 56 35 56 14 56 14
11 25 35 25 15 25 15
12 52 35 53 13 53 13
13 7 50 7 11 7 8
14 56 40 63 8 57 8
15 56 60 60 15 60 15
16 49 35 49 20 49 5
17 39 30 39 1 39 1
18 47 40 47 9 47 9
19 13 40 13 13 13 13
20 52 35 57 11 63 11
21 25 50 25 5 25 20
22 35 40 35 18 35 18
23 16 50 16 6 16 6
24 20 35 20 14 20 14
25 56 45 66 6 66 6
26 4 40 4 10 4 10
27 8 55 8 8 8 11
28 54 50 57 7 57 7
29 45 35 45 10 45 10
30 28 45 28 17 28 17

Table 2. JT PWD is used as objective function

(×105) JT PWD TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 7.2656 7.2656 18.9600 43.4807 29.5 0.2
GAUC 7.0330 7.0330 18.4091 44.7622 29.6 0.2

NAC = 60 GACMO 14.0606 14.0606 38.5475 201.1071 59.1 0.3
GAUC 13.2538 13.2538 37.2206 209.5881 59.3 0.3

NAC = 90 GACMO 19.7178 19.7178 56.4425 442.9681 88.6 0.6
GAUC 18.8373 18.8373 55.0299 455.4340 88.5 0.5
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Table 3. JT BTD is used as objective function

(×105) JT BTD TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 18.5846 7.2739 18.5846 43.6277 29.5 0.3
GAUC 17.8939 7.1005 17.8939 45.1086 29.6 0.2

NAC = 60 GACMO 38.1412 14.2805 38.1412 202.0039 59.3 0.3
GAUC 36.9374 13.1288 36.9374 210.1956 59.5 0.3

NAC = 90 GACMO 55.8907 20.1136 55.8907 440.7336 88.8 0.7
GAUC 54.0407 18.9287 54.0407 451.1360 89.0 0.6

Table 4. JT PWT is used as objective function

(×105) JT PWT TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 1.5273 18.8120 24.8046 0.0611 2.2 0.9
GAUC 1.4595 19.0023 24.9367 0.0583 2.2 0.9

NAC = 60 GACMO 71.2180 36.9188 50.4188 2.8487 3.9 2.3
GAUC 64.2053 37.3578 51.9046 2.5774 3.8 2.3

NAC = 90 GACMO 219.8557 51.6150 73.1843 8.7942 5.3 3.9
GAUC 208.5154 53.0487 75.5549 8.3508 5.3 4.0

Table 5. JMOGAP is used as objective function

(×105) JMOGAP TPWD(m) TBTD(m) TAWT(min) MaxQL MinQL

NAC = 30 GACMO 11.9457 16.1300 23.5272 0.1528 2.0 0.9
GAUC 11.4672 15.5086 23.0442 0.1477 2.1 1.0

NAC = 60 GACMO 53.0853 35.9684 49.8836 3.0112 3.9 2.2
GAUC 49.5900 34.1606 48.7724 2.8031 4.0 2.1

NAC = 90 GACMO 120.2156 49.7772 72.3854 8.8088 5.3 4.0
GAUC 115.7206 47.8941 72.2129 8.4692 5.2 4.0

• In the case of MOGAP, if the weights in the objective function are properly tuned
(α = 0.5 and β = 0.1 in the associated tests), GAUC is better than GACMO not
only in terms of the multi-objective function adopted, but also in terms of each
single-objective function not adopted.

• In the minimum distance (passenger walking distance or baggage transporting dis-
tance) GAP, as shown in Table 2 and Table 3, we use no extra constraints to enforce
assigning gates evenly to aircraft. As a result, the gap between the maximum queue
length (MaxQL) and the minimum queue length (MinQL) is huge, which implies
many aircraft are assigned to a certain gate. While in the minimum waiting time
GAP, as given in Table 4, the gap between MaxQL and MinQL is very small, which
means evenly using gates is automatically guaranteed during the minimization of
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waiting time. Therefore, since waiting time is considered in the MOGAP, the gap
between MaxQL and MinQL is also very small, as shown in Table 5.

• Basically, in a more congested case, i.e., with a larger NAC, the operation of gate
assignment is more expensive. Roughly speaking, the distances increase linearly in
terms of NAC, while the waiting time goes up exponentially, mainly because of the
heavy delay applied to aircraft during a congested period. This might suggest, in a
more congested case, waiting time should be given a larger weight.

5 Conclusion

Uniform crossover is usually efficient in identifying, inheriting and protecting common
genes in GAs, but it could be difficult to design or apply when chromosomes are not
properly constructed. This paper aims to design an efficient GA with uniform crossover
to tackle the multi-objective gate assignment problem (MOGAP) at airport terminals.
Instead of the absolute position of aircraft in queues to gates, which is widely used in
existing GAs for the GAP, the relative position between aircraft is used to construct
chromosomes in the new GA. A highly efficient uniform crossover operator is then de-
signed, which is effective to keep a good balance between diversity and convergence
in the evolutionary process. The advantages of the new GA are demonstrated in exten-
sive simulation tests. Further research will be conducted in order to extend the reported
work from static air traffic situation to dynamical environment based on real traffic data
which need to be collected and analyzed.
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1 Introduction

Most optimization problems associated with real-world complex systems are too diffi-
cult to be modeled analytically. The difficulty may come from the uncertainties involved
in the input and output of the system, the complex (often nonlinear) relationships be-
tween the system decision variables and the system performances, and possible multi-
ple, conflicting performance measures to be considered when choosing the best design.
In light of this, discrete event simulation has become one of the most popular tools for
the analysis and design of complex systems due to its flexibility, its ability to model
systems unable to be modeled through analytical methods, and its ability to model the
time dynamic behavior of systems [1]. However, simulation can only evaluate system
performances for a given set of values of the system decision variables, i.e., it lacks the
ability of searching for optimal values which would optimize one or several responses
of the system. This explains the increasing popularity of research in integrating both
simulation and optimization, known as simulation optimization: the process of finding
the best values of decision variables for a system where the performance is evaluated
based on the output of a simulation model of this system.

Another feature of the real-world complex problems is that most of them are multi-
objective in nature as they require the simultaneous optimization of multiple, often com-
peting objectives. One pertinent instance is the manufacturing system design, where
some typical performance measures, such as throughput, ability to meet deadline, re-
source utilization, in-process inventory, and overall system cost are simultaneously con-
sidered [2]. Due to the trade-offs involved in the objectives, a unique optimal solution
to the multi-objective problem exists only when objectives are combined into a single
criterion to be optimized according to a known utility function. When the utility func-
tion is not well known in advance, the solution to the multi-objective problem is a set
of equally good, non-dominated solutions known as the Pareto-optimal set.

As most real-world complex problems fall into the multi-objective simulation op-
timization (MSO) category, we now give a general formulation of the MSO problem
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which minimizes the expected value of the objective function with respect to its con-
straint set as follows:

min
θ ∈Θ J(θ ). (1)

where J(θ ) = E[L(θ ,ε)] is the vector of expected performance measure of the problem,
L(θ ,ε) is the vector of sample performance, ε represents the stochastic effects in the
system, θ is a p-vector of discrete controllable factors and Θ is the discrete constraint
set on θ .

Several features associated with the above MSO problem make it both challenging
and difficult to solve: the uncertainties (ε) involved in the performance measures, the
possible huge size of solution space (Θ), and multi-objective which requires a non-
dominated Pareto set of solutions. Research addresses this problem as a whole is few
and far between in the literature. However, some simplified versions of the problem are
relatively easy and have been studied more extensively.

One straightforward simplification of the problem is when the objective is a scalar
function rather than a vector-valued function. With a finite and relatively small solu-
tion space (Θ), formulation (1) is usually known as the Ranking and Selection (RS)
problem [3]. Solution approaches to the RS problem all exhaustively evaluate each al-
ternative and focus on how to statistically select the best alternative through statistical
comparison at the least expense of simulation budget. These include indifference-zone
ranking and selection [4], optimal computing budget allocation [5], and decision theo-
retic methods [6]. When the solution space is infinite or finite but very huge, formulation
(1) becomes more complex and is known as the single objective simulation optimiza-
tion problem. In this case, exhaustive evaluation becomes impractical or impossible.
Search powers of optimization procedures need to be integrated with the statistical se-
lection procedure to more efficiently explore the solution space for finding improving
solutions. Research in this area shows that most studies integrate meta-heuristics with
certain statistical analysis techniques, such as genetic algorithm (GA) with both a mul-
tiple comparison procedure and a RS procedure [7]; GA with indifference-zone RS pro-
cedure [8]; modified simulated annealing (SA) algorithm with confidence interval [9];
SA with RS procedure [10]; nested partitions search with two-stage RS procedure[11],
evolutionary algorithm (EA) with subset selection of top-m designs [12].

When formulation (1) is considered having multi-objectives, the problem becomes
even more complex. With no uncertainties (θ ) involved in the performance measures,
the problem is a well-studied deterministic multi-objective optimization problem. One
typical solution approach is the multi-objective programming method, such as Lexico-
graphic Weighted Tchebycheff Sampling Program [13], Wierzbicki’s Aspiration Crite-
rion Vector Method [14, 15], STEM [16], Global Shooting [17], TRIMAP [18], Light
Beam Search [19], Pareto Race [20], etc. More recently, another approach called the
multi-objective evolutionary algorithm (MOEA) is gaining more and more attention
from researchers in various fields [21, 22, 23, 24, 25]. The popularity of MOEA in
solving multi-objective optimization problems can be reflected from the considerable
amount of research currently reported in the literature [26]. When uncertainties (θ ) are
involved in the performance measures but the solution space (Θ) is finite and relatively
small, the problem is known as the Multi-objective Ranking and Selection (MORS)
problem and is studied in [27, 28]. They developed a multi-objective computing budget
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allocation (MOCBA) procedure which incorporates the concept of Pareto optimality
into the RS scheme to find all non-dominated solutions.

With all three difficult features of formulation (1) being considered, we are con-
fronted with the MSO problem as a whole. Research in current literature shows that
the MSO problem is not well-studied in the sense that either it is solved through single
objective optimization techniques or the uncertainties (ε) in the performance measures
are overlooked. In the former case, the problem is usually transformed into single objec-
tive problem through goal programming [29] or some multiple attribute utility theory
[30]. In the latter case, some EA frameworks deal with the uncertainties in the per-
formance measures completely relying on the robustness of EA due to its tolerance
to nonlinear and noisy system models and performance measures [31, 32]. Some re-
searchers try to account for the uncertainties by sampling the performance measures
a fixed number of times for each alternative and using the sample average as estimate
of the performance measures [33]. In both cases, the problem is technically treated
as a deterministic one. Two papers try to explicitly address the uncertainties involved
in the performance measures within EA framework. In [34], the authors proposed a
probabilistic ranking method to select chromosomes based on uncertain multi-objective
fitness measurements. In [35], three noise-handling features, an experiential learning
directed perturbation operator, a gene adaptation selection strategy and a possibilistic
archiving model are proposed. However, these studies tend to assume that problems
caused by noise and uncertainties can be overcome by some noise-handling techniques
incorporated into the MOEA process without considering what is the appropriate noise
level MOEA can tolerate and how to reduce noise to the appropriate level. In the MSO
problem considered in this study, as performance measures are outputs from simulation
model, high uncertainties are oftentimes inevitable. This may render the above sampling
and average method and the noise-handling techniques inefficient. In this study, we pro-
pose a solution framework which integrates MOCBA [28] and MOEA for solving the
MSO problem. The integrated MOEA solution framework would explicitly address the
uncertainties (ε) in the performance measures through efficient control of the estima-
tion accuracy of the performance measures. This chapter is organized as follows. In
Section 2, we first give a general overview of the MOEA procedure and discuss its lim-
itation when solving the MSO problems. Then we briefly introduce the MOCBA algo-
rithm. Finally we present the integrated MOEA framework. In Section 3, a benchmark
test problem is applied to quantify how much the integrated MOEA framework can
benefit from MOCBA in comparison with equal allocation of simulation replications.
Convergence and diversity of the elite set of solutions are also investigated. Finally
some conclusions and future research directions are summarized in Section 4.

2 An Integrated MOEA Framework for Solving the MSO Problem

When a general MSO problem is considered, the solution space (Θ ) is very likely to
be very huge or infinite. In this case, a search procedure is essential in automatically
identifying those decision scenarios with better decisions and therefore more desirable
to be investigated. In this study, we employ MOEA to efficiently explore the solution
space for more promising solutions due to its popularity in multi-objective optimization.
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However, we are not intended to propose a new more efficient MOEA to complement
the current MOEA literature. Our main purpose is to present a framework to integrate
the current available MOEA with a statistical selection procedure so that the integrated
framework can deal with the uncertainties involved in the performance measures more
effectively and efficiently. The solution framework is an integration of MOEA with
MOCBA - a statistical selection procedure developed in [28].

2.1 An Overview of MOEA and Its Limitations When Solving MSO Problems

Evolutionary Algorithms (EAs) are adaptive heuristic search algorithm inspired by evo-
lutionary theory: natural selection and survival of the fittest. The use of EA in multi-
objective optimization has been widely studied, experimented and applied in many
fields due to its particular suitableness for multi-objective optimization [26]: 1) its
ability to work simultaneously with a population of promising solutions which would
evolve into a set of Pareto optimal solutions at termination; 2) its insusceptibility to the
shape or continuity of the Pareto front. The MOEAs developed with various features
include: the Vector Evaluated Genetic Algorithm (VEGA) proposed in [36], the Multi-
Objective Genetic Algorithm (MOGA) in [22], the Niched Pareto Genetic Algorithm
(NPGA) in [23], the Non-dominated Sorting Genetic Algorithm (NSGA) in [24], the
Strength Pareto Evolutionary Algorithm (SPEA) in [25], the Pareto Archived Evolu-
tion Strategy (PAES) in [37], the Incrementing Multi-objective Evolutionary Algorithm
(IMOEA) with dynamic population size in [38], and the two-archive MOEA for solving
problems with a large number of objectives in [39]. Though these algorithms differ in
one way or another, they all share some MOEA’s basic features and common steps.

As an adaptive search algorithm, MOEA simulates the survival of the fittest among
individuals over consecutive generations for solving a problem. Each generation con-
sists of a population of chromosomes representing possible solutions in the solution
space (Θ ). As the population evolves from generation to generation, MOEA identifies
non-dominated individuals in each population (elite population) and have them evolve
towards the final Pareto set. Specifically, starting with an initial population, at each iter-
ation, MOEA evaluates the chromosomes and rank them in terms of their “fitness”; then
possible non-dominated solutions are archived as elite population; if termination condi-
tion is not met, fitter solutions would be selected as parents and undergo recombination
and /or mutation to generate new solutions which are hopefully biased towards regions
with good solutions already seen; then a selection procedure is possibly performed to
get rid of less fit solutions. The procedure is iterated until the termination condition
is met and the archived solutions are output as the final Pareto set. A general MOEA
procedure is illustrated through the flowchart in Figure 1.

Though MOEA procedure is generally considered as robust due to its tolerance to
noise involved in the performance measures, its effectiveness is likely to be limited
to low noise situations. When MOEA is applied in solving an MSO problem, where
performance measures are evaluated through simulation with output subjected to high
variability, it may be confronted with several difficulties as described below:

• How to determine the number of replications needed to estimate the performances
of solutions in the population;
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Fig. 1. Flowchart for a General MOEA Procedure

• How to evaluate “fitness” of the solutions and rank them when variability is involved
in the performance measures;

• How to identify the non-dominated solutions and ensure that the final set of solutions
are truly non-dominated among all visited solutions with statistical significance.

To overcome these difficulties, a statistical selection procedure which hopefully can
address all the above issues is needed to work together with MOEA. The MOCBA
procedure presented in [28] is such a statistical selection procedure specially developed
for the above purposes.

2.2 The Statistical Selection Procedure – MOCBA Procedure

When the solution space (Θ ) is finite and relatively small, formulation (1) becomes the
MORS problem: Given a set of n design alternatives with H performance measures
which are evaluated through simulation, how to determine an optimal allocation of the
simulation replications to the designs so that the non-dominated set of designs can be
found at the least expense in terms of simulation replications. In this section, we present
a brief description of a solution framework developed for solving this problem: the
Multi-objective Optimal Computing Budget Allocation (MOCBA) algorithm. For more
details on how MOCBA works, please refer to [28].

2.2.1 A Performance Index to Measure the Non-dominated Designs
Suppose we have a set of designs i(i = 1,2, ...,n), each of which is evaluated in terms of
H performance measures µik(k = 1,2, ...,H) through simulation. Within the Bayesian
framework, µik is a random variable whose posterior distribution can be derived based
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on its prior distribution and the simulation output [27]. We use the following perfor-
mance index to measure how non-dominated design i is:

ψi =
⋂
j �=i

[1−P(µ j ≺ µi)] . (2)

where P(µ j ≺ µi) represents the probability that design j dominates design i. Under the
condition that the performance measures are independent from one another and they
follow continuous distributions, we have

P(µ j ≺ µi) =
H

∏
k=1

P(µ jk ≤ µik). (3)

Performance index ψi measures the probability that design i is non-dominated by all
the other designs. At the end of simulation, all designs in the Pareto set should have ψi

close to 1, and those designs outside of the Pareto set should have ψi close to 0, because
they are dominated. ψi can be estimated by the following two bounds:

∏
j∈S, j �=i

[
1−

H

∏
k=1

P(µ jk ≤ µik)

]
≤ ψi ≤ min

j∈S, j �=i

[
1−

H

∏
k=1

P(µ jk ≤ µik)

]
. (4)

2.2.2 Construction of the Observed Pareto Set
In the computing budget allocation process, the Pareto set is constructed based on ob-
served performance. Therefore we call it the observed Pareto set (Sp). At a certain stage
of the allocation process, the observed Pareto set can be constructed as described below.
Given µ̄ik is the sample mean of the kth objective of design i, then design j dominates
design i by observation, denoted by j≺̂i, if the following condition holds with at least
one inequality being strict:

µ jk ≤ µ ik∀k = 1,2, ...,H. (5)

The observed Pareto set is then constructed by putting those designs i into the Pareto
set if we can not find a design j such that j≺̂i. The rest of the designs are then put into
the observed non-Pareto set (Sp).

2.2.3 Two Types of Errors of the Observed Pareto Set
The quality of the observed Pareto set depends on whether designs in Sp are all non-
dominated and designs outside Sp are all dominated. We can evaluate it by two types of
errors: Type I error (e1) and Type II error (e2) as defined below.

Type I error (e1) is defined as the probability that at least one design in the observed
non-Pareto set is non-dominated; while Type II error (e2) is defined as the probability
that at least one design in the observed Pareto set is dominated by other designs. When
both types of errors approach 0, the true Pareto set is found. The two types of errors can
be bounded by the approximated errors ae1 and ae2 respectively as given below.

e1 ≤ ae1 = ∑
i∈Sp

ψi. (6)
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e2 ≤ ae2 = ∑
i∈Sp

(1−ψi). (7)

When the noise in the simulation output is high, ae1 and ae2 can be large. However,
once the observed Pareto set approaches the true Pareto set, both ae1 and ae2 approach
0, as ψi approaches 1 for i ∈ Sp and ψi approaches 0 for i ∈ Sp.

2.2.4 The Asymptotic Allocation Rules and a Sequential Solution Procedure
To get the true Pareto set with high probability, we need to minimize both Type I and
Type II errors. In the MOCBA algorithm of [28], it is realized by iteratively allocating
the simulation replications until some termination conditions are met according to some
asymptotic allocation rules stated below.

Rule 1: Given a maximum total number of simulation replications Rmax to be allocated
among n competing designs with H objectives, whose performance for kth objective is
described by random variables with sample means µ1k,µ2k, ...,µnk and finite sample
variances σ̂2

1k, σ̂
2
2k, ..., σ̂

n
1k, suppose S, Sp and S̄p = S\Sp represent the design space,

observed Pareto and non-Pareto set respectively, then as Rmax → ∞, the upper bound of
Type I error (ub1) can be asymptotically minimized when
For a design l ∈ S̄p,

αl =
βl

∑l∈S̄p
βl +∑d∈Sp βd

For a design d ∈ Sp,

αd =
βd

∑l∈S̄p
βl +∑d∈Sp βd

where βl = αl
αm

=

(
σ̂2

lkl
jl

+σ̂2
jl kl

jl

/ρl

)
/δ 2

l jl kl
jl(

σ̂2
mkm

jm
+σ̂2

jmkm
jm

/ρm

)
/δ 2

m jmkm
jm

, given that m is any fixed design in S̄p;

βd = αd
αm

=

√√√√∑i∈Ωd

σ̂2
dki

d
σ̂2

iki
d

β 2
i , where αi is the fraction of Rmax to be allocated to design i;

δi jk = µ̄ jk− µ̄ik; ji ≡ argmax j∈S, j �=i∏H
k=1 P(µ jk ≤ µik); ki

ji
≡ argmink=1,2,...,H P(µ jk ≤

µik) with P(µ jk ≤ µik) following N

(
δi jk,

σ̂2
jk

α ′jNmax
+ σ̂2

ik

α ′i Nmax

)
, and α ′i is the fraction of

Rmax allocated to design i at the immediate previous iteration. Ωd ≡ {designi | i ∈
S̄p, ji = d}; ρi =

α ′ji
α ′i

initially and after getting αi and α ji , it is determined iteratively

until it converges.

Rule 2: Under the same conditions and notations as given in Rule 1, the upper bound
of Type II error (ub2) can be asymptotically minimized when
For a design l ∈ SA

P,

αl =
βl

∑l∈SA
P
βl +∑u∈SB

P
βu +∑d∈S̄P

βd
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For a design u ∈ SB
P,

αu =
βu

∑l∈SA
P
βl +∑u∈SB

P
βu +∑d∈S̄P

βd

For a design d ∈ S̄P,

αd =
βd

∑l∈SA
P
βl +∑u∈SB

P
βu +∑d∈S̄P

βd

where βl = αl
αm

=

(
σ̂2

lkl
jl

+σ̂2
jl kl

jl

/ρl

)
/δ 2

l jl kl
jl(

σ̂2
mkm

jm
+σ̂2

jmkm
jm

/ρm

)
/δ 2

m jmkm
jm

, given that m is any fixed design

in SA
p; βu = αu

αm
=

√
∑i∈Θ ∗u

σ̂2
uki

u
σ̂2

iki
u

β 2
i , and βd = αd

αm
=

√√√√∑i∈Θ ∗d
σ̂2

dki
d

σ̂2
iki

d

β 2
i , where, in

addition to notations given in Rule 1, Θd ≡ {designi | i ∈ Sp, ji = d}; SA
P

≡
⎧⎨⎩design l ∈ Sp |

δ 2
l jl kl

jl
σ̂2

lkl
jl

/αl+σ̂2
jl kl

jl

/α jl
< mini∈Θl

δ 2
ilki

l
σ̂2

iki
l
/αi+σ̂2

lki
l
/αl

⎫⎬⎭ with αi being approx-

imated by α ′i ; SB
P = SP\SA

P;Θ ∗d ≡
{
Θd ∩SA

P

}
.

The MOCBA algorithm is now outlined below.

MOCBA algorithm

Step 0: Perform R0 replications for each design. Calculate the sample mean and vari-
ance for each objective of the designs. Set iteration index v := 0. Rv

1 = Rv
2 =

... = Rv
n = R0.

Step 1: Construct the observed Pareto set SP as stated in Section 2.2.2; calculate ae1

and ae2 according to equations (6) and (7) respectively.
Step 2: If termination conditions are met, go to Step 7.
Step 3: Increase the simulation replications by a certain amount ∆ . If ae1 ≤ ae2, go to

Step 5.
Step 4: Calculate the new allocation according to Rule 1. Go to Step 6.
Step 5: Calculate the new allocation according to Rule 2.
Step 6: Perform additional min

(
δ ,max

(
0,Rv+1

i −Rv
i

))
replications for design i (i =

1, ,n). Update the sample mean and variance of each objective of design i
based on cumulative simulation output. Set v = v + 1 and go to Step 1.

Step 7: Output designs in the observed Pareto set (Sp).

2.3 The Integrated MOEA Procedure - Integration of MOEA with MOCBA

Through the integration of MOEA with MOCBA, we expect that the integrated MOEA
procedure is capable of overcoming all limitations of MOEA stated in Section 2.1. A
flowchart depicting how MOCBA is integrated into MOEA is illustrated in Figure 2.
Here MOCBA’s involvement in the integrated procedure takes place through three gen-
eral MOEA steps: performance evaluation, fitness assignment and formation of the
Pareto set.
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Fig. 2. Flowchart for the Integrated MOEA Procedure

2.3.1 Performance Evaluation
In any search procedure, search direction determines how the current solution(s) move
to new solution(s). If performance evaluation is inaccurate, search direction would be
misguided and therefore the overall performance of the search procedure deteriorates.
In the MSO problem considered here, first and foremost, we are to determine how many
simulation replications need to be run for each individual of the population. Certainly
more simulation replications would definitely result in more accurate estimation of the
performance measures. Nevertheless, as a population based search algorithm, MOEA
involves visiting a large number of solutions while exploring the solution space. If sim-
ulation replications are to be uniformly allocated among the individuals and perfor-
mance measures are to be estimated with high accuracy, the total simulation cost can
easily become prohibitive. Hence we need to determine the right number of replications
for each individual in a more intelligent manner. Intuitively, for individuals with poor
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performances which are obviously dominated by others, it is a waste if further simu-
lation replications are allocated to them, though the noise involved in the performance
measures maybe still high. Thus it is economically beneficial to control the noise in
performance measures of each individual at the right level. This can be done by only
running more replications (therefore lower the noise level) for those designs which are
likely to be competitors for the “best”. The MOCBA algorithm stated in Section 2.2 can
help to optimally determine the right number of simulation replications needed for each
individual. Specifically, at each generation of MOEA, we apply MOCBA to smartly and
efficiently allocate simulation replications to each individual of the current population
so that performance measures of each individual of the population are estimated with
the right accuracy.

2.3.2 Fitness Assignment
Fitness evaluation and assignment mechanism is an important component and the guid-
ing system of MOEA. This is because, calculated based on the performance mea-
sures, fitness value defines the relative strength of an individual. At every generation
of MOEA, it is based on the fitness values that parents are selected to perform recom-
bination and mutation to generate new population. A key point in fitness assignment
is how to ensure that fitness truly reveals quality of the solution it represents. In case
fitness assignment method is not appropriate, less fit solutions may be selected and
survive into the next generation, whereas truly fit solutions are neglected and lose the
chance for further consideration. This will lead the search to less productive regions
and eventually impair the overall performance of MOEA. In MOEA developed for de-
terministic problems, one common way to estimate the fitness of an individual is to first
count the number of individuals in the current population by which it is dominated and
then rank and assign fitness for each individual according to this number [22]. In our
study, this fitness assignment method becomes unsuitable as the uncertainties involved
in the performance measures would affect the dominance relationship among the indi-
viduals. To ensure that fitness of individuals can best represent the individuals’ qualities
and therefore it would properly guide the MOEA in high variability environment, we
employ the performance index ψi defined in Section 2.2.1 to evaluate the fitness of the
individuals. Performance index ψi measures the probabilistic dominance relationship
among the individuals. ψi best serves the purpose here, as it not only considers the
multi-objective nature of the individuals, but also takes uncertainty into account by in-
cluding both variance and sample mean information into the fitness evaluation. Due to
the difficulty in calculatingψi accurately, we use the lower bound of ψi in (4) to approx-
imate it. Here, the MOCBA procedure also plays an important role in fitness evaluation
step of MOEA, because ψi is calculated based on performance measures of the indi-
viduals and MOCBA helps to guarantee the performance measures of each individual
estimated with the right accuracy by optimally allocating the simulation replications.

2.3.3 Formation of the Pareto Set
In MOEA developed for deterministic problems, elite population is commonly formed
by keeping an archive of mutually non-dominated solutions at each iteration. The
archive is updated over generations of MOEA by replacing dominated individuals with
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newly found non-dominated ones according to the dominance relationships among the
individuals. In our study, the uncertainties involved in the performance measures cause
the dominance relationships among the individuals uncertain: it is not known, in a sta-
tistical sense, which individuals are non-dominated in the current population; it is also
unknown, with what significance level, the individuals in the final Pareto set are non-
dominated among all individuals visited during the MOEA. These difficulties also can
be overcome through the use of performance index ψi and running of the MOCBA.
At each MOEA generation, the MOCBA can identify non-dominated individuals in
the current population and provide an estimation of the quality of the observed Pareto
set in form of Type I and II errors. We can use individuals in the observed Pareto set
as elite population. However, when simulation replications are limited, individuals in
the observed Pareto set may not all be non-dominated with high probability. To form
the elite population, we can select those individuals with performance index ψi greater
than a certain value, say ψ∗i . One thing to note here is that, when noise involved in
the performance measures is high, even truly non-dominated individuals may not have
high performance indices. Therefore it is wise to set ψ∗i at a proper value: not too low
to include too many dominated individuals into the elite population; not too high to
miss truly non-dominated individuals in the elite population. At the termination of the
MOEA, MOCBA is run again on the elite population to identify the final optimal Pareto
set. In this run of MOCBA, we can set desired error limits ε∗ for the Type I and II errors,
as we intend to find the final Pareto non-dominated solutions with high confidence.

Though MOCBA is integrated with the MOEA procedure through the aforemen-
tioned three steps, it has great impact on other parts of MOEA as well, such as selection
of parents to do recombination; selection of individual to do mutation; deletion of poor
individuals from the current population, etc. A detailed integrated MOEA procedure is
illustrated below.

2.3.4 Outline of the Integrated MOEA
Step 0: Initialization: Randomly generate an initial feasible population POPt of size

Nt ; set elite population Et =Φ; set generation index t = 0.
Step 1: Run MOCBA (Section 2.2.4) to determine the number of replications for each

individual in population POPt , and form the observed Pareto set.
Step 2: Formation of elite population: Form the elite population Et with individuals

having performance index ψi ≥ ψ∗.
Step 3: Check the termination condition. If it is not satisfied, go to Step 5.
Step 4: Termination: Run MOCBA on the Elite Population Et with both types of errors

within error limit ε∗. Output the Pareto set as the final set of non-dominated
solutions.

Step 5: Evaluation and fitness assignment: Use performance index ψi at the termina-
tion of MOCBA as the fitness value of individual i.

Step 6: New population: Set t = t +1; let POPt = POPt−1. Create a new population by
repeating the following steps until M pairs of parents are selected.

a. Selection: select one pair of individuals by tournament selection from pop-
ulation POPt−1.
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b. Crossover: Generate one pair of offspring by performing certain crossover
operators. Check the feasibility of the offspring.

c. Add the new offspring into population POPt .
Step 7: Mutation: Run MOCBA on population POPt to determine fitness value for the

new offspring. If Nt > Nmax, delete (Nt −Nmax) individuals with least fitness
value. For each individual i in POPt , perform mutation with probability Pm.
Check the feasibility of the mutated individual. Go to Step 1.

One merit of the above integrated MOEA procedure is its ease of integration: we
need not tailor the MOEA for integration with the MOCBA. When solving a partic-
ular MSO problem, a special purpose EA procedure may be desired. The integrated
procedure shows that the MOCBA procedure can be easily incorporated into any EA
procedure, or any other population based search algorithm, such as the Nested Partitions
method [40]. Another merit is its ease of implementation. In any search algorithm, when
new solutions are generated, we need to evaluate their performance measures. MOCBA
is only needed to run when performance of the new individuals are to be evaluated.
And with one run of MOCBA, you can get all necessary information simultaneously:
the right number of simulation replications for each individual; the fitness (performance
index) of each individual; the observed Pareto set of non-dominated solutions; and the
estimated quality of the Pareto set (Type I and II errors).

3 Experimental Results

In this section, we test the effectiveness and efficiency of the integrated MOEA frame-
work. When MOEA is applied to solve MSO problems, the commonly used approach
to addressing noise explicitly is to generate equal number of samples for each solution
and use the average to represent the performance of the solutions. We call this MOEA
with uniform computing budget allocation MOEA UCBA; similarly the proposed in-
tegrated MOEA framework in this study is called MOEA MOCBA. To quantify how
much MOEA MOCBA can improve over MOEA UCBA, they are applied to solve a
test problem with known Pareto-optimal set (Section 3.1) and compared through a num-
ber of performance metrics (Section 3.2).

3.1 The Test Problem

The test problem considered here is a two-objective minimization problem proposed in
[41]:

f1 (x1,x2, ...,xn) = 1− exp

(
−

n

∑
i=1

(xi−1/
√

n)2

)

f2 (x1,x2, ...,xn) = 1− exp

(
−

n

∑
i=1

(xi + 1/
√

n)2

)

where the decision variables xi, i = 1,2, ...,n take on real values and the number of deci-
sion variables n can be arbitrary. The Pareto-optimal set Sp of this problem corresponds
to all points on the line defined by:
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Sp ≡
{
(x1,x2, ...,xn)|x1 = x2 = ... = xn ∈

[−1/
√

n≤ x1 ≤ 1/
√

n
]}

In this study, we assume that the number of decision variables n is set to 3, and the de-
cision variables are bounded with xi ∈ [−1,1] ∀ i = 1,2,3. To change it into a stochastic
problem, we add a normally distributed iid noise with zero mean and a standard devia-
tion of σ , N

(
0,σ2

)
, to the two objective functions. Then the problem is discretized in

such a way that the decision variables xi ∀ i = 1,2,3 are set to have one decimal place
(−0.1,0.0,0.1,0.2, ...). This would create a search space with 9261 designs. After the
problem is discretized, the Pareto-optimal set Sp of the discrete problem corresponds to
all points satisfying the following condition:

Sp ≡
{

(x1,x2,x3)|x1 = x2 = x3 ∈
[
−1/

√
3≤ x1 ≤ 1/

√
3
]
, max
i=1,2,3

xi− min
i=1,2,3

xi ≤ 0.1

}
As a result, in our test problem, there are 85 solutions in the Pareto-optimal set. How-

ever, due to the symmetric nature of the test problem, different set of decision variables
may produce the same objective values. Therefore only 37 of the Pareto-optimal solu-
tions are distinct. An illustration of the solutions in the function space in presented in
Figure 3.

3.2 Comparison of MOEA MOCBA and MOEA UCBA

In both MOEA MOCBA and MOEA UCBA, the MOEA procedure basically follows
steps as given in Section 2.3 with some problem specific information as given below:

• The MOEA used here is real parameter genetic algorithm.
• The coding scheme defines each chromosome as n genes xi (i = 1,2, ...,n), each of

which represents the value of decision variable xi (i = 1,2, ...,n).
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• Crossover is done according to the blend crossover with α = 0.5. For two parent

solutions x(1,t)
i and x(2,t)

i (ith gene at tth generation), given ui is a random number

between 0 and 1, an offspring would be generated as x(1,t+1)
i = (1−γi)x

(1,t)
i +γix

(2,t)
i ,

where γi = (1 + 2α)ui−α .
• Mutation is randomly applied to a gene in a solution with probability Pm. When

mutation takes place, a random value within the range of the gene will be generated
and be used to replace the existing gene.

• The termination condition is defined as: A fixed number of MOEA generations.

When comparing different MOEA algorithms, some commonly used performance
metrics are: solution quality when computational time is fixed; computational time with
given solution quality; convergence of the algorithm; and diversity of the resulted non-
dominated set. In this section, we also employ these performance metrics but with some
modifications due to the fact that simulation is used to evaluate the performance of
the solutions. Since simulation can be very time-consuming, we ignore time spent on
MOEA and consider computational time as simulation budget needed. Specifically, we
will compare the two algorithms in the following manner depending on how we man-
age to terminate MOCBA or UCBA at each MOEA generation: 1) Fix the total amount
of computing budget available; 2) Fix the performance estimation accuracy of the so-
lutions. In the former case, at each MOEA generation, MOCBA (UCBA) is run until
total computing budget is consumed, and the comparison is done in terms of the qual-
ity (percentage of true Pareto-optimal solutions identified) of the elite population; how
close the elite population is to the true Pareto-optimal solutions (convergence), and how
evenly solutions in the elite population are distributed along the Pareto front (diversity).
In the latter case, MOCBA (UCBA) is run until performance indices for solutions in
and outside of the Pareto set reach certain value, and the comparison is done in terms
of the total number of simulation replications consumed.

3.2.1 Results with Fixed Computing Budget
In this case, the noise added to the test problem is set as following normal distribu-
tion: N

(
0,0.032

)
. Also the simulation budget available for each MOEA generation is

fixed to be 1000. For the integrated MOEA procedure, we set the parameters involved
as follows. For MOCBA: initial number of replications R0 = 10; incremental number
of replications ∆ = 10; maximum of additional replications δ = 5. For the MOEA:
population size is fixed as Nt = Nmax = 100; mutation probability Pm = 0.05; perfor-
mance index for selecting elite population ψ∗ = 0.9; tournament selection parameter:
m = 2,M = 5; total number of MOEA generations T = 30.

Figure 4 displays the percentage of true Pareto-optimal solutions identified in the
elite population of both MOEA MOCBA and MOEA UCBA. We can observe that,
throughout the MOEA generations, MOCBA can help MOEA to identify about 10%
more true Pareto-optimal solutions. Moreover, MOEA UCBA exhibits earlier conver-
gence to local optimal solutions (at about generation 12) than MOEA MOCBA (at
about generation 20).

As the quality of the elite population also depends on how close other solutions are
to the true Pareto-optimal solutions, and how the solutions in the elite set distribute
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along the Pareto front, we employ the ”convergence” and ”diversity” metrics devel-
oped in [42] to compare the performance of MOEA MOCBA and MOEA UCBA. Re-
sults are shown in Figure 5 (convergence) and Figure 6 and 7 (diversity) respectively.
In terms of convergence, we can observe from Figure 5 that, at the beginning of the
MOEA, solutions in the elite set generated from both algorithms are far away from the
Pareto-optimal solutions. As generation increases, elite population of both algorithms
approaches true Pareto-optimal solutions, with MOEA MOCBA consistently capable
of producing solutions even closer to the true Pareto-optimal set.

In terms of diversity, one observation from Figures 6 and 7 is that, even at the begin-
ning of the MOEA procedure, solutions in the elite set spread quite well (with diversity
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metric being 0.5 and above) for both objectives though the solutions may not be close
to the true Pareto-optimal set (with convergence metric being 1). This may be due to
the fact that all feasible solutions in the test problem are relatively uniformly distributed
within the solution space and the initial population is generated randomly. Another ob-
servation is that, the diversity metrics obtained from both objectives are quite similar;
this is possibly due to the symmetric nature of the test problem. Moreover, as genera-
tion increases, diversity of the solutions in elite set becomes better for both objectives
but it can not be further improved after about 10 generations. Throughout the MOEA
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procedure, MOEA MOCBA can consistently obtain solutions more evenly distributed
along each objective than MOEA UCBA.

One other observation from Figures 4 to 7 is that, after about 30 MOEA generations,
solutions in the elite set cannot be further improved in terms of true Pareto-optimal
solutions found, convergence and diversity, this maybe resulted from the fact that the
MOEA algorithm employed here is rather primitive and simple. However, we do ob-
serve improvements of MOCBA over UCBA from all performance metrics considered,
which justified our motivation of doing this research in this study.

3.2.2 Results with Fixed Estimation Accuracy
When performance estimation accuracy to be reached is fixed at each generation of both
algorithms, our purpose is to study how much more simulation budget MOEA UCBA
needs than MOEA MOCBA. In this case, we assume that noise added to the test prob-
lem following normal distribution: N

(
0,0.012

)
; and at each intermediate generation,

MOCBA (UCBA) is terminated when designs in the observed Pareto (non-Pareto) set
have performance index greater (less) than 0.6 (0.4). Most parameters of the integrated
MOEA procedure are set as the same values as when computing budget is fixed, except
for the following: population size is fixed as Nt = Nmax = 40; total number of MOEA
generations T = 20; error limit for both types of errors of the final Pareto set ε∗ = 0.3.
Results are shown in Figure 8.

Figure 8 illustrates that, when estimation accuracy to be reached is fixed at each
MOEA generation, MOCBA can save at least half of the simulation budget UCBA con-
sumes. Moreover, simulation budget needed by UCBA increases at a much faster rate
than that of MOCBA as generation increases. This improvement of MOEA MOCBA
over MOEA UCBA is impressive, as evaluation of performance through simulation can
be very costly and time-consuming especially when real-life complex systems are to be
optimized.
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4 Conclusion

In this chapter, we present a solution framework for solving the multi-objective simula-
tion optimization problem. The solution framework is an integration of MOEA (a search
procedure) and MOCBA (a statistical selection procedure). One merit of the framework
is its ease of integration: MOEA can be easily changed to any special purpose EA pro-
cedure or any other population based search procedures. To test its performance, the
integrated MOEA is applied to solve one benchmark test problem with known Pareto-
optimal set. Computational results show that, for the test problem, MOCBA can help
to improve performance of MOEA in terms of several performance metrics considered:
solution quality, simulation budget, as well as convergence and diversity of solutions in
the elite set. In the current study, the main focus is on how MOCBA can help to improve
performance of MOEA by properly allocating the simulation replications and identify-
ing the Pareto set. In future research, it is important to study the integration itself in more
detail. Specifically similar to studies in the single objective case: we need to investigate
what information regarding ranking of the individuals (which pair-wise comparisons) is
necessary for the proper function of MOEA, and how to adapt MOCBA in such a way
that it can more efficiently generate the key information required by MOEA.
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Memetic frameworks for the hybridization of wrapper and filter feature selection
methods have been proposed for classification problems. The frameworks incorporate
filter methods in the traditional evolutionary algorithms to improve classification per-
formance while accelerating the search in the identification of crucial feature subsets.
Filter methods are introduced as local learning procedures in the evolutionary search to
add or delete features from the chromosome which encodes the selected feature subset.
Both single/multi-objective memetic frameworks are described in this chapter. Single
objective memetic framework is shown to speedup the identification of optimal fea-
ture subset while at the same time maintaining good prediction accuracy. Subsequently,
the multiobjective memetic framework extends the notion of optimal feature subset as
the simultaneous identification of full class relevant (FCR) and partial class relevant
(PCR) features in multiclass problems. Comparison study to existing state-of-the-art
filter and wrapper methods, and the standard genetic algorithm highlights the efficacy
of the memetic framework in facilitating a good compromise of the classification accu-
racy and selected feature size on binary and multi class problems.

1 Introduction

Feature selection has attracted increasing research interests in many application do-
mains in recent years. With the rapid advance of computer and database technologies,
datasets with hundreds and thousands of variables or features are now ubiquitous in
pattern recognition, data mining, and machine learning [1, 2]. To process such high
dimensional dataset is a challenging task for traditional machine learning. Feature se-
lection addresses this problem by removing the irrelevant, redundant, or noisy features.
It improves the performance of the learning algorithms, reduces the computational cost,
and provides better understandings of the datasets. Feature selection has been widely
used in many cutting-edge research areas. For instance, it has been applied on cancer
diagnosis using microarray data [3, 4, 5, 6], which is characterized with thousands of
genes. A significant amount of new discoveries have been made and new biomarkers for
various cancer have been detected from the microarray data analysis. Feature selection
is also used on the synergy of new nanoscale materials [7, 8], where it identifies the
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critical multisite interactions in Ising model to map direct quantum-mechanical evalua-
tion and provides accurate prediction on the properties of new materials.

Feature selection algorithms are widely categorized into two groups: filter and wrap-
per methods [9]. Filter methods evaluate the goodness of the feature subset by using
the intrinsic characteristic of the data. They are computationally inexpensive since they
do not involve the use of any induction algorithm. However, they take the risk of se-
lecting subsets of features that may not match the induction algorithm chosen in the
actual prediction. Wrapper methods, on the contrary, directly use the induction algo-
rithm to evaluate the feature subsets. They generally outperform filter methods in terms
of prediction accuracy, but are relatively more computationally intensive.

Another key issue for feature selection algorithm is the curse of dimensionality that
causes significant difficulties in searching for the optimal feature subsets which is capa-
ble of generating accurate predictions. This fundamental difficulty arises from the fact
that the number of hypercubes required to fill out a compact region of a N-dimensional
space grows exponentially with N. As it is well established that Genetic algorithm
(GA) [10] is capable of producing high quality solutions within tractable time even on
complex problems, it has been naturally used for feature selection and promising per-
formance has been reported in the recent years [5, 6, 11, 12, 13, 14, 15, 7, 8]. Unfor-
tunately, due to the inherent nature of GA, it often takes a long time to locate the local
optimum in a region of convergence and sometimes may not find the optimum with
sufficient precision.

Up to date, the question of which scheme one should use for solving a given new
problem, i.e., Filter or Wrapper, remains debatable. To address the aforementioned
problems, memetic algorithm (MA) frameworks that synergizes filter and wrapper
methods have recently been proposed for feature selection [13, 14, 15]. Memetic frame-
work thus complements the strengths of wrapper and filter methods towards more effi-
cient and effective search. A single objective hybridization of filter method based local
search and GA is first proposed by Zhu et al. [13, 14] for general feature selection prob-
lem, i.e., selecting minimal feature subset while obtaining best prediction accuracy1. In
particular, the filter method based local search is introduced to add or delete features
from a genetic algorithm solution so as to quickly improve the solution and fine-tune
the search.

Many class prediction problem or otherwise often known as multiclass prediction
problem represents a research field of feature selection that has drawn increasing in-
terests recently. The field poses a bigger challenge due to the significant statistical and
analytical implications involved over the binary counterparts. With multiclass feature
selection approaches, it is now possible to identify whether the features are relevant to
the set of classes considered. Nevertheless, instead of merely to identify the relevant
features to the set of multiple classes, it is generally more informative if the relevance
of each feature to specific classes or subset of classes is also revealed. To pinpoint the
specific classes a feature is relevant to, the concepts of feature relevance, namely, i) full

1 Feature selection is naturally a multiobjective optimization problem of minimizing the number
of selected features while maximizing the prediction accuracy. In practice, the two objectives
are always aggregated into a single one using aggregating function method, and the prediction
accuracy is always given higher priority.
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class relevant (FCR) and ii) partial class relevant (PCR) are introduced by Zhu et al.
in [15]. FCR denotes features that serve as candidates for discriminating any classes.
PCR, on the other hand, represents features that serve to distinguish subsets of classes.
Subsequently, the multiobjective memetic framework for simultaneous identification of
both FCR and PCR features is introduced in [15] for multiclass classification, where
each objective corresponding to the search for an optimal PCR feature subset. The ap-
proximate Pareto optimal set [16] of solutions representing distinct options for solving
the multiobjective optimization problem based on different tradeoffs of the objectives
is then obtained with a single simulation run of the algorithm. The extremal solution fo
each objective then represents the corresponding PCR feature subset. The FCR feature
subset is then formed by the intersection of all solutions.

The rest of this chapter is organized as follows: Section 2 presents the background
knowledge of feature selection, relevance, redundancy, and the FCR/PCR features.
Section 3 presents the single objective memetic algorithm for feature selection.
Section 4 presents the problem formulation of FCR/PCR feature identification and the
details of the proposed multiobjective memetic algorithm. Section 5 presents the exper-
imental results and some discussions on benchmark datasets. Finally, Section 6 sum-
marizes this study.

2 Background

This section begins with a brief introduction on the background on feature selection,
feature relevance, and feature redundancy. Next, the notions and definitions of FCR and
PCR features are discussed.

2.1 Feature Selection

Feature selection involves the problem of selecting a minimal subset of M features
from the original set of N features (M ≤ N), so that the feature space is optimally re-
duced and the performance of the learning algorithm is improved or not significantly

Fig. 1. Feature selection procedure
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decreased [1, 17, 18, 19]. Generally, a typical feature selection method consists of four
components: a generation procedure or search procedure, evaluation function, stopping
criterion, and validation procedure. Every time a candidate subset of features is gener-
ated randomly or based on some heuristics, it is evaluated based on some independent
(without involving any induction algorithm, i.e., filter method) or dependent criteria
(performance of the induction algorithm, i.e., wrapper method). This procedure of fea-
ture selection is repeated until a predefined stopping condition is satisfied, which may
be due to the completion of search, an achievement of a sufficiently good subset, or
violation of the maximum allowable number of iterations. Next, the selected subset
should be validated either using prior knowledge about the data or using some unseen
independent testing datasets. This general process of feature selection is illustrated in
Figure 1.

2.2 Feature Relevance and Redundancy

Let C = {c1, . . . ,ck} be the class set to be considered, X be a full set of features, Xi be a
feature, and Xi be the set of all features that excludes Xi, i.e., Xi = X −{Xi}. Based on
the definition given in [9, 20], features can be categorized as strongly relevant, weakly
relevant, or irrelevant.

Definition 1. Strong Relevance: A feature Xi is strongly relevant if and only if
P(C|Xi,Xi) �= P(C|Xi).

Definition 2. Weak Relevance: A feature Xi is weakly relevant if and only if
P(C|Xi,Xi) = P(C|Xi) and ∃X

′
i ⊆ Xi such that P(C|Xi,X

′
i �= P(C|X ′i).

A feature relevant to the learning classes C can pose as strongly relevant or weakly
relevant, otherwise, it is regarded as irrelevant to C. An optimal feature subset contains
all the strongly relevant features and some weakly relevant features that are not redun-
dant. In this subsection, the definition of redundancy based on Markov blanket [21, 22]
is described.

Definition 3. Markov Blanket: Let M be a subset of features which does not con-
tain Xi, i.e., M ⊆ X and Xi /∈ M. M is a Markov blanket of Xi if Xi is condition-
ally independent of (X ∪C)−M− {Xi} given M, i.e., P(X −M − {Xi},C|Xi,M) =
P(X−M−{Xi},C|M).

Definition 4. Redundancy: Let G be the current set of selected features, a feature Fi is
redundant and hence should be removed from G if and only if it is weakly relevant and
has a Markov blanket M in G.

Currently, feature selection research has focused on dealing with redundant features and
searching for the optimal feature subset [2]. Koller and Sahami [22] proposed a correla-
tion based feature selection method and Markov blanket for identifying and eliminating
redundant features. However, the computational complexity for finding the conditional
independence of features in Markov blanker is typically very high, which limits the ef-
ficiency of the method. To mitigate this deficiency of Markov blanket, Yu and Liu [20]
proposed the efficient fast correlation-based filter method (FCBF) that approximates the
Markov blanket based on single feature.
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Definition 5. Approximate Markov Blanket: For two features Xi and Xj(i �= j), Xj

is said to be an approximate Markov blanket of Xi if SUj,C ≥ SUi,C and SUi, j ≥ SUi,C

where the symmetrical uncertainty SU [23] measures the correlation between features
(including the class, C).The symmetrical uncertainty is defined as:

SU(Xi,Xj) = 2

[
IG(Xi|Xj)

H(Xi)+ H(Xj)

]
(1)

where IG(Xi|Xj) is the information gain between features Xi and Xj, H(Xi) and H(Xj)
denote the entropies of Xi and Xj respectively. SUi,C denotes the correlation between
feature Xi and the class C, and is named C-correlation.

2.3 Full and Partial Class Relevance

Besides identifying features of relevance to C in multiclass problems, it would be more
effective to be able to pinpoint the specific subset of classes a feature is relevant to.
Hence, the original concepts of relevant feature is extended in [15] so as to differen-
tiate partial class relevant (PCR) from full class relevant (FCR) features in multiclass
problems. In what follows, the notions of PCR and FCR based on the concept of Subset-
Versus-Subset are presented:

Definition 6. Subset-Versus-Subset: A Subset-Versus-Subset (SVS) of classes C is de-
fined as SVS(C)= {A,B} where A,B⊆C and A

⋂
B = ∅.

Definition 7. Full Class Relevance: A feature Xi is said to be full class relevant if and
only if it is relevant to all possible SVSs.

Definition 8. Partial Class Relevance: A feature Xi is said to be partial class relevant
if and only if it is relevant to only some of the SVSs and there exists a SVS C′, such
that Xi is irrelevant to C′.

FCR features are relevant to all SVSs, including all pairs of classes {{ci},{c j}}
(i, j ∈ (1, . . . ,k)), they are important for distinguishing between any two classes. On
the other hand, PCR features are relevant to only some of the SVSs, they are helpful
for distinguishing only subset of classes but not all classes. An ideal solution for fea-
ture selection on multiclass problem would be a FCR feature subset that can distinguish
between any pair of classes. In practice, it is generally hard to find such an ideal FCR
feature subset that would perform well on all classes. A selected feature subset perform-
ing well on some SVSs would not be successful on other SVSs. Hence PCR features
are indispensable for learning the multiclass problem.

3 Single Objective Memetic Algorithm for Feature Selection

In this section, the details of the single objective memetic algorithm for feature selection
is presented. The algorithm is a hybridization of filter method based local search and
GA wrapper method. The pseudo code of the algorithm is outlined in Figure 2.
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Filter Local Search Embedded Genetic Algorithm
BEGIN

1. Initialize: Randomly generate an initial population of feature subsets encoded with binary
strings.

2. While (not converged or computational budget is not exhausted)
3. Evaluate fitness of all feature subsets in the population based on J(s).
4. Select the elite chromosome se to undergo filter method based local

search.
5. Replace se with an improved new chromosome s′e using Lamarckian

learning.
6. Perform evolutionary operators based on restrictive selection, crossover,

and mutation.
7. End While

END

Fig. 2. Filter local search embedded genetic algorithm for feature selection

At the start of the search, an initial GA population is initialized randomly with each
chromosome encoding a candidate feature subset. In the present work, each chromo-
some is composed of a bit string of length equal to the total number of features in the
feature selection problem of interest. Using binary encoding, a bit of ‘1’ (‘0’) implies
the corresponding feature is selected (excluded). The fitness of each chromosome is
then obtained using an objective function based on the induction algorithm:

Fitness(s) = J(s) (2)

where s denotes the selected feature subset encoded in a chromosome, and the feature
selection objective function J(s) evaluates the significance for the given feature subset.
Here, J(s) is the generalization error obtained for s which can be estimated using cross
validation or bootstrapping techniques. Note that when two chromosomes are found
having similar fitness (i.e., for a misclassification error of less than one data instance,
the difference between their fitness is less than a small value of ε = 1/n, where n is the
number of instances), the one with a smaller number of selected features is given higher
chance of surviving to the next generation.

In each GA generation, the elite chromosome, i.e., the one with the best fitness
value then undergoes filter method based memetic operators/local search in the spirit
of Lamarckian learning [24, 25]. The Lamarckian learning forces the genotype to re-
flect the result of improvement through placing the locally improved individual back
into the population to compete for reproductive opportunities. Two memetic operators,
namely an Add operator that inserts a feature into the elite chromosome, and a Del
operator that removes some of the existing features from the elite chromosome, are in-
troduced in the following subsection. The important question is which feature(s) to add
or delete. Ideally, each added feature should be strong relevant and each deleted feature
should be irrelevant or redundant.
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3.1 Filter Method Based Local Search

For a given candidate solution s encoded in a chromosome, X and Y define the sets
of selected and excluded features encoded in s, respectively. The purpose of the Add
operator is to select a highly correlated feature Yi from Y to X based on a filter
method. The Del operator on the other hand selects least correlated features Xi from
X and remove them to Y . The work operations of Add and Del operators are depicted
in Fig. 3 and 4, respectively.

Add Operator:
BEGIN

1. Rank the correlation of features in Y in a descending order based on a filter method.
2. Select a feature Yi in Y using linear ranking selection [26] such that the larger the correlation

of a feature in Y is the more likely it is to be selected.
3. Add Yi to X .

END

Fig. 3. Add operation

Del Operator:
BEGIN

1. Rank the correlation of features in X in a descending order based on a filter method.
2. Select a feature Xi in X using linear ranking selection [26] such that the lower the correla-

tion of a feature in X , the more likely it will be selected.
3. Remove Xi to Y .

END

Fig. 4. Del operation

The correlation measure of each feature in both memetic operators need only be
calculated once in the search. This feature ranking information is then archived for use
in any subsequent Add and Del operations, for fine-tuning the GA solutions throughout
the search. The details of the Add and Del operations are further illustrated in Figure 5.
For instance, F5 and F4 represent the highest and lowest ranked features in Y , while
F3 and F6 are the highest and lowest ranked features in X , respectively. In the Add
operation, F5 is thus the most likely feature to be moved to X , whereas F6 is the most
likely feature to be moved to Y .

It is worth noting that the proposed memetic framework is designed to accommo-
date a diverse of filter-based methods. Among them, the univariate ranking (Gain Ratio
[27], ReliefF [28], and Chi Square [29]) and Markov blanket based filter methods have
been investigated and systematically studied in [13] and [14], respectively. With both
types of filter methods based local search, the memetic frameworks have been shown
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Fig. 5. Add and Del operations (X and Y denote the selected and excluded feature subsets,
respectively)

to identify the relevant features more efficiently than many existing approaches in the
literature for mining dataset containing very large number of features. At the same time,
they converges to improved or competitive classification accuracy with smaller number
of identified features. Further, it was shown in [14] that the Markov blanket based fil-
ter method is capable of dealing with dataset plagued with many redundant features.
The Del operation in Markov blanket based local search is designed to identify and
eliminate redundant features, as it removes features that from X that are covered by
highly correlated features through approximate Markov blanket. The details of the Del
operator based on Markov blanket is depicted in Figure 6.

Del Operator Based on Markov Blanket:
BEGIN

1. Rank the correlation features in X in a descending order based on C-correlation measure.
2. Select a feature Xi in X using linear ranking selection [26] such that the larger the C-

correlation of a feature in X is the more likely it is to be selected.
3. Eliminate all features in X −{Xi} which are in the approximate Markov blanket [20] of

Xi. If no feature is eliminated, try removing Xi itself.

END

Fig. 6. Del operation based on Markov blanket

It is possible to quantify the computational complexity of the two memetic operators
based on the search range l, which defines the maximum numbers of Add and Del op-
erations. Therefore, with l possible Add operations and l possible Del operations, there
are a total of l2 possible combinations of Add and Del operations applied on a chromo-
some. The l2 combinations of Add and Del are applied to the candidate chromosome
in a random order and the procedure stops once an improvement is obtained either in
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Filter Method Based Local Search Using Improvement First Strategy
BEGIN

1. Select the elite chromosome s to undergo memetic operations..
2. For j = 1 to l2

3. Generate a unique random pair {a,d} where 0≤ a,d < l.
4. Apply a times Add and d times Del on s to generate a new

chromosome s′.
5. Calculate fitness of modified chromosome F(s′).
6. IF f (s′) > f (s)
7. Break local search and return s′.
8. End IF
9. End For

10. End For

END

Fig. 7. Filter method based local search

terms of fitness or reduction in the number of selected features without deterioration in
the fitness value. The procedure of the filter method based memetic operation applied
on the elite chromosome of each GA search generation is outlined in Figure 7.

After applying the above Lamarckian learning process on the elite chromosome,
the GA population then undergoes the usual evolutionary operations including linear
ranking selection[26], uniform crossover, and mutation operators with elitism[10].

4 Multiobjective Memetic Algorithm for Simultaneous FCR/PCR
Feature Identification

Since single objective feature selection methods do not distinguish PCR or FCR features
in multiclass problems, multiobjective memetic framework for simultaneously identifi-
cation of both FCR and PCR features have been introduced in [15].

4.1 Identification of FCR/PCR Features, Problem Formulation

The search for true FCR and PCR features may pose to be computationally intractable
due to the large number of possible SVSs. One key issue is to choose an approxi-
mate scheme that can generate a coverage of the classes C. The One-Versus-All (OVA)
scheme is generally regarded as an efficient and effective strategy in the literature of
high-dimensional multiclass classification [30]. Hence, it is used for generating the
SVSs in the present study. For classes C, OVA scheme creates k pairwise two-class
SVSs (labeled as OVA sets in the rest of this chapter), with each of them constructed as
{ci,ci}, where i ∈ (1, . . . ,k) and ci = C− ci.

The search for optimal PCR feature subsets of k OVA sets can naturally be casted
as a multiobjective optimization problem (MOP)[16, 31, 32, 33] with each objective
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corresponding to the feature selection accuracy of each OVA set. The MOP considered
is thus defined as:

min F(s) = ( f1(s), . . . , fk(s)) sub ject to s ∈ S (3)

fi(s) =−Acc(s,{ci,ci}),(i ∈ (1, . . . ,k))

where F(s) is the objective vector, s is the candidate selected feature subset, k is the
number of classes, and S is the feasible domain of s. The i-th objective fi(s) is then
−Acc(s,{ci,ci}), which gives the classification accuracy of the i-th OVA set for the
selected feature subset s. Finding a single solution that optimizes all objectives is not
always possible because a selected feature subset performing well on an OVA set would
not be successful on other OVA sets.

The straightforward way to solve this MOP is to identify the optimal PCR feature
subset of each OVA set individually. The intersection of PCR feature subsets then form
the FCR subset. However, such a process would be computationally intensive. Hence,
a MOEA based method MBE-MOMA for simultaneous identification of both FCR and
PCR features in a single run is proposed by Zhu et al. in [15].

Pareto-based multiobjective evolutionary algorithm (MOEA) [16] is one of the most
popular approaches for handling MOPs, due to its ability to find multiple diverse solu-
tions and approximating the Pareto optimal set in a single simulation run, which pro-
vides distinct options to solve the problem based on different tradeoffs of the objectives.

Solving the MOP defined in Equation (3) with the MOEA would lead to an
approximate Pareto optimal set of solutions (s1,s2, . . . ,sp) with different tradeoffs of
classification accuracy on the OVA sets. One core advantage of the MOP approach to
classification accuracy on the OVA sets is that the user is able to choose a solution ac-
cording to the problem at hand. Subsequently, based on the preferences of the user or
decision maker on the objectives, different solutions in the approximate Pareto optimal
set could be selected in the final predictions. For instances, if a class ci is considered
as more crucial than others, it would be possible to select a solution performing supe-
riorly on fi, such that ci is better distinguished from other classes. In the experimental
study, each class is considered with equal importance and the use of both PCR and FCR
feature subsets in the final prediction is demonstrated (the details are provided later in
Section 4.3). Particularly, the optimal PCR feature subset for the i-th OVA set is pre-
sented as the extremal solution on fi, i.e., PCRi = argmins j fi(s j), and the FCR feature
subset is defined as intersection of all solutions i.e., FCR = {s1∩ s2∩, . . . ,∩sp}.

4.2 Filter Local Search Embedded Multiobjective Memetic Algorithm

This subsection presents the filter local search embedded multiobjective memetic algo-
rithm, which is a synergy of MOEA [16] and filter method based local search [14] for
simultaneous identification of FCR and PCR features by solving the MOP defined in
Equation (3). The pseudo code of the algorithm is outlined in Fig. 8.

At the start of the search, an initial population of solutions is randomly generated
with each chromosome encoding a candidate feature subset. In the present work, each
chromosome is composed of a bit string of length equal to the total number of features in
the feature selection problem of interest. Using binary encoding, a bit of ‘1’ (‘0’) implies
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Filter Local Search Embedded Multiobjective Memetic Algorithm
BEGIN

1. t = 0.
2. Initialize: Randomly generate an initial population P(t) of feature subsets encoded with

binary strings.
3. Evaluate fitness F(s) of each solution in P(t).
4. Rank P(t) using Pareto dominance and calculate the crowding distance [31].
5. While(Termination Criterion Not Fulfilled)
6. Select a temporary population P′(t) from P(t) based on Pareto ranking

and crowding distance.
7. Perform crossover and mutation on P′(t).
8. Evaluate fitness F(s) of each solution in P′(t).
9. Rank {P′(t)⋃P(t)} using Pareto dominance.

10. Apply filter method based local search on the non-dominated
solutions of {P′(t)⋃P(t)} and generate an improved population P′′(t).

11. Rank the population {P(t)
⋃

P′(t)
⋃

P′′(t)} using Pareto dominance
calculate the crowding distance.

12. Select solutions from {P(t)
⋃

P′(t)
⋃

P′′(t)} to create a new population
P(t +1) based on Pareto ranking and crowding distance.

13. t = t+1.
14. End While

END

Fig. 8. Outline of filter local search embedded multiobjective memetic algorithm for feature
selection

the corresponding feature is selected (excluded). The fitness of each chromosome is
then obtained using an objective vector defined in Equation (3).

In each generation, an offspring population P′(t) is created from the parent pop-
ulation P(t) using the genetic operators, i.e., selection, crossover, and mutation. P(t)
and P′(t) are merged together as a mating pool {P′(t)⋃P(t)}. Subsequently, a non-
dominated sorting [16] is used to categorize the solutions of the mating pool into levels
of Pareto fronts. The non-dominated solutions of {P′(t)⋃P(t)} then undergo the filter
based local search as greater detailed in Subsection 3.1. The locally improved solution
s′ of a selected solution s on a randomly selected objective fi(s) through individual
learning is then archived in a temporary population P′′(t). Subsequently, a new popula-
tion P(t + 1) of the same size as P(t) is generated from {P(t)

⋃
P′(t)

⋃
P′′(t)}. Elitism

and diversity in P(t + 1) is maintained based on Pareto dominance and crowding dis-
tance [31]. The evolutionary operators applied in this multiobjective MA include binary
tournament selection [31], uniform crossover, and mutation operators [10].

4.3 Synergy between FCR and PCR Feature Subsets

The output of the multiobjective memetic algorithm is a set of non-dominated solutions.
For k OVA sets, there exist k extremal solutions which each represents the optimal
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Fig. 9. Synergy schemes of FCR and PCR features

solution of the respective objective. In other words, each extremal solution encodes an
optimal PCR feature subset for the corresponding OVA set. On the other hand one FCR
feature subset is formed by intersection of all non-dominated solutions. The next key
issue to consider is how to combine these k + 1 feature subset systematically for the
final prediction.

Two schemes (as shown in Fig. 9) for synergizing the k + 1 feature subsets are con-
sidered in [15]. The first ensemble scheme is widely used in feature selection and clas-
sification [34, 35]. In this scheme, each of the k + 1 feature subsets is employed for
classifying all classes, and the predictions of all trained classifiers are then aggregated
based on voting. The second alternative considered is the conjunction scheme which
is a union of all k + 1 feature subsets as one feature subset. The newly formed union
feature subset is then used in the classification accuracy prediction. It is worth noting
that the number of selected features in multiobjective MA is determined based on the
number of unique features among all k + 1 feature subsets.

5 Empirical Study

The performance of the single/multi-objective memetic frameworks against the state-
of-the-art filter and wrapper feature selection algorithms using high-dimensional bench-
mark datasets is investigated in this section. In particular, the Markov blanket based
filter method is used for local search due to its advantage on handling redundant
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features. The corresponding single/multi-objective memetic algorithms with Markov
blanket based local search are denoted as Markov Blanket Embedded GA (MBEGA)
[14] and Markov blanket embedded multiobjective memetic algorithm (MBE-MOMA)
[15], respectively.

The standard GA and MOEA are also considered as benchmark algorithms for
single/multi-objective problems, respectively. All evolutionary algorithms, i.e, GA,
MBEGA, MOEA, and MBE-MOMA, use the same parameter setting of population
size = 50, crossover probability = 0.6, and mutation rate = 0.1. Note that like most
existing work in the literature, if prior knowledge on the optimum number of features
is available, it make sense to constrain the number of bits ‘1’ in each chromosome to a
maximum of m in the evolutionary search process. In this case, specialized restrictive
crossover and mutation [13] instead of the basic evolutionary operators are necessary,
so that the number of bits ‘1’ in each chromosome does not violate the constraint de-
rived from the prior knowledge on m throughout the search. In this study, the maximum
number of selected features in each chromosome m is set to 50. The search stops when
convergence to the global optimal has occurred or the maximum computational budget
allowable (i.e., 2000 fitness functional calls) is reached. It is worth noting that the fit-
ness function calls made in the memetic operations are also included as part of the total
fitness function calls. The memetic operation range l in MBEGA and MBE-MOMA is
set to 4.

To evaluate the performances of the feature selection algorithms considered in this
study, the average of 30 independent runs of external .632 bootstrap [36] are reported. A
comparison of various error estimation methods [36] has suggested that .632 bootstrap
is generally more appropriate than other estimators including re-substitution estima-
tor, k-fold cross-validation, and leave-one-out estimation on datasets with small sample
size. For datasets with very few instances in some classes, a stratified bootstrap sam-
pling is used instead so that the distribution of each class in the sampled dataset is
maintained consistent to the original dataset.

5.1 Single Objective Study

Firstly, the performance of the single objective method MBEGA against recent filter
and wrapper feature selection algorithms is studied on single objective feature selection
problem. In particular, the FCBF [20], BIRS [37] and standard GA feature selection
algorithms are considered. These algorithms have previously been successfully used
for feature selection and demonstrated to attain promising performance [20, 38, 5, 37].

The study is performed on 4 binary-class benchmark datasets including an often used
dataset Corral [39] and its three extended versions with additional redundant and irrele-
vant features. The purpose is to evaluate the four algorithms on different combinations
of redundant and irrelevant features. The algorithms are expected to perform well on
some but not all combinations.

The first dataset is the Corral data [39], which consist of 6 boolean features (A0,A1,
B0,B1, I,R75) and a boolean class C defined by C = (A0∧A1)∨ (B0∧B1). The fea-
tures A0,A1,B0 and B1 are independent to each other, feature I is uniformly ran-
dom and irrelevant to class C. R75 matching 75% of C is redundant. The second
dataset, Corral-46 generated in [20], is obtained by introducing more irrelevant and
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Table 1. Summary of the four synthetic datasets

Dataset Features
Corral OS: A0,A1,B0,B1

RF: R75
IF: I

Corral-46 OS: A0,A1,B0,B1
RF: A0{1,...,10/16}, A1{1,...,10/16}, B0{1,...,10/16}, B1{1,...,10/16}
IF: I0, I1, . . . ,I13

Corral-50 OS: A0,A1,B0,B1
RF: A0{1,...,10/16}, A1{1,...,10/16}, B0{1,...,10/16}, B1{1,...,10/16}

R90,R85,R80,R75
IF: I0, I1, . . . ,I13

Corral-10000 OS: A0,A1,B0,B1
RF: A0{1,...,10/16}, A1{1,...,10/16}, B0{1,...,10/16}, B1{1,...,10/16}

R90,R85,R80,R75
IF: I0, I1, . . . ,I9963

OS: optimal subset; RF: redundant features; IF: irrelevant features.
A0{1,...,10/16} denotes the subset of 7 features matching A0 at levels of 1, 15/16,
14/16,. . . ,10/16. (Similar definition applied to A1{1,...,10/16}, B0{1,...,10/16},
B1{1,...,10/16}).

redundant features to the original Corral data. It includes the optimal feature subset
(A0,A1,B0,B1), 14 irrelevant features, and 28 additional redundant features. Among
the 28 additional redundant features, A0,A1,B0 and B1, each has 7 redundant features
that match at levels of 1,15/16,14/16, . . .,10/16. The third dataset, Corral-50, is cre-
ated by adding to Corral-46 with redundant features R75,R80,R85 and R90, that match
C at the level of 75%,80%,85% and 90%, respectively. In the following text, the subset
of R75,R80,R85, and R90 is denoted as R+ for the sake of brevity. All features R+ are
all highly correlated to C and have larger C-correlation measure than features in the
optimal feature subset. To test the methods on problems of high-dimensions and high-
redundancies, the last dataset Corral-10000 is generated from Corral-50 with additional
9964 irrelevant features.

The four synthetic datasets considered here are also summarized in Table 1. In the
present study, C4.5 is considered as the classifier for feature subset evaluation since it
provides the optimal subset of (A0,A1,B0,B1) at a theoretical prediction accuracy of
100%.

FCBF, BIRS, and the classifiers C4.5 used in the following studies have been devel-
oped using the Weka environment [40]. The parameters for FCBF, C4.5 were based on
the defaults in Weka. For BIRS, the configurations reported in [37] are used.

The feature selection performances of FCBF, BIRS, GA and MBEGA on the syn-
thetic datasets using ten 10-fold cross-validations with C4.5 classifier are reported in
Table 2. In particular, the selected feature subset, number of selected features, and aver-
age classification accuracy are tabulated. Due to the stochastic nature of MBEGA and
GA, the average feature selection results of MBEGA and GA for ten independent runs
are reported. The maximum number of selected features in each chromosome, m, is set
to 50.

The results in Table 2 show that FCBF, BIRS, and MBEGA locate the optimal fea-
ture subset at a classification accuracy of 100% on the Corral-46 dataset. GA fails
to find the optimal subset on the Corral-46 dataset, but it performs better than FCBF
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Table 2. Feature selection by each algorithm on synthetic data

FCBF BIRS MBEGA GA
Corral Sc (R75,A0,A1,B0,B1) (R75) (A0,A1,B0,B1) (A0,A1,B0,B1)

(#) 5 1 4±0 4±0
acc 96.02 75.00 100.00±0 100.00±0

Corral-46 Sc (A0,A1,B0,B1) (A0,A1,B0,B1) (A0,A1,B0,B1) (. . .)
(#) 4 4 4±0 12.4±0.4
acc 100.00 100.00 100.00±0 100.00±0

Corral-50 Sc (R+,A0,A1,B0,B1) (R90) (A0,A1,B0,B1) (. . .)
(#) 8 1 4±0 16.3±1.2
acc 97.97 90.63 100.00±0 100.00±0

Corral-10000 Sc (R+,A0,A1,B0,B1) (R90) (A0,A1,B0,B1) (. . .)
(#) 8 1 4±0 13.6±2.5
acc 97.97 90.63 100.00±0 82.51±4.72

Sc: selected feature subset; (#): average number of selected features; acc:
classification accuracy.

and BIRS on Corral dataset. Only MBEGA successfully identifies the optimal feature
subset at perfect accuracy of 100% on all the four synthetic datasets. FCBF manages
to identify A0,A1,B0,B1 but fails to eliminate the features in R+. Since all features
in R+ have higher C-correlation values than any feature in the optimal feature subset.
FCBF fails to identify these redundant features based on the approximate Markov blan-
ket. On the other hand, BIRS is a sequential forward search method that is incapable
of considering interactions between features, hence it is more likely to find suboptimal
results. BIRS selects the feature with the highest C-correlation value. For instance, on
dataset Corral-50, BIRS selects only the single top ranked feature, R90, with a classifi-
cation accuracy of 90.63% and any additional features do not bring any improvement.
GA selects much more features than the other methods. Without Markov blanket based
memetic operators, GA alone is inefficient in eliminating redundant features under the
limited computational budget.

5.2 Multiobjective Study

The performance of the proposed method MBE-MOMA is investigated and compared
with its single objective counterpart, i.e., the MBEGA and the non-local-search coun-
terpart, i.e., the standard MOEA based on NSGAII [31].

Six synthetic multiclass datasets are used for studying the weaknesses and strengths
of the feature selection algorithms as well as to illustrate the notion of FCR and PCR
features. Three 3-class (C3 1,C3 2,C3 3) and three 4-class (C4 1,C4 2,C4 3) synthetic
datasets are generated based on the approach described in [41], with each class contain-
ing 25 samples.

Each synthetic dataset consists of both relevant and irrelevant features. The relevant
features in each dataset are generated from a multivariate normal distribution using the
mean and covariance matrixes tabulated in Table 3. And 4000 irrelevant features are
added to each dataset. Among these 4000 features, 2000 are drawn from a normal dis-
tribution of N(0,1) and the other 2000 features are sampled with a uniform distribution
of U[-1,1].
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Table 3. Mean and covariance matrixes used for generating synthetic datasets

Dataset Mean Covariance

C3 1 µ =

⎡⎣ 0 0
3.7 1
1 3.7

⎤⎦⊗
A1 σ = I(2)

⊗
e

C3 2 µ =

⎡⎣ 0 1.18 −1.18 −1.18
3.7 −1.18 1.18 −1.18
1 −1.18 −1.18 1.18

⎤⎦⊗
A1 σ = I(4)

⊗
e

C3 3 µ =

⎡⎣ 1 −1 −1 1 −1 1
−1 1 1 −1 −1 1
−1 1 −1 1 1 −1

⎤⎦⊗
A1.18 σ = I(6)

⊗
e

C4 1 µ =

⎡⎢⎢⎣
1 1

4.95 1
1 4.95

4.95 4.95

⎤⎥⎥⎦⊗
A1 σ = I(2)

⊗
e

C4 2 µ =

⎡⎢⎢⎣
1 1.18 −1.18 1.18 1.18

4.95 −1.18 1.18 1.18 1.18
1 −1.18 −1.18 −1.18 1.18

4.95 −1.18 −1.18 1.18 −1.18

⎤⎥⎥⎦⊗
A1 σ = I(5)

⊗
e

C4 3 µ =

⎡⎢⎢⎣
1 −1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 −1 1
−1 1 −1 1 1 −1 −1 1
−1 1 −1 1 −1 1 1 −1

⎤⎥⎥⎦⊗
A1.18 σ = I(8)

⊗
e

Ax is a 25×10 matrix with each element taking value x;
⊗

denotes the Kronecker
product [42]; I(n) is a n×n identify matrix; e represents a 10×10 symmetrical ma-
trix with each diagonal element having value of 1 while all other elements having
value of 0.9.

C3 1 and C4 1 are designed to contain only 20 FCR and 4000 irrelevant features. The
centroids of the three classes in C3 1 are located at (0,0), (3.7,1), and (1,3.7). While the
centroids of the four classes in C4 1 are located at (1,1), (4.95,1), (1,4.95), and (4.95,
4.95). Both C3 1 and C4 1 have two groups of relevant features generated from a multi-
variate normal distribution, with 10 features in each group. The variance of each relevant
feature is 1. The correlation between intra-group features is 0.9, whereas the correlation
between inter-group features is 0. Features in these two groups are FCR features, since
they are able to distinguish any SVS sets of classes; and furthermore, features in the same
group are redundant with each other and the optimal feature subset for distinguishing
the three classes consists of any 2 relevant feature from different groups.

C3 2 and C4 2 are designed to contain FCR, PCR, and irrelevant features. They are
composed of 4040 (40 relevant and 4000 irrelevant) and 4050 (50 relevant and 4000
irrelevant) features, respectively. The centroids of the three classes in C3 2 are located
at (0,1.18), (3.7,1.18), and (1,1.18)2. While the centroids of the four classes in C4 2 are

2 The two coordinates(features) of the centroids for each class may not be the same. For exam-
ple, the centroid of class 1 is specified on G0 and G1, while the centroid of class 2 is specified
on G0 and G2.



Feature Selection Using Single/Multi-Objective Memetic Frameworks 127

Table 4. Feature selected by each algorithm on synthetic data

Features MBEGA MOEA MBE-MOMA
C3 1 (#) 8.2 57.5 25.4

OPT(2) 2 2 2
Red 3.3 3.2 7.0
Irr 2.9 52.3 16.4

C3 2 (#) 6.6 61.3 19.3
OPT(4) 3.3 3.8 4

Red 2.4 3.1 7.2
Irr 0.9 54.4 8.1

C3 3 (#) 11.9 58.1 21.6
OPT(6) 5.3 5.6 5.9

Red 5.2 3.6 10.1
Irr 1.4 48.9 4.6

C4 1 (#) 12.0 92.2 27.8
OPT(2) 2 2 2

Red 4.3 4.8 8.4
Irr 5.7 85.4 17.4

C4 2 (#) 6.9 98.4 32.0
OPT(5) 4.2 4.9 5

Red 1.2 5.3 11.4
Irr 1.5 88.2 15.6

C4 3 (#) 10.1 103.6 34.5
OPT(8) 5.9 7.9 8

Red 3.0 6.8 18.3
Irr 1.2 88.9 8.2

(#): Number of Selected features; OPT(x): Number of selected features
with in the optimal subset, x indicates the optimal number of features;
Red: Redundant Features; Irr: Irrelevant Features.

located at (1,1.18), (4.95,1.18), (1,-1.18), and (4.95,-1.18). In C3 2, 4 groups of relevant
features (G0, G1, G2, and G3) are generated from a multivariate normal distribution,
with 10 features in each group. Features in the same group are redundant to each other.
In this dataset only features in G0 are FCR features. While those features in G1, G2, and
G3 are PCR features. Further, features in G1 are drawn under different distributions for
class 1 as compared to the other two classes, i.e., N(1.18,1) for class 1 and N(-1.18,1)
for the remaining two classes, hence it is possible to distinguish class 1 from any other
classes. However, since features in G1 are drawn under the same distribution of N(-
1.18,1) for samples of classes 2 and 3, it is difficult to distinguish between these two
classes. As such, there are 5 groups of relevant features in C4 2, with only G0 consisting
of FCR features and the other 4 groups containing PCR features. The optimal feature
subset in C3 2 and C4 2 consists of one FCR feature from G0 and another PCR feature
from the corresponding group. For instance, to correctly classify class 1 in C3 2, two
features each from G0 and G1 are required. The optimal feature subset to distinguish
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Fig. 10. Classification accuracy by each algorithm on synthetic data. The subscript E and C denote
the algorithms using ensemble and conjunction scheme, respectively.

all the three classes thus consists of 4 features, one FCR feature from G0 and three PCR
features each from G1, G2, and G3.

Last but not least, C3 3 and C4 3 have been designed to contain only PCR and irrel-
evant features. They are composed of 4060 (60 relevant and 4000 irrelevant) and 4080
(80 relevant and 4000 irrelevant) features, respectively. The centroids of the three(four)
classes for C3 3(C4 3) are all located at (1.18,-1.18) but on different features. Six(eight)
groups of relevant features are generated from a multivariate normal distribution in
C3 3(C4 3), with 10 features in each group. Features in the same group are designed
to be redundant to each other. All the relevant features are PCR features and the op-
timal feature subset for distinguishing one class from the others consists of two PCR
features each from the corresponding group. For instance, two features each from the
first and second group form the optimal feature subset for separating class 1 and the
other classes. The optimal feature subset to distinguish all the three(four) classes thus
consists of 6(8) features with one from each group.

The MBEGA, MOEA, and MBE-MOMA algorithms are used to search on each
of the six synthetic datasets and the list of corresponding selected features and clas-
sification accuracies obtained by all three algorithms are presented in Tables 4 and
Fig 10, respectively. The results in Table 4 suggest that MBE-MOMA selects more fea-
tures among the optimal subset than the other algorithms. On C3 1 and C4 1, all three
algorithms have successfully identified the 2 FCR features among the optimal subset.
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On the other four datasets (C3 2, C3 3, C4 2, and C4 3) which contain both FCR and
PCR features, only MBE-MOMA manages to identify majority of the FCR and PCR
features belonging to the optimal set, while at the same time producing classification
accuracy superior to both MBEGA and MOEA (see Fig 10). Further, the ensemble
MBE-MOMA exhibits the best classification accuracies on the first 5 datasets, and the
conjunction MBE-MOMA obtains best classification accuracy on the last one, C4 3. In
comparison, MBEGA fails to locate many of the important features belonging to the
optimal subset. Note that since k +1 feature subsets are used in MBE-MOMA, it is ex-
pected to select more features than MBEGA, where only a single optimal feature subset
is considered. For the same computational budget, MOEA selects a larger number of
features while arriving at lower classification accuracy on the datasets, since it lacks the
ability to remove the irrelevant features.

6 Conclusions

The study of memetic frameworks for mining high dimensional dataset is a research
area that has attracted increasing attention in recent years. This chapter describes some
state-of-the-art memetic frameworks for single/multi-objective feature selection. The
single objective memetic framework is designed for identifying the crucial feature
subset that is capable of generating accurate predictions. The multiobjective memetic
framework, on the other hand, is designed for simultaneous identification of FCR and
PCR features on multiclass problems. Comparison study of the memetic frameworks to
recently proposed feature selection schemes suggests that memetic search lead to com-
petitive or superior search performances. Both single/multi-objective memetic feature
selection algorithms have been further demonstrated to eliminate irrelevant and redun-
dant features efficiently when incorporating filter method based local search into basic
genetic wrapper model. The multiobjective memetic algorithm is also illustrated to be
capable of identifying FCR and PCR features efficiently and at the same time gener-
ating more accurate predictions on multiclass problems than both the single objective
memetic search counterpart, as well as the standard MOEA which does not use local
search. To summary, it is worth noting that memetic feature selection frameworks serve
as modern tool for crucial features discovery to assist researchers in analyzing the grow-
ing amounts of data in various research fields. Hence it is hope that the work presented
here on memetic frameworks would help promote greater research in the identification
of new research directions of feature selection.
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A new approach for multi-objective robust design optimization was proposed and ap-
plied to a real-world design problem with a large number of objective functions. The
present approach is assisted by response surface approximation and visual data-mining,
and resulted in two major gains regarding computational time and data interpretation.
The Kriging model for response surface approximation can markedly reduce the com-
putational time for predictions of robustness. In addition, the use of self-organizing
maps as a data- mining technique allows visualization of complicated design informa-
tion between optimality and robustness in a comprehensible two- dimensional form.
Therefore, the extraction and interpretation of trade-off relations between optimality
and robustness of design, and also the location of sweet spots in the design space, can
be performed in a comprehensive manner.

1 Introduction

Design optimization can be described as the problem of determining the inputs of an ob-
jective function that will maximize or minimize its value at a certain design condition.
Although this conventional (so-called deterministic) approach that considers only the
optimality of design, i.e., performance at design condition, should work fine in a con-
trolled environment, real-world applications inevitably involve errors and uncertainties
(be it in the design process, manufacturing process, and/or operating conditions); so that
the resulting performance may be lower than expected. More recently, robust optimiza-
tion that considers not only optimality but also robustness, i.e., performance sensitivity
against errors and uncertainties, has attracted considerable attention in the search for
more practical designs.

A comparison between conventional optimization and robust optimization is illus-
trated in Fig. 1. The solution A obtained from a conventional optimization is the best in
terms of optimality, but disperses widely in terms of objective function against the dis-
persion of design variable or environmental variable, and this dispersion may extend to
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Fig. 1. Comparison between conventional optimization and robust optimization (in minimization
problem)

the infeasible range. On the other hand, the solution B obtained from a robust optimiza-
tion is moderately good in terms of optimality and also good in terms of robustness, i.e.,
dispersion of objective function is narrow against dispersion of design variable.

Improvements in optimality and robustness are usually competing in real-world de-
sign problems. Therefore, not a single, but multiple robust optimal solutions actually
exist, so that finding these compromised solutions and revealing the trade-off relation
between optimality and robustness are both objectives for robust design optimization.
The newly acquired knowledge can aid the upper-level decision maker to pick one solu-
tion from the compromised solutions, together with an additional design consideration.

Up to the present, several robust optimization approaches have been proposed by
many researchers. In the approaches proposed by [1] and [2], acceptable ranges are
pre-specified for each objective and/or constraint function dispersions. Both approaches
consist of inner and outer optimization problems. In the inner sub-problem, the maxi-
mum size (radius) of the dispersive region in the design variable space, so that the objec-
tive and/or constraint function dispersions are safely included within the pre-specified
ranges, is evaluated as a robustness measure. In the outer main problem, Gunawan and
Azarm’s approach considers the radius as an additional constraint, while Li’s approach
considers the radius as an additional objective function. Clearly, both approaches result
in searching only robust optimal solutions whose objective and/or constraint function
dispersions fit their acceptable ranges. It means that these approaches require additional
optimization runs with pre-specification of different acceptable ranges, in order to search
other robust optimal solutions with more or less robust characteristics, i.e., to extract in-
formation on the trade-off between optimality and robustness. In addition, the resulting
robust optimal solutions strongly depend on the pre-specified ranges. In the case that
the pre-specified ranges are not appropriate (e.g. they are too severe) or some informa-
tion about the ranges is unavailable, these approaches may fail in searching for robust
optimal solutions.

On the other hand, the approach proposed by [3] pre-specifies ranges for all design
variables’ dispersions, and sets an upper limit for the objective function dispersion as
a robustness measure in the form of a constraint. This approach can search not only
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robust optimal solutions whose objective function dispersion fits the upper limit, but
also those whose objective function dispersion becomes smaller (i.e., more robust) than
the upper limit. It means that this approach can search for a wider range of robust op-
timal solutions when compared to the above approaches [1, 2]. However, this approach
still has difficulty in pre-specifying the upper limit appropriately.

The approach proposed by [4] considers the worst value of a dispersive objective
function value (for pre-specified design variable dispersions) as a single objective func-
tion. By optimizing the worst objective function value, this approach works well in
terms of finding an extremely robust optimal solution, but it becomes difficult to search
for global trade-off between optimality and robustness because this approach is based
on a single-objective formulation.

Aiming at a practical method to obtain the global trade-off relation between opti-
mality and robustness of design, the author proposed a robust optimization approach
using multi-objective evolutionary algorithms (MOEAs) [5] in his past studies [6, 7].
This approach deals with two statistical values (mean value and standard deviation)
of a dispersive objective function, and treats them as multiple separate objective func-
tions corresponding to optimality and robustness measures, respectively. In addition,
there exist other approaches based on a similar multi-objective-like formulation [8, 9].
In the author’s studies [6, 7], the utilization of MOEAs was motivated by the fact that
it allowed the consideration of an optimization problem from a multi-objective per-
spective; i.e., an m-objective conventional optimization problem can be converted to a
2m-objective robust optimization problem consisting of m optimality measures and m
robustness measures. Indeed, the approach using MOEA featured a superior capability
to globally search trade-off relations among competing objective functions in multi-
objective optimization problems, thus the trade-off between optimality and robustness
can also be revealed in robust optimization problems.

However, robust optimization requires further considerations when applied to real-
world design problems. One major issue is that robust optimization is considerably
more time-consuming than conventional optimization. This is mainly because robust
optimization requires evaluation of objective functions at many sample points (usually
more than 103) [10] around each searching point, in order to derive statistical values
such as mean value and standard deviation, which are then used as optimality and ro-
bustness measures for each objective function. Therefore, it is required to reduce func-
tion evaluation time for a more efficient robust optimization, especially in real-world
design problems which utilize expensive computations for function evaluations.

Another important issue for robust optimization is the difficulty in interpreting com-
plicated output data in order to obtain general design information. As mentioned above,
robust optimization deals with twice as many objective functions as conventional op-
timization, and the resulting high-dimensional output data (large number of objective
functions) is rather complicated to understand and to discuss. The situation goes in-
creasingly severe according to the number of objective functions involved, and thus
automated data analysis techniques are required to handle the large amounts of high-
dimensional output data and to reduce human load in real-world design problems which
consider a large number of objective functions.
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This study has two main objectives: (1) Propose an efficient approach for multi-
objective robust design optimization assisted by response surface method and a data
mining visualization technique, and (2) Demonstrate the capabilities of the present ap-
proach in the robust optimization problem of an automobile tire. Essentially, this prob-
lem has a large number of objective functions and requires substantial computational
time to evaluate their values using a commercial software; therefore this is an appropri-
ate application to validate the present robust optimization approach.

2 Proposed Multi-Objective Robust Design Optimization Process

Figure 2 illustrates the flowchart of the present multi-objective robust design optimiza-
tion process. This process consists of mainly three blocks: response surface (RS) ap-
proximation block, optimization block and visual data-mining (DM) block, as shown in
the broken-line rectangles. Single-solid-line and double-solid-line rectangles indicate
processes based on objective function values estimated by RS methods (RSMs), and
real values obtained directly from expensive computations, respectively.

Details of each block are described in the following Sects. 2.1–2.3, while the syner-
getic effects of the blocks are summarized in Sect. 2.4.

2.1 Response Surface Approximation Block

RSMs [11] approximate response data (e.g. for objective and/or constraint functions)
using simple algebraic functions, thus allowing for a considerable reduction in function
evaluation time. These algebraic functions are derived from real function values given
at several points distributed in the whole design space, so as to fit the given response
data. The RSs are then constructed from the derived algebraic functions and promptly
give estimated function values at other points where response data is unknown.

The most widely used RS is the polynomial-based model [11, 12] because of its
simplicity and ease of use. However, this model is not suitable for representing multi-
modality and non-linearity of objective functions in real-world design problems.

In this study, the Kriging model [13, 14] is adopted as the present RSM. The Kriging
model is a stochastic RSM, which can adapt well to nonlinear functions. In addition,
the Kriging model gives not only estimated function values but also approximation
errors, which help to determine locations in the design space where additional points of
response data should be considered for improvements in RS accuracy.

Consider the approximation of a function f (x) in terms of n design variables x =
[x1,x2, · · · ,xn]T , given M points of response data f (x1), f (x2), · · · , f (xM). The Kriging
model approximates f (x) as

f (x) = µ+ ε(x) (1)

where µ is the constant global model corresponding to the mean value over all given
response data f (x1), f (x2), · · · , f (xM). ε(x) is the local model corresponding to the de-
viation from µ at x, defined as the Gaussian random variable N(0,σ2). The correlation
between the deviations at any two points xi and x j is related to the distance between the
two corresponding points d(xi,x j) as
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Fig. 2. Flowchart of multi-objective robust design optimization process
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[
ε(xi),ε(x j)

]
= exp

[−d(xi,x j)
]

(2)

d(xi,x j) =
n

∑
k=1

θk

∣∣xi
k− x j

k

∣∣2 (3)

where θ = [θ1,θ2, · · · ,θn]T is the weighting factor for each design variable.
The Kriging model determines the parameters µ , σ2 and θ so as to maximize the

likelihood function Ln(µ ,σ2,θ ). µ and σ2 that maximizes Ln(µ ,σ2,θ ) are given in
closed form as

µ =
1T R−1 f

1T R−11
(4)
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σ2 =
( f −1µ)T R−1 ( f −1µ)

M
(5)

where R is an M×M matrix whose (i, j) entry is Corr
[
ε(xi),ε(x j)

]
, f = [ f (x1), f (x2),

· · · , f (xM)]T , and 1 is an M-dimensional unit vector. Then, θ is searched for by maxi-
mizing the following Ln(µ ,σ2,θ ) as

Ln(µ ,σ2,θ ) =−M
2

ln
(
σ2)− 1

2
ln(|R|) (6)

Thus, Eq. 1 is rewritten to the final form of Kriging model predictor as

f (x) = µ+ rT R−1 ( f −1µ) (7)

where r is an M-dimensional vector whose i-th element is Corr
[
ε(x),ε(xi)

]
. Detailed

derivation of Eq. 7 is found in [13].
The accuracy of the estimated value on the Kriging model largely depends on the

distance from the given response data points. Intuitively speaking, the closer point x is
to the response data point x1,x2, · · · ,xM , the more accurate the predictor f (x) (Eq. 7) is.
This is mathematically conveyed by the expression of the mean squared error s2(x) of
f (x) as

s2(x) = σ2

[
1− rT R−1r +

(
1−1T R−1r

)2

1T R−11

]
(8)

A full derivation of Eq. 8 is also found in [13]. In general, if the accuracy of the cur-
rent RS is insufficient, it is required to reconstruct a new RS by adding more response
data points. Accuracy improvements in the present Kriging model is accomplished by
iteratively adding points with a maximum value of expected improvement (EI), which
corresponds to the probability that the function approximation f (x) (Eq. 7) may achieve
a new global optimal on a reconstructed RS with the consideration of an additional
point x. In an f (x) minimization problem, the improvement value I(x) and the EI value
E[I(x)] of f (x) are expressed respectively as

I(x) = max [ fmin−F,0] (9)

E[I(x)] =
∫ fmin

−∞
( fmin−F)φ(F)dF (10)

where fmin is the minimum function value in the current response data f (x1),
f (x2), · · · , f (xM), F is the Gaussian random variable N( f ,s2), and φ(F) is the prob-
ability density function of F .

2.2 Optimization Block

Using the constructed RSs, a robust optimization is performed in the next block. In
general, a conventional optimization problem (minimizing f (x)) is given as

Minimize: f (x) (11)
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In robust optimization, on the other hand, this problem is rewritten to the problem where
the mean value µ f and the standard deviation σ f of f (x) must be minimized when x
disperses around a searching point due to errors and uncertainties as{

Minimize: µ f

Minimize: σ f
(12)

Therefore, an m-objective ( f1(x), f2(x), · · · , fm(x)) conventional optimization problem
is converted to a 2m-objective robust optimization problem consisting of m optimal-
ity measures (µ f1 ,µ f2 , · · · ,µ fm) and m robustness measures (σ f1 ,σ f2 , · · · ,σ fm). In this
study, the above multi-objective robust optimization problem is solved by using a multi-
objective evolutionary algorithm [5]. MOEAs have the capability of revealing multi-
ple compromised solutions and also the trade-off relations among competing objective
functions for a given multi-objective design optimization problem. In the case of robust
design optimization, the competing objective functions are optimality and robustness,
so the trade-off between them can also be revealed [6, 7].

For the present MOEA, the initial population (N solutions x1,x2, · · · ,xN) is generated
randomly by considering the whole design space. For each solution xi (i = 1,2, · · · ,N),
numerous sample points are generated randomly around the searching point xi by
changing the dispersive (random) design variables so as to follow certain probability
distributions, and f (x) is evaluated at each sample point. Then, statistical values µ f and
σ f are estimated from the sampled f (x) for each solution. Comparing the estimated
µ f and σ f among all solutions x1,x2, · · · ,xN , fitness values are assigned for all the so-
lutions. Next, from the N solutions in the current generation, better N∗ solutions are
selected as parents and new N∗ solutions are reproduced as children through crossover
and mutation. Finally, N better solutions among the current N solutions and the new
N∗ solutions are picked as the population for the next generation (alternation of gen-
erations). This process is iterated until the non-dominated solutions between µ f and
σ f have converged and multiple robust optimal solutions revealing the trade-off rela-
tion between µ f and σ f have been obtained (specific MOEA operators are given in
Sect. 3.2).

2.3 Visual Data-Mining Block

In optimizations with two or three objective functions, trade-off relations can be visu-
alized simply by plotting the resultant non-dominated solutions, however, conventional
visualization becomes virtually impossible when more than three objective functions are
considered. DM visualization technique is thus applied in this block in order to discover
indistinct patterns such as regularities and correlations existing in high-dimensional
data. Therefore, it can help us to automatically extract and easily understand general
design information among many competing objective functions.

In this study, a self-organizing map (SOM) [15] is adopted as the present DM
visualization technique. The SOM is an unsupervised machine learning, nonlinear
projection algorithm from high to low-dimensional space. This projection is based on
self-organization of a low-dimensional array of neurons.

Consider the projection of N points of m-dimensional input data (m objective func-
tion values) f 1, f 2, · · · , f N ( f i =

[
f i
1, f i

2, · · · , f i
m

]T
) onto L neurons in a low-dimensional
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space. The j-th neuron is associated with the weight vector wj =
[
wj

1,w
j
2, · · · ,wj

m

]T
.

Each neuron is connected to adjacent neurons by a neighborhood relation, and usually
forms a two-dimensional rectangular or hexagonal topology in the SOM. The learning
algorithm of SOM starts with the search for the best-matching unit wci , which is the
closest neuron to the i-th input vector f i as

|| f i−wci ||= min
∣∣∣∣ f i−wj

∣∣∣∣, j = 1,2, · · · ,L (13)

Once the best-matching unit has been determined, the weight adjustments are per-
formed not only for the best-matching unit but also for its neighbors. The adjustment
for the j-th neuron wj depends on the distance (similarity) from the input vector f i

and the neuron wj. Based on the distance, the best-matching unit and its neighbors be-
come closer to the input vector f i. Repeating this learning algorithm, the weight vectors
w1,w2, · · · ,wL become smooth not only locally but also globally. Applying this learn-
ing process to all input data f 1, f 2, · · · , f N , the sequence of close vectors in the original
space results in a sequence of neighboring neurons in the two-dimensional map. Thus,
the SOM reduces the dimension of the objective function data while preserving their
own features, and the resultant two-dimensional map can be used for visualization and
data interpretation.

The above approach describes a sequential SOM, which applies the learning pro-
cesses to all input vectors one by one. However, the learning results may change ac-
cording to the order of the applied processes. In this study, therefore, a batch SOM
is adopted in order to guarantee the uniqueness of the learning results. The batch
SOM adjusts weight vectors w1,w2, · · · ,wL after determining all the best-matching units
wc1 ,wc2 , · · · ,wcN for all input vectors f 1, f 2, · · · , f N , while the sequential SOM does it
after determining the best-matching unit wci for an input vector f i. In the batch SOM,
the j-th weight vector w j is adjusted to w j

ad j as

wj
ad j =

N

∑
i=1

h jci f i

/
N

∑
i=1

h jci (14)

where h jk is defined by the following Gaussian function as

h jk = exp

(
−d jk

2

rt
2

)
(15)

where d jk denotes the Euclidean distance between two neurons w j and wk, and rt de-
notes the neighborhood radius, which decreases with the iteration of learning processes.

The general design information that can be visualized through the obtained SOM is
based on the function values estimated by the utilized RSM. Naturally, the information
must be validated by evaluating real function values with actual computations as the
final step.

2.4 Synergetic Effects

The RS block provides the following optimization block with the approximation of
objective functions in computationally inexpensive forms. It contributes to an efficient
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function evaluation and optimal solution search in the optimization block which uses
EA. Note that this contribution becomes more important as the number of function
evaluations becomes larger, so the use of RS approximation is indispensable for the
robust optimization, since it uses statistical values of the original objective functions
through many sample points.

The optimization block provides many optimal (non-dominated) solution vectors;
each of which has many objective function values. The following DM block visualizes
these solution vectors in a lower-dimensional comprehensive form, and it contributes
to an efficient extraction of important design information from the huge and complex
optimization output. The robust optimization deals with more objective functions and
provides higher-dimensional optimal solution vectors than the conventional optimiza-
tion, thus the DM visualization is also indispensable for the robust optimization.

3 Application Problem

The proposed multi-objective robust optimization approach assisted by the Kriging-
based RSM and the SOM-based DM technique is applied to an automobile tire design
problem and its capabilities are demonstrated in this section.

3.1 Problem Definition

Figure 3 shows the automobile tire structure considered in this study. The present auto-
mobile tire design problem considers the following vertical, horizontal and circumfer-
ential tire stiffnesses (Ex, Ey and Ez) as three objective functions:⎧⎪⎨⎪⎩

Minimize: Ex

Maximize: Ey

Maximize: Ez

(16)

A smaller Ex corresponds to better riding comfortability, and larger Ey and larger Ez cor-
respond to better cornering and braking performances, respectively. This problem has a

z

x

y

(a) Overall view (b) Cross-sectional view

Fig. 3. Automobile tire structure
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total of ten design variables: angle of belt layer for reinforcing tire ground-contact sur-
face (one variable), rubber elasticities in cap, side and flange regions (three variables),
and cross-sectional tire configuration parameters (six variables). The cross-sectional
configuration r is defined simply in the form of weighted summation of baseline con-
figuration r0 and six basis vectors ∆r1,∆r2, · · · ,∆r6 as

r = r0 +
6

∑
i=1

αi∆ri (17)

where αi is a coefficient for ∆ri, and set as the present design variable.
In this study, the above optimization problem (Eq. 16) is converted into the following

robust optimization problem considering the optimality and the robustness of each tire
stiffnesses as five objective functions, when tire internal pressure pint disperses around
the nominal condition as a random variable following the normal distribution with its
standard deviation set at 25% of the mean (nominal) value:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Minimize: µEx

Maximize: µEy

Minimize: σEy/µEy

Maximize: µEz

Minimize: σEz/µEz

(18)

where µEx,y,z and σEx,y,z are the mean value and the standard deviation of Ex,y,z against the
dispersion of pint . The present robustness measure is expressed in a non-dimensional
form (σEx,y,z/µEx,y,z) in order to eliminate the scale effect where a smaller µEx,y,z leads to
a smaller σEx,y,z ; otherwise the comparison between µEx,y,z and σEx,y,z would be unfair. In
addition, the present robust optimization does not consider the robustness of Ex because
it is not an important factor from the engineering point of view.

In this study, both the conventional optimization (Eq. 16) and the robust optimization
(Eq. 18) are performed, and results are compared to demonstrate the capabilities of the
proposed multi-objective robust optimization approach.

3.2 Numerical Methods and Conditions

The present conventional and robust optimization processes have already been shown
in the flowchart of Fig. 2. Here, details of the processes are described as follows.

In the RS approximation block using Kriging model, 99 points with ten different
design variables and one random variable are generated uniformly in the whole design
space by the Latin hypercube sampling (LHS) [16]; and initial response data is gener-
ated by evaluating real values of Ex, Ey and Ez through actual computational structure
analyses using the commercial software ABAQUS at these 99 points. Based on the re-
sponse data, three RSs are constructed for Ex, Ey and Ez as functions of ten design
variables and one random variable. If the RSs’ accuracies are insufficient, the RSs are
reconstructed again by adding more response data at a maximum EI value point.
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In the optimization block using MOEA, currently a multi-objective genetic algo-
rithm (MOGA), populations of 512 solutions evolve through 100 generations. Based
on the RSs of Ex,y,z constructed by the Kriging model, the objective functions are then
evaluated. In the conventional optimization, Ex,y,z are evaluated directly from the RSs at
each searching point. In the robust optimization, on the other hand, µEx,y,z and σEx,y,z are
estimated by the Monte Carlo simulation (MCS) with descriptive sampling (DS) [17].
The present MCS random variable is pint , and the sample size is set as 103 for each
searching point. From the evaluated objective functions, fitness values are evaluated by
using a Pareto-ranking method [18] and a fitness sharing [5, 18]. Parents are selected
by the stochastic universal sampling (SUS) [19], and children are reproduced by the
simulated binary crossover (SBX) [5] and polynomial mutation [5] at a 10% rate. The
alternation of generations is performed by the Best-N selection [20, 21].

Finally, in the DM visualization block using SOM, the resultant data from the non-
dominated solutions for the three-objective functions (conventional optimization) and
five objective functions (robust optimization), is projected and clustered onto a two-
dimensional hexagonal topology by using the commercial SOM software Viscovery
SOMine [22].

As mentioned above, real performance evaluations (ABAQUS simulations to evalu-
ate tire stiffnesses Ex, Ey and Ez) are performed in the subblocks “generation of initial
response data,” “generation of additional response data,” and “validation of design in-
formation” (shown in the double-solid-line rectangles in Fig. 2). Here, note that the
present robust optimization approach can be easily extended to other design problems,
simply by changing the evaluation methods which are used there. For example, in the
case of an aircraft design optimization, a computational fluid dynamics solver can be
utilized instead of the ABAQUS in the tire design, while the optimization process itself
remains just the same.

4 Application Results

4.1 Validation of Response Surface Accuracy

The accuracy of the present Kriging-based RSs constructed from the initial dataset of
99 response points is demonstrated here by the cross-validation of values of the real
function and values estimated by the RS using a different dataset. The cross-validation
is to compare a real function value at the points where response data are given, with a
function value estimated by the RS constructed from the response data lacking the data
at the given point. Those results are depicted in Fig. 4 for three tire stiffnesses Ex, Ey

and Ez (shown in percentages of the baseline values).
For all tire stiffnesses Ex, Ey and Ez, the values estimated by the current RSs have

small discrepancies which are lower than 5% of the real values at most of the given
points. These results indicate that the current Kriging-based RSs have enough accuracy
to predict qualitative characteristics of Ex, Ey and Ez, which is important when estimat-
ing robustness measures. In this study, therefore, the current RSs need not be recon-
structed again by adding more response data based on EI values, and the optimization
will be performed using the current RSs constructed from the initial 99 points.
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(a) Ex (b) Ey

(c) Ez

Fig. 4. Cross-validation of Kriging-based RSs for tire stiffnesses

4.2 Validation of the Capability to Search for Robust Optimal Solutions

The capability to search for robust optimal solutions is demonstrated here by comparing
the results of the present conventional optimization and robust optimization. The resul-
tant non-dominated solutions obtained through conventional and robust optimizations
are shown in Figs. 5 and 6, respectively (values are shown in percentages of the baseline
values estimated by the RSs). In the conventional optimization case, the resultant non-
dominated solutions that are optimal in terms of the three objective functions (Eq. 16)
are plotted on the µEy–(σEy/µEy) plane (Fig. 5(a)), and on the µEz –(σEz/µEz) plane
(Fig. 5(b)), after estimating the statistical values µEx,y,z and σEx,y,z of these solutions by
the same MCS used in the robust optimization. In the robust optimization case, on the
other hand, the resultant non-dominated solutions that are optimal in terms of the five
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(a) µEy –(σEy/µEy)

(b) µEz –(σEz/µEz )

Fig. 5. Non-dominated solutions obtained
through conventional optimization (shown in
values estimated by RSs)

(a) µEy –(σEy/µEy)

(b) µEz –(σEz /µEz)

Fig. 6. Non-dominated solutions obtained
through robust optimization (shown in values
estimated by RSs)

objective functions (Eq. 18) are plotted directly on the µEy–(σEy/µEy) plane (Fig. 6(a)),
and on the µEz –(σEz/µEz) plane (Fig. 6(b)).

Comparing Figs. 5(a) and 6(a), it can be seen that the non-dominated solutions ob-
tained through the robust optimization have smaller σEy/µEy values than those obtained
through the conventional optimization. Similar tendency can be seen in σEz/µEz by com-
paring Figs. 5(b) and 6(b). These results indicate that the present robust optimization
successfully found the solutions with robust Ey and Ez characteristics, while the conven-
tional optimization did not. Therefore, the proposed multi-objective robust optimization
approach has a superior capability to search for robust optimal solutions.
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4.3 Validation of the Capability to Reveal Design Information

The capability to reveal design information is demonstrated here. First, objective func-
tion data of the non-dominated solutions is clustered by the present SOM so that it can
be visualized in a two-dimensional form. Figures 7 and 8 show the SOMs applied to the
three-dimensional and the five-dimensional objective function data obtained through
the conventional and the robust optimizations, respectively. Here note that a given
solution keeps the same position in all SOMs, and each SOM is colored by an objective
function value (shown in percentages of the baseline values estimated by the RSs).

The conventional optimization (Fig. 7) does provide information on the trade-off re-
lations between the minimization of Ex and the maximization of Ey and Ez, and also
reveal that the tendencies for maximization of Ey and Ez are slightly different from
each other. However, the existence of these trade-off relations can also be confirmed by
comparing the SOMs of µEx , µEy and µEz in the robust optimization case (Fig. 8). In
addition, the robust optimization shows further trade-off relations between optimality
and robustness measures: µEy maximization and σEy/µEy minimization, µEz maximiza-
tion and σEz/µEz minimization. Compared to the conventional optimization, therefore,
the proposed multi-objective robust optimization approach can provide us with richer
design information, especially the trade-off relations between optimality and robustness
measures, in a comprehensive way through SOM visualizations.

Next, six solutions are selected from the SOMs (Figs. 7 and 8) and the tendencies for
real tire stiffnesses of these solutions are compared with those of the baseline design.
The selected solutions are: Ey-maximum solution, Ez-maximum solution and a com-
promised solution from the conventional optimization, (σEy/µEy)-minimum solution,
(σEz/µEz)-minimum solution and a compromised solution from the robust optimiza-
tion. The history of values for three tire stiffnesses Ex, Ey and Ez along the variation of
tire internal pressure pint is depicted in Fig. 9 (Ex,y,z and pint values are shown in percent-
ages of the real baseline and nominal values, respectively, as calculated by ABAQUS).

In the conventional optimization case shown in broken lines, both the Ey-maximum
and the Ez-maximum solutions have better (i.e., larger) Ey and Ez at the nominal pint

than the baseline design, but almost the same Ey and Ez sensitivities against the variation
of pint as as those of the baseline design. In the compromised solution with all better
Ex, Ey and Ez at the nominal pint , the Ey and Ez sensitivities have not been improved
either.

In the robust optimization case shown in solid lines, on the other hand, both the
(σEy/µEy)-minimum and the (σEz/µEz)-minimum solutions actually have better (i.e.,
smaller) Ey and Ez sensitivities against the variation of pint than the baseline design.
Unfortunately, in these solutions, Ey and Ez values at the nominal pint have not been im-
proved. Here note that the compromised solution has not only all better optimality mea-
sures (Ex, Ey and Ez at the nominal pint ) but also all better robustness measures (Ey and
Ez sensitivities against the variation of pint) than the baseline, i.e. this design represents
the so-called sweet-spot and is better than the baseline design in terms of all objective
functions.

These results show that the proposed multi-objective robust optimization approach
has enough accuracy to search for resultant robust optimal solutions. In addition, the
proposed approach also has a superior capability to reveal not only trade-off relations
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Fig. 9. History of tire stiffness values against the variation of pint for non-dominated solutions
obtained through conventional optimization and robust optimization (shown in real values as
calculated by ABAQUS)

between optimality and robustness measures but also the location of sweet-spots, which
is very useful in real-world engineering design problems with inevitable errors and
uncertainties.
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4.4 Validation of Efficiency to Perform Robust Optimization

The present robust optimization has performed 103 function evaluations by the MCS for
each searching point, therefore the total number of function evaluations is

103 (MCS sample size)

×512 (MOEA population size)

×100 (number of generations in MOEA)

=512×105

The computational time required to evaluate a set of three tire stiffnesses through
ABAQUS is about three hours, therefore the total function evaluation time increases
to 175× 102 years if all the function evaluations are performed directly by ABAQUS
without RS approximation. On the other hand, the present robust optimization requires
only

99 (initial response data points for RSs)

×7 (baseline and selected solutions)

×5 (number of computations to get an Ex,y,z–pint profile)

=134

function evaluations using the ABAQUS until it provides the final data (Fig. 9), thus
the total function evaluation time is reduced to less than 17 days. These results indicate
the superior efficiency of the proposed multi-objective robust optimization approach as
compared to the conventional approach.

5 Conclusions

An efficient approach for multi-objective robust design optimization, assisted by re-
sponse surface (RS) approximation and visual data-mining (DM), has been proposed
and then applied to an automobile tire design problem. Results indicate that the
Kriging-based RSs helped the present approach to accurately predict objective function
characteristics, and to reduce function evaluation time greatly compared to a direct op-
timization without RSs. In addition, the present SOM-based DM helped the present
approach in the visualization of complicated design information between optimality
and robustness measures in simple two-dimensional maps. Therefore, the use of Krig-
ing model and SOMs realized a superior capability and efficiency to reveal the trade-off
relations, and furthermore, sweet-spots between optimality and robustness measures in
the design space. Finally, this study has proved the applicability of the present approach
in real-world robust design problems with a large number of objective functions and
expensive computations for function evaluation.
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The hybridization of global metaheuristics, such as evolutionary algorithms (EAs), and
gradient-based methods for local search, in the framework of the so-called memetic
algorithms (MAs) can be used to solve multi-objective optimization problems, either
in the Lamarckian or Baldwinian spirit. Reducing the CPU cost of MAs is necessary
for problems with computationally demanding evaluations. For the same purpose, in
EAs, metamodels are in widespread use, giving rise to various kinds of metamodel-
assisted EAs (MAEAs). Metamodels are surrogate evaluation models of various types:
multilayer perceptrons, radial basis function networks, polynomial regressions models,
kriging, etc. A good practice is to use local metamodels, trained on the fly for each
new individual, using selected entries from a database where all the previously evalu-
ated offspring are recorded. The selection of suitable training patterns is important in
order to minimize the prediction error of the metamodel. The MAEA developed by the
authors in the past uses the inexact pre–evaluation (IPE) technique which starts after
running a conventional EA for just a few generations on the exact evaluation model.
The exactly evaluated offspring are all stored in the database. For the subsequent gen-
erations, local metamodels are trained for each new offspring to get an approximation
to the objective functions so that, based on it, a few top individuals (in the Pareto front
sense) are selected for exact re-evaluation.

The availability of local metamodels for use in the EA was the basis for creating the
metamodel-assisted memetic algorithm (MAMA). Local metamodels are used to ap-
proximate also the objective functions gradient to be used during local search. Among
other, this chapter focuses on MAMAs that incorporate utility assignment techniques
(based on dominance and strength criteria), how to choose target or targets for local
refinement, the appropriate selection of training patterns, the management of outlying
individuals and ways to handle the outcome of the local search (back-coding the geno-
type and/or phenotype).

The proposed MAMA is demonstrated on function minimization problems, the de-
sign of a gas turbine power plant with three objectives and the two–objective aerody-
namic design of a cascade airfoil. In all cases, radial basis function networks are used
as metamodels.

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 153–181.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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1 Introduction

1.1 Metamodel–Assisted Evolutionary Optimization

During the last decade, optimization methods based on or assisted by approximation
evaluation models became of particular interest, being routinely used by industries
which strive to produce new designs with shortened design cycle and minimum cost.
This class of optimization methods relies on the use of low-cost analytical or semi–
analytical models (to be referred to as metamodels or surrogate evaluation models)
instead of the computational demanding, problem-specific software which should oth-
erwise undertake the evaluation of candidate solutions. The extensive development and
use of metamodel–assisted optimization methods is one of the reasons that research on
metamodels is still going on; recall that most of the approximation models in use have
been developed many years ago as general purpose tools. Current research on meta-
models focuses on the development of new models with better generalization capabili-
ties, faster training procedures and more dependable validation processes. In modern
metamodel–assisted optimization algorithms, the way of using the metamodels (se-
lection of training patterns, decision making based on fitness values provided by the
metamodel, etc.) is much more important than the selection of the metamodel type.
No doubt that the best way to fit a metamodel into an optimization method is still an
open question. Metamodels are associated with single- and multiobjective optimization,
optimization with more than one disciplines or under uncertainties.

There is a variety of metamodels capable to assist an optimization method, [24], [37],
[41], [19]. Among them, polynomial response surface models, artificial neural networks
including radial basis functions and multilayer perceptrons, Gaussian processes includ-
ing Kriging, support vector machines, etc. Depending on the metamodel chosen, various
training methods can be used. The possible ways of incorporating metamodels (used as
surrogates to the evaluation model) within an evolutionary optimization method (Evo-
lutionary Algorithms, EAs, Genetic Algorithms, GAs, Evolution Strategies, ES, to be
referred to as Metamodel–Assisted Evolutionary Algorithms, MAEAs), can be classi-
fied as follows:

EAs based on off-line trained metamodels with no feedback: During a prepara-
tory phase, an adequate set of training examples is selected using a search space
filling method [6] and evaluated. Measurement techniques and/or computational
models can be used to evaluate the selected samples. It is obvious that such an al-
gorithm is perfectly suited to applications where a new round of evaluations is im-
possible. The so-trained global metamodel can be used over the entire search space
and is considered to be dependable. There is no possibility for feedback to update
it. The optimization algorithm relies exclusively on the metamodel. No doubt that
false optima might be located if an inappropriate metamodel (trained, for instance,
on datasets that poorly populate the design space) is used.

EAs based on off–line trained metamodels with feedback: The EA–based search
uses a global metamodel which is regularly and incrementally updated (after a cer-
tain number of generations or according to user–defined criteria) on memorized
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evaluations carried out during the evolution, [43], [54]. The generation–based evo-
lution control algorithm proposed in [35] is a notable scheme. Starting from a
randomly generated initial population with exactly evaluated members as in any
conventional EA, a first metamodel is constructed. During the next generations,
a low–cost EA–based search on this metamodel is performed until a convergence
criterion is satisfied. Upon completion of this search, the population of the next
generation is evaluated using the exact tool and the metamodel is updated to ac-
count also for the new training examples which became available. These steps are
repeated as long as a global convergence criterion is not attained. Instead of be-
ing constant, the frequency with which the metamodel is updated can be controlled
by the progress of evolution giving thus rise to adaptive schemes, [46]. Note that
the construction of a global approximation model for the entire search space, once
or repetitively during the optimization, is a delicate process in highly dimensional
spaces and requires an adequate set of carefully selected training examples.

EAs based on on-line trained local metamodels: A worthwhile alternative of
EAs based on off–line trained metamodels is any EA that makes use of local meta-
models, [19], [25], [26], [27], [16], [23], [36], [31]. The evaluated individuals are
memorized and metamodels are trained separately for each new population mem-
ber on its closest, previously evaluated solutions. The metamodels are practically
used to identify promising population members (during the so–called Inexact Pre–
Evaluation, IPE , phase) which are worth being evaluated using the exact evaluation
tool. Thus, both approximate and exact evaluation models are used in each genera-
tion. These methods can be classified further into those selecting either some indi-
viduals at random, [46], or the best (as evaluated by the metamodel) ones, [20], for
exact evaluation.

1.2 EAs and Local Search – From MAEAs to MAMAs

The complexity of many real world problems calls for the hybridization of optimiza-
tion methods which leads to more efficient search tools. In the framework of a global
optimization method, the search can be focused within the local neighborhood of some
promising solutions. This gives rise to the so–called Hybrid or Memetic Algorithms
(MAs). Whenever optimal solutions of high accuracy are required, local search can do
the job through the refinement of quasi–optimal solutions located by the global search
method, [5], [11], [12], [10].

Despite their conceptual simplicity, EAs are effective global search metaheuristics
which, after reducing the computational cost by implementing metamodels (MAEAs),
may become quite efficient. For this reason, they could certainly be (are, in fact) used as
global search tools within a MA. Various local search methods can be associated with an
EA (such as simulated annealing, gradient–based methods, etc.). Consequently, a MA
is defined as an EA that employs refinement processes (based on local search) for in-
dividuals generated according to the Darwinian rules, [2]. Local search is conceptually
associated with “memes” which represent a local learning strategy or a unit of cultural
evolution, [1]. A meme is associated with cultural information which reproduces it-
self, while individuals cooperate and compete by exchanging ideas, [56]. In computer
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science, any local search stands for the “learning” process which aims at refining ex-
isting individuals by forcing them to “imitate” and obtain successful behaviors. The
ultimate goal is to create the optimal co–adapted set of information through the use
of evolutionary operators, [56]. From a practical point of view, MAs are hybrid opti-
mization systems based on the combination and mutual interaction of a global search
method and a knowledge–driven (local search) tool. The so–devised MA possesses ex-
ploration and exploitation capabilities in equilibrium: we need exploration to be sure
that no part of the search space remains unexplored and there is no possibility to miss
a global optimal solution located there. Exploitation helps focusing around promising
solutions found during previous search which, through refinement, may lead to global
optimal solution(s).

Incorporating learning into an EA can be done according to the Lamarckian or Bald-
winian rules, [51]. In the Lamarckian spirit, the outcome of learning affects/reflects on
the genetic structure of the individual. In practice, this back–coding entails that both
the improved genotype and the fitness values substitute the initial ones in the popula-
tion and, hence, every successful behavior becomes inheritable, [42]. In contrast, the
Baldwinian learning affects only the fitness value vector and avoids genotype replace-
ments. It acts as if parent selection occurs on a smoothed fitness landscape which is
proved to be helpful for the evolutionary process, [42].

A literature survey on MAs for multiobjective optimization (MOO, M objectives)
problems leads only to a few relevant works. In [45], all candidate solutions undergo
local search to improve the weighted sum of the M objective functions, with random
weights for each individual. The CPU cost is balanced between global and local search.
The latter terminates after a user–defined number of exact evaluations which fail to
generate a new locally non–dominated individual. In [21], the method was modified so
that only the most promising individuals undergo local search.

In [22], a genetic local search algorithm for multiobjective combinatorial optimiza-
tion (such as the traveling salesman problem) is proposed. In each iteration, the best
members of the population form a temporary population, from which two parents are
selected at random and undergo recombination to create a new offspring. The latter is
optimized by local search. If the outcome of local search outperforms the worst solution
in the temporary population, this is added to the population and the archival set.

In [48], the Pareto Archived Evolution Strategy (PAES), which maintains a finite–
sized archive of non–dominated solutions, is used in place of local search tool in a
memetic algorithm framework. The global search procedure is based on crossover op-
erators applied to a population of candidate solutions, which undergo local search and
replace their origin in the Lamarckian spirit.

Local search may have a significant CPU cost as it implies so many calls to the eval-
uation tool. As a result, an EA combined with local search is expected to become costly
enough. To suppress a great amount of evaluations, one may incorporate surrogate mod-
els, similar to those used in MAEAs, to also assist the local search. So, in a view, the
method presented herein is based on the same concept with MAEAs; cheap surrogate
models undertake not only the inexact pre–evaluation of the population members but
the local search as well. Thus, the proposed optimization method is to be referred to as
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Metamodel–Assisted Memetic Algorithm (MAMA). Without loss in generality, Radial
Basis Function (RBF) networks are used as metamodels.

Since this chapter is concerned with a MOO method producing Pareto fronts, a utility
assignment technique must be adopted. Its role is to assign a unique value to each pop-
ulation member, depending on the M cost function values and dominance criteria. The
selected technique is the widely used SPEA2 (Strength Pareto Evolutionary Algorithm,
[58]). Theoretically, any other “rival” method (among those existing in the literature)
can be used instead.

The structure of this chapter is as follows: the designed MAMA is presented by
putting emphasis on the appropriate selection of training patterns so as to improve the
prediction capabilities of the surrogate models, which is important for the local search.
A by–product of the pattern selection process is to indicate regions in the design vari-
ables’ space which have inadequately been explored thus far. In MOO, local search
targets at improving one of the objectives by considering all other objectives as appro-
priate inequality constraints so as to avoid worsening their fitness or cost values. At
the end of local search, the improved individuals are re–injected into the population by
replacing existing genotypes, according to the spirit of Lamarckian learning.

The proposed MAMA will be demonstrated on function minimization problems, the
design of a gas turbine power plant with three objectives and the two–objective aerody-
namic design of a cascade airfoil.

For the sake of clarity, a list of abbreviations follows:

EA Evolutionary Algorithm
MAEA Metamodel–Assisted Evolutionary Algorithm
MA Memetic Algorithm
MAMA Metamodel–Assisted Memetic Algorithm
RBF Radial Basis Function
IPE Inexact Pre–Evaluation
SOO Single Objective Optimization
MOO Multiobjective Optimization
SOM Self Organizing Map
MST Minimum Spanning Tree
SPEA Strength Pareto Evolutionary Algorithm
DB Database (of exactly evaluated solutions)

2 Metamodel Assisted Memetic Algorithm (MAMA)

Prior to the presentation of the algorithmic details of the proposed MAMA, its key fea-
tures which distinguish it from other similar methods (see section 2.2) are listed below:

(a) The core search engine is a (µ ,λ ) EA with µ parents, λ offspring, N design vari-
ables and M objectives. At each generation (subscript g), the EA handles three
population sets, namely the parent set (Pµ,g, µ = |Pµ,g|), the offspring (Pλ ,g,
λ = |Pλ ,g|) and the archival one Pα ,g. The latter stores the α = |Pα ,g| elite in-
dividuals (among the non–dominated in the Pareto front sense, in MOO) found
thus far.
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(b) In MOO problems, fitness assignment is based on the SPEA2 technique. Thinning,
for truncating highly populated archival sets, is additionally used. If Pα ,g size ex-
ceeds a user-defined value amax, [58], excess members are eliminated according to
density–based criteria.

(c) EAs are assisted by RBF networks which act as local surrogate evaluation models.
The same metamodels participate in both the IPE and the local search phase of the
MAMA. Exact evaluations are carried out for a few top ranking population members
and some of the outliers (population members which lie in unexplored regions of
the search space, with insufficient information in their vicinity), if any. In contrast to
previous MAEAs, [26], here the number of exact evaluations per generation remains
fixed.

(d) A database (DB) of exactly evaluated solutions (paired inputs/outputs) is kept to
avoid re-evaluating any previously seen individual and providing data for training
the RBF networks. At the beginning of the evolution the DB is empty; the few first
generations (usually, no more than 2 or 3) rely exclusively on exact evaluations to
collect the minimum data that must be available before starting the IPE phase. Dur-
ing the subsequent generations, only the exactly evaluated individuals are archived
in the DB. Note that penalized cost values are stored in the DB.

(e) In constrained optimization, slightly or moderately violated constraints are han-
dled through exponential penalty functions aggravating the cost function value. In
MOO, all cost values are multiplied by the same penalty. On the other hand, heavily
violated constraints (depending on an arbitrary user–defined threshold value) lead
to death penalties, i.e. the M cost functions take on the same “infinite” (for instance,
1020) value.

(f) In constrained optimization, the IPE of population members is carried out accord-
ing to a two-step procedure. In the first step, previously evaluated feasible solutions
are used to estimate the fitness values and, then, the infeasible ones estimate the
penalty, if any.

(g) Local search is based on the Augmented Lagrange Multipliers (ALM, [7]) method
using approximately computed derivatives. Each local search costs as many as two
exact evaluations, one for the starting and the other for the resulting individual. The
top ranking population members that have already been selected for exact eval-
uation may undergo local search for the purpose of refinement. Outliers are ex-
cluded from local search since the corresponding metamodel is considered not to be
dependable.

In the remaining of this chapter, the actions taken within each generation of the multiob-
jective MAMA are described in detail. This algorithm is not applied during the starting
few generations (as explained in (d)) for which all evaluations are exclusively based on
the exact tool.

2.1 The Proposed MAMA in Detail

Offspring evaluation: Aiming at reducing the number of “useless” evaluations within
the proposed MAMA, the following steps are considered:
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1. Selection of Training Patterns & Preparation for IPE:
For each offspring, x ∈Pλ ,g, the most appropriate set of training patterns is
selected from the DB to train the corresponding metamodel, see Algorithm 1.
The selection of training patterns for each local metamodel is necessary even
for population members in the vicinity of which the available DB information
is poor. The so–called outliers are marked as candidates for exact evaluation
and are excluded from becoming the origin of local search. Selecting some of
the outliers for exact evaluation, even if these were not among the top ranking
individuals according to the IPE screening, enhances diversification and leads
to balanced exploration and exploitation. To sum up, the trained local RBF
networks are used for all the members of Pλ ,g, except those found in the DB.

2. IPE for Constrained Optimization:
IPE aims at computing approximate cost function values, f̃ (x). In constrained
MOO, the IPE phase consists of the following steps for each and every popu-
lation member:
- “Feasible” Score Estimation: For each population member, the Kf easible “fea-
sible” individuals among the K selected training patterns (defined as those with
fm ≤ fm,thresh,∀m∈ [1,M]) are used to produce an estimation of its fitness func-
tion values without considering penalties due to any constraint violation. An
RBF network is trained on the K f easible solutions and ˜̃fm is, thus, obtained.
- Penalty Estimation: For the remaining Kin f easible (Kin f easible=K−Kf easible) pat-
terns, a distance based exponential decay of the value that quantifies the con-
straint violation is assumed. For the kth closest “infeasible” training pattern,

the quantity pk
m = f k

m(e
− l(k−1)

Kin f easible − l(k−1)
Kin f easible

e−l), where l is a natural number,

is the corresponding penalty coefficient assigned to the objective m of the new
individual.
- Cost Value Estimation: The previously computed ˜̃fm values for this pop-
ulation member is multiplied by the maximum of all penalty coefficients:
f̃m = maxk(1, pk

m) ˜̃fm, k ∈ [1, Kin f easible].
3. Selection of Individuals for Exact Evaluation:

Based on the f̃ (x)=( f̃1, . . . , f̃M) values computed by the metamodel, a provi-
sional utility function value φ̃ is assigned to each x ∈Pλ ,g, namely:

φ̃ (x) = φ̃ (f̃(x),{f̃(z) | z ∈Pλ ,g \ {x}}).

In SOO, this assignment is straightforward (φ̃(x) = f̃ (x)). In MOO, an assign-
ment according to the SPEA2, [58], technique is used. Note that some of the
population members might have been given exact cost values, because these
have been extracted from the DB. Then, the pool Pe,g of individuals that are
worth an exact evaluation is formed. The total number λe = η1λ (η1 < 1) of ex-
act evaluations per generation is user–defined and fixed, unless more than λ−λe

population members have been found in the DB. This algorithm doesn’t man-
date that only the most promising individuals, according to the metamodel–
based evaluations, be exactly evaluated. In fact, it is possible that some of
the outliers might also be exactly evaluated, but this would occur with a low
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probability. Practically, the user defines the maximum percentage λeo
λ e =1−η2

(0<η2 <1) of exact evaluations which might be assigned to the outliers. Thus,
the number of exact evaluations in each generation is λe=λet+λeo, accounting
for the λet top ranking individuals (on the metamodel) and λeo outliers (selected
at random, if more than λeo outliers exist).

4. Exact evaluations:
For each x ∈Pe,g, exact cost function values f(x) are computed and stored in
the DB.

Selection for local search: Individuals that are worth an extra local search are selected
among the Pλ ,g members for which an exact cost is available. Note that these may
have been either generated in the current generation or pre–exist (found in the DB,
without being locally searched/refined). Individuals for which the corresponding
metamodel is marked as questionable (see Algorithm 1) are excluded from local
search. The (upper) number λls of local searches allowed per generation is user–
defined. To select the λls individuals for local search (if more than λls candidates
exist) a scalar utility function value is computed using dominance criteria and the
strength, as defined in the SPEA2 method.

Local search: Each individual x∈Pls is locally optimized, using the trained RBF net-
work, as explained below:

1. Prerequisites for local search:
The training patterns for x are increased by one through adding x itself. One of
the objectives is selected for further refinement. Three possible criteria have
been tested: (a) selection of the most “advanced” among the objectives, as
determined by considering the relative location of x on the current front of
non–dominated solutions, (b) selection of the “less advanced” and (c) random
selection. None of them seems to clearly outperform the rest so, in the exam-
ined cases, we will refrain from making a clear distinction among them.

2. Local Search:
During the local search, constraints related to the design variables’ bounds and
objectives (other than the one selected to be optimized in local search) are
taken into account. The first class of constraints is related to the lower and
upper bounds of the design variables,

A : x ∈ [xi,min,xi,max] ∀i ∈ [1,N]

The second class serves to ensure that the outcome of local search (i.e. a new
candidate solution) will not damage the cost function values of the starting in-
dividual xinit for all the objectives. It is expected that the new solution must
dominate the current individual (i.e. the starting point of local search) or, at
least, be a “partial improvement” (in the sense that some of the objectives
worsen and some other improve). However, the aforementioned goal, which
is mathematically expressed as

B : f j(x)≤ f j(xinit), ∀ j ∈ [1,M]
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is not always achieved since local search is based on the RBF network instead
of the exact evaluation tool. Then, a gradient–based method capable of dealing
with constraints (ALM) is used. Let q,( q ∈ [1,M]) be the objective to be opti-
mized. According to the ALM method, the constrained optimization problem:

min fq st. A , B

is replaced by an unconstrained one:

mingALM
q (1)

where gALM
q incorporates all of the constraints multiplied by three vectors of

Lagrange multipliers (λ 1,λ 2,λ 3). gALM
q is defined as

gALM
q (x, λ , ωp) = fq(x)+∑M\q

j=1(−λ3, jψ3, j +ωpψ2
3,i)

+∑N
i=1(−λ1,iψ1,i +ωpψ2

1,i−λ2,iψ2,i +ωpψ2
2,i)

where
ψ1,i = max[(xi,min− xi),

λ1,i
2ωp

]

ψ2,i = max[(xi− xi,max),
λ2,i
2ωp

]

ψ3, j = max[( f j− f j,init),
λ3, j
2ωp

]
λ1,i ← λ1,i−2ωpψ1,i

λ2,i ← λ2,i−2ωpψ2,i

λ3, j ← λ3, j−2ωpψ3, j

ωp ←min(kωp∗ωp,ωp,max),
where kωp≥1

Upon termination of the local search, the new individual x∗ is re–evaluated
using the exact tool and archived in the DB.

3. Final Decision:
If x∗ dominates any of the Pa,g members, these are all eliminated from Pa,g.
An individual that enters Pa,g also enters Pλ ,g by displacing xinit . x∗ may
also enter Pλ ,g (without however joining Pa,g) if this is a (full or partial)
improvement of xinit .

Elitism: The elite operator E acts on Pe,g, instead of Pλ ,g, and the previous elite
archive, as follows

Pa,g+1 = E(Pe,g∪Pα ,g). (2)

Evolution operators: New parents are selected,

Pµ,g+1 = S(Pµ,g∪Pλ ,g) (3)

and new offspring are generated via crossover, C, and mutation, M,

Pλ ,g+1 = M(C(Pµ,g+1,Pα ,g+1)) (4)

Termination: Unless termination criteria are satisfied, g←g+1 and evolution contin-
ues from the offspring evaluation step.



162 C.A. Georgopoulou and K.C. Giannakoglou

2.2 Other MAMAs – A Literature Survey

In the literature, one may find a few papers on surrogate–assisted MAs; these papers are
briefly overviewed below. In [52], a hybrid algorithm that combines fitness landscape
approximation and EAs with local search is proposed. The population is initialized us-
ing a conventional EA. When an adequate DB of exactly evaluated solutions is available,
individuals cooperate in building quadratic models, the minimum of which undergoes
local search, hoping that, after learning, a better minimum will be reached. According
to the authors, the main idea is to use information from local minima in building ap-
proximate models and, then, seek improved solutions in the deepest valley at the most
promising search direction. Similar algorithms can be found in [28] and [44]. The hy-
brid optimization approach presented in [44] performs local search in specific points of
the design space. The increased relative homogeneity of the design space constitutes an
indication that the evolutionary process has converged to a small area, which warranties
that a local search can detect local optima. If such a region is detected, a polynomial
model is fitted to the relevant offspring members and local search initiates from the
minimum point of this surrogate.

In [30], the metamodels are used in a two–fold manner. The algorithm starts by
building a DB with a sufficient number of exact evaluations, while a conventional EA is
running. Then, a global metamodel takes on the evaluation process, which is built on the
top ranking archived design points in the DB. Among the individuals evaluated using the
approximate tool, only the promising ones are refined using Lamarckian learning. The
algorithm is based on interleaving the exact evaluation tool with local, online trained
RBF networks and the DB is refilled during local search. The global metamodel changes
whenever the top set of DB entries is modified. Although the method presented in [30]
has many similarities with the present MAMA, important differences can be found. Ex-
act evaluations are almost restricted in areas close to members associated with local
search, reducing thus the probability to detect optimal solutions located far apart from
these areas. In [31], multiple surrogates displace the exact evaluation tool during the
local search leading to a multi–surrogate assisted MA. The impact of uncertainty on
the convergence, due to the use of approximation tools is discussed and investigated
on single objective mathematical functions. Multiple searches based on different meta-
models are used for the same search origin and only the best outcome is inserted into
the offspring population in the Lamarckian spirit. If all surrogates display problems of
uncertainty in predicting this point, the most beneficial is chosen and used; otherwise,
the one with the minimum prediction error must be chosen.

3 The RBF Networks as Metamodels

In the present MAMA, RBF networks serve as metamodels to perform the inexact pre–
evaluation of the population members and, in addition, approximate gradient vectors
used in local search. In this section, the structure and the training procedure for the RBF
networks are presented in brief and the algorithm used to select the training patterns
is described in detail. The reason for selecting RBF networks is two–fold: First, the
RBF networks are universal approximators, [33], capable of constructing an “exact”
mapping from the design to the objective space, once an adequate set of training patterns
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Fig. 1. RBF network with N inputs, T hidden neurons and a single output (M=1)

is available. Second, their training procedure reduces to the solution of a system of
linear algebraic equations per response (objective). The use of RBF networks in MOO is
advantageous (compared to the multilayer perceptron, for instance), since the training of
an RBF network with M output units (M objectives) is equivalent to that of M networks
with a single output. In such a case, a single matrix inversion is required.

3.1 Network Structure and Training Procedure – Comments

An RBF network that performs the mapping RN →RM, [34], [3], has three layers of
processing units, fig. 1: input layer with N nodes where the input vectors are applied to,
the hidden layer with T processing neurons and the output layer with M nodes where
the network responses appear. Signals propagate through the network in the forward di-
rection by performing a nonlinear mapping from the input to the hidden layer followed
by a linear mapping to the output nodes. The latter takes into account the values of
the synaptic weights ψ computed during the training phase. The T hidden layer units,
which are fully connected to the N input and M output units, are associated with the
so–called RBF centers, c(t), t = 1,T . The selection of RBF centers is crucial and affects
strongly the prediction capability of the network. There are two possible ways. In the
first, once the training patterns have been selected (x(k), t = 1,K), these are also used
as RBF centers (c(k) = x(k); here, T =K). In the second, less RBF centers than training
patterns are selected by minimizing an appropriate error function, [34], [8], [9], aiming
at better generalization properties.

In the past, [26], the need for carefully selecting the RBF centers was demonstrated.
A selection scheme based on self–organizing maps, SOMs was employed. The role of
SOMs, [17], [3], is to act as a clustering mechanism that helps associating the RBF
centers with the so–defined clusters. The placement of the RBF centers via SOMs is
based on three distinct phases (competition, cooperation and adaptation). The training
of the generalized RBF networks comprises two levels of learning (unsupervised and
supervised), integrated in an iterative algorithm. During the unsupervised learning, the
RBF centers are determined via SOMs whereas the RBF radii (rt , in eq.5) via heuris-
tics which take into account distances between the centers, [29], [3], [55]. During the



164 C.A. Georgopoulou and K.C. Giannakoglou

supervised learning, the synaptic weights are computed by minimizing the approxima-
tion error over the training set, while considering smoothness requirements.

Although this method has been presented by the same group, [26], in the proposed
MAMA, the local RBF networks are used for the (exact) interpolation of the training
patterns and, thus, the RBF centers must coincide with the training patterns. This was
decided since the RBF networks are also used to get an approximation of gradients
which are expected to be more accurate if the network interpolates, rather than approx-
imates, the training patterns.

Whenever a training pattern x(k) is presented to the input layer, the hidden units take
on values:

h(k)
t =Φ

(∥∥∥x(k)− c(t)
∥∥∥

2
,rt

)
(5)

where Φ(d,r) = e−d/r is the activation function. The network output f̃
(k)

, which is the
desired approximation to the exact objective function f (k), is a linear function of the
hidden unit values

f̃ (k)
m = ψt,mh(k)

t , m=1,M (6)

where summation applies to the repeated index t. The weights ψt , t = 1,T , are com-
puted by minimizing the local error

E(k) =
1
2

M

∑
m=1

( f̃ (k)
m − f (k)

m )2 =
1
2
(‖ f̃

(k)− f (k) ‖2)2 (7)

The trained RBF network provides also its own estimates for the sensitivity derivatives
of the output function with respect to the input parameters,

∂ f̃m(x∗)
∂xρ

= ψt,m

∂Φ
(∥∥∥x∗ − c(t)

∥∥∥
2
,rt

)
∂xρ

(8)

3.2 Selection of Training Patterns

Due to the importance of using dependable RBFs during the IPE phase and the local
search, emphasis is put on the appropriate selection of training patterns and, conse-
quently, the RBF centers. The K training patterns should all lie in the vicinity of the

Table 1. User–defined parameters for the training patterns’ selection algorithm

K1 Max. number of candidate training patterns for the RBF
network (size of starting pool).

K2 Min. number of training patterns for the RBF network.
K3 Max. number of training patterns for the RBF network.
ρ1 =ρ1(N) Min. allowed distance between any two training patterns.
ρ2 =ρ2(ρ1) Trust region radius for the RBF network.
η1(∗100%) Percentage of the offspring population to be exactly (re)evaluated (after

the IPE phase).
η2(∗100%) Percentage of the number of exact evaluations the top ranking offspring

(as evaluated by the metamodel) may undergo; (1−η2)∗100% of them at
most can be selected among the outliers, if any.
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new individual and are selected according to Algorithm 1. To facilitate its presentation,
the user–defined parameters are listed in table 1.

for each new individual in the current population do
-Pool Formation: Select its K1 closest individuals from the DB and define a first pool of
training patterns.
-Pool Processing: Using the K1 individuals and the new one build the corresponding Mini-
mum Spanning Tree (MST, [4]).
-Decision for local search: Identify the closest individual to new.
if this was the starting or ending point of a previous local search then

new takes on its cost function value(s). No RBF is to be trained.
else

-Thinning process: Eliminate individuals from the current pool if the distance between
them is less than ρ1. Practically, from each pair of individuals with distance less than ρ1, the
one with the minimum distance to any other individual in the pool is eliminated. During the
iterative thinning process, the initial MST is continuously updated. The process terminates
if there are no individuals at distance less than ρ1 or the minimum allowed number of non–
eliminated individuals (K2) has been reached. Let K be the number of patterns remaining
in the pool after thinning (K2≤K≤K1).
-Initial training set: The K2 individuals in the pool that are closer to new are copied to the
training set.
-Labeling the new individual:
if the closest pattern to new is at distance greater than ρ2 then

this individual is marked as outlier; although an RBF will be trained and used during
the IPE phase, no local search will be allowed for outliers. An outlier can be exactly
evaluated with probability (1-η2)η1100%, at most.

else
if the K2 closest patterns are at distance less than ρ2 then

new is marked as dependable. The training set is additionally populated up to K3
individuals at most. Dependable individuals can be selected for local search.

else
new is marked as questionable. No local search is allowed for individuals associated
with a questionable metamodel.

end if
end if

end if
end for

Algorithm 1. Training Pattern Selection

4 Method Demonstration – Applications and Discussion

4.1 ZDT 3 – A Benchmark MO Case

A two–objective mathematical problem known as ZDT 3, [38], is first analyzed. The
target is to minimize F1 and F2 defined by

F1 (x) = x1, F2 (x) = h(x)G(x)

where xi∈ [0,1], N =30 and
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Fig. 2. Snapshots of the training pattern selection process corresponding to three different cases
with two design variables each. In each case, the new individual is denoted by a black square.
Empty circles correspond to DB entries; the ones marked with a cross designate the final pool
(after the thinning process) which the training patterns are chosen from. The final training set
is shown with filled circles. Minimum spanning trees are also shown along with a circular area
of radius ρ2 centered at the new individual. The two figures at the top correspond to a case that
leads to an RBF network trained on a dependable set of patterns. The thinning process (top–left)
is followed by the final training pattern selection (top–right) which eliminates some MST nodes
being far apart from the new individual. The case shown at bottom–left leads to an RBF network
with a questionable set of training patterns (many of them fall outside the circular area of radius
ρ2) which is likely to produce erroneous cost function guesses. Finally, a case is shown (bottom–
right) with an outlier for which, although an RBF network has been trained, this cannot be used
to support local search.

G(x) = 1 +
9∑N

i=2 xi

N−1

h(x) = 1−
√

F1 (x)
G(x)

− F1 (x)
G(x)

sin(10πF1 (x))
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Fig. 3. ZDT 3: The (analytically computed) Pareto front (continuous line) is shown over the
dashed line which corresponds to F2 = F2(F1)
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Fig. 4. ZDT3: Comparison of fronts of non–dominated solutions computed after 400 (left) and
800 (right) exact evaluations. Results based on the proposed MAMA are marked with • (RNG1)
and ◦ (RNG2) and those obtained using a MAMA which considers all metamodels as dependable
are marked with � (RNG1) and � (RNG2).
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Fig. 5. ZDT3: Comparison of fronts of non–dominated solutions computed after 400 (left) and
800 (right) exact evaluations. Results obtained using the proposed MAMA with pure Lamarckian
learning are marked with • (RNG1), ◦ (RNG2) and ⊗ (RNG3). Results obtained using MAMA
with combined Lamarckian–Baldwinian learning (as explained in the text) are marked with �
(RNG1),� (RNG2) and � (RNG3).
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Fig. 7. ZDT3: Convergence history for RNG1. The non–dominated fronts computed after
500, 1000, 3000 and 5000 exact evaluations are presented for MAEA (�) and MAMA (◦).

Although the computational cost of a single evaluation is practically negligible, ZDT 3
is an appealing test case with a discontinuous optimal Pareto front, fig.3. Also, the low
CPU cost per optimization allows running the case several times (with different pseudo–
random number generator seed states, RNG) to comprehend the “average” behavior of
the proposed method.
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Fig. 8. ZDT3: Convergence history for RNG2. The non–dominated fronts computed after
500, 1000, 3000 and 5000 exact evaluations are presented for MAEA (�) and MAMA (◦).
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Fig. 9. ZDT3: Convergence history for RNG3. The non–dominated fronts computed after
500, 1000, 3000 and 5000 exact evaluations are presented for MAEA (�) and MAMA (◦).
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Fig. 10. ZDT3: Convergence history for RNG1. The non–dominated fronts computed after
500, 1000, 3000 and 5000 exact evaluations are presented for MAMA (◦) and MA (�).

The first study investigates the importance of distinguishing dependable from ques-
tionable metamodels, a decision which, in any case, is a by–product of the algorithm
used to select training patterns. For this purpose, a MAMA variant which labels all new
individuals as dependable (by overcoming the ρ2–based criterion or, practically, by let-
ting ρ2 take on an “infinite” value) is compared with the standard MAMA based on a
reasonable value for ρ2). Comparisons are shown in fig.4 for two different RNG seed
states. Even during the first generations (after 400 and 800 exact evaluations) the supe-
riority of the MAMA that handles dependable and questionable metamodels differently
over the MAMA that handles all metamodels as dependable is clear.

The second investigation is concerned with the behavior of the proposed MAMA com-
bined with either the Lamarckian or Baldwinian learning process. The outcome of this
investigation is shown in fig. 5, for three runs per case. The comparison is made between
a MAMA that uses pure Lamarckian learning and one which, if a better performing indi-
vidual is found during the local search, this is inserted into the archival set Sa,g (compat-
ible phenotype and genotype) without however changing the genotypic representation
in the offspring population Sλ ,g. Although this is referred to as Baldwinian learning,
it is in fact a mixed Lamarckian (for the archival population) and Baldwinian (for the
offspring population) scheme. Definite conclusions cannot be drawn but it seems that
the pure Lamarckian learning performs slightly better at the 800 evaluation plot.

The third investigation is concerned with the selection of the objective to be mini-
mized during the local search. A scheme that selects the comparatively better
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Fig. 11. ZDT3: Convergence history for RNG2. The non–dominated fronts computed after
500, 1000, 3000 and 5000 exact evaluations are presented for MAMA (◦) and MA (�).

objective (depending on its relative location on the front) and another one which se-
lects the objective to be refined for each new individual at random are compared, fig.6.
The random selection seems to outperform the rest, though this conclusion could hardly
be generalized.

A final comparison is made firstly between the proposed MAMA (with the already
explained dual role of the RBF networks during both the global and local search) and
a MAEA (in which the RBF networks are used only for the IPE of each population
members) and, secondly, between the MAMA and a “typical” MA; for the latter, the
local search is based on the same RBF networks. In the sake of fairness, all three of
them are based on the same (µ ,λ ) EA, as basic search tool. The first comparison is
shown in figs. 7, 8 and 9 whereas the second in figs. 10, 11 and 12. Each comparison
was repeated three times, for three different RNG seed states. The first comparison leads
to the conclusion that the proposed MAMA is much more efficient than the MAEA, and
this is a good indication of the advantages of local search.

By considering the fronts of non–dominated solutions obtained at the cost of 5000
exact evaluations, we conclude that MAMA and MA outperform MAEA; the difference
in performance is clear for RNG1 and RNG2 and less clear for RNG3.

In addition, for each RNG seed state, the three fronts of non–dominated solutions
computed after 5000 exact evaluations are post–processed and the front of
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Fig. 12. ZDT3: Convergence history for RNG3. The non–dominated fronts computed after
500, 1000, 3000 and 5000 exact evaluations are presented for MAMA (◦) and MA (�).

non–dominated solutions among them is derived. This is shown in fig.13, separately
for each RNG seed state. In all cases, the final fronts consist almost exclusively of so-
lutions computed using local search (either MA or MAMA). Between MAMA and MA
there are no visible differences. Thus, to make a comparison one may count the num-
ber of non–dominated solutions on the front each method produces. This is tabulated
below:

MAMA MA MAEA
RNG1 46 16 0
RNG2 24 17 0
RNG3 38 30 5

and shows the superiority of MAMA with respect to MA. Some interesting statistics of
the three runs (RNG1, RNG2, RNG3) of the MAMA algorithm are shown in fig.14.
Since the Pareto front consists of five distinct parts (sub–fronts), which should all be
populated by a well performing method, fig.14 (top) shows the number of elite members
(after 5000 exact evaluations) MAMA and MAEAproduce over the five parts of the front.
From fig.14, it is clear that MAMA produces more elites on all these parts, which are
also of better quality. This can be proved by examining the overall non–dominated
front shown in fig.13. In addition, fig.14 (bottom) presents statistics on the use of local
search in MAMA. As explained in its caption, the majority of solutions resulting from
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Fig. 13. ZDT3: The overall non–dominated members of the three non–dominated fronts com-
puted using MAEA (�), MAMA (◦) and MA (�), at the cost of 5000 exact evaluations

local search improve some of the objectives and produce higher cost values for the rest
of them. However, there are more than 10% of these solutions that have been improved
with respect to both objectives.

4.2 Design of a Combined Cycle Power Plant

The second application is concerned with the design of an optimal dual–pressure heat
recovery steam generator (HRSG) along with the gas (GT) and steam (ST) turbines of
a combined cycle power plant, as shown in fig.15. This problem involves 13 design
variables (heat exchange areas, operating pressures and temperatures for the working
fluids, the gas turbine operating point) with three objectives: maximum power plant
efficiency, maximum produced power at the design point and minimum investment cost.
A more detailed description of the case is omitted in the interest of space and since
practical details of this engineering problem are beyond the scope of this chapter; the
interested reader should refer to [39].

Figs.16 and 17 present the outcome of optimizations carried out using MAMA, MAEA
and the MA which use the metamodel only to support local search and not for the in-
exact pre–evaluation of the population members. Fig.16 illustrates the computed Pareto
fronts using MAMA and MA at 1000 exact evaluations (left) or using MAMA and MAEA
at 10000 exact evaluations (right); the latter is considered to be a converged algorithm
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Fig. 14. ZDT 3: Top–left: Number of elite members (at 5000 exact evaluations) per part of the
discontinuous Pareto front, computed using MAEA. Top–right: Number of elite members (at the
same number of exact evaluations) per part, computed using MAMA. Bottom–left: Statistics con-
cerning the outcome of local search compared to the starting point. Fully Improved means that the
outcome of local search dominates the starting point. The opposite stands for solutions marked
as Worsened. Partially improved solutions are those which worsen at least one objective and im-
prove at least another one. Finally, we consider as Unchanged those individuals which return to
the starting point at the end of the local search.

from the engineering point of view whereas the former gives an indication of the algo-
rithm’s behavior at the early stages of the optimization. For the purpose of comparison,
fig.16 presents only the members of the fronts of non–dominated solutions which dom-
inate each other. By doing so, one may easily see that MAMA outperforms both MA and
MAEA, at the early or late stages of the optimization since both 3D fronts are almost ex-
clusively populated by solutions computed using MAMA. Since this figure hides details
of the performance of the three algorithms tested, fig.17 aims at shedding more light
into them. Using two RNG seed states (RNG1 and RNG2) for each method (six com-
putations), the extent of each front of non–dominated solutions in the objective space
after 1000 exact evaluations is presented. It is concluded that MAMA provides the fronts
with maximum coverage. Finally, in fig.17, some statistics of the MAMA–based com-
putation are also shown. From this figure, it is clear that the majority of local search
actions leads to partially improved solutions (in the Pareto sense) and only about 10%
of them yield improvements in all three objectives.
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Fig. 15. Design of a combined cycle power plant: Plant configuration with a dual pressure HRSG
(LP: Low–pressure, HP: High–pressure, G1–G2: generators). Although a single GT unit is shown
(here, 120MW ), in the optimal configuration this may consist of more than one units.
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Fig. 16. Design of a combined cycle power plant: Left: The overall non–dominated solutions of
the archival sets of MAMA and MA, computed after 1000 exact evaluations. Right: same plot for
MAMA and MAEA, after 10000 exact evaluations.

4.3 Multi–point Design of a Compressor Cascade Airfoil

In the third example, the design–optimization of the airfoil of a compressor cascade at
design and off–design flow conditions is presented. The optimization problem is defined
as a two–objective one, where the first objective is to minimize the total pressure loss
coefficient F1 =ω = ptin−ptout

ptin−pin
at the design flow conditions (Reynolds number based

on the chord length Rec = 6 · 105, inlet Mach number Min = 0.5 and inlet flow angle
αin =53o) and the second one is to minimize the deviation of ω at off-design conditions
(αin,1 = 50o, αin,2 = 56o). The second objective is cast in the form of a function F2 =
ωαin,1 +ωαin,2−2ω . Here, p is the static pressure, pt the stagnation pressure and indices
in and out correspond to the cascade inlet and outlet, respectively. The exact evaluation
tool is an integral boundary layer method coupled with an external flow solver (MISES,
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Fig. 17. Design of a combined cycle power plant: Extent (in the objectives space) of the fronts of
non–dominated solutions, computed using MAEA, MAMA and MA after 1000 exact evaluations,
for RNG1 and RNG2 (top and bottom–left). Local search performance statistics (as in fig. 14;
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Fig. 19. Multipoint design of a compressor cascade airfoil: Convergence history with RNG1 (top)
and RNG2 (bottom). The non–dominated fronts computed after 500 (left) and 1000 (right) exact
evaluations are presented for MAEA (�), MAMA (◦) and MA (�).
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Fig. 20. Multipoint design of a compressor cascade airfoil: The overall non–dominated members
of the two non–dominated fronts (with RNG1 and RNG2) computed using MAEA (�), MAMA
(◦) and MA (�), at the cost of 3000 exact evaluations

[18, 15]). The airfoil contour is parameterized using two separate Bézier polynomial
curves for the suction and pressure side, with 12 control points each. The endpoints
of each Bézier curve are fixed and the remaining control points are allowed to move
within the bounds illustrated in fig.18. The same figure also shows an existing airfoil
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with ω = 0.029 at the design point. Three geometrical constraints related to the airfoil
thickness (th) at certain chordwise locations, namely

th(0.30c)≥0.075c, th(0.70c)≥0.04c, th(0.90c)≥0.01c

(c is the chord length) and a flow–related constraint

αin−αout≥ 25o

where αin−αout is the cascade flow turning, are imposed.
Fig.19 summarizes the outcome of six computations (three methods: MAEA, MAMA

and MA, for RNG1 and RNG2) after 500 (left) and 1000 (right) exact evaluations. Even
during the early phase of the optimization, the “centre” of the front is dominated by
solutions obtained using MAMA. It is also interesting to note that other parts of the
front are dominated by the MA: it is clear that both MAMA and MA benefit from lo-
cal search. This can be seen in fig.20 where the overall non–dominated members of
the non–dominated fronts computed by the three methods (at the cost of 3000 exact
evaluations) are shown.

4.4 Summary–Conclusions

The purpose of this chapter was to present a Metamodel–Assisted Memetic Algorithm,
using on–line trained local metamodels supporting both the inexact pre–evaluation of
evolving populations and the local search. The use of metamodels (here, RBF networks)
to screen out non–promising individuals in each generation, so as to avoid evaluating
them with the exact and costly evaluation tool, is currently a well established tech-
nique; it considerably reduces the CPU cost of evolutionary computations and makes
them competitive for engineering applications with computationally expensive evalua-
tion tools. Here, the same metamodels also support local search employed at selected
population members for the purpose of refinement. The proposed MAMA was designed
for use in MOO problems, cooperating with a (µ ,λ ) EA. Emphasis was put to the se-
lection of the most appropriate set of patterns for the training of the metamodel and
the classification of trained networks as dependable or questionable (depending on the
density of the available information around each new individual) or the identification
of outliers. Experimentation on three test problems (mathematical test case, energy sys-
tem optimization and compressor airfoil design) led to the conclusion that the proposed
MAMA outperforms MAEAs and standard surrogate–assisted MAs.
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A memetic algorithm which addresses the requirement for solutions convergence to-
wards the Pareto front of a multiobjective optimisation problem is discussed. The
memetic algorithm is designed by incorporating a Convergence Accelerator Operator
(CAO) in existing algorithms for evolutionary multiobjective optimisation. The dis-
cussed convergence accelerator works by suggesting improved solutions in objective
space and using neural network mapping schemes to predict the corresponding solu-
tion points in decision variable space. Two leading multiobjective evolutionary algo-
rithms have been hybridised through introduction of the CAO and tested on a variety
of recognised test problems. These test problems consisted of convex, concave and dis-
continuous test functions, with numbers of objectives ranging from two to eight. In all
cases introduction of the CAO led to improved convergence for comparable numbers of
function evaluations.

1 Introduction

Real-world problems commonly require the simultaneous consideration of multiple,
competing performance measures. Without loss of generality, a multiobjective optimi-
sation problem (MOP) can be formulated as a minimization of a function Z(X), where
Z(X) = Z1(X)...Zn(X) is a vector of objective functions, n is the number of objectives
to be optimised and X is a vector of decision variables. For multiobjective problems
in which objectives are competing, no single optimal solution exists, rather a set of
candidate solutions, known as the approximation set, is sought.

More specifically, the optimisation problem consists of finding the set of decision
vectors that results in the best set of solutions in objective space. The ideal set of de-
cision vectors will be characterised by the fact that no other solution offers better ob-
jective function values across all objectives. This optimal set of candidate solutions is
said to be non-dominated and is known as the Pareto optimal set, from which the deci-
sion maker ultimately selects an acceptable solution. The associated objective vectors
form the trade-off surface (or Pareto front) in objective space. Figure 1 shows an opti-
misation problem where 3 decision variables are optimised with respect to 2 competing

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 183–205.
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Fig. 1. The multiobjective problem domain

Fig. 2. A good set of solutions to a multiobjective optimisation problem in terms of proximity,
diversity and relevance (i.e. location in ROI)

objectives, illustrating the mapping of a decision vector into objective space and show-
ing the Pareto front for this idealised case.

The approximation set offered to the decision maker, is thus required to be as close as
possible to the true Pareto front and well spread across objective space, presenting the
decision maker with a well distributed set of solutions within the region(s) of interest
(ROI) [1]. These two characteristics of an approximation set are termed proximity and
diversity, respectively, and are illustrated in Figure 2.

To be of practical use, a multiobjective optimisation algorithm must produce an ap-
proximation set with acceptable proximity and diversity within acceptable computa-
tional resource. The performance of a multiobjective optimiser can then be determined
by the proximity and diversity of the approximation sets produced from a given num-
ber of iterations over multiple runs of the algorithm [2]. In many application domains,
calculating the true objective function may be computationally expensive. The use of
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approximated models using Neural Networks (NN), metamodelling techniques, such as
Kriging-based approximations, or response surface models [3], [4] provides low com-
putational burden alternatives to full objective function evaluation [5], [6].

Evolutionary Algorithms (EAs) are stochastic, population-based, global search tech-
niques well suited for solving MOPs. The population-based nature of EAs makes them
well suited to addressing non-commensurate multiobjective problems as they simul-
taneously explore a family of points in the search space. The operators within these
algorithms mimic Darwinian biological principles of stochastic selection followed by
recombination and mutation [7] [8]. Starting either from a random population of can-
didate solutions or from a previously known set of solutions in decision variable space,
EAs calculate the corresponding objective function values, assign them fitness scores
reflecting their utility in the application domain and bias the search towards high-
potential areas of the space by forcing the survival-of-the-fittest solutions. Despite their
utility for solving MOPs, the use of EAs often result in a large number of objective
function calculations which can be computationally expensive especially when the ob-
jective functions themselves are expensive to evaluate. Moreover, given the stochastic
nature of its operators, an evolutionary algorithm offers no guarantee of finding optimal
solutions within a single run. Through the variation operators operating in the decision
variable space, new solutions are produced with the assumption that good parents are
more likely to produce good offspring and hence should contribute more to the next gen-
erations. The addition of some straightforward determinism to such stochastic strategies
is sought as a remedial measure which is believed to enhance the performance and the
efficiency of EAs. This motivates further investigations and experimentations within a
framework hybridizing EAs strength and structure with some innovative deterministic
components; a framework commonly known as a Hybrid EA or Memetic Algorithm.

Memetic Algorithm is a concept first introduced in 1989 by [9]. The term Memetic
has its roots in the word meme introduced by [10] and which denoted the unit of im-
itation in cultural transmission. Memetic algorithms, also called hybrid evolutionary
algorithms, are increasingly thriving metaheursitics for solving multiobjective optimi-
sation problems. The essential idea behind Memetic Algorithms is the hybridization
of local search refinement techniques within a population-based strategy, such as EAs.
Memetic Algorithms share most of EAs characteristics although they introduce a new
improvement procedure based on local search. The main conceptual difference between
EAs and memetic algorithms is the approach of the informations transmission. Whereas
genetic information carried by genes is usually transmitted intact to the offspring (e.g.
EAs), memes the base unit of memetic algorithms are typically adapted by the individual
transmitting them. These hybrid algorithms were applied to a wide variety of problems
such as image segmentation [11], multiobjective optimization of space allocation prob-
lems [12], radiotherapy treatment planning [13] and molecular geometry optimisation
[14]. They have proved to be highly effective, outperforming similar approaches such
as pure evolutionary algorithms in several application domains in terms of convergence
towards Pareto optimal solutions.

As stated by [15] and re-illustrated by [16], for improving optimization results
achieved by EAs one should: ’Hybridize where possible’. The hybridization of local
improvement operators among the evolutionary steps of an EA is essential to deal with
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near optimal situations. This has been shown [16] in several application domains to
bring improvements to the standard results achieved by stand alone genetic algorithms
in terms of results quality and speed of convergence. The combination of global and
local search is a strategy used by many successful global optimization approaches, and
has in fact been recognized as a powerful algorithmic paradigm for evolutionary com-
puting [17].

In this chapter, a convergence accelerator is described, which maps from objective
space to decision variable space (in the reverse direction to a meta-modeling technique).
This operator is a portable component that can be hybridized with any Multiobjective
EA (MOEA). The purpose of this Convergence Accelerator Operator(CAO) is to en-
hance the performance of the host MOEA in terms of the proximity of the approxi-
mation set for a given number of objective function calculations without impeding the
active diversification mechanisms of these search strategies. In this chapter, the CAO is
hybridized with two widely used MOEAs, the Non-Dominated Sorting Genetic Algo-
rithm (NSGA-II) [18] and Strength Pareto Evolutionary Algorithm (SPEA2) [19]. EAs
operate in decision space and perform decision space to objective space mapping but
tend to fail to exploit direct use of the objective space - a lost opportunity. In contrast
to this, the CAO features an innovative direct search in objective space and then uses
predictions to map from objective space to decision space; in this study this mapping is
realised by an artificial neural network (NN). Performing local search in the objective
space was first introduced in [20, 21] and later extended in [5]. In [20, 21, 5], the authors
suggested training a NN to map in the reverse direction (i.e. objective vectors as inputs
and decision vectors as outputs) and using it in a local search around the non-dominated
solutions arising from the previous generation.

The chapter is organized as follows: In Section 2, the proposed CAO is introduced
and described. Section 3 describes the test procedures used in the comparative testing
of the standard and CAO-enhanced algorithms. Section 4 presents results of the tests
described in Section 3, and concluding remarks are provided in Section 5.

2 The Convergence Acceleration Operator

2.1 Overview

The CAO is a 2-step process, which is illustrated in Figure 3.
When the CAO is launched, it starts by deterministically improving the best solu-

tions achieved: these solutions are stored in the elitist population or the online archive
of the host algorithm. This improvement takes place in objective space and produces
an enhanced version of the archive. The CAO then uses a trained neural network map-
ping procedure to predict the corresponding decision vectors for the enhancements to
the archive. A check of these new decision vectors is made, aimed at reflecting any
out-of-bounds decision variables arising from the mapping back into their allowed do-
main. The true objective values corresponding to all of these new decision vectors are
calculated. The enhanced and the original archive of solutions now compete to popu-
late the new archive for the next generation, which will represent the pool from which
solutions are selected and recombined. The two components of the CAO are described
in detail in the following sections.
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Fig. 3. The Convergence Acceleration Operator in Context

2.2 Local Improvement in Objective Space

The first CAO step is a deterministic local improvement procedure in the objective
space. This is the component responsible for speeding up convergence, thereby reduc-
ing computational effort. It achieves this by steering objective values obtained by the
MOEA towards an improved Pareto front. The objective space local improvement pro-
cess is implemented for n objectives, and is illustrated in Figure 4 on a bi-objective
problem (n = 2). Note that a minimization problem is assumed, without any loss of
generality.

In general, interior solutions, in terms of any specific objective (solutions B, C and D
in Figure 4) will be improved in terms of all the performance measures by steering their
objective values into a region of improved objective function values. The new improved
values for the objectives are determined by linearly interpolating a new value for each
objective, between its current value and the next best value(s) achieved for that objec-
tive within the population. This is described by ZD′ = Z(xD + h(xD− xC),yD + h(yD−
yE)) where Z(x,y) represents a point in the bi-objective space, ZD is the improved

Fig. 4. Deterministic improvement of the trade-off surface in objective space
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objective value and h is the interpolation step factor. This process is annotated for solu-
tion D in Figure 4. Compared to solution D, solution C has the next best value in terms
of Objective 1 while solution E possesses the next best value in terms of Objective 2.
The size of the step factor or objective space improvement in each dimension should
be carefully chosen; ideally it should depend on the stage of the optimisation, the deci-
sion makers preferences, the regions of interests and the proximity of the population to
the true Pareto front. A larger step factor is recommended for early generations of the
optimisation, with its value gradually decreasing.

Boundary solutions in terms of a certain objective or axis of performance (points A
and E in Figure 4) are improved in terms of the remaining objectives. In other words,
solution A will be improved in the y-axis direction (Objective 2), thereby enhancing
its overall quality by improving it in terms of Objective 2, and solution E will be im-
proved in the x-axis direction (Objective 1), consequently improving its overall worth
by enhancing it in terms of Objective 1.

2.3 Objective Space to Decision Space Mapping

The second component of the CAO consists of a neural network trained to map the
new solutions thus generated in objective space by the first phase of the convergence
accelerator back to the corresponding decision variable vectors.

Hybridizing a NN with an EA is very useful for approximating expensive objective
functions. This is the meta-modeling principle [22]. By contrast, in this work, a NN is
deployed in the CAO to map the proposed objective vectors back to their estimated de-
cision variable vectors. This is achieved by training a NN, using exact objective vectors
as inputs and their corresponding decision variable vectors as outputs, to approximate
a mapping function from the objective space to the decision space. The training data is
the exact data resulting from the objective function values derived within the cycle of a
MOEA such as NSGA-II [18] or SPEA2 [19]. The ability to map objective vectors to
decision variables will make it possible to search directly in objective space for desired
combinations of objective values or to devise points of attractions to guide the search.

The design of the architecture of the NN (Multilayer Perceptron) was based on a
trial-and-error set of experiments. The standard backpropagation algorithm [23] was
used for training the NN.

Two possible approaches to training the NN component of the CAO hybridized with
a MOEA are proposed: online and offline training modes. In this study, the online train-
ing mode is further elaborated and investigated. However, the interested reader is di-
rected to [24] where the offline training mode is explored and investigated.

Neural Network Training Modes

• Online Training Mode:

The online mode consists of concurrently training and validating the NN during the
execution of the MOEA. Many strategies for controlling the use of the CAO in this
mode might be devised. In this mode, the CAO is a performance accelerator that can
be launched upon the request of the decision maker (DM) during the execution of the
optimisation process.
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• Offline Training Mode:

An alternative use of the NN is to train it with data resulting from evaluations of the
objective functions arising from a single run of a MOEA and then to incorporate it in
subsequent runs of a MOEA when used in conjunction with the CAO. This training
mode will produce a NN since trained on a richer data set. It can subsequently be hy-
bridized with any optimiser attempting to solve the same problem. Thus, the CAO will
benefit succeeding executions of the same or other optimisers solving the same prob-
lem by speeding up the search and has the potential to offer other benefits. The offline
training mode restricts the usage of the CAO to specific applications and optimisation
scenarios where the re-execution of a MOEA is necessary.

2.4 Summary

Figure 5 illustrates the actions of the hybridised MOEA which includes the CAO. Tra-
jectories 2-5 describe the specific actions of the CAO. In Figure 6, a Pseudocode de-
scription of NSGA-II hybridized with the CAO is also presented.

• Trajectory 1: the mapping between a decision variables vector realised by a MOEA
and its corresponding computed objective values vector.

• Trajectory 2: the resulting objective vector a member of the approximation set at
generation n - is improved in the objective space.

• Trajectory 3: a prediction of the decision variables vector corresponding to the im-
proved objective vector is made using the neural network trained with the exact data
obtained during earlier evaluations of objective functions during the MOEA search.

Fig. 5. CAO steps used in generating a single candidate solution
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Fig. 6. NSGA-II/CAO Pseudocode

• Trajectory 4: any invalid decision variable vector introduced by the NN mapping
is rectified by adjusting out-of-bounds values of the produced decision variables to
their nearest values in their domain of definition.
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• Trajectory 5: finally, the exact objective values vector for the proposed decision
variables vector is calculated in the normal way. These candidate solutions will then
compete for archive update and insertion with the best solutions currently stored in
the online archive.

3 Test Functions and Performance Metrics

The test functions used to examine the effect of the introduced CAO scheme are: The
bi-objective functions:

• ZDT1 (convex test function),
• ZDT2 (non-convex test function)
• ZDT3 (discontinuous test function).

(These test functions belong to a set of test functions [25] that are widely used in Evo-
lutionary Multiobjective Optimisation (EMO) research for testing multiobjective opti-
misers.)

Further, 3- objective, 5-objective and 8-objective versions of DTLZ2, a scalable test
function introduced in [26] to test the effectiveness of MOEAs in dealing with increas-
ing number of objectives, are also used.

NSGA-II and SPEA2 are the comparison benchmark optimisers. Each is also hy-
bridised - NSGA-II/CAO, SPEA2/CAO - with the introduction of the CAO into their
cycles to test its effect. Optimiser configurations used in the experiments involving these
four optimisers are given in Table 1.

The number of individual objective function evaluations in NSGA-II/CAO and
SPEA2/CAO increases from 1 to 2 evaluations per solution for each generation that
the CAO is executed. In this study, the CAO is introduced from the 26th to the 50th
(last) generation allowing the neural network to be trained during generations 1-25 of
the optimisation process. Note that the training of the NN continues throughout the
entire optimisation process.

In order to compare the algorithms for the same number of objective function evalua-
tions, the population size of the CAO-hybridized optimisers is reduced to 90 individuals
while SPEA2 and NSGAII operate on a population of 135 individuals. For fairness in
the comparison, all algorithms are executed for the same number of generations (50),
thus maintaining the same level of global search.

The following methods are used to analyze the performance of the optimisers and
their CAO-hybridized versions on the bi-objective functions:

• The Pareto fronts achieved by the investigated optimisers and the true Pareto fronts
for all of the bi-objective functions used are visually inspected and the average
performance over the 10 executions of the algorithms is visualised.

• The generational distance metric [27] is deployed to assess the degree of conver-
gence of solutions by measuring the closeness of the achieved approximation sets
to their corresponding true Pareto front.

• The spread metric [18] is used to assess the diversity of the approximation sets
achieved by each optimiser.
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Table 1. Optimiser Configurations

Size of Population

NSGA-II: 135-200
NSGA-II/CAO: 90
SPEA2: 135-200
SPEA2/CAO: 90

Crossover operator
Simulated Binary Crossover (SBX)

Probability: 0.8

Mutation operator
Gaussian Mutation

Probability: 1/number of decision variables
Number of Generations 50

Number of Runs 10

• The mean values for the generational distance and spread metrics are calculated for
each of the 10 runs of each optimiser. The significance of the observed results is
assessed using a randomization testing technique [28], described by [29], whose
central concept is that an observed result which had arisen by chance would not ap-
pear unusual in a distribution of results obtained through many random relabellings
of the samples (in this case, the generational distance and spread metric values).

The effectiveness of the CAO when tackling the DTLZ test functions with 3, 5 and 8
objectives is assessed by using two well-established binary metrics:

• The dominated distance metric (DD-Metric), which computes the dominated dis-
tance between two sets of objective vectors [30].

• The C-metric of [25], which calculates the percentage of solutions in a certain ap-
proximation set that are dominated or equal to any solution in another competing
approximation set.

In [31] it is shown that binary indicators such as these that compare the quality of one
approximation set in terms of a certain criterion with another approximation set are
suitable metrics to use in order to conclude that a certain approximation set is better
than another.

4 Results

The performance and utility of the CAO is investigated in this section. The effect of the
introduced operator is examined by comparing the results achieved by NSGA-II and
SPEA2 (operating on a population of 135 individuals) with the results achieved by their
hybridised versions, NSGA-II/CAO and SPEA2/CAO (operating on a population of 90
individuals). The averaged Pareto fronts achieved by NSGA-II and NSGA-II/CAO after
10 runs (50 generations each run) are illustrated for the test functions ZDT1 (Fig.6),
ZDT2 (Fig. 8) and ZDT3 (Fig. 10), together with their true Pareto fronts. Figures 8,
10 and 12 show the results of the randomization testing technique which illustrates
the significance of the spread metric values (diversity) and generational distance values
(convergence) achieved over the 10 runs of the algorithms. It is clear from Figures 7,
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Fig. 7. Results achieved by NSGA-II and NSGA-II/CAO on ZDT1
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Fig. 9. Results achieved by NSGA-II and NSGA-II/CAO on ZDT2
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Fig. 10. Randomisation testing of the spread and generational distance metrics on ZDT2 (for
NSGA-II and NSGA-II/CAO)
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Fig. 11. Results achieved by NSGA-II and NSGA-II/CAO on ZDT3
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Fig. 12. Randomisation testing of the spread and generational distance metrics on ZDT3 (for
NSGA-II and NSGA-II/CAO)
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Fig. 13. Results achieved by SPEA2 and SPEA2/CAO on ZDT1
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Fig. 15. Results achieved by SPEA2 and SPEA2/CAO on ZDT2

9 and 11 that NSGA-II/CAO outperforms NSGA-II in approximating the true Pareto
front of the convex, concave and discontinuous test function.

In Figures 8, 10 and 12, the observed difference between the average calculations of
the generational distance values -measuring the convergence of the solutions and their
closeness to the true Pareto front- achieved by NSGA-II/CAO and NSGA-II, over the
10 runs was calculated and illustrated by a black circle.

The observed difference between the average values of the spread metric measure-
ments depicting the diversity of the solutions achieved by NSGA-II/CAO and NSGA-II
at every run of the algorithms is also calculated and presented as a black circle. The grey
histograms illustrate the occurrence frequency of the resulting differences between av-
erage values of spread metric values and generational distance values shuffled and ran-
domly allocated to the two optimisers. This shuffling and random allocation of the two
metrics values was repeated 5000 times to test the significance of the observed results.
A smaller spread metric value or generational distance value corresponds, respectively,
to a better diversity and closeness to the true Pareto front. The real observations (black
circles) lying to the right of the histograms denote a positive difference which favours
the CAO hybridized optimiser. (In this work, B is the CAO hybridized optimiser, in the
expressions: Mean (SpreadValues (A)) - Mean (SpreadValues (B)) and Mean (Genera-
tionlDistanceValues (A)) - Mean (GenerationlDistanceValues (B)).

The randomization testing method has demonstrated a significant and consistent im-
provement in the performance of the NSGA-II/CAO in terms of convergence towards
the true Pareto front and diversity over the 10 executions of the two algorithms. Note



198 S.F. Adra, I. Griffin, and P.J. Fleming

Spread

fr
eq

ue
nc

y

difference between population means
−0.4 −0.2 0 0.2 0.4
0

50

100

150

200

250

300
Generational distance

fr
eq

ue
nc

y

• = observed difference
−2 −1 0 1 2

x 10
−3

0

20

40

60

80

100

120

140

160

180

Fig. 16. Randomisation testing of the spread and generational distance metrics on ZDT2 (for
SPEA2 and SPEA2/CAO)
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SPEA2 and SPEA2/CAO)

Table 2. DD-METRIC AND C-METRIC RESULTS FOR DTLZ2(3)

DTLZ2(3)
A = NSGA-II/CAO and B = NSGA-II

Run No: DD-metric(A,B).10−3 C-metric(A,B) C-metric(B,A)
1 -3.823 8% 2.2%
2 -1.782 4% 2.2%
3 -4.436 10% 0%
4 -4.919 12% 2.2%
5 -3.156 7% 0%
6 -7.297 12% 0%
7 -5.791 13% 0%
8 -0.554 2% 2.2%
9 -9.837 16% 0%
10 -5.320 15% 0%

Mean Value -4.690 9.9% 0.88%

that NSGA-II/CAO consistently produces a more diversified approximation set com-
pared to NSGA-II, which was operating on a larger population size.

Similar observations are made when CAO is integrated in SPEA2. In fact, the CAO
seemed to introduce even more benefits to the performance of SPEA2, which can
be seen in Figures 13, 15 and 17 for the bi-objective scenarios. The results of the
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Table 3. DD-METRIC AND C-METRIC RESULTS FOR DTLZ2(5)

DTLZ2(5)
A = NSGA-II/CAO and B = NSGA-II

Run No: DD-metric(A,B).10−3 C-metric(A,B) C-metric(B,A)
1 -438.29 53% 4.4%
2 -347.56 47% 3.3%
3 -499.27 55% 2.2%
4 -965.20 83% 0%
5 -786.39 73% 1.1%
6 -535.95 56% 1.1%
7 -775.34 71% 2.2%
8 -295.53 42% 3.3%
9 -417.08 59% 3.3%

10 -473.30 62% 2.2%
Mean Value -553.39 60.1% 2.3%

Table 4. DD-METRIC AND C-METRIC RESULTS FOR DTLZ2(8)

DTLZ2(8)
A = NSGA-II/CAO and B = NSGA-II

Run No: DD-metric(A,B).10−3 C-metric(A,B) C-metric(B,A)
1 -120.47 7% 0%
2 -271.31 16% 0%
3 -28.98 2% 0%
4 -59.70 5% 2.2%
5 -253.59 16% 0%
6 -37.55 6% 0%
7 -44.95 3% 0%
8 -424.82 24% 0%
9 -59.54 5% 0%
10 -112.40 8% 0%

Mean Value -141.33 9.2% 0.22%

randomization testing are illustrated in Figures 14, 16, and 18, and, again, demonstrate
the impact of the CAO on one of the best-performing MOEAs.

Tables 2 - 7 illustrate the results highlighting the effect of the CAO on optimisation
problems with a larger number of objectives. The scalable test function DTLZ2, with 3,
5 and 8 objectives, was chosen to investigate the performance of the CAO. In a similar
manner to the experimentations carried out on the bi-objective problems, the effect of
the CAO is investigated by contrasting NSGA-II and SPEA2 with their CAO hybridized
counterparts. In Tables 2 and 7, the DD-Metric and the C-metric are computed and the
results are shown for each run of the algorithms. These metrics are binary metrics that
highlight whether an approximation set resulting from an algorithm A is better than
another approximation set resulting from an algorithm B. A negative DD-metric value
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Table 5. DD-METRIC AND C-METRIC RESULTS FOR DTLZ2(3)

DTLZ2(3)
A = SPEA2/CAO and B = SPEA2

Run No: DD-metric(A,B).10−3 C-metric(A,B) C-metric(B,A)
1 -3.376 7% 1.1%
2 -3.729 9% 0%
3 -3.067 3% 0%
4 -0.324 4% 1.1%
5 -2.992 15% 1.1%
6 -3.992 10% 0%
7 -1.714 6% 0%
8 -3.931 11% 1.1%
9 -1.144 3% 1.1%

10 -1.136 4% 1.1%
Mean Value -2.540 7.2% 0.66%

Table 6. DD-METRIC AND C-METRIC RESULTS FOR DTLZ2(5)

DTLZ2(5)
A = SPEA2/CAO and B = SPEA2

Run No: DD-metric(A,B).10−3 C-metric(A,B) C-metric(B,A)
1 -12.91 22% 0%
2 -100.15 22% 0%
3 -39.58 16% 0%
4 -103.68 22% 1.1%
5 -186.58 34% 3.3%
6 -253.11 4% 0%
7 -198.26 31% 0%
8 -238.80 37% 0%
9 -6.31 9% 0%
10 -117.82 5% 3.3%

Mean Value -125.72 20.22% 0.77%

denotes that the first input of the metric (e.g. Algorithm A in DD-Metric (A, B)) is better
than and dominates most or part of its second input (e.g. Algorithm B).

These experiments demonstrate that the fronts achieved by SPEA2 and NSGA-II are
consistently improved by their counterparts deploying the CAO. For all the dimensions
of the problems investigated, the DD-metric reveals results favoring NSGA-II/CAO and
SPEA2/CAO over NSGA-II and SPEA2. Over the 10 executions of the algorithms, and
despite operating on smaller population sizes, the solutions achieved by NSGA-II/CAO
cover an average of 9.9% of the solutions achieved by NSGA-II for the 3-objectives
problem.

On the other hand, NSGA-II only scores an average of 0.88% coverage of the results
achieved by NSGA-II/CAO, including several runs with 0% coverage. Similar C-metric
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Table 7. DD-METRIC AND C-METRIC RESULTS FOR DTLZ2(8)

DTLZ2(3)
A = SPEA2/CAO and B = SPEA2

Run No: DD-metric(A,B).10−3 C-metric(A,B) C-metric(B,A)
1 -28.92 2% 0%
2 -389.58 17% 0%
3 -243.64 11% 0%
4 -127.51 7% 1.1%
5 -8.10 1% 0%
6 -260.31 12% 0%
7 -246.03 13% 0%
8 -38.08 2% 0%
9 -76.08 4% 0%
10 -52.06 2% 1%

Mean Value -147.03 7.1% 0.21%

observations are made for the 5- and 8-objectives versions of DTLZ2, with a remarkable
average of 60.1% solutions coverage favouring NSGA-II/CAO over NSGA-II for the 5-
objectives test problem. SPEA2/CAO has out-performs SPEA2 on all three versions of
DTLZ (Table 2). The highest coverage achieved by SPEA2 of the solutions obtained
by SPEA2/CAO is 0.77%, while SPEA2/CAO covers at least an average of 7.1% of the
approximation sets achieved by SPEA2. Again, in the 5-objectives version of DTLZ,
SPEA2/CAO exhibits the most significant improvement in coverage over SPEA2. This
feature deserves further study, using tools such as the heat maps of [32], in order to
understand why the performance on the 5-objectives version might be significant for
this dimension of problem.

Further experiments were undertaken in an attempt to quantify the extent of superi-
ority of the CAO hybridized optimisers. It was noted that, on average, the population
size of NSGA-II and SPEA2 must be increased to a minimum of 200 individuals (more
than twice the population size of NSGA-II/CAO and SPEA2/CAO) in order to match
the quality of the fronts achieved by their hybridized counterparts. Thus, SPEA2 and
NSGA-II require more objective function evaluations (around 750 more evaluations) to
match the performance of their CAO hybridised equivalent optimiser. This conclusion
holds for all the test functions used in this work. The set of experiments conducted in
this Section demonstrate the benefits of the CAO and the improvement it confers to two
of the most established MOEAs.

5 Conclusions and Future Work

A Convergence Accelerator Operator is proposed for incorporation in existing algo-
rithms for evolutionary multiobjective optimisation. This operator works by suggest-
ing improved solutions in objective space and using neural network mapping schemes
to predict the corresponding solution points in decision variable space. Two leading
MOEAs have been hybridised through introduction of the CAO and tested on a variety
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of recognised test problems. These test problems consisted of convex, concave and dis-
continuous test functions, with numbers of objectives ranging from two to eight. In all
cases introduction of the CAO led to improved convergence and solution diversity for
comparable numbers of function evaluations. Indeed, for the bi-objective test problems,
improved performance in diversity is achieved by the hybridised algorithms for smaller
population sizes than those used by the standard algorithms.

It is important to recognise that the CAO introduces additional computational ef-
fort through the requirement to train the neural network. This computational effort
is substantial when compared with the execution time associated with computing a
ZDT function, for example, since these functions are trivially simple to compute. The
CAO is designed for use in real-world problems where objective function computa-
tion is non-trivial. For example, NN training time proved to be approximately 1500
times that of computing the two ZDT1 functions. Clearly, one would not advocate use
of CAO in such situations. However, in a real-world problem such as the ALSTOM
gasifier problem [33], it was found that NN training time proved to be approximately
one-hundredth of the time required to compute the ALSTOM gasifier problem objec-
tives. Moreover, here we have not sought to optimise performance of the NN mapping
methodology.

Thus, a portable operator has been described that can be incorporated into any
MOEA to improve its convergence. Its value is in application to real-world problems
where there is a substantial computational cost for objective function evaluation. Fu-
ture work should focus on interactively executing the CAO on request by the DM and
in the deployment of the operator in a progressive preference articulation technique,
for example [34], to assist in guiding the search towards specific regions of interest
(ROI). Further, the interpolation step factor used for objective space improvement is
an application-dependent parameter and will be influenced by the landscape of the ob-
jective space. In the experiments presented in here, step factors ranging from 0.01 up
to 0.2 were investigated before settling for h=0.1 as the step factor to be used for the
tests. There is scope to explore the use of adaptive step factors as MOEAs explore the
objective space.
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Utilization of renewable energy resources such as wind energy for electric power gen-
eration has assumed great significance in recent years. Wind power is a source of clean
energy and is able to spur the reductions of both consumption of depleting fuel reserves
and emissions of pollutants. However, since the availability of wind power is highly
dependent on the weather conditions, the penetration of wind power into traditional
utility grids may incur certain security implications. Therefore, in economic power dis-
patch including wind power penetration, a reasonable tradeoff between system risk and
operational cost is desired. In this chapter, a bi-objective economic dispatch problem
considering wind penetration is first formulated, which treats operational costs and se-
curity impacts as conflicting objectives. Different fuzzy membership functions are used
to reflect the dispatcher’s attitude toward the wind power penetration. A multi-objective
memetic particle swarm optimization (MOMPSO) algorithm is adopted to develop a
power dispatch scheme which is able to achieve compromise between economic and se-
curity requirements. Numerical simulations including comparative studies are reported
based on a typical IEEE test power system to show the validity and applicability of the
proposed approach.

1 Introduction

The major objective of Economic Dispatch (ED) is to schedule the power generation in
an appropriate manner in order to satisfy the load demand while minimizing the total
operational cost [1-4]. These ED problems are usually highly nonlinear and the meta-
heuristic methods have turned out to be more effective than the traditional analytical
methods. In recent years, renewable energy resources such as wind power have shown
great prospects in decreasing fuel consumption as well as reducing pollutants emission
[5-11]. Unfortunately, the expected generation output from a wind park is difficult to
predict accurately, primarily due to the intermittent nature of the wind coupled with the
highly nonlinear wind energy conversion. This unpredictability may incur the security
problems when the penetration of wind power in the traditional power system exceeds
a certain level. For instance, the dynamic system stability may be lost due to excessive
wind fluctuations. As a result, for achieving the tradeoff between system risk and total

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 209–230.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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running cost, it is desirable to examine how to dispatch the power properly for the power
system taking into account the impacts of wind power penetration. In this paper, the ED
model is first constructed as a bi-objective optimization problem through simultane-
ous minimization of both risk level and operational cost. For this purpose, an effective
optimization prodecure is needed. Particle swarm optimization (PSO) is a salient meta-
heuristics, which turns out to be capable of resolving a wide variety of highly non-
linear and complex engineering optimization problems with outstanding convergence
performance. Meanwhile, it has strong ability to avoid premature convergence. In this
study, a multi-objective memetic particle swarm optimization (MOMPSO) algorithm is
proposed to derive the Pareto-optimal solutions for economic dispatch including wind
power penetration. Moreover, considering the different attitudes of dispatchers towards
wind power penetration, we used several fuzzy membership functions to indicate the
system security level in terms of wind power penetration and wind power cost. Differ-
ent fuzzy representations including linear and quadratic functions can be used to reflect
the dispatcher’s optimistic, neutral, or pessimistic attitude toward wind power penetra-
tion. Furthermore, minimization of pollutant emissions is treated as the third design
objective and the tradeoff surface among the three design objectives is also derived.

The remainder of the chapter is organized as follows. Section 2 presents the wind
penetration model described by different fuzzy membership functions. Section 3 for-
mulates the economic dispatch problem including its multiple objectives and a set of
design constraints imposed. Section 4 introduces the inner workings of particle swarm
optimization algorithms. The MOMPSO algorithm adopted is discussed in Section 5.
Simulation results and analysis are presented in Section 6. Finally, conclusions are
drawn and future research is suggested.

2 Wind Power Penetration Model

Wind power integration is an important issue to address for achieving a reliable power
system including wind power source. Because of the unpredictable and variable char-
acteristics of wind power, its integration into the traditional thermal generation systems
will incur the operator’s concern on system security. Fuzzy definition regarding wind
penetration is a viable way to represent the penetration level of the wind power, since it
is usually difficult to determine the optimal wind power that should be integrated into
the conventional power grids [12].

As shown in Figure 1, a fuzzy membership function µ regarding the wind penetration
is defined to indicate the system security level. It can be mathematically expressed in
the following form [12]:

µ =

⎧⎪⎨⎪⎩
1, W ≤W (PD)min

W(PD)max−W
W (PD)max−W(PD)min

, Wmin ≤W ≤Wmax

0, W ≥W (PD)max

(1)

where W is the wind power incorporated in economic dispatch; W (PD)min is the lower
bound of wind power penetration, below which the system is deemed secure; W (PD)max

is the upper bound of wind power penetration, above which the system is considered as
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Fig. 1. Fuzzy linear representation of the security level in terms of wind penetration and wind
power cost

insecure due to the wind perturbations. Both W (PD)min and W (PD)max are dependent on
the total load demand in the power dispatch.

The above defined membership function can also be represented in terms of the op-
erational cost for incorporating wind power:

µ =

⎧⎪⎨⎪⎩
1, WC ≤WC(PD)min

WCmax−WC
WCmax−WCmin

, WCmin ≤WC ≤WCmax

0, WC ≥WC(PD)max

(2)

where WC is the running cost of wind power in the power dispatch; WC(PD)min is
the lower bound cost for producing wind power, below which the system is seen as
secure; W (PD)max is the upper bound cost for including wind power, above which the
system is considered as insecure due to the wind intermittency. In a similar fashion,
both WC(PD)min and WC(PD)max are dependent on the total load demand in the power
dispatch. In this study, sensitivity studies are also carried out to illustrate the impact of
different allowable ranges of wind power penetration as well as different running costs
of wind power on the final solutions obtained.

To reflect dispatcher’s differing attitudes toward wind power penetration, a quadratic
membership function can be defined as follows [12]:

µ =

⎧⎪⎨⎪⎩
1, W ≤W (PD)min

awW 2 + bwW + cw, Wmin ≤W ≤Wmax

0, W ≥W (PD)max

(3)

where aw, bw, and cw are the coefficients of the quadratic function, which determine its
shape reflecting the dispatcher’s attitude toward wind power. As shown in Figure 2, by
selecting different coefficients aw, bw, and cw, different shapes of the quadratic function
can be defined. For the identical security level µ0, the penetration levels of wind power
differ for different defined functions w1 < w2 < w3. The curves corresponding to these
three values reflect the pessimistic, neutral, and optimistic attitudes of the dispatcher
toward the wind power integration, respectively.
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Fig. 2. Fuzzy quadratic representation of the security level in terms of wind power penetration
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Fig. 3. Fuzzy quadratic representation of the security level in terms of wind power cost

In a similar fashion, the security level can also be defined in terms of the operational
cost of wind power. Its function shape is shown in Figure 3.

µ =

⎧⎪⎨⎪⎩
1, WC ≤WC(PD)min

acWC2 + bcWC + cc, WCmin ≤WC ≤WCmax

0, WC ≥WC(PD)max

(4)

where ac, bc, and cc determine the curve shape of the quadratic function defined in
terms of the running cost of wind power.

3 Problem Formulation

The problem of economic power dispatch with wind penetration consideration can be
formulated as a bi-criteria optimization model. The two conflicting objectives, i.e., total
operational cost and system risk level, should be minimized simultaneously while ful-
filling certain system constraints. This bi-objective optimization problem is formulated
mathematically in this section.
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3.1 Problem Objectives

There are two objectives that should be minimized simultaneously, that is, system risk
level and the total operational cost.

• Objective 1: Minimization of system risk level
From the security level function defined in (1) and (2), we know that the larger the
value of membership function µ is, the more secure the system will become. If the
wind penetration is restricted under a certain level, the system can be considered as
secure. On the contrary, if excessive wind penetration is introduced into the power
dispatch, the system may become insecure. Here we define an objective function
which should be minimized in order to ensure system security:

R(µ) =
1
µ

(5)

• Objective 2: Minimization of operational cost
The cost curves of different generators are represented by quadratic functions with
sine components. The superimposed sine components represent the rippling effects
produced by the steam admission valve openings. The total $/h fuel cost FC(PG)
can be represented as follows:

FC(PG) =
M

∑
i=1

ai + biPGi + ciP
2
Gi + |disin[ei(Pmin

Gi −PGi)]| (6)

where M is the number of generators committed to the operating system, ai, bi,
ci, di, ei are the cost coefficients of the i-th generator, and PGi is the real power
output of the ith generator. PG is the vector of real power outputs of generators and
defined as

PG = [PG1,PG2, . . . ,PGM] (7)

The running cost of wind power can be represented in terms of the value of member-
ship function µ which indicates the system security level. For the linear membership
function case,

WC(PG,µ) = Cw(Wav− (PD + PL−
M

∑
i

PGi))− µ ∗∆WC +WCmax (8)

where Wav is the available wind power from the wind farm, Cw is the coefficient of
penalty cost for not using all the available wind power, PD is the load demand, PL is
the transmission loss, and

∆WC = WCmax−WCmin. (9)

For the quadratic membership function case,

WC(PG,µ) = Cw(Wav− (PD + PL−
M

∑
i

PGi))− bc

2ac
±
√
µ− (cc− b2

c
4ac

)

ac
(10)

The sign of the last term in (10) is determined by the curve shape of the defined
quadratic function. Thus, the total operational cost TOC can be calculated as

TOC(PG,µ) = FC(PG)+WC(PG,µ) (11)
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3.2 Problem Constraints

Due to the physical or operational limits in practical systems, there is a set of constraints
that should be satisfied throughout the system operations for a feasible solution.

• Constraint 1: Generation capacity constraint
For normal system operations, real power output of each generator is restricted by
lower and upper bounds as follows:

Pmin
Gi ≤ PGi ≤ Pmax

Gi (12)

where Pmin
Gi and Pmax

Gi are the minimum and maximum power from generator i, re-
spectively.

• Constraint 2: Power balance constraint
The total power generation and the wind power must cover the total demand PD and
the real power loss in transmission lines PL. For the linear membership function,
this relation can be represented by

M

∑
i=1

PGi +Wmax− µ ∗∆W = PD + PL (13)

For the quadratic membership function, the relation can be expressed by

M

∑
i=1

PGi− bw

2aw
±

√√√√µ− (cw− b2
w

4aw
)

aw
= PD + PL (14)

The sign of the last term in (14) is determined by the curve shape of the defined
quadratic function. The transmission losses can be calculated based on the Kron’s
loss formula as follows:

PL =
M

∑
i=1

M

∑
j=1

PGiBi jPG j +
M

∑
i=1

B0iPGi + B00 (15)

where Bi j, B0i, B00 are the transmission network power loss B-coefficients. It should
be noted that the transfer loss of the wind power is not considered in this study.

• Constraint 3: Available wind power constraint
The wind power used for dispatch should not exceed the available wind power from
the wind park:

0≤ PD + PL−
M

∑
i

PGi ≤Wav (16)

• Constraint 4: Security level constraint
From the definition of membership function shown from (1) to (4), the values of µ
should be within the interval of [0,1]:

0≤ µ ≤ 1. (17)

3.3 Problem Statement

In summary, the objective of economic power dispatch optimization considering wind
penetration is to minimize R(µ) and TOC(PG,µ) simultaneously subject to the con-
straints (12)–(17).
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4 Mechanism of Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic optimization tech-
nique, which was inspired by the movement pattern in a bird flock or fish school [13,
14]. In PSO, individuals (i.e., particles) move around in a multidimensional search space
to approach the optima, where each point represents a solution to the target problem. Ini-
tially a bunch of particles are randomly created and set into motion through this space.
In their movement, each particle adjusts its position based on its own experience as well
as the experience of a neighboring particle by utilizing the best position encountered by
itself and its neighbors. At each generation, they observe the “fitness” of themselves
and their neighbors and move toward those with a better position. In this way, PSO
combines both local and global search methods together in order to improve its search
effectiveness and efficiency. Unlike other evolutionary computation algorithms includ-
ing Genetic Algorithms (GA), PSO has no evolution operators such as crossover and
mutation. The optima is obtained via following the current optimum particles by the
potential particles. This simple algorithm turns out to be highly effective in a diverse
set of optimization problems.

Let x and v denote a particle coordinates (position) and its corresponding flight
speed (velocity) in the search space. Therefore, the i-th particle is represented as
xi = [xi1,xi1, . . . ,xid , . . . ,xiM,xi,M+1] in the (M + 1)-dimensional space. Each particle
keeps track of its coordinates in the solution space which are associated with the best so-
lution it has achieved so far. This fitness value is called pbest. The best previous position
of the i-th particle is recorded and represented as pbesti = [pbesti1, pbesti2, . . . , pbestid ,
. . . , pbestiM, pbesti,M+1]. Another “best” value that is tracked by the particle swarm op-
timizer is the best value obtained so far by any particle in the neighbors of the particle.
When a particle takes all the population as its topological neighbors, the best value is
a global best and is called gbest. The index of the best particle among all the particles
in the group is represented by the gbestd . The rate of the velocity for particle i is rep-
resented as vi = (vi1,vi2, . . . ,vid , . . . ,viM,vi,M+1). The modified velocity and position of
each particle can be calculated using the current velocity and the distance from pbestid
to gbestd as shown in the following formulas:

v(t+1)
id = χ ∗ (w∗ v(t)

id + c1 ∗ rand()∗ (pbestid− x(t)
id )

+ c2 ∗Rand()∗ (gbestd− x(t)
id )), (18)

x(t+1)
id = x(t)

id + v(t+1)
id , i = 1,2, . . . ,N,d = 1,2, . . . ,M + 1. (19)

where N is the number of particles in a group, M +1 is the number of members in a par-
ticle, t is the pointer of generations, χ ∈ [0,1] is the constriction factor which controls
the velocity magnitude, w is the inertia weight factor, c1 and c2 are acceleration con-

stants, rand() and Rand() are uniform random values in a range [0,1], v(t)
i is the velocity

of particle i at generation t, and x(t)
i is the current position of particle i at generation

t. The particle swarm optimization concept consists of, at each time step, changing the
velocity of (accelerating) each particle toward its pbest and gbest locations. Accelera-
tion is weighted by a random term, with separate random numbers being generated for
acceleration toward pbest and gbest locations.
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As we can see, in PSO fewer parameters need to be adjusted as compared with other
meta-heuristics such as genetic algorithms. PSO has been used for approaches that can
be used across a wide range of applications, as well as for specific applications focused
on a particular requirement.

Usually, traditional gradient-based optimization methods deal with multi-objective
optimization problems by allocating weights to each of the objectives, which indicate
their importance in the overall problem. However, it is often hard to find weights which
can accurately reflect the real-life situation. Moreover, it is highly possible that these
methods are not capable of detecting solutions lying in concave regions of the Pareto
front [15]. Meta-heuristics such as evolutionary optimization techniques are especially
suited to handle the multi-objective optimization problems since they are able to search
simultaneously for multiple Pareto-optimal solutions. A set of Pareto-optimal solutions
is derived during the optimization, in which each cost is found so that the whole set is
no worse than any other set of solutions. In this research, an enhanced multi-objective
optimization particle swarm optimization algorithm is designed to resolve the target
power dispatch problem.

5 The Proposed Approach

The standard PSO algorithm is not suited to resolve multi-objective optimization prob-
lems in that no absolute global optimum exists there, but rather a set of non-dominated
solutions. Thus, to render the PSO algorithm capable of dealing with MO prob-
lems, some modifications become necessary. Parsopoulos and Vrahatis [15] used the
weighted aggregation approach to handle MO problems by converting multiple objec-
tives into a single one. The weights can be fixed or adaptive in the optimization. To ap-
proximate the Pareto front, the algorithm needs to run multiple times. Hu and Eberhart
[16] proposed a dynamic neighborhood strategy which uses one-dimension optimiza-
tion to cope with multiple objectives. Later, Hu, Eberhart, and Shi [17] modified this
method by introducing an extended memory which stores the global Paerto-optimal
solutions in order to reduce the computational cost. Coello Coello and Lechuga [18]
present an MOPSO which maintains the previously found non-dominated solutions.
These solutions serve as the guides for the flight of particles. Mostaghim and Teich
[19] proposed a sigma method, which adopts the best local guides for each particle to
promote the convergence and diversity of the MOPSO approach.

When using stochastic search based algorithms to optimize multi-objective prob-
lems, two key issues usually arise in the algorithm design. First, the fitness evalua-
tion should be suitably designed to guide the search toward the set of Pareto-optimal
solutions. Second, the diversity of the population should be maintained by refraining
the search from premature convergence. In this study, the classic PSO algorithm is re-
vised accordingly to facilitate a multi-objective optimization approach. Meanwhile, lo-
cal search and other mechanisms are incorporated to improve its performance which
leads to a memetic algorithm termed multi-objective memetic particle swarm opti-
mization (MOMPSO) [20]. A “meme” refers to a unit of cultural evolution capable of
conducting local refinements. That is, individual could improve itself prior to commu-
nicating with the population it is in. Combining local search into traditional heuristic



Risk and Cost Tradeoff in Economic Dispatch 217

optimization methods has turned out to be able to achieve orders of magnitude faster
search for some problem domains.

5.1 Archiving

The Pareto-dominance concept is used to evaluate the fitness of each particle and thus
determine which particles should be selected to store in the archive of non-dominated
solutions. Similar to the elitism used in evolutionary algorithms and the tabu list used
in tabu searches, the best historical solutions found by the population are recorded con-
tinuously in the archive in order to serve as the non-dominated solutions generated
in the past. The major function of the archive is to store a historical record of the
non-dominated solutions found along the heuristic search process. The archive inter-
acts with the generational population in each iteration so as to absorb superior current
non-dominated solutions and eliminate inferior solutions currently stored in the archive.
The non-dominated solutions obtained at every iteration in the generational population
(swarm) are compared with the contents of archive on a one-per-one basis. A candidate
solution can be added to the archive if it meets any of the following conditions:

• The archive is empty;
• The archive is not full and the candidate solution is not dominated by or equal to

any solution currently stored in the archive;
• The candidate solution dominates any existing solution in the archive;
• The archive is full but the candidate solution is non-dominated and is in a less

crowded region than at least one solution.

Furthermore, due to the global attraction mechanism in PSO, the historical archive
of previously found non-dominated solutions would make the search converge toward
globally non-dominated solutions highly possible.

5.2 Global Best Selection

In MOPSO, gbest plays an important role in directing the whole swarm move toward
the Pareto front. Very often, the rapid swarm converges within the intermediate vicin-
ity of the gbest may lead to the diversity loss and premature convergence. To resolve
this, Fuzzy Global Best (f-gbest) scheme [20] is adopted in this study, which is based
on the concept of possibility measure to model the lack of information about the true
optimality of the gbest. In this scheme, the gbest refers to the possibility of a particle at
a certain location, rather than a sharp location as defined in traditional PSO algorithms.
In this way, the particle velocity can be calculated as follows:

pk
c,d = N(gk

g,d ,δ ) (20)

δ = f (k) (21)

vk+1
i,d = w∗ vk

i,d + c1 ∗ rk
1 ∗ (pk

i,d− xk
i,d)+ c2 ∗ rk

2 ∗ (pk
c,d− xk

i,d) (22)

where pk
c,d is the dth dimension of f-gbest in cycle k. The f-gbest is represented by a nor-

mal distribution N(pk
g,d ,δ ), where δ indicates the degree of uncertainty regarding the
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optimality of the gbest position. To reflect the reduction of this uncertainty as the search
proceeds, δ can be defined as a nonincreasing function of the number of iterations. For
instance, here f (k) is defined as a simple function

f (k) =

{
δmax, cycles < ξ ∗max cycles

δmin, otherwise
(23)

where ξ is a user-specified parameter which affects the change of δ . We can see that
the f-gbest function is designed to enable the particles to explore a region beyond that
defined by the search trajectory of original PSO. f-gbest encourages global exploration
at the early search stage when δ is large, and facilitates local fine-tuning at the late
stage when δ decreases. Thus, this scheme tends to reduce the possibility of premature
convergence as well as enhance the population diversity.

5.3 Local Search

During the heuristic multi-objective optimization process, since the MO optimization
algorithm is attempting to build up a discrete picture of a possibly continuous Pareto
front, it is often desired to distribute the solutions as diversely as possible on the dis-
covered tradeoff curve. Furthermore, the uniformity among the distributed solutions is
also crucial so as to achieve consistent and smooth transition among the solution points
when searching for the best compromise solution based on the particular requirements
of the target problem. Therefore, to accomplish these challenges, it is highly necessary
to preserve the diversity of solutions distribution during the optimization process. In
this investigation, the combination of a local search termed Synchronous Particle Local
Search (SPLS) [20] into MOPSO can be regarded as an effective measure for preserving
distribution diversity and uniformity as well as speeding up the search process.

SPLS carries out guided local fine-tuning so as to promote the distribution of non-
dominated solutions, whose computational procedure is laid out in the following [20]:

• Choose SLS individuals randomly from the population.
• Choose NLS non-dominated individuals with the best niche count from the archive

and store them in the selection pool.
• Allocate an arbitrary non-dominated individual from the selection pool to each of

the SLS individuals as gbest.
• Allocate an arbitrary search space dimension for each of the SLS individuals.
• Assimilation operation: With the exception of the assigned dimension, update the

position of SLS individuals in the search space with the selected gbest position.
• Update the position of all SLS assimilated individuals using (20)-(22) along the pre-

assigned dimension only.

5.4 Constraints Handling

Because the standard PSO does not take into account how to deal with the constraints,
the constraints handling mechanism should be added to ensure the solution feasibility in
constrained optimization problems such as power dispatch. In the proposed MOMPSO,
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a simple constraint checking procedure called rejecting strategy is incorporated. When
an individual is evaluated, the constraints are first checked to determine if it is a feasible
candidate solution. If it satisfies all of the constraints, it is then compared with the non-
dominated solutions in the archive. Or else, it is dumped. The dumped individual is then
replaced by a randomly created one. Here the concept of Pareto dominance is applied to
determine if it is eligible to be chosen to store in the archive of non-dominated solutions.
The constraint satisfaction checking scheme used in the proposed algorithm proves to
be quite effective in ensuring the feasibility of the non-dominated solutions.

5.5 Individual (particle) Representation

It is crucial to appropriately encode the individuals of the population in PSO for han-
dling the economic dispatch application. The power output of each generating unit and
the value of membership function are chosen to represent the particle position in each
dimension, and positions in different dimensions constitute an individual (particle),
which is a candidate solution for the target problem. The position in each dimension
is real-coded. The i-th individual PGi can be represented as follows:

PGi = [PGi1,PGi2, . . . ,PGid , . . . ,PGiM,µi], i = 1,2, . . . ,N (24)

where M is the number of generators and N is the population size; PGid is the power
generated by the d-th unit in i-th individual; and µi is the value of the membership
function in i-th individual. Thus, the dimension of a population is N× (M + 1).

5.6 Algorithm Steps

In principle, an archive-based MOPSO algorithm can be illustrated in Figure 4. As seen
from the figure, initially the population is randomly created, and then the selection pres-
sure from the PSO algorithm drives the population move towards the better positions.
At each iteration, the generational population is updated and certain elite individuals
from it are chosen to store in the elite population (archive) based on the Pareto domi-
nance concept. It should be noted that each individual also maintains a memory which
records the best positions the individual has encountered so far. The personal best for
each particle is selected from this memory. Meanwhile, among the individuals stored
in the archive, the global best is singled out according to our fuzzified global guide se-
lection strategy. Both guides are then used by the PSO to steer the search to promising
regions. The procedure is repeated until the maximum number of iterations is reached
or the solutions cease improving for a certain number of generations. Under this frame-
work, other multi-objective optimization algorithms can also be developed based on
different meta-heuristics such as evolutionary computation, simulated annealing, and
tabu search.

The proposed MOMPSO is applied to the constrained power dispatch problem in
order to derive the optimal or near-optimal solutions. Its computational steps include:

• Step 1: Specify the lower and upper bounds of generation power of each unit as well
as the range of security level.
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Fig. 4. Data flow diagram of the proposed algorithm

• Step 2: Randomly initialize the individuals of the population. Note that the speed
and position of each particle should be initialized such that each candidate solution
(particle) locates within the feasible search space.

• Step 3: For each individual PGi of the population, the transmission loss PLi is calcu-
lated based on B-coefficient loss formula.

• Step 4: Evaluate each individual PGi in the population based on the concept of
Pareto-dominance.

• Step 5: Store the non-dominated members found thus far in the archive.
• Step 6: Initialize the memory of each particle in which a single local best pbest is

stored. The memory is contained in another archive.
• Step 7: Increment iteration counter.
• Step 8: Choose the personal best position pbest for each particle based on the mem-

ory record; Choose the global best gbest according to the aforementioned f-gbest
selection mechanism. Meanwhile, local search based on SPLS is carried out. The
niching and fitness sharing mechanism is also applied throughout this process for
enhancing the diversity of solutions.

• Step 9: Update the member velocity v of each individual PGi based on (18). For the
output of each generator,

v(t+1)
id = χ ∗ (w∗ v(t)

i + c1 ∗ rand()∗ (pbestid−P(t)
Gid)

+ c2 ∗Rand()∗ (gbestd−P(t)
Gid)),

i = 1, . . . ,N;d = 1, . . . ,M (25)

where N is the population size, and M is the number of generating units. For the
value of membership function µ ,

v(t+1)
i,M+1 = χ ∗ (w∗ v(t)

i + c1 ∗ rand()∗ (pbesti,M+1− µ (t)
i )

+ c2 ∗Rand()∗ (gbestM+1− µ (t)
i )), (26)

• Step 10: Modify the member position of each individual PGi based on (19). For the
output of each generator,
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P(t+1)
Gid = P(t)

Gid + v(t+1)
id (27)

For the value of membership function µ ,

µ (t+1)
i = µ (t)

i + v(t+1)
i,M+1 (28)

Following this, add the turbulence factor into the current position. For the output of
each generator,

P(t+1)
Gid = P(t+1)

Gid + RT P(t+1)
Gid (29)

For the value of membership function µ ,

µ (t+1)
i = µ (t+1)

i + RTµ
(t+1)
i (30)

where RT is the turbulence factor. The turbulence term is used here to enhance the
diversity of solutions.

• Step 11: Update the archive which stores non-dominated solutions according to the
aforementioned four Pareto-optimality based selection criteria.

• Step 12: If the current individual is dominated by the pbest in the memory, then
keep the pbest in the memory; Otherwise, replace the pbest in the memory with the
current individual.

• Step 13: If the maximum iterations are reached, then go to Step 14. Otherwise, go
to Step 7.

• Step 14: Output a set of Pareto-optimal solutions from the archive as the final
solutions.

6 Simulation and Evaluation of the Proposed Approach

In this study, a typical IEEE 30-bus test system with 6-generators is used to investi-
gate the effectiveness of the proposed MOMPSO approach. The system configuration
is shown in Figure 5. The system parameters including fuel cost coefficients and gener-
ator capacities are listed in Table 1. The sinusoidal term in (6) is not considered in this
study due to its relatively minor impact on the total fuel costs. The B-coefficients are
shown in (31). The load demand PD used in the simulations is 2.834 p.u., the available
wind power Wav is 0.5668 p.u., and the coefficient of penalty cost Cw is set 20 $/p.u.

Table 1. Fuel cost coefficients and generator capacities

Generator i ai bi ci Pmin
Gi Pmax

Gi
G1 10 200 100 0.05 0.50
G2 10 150 120 0.05 0.60
G3 20 180 40 0.05 1.00
G4 10 100 60 0.05 1.20
G5 20 180 40 0.05 1.00
G6 10 150 100 0.05 0.60
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Fig. 5. IEEE 30-bus test power system

Bi j =

⎡⎢⎢⎢⎢⎢⎢⎣
0.1382 −0.0299 0.0044 −0.0022 −0.0010 −0.0008
−0.0299 0.0487 −0.0025 0.0004 0.0016 0.0041
0.0044 −0.0025 0.0182 −0.0070 −0.0066 −0.0066
−0.0022 0.0004 −0.0070 0.0137 0.0050 0.0033
−0.0010 0.0016 −0.0066 0.0050 0.0109 0.0005
−0.0008 0.0041 −0.0066 0.0033 0.0005 0.0244

⎤⎥⎥⎥⎥⎥⎥⎦ (31)

6.1 Comparison of Different Design Scenarios

Since PSO algorithms are sometimes quite sensitive to certain parameters, the simula-
tion parameters should be appropriately chosen. In the simulations, both the population
size and archive size are set to 100, and the number of generations is set to 500. The
acceleration constants c1 and c2 are chosen as 1. Both turbulence factor and niche radius
are set to 0.02. The inertia weight factor w decreases when the number of generations
increases:

w = wmax− wmax−wmin

itermax
× iter (32)

where itermax is the number of generations and iter is the current number of itera-
tions. From the above equation, we can appreciate that the value of w will decrease as
the iteration number increases. In the search process, the most efficient way to locate
the optimal or near-optimal solutions in a complex large search space is first to move to
the smaller solution space as promptly as possible, and then seek out the desired solu-
tion in this space via thorough search. The parameter w is defined to regulate the size of
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Fig. 6. Different curve shapes of membership functions

Table 2. Example solutions for different design scenarios

Generators/objectives Pessimistic Linear Optimistic
PG1 0.0678 0.0500 0.0605
PG2 0.2463 0.2430 0.2425
PG3 0.3863 0.4029 0.4221
PG4 0.9164 0.9300 0.9354
PG5 0.4034 0.3990 0.3490
PG6 0.3166 0.2929 0.2897
W 0.5043 0.5232 0.5408
Cost ($/hour) 518.893 515.436 512.147
Risk level 6.5864 6.49894 6.31094

search step of each particle. At first, the value of w is set relatively large in order to drive
the particle to the solution area quickly. Then, when the particle approaches the desired
solution, the size of each search step becomes smaller in order to prevent the particle
from flying past the target position during the flight. In this way, the desired solutions
can be sought through gradual refinement. For the f-gbest parameters, δmax, δmin, and
ξ are chosen as 0.15, 0.0001, and 0.4, respectively. The simulation program is coded
using C++ and executed in a 2.20 GHz Pentium-4 processor with 512 MB of RAM. In
simulations, the minimum and maximum allowable wind power penetrations are set as
10% and 20% of the total load demand, respectively. The running cost of wind power
is calculated based on its linear relationship with the amount of wind power integrated,
i.e., WC = σW . The coefficient σ indicating the running cost of wind power is set 50
$/p.u. in the simulation. The parameters used in the simulations are listed below and
different function curves are shown in Figure 6.
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Fig. 7. Pareto fronts obtained based on different membership functions

• Quadratic representation (optimistic design): aw =−9.9607, bw = 4.94, cw = 0.4;
• Linear representation (neutral design): Wmin=0.2834, Wmax=0.5668;
• Quadratic representation (pessimistic design): aw = 4.9803, bw = −7.7629,

cw = 2.8.

The illustrative non-dominated solutions derived in different design scenarios are
listed in Table 2 and the Pareto-optimal fronts evolved using the proposed MOMPSO
are shown in Figure 7.

As shown in the figure, the Pareto-optimal solutions are widely distributed on the
tradeoff surface due to the diversity preserving mechanisms used in the proposed
MOMPSO algorithm. Unlike the single-objective optimization, in multi-objective opti-
mization the decision maker can choose a suitable solution based on his/her preference
from a pool of non-dominated solutions. We can also appreciate that for the same risk
level calculated from different membership functions, the optimistic design has the low-
est operational cost since it includes the largest amount of wind power among all of the
three designs. Wind power has the lowest operational cost as compared with the same
amount of electric power from fuel-based generation.

6.2 Sensitivity Analysis

Sensitivity analysis has been carried out in order to illustrate the impacts of differ-
ent allowable ranges of wind power penetration as well as different running costs of
wind power on the final non-dominated solutions derived. Here the linear member-
ship function is used. We herein quantify the impact of wind penetration through nu-
merical simulations by changing the permissible ranges of wind power penetration
[W (PD)min,W (PD)max]. In the simulations for determining the impact of different al-
lowable wind penetration ranges, the running cost of wind power is kept unchanged,
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Fig. 8. Pareto fronts obtained for different wind penetration ranges
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Fig. 9. Pareto fronts obtained for different running costs of wind power

i.e., σ = 50$/p.u. In a similar fashion, in the simulations for examining the impact
of running costs of wind power, the penetration range of wind power is fixed, i.e.,
[W (PD)min,W (PD)max] = [10% ∗PD,20% ∗PD]. The derived Pareto fronts are shown in
Figure 8 and Figure 9, respectively. From the figures, we can appreciate that the non-
dominated solutions vary with the different ranges of allowable wind penetration as
well as the running costs of wind power. In Figure 8, at the same risk level, the design
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scenario with the largest value of maximum allowable wind penetration Wmax has the
lowest cost since the most portion of wind power is integrated. In Figure 9, at the iden-
tical risk level, the scenario with the lowest running cost of wind power results in the
lowest overall cost since the same amount of wind power is integrated with the lowest
cost.

6.3 Comparative Studies

In order to conduct a quantitative assessment of the performance of a multi-objective
optimization algorithm, normally four major issues should be considered:

• Minimize the distance of the approximated Pareto front obtained from the target al-
gorithm with respect to the true Pareto front. Since the true Pareto front is unknown
in most practical problems, this requirement can be interpreted as increasing the
accuracy of the obtained final solutions (i.e., to render the obtained Pareto front as
close to the true one as possible).

• Maximize the spread of the obtained solutions. It means that the diversity of the
solutions should be maximized in the optimization run by rendering the distribution
of the solutions as smooth and even as possible. Thus, the decision-maker will have
more choices for different demands on decision.

• Maximize the number of elements of the Pareto-optimal set. The extent of the es-
timated Pareto front should be increased, i.e., a wide range of non-dominated so-
lutions in objective space should be derived by the optimizer. For each objective, a
sufficiently wide range of values should be covered by the non-dominated solutions.

• Minimize the computational cost. Most of the MO optimization algorithms are com-
putationally expensive, thus the computational time is an important criterion for
measuring the efficacy of an algorithm in dealing with such problems.

Thus, certain quantitative metrics need to be defined in order to compare the perfor-
mance of different MO algorithms in a more objective fashion. A comparative study is
conducted to examine how competitive the proposed approach is in dealing with the tar-
get problem. Comparison of Pareto front estimates is not a easy task since it is unlikely
to evaluate the quality of a Pareto front using any single measure. Here, we use four
measures to comprehensively assess the performance of different optimizers in terms
of accuracy, diversity, extent, and computational economy. Note that all the following
comparisons are conducted based on the neutral design scenario with the original design
parameters.

• C-metric: C-metric is quite often used to examine the quality of the Pareto fronts
obtained [21]. Let S1,S2 ⊆ S be two sets of decision solutions. The C-metric is
defined as the mapping between the ordered pair (S1,S2) and the interval [0,1]:

C(S1,S2) =
|{a2 ∈ S2;∃a1 ∈ S1 : a1 � a2}|

|S2| (33)

Provided that C(S1,S2) = 1, all solutions in S2 are dominated by or equal to solu-
tions in S1. If C(S1,S2) = 0, then none of the solutions in S2 are covered by S1. Both
C(S1,S2) and C(S2,S1) should be checked in the comparison since C-metric is not
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Table 3. Comparison of C-metric for different algorithms

C(M, O) C(O, M) C(M, F) C(F, M) C(M, S) C(S, M)
Best 1.0 0.1001 1.0 0.1427 1.0 0.1503
Worst 0.9899 0.0 0.9890 0.0 0.9811 0.0
Average 0.9993 0.0001 0.9905 0.0002 0.9880 0.0005
Median 0.9995 0.0001 0.9928 0.0002 0.9882 0.0005
Std. Dev. 0.0001 0.0001 0.0009 0.0001 0.0010 0.0002

Table 4. Comparison of the spacing metric for different algorithms

Spacing MOPSO f-gbest SPLS MOMPSO
Best 0.0489 0.0403 0.0397 0.0389
Worst 0.1077 0.0996 0.0988 0.0767
Average 0.0526 0.0422 0.0418 0.0402
Median 0.0521 0.0412 0.0410 0.0375
Std. Dev. 0.2562 0.1131 0.0988 0.0612

symmetrical in its arguments, i.e., the equation C(S1,S2) = 1−C(S2,S1) does not
necessarily always hold. Table 3 illustrates the comparison of C-metric for different
algorithms, where “O”, “F”, “S”, and “M” indicate the original MOPSO, MOPSO
only with f-gbest selection, MOPSO only with SPLS, and MOMPSO, respectively.

• Spacing: The spacing metric is defined to measure the spread of the non-dominated
solutions. For instance, one of such metrics is to measure the range variance of
neighboring individuals in the set of non-dominated solutions [22]. It is defined as

SP =

√
1

n−1

n

∑
i=1

(d−di)2 (34)

where di = min j(| f i
1(
−→x )− f j

1 (−→x )|+ | f i
2(
−→x )− f j

2 (−→x )|), i, j = 1, . . . ,n, d is the mean
of all di, and n is the number of non-dominated solutions found so far. The larger the
value is, the more unevenly the solution members are spaced. If the value of SP is
zero, all members in the Pareto front are equidistantly distributed. Table 4 illustrates
the comparison of the spacing metric for different algorithms. For simplicity of
notation, here f-gbest is used to denote the MOPSO only with f-gbest and SPLS
represents the MOPSO only with SPLS.

• Error ratio: The metric termed error ratio was proposed by Van Veldhuizen [23] to
indicate the percentage of solutions that are not members of the Pareto-optimal set.
It is given as

ER = ∑n
i=1 ei

n
(35)

where n is the number of solutions in the current set of non-dominated solutions. If
vector i belongs to the Pareto-optimal set, then ei = 0; or else ei = 1. It is evident that
if ER = 0, all the solutions derived from the optimizer are members of the Pareto-
optimal set. Table 5 illustrates the comparison of the error ratio metric for different
algorithms.
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Table 5. Comparison of the error ratio metric for different algorithms

Error ratio MOPSO f-gbest SPLS MOMPSO
Best 0.0051 0.0 0.0 0.0
Worst 0.3698 0.2899 0.2640 0.2486
Average 0.2305 0.1196 0.1181 0.1030
Median 0.2209 0.1090 0.1086 0.0980
Std. Dev. 0.2253 0.1643 0.1904 0.1088

Table 6. Comparison of computational time for different algorithms (in seconds)

CPU time MOPSO f-gbest SPLS MOMPSO
Best 15.2 14.9 12.8 11.2
Worst 19.9 17.9 16.4 12.5
Average 17.5 16.0 13.1 11.7
Median 17.9 16.4 13.4 11.6
Std. Dev. 0.1024 0.0549 0.0602 0.0121

• Computational time: Under the exactly identical environments including both
hardware and software platforms, different algorithms are compared in terms of
the CPU time consumed in obtaining their corresponding Pareto fronts. Table 6 il-
lustrates the time needed for obtaining 100 mutually non-dominated solutions for
different algorithms.

From the above comparative studies, we can find the following three major advan-
tages of the solutions obtained by MOMPSO with respect to those derived from the
other three algorithms:

• Higher quality solutions are obtained using the MOMPSO. In the set of solutions
obtained using MOMPSO, most of them have better objective function values than
those derived from other approaches.

• The solutions of MOMPSO have better diversity characteristics. This is primarily
due to the several diversity retention mechanisms used:
– A useful distribution preservation measure adopted in this study is the fuzzifi-

cation mechanism used during the selection of global guide for each particle in
every generation;

– A local search scheme termed Synchronous Particle Local Search (SPLS) is
integrated into the original MOPSO in order to enhance the population diversity
and expedite the convergence speed;

– Niching and fitness sharing is used to preserve the population diversity by pre-
venting the population from falling into the detrimental genetic drift;

– In the archiving process, the individuals lying in less populated regions of the
objective have higher chance to be chosen than those in the highly populated
areas;

– A turbulence factor is added to the PSO operations, which may increase the
solution diversity by enhancing the randomness in a particle’s movements.
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The diversity is preserved by MOMPSO while there is no guarantee that the solu-
tions obtained by objective aggregation approach will span over the entire tradeoff
surface.

• The computational time of MOMPSO is less than the other methods. The SPLS
mechanism incorporated reduces the computational expense due to its capability of
facilitating convergence speedup.

7 Concluding Remarks

This chapter investigates the integration of wind power into conventional power net-
works and its impact on generation resource management. Wind power is environmen-
tally friendly since it is able to reduce the fossil fuel and natural gas consumption. Also,
wind power needs less operational cost since it does not consume fossil fuels and nat-
ural gases. However, due to the intermittent and variable nature of the wind power, it
is usually quite difficult to determine how much wind power should be integrated to
ensure both power system security and operational cost reduction. In this chapter, fuzzy
representations of system security in terms of wind power penetration level and oper-
ational costs are adopted in constructing economic dispatch models. A multi-objective
memetic particle swarm optimization (MOMPSO) algorithm is developed to derive the
non-dominated Pareto-optimal solutions in terms of the specified multiple design objec-
tives. Different design scenarios can be formulated according to dispatcher’s attitudes
toward wind power integration with respect to risk and cost. A numerical application
example is used to illustrate the validity and applicability of the developed optimization
procedure. In the further investigations, probabilistic methods may also be adopted to
handle various uncertainties in power systems including wind power penetration.
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In this chapter we present a hybridization of a stochastic based search approach for
multi-objective optimization with a deterministic domain decomposition of the solu-
tion space. Prior to the presentation of the algorithm we introduce a general formulation
of the optimization problem that is suitable to describe both single and multi-objective
problems. The stochastic approach, based on behaviorism, combined with the decompo-
sition of the solutions pace was tested on a set of standard multi-objective optimization
problems and on a simple but representative case of space trajectory design.

1 Introduction

The design of a space mission steps through different phases of increasing complexity;
generally, the first step is a mission feasibility study. In order to be successful, the feasi-
bility study phase has to analyze, in a reasonably short time, a large number of different
mission options. Each mission option requires the design of one or more trajectories
that have to be optimal with respect to one or more criteria. In mathematical terms, the
problem can be formulated as a search for multiple local minima, or as a multi-objective
optimization problem.

In both cases, it is desirable to have a collection of several optimal solutions. Nor-
mally in literature, single objective and multi-objective optimization are treated as two
distinct problems with different algorithms developed to address one or the other (see
[1, 3, 4, 5, 6, 7, 8] for some examples of algorithms for global single objective optimiza-
tion and [9, 10, 11, 12] for some examples of algorithms for multi-objective optimiza-
tion). In most of the cases Evolutionary Algorithms seem to be the preferred method and
many examples exist of their use to address both single objective and multi-objective
problems in space trajectory design: Gage et al. has shown the effectiveness of genetic
algorithms with niching technique compared to a simple grid search for the optimization
of bi-impulsive transfers [13], Coverstone et al. used genetic algorithms for low-thrust
trajectory design [15, 16], Gurfil et al. used niching genetic algorithms for the char-
acterization of geocentric orbits [14], Vasile proposed a hybridization of evolutionary
algorithms with SQP methods for the design of weak stability transfers [17] and an hy-
bridisation with branch and bound for low-thrust trajectory design [18], and Dachwald
et al. proposed the combination of a neurocontroller and of Evolutionary Algorithms for

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 231–253.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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the design of low-thrust trajectories[19]. More recently, an comparison of several global
optimization methods applied to the optimization fo space trajectories showed that Dif-
ferential Evolution outperforms GAs on some trajectory design problems [20, 21].

In general, all evolutionary-based approaches for global optimization implement
some heuristic derived from nature. From the very basic evolutionary paradigms to
the more complex behaviors of ant colonies or bird flocks, each one of these heuristics
can be interpreted as basic behaviors (like reproduction, feeding or trail following) as-
sociated to individual agents. This chapter presents a generalization of this concept: a
population of agents is endowed with a set of individualistic and social behaviors, in
order to explore a virtual environment composed of the solution space. The combina-
tion of individualistic and social behaviors aims at an optimal balance between global
search and local convergence (or exploration versus exploitation).

Furthermore, a unified formulation is proposed that can be applied to the solution
of both multi-objective and single objective problems in which the aim is to find a set
of optimal solutions, rather than a single one. In order to improve the exploration of
the search space and to collect as many local minima as possible, the proposed meta-
heuristic was hybridized with a domain decomposition technique.

2 General Problem Formulation

The general problem both for single and multi-objective optimization is to find a set X ,
contained in a given domain D, of solutions x such that the property P(x) is true for all
x ∈ X ⊆ D,

X = {x ∈ D | P(x)} (1)

where the domain D is a hyper-rectangle defined by the upper and lower bounds on the
components of the vector x,

D =
{

xi | xi ∈ [bl
i bu

i ]⊆ℜ, i = 1, ...,n
}

(2)

All the solutions satisfying property P are here defined to be optimal with respect to
P, or P-optimal, and X can be said to be a P-optimal set. Now, the property P might not
identify a unique set, for example if P is Pareto optimality, X can collect all the points
belonging to a local Pareto front. Therefore we can define a global optimal set Xopt such
that all the elements of Xopt dominate the elements of any other X ,

Xopt =
{

x∗ ∈D | P(x∗)∧∀x ∈ X ⇒ x∗ ≺ x
}

(3)

where x∗ ≺ x represents the dominance of the x∗ solution over the x solution.
If we are looking for local minima, the property P is to be a local minimiser or a

solution x∗ can be said to dominate solution x if the associated value of the objective
function f (x∗) < f (x). In this case Xopt would contain the global optimum or a set of
global optima all with the same value of f .

In the case of multiple objective problems, given a set of solution vectors we can
associate to each one of them a scalar dominance index Id such that:

Id(x j) = |{i | i∧ j ∈ Np∧xi ≺ x j}| (4)
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where the symbol |.| is used to denote the cardinality of a set and Np is the set of the
indices of all the given solution vectors. Here and in the following, a solution vector
xi is said to be dominating a solution vector x j if the values of all the components
of the objective vector f(xi) are lower than or equal to the values of all the components
of the objective vector f(x j) and at least one component is strictly lower. In this case,
for the j− th solution, P(x j) simply defines the property of being not-dominated by any
other solution in the set Np, thus:

X = {x j ∈D | Id(x j) = 0} (5)

For constrained problems, the property P is to be optimal, either locally or Pareto,
and feasible at the same time. The property P can be expressed through a single scalar
value or through a set of values and relationships. It can be a bolean value, a real number
or a fuzzy expression (e.g. bad, average, good).

3 A Behavioral Prospective

The search for a set of solutions can be broken down to a three steps process: collecting
information, making decision, taking action. For a black-box problem the collection
of information is generally performed by sampling the solution space. The aim in this
respect is to minimize the number of samples required to find the desired solution or
set of solutions. The decision making process consists of deciding what action to take
at every step of the search, selecting who does what in the case of multiple entities
and deciding when to stop the search. The action step consists of implementing the
selected actions by the selected entity. The three steps are required to be automatic with
minimum human intervention, which means that the decision to orient the search in
one or another direction should not require the human judgment (e.g. restrict the search
space, increase the number of samples in a specific region).

Let us assume that a virtual agent is endowed with the ability of collecting pieces of
information, making decisions and implementing actions. The decision making process
could involve a long term planning of actions a closed-loop control mechanism or some
sort of action-selection process in response to stimuli. For example in particle swarm
optimization (PSO)[6] the velocity of each particle i is computed with a close-loop
control mechanism:

vi+1 = wvi + ui (6)

where w is a weight and given the random numbers r1,r2 and the weights a1 and a2 the
control ui has the form:

ui = a1r1(xi−xgi)+ a2r2(xi−xgo) (7)

The search is continued till the decision to stop is taken. The control function requires a
piece of information collected by the particle xgi and one collected by another particle
xgo. In this case, the decision making process includes the selection of the particle
in xgo.

Let us assume that the virtual agent is equipped with a set of actions and an action-
selection process. If more than one agent exists then some of the actions can be regarded
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Fig. 1. Example of action selection mechanism

as individualistic, since involve only one agent at time, while others as social since re-
quire interaction among multiple agents. A collection of actions and the action selection
process define a behavior. When at step k an agent xk implements an action, it produces
an outcome xke according to:

xke = xk +β (xk,xk−1,Πk,Al) (8)

where β is a function of the current state of the agent xk, the current state of the popu-
lation Πk, the past state of the agent xk−1 and the information about the past state of the
population stored in an archive Al . Note that β is not analytical but is an algorithm that
selects an action, assigns a value and return a variation ∆xk.

For example, for individualistic behaviors (see Fig. 1 and the next section), each
agent can perform three types of actions, A, B and C. This general scheme accommo-
dates two types of heuristics: Action A generates always the same outcome every time
is performed once a solution vector x is given (e.g. inertia in PSO), while Actions B and
C generate different values for the same x every time they are performed (e.g. mutation
in EA[1]). These last two actions are repeated until an improvement is registered or a
maximum number of attempts is reached. The index ke is increased by one every time
an action is performed, and every action makes use of the agent status x, the status of
other agents and of the outcome of the proceeding actions.

4 MultiAgent Collaborative Search

A population of virtual agents (i.e., points within H)is deployed in the search space:

H = [a1,b1]×·· ·× [an,bn]

Each agent is associated to a solution vector x and endowed with a set of basic actions
forming a behavior. The entire population evolves, through a number of steps, toward
the set X . At each step, the agents collect clues about the environment and implement
actions according to an action selection mechanism. Some of the actions are devoted to
acquiring new information (sampling the solution space), others to displacing agents,
other actions are instead to exchange information among the agents. We implement a set
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of actions, derived from PSO, EA and Differential Evolution (DE)[4] and very simple,
basic action selection mechanisms. The general scheme both for a single agent and for
a group is: select actions, implement actions, evaluate actions, make decision.

Given an agent x ∈ H, a hyperrectangle

Sx = Sx
1×·· ·Sx

n

is associated to it, where each Sx
i is an interval centered at the corresponding component

x[i] of the agent. The size of Sx is specified by the value ρ(x): the i-th edge of Sx has
length

2ρ(x)max{bi−x[i],x[i]−ai).

As we will see, the ρ value associated to an agent is updated at each iteration according
to some rule (see Section 4.2.1). The intersection Sx∩H basically represents the local
region around agent x which we want to explore. We also associate an effort value
s(x) to each agent x, which specifies the amount of computational effort we want to
dedicate to the exploration of Sx. This value is updated at each iteration (see, again,
Section 4.2.1).

The subdomain H is explored locally by acquiring information about the landscape
within each region Sx and explored globally by evolving a population of agents which
are also allowed to collaborate with each other. Moreover, an archive Al of solutions
over the domain H is maintained during the search. The archive is maintained in order
to have a set of solutions for the problem at hand (see the discussion in the Introduction).
The proposed approach, called Multiagent Collaborative Search (MACS), is outlined in
the following, while the details will be specified in the following subsections.

Multiagent Collaborative Search
Step 0. Initialization. Generate an initial population of agents Π0 within H through

a Latin Hypercube (i.e., a non-collapsing design where points/agents are evenly
spread even when projected along a single parameter axis; for a more detailed de-
scription and a justification of the use of Latin Hypercubes we refer, e.g., to [22]). A

hyperrectangle Sx0
j is associated to the j-th agent x0

j ∈Π0. The initial size ρ(x0
j) of

each region Sx0
j is fixed to 1 (i.e., the initial local region of each agent corresponds

to the whole set H). The effort s(x0
j) dedicated to agent x0

j ∈Π0 is fixed to the same
value smax (equal to n in the computations) for all agents in Π0. Set k = 0.

Step 1. Social Behavior. A set of social actions, specified by a social behavior are ap-
plied to the populationΠk. In particular two sets of social actions are implemented:
• Collaboration. The agents exchange information with each other. Each set of

communication actions gives rise to new sampled points. Some of them identify
the new location of a subset of the collaborating agents. See Section 4.1.1.

• Repulsion. If two or more agents are too crowded one or more are reallocated
in the search space. See Section 4.1.2.

Step 2. Filtering. A filter partitions populationΠk into two subsetsΠ in
k , the population

within the filter, and Π out
k , the population outside the filter. See Section 4.3.

Step 3. Individualistic Behavior. A set of individualistic actions, specified by an indi-
vidualistic behavior, are applied to each agent x ∈Πk.
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• Local Exploration. These set of actions allows local exploration (within Sx) of
the region around the agent. They are repeatedly applied until either an im-
provement is observed or the number s(x) of actions is reached. If an agent
x generates an improvement, population Πk is updated by replacing x with its
improvement. See Section 4.2.

• Hyperrectangle and effort update. The size parameter ρ and the effort parameter
s associated to each agent within the filter are updated according to some rule.
See Section 4.2.1.

Step 4. Archive update. Apply filtering and update archive Al (see Section 4.4).
Step 5. Stopping rule. A stopping rule is checked (see Section 4.5). If it is not sat-

isfied, then set k = k + 1 and go back to Step 1. If it is satisfied, then update the
archive Al by adding the current population, i.e., set Al = Al ∪Pk.

4.1 Social Behavior

Social behavior is defined through a set of communication actions (collaboration), a de-
cision making process to select the outcome of the communication actions, a repulsion
mechanism to limit crowding and increase diversity and a shared memory mechanism
to exploit the social knowledge acquired during the search.

4.1.1 Collaboration
Collaboration defines operations through which information is exchanged between pairs
of agents. Given a pair of agents x1 and x2, with x1 considered to be the better one
according to property P, three different actions are defined. Two of them are defined by
adding to x1 a step ∆ξ defined as follows

∆ξ = α2rt(x2−x1)+α1(x2−x1),

and correspond to: extrapolation on the side of x1 (α1 = 0, α2 = −1, t = 1), with
the further constraint that the result must belong to the domain H (i.e., if the step ∆ξ
leads out of H, its size is reduced until we get back to H); interpolation (α1 = 0,α2 =
1), where a random point between x1 and x2 is sampled. In the latter case, the shape
parameter t is defined as follows:

t = 0.75
s(x1)− s(x2)

smax
+ 1.25

The rationale behind this definition is that we are favoring moves which are closer to
the agent with a higher fitness value if the two agents have the same s value, while in
the case where the agent with highest fitness value has a s value much lower than that
of the other agent, we try to move away from it because a small s value indicates that
improvements close to the agent are difficult to detect.

The third operation is the recombination operator, a single-point crossover, where,
given the two agents: we randomly select a component i; split the two agents into two
parts, one from component 1 to component i and the other from component i + 1 to
component n; and then we combine the two parts of each of the agents in order to
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generate two new solutions. Note that the three operations give rise to four new samples,
denoted by y1, y2, y3, y4.

The first of the two parent agents is selected at random in the worst half of the
current population (from the point of view of the property P), while the second parent
is selected at random from the whole population. Selecting the first parent from the
best half generally reduces the diversity of the population and may cause premature
convergence.

Note that here all the communication actions are selected and implemented sequen-
tially. However, according to the general scheme mentioned above, a different action
selection mechanism can adaptively choose the most appropriate subset of actions at
every step. The decision making process is used to select which of the four samples
will be used. Each pair of parent agents x1 and x2 generates four samples y1, y2, y3 and
y4. Then, a tournament, based on the property P, is started between the worst of the two
parents and the best of the four samples. The winner of the tournament will be the new
location in the solution space of the worst parent agent. When an agent is displaced no
update of ρ and s is performed.

4.1.2 Repulsion
When the distance between two agents drops below a given threshold, a repulsion action
is applied to the one with the worst P. More precisely, consider agent x j and let

Mj = {i : Sx j ∩Sxi �= /0}
be the set of agents whose box has a nonempty intersection with the one of x j. Let nc( j)
denote the cardinality of Mj. Then, for each i ∈Mj we check the following condition

wcnc( j)ρ(x j) > ρi j,

where ρi j denotes the normalized distance1 between xi and x j and wc is a small positive
parameter called crowding factor. If the condition is satisfied, then the worse between
agents xi and x j is repelled (note that wc = 0 corresponds to no repulsion). Repulsion
is basically an interpolation between the agent to be repelled and one vertex of the
current domain chosen at random. The idea behind repulsion is to avoid convergence of
different agents to the same subregion with a consequent waste of computational effort.

4.1.3 Shared Memory
The archive Al is used to direct the movements of those agents for which P is false.
For all agents for which the property P is not true at step k the inertia component is
recomputed as:

∆ξ = r(xAl −xk) (9)

where xAl is an element taken from the archive. The elements in the archive are ranked
according to their relative distance or crowding factor. Then, every agent for which P is
false picks the least crowded element xAl not already picked by any other agent.

1 By normalized distance we mean the distance between the two agents once H has been trans-
formed into the unit hypercube through the appropriate affine transformation.
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4.2 Individualistic Behavior

The individualistic behavior is defined through a set of local exploration actions, an
action selection mechanism, a decision making process to select the outcome of the
exploration and an adaptive update of the resources and of the regions Sx.

At every generation, a behavior β is used to generate the set of exploration actions.
In particular, given agent j at generation k, denoted by xk

j , a behavior is a collection of
displacement vectors ∆ξ generated by some function zβ :

β = {∆ξ | xk
j +∆ξ ∈ H and ∆ξ = zβ (xk

j,x
k−1
j ,w,r,Πk)} (10)

where zβ is a function of the current and past state xk
j and xk−1

j of agent j, of a set of
weights w, of a set of random numbers r and of the current population Pk. Every point
xk

j +∆ξ is called a child of agent j. In what follows we describe the different kinds of
actions employed in this chapter.

Inertia. This action is performed at most once at each generation. If agent j has im-
proved from generation k− 1 to generation k, then we follow the direction of the
improvement (possibly until we reach the border of the hyperrectangle associated
to the agent), i.e., we perform the following step:

∆ξ = λ̄ (xk
j−xk−1

j ) (11)

where
λ̄ = min{1,max{λ : xk

j +λ (xk
j−xk−1

j ) ∈ Sx j}}.
Follow-the-trail. This step is inspired by Differential Evolution (see, e.g., [8, 4]). It is

defined as follows: let xk
i1
,xk

i2
,xk

i3
be three randomly selected agents; then

∆ξ = xk
j− (xk

i1 +(xk
i3 −xk

i2)) (12)

(if the step leads out of Sx j , then its length is reduced until we reach the border of
Sx j ).

Random-Walk. Given the agent x and its associated hyperrectangle Sx, four different
kinds of mutation actions are performed all arising from the following displacement
of a component i of the agent:

∆ξi = w1rt(�i− xi)+ (1−w1)rt (ui− xi) (13)

where �i and ui are respectively the lower and upper limits of xi within Sx∩H, r is a
uniform random number in [0,1], w1 = 1 with some probability pi and w1 = 0 with
probability 1− pi, and t ≥ 0 is a shape parameter (t = 1 corresponds to uniform
sampling, while t > 1 favors more local moves). The four mutation actions are the
following:
• all components i are perturbed according to (13) with t = 1 and pi = 0.5;
• a component i is selected at random and perturbed according to (13) with t = 1

and pi = 0.5;
• a component i is selected at random and perturbed according to (13) with t = 0.5

and pi = 0.5;
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• a component i is selected at random and randomly fixed either at its lower limit
or its upper limit in the region Sx∩H, i.e., t = 0 and pi = 0.5.

Linear blending. Once a mutation action on agent x has been performed, its result,
denoted by y, is further refined through blending procedures. Linear blending cor-
responds to the following displacement:

∆ξ = α2rt(y−x)+α1(y−x). (14)

where α1,α2 ∈ {−1,0,1}, r ∈ [0,1] is a random number, and t a shaping parameter
which controls the magnitude of the displacement. Here we use the parameter val-
ues α1 = 0, α2 = −1, t = 1, which corresponds to extrapolation on the side of x,
and α1 = α2 = 1, t = 1, which corresponds to extrapolation on the side of y. If the
displacement defined by an extrapolation action is too large, i.e., the resulting point
is outside the hyperrectangle associated with the current agent, then it is reduced
until the resulting point is within the hyperrectangle.

Quadratic blending. The outcome of the linear blending can be used to construct a
second order local model of the fitness function. We can define a second order
blending operator that generates a displacement using the agent x, the perturbation
y obtained by mutation, and the new point z generated by the linear blending oper-
ator. A second order one-dimensional model of the fitness function along the line
with direction x− z is obtained by fitting the fitness values in the three points x,
y and z. Then, the new point is the minimum of the second-order model along the
intersection of the line with the hyperrectangle associated with the agent.

As already pointed out, the inertia action is performed at most once. All the other actions
are cyclically performed until either an improvement is observed or the number s(xk

j)
of actions is reached. Note that in each cycle only one of the four mutation actions is
performed in turn.

4.2.1 Size and Effort Update

Given an agent xk
j ∈Π in

k , its size parameter ρ(xk
j), defining the hyperrectangle Sxk

j cen-

tered at xk
j, and its effort parameter s(xk

j), giving the maximum number of actions ap-
plied to it, are updated at each generation. Both are reduced or enlarged depending on
whether an improvement has been observed or not in the previous generation.

If xk+1
j �= xk

j , i.e., an improvement has been observed for agent j at iteration k, then
the effort is updated according to the following formula:

s(xk+1
j ) = max{s(xk

j)+ 1,smax},

i.e., it is increased by 1, unless the maximum allowed number of actions has been al-
ready reached (recall that in the computations smax has been fixed to the dimension n of
the problem). Basically, we are increasing the effort if the agent is able to improve. In
the same case the size is increased by the following formula:

ρ(xk+1
j ) = max{ρ(xk

j) ln(e + rank(xk+1
j )),1}
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where rank(xk+1
j ) is the ranking of the agent xk+1

j within the population Πk (the best
individual has rank equal to 1, the second best equal to 2, and so on). Basically, the
worse the ranking of an individual, the greater the possible increase of the radius will
be. The increase is limited from above by 1 (when ρ = 1 the local region around the
agent to be explored is equal to the whole domain H). The idea is that for low ranked
individuals it makes sense to look for larger improvements and then to try to find a
better point in larger regions making the search more global.

If no improvement is observed, then the effort is updated according to the following
formula:

s(xk+1
j ) = max{s(xk

j)−1,1},
i.e., it is decreased by 1, unless the minimum allowed number of actions has been al-
ready reached.

In the same case the size is reduced according to the following rule. Let ρmin(xk
j) be

the smallest possible reduction of the size parameter such that the child y∗ of xk
j with

best fitness value is still contained in the hyperrectangle. Then:

ρ(xk+1
j ) =

{
ρmin(xk

j) if ρmin(xk
j)≥ 0.5ρ(xk

j)
0.5ρ(xk

j) otherwise

i.e., the size parameter is reduced to ρmin(xk
j) unless this is smaller than 0.5ρ(xk

j), in
which case we only halve the size parameter.

4.3 Filtering

Given a population Πk, a filter simply subdivides the population into two parts, Π in
k

and Π out
k . Π in

k contains the best members of the population Πk, i.e., those with the best
fitness values, while Π out

k contains all the other individuals in Πk. The main difference
between agents inside and outside the filter is that on agents outside the filter, only mu-
tation actions (see equation (13) below) over the whole subdomain H are performed
(for each agent outside the filter the number of these mutation actions is a random
one between 1 and the size of Π out

k ), while also other actions, allowing a deeper local
exploration, are performed on agents inside the filter (see the following Section 4.2).
Moreover, values ρ and s are only updated for agents in Π in

k (see the following
Section 4.2.1). In the case an agent outside the filter at iteration k enters the filter at
iteration k + 1, its ρ and s values are initialized as specified in Step 0.

4.4 Archive Update

Let ρtol be a small threshold value, xi be an agent whose size parameter is below the
threshold value, i.e., ρ(xi) < ρtol and Li be the set of agents whose normalized distance
from xi is below the threshold ρtol (including xi itself). If agent xi is the best one in
Li (from the point of view of P), then all agents in Li are randomly regenerated within
the current domain H and xi is inserted in archive Al , while if it is not, only agent xi is
randomly regenerated within H. At termination of the MACS algorithm we insert the
whole final population into the archive.
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4.5 Stopping Rule

The stopping rule is quite simple: the search within a subdomain is stopped when a
prefixed number Ne of function evaluations is reached.

4.6 Definition of P for Multiobjective Optimization

Although the problem formulation through the definition of P is general and applica-
ble to both single objective and multiple objective optimization problems, either con-
strained or not, the actual property is substantially different depending on the type of
problem.

For box constrained multi-objective problems the property P can be defined by the
value of the scalar dominance index Id , thus:

Id(x) > Id(xke)+ ε⇒ P(xke) = true (15)

where ε is now the minimum expected improvement in the computation of the domi-
nance. Note that this easily accommodates the concept of ε dominance.

Now, when multiple outcomes with the same dominance index are generated by
either social or individualistic actions, the one that corresponds to the longest vector
difference in the criteria space with respect to x is considered. Note that in many sit-
uations the action selection scheme in Fig. 1 generates a number of solutions that are
dominated by the agent x. Many of them can have the same dominance value; therefore
in order to rank them, we use the modified dominance index:

Id(x) =
∣∣∣{ j | f j(xke) = f j(x)

}∣∣∣κ+
∣∣∣{ j | f j(xke) > f j(x)

}∣∣∣ (16)

where κ is equal to one if there is at least one component of f(x)=[ f1, f2, ..., fNf ]
T which

is better than the corresponding component of f(xke), and is equal to zero otherwise.
Now, if for the ke

th outcome, the dominance index in Eq.16 is not zero but is lower
than the number of components of the objective vector, then the agent x is only partially
dominating the ke

th outcome. Among all the partially dominated outcome with the same
dominance index we chose the one that satisfies the condition:

min
ke

〈(
f(x)− f(xke)

)
,e
〉

(17)

where e is the unit vector of dimension Nf , e = [1,1,1,...,1]T√
Nf

, and Nf is the number of

objective functions.
Since the partially dominated outcomes of one agent could dominate other agents

or the outcomes of other agents at the end of every evolution cycle all the outcomes
are added to the archive. Then, the dominance index in Eq.4 is computed for all the
elements in Al and only the non-dominated ones are preserved.

4.7 Hybridization with Domain Decomposition

The Multiagent Collaborative Search described in the previous section is a stochastic
process. In order to improve its robustness (repeatability of the result) and increase the



242 M. Vasile

exhaustiveness of the search, MACS is combined with a deterministic domain decom-
position technique. The search space D, is a hyperrectangle and the subdomains into
which it is subdivided are also hyperrectangles. The stochastic algorithm searches on
the subdomains in order to evaluate them. In this section we will give the details of the
deterministic method.

Below we give the description of a generic branching procedure for GO problems.

BRANCHING PROCEDURE
Step 0. Initialization Let F = {D}.
Step 1. Node selection Let θ be a function which associates a value to each node H ∈

F . Then, select a node H ∈F such that

H ∈ arg min
H∈F

θ (H), (18)

Step 2. Evaluation Evaluate the selected node H through some procedure.
Step 3. Node branching Subdivide H into η nodes Hi, i = 1, . . . ,η , for some integer

η ≥ 2, and update F as follows:

F = (F \ {H})∪{H1, . . . ,Hη}.
Step 4. Node deletion Delete nodes from F according to some rule.
Step 5. Stopping rule If F = /0, then STOP. Otherwise, go back to Step 1.

Note that in the scheme above each node corresponds to a subdomain, and in what
follows the two terms will be used as synonymous. Such scheme is quite typical for
branch-and-bound methods. For these methods θ delivers a lower bound for each sub-
domain; each node is evaluated by evaluating feasible points within the corresponding
subdomain (if any) and possibly updating the upper bound; node branching can be
performed in several ways; node deletion is done through standard fathoming rules.
However, what is missing in our context is an easy way to obtain bounds. Therefore,
while we retain the branching structure, we need some other ways to define a function
θ and to evaluate, branch and delete nodes. All this will be specified in the following
subsections.

4.7.1 Node Evaluation
The evaluation of a subdomain H is done by running the MultiAgent Collaborative
Search (MACS) algorithm within H. The MACS algorithm explores the subdomain H
and stores in a local archive Al all the promising points in H. The local archive Al is
then compared to the global archive Ag containing all the points in the search space for
which P is true. The points in Ev(H) = (Al ∩Ag)∩H represent the evaluation of the
subdomain.

4.7.2 Node Branching
First we recall that each subdomain is a hyperrectangle. Branching is done through the
standard bisection method: the (relative) largest edge of the domain to be subdivided is
selected and two new subdomains (i.e, η = 2) are obtained by splitting with respect to
a point midpoint x̃. More formally, let
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H = [a1,b1]×·· ·× [an,bn]

be the domain to be subdivided. Let

j ∈ arg max
i=1,...,n

bi−ai

Di−di
,

where di and Di denote respectively the lower and upper bounds for variable xi in the
original domain D. We can now subdivide the interval bi − ai into a number n j of
subintervals and look for the one that contains the majority of the points in H. Now
if the subinterval has boundaries bik and aik with k = 1, ...,n j, the cutting point x̃ j is
defined as:

x̃ j =
{

bikif (bi−bik) > (aik−ai)
aikif (bi−bik)≤ (aik−ai)

Then, we define the two new subdomains

H1 = [a1,b1]×·· ·× [a j, x̃ j]×·· ·× [an,bn],

H2 = [a1,b1]×·· ·× [x̃ j,b j]×·· ·× [an,bn].

4.7.3 The Game of Exploration
The selection of the subdomain H on which to perform a new search with MACS de-
pends on the outcome of a simple game between two players: explorer and exploiter.

Before presenting the game and selection process, we need to introduce two other
functions ω and ϕ . Let H be a given subdomain and H̃ be its father. Function ω is
defined as follows for H:

ω(H) =
max{N(H),1}

N
�(D)
�(H)

(19)

where �(·) denotes the geometric mean of the edge lengths of an n-dimensional hyper-
rectangle, N is the number of points in Ev(H̃), obtained through the evaluation of the
father node H̃ by the MACS algorithm, and N(H) is equal to the number of points in
Ev(H̃) which also belong to H, i.e., N(H) =| Ev(H̃)∩H | (for the root node D we sim-
ply set N(D) = N). We also remark that in (19) the ratio between geometric means of
the edge lengths can also be viewed as the nth root of a ratio between volumes:

�(D)
�(H)

=
(

Vol(D)
Vol(H)

) 1
n

.

Then, small values for ω are obtained for subdomains with small N(H) and large vol-
ume, i.e., for subdomains with a low density of observed points. Function ϕ is defined
as follows:

ϕ(H) = |{i|I(xi) = 0}| (20)

Now, the player explore always tries to maximize the volume of the explored space
and therefore selects the subdomain with the lowest value of ω . The player exploiter
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always tries to maximize convergence and thus selects always the subdomain with the
highest value of ϕ . If both players play explore (explore-explore strategy), then the al-
gorithm will select the subdomain with the smallest ω for further exploration, if both
players play converge (converge-converge strategy), then the algorithm will select the
subdomain with the highest ϕ . If explorer plays explore first and exploiter plays con-
verge (explore-converge strategy) then, the algorithm will rank the subdomain accord-
ing to ω and then, among the first nω of them will take the one with the largest number
of elements in Al . Vice versa, if exploiter plays first (converge-explore strategy), the
algorithm will rank the subdomains according to ϕ and among the first nϕ will select
the one with the lowest ω . The selection of the strategy to play depends on the outcome
of the game.

If both players play converge then exploiter gets a reward only if it finds an improve-
ment while explorer gets no reward whatsoever. Since we are interested in collecting as
many different elements of a set as possible, this strategy is not convenient for any of
the two players. If both players play explore then the explorer gets a reward while the
exploiter gets half of the reward of the explorer only if an improvement is registered.
This strategy is convenient if no improvements are registered with any other strategy
or if no information is available. Thus, it is the first strategy that both players play at
the beginning. The outcome of the exploration of a subdomain could be: a) a number
of points belonging to the set X higher than the one already available, b) a number of
points belonging to the set X lower or equal to the number already available, c) no points
belonging to the set X . In the last case the algorithm plays explore-explore, in case a)
though the subdomain looks promising the higher number of points could suggest an
over-exploitation of the subdomain and the algorithm then plays explore-converge. Fi-
nally, in case b) the algorithm plays converge-explore.

4.8 Discussion

The hybrid behavioral-based approach presented in the previous sections is one possible
implementation of the concept expressed by Eq.8. In particular we used a very simple
action selection mechanism for both social and individualistic actions. More sophisti-
cated mechanisms may allow for a reduction of the number of function evaluations or
could include a learning mechanism. Furthermore, in the present implementation there
is a limited use of the past history of the search process. The behavior Eq.8 depends on
the archive Al , which works as a repository of the social knowledge, and on the state of
the agent at step k−1, therefore only a partial history is preserved and used.

4.9 Preliminary Optimization Test Cases

The proposed optimization approach, combining MACS with deterministic domain de-
composition, was implemented in a software code in Matlab called EPIC, and tested on
a number of standard problems, well known in literature. In a previous work [24, 25],
EPIC was tested on single objective optimization problems related to space trajectory
design, showing good performances.

Here we initially used a set of test functionsthat can be found in [10, 9]. In the next
section EPIC will be tested on a typical space trajectory optimization problem.
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Table 1. Multiobjective test functions

Scha f2 = (x−5)2 ; f1 =

⎧⎪⎪⎨⎪⎪⎩
−x i f x≤ 1
−2+x i f 1 < x < 3
4−x i f 3 < x≤ 4
−4+x i f x > 4

x ∈ [−5,10]

Deb f1 = x1 x1,x2 ∈ [0,1]

f2 = (1+10x2)
[
1−

(
x1

1+10x2

)α − x1
1+10x2

sin(2πqx1)
]

α = 2;. q = 4

T4 g = 1+10(n−1)+∑n
i=2[x

2
i −10cos(2πqxi)]; x1 ∈ [0,1];

h = 1−
√

f1
g xi ∈ [−5,5];

f1 = x1; f2 = gh i = 2, . . . ,n

The test case, T4, is commonly recognized as one of the most challenging problems
since it has 219 different local Pareto fronts of which only one corresponds to the global
Pareto-optimal front. In this case the exploration capabilities of each single agents are
enough to locate the correct front with a very limited effort. In fact even with just five
agents it was possible to reconstruct (see Fig. 2b) the correct Pareto front 20 times over
20 different runs. The total number of function evaluations was fixed to 20000 for each
of the runs, though already after 10000 function evaluations EPIC was always able to
locate the global front (see Fig. 2a).

Despite the small number of agents the sampled points of the Pareto are quite well
distributed with just few and limited interruptions. The use of a limited number of agents
instead of a large population is related also to the complexity of the algorithm. In fact
the complexity of the procedure for the management of the global archive is of order
nA(np + nA), where nA is the archive size and np is the population size, while the com-
plexity of the exploration-perception mechanism is of order np(n+np), therefore, even
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Fig. 2. Pareto front for the test case T4: a) 10000 function evaluations, b) 20000 function
evaluations
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Table 2. Comparison of the average Euclidian distances between 500 uniformly space points on
the optimal Pareto front for various optimization algorithms

Approach T4 Scha Deb
EPIC 1.542e-3 (5.19e-4) 5.4179e-4 (1.7e-4) 1.4567e-4 (3.61e-4)
NSGA-II 0.513053 (0.118460) 0.002536 (0.000138) 0.001594 (0.000122)
PAES 0.854816 (0.527238) 0.002881 (0.00213) 0.070003 (0.158081)
MOPSO 0.0011611 (0.0007205) 0.002057 (0.000286) 0.00147396 (0.00020178)

if the algorithm is overall polynomial in population dimension, the computational cost
would increase quadratically with the number of agents.

As an additional proof of the effectiveness of MACS, we compare the average Eu-
clidean distance of 500 uniformly spaced points on the true optimal Pareto front from
an equal number of points belonging to the solution found by EPIC, NSGA-II, PAES
and MOPSO (see Table 2).

5 Application to Space Trajectory Design

In this section we present an apparently very simple example of space trajectory opti-
mization. It is a two impulse transfer from the Earth to the asteroid Apophis. As it often
happens, the goal is to minimize the propellant consumption and the time of flight. The
cost of the mission, in fact, increases proportionally to both quantities.

The propellant consumption is a function of the velocity change, or ∆v[23], required
to depart from the Earth and to rendezvous with Apophis. Both the Earth and Apophis
are point masses, with the only source of gravity attraction being the Sun. Therefore,
the spacecraft is assumed to be initially at the Earth, flying along its orbit. The first
velocity change, or ∆v1, is used to leave the orbit of the Earth and put the spacecraft
into a transfer orbit to Apophis. The second change in velocity, or ∆v2, is then used to
inject the spacecraft into Apophis’ orbit.

The two ∆v’s are a function of the positions of the Earth and Apophis at the time
of departure t0 and at the time of arrival t f = t0 + T , where T is the time of flight. The
contour lines of the sum of the two ∆v is represented in Fig. 3 for t0 ∈ [3675,10500]T

MJD2000 and T ∈ [50,900]days.
As can be seen in the specified solution space D there is a large number of local

minima. Each minimum has a different value but some of them are nested, very close to
each other with similar values. For each local minimum, there can be a different front of
locally Pareto optimal solutions. The global Pareto front should contain the best transfer
with minimum total ∆v and the fastest transfer with minimum TOF.

The best known approximation of the global Pareto front is represented in Fig. 4. It
is a disjoint front corresponding to two basins of attraction of two minima as can be
seen in Fig. 5. The lower front is made of solutions with a very low transfer time, the
upper front, instead, is made of solutions with a much longer transfer time but a total
∆v similar to the one of the solutions belonging to the lower front.

Besides containing local minima with similar ∆v, the two basins of attraction present
similar values of the first objective function. Converging to the upper front is therefore
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Fig. 3. Earth-Apophis search space
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Fig. 4. Earth-Apophis transfer: dual front

quite a challenge since the lower front has a significantly lower value of the second
objective function. It is only when the optimizer converges to the a vicinity of the local
minimum of the upper front that the latter becomes not dominated by the lower front.
The upper front contains the global minimum with a total ∆v = 4.3786 k/s while the
lower front contains only a local minimum.
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Fig. 5. Earth-Apophis transfer: distribution of the solutions in the search space

Table 3. Comparison of the metrics M1 and M2 ont he Earth-Apophis case

Approach Metric 3000 6000 9000
EPIC M1 4% (39.00) 38% (22.28) 51% (17.53)

M2 1.89 (5.9) 1.66 (5.14) 0.66 (3.22)
NSGA-II M1 10% (26.51) 19% (27.54) 24% (25.63)

M2 20.96 (27.78) 11.99 (16.20) 10.12 (12.82)

In order to test the multi-objective optimizers with this simple but typical space tra-
jectory design problem, we define two metrics:

M1 =
1

Mp

Mp

∑
i=1

min
j∈Np

100
∥∥∥ f j− fi

fi

∥∥∥ (21)

M2 =
1

Np

Np

∑
i=1

min
j∈Mp

100
∥∥∥f j− fi

f j

∥∥∥ (22)

Although similar, the two metrics are measuring two different things: M1 is the sum,
over all the elements in the global Pareto front, of the minimum distance of all the
elements in the Pareto front Np from the the ith element in the global Pareto front. M2,
instead, is the sum, over all the elements in the Pareto front Np, of the minimum distance
of the elements in the global Pareto front from the ith element in the Pareto front Np.

Therefore, if Np is only a partial representation of the global Pareto front but is a very
accurate partial representation, then metrics M1 would give a high value and metrics M2
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Fig. 6. Earth-Apophis transfer: comparison of two not-converged runs

a low value. If both metrics are high then the Pareto front Np is partial and poorly
accurate. In Table 3 we represented metrics M1 and metrics M2, in brackets, for an
increasing number of function evaluations and for two different optimizers.

We compared EPIC against the optimization algorithm that displayed the best per-
formances on this case, NSGA-II. NSGA-II was run several times with crossover prob-
ability ranging from 0.5 to 0.9 in order to tune the main parameters, in particular we
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Fig. 7. Earth-Apophis transfer: domain decomposition process. The red circles are the non-
dominated solutions at each step while the blues dots are the whole set of solutions3.

performed several tests to find a good population size. The results in Table 3 were the
best obtained over all the runs. For 3000 function evaluations we used a population of
200 individuals while for the 6000 evaluations and the 9000 evaluations test we used a
population of 300 individuals since it was returning better results.

On the other hand EPIC was run with a very small population of 10 agents, with a
filter size of 5 agents. For, 3000 evaluations we did not use the domain decomposition.
For 6000 evaluations we used a decomposition in 2 subintervals. For 9000 evaluations,
we tested a 3 subdomain decomposition and a 2 subdomain decomposition. In both
cases the first cut is always along the TOF coordinate.
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For each number of function evaluations we performed 100 independent runs. The
table reports the percentage of times the metric M1 is below 2%, and in brackets the
average value of M1 over the 100 runs. It should be noted that a value of M1 larger
than 2% up to 10% does not necessary correspond to a fully unsuccessful run. The 2%
tolerance, on the other hand, guarantees that the algorithm was able to identify both
parts of the Pareto front with a good distribution of the points.

In the Table 3 we also reported the average value and the standard deviation (in
brackets) of metric M2. This second metric measures the accuracy of the convergence
to even a portion of the whole Pareto front.

As can be seen for a low number of function evaluations, NSGA-II performs better
than EPIC, though EPIC achieves a better value of M2, which means a better local
convergence on average. Conversely, when NSGA-II is not converging to the global
front, is converging to a local front, while when EPIC is not converging to the whole
global front is converging to a portion of it. Figs. 6 are showing two typical cases in
which the metric M1 is over 30% for both the optimization algorithms. In both cases the
number of function evaluations is 3000.

Fig. 7 shows an example of the domain decomposition process. At step 1 MACS is
run on the entire search space D and in this example identifies only the lower part of the
global front. The search space is then partitioned in two subdomains and MACS is run
on the unexplored one. The second step leads to the identification of a local front. The
third step explores the unexplored subdomain and identifies the upper part of the global
front. At each step MACS was run for 3000 function evaluations.

For a higher number of function evaluations, NSGA-II progressively increases the
number of successes, though the accuracy remains lower than for EPIC. The large pop-
ulation of NSGA-II, in fact, samples the solution space better than the small population
of EPIC. On the other hand the decomposition of the solution space allows EPIC to
increase the exploration even with a small number of agents. This is demonstrated by
the number of successful runs which is more than double than the one of NSGA-II.

6 Conclusions

In this chapter we presented a hybrid behavioral-based search algorithm for multiobjec-
tive optimization problems. We showed its effectiveness on a set of standard problems
and in particular on a space trajectory design problem. The latter, though very simple,
well illustrates some typical difficulties in the use of global methods for the design of
space trajectories.

Though some of them, like NSGA-II, perform statistically well, still on a small num-
ber of trials the result could be only a partial reconstruction of the full Pareto front or
a full but inaccurate reconstruction of it. The proposed hybridization increases the ro-
bustness (i.e. repeatability of the result) and the convergence accuracy at the same time.
Even the stochastic part of the algorithm, based on a multiagent system, performs better
compared to known optimizer. This is mainly due to good mixture of actions performing
both local and global search and to the adaptivity of the search.
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In many real world optimization problems, several optimization goals have to be con-
sidered in parallel. For this reason, there has been a growing interest in multi-objective
optimization (MOO) in the past many years. Several new approaches have recently been
proposed, which produced very good results. However, existing techniques have solved
mainly problems of “low dimension”, i.e., with less than 10 optimization objectives.
This chapter proposes a new computational algorithm whose design is inspired by par-
ticle mechanics in physics. The algorithm is capable of solving MOO problems of high
dimensions. There is a deep and useful connection between particle mechanics and high
dimensional MOO. This connection exposes new information and provides an unfamil-
iar perspective on traditional optimization problems and approaches. The alternative of
particle mechanics algorithm (PMA) to traditional approaches can deal with a variety
of complicated, large scale, high dimensional MOO problems.

1 Introduction

While single-objective mimetic algorithms (MAs) are well established and relatively
easy to parallelize, this is not the case for many-objective mimetic algorithms. Until
recently, many-objective combinatorial optimization did not receive much attention in
spite of its potential application. One of the reasons is due to the difficulty of deriving
many-objective combinatorial optimization models that are satisfactory. Nevertheless,
the need for parallelizing many-objective mimetic algorithms to solve many-objective
combinatorial optimization problems is a real one.

“Distribution problems” is a well-known class of fundamental combinatorial opti-
mization problems, which are much more difficult to solve than assignment problems.
Many practical situations can be formulated as a distribution problem. In fact, assign-
ment problems and transportation problems are both sub-problems of the distribution
problem.

In [1, 2], some methods were proposed to generate the entire set of exact solutions
for simple assignment problems. These methods however seem to be efficient only for
small-scale instances. For large-scale instances or more complex problems, their NP-
hardness and the multi-objectivity make these problems “intractable” by those meth-
ods. For this reason, it makes sense to consider “approximate” methods such as swarm

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 255–277.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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intelligent methods which have been found to be efficient in treating combinatorial opti-
mization problems; these latter methods can function independently of the mathematical
structure of the problem, and generate excellent solutions in a very short time [3].

Progress often occurs at the boundaries between disciplines. Throughout history,
many artifacts have been built, whose inspiration derives from the natural world. In the
field of computer science, especially in artificial intelligence, the need of parallel and
distributed intelligent theories and approaches inspired by the principles of nature for
difficult problems becomes greater and greater. Bio-inspired approach is probably the
most representative one of nature-inspired approaches (NAs) in recent times. On the
other hand, physics-inspired approaches did not receive as much attention in spite of
their potential advantages. Since simulated annealing algorithm (SAA) was proposed
successfully in 1983 [4], no other innovative and significant physics-inspired approach
has been suggested. On the contrary, significant bio-inspired approaches such as genetic
algorithm (GA) (1975) [5], ant colony optimization (ACO) (1991) [6], particle swarm
optimization (PSO) (1995) [7] were emerging one after another. In 1987, the elastic
net (EN) approach [8] was presented, which is a physics-inspired approach. Unfortu-
nately, the application and influence of EN were limited by EN’s unsubstantial theory
foundation. One must not forget although biology is experiencing rapid development,
physicists have also made great strides (e.g., particle mechanics) in recent years.

This chapter proposes a new approach—based on what we call the particle mechan-
ics algorithm (PMA)—to compute in parallel approximate efficient solutions to the
distribution problem with multiple objectives. By proposing this approach, we try to
explore a potentially new branch of MA (or NA), which is based on the laws of physi-
cal mechanics. Just like other MAs (or NAs) which draw from observations of physical
processes that occur in nature, our particle mechanics (PM) based approach is inspired
by physical models of particle kinematics and dynamics.

In PMA, we use mathematical formulations to describe or predict the properties and
the evolution of the different states of particles. The particles represent distinct parame-
ters in the problem, which follow a path towards a solution. Borrowing from “differen-
tial equation theory”, we have developed efficient techniques for solving multi-objective
optimization problems. The goal is to have all objectives optimized individually and
then collectively, and satisfying all the given restrictions.

In the physical world, mutual attraction between particles causes motion. The reac-
tion of a particle to the field of potential would change the particle’s coordinates and
energies. The change in the state of the particle is a result of the influence of the poten-
tial. For PMA, the objectives of individual optimizations are reached by the autonomous
self-driving forces of the particles. Global optimization is achieved by the potential of
the field, and any restrictions of the problem are satisfied via interaction potential be-
tween the particles.

Each particle is described by some differential dynamic equations, and it moves (to
a new state in the field) according to the results of these calculations. Specifically, each
particle computes the effect of its autonomous self-driving force, the field potential and
the interaction potential. If the particles cannot reach an equilibrium, they will proceed
to execute a goal-satisfaction process.
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Although there are obvious differences between particles in classical mechanics and
those in PMA, PMA is by and large inspired by classical mechanics. PMA enables
feasible many-objective optimization in very large scales. The approach has a low com-
putational complexity, which is crucial for its functioning in solving large-scale distri-
bution problems.

This chapter is part of the authors’ research work on distributed parallel theories and
approaches for intelligent processing based on the generalized particle model (GPM).
They have proposed the crossbar composite spring net (CCSN) approach [9], from
which the GPM approach has evolved. They studied distributed and parallel algorithms
for intelligent processing based on GPM, and their application in networks. GPM’s
application in the bandwidth allocation problem was presented in [10]. Variations of
the basic theme then resulted in several extended GPM models, including the “eco-
nomic generalized particle model” (E-GPM) which draws upon the economics theory
of Tatonnement processes; the model has also been applied to the bandwidth allocation
problem in communication networks.

All the authors’ past methods based on GPM targeted at a specific application to a
real-life problem. In this chapter, the PM method is described as a “generic” method
meaning potentially it can be applied to a range of different problems.

The structure of this chapter is as follows. In Section 2, we present the multi-
objective particle mechanics algorithm (PMA). Section 3 introduces the parallel mimetic
PM algorithm for solving multi-objective problems. In Section 4, we discuss the phys-
ical meanings of PMA. In Section 5, we give some experimental results. We conclude
the chapter in Section 6.

2 The PM Approach for the Multi-Objective Distribution Problem

Definition 1. In a multi-objective framework, the distribution problem can be formu-
lated as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : zq(X) = (Cq)T X =
I

∑
i=1

J

∑
j=1

cq
i jxi j q = 1,2, · · · ,Q

s.t.
I

∑
i=1

xi j = 1 j = 1,2, · · · ,J

J

∑
j=1

xi j = 1 i = 1,2, · · · , I

(1)

where X is a two-dimensional distribution vector, Cq a two-dimensional weight vector
(q = 1,2, · · · ,Q), and Q is the number of multiple objectives.

With this problem model, we can now examine the evolutionary multi-objective
model which can mathematically describe PMA for the multi-objective distribution
problem. The theory of evolution is a dynamical theory. The evolutionary dynamics
will drive PMA to the equilibrium state.

Definition 2. The distribution and weight dynamic equations of PMA are defined, re-
spectively, by
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x(t + 1) = x(t)+∆x(t) (2)

c(t + 1) = c(t)+∆c(t) (3)

The two dynamic equations are seen as the “PMA evolution” by fictitious agents
which manipulate the distribution and weight vectors until an equilibrium is reached. In
PMA, the rows and columns of distribution vector X are treated as two kinds of fictitious
agents (service particles and task particles). In fact, the weight vector is invariable; the
evolution of the weight vector only occurs in the computing process in order for us to
obtain efficient solutions of the distribution vector.

For fictitious agents—service particles (O) and task particles (S), there are three
factors related to the distribution vector (X) and the weight vector (C):

• personal utility (u) (to realize the multiple objectives);
• minimal personal utility (to realize max-min fair distribution and to increase the

whole utility) (F);
• interaction among particles (to satisfy the restrictions) (I).

According to “differential equation theory”, a variable’s increment to make it minimum
is equal to the sum of negative items from related factors differentiating the variable.
So we have the following definitions.

Definition 3. The increments of distribution and weight are defined, respectively, by

∆x≈ dx
dt

=−
Q

∑
q=1

(λ q
1
∂uq

O

∂x
+λ q

2
∂Fq

O

∂x
)−λ3

∂ IO

∂x
(4)

∆cq ≈ d p
dt

=−(γq
1
∂uq

S

∂c
+ γq

2
∂Fq

S

∂c
)− γ3

∂ IS

∂c
q = 1,2, · · · ,Q (5)

where λ q
1 ,λ q

2 ,λ3,γ
q
1 ,γq

2 ,γ3 are coefficients (q = 1,2, · · · ,Q).

Definition 4. Three kinds of factor functions for service particles and task particles are
defined, respectively, by

uq
Oi = 1−exp

(
−

J

∑
j=1

cq
i j · xi j

)
q = 1,2, · · · ,Q (6)

Fq
O = (kq

O)2In
I

∑
i=1

exp[(uq
Oi)

2
/

2(kq
O)2] q = 1,2, · · · ,Q (7)

IO = a1

I

∑
i=1

(
J

∑
j=1

xi j−1

)2

+a2

J

∑
j=1

(
I

∑
i=1

xi j−1

)2

(8)

uq
S j = 1−exp

(
−

I

∑
i=1

cq
i j · xi j

)
q = 1,2, · · · ,Q (9)

Fq
S = (kq

S)2In
J

∑
i=1

exp[(uq
S j)

2
/

2(kq
S)2] q = 1,2, · · · ,Q (10)

IS = IO (11)

where kq
O,a1,a2,k

q
S are coefficients.
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Now, we explain why the three kinds of functions are chosen.

1. The smaller the value of the summation in Eq. 6, the more profit the i-th service par-
ticle would obtain. The optimization problem here is posed as a minimization prob-
lem. And we use the exponential function in order that uq

Oi(t) would be between 0
and 1. uq

Oi(t) can be regarded as the q-th dimensional utility of service particle. The
smaller uq

Oi(t) is, the more profit service particle Oi would get. Schematically, the
q-th dimensional utility function uq

Oi of a particle corresponds to the q-th dimen-
sional coordinate of the q-th dimensional force-field. We define the distance from
the bottom boundary to the upper boundary of all q dimensional force-fields to be
1. The physical meaning of PMA is discussed in Section IV. A graphical presen-
tation of uq

Oi(t) is shown in Fig. 1. Obviously, the smaller uq
Oi(t) is the better. The

presentation of uq
S j(t) in Eq. 9 is similar.

2. For Eq. 7, 0 < kq
O < 1 is a parameter to be tuned in the implementation. The smaller

Fq
O is, the better. With Eq. 7, we attempt to construct a potential energy function,

Fq
O, such that the decrease of its value would imply the decrease of the maximal

utility of all the service particles. We prove that in Theorem 1. This way we can
optimize the distribution problem in the sense that we consider not only the indi-
vidual personal utility, but also the aggregate utilities, by decreasing the maximum
utility of all the service particles again and again. In fact, kq

O represents the strength
of the downward gravitational force in the q-th dimensional force-field. The bigger
kq

O is, the faster the particles would move down; hence, kq
O influences the conver-

gence speed of the distribution problem. kq
O needs to be carefully adjusted in order

to minimize the q-th objective. The explanation of Fq
S in Eq. 10 is likewise.

3. For Eq. 8, 0 < a1,a2 < 1. The smaller IO is, the better. a1, a2 are weights applied to
the distribution availability of service and the satisfactory ratio of the demands, re-
spectively. Eq. 8 describes the effect of interactions among service particles during
the distribution process. The first term and the second term of IO(t) perform penalty
functions with respect to the constraints on the utilization of service (or resources)
(i.e., service particles) and the degree of satisfaction of the demands (i.e., task parti-
cles) respectively. Therefore, distribution utilization and demands’ satisfaction can
be explicitly included as optimization objectives through some appropriate choices

Fig. 1. Graphical presentation of uq
Oi(t)
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of the coefficients a1 and a2 respectively. We presume that there are specific in-
teractive forces among particles, and these forces may cause the potential energy
components represented by the first and second term of IO(t) to decrease. In Eq. 11,
IS is defined as the same as IO.

We can therefore obtain the iteration velocity of service particles and task particles
by the following equations, respectively.

vq
Oi = duq

Oi

/
dt =

∂uq
Oi

∂xi j

dxi j

dt
(12)

vq
S j = duq

S j

/
dt =

∂uq
S j

∂cq
i j

dcq
i j

dt
(13)

vq
Oi represents the iteration velocity of the q-th objective by service particle Oi. Mean-

while, vq
Oi represents the velocity of the downward movement of service particle Oi in

the q-th dimensional force-field. The meaning of vq
S j is similar; it represents the itera-

tion velocity of the q-th objective by task particle S j and the velocity of the downward
movement of task particle S j in the q-th dimensional force-field.

Proving the PM model
In order to justify our choice of Eqs. 1-13 for the PM mathematical model, we give the
following theorems.

Theorem 1. If kq
O is very small, the decrease of Fq

O will cause a decrease of the service
particles’ maximal utility. (Likewise, if kq

S is very small, a decrease of Fq
S will cause a

decrease of the task particles’ maximal utility.)

Proof. Supposing that
M(t) = max

i
[(uq

Oi)
2(t)]. Because

M(t) = max
i

(uq
Oi)

2(t)≤
I
∑

i=1
(uq

Oi)
2(t)≤ I ·max

i
(uq

Oi)
2(t)=I ·M(t),

we have[
e

M(t)
2(kq

O)2

]2(kq
O)2

≤
⎡⎣ I
∑

i=1
e

(uq
Oi)

2(t)

2(kq
O)2

⎤⎦2(kq
O)2

≤
[

I · e
M(t)

2(kq
O)2

]2(kq
O)2

.

Simultaneously taking the logarithm of each side of the equation above leads to

M(t)≥ 2(kq
O)2In

I
∑

i=1
e

(uq
Oi)

2(t)

2(kq
O)2 ≥M(t)+ 2(kq

O)2InI,

2(kq
O)2In

I
∑

i=1
e

(uq
Oi)

2(t)

2(kq
O)2 ≤M(t)≤ 2(kq

O)2In
I
∑

i=1
e

(uq
Oi)

2(t)

2(kq
O)2 −2(kq

O)2InI,

2FO(t)≤max
i

uq
Oi(t)≤ 2FO(t)−2(kq

O)2InI.

Since I is the number of service particles (the number of rows of the distribution
vector X), 2(kq

O)2InI is constant.
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It turns out that Fq
O(t) at time t represents the maximum among uq

Oi(t) obtained by
the service particle Oi, namely, the minimum of the personal profit obtained by a service
particle at time t. Hence decreasing Fq

O(t) implies the decrease of the maximal utility of
the service particles. ��
Based on Theorem 1, we can construct the potential energy functions, Fq

O and Fq
S (see

Eqs. 7 and 10), such that the decrease of their values would imply the decrease of the
maximal utilities of the two kinds of particles. By decreasing the maximum utilities of
the two kinds of particles again and again, the aggregate utilities of whole problem will
decrease, which is the basis that PM algorithm can obtain the Max-min fair solution.

Firstly, we give the definition of Max-min Fairness. Then, Theorem 2-5 will explain
why the Max-min fair solution can be obtained by the PM mathematical model as de-
fined in Eqs. 1-13.

Definition 5. (Max-min Fairness) [11] A feasible distribution X is max-min fair if and
only if a decrease of any distribution x within the domain of feasible distributions must
be at the cost of an increase of some already larger distribution x. Formally, for any
other feasible distribution Y , if yi j < xi j then there must exist some i′ such that xi′ j ≥ xi j

and yi′ j > xi′ j.

Theorem 2. The behavior of the service particle Oi that is related to the term of Eq. 4,

−λ q
2
∂Fq

O
∂x , will always bring about the decrease of the maximal utility of all service parti-

cles, and the decrement of the maximal utility is directly proportional to the coefficient
vector λ q

2 . (Likewise, The behavior of the task particle S j that is related to the term of

the Eq. 5, −γq
2
∂Fq

S
∂c , will always bring about the decrease of the maximal utility of all

task particles, and the decrement of the maximal utility is directly proportional to the
coefficient vector γq

2 .)

Theorem 3. The behavior of the service particle Oi that is related to the term of the

Eq. 4, −λ q
1
∂uq

O
∂x , will always result in the decrease of the personal utility of service

particle Oi, and the decrement of its personal utility is related to coefficient vectors λ q
1 .

(Likewise, The behavior of the task particle S j that is related to the term of the Eq. 5,

−γq
1
∂uq

S
∂c , will always result in the decrease of the personal utility of task particle S j, and

the decrement of its personal utility is related to coefficient vectors γq
1 .

Theorem 4. The behavior of the service particle Oi that is related to the term of the
Eq. 4,−λ3

∂ IO
∂x , will decrease the potential interaction energy function IO, with the inten-

sity of the decrease being proportional to coefficient vector λ3. (Likewise, The behavior
of the task particle S j that is related to the term of the Eq. 5, −γ3

∂ IS
∂c , will decrease

the potential interaction energy function IS, with the intensity of the decrease being
proportional to coefficient vector γ3.

Theorem 5. (Max-min fair allocation) Max-min fair allocation can be obtained by the
mathematical model for the distribution problem with multi-objectives as defined in
Eqs. 1–13.

The proofs of Theorems 2–5 are omitted.
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3 The Parallel PM Algorithm

The results given in the previous sections suggest that we may use a parallel imple-
mentation of the evolutionary particle mechanics approach to solve the multi-objective
distribution problem. We consider such an algorithm in Table 1.

The algorithm PMA has in general a complexity of O(I +J), where I +J is the num-
ber of particles (the sum of the number of rows and columns of X). The time complexity
of the algorithm is O(I1), where I1 is the number of iterations for Costep 2 (the while
loop).

4 Physical Meaning of PMA

PMA puts emphasis on

• providing a view of individual and global optimization (with one to two objectives);
• parallelization with reasonably low time complexity;
• all objectives being optimized individually as well as collectively;
• the ability to deal with social interactions;
• the physical meaning of the model.

The mathematical model of PMA has its physical meaning.
In PMA, the rows and columns of the distribution vector X are treated as two kinds

of generalized particles (service particles and task particles) that are located in two
groups of force-fields, respectively, hence transforming the distribution problem into
the kinematics and dynamics of the particles in the two groups of force-fields.

The two groups of force-fields are a group of service (or resource) force-fields and
a group of task force-fields. Every force-field in a group of service force-fields or in a
group of task force-fields is a Q-dimensional space where coordinates in the space are
in [0,1].

Table 1. The PM algorithm

1. Initialization:
t ← 0
xi j(t) , cq

i j(t) ——Initialize in parallel

2. While (vq
Oi �= 0 or vq

S j �= 0 ) do
t ← t +1
uq

Oi(t) ——Compute in parallel according to Eq. 6
vq

Oi ——Compute in parallel according to Eq. 12
uq

S j(t) ——Compute in parallel according to Eq. 9

vq
S j ——Compute in parallel according to Eq. 13

dxi j(t)/dt ——Compute in parallel according to Eq. 4
xi j(t) ← xi j(t−1)+dxi j(t)/dt ——Compute in parallel according to Eq. 2
dcq

i j(t)/dt ——Compute in parallel according to Eq. 5

cq
i j(t) ← cq

i j(t−1)+dcq
i j(t)/dt ——Compute in parallel according to Eq. 3
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If the number of minimum objectives is 1, the particles will move downwards on a 1-
dimensional space (a line) (x1 ∈ [0,1]) during the optimization process. If the number of
minimum objectives is 2, the particles will move towards the origin in a 2-dimensional
space (a plane) (x1 ∈ [0,1],x2 ∈ [0,1]) during the optimization process. Analogously, if
the number of minimum objectives is Q, the particles will move towards the origin on a
Q-dimensional space (x1 ∈ [0,1], · · · ,xq ∈ [0,1], · · · ,xQ ∈ [0,1]) during the optimization
process, where xq is a coordinate of the q-dimensional space.

Particles in PMA move not only under outside forces, but also under their internal
forces; hence they are different from particles in classical physics. The kinds of force-
fields (resource force-field FR and demands force-field FD) are geometrically indepen-
dent, without any forces directly exerted from each other; they are mutually influenced
and conditioned by each other through a reciprocal procedure whereby the distribution
policy of the distributions x and the weight policy of the weights c change alternatively.
In this way, the two groups of force-fields form a pair of reciprocal dual force-field
groups.
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(a) Service particles in resource force-fields. (b) Task particles in demand force-fields.

Fig. 2. The physical model of PMA for the distribution problem with one objective

(a) Service particles in resource force-fields (b) Task particles in demand force-fields

Fig. 3. The physical model of PMA for the distribution problem with two objectives
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In a resource force-field FR, the coordinates of the Q-dimensional space of service
particles represent the utilities of the rows of the distribution vector X that are described
by the service particles. A particle will be influenced simultaneously by several kinds
of forces in the Q-dimensional space, which include the gravitational force of the Q-
dimensional space force-field where the particle is located, the pulling or pushing forces
stemming from the interactions with other particles in the same force-field, and the
particle’s own autonomous driving force.

When the number of minimum objectives is 1, all the above-mentioned forces that
are exerted on a particle are dealt with as forces along a vertical direction (along a
line). Thus a particle will be driven by the resultant force of all the forces that act on it
upwards or downwards, and moves along a vertical direction. The larger the downward
resultant force on a particle, the faster the downward movement of the particle. When
the downward resultant force on a particle is equal to zero, the particle will stop moving,
being at an equilibrium status. As shown in Fig. 2, the service particles that have service
or resource move in the resource force-fields FR, and the task particles that require
distribution move in the demand force-fields FD.

The downward gravitational force of a force-field on a particle causes a downward
component of the motion of the particle, which represents the tendency that the particle
pursues the common benefit of the whole group. The downward or upward component
of the motion of a particle, which is related to the interactions with other particles,
depends upon the strengths and categories of the interactions. The particle’s own au-
tonomous driving force is proportional to the degree the particle tries to move down-
wards in the force-field where it is located, i.e., the particle (service particle or task
particle) tries to acquire its own minimum utility.

When the number of minimum objectives is two, each service particle and task par-
ticle move towards the origin in a unit plane, as shown in Fig. 3.

When the number of minimum objectives is Q, each service particle and task particle
move towards the origin in a Q-dimensional space.

One major difference between the particle of the proposed generalized particle model
and the particle of a classical physical model is that the generalized particle has its own
driving force which depends upon the autonomy of the particle. All the generalized
particles, both in different Q-dimensional spaces of the same force-field and in different
force-fields simultaneously, evolve under their exerted forces; as long as they gradually
reach their equilibrium positions from their initial positions which are set at random,
we can obtain a feasible solution to the multi-objective distribution problem.

5 Simulations

Here, we give the experimental results which serve six purposes. First, we use a simple
example (a small-scale problem) to explain how our PM algorithm is used. Secondly,
the effectiveness of PM algorithm is tested on many-objective large-scale problems.
Thirdly, we show the actual times and iterations used to solve multi-objective optimiza-
tion problems on a cluster, which can verify the efficiency and parallelism of our PM
algorithm. Fourthly, we test the effectiveness of our PM algorithm to solve optimization
problems with different number of objectives (from single objective to many-objective
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problems). Fifthly, the performance of the PM algorithm is compared against NSGA-II
[12] for two-objective distribution problems. Finally, we make a general comparison
between the PM algorithm and other benchmark MAs.

All the experiments presented in this section are completed on a cluster. Each of the
machines of the cluster has a Pentium 4 2.0 GHz CPU with 512 Kbytes of L2 cache and
512 Mbytes of DDR SDRAM, and they are interconnected via Fast Ethernet.

5.1 How to Use the PM Algorithm

Here we give a simple distribution problem, and then use our method to find the
solution.

C1 =

⎛⎜⎜⎜⎜⎝
8 7 10 1 4
7 11 16 0 5
2 7 6 19 15
3 6 4 7 11

14 5 7 3 2

⎞⎟⎟⎟⎟⎠ C2 =

⎛⎜⎜⎜⎜⎝
10 7 10 5 11
3 19 5 3 13
2 18 9 0 1
13 3 7 5 12
7 4 6 15 3

⎞⎟⎟⎟⎟⎠ q = 1,2.

Find an X satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : zq(X) = (Cq)T X =
5

∑
i=1

5

∑
j=1

cq
i jxi j q = 1,2

s.t.
5

∑
i=1

xi j = 1 j = 1,2, · · · ,5

5

∑
j=1

xi j = 1 i = 1,2, · · · ,5

We use the PM algorithm to solve this distribution problem.
Step 1. Initialization: (t = 0)

X =

⎛⎜⎜⎜⎜⎝
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

⎞⎟⎟⎟⎟⎠
xi j is also initialized as a random number between 0 and 1. Based on some experiments
we have done, we found that the results are not affected by the initialization of X .

Standardization of C1 and C2:

C1 =

⎛⎜⎜⎜⎜⎝
0.80 0.70 1.00 0.10 0.40
0.44 0.69 1.00 0 0.31
0.11 0.37 0.32 1.00 0.79
0.27 0.55 0.36 0.64 1.00
1.00 0.36 0.50 0.21 0.14

⎞⎟⎟⎟⎟⎠ C2 =

⎛⎜⎜⎜⎜⎝
0.91 0.64 0.91 0.45 1.00
0.16 1.00 0.26 0.16 0.68
0.11 1.00 0.50 0 0.06
1.00 0.23 0.54 0.38 0.92
0.47 0.27 0.40 1.00 0.20

⎞⎟⎟⎟⎟⎠
1. According to Eq. 1,zq(X) = (Cq)T X =

5
∑

i=1

5
∑
j=1

cq
i jxi j,

we get
z1 = 2.6120, z2 = 2.6500
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2. According to Eq. 6, uq
Oi = 1−exp

(
−

5
∑
j=1

cq
i j · xi j

)
, we compute in parallel and get

u1
O1 = 0.4512 u1

O2 = 0.3861 u1
O3 = 0.4043 u1

O4 = 0.4311 u1
O5 = 0.3573

u2
O1 = 0.5425 u2

O2 = 0.3636 u2
O3 = 0.2839 u2

O4 = 0.4588 u2
O5 = 0.3737

3. According to Eq. 9, uq
S j = 1− exp

(
−

5
∑

i=1
cq

i j · xi j

)
, we compute in parallel and get

u1
S1 = 0.4079 u1

S2 = 0.4137 u1
S3 = 0.4706 u1

S4 = 0.3229 u1
S5 = 0.4102

u2
S1 = 0.4114 u2

S2 = 0.4663 u2
S3 = 0.4067 u2

S4 = 0.3283 u2
S5 = 0.4356

Step 2. Compute in parallel:
The first evolutionary iteration (t = 1):

1. According to Eq. (4), we have

∆xi j ≈ dxi j
dt =− 2

∑
q=1

(λ q
1
∂uq

Oi
∂xi j

+λ q
2
∂Fq

O
∂xi j

)−λ3
∂ IO
∂xi j

=−λ 1
1
∂u1

Oi
∂xi j

−λ 1
2
∂F1

O
∂xi j
−λ 2

1
∂u2

Oi
∂xi j

−λ 2
2
∂F2

O
∂xi j
−λ3

∂ IO
∂xi j

where
∂uq

Oi
∂xi j

= cq
i j · exp

(
−

J
∑
j=1

cq
i j · xi j

)
∂Fq

O
∂xi j

= ∂Fq
O

∂uq
Oi
· ∂uq

Oi
∂xi j

= (kq
O)2 · exp{(uq

Oi)
2/[2(kq

O)2]}·[(uq
Oi)/(kq

O)2]
5
∑

i=1
exp{(uq

Oi)
2/[2(kq

O)2]}
· ∂uq

Oi
∂xi j

∂ IO
∂xi j

= 2Ja1

I
∑

i=1

(
J
∑
j=1

xi j−1

)
+ 2Ia2

J
∑
j=1

(
I
∑

i=1
xi j−1

)
2. According to Eq. (5), we have

∆cq
i j ≈

dcq
i j

dt =−(γq
1
∂uq

S j

∂cq
i j

+ γq
2
∂Fq

S
∂cq

i j
)− γ3

∂ IS
∂cq

i j

where
∂uq

S j

∂cq
i j

= xi j · exp

(
−

I
∑

i=1
cq

i j · xi j

)
∂Fq

S
∂cq

i j
= ∂Fq

S
∂uq

S j
· ∂uq

S j

∂cq
i j

= (kq
S)

2 · exp
{

(uq
S j)

2/[2(kq
S)2]

}
·[(uq

S j)
2/(kq

S)2]
5
∑

j=1
exp

{
(uq

S j)
2/[2(kq

S)2]
} · ∂uq

S j

∂cq
i j

∂ IS
∂cq

i j
= 0

3. In addition,

xi j(t = 1) = xi j(t = 0)+∆xi j(t = 1)

c1
i j(t = 1) = c1

i j(t = 0)+∆c1
i j(t = 1)

c2
i j(t = 1) = c2

i j(t = 0)+∆c2
i j(t = 1)

λ 1
1 = 0.05 λ 1

2 = 0.05 λ 2
1 = 0.05 λ 2

2 = 0.05 λ3 = 0.01

γ1
1 = 0.05 γ1

2 = 0.05 γ2
1 = 0.05 γ2

2 = 0.05 γ3 = 0.01

a1 = 0.5 a2 = 0.5 k1
O = k2

O = k1
S = k2

S = 0.8
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As for these coefficients, we can draw the following conclusions from the experi-
ments we have done.

• When kq
O (or kq

S) is larger, the corresponding convergence speed is faster.
• If the values of λ and γ change in direct proportion, the experimental results will

hardly be influenced.
• If we increase λ q

1 , λ q
2 and do not touch the other coefficients, the q-th objective will

take precedence over all the other objectives.

We compute in parallel and get

X(t = 1) =

⎛⎜⎜⎜⎜⎝
0.1890 0.2007 0.1819 0.2277 0.2006
0.2133 0.1708 0.1881 0.2301 0.1978
0.2246 0.1766 0.2001 0.1968 0.2019
0.1973 0.2138 0.2100 0.2054 0.1736
0.1778 0.2109 0.2003 0.1886 0.2223

⎞⎟⎟⎟⎟⎠

C1(t = 1) =

⎛⎜⎜⎜⎜⎝
0.7751 0.6784 0.9719 0.0965 0.3876
0.4263 0.6687 0.9719 0 0.3004
0.1066 0.3586 0.3110 0.9648 0.7655
0.2616 0.5330 0.3499 0.6175 0.9690
0.9688 0.3489 0.4860 0.2026 0.1357

⎞⎟⎟⎟⎟⎠

C2(t = 1) =

⎛⎜⎜⎜⎜⎝
0.8818 0.6219 0.8816 0.4343 0.9702
0.1550 0.9717 0.2519 0.1544 0.6597
0.1066 0.9717 0.4844 0 0.0582
0.9690 0.2235 0.5231 0.3667 0.8926
0.4554 0.2624 0.3875 0.9650 0.1940

⎞⎟⎟⎟⎟⎠
z1(t = 1) = 2.5243, z2(t = 1) = 2.5590

Obviously, z1(t = 1) < z1(t = 0) and z2(t = 1) < z2(t = 0), and the distribution
problem is optimized.

The evolutionary experimental results and the optimization trend from t = 0 to t = 18
are shown in Fig. 4 and Fig. 5.

As shown in Fig. 4 and Fig. 5, the two-objective distribution problem is optimized
by the evolution of the PM algorithm. The convergence speed is faster at the beginning
of evolution. The optimization trend of z1 and z2 reflects exactly the optimization of the
problem, that is, the distribution problem is optimized step by step.

5.2 Effectiveness of the PM Algorithm

We pick 320× 200-scale combinatorial optimization problems with five objectives to
test our PM algorithm. Of course, for larger scales and problems of more objectives,
our PM algorithm can work out the optimum solutions quickly too.

The problem-related matrixes C1,C2,C3,C4,C5 are randomly generated. We let
(1) λ q

1 ,λ q
2 (q = 1,5) be 0.05;

(2) λ3 = 0.01;
(3) γq

1 ,γq
2 (q = 1,5) be 0.05;

(4) γ3 = 0.01;
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Fig. 4. Optimization from t = 0 to t = 18

Fig. 5. Optimization from t = 5 to t = 18

(5) a1=0.5 and a1=0.5;
(6) kq

O,kq
S(q = 1,5) be 0.8.

Because the problem-related matrices are too large to list here, we give the results
of the problem directly. The evolutionary experimental results for z1,z2,z3,z4,z5 are
depicted in Fig. 6.

We use 16 computing modes of the cluster (mentioned at the beginning of this sec-
tion) to compute the solution. More data about the solution are shown in Table 2.
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Fig. 6. The optimization trend of five objectives in a large-scale problem

Table 2. Other solution-related data

Objectives 5
Processors 16
Scale 320×200
Max iterations 50000
Convergence iterations 1447
Convergence time (second) 49.934
z(t = 1447) 9.16125010
z(t = 1448) 9.16125010

As shown in Fig. 6, the five optimization curves of z1,z2,z3,z4,z5 reflect exactly
the optimization of the problem and five objectives. The convergence speeds of five
objectives are fastest at the beginning (about from t = 0 to t = 20) and faster within
the medium range. At t = 1447, z(= z1 + z2 + z3 + z4 + z5) reaches its minimum
(9.16125010), and stays unchanged in the remainder of the iterations. For this 320×
200-scale problem, PM algorithm converges to a stable equilibrium state when t =
1447. Undoubtedly this solution is the optimum solution as it minimizes z(z1,z2,z3,
z4,z5), which verifies the approach’s convergence and its ability to arrive at the opti-
mum for large-scale many-objective problems.

In Table 2, “Processors” represents the number of computing nodes in the cluster
we used to compute the solution. We use the number of rows and columns of dis-
tribution matrix (X) to represent the “scale” of the problem. “Convergence time and



270 X. Feng and F.C.M. Lau

iterations” represent the actual time and iterations used to compute the solution (a sta-
ble equilibrium) on the cluster. Considering the situation that, after many iterations,
stable equilibrium is still not reached by the PM algorithm, we should end the compu-
tation at this time. When t =“Max iterations”, the PM algorithm ends. z is aggregated
by z1,z2,z3,z4,z5, representing the optimization of the whole problem.

5.3 Efficiency and Parallelism of the PM Algorithm

Mimetic algorithms (MAs) provide a valuable alternative to traditional methods because
of their inherent parallelism and their ability to deal with difficult problems. Our PM
approach as a new branch of MA, has these two main advantages too. The distribution
and weight variables, xi j and cq

i j, can be computed and updated in parallel without any
information exchange, which is the foundation of PMA’s parallelism.

In order to test the high parallelism and good scalability of the PM algorithm, we
compute multi-objective problems of different scales both in the parallelized way and
the non-parallelized way. The hardware and software environment in which these sim-
ulations are run have been mentioned at the beginning of this section.

Convergence time and iterations for different multi-objective problems using PMA
are shown in Table 3 and Table 4. In the two Tables, the data can be categorized into two

Table 3. Convergence time and iterations of PMA for multi-objective medium-scale problems

Objective Scale 1 parallel node 4 parallel nodes 8 parallel nodes 16 parallel nodes
time(s) iterations time(s) iterations time(s) iterations time(s) iterations

5 32×4 0.085 101 0.296 101 0.516 101 0.705 99
5 32×8 0.167 102 0.295 100 0.509 95 0.747 105
5 32×12 0.272 101 0.289 99 0.505 101 0.729 100
5 32×16 0.365 102 0.337 98 0.516 102 0.738 100
5 32×20 0.436 105 0.394 108 0.63 104 0.77 105
5 32×24 0.611 113 0.453 110 0.607 111 0.786 108
5 32×28 0.672 115 0.473 116 0.645 114 0.864 123
5 32×32 0.842 121 0.51 124 0.744 120 0.881 125
5 32×36 1.059 140 0.568 132 0.737 139 0.878 126
5 32×40 1.087 133 0.664 139 0.819 145 1.16 153
5 32×44 1.333 147 0.807 159 0.853 154 1.01 144
5 32×48 1.866 183 0.805 161 0.916 161 1.047 149
5 32×52 1.74 161 0.87 171 0.962 174 1.268 189
5 32×56 2.367 201 0.995 189 1.135 195 1.285 190
5 32×60 2.753 217 1.111 189 1.292 222 1.242 183
5 32×64 2.851 222 1.516 256 1.239 213 1.401 218
5 32×68 2.915 206 1.386 229 1.325 226 1.601 239
5 32×72 3.329 220 1.342 217 1.465 250 2.085 267
5 32×76 3.737 238 1.701 268 1.667 283 1.865 286
5 32×80 5.304 318 2.005 302 1.613 263 1.897 287

Table 4. Convergence time and iterations of PMA for multi-objective large-scale problems

Objective Scale 1 parallel node 4 parallel nodes 8 parallel nodes 16 parallel nodes
time(s) iterations time(s) iterations time(s) iterations time(s) iterations

5 320×40 12.81 153 3.702 159 2.39 160 1.90 166
5 320×80 55.26 324 14.161 316 7.92 316 5.74 348
5 320×120 136.11 537 39.516 580 19.65 554 12.62 602
5 320×160 289.79 851 79.355 907 43.05 933 25.87 973
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Fig. 7. Convergence time of PMA for multi-objective medium-scale problems

Fig. 8. Convergence time of PMA for multi-objective large-scale problems

parts. One part is related to the sequential version, which comes from our experimental
results using one computing node of the cluster. The other part is related to the parallel
version, which comes from the results using 4, 8 and 16 computing codes of the cluster.
“Iterations” and “time” are the iterations and time PMA takes to converge.
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Fig. 9. Convergence speeds of PMA for multi-objective problems

As shown in Fig. 7 and Fig. 8, the convergence time of the sequential version in-
creases exponentially with the scale, which is similar to all the exact methods. When
parallelized, the convergence time drops significantly across the larger scale problems.
The times for the smaller scale problems are dominated by the message exchange time,
and the sequential version appears to be more efficient in that range. For the large-scale
problems (see Fig. 8), the more computing nodes of the cluster we used, the less actual
times used to compute the solutions.

As shown in Fig. 9, the convergence speeds (in terms of number of iterations to
convergence) of the sequential version and parallel version increase steadily with the
scale. The convergence speed of PMA is almost not related to the computing version
(sequential version or parallel version).

5.4 Problems with Different Numbers of Objectives by PMA

Here we test the effectiveness of our PM algorithm to solve problems with different
numbers of objectives (from single objective to many-objective problems). Conver-
gence time and speeds using PMA for different numbers of objectives are shown in
Table 5 and Table 6. Table 5 and Fig. 10 show the relation between the convergence
time, the number of objectives and computing version (sequential or parallel) when the
scale of the problems is fixed (at 80× 80). Table 6 and Fig. 11 show the relation be-
tween the convergence time, the number of objectives and the scale when the computing
version is fixed (parallel version using 16 computing nodes of the cluster).

As shown in Fig. 10, the convergence time increases steadily when the number of
objectives of the problem increases. The more computing nodes of the cluster are used
to compute the solutions, the slower the convergence time’s increase with the number
of objectives. The experimental results verify the good parallelism of our PM approach
for multi-objective optimization problems.

As shown in Fig. 11, the more the objectives, the faster the convergence time would
increase with the scale. The experimental results verify that our PM approach can deal
with many-objective, large-scale optimization problems.
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Table 5. Convergence time and speeds of PMA for different numbers of objectives, medium-scale
problems

Objective Scale 1 parallel node 4 parallel nodes 8 parallel nodes 16 parallel nodes
time(s) iterations time(s) iterations time(s) iterations time(s) iterations

1 80×80 4.69 539 1.57 526 1.35 536 1.47 531
5 80×80 13.00 308 3.92 305 2.77 297 2.40 280
10 80×80 25.25 298 7.80 310 4.80 283 4.49 288
15 80×80 36.69 292 11.28 297 7.53 296 6.92 313
20 80×80 51.90 308 16.02 319 11.22 331 10.37 335
25 80×80 70.70 336 21.07 326 14.10 324 12.47 344
30 80×80 81.58 323 24.19 319 17.42 342 12.79 308
35 80×80 101.45 338 31.46 355 19.85 338 17.39 361
40 80×80 123.20 367 36.58 362 24.09 360 19.55 355
45 80×80 141.15 373 40.62 354 26.76 347 21.91 343
50 80×80 157.11 373 49.10 382 29.26 342 25.41 353
55 80×80 181.71 386 52.29 372 34.65 376 28.76 379
60 80×80 186.66 369 58.20 383 37.07 364 31.30 380
65 80×80 221.14 399 67.81 381 41.55 376 36.08 397
70 80×80 237.41 404 69.53 416 46.24 391 39.32 402
75 80×80 251.73 396 75.90 402 50.80 380 41.70 409
80 80×80 278.09 409 83.24 405 52.46 416 43.63 389
85 80×80 313.88 440 85.04 397 56.10 387 47.35 406
90 80×80 345.14 456 86.90 375 63.68 422 52.20 426

Table 6. Convergence time and speeds of PMA for different numbers of objectives, large-scale
problems using 16 computing nodes of the cluster

Scale 1 objective 5 objectives 50 objectives
time(s) iterations time(s) iterations time(s) iterations

320×40 0.983 242 1.90 166 16.767 176
320×80 2.583 600 5.74 348 58.827 393
320×120 5.453 1046 12.62 602 169.793 816
320×160 10.8 1759 25.87 973 343.651 1312
320×200 15.868 2227 42.034 1293 569.017 1832
320×240 29.419 3327 63.617 1722 1044.953 2842
320×280 38.901 4159 99.039 2276 1571.968 3711
320×320 63.718 5711 130.258 2679 2113.836 4351
320×360 84.762 6806 183.987 3410 3358.083 5839
320×400 118.984 8404 247.028 4122 4276.371 6758
320×440 155.671 9816 336.842 4988 5839.789 8245
320×480 262.693 12544 446.898 5834 8130.714 9963
320×520 307.017 13909 578.865 6845 9729.199 11014
320×560 374.298 15629 699.978 7718 13528.261 13064
320×600 425.01 17180 861.57 8609 15294.553 14319
320×640 594.781 19854 997.091 9528 18108.043 15921
320×680 698.079 21922 1641.718 11881 25035.577 18459
320×720 774.948 23927 1418.417 11523 27951.384 20024
320×760 987.354 26780 2122.651 13738 37178.713 22961
320×800 1332.217 30418 2196.459 14275 38786.457 24314

5.5 Performance Comparison between PMA and NSGA-II

In this subsection, we compare the proposed algorithm, PMA, with NSGA-II [12] for a
number of two-objective distribution problems which are similar to the example prob-
lem mentioned in subsection 5.1. For the NSGA-II, we use a standard real-parameter
SBX and polynomial mutation operator with ηc = 10 and ηm = 10, respectively. We run
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Fig. 10. Convergence time of PMA for different numbers of objectives, medium-scale problems

Fig. 11. Convergence time of PMA for different numbers of objectives, large-scale problems
using 16 computing nodes of the cluster
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Fig. 12. The two solution spaces of PMA and NSGA-II respectively for 100 random two-objective
problems

each algorithm for 100 random two-objective problems (using the same 100 problems
for both); the results are presented in Fig. 12.

As marked by the two rings in Fig. 12, the solution space of PMA is closer to the
origin than that of NSGA-II. From the experimental results, it can be seen that PMA has
better performance than the normal NSGA-II for two-objective distribution problems.

5.6 Comparison between PMA and Other Benchmark MAs (NAs)

As mentioned in Section 1, popular mimetic algorithms (MAs) (or nature-inspired ap-
proaches (NAs)) include genetic algorithm (GA), simulated annealing algorithm (SA),
ant colony optimization (ACO), particle swarm optimization (PSO), etc. The proposed

Table 7. Common features between PMA and other benchmark MAs

Aspects Common features
Drawn from Observations of physical processes that occur in nature
Belong to The class of meta-heuristics, approximate algorithms
Parallelism Have inherent parallelism
Performance Consistently perform well
Fields of application Artificial intelligence including multi-objective optimization
Solvable problems All kinds of difficult problems
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PMA and these benchmark MAs share some common features, which are listed in
Table 7.

We also summarize the relative differences between our PMA and the benchmark
MAs in Table 8.

6 Conclusion

In this chapter, we propose a novel mimetic approach—particle mechanics algorithm
(PMA) for solving multi-objective distribution problems, which is based on the theory
of particle mechanics. The approach maps a given distribution problem to the movement
of particles in a multi-dimensional space in a pair of (dual) groups of force-fields. The
particles move according to certain rules defined by a mathematical model until arriving
at a stable state; subsequently, the solution of the multi-objective distribution problem
is obtained by anti-mapping the stable state.

Although there are many differences between particles in classical mechanics and
those in PMA, we have shown that being inspired by classical mechanics, PMA enables
feasible many-objective optimization of problems of very large scale. The PM approach
has a low computational complexity, which is crucial for the functioning of large-scale
distribution problems.
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For tackling an multi-objective optimization problem (MOP), evolutionary computa-
tion (EC) gathers much attention due to its population-based approach where several
solutions can be obtained simultaneously. Since genetic algorithm (GA) and evolution
strategy (ES) are often used in EC, we discuss only GA and ES in this chapter. Although
both of them have global and local search capability, theoretical/empirical analysis re-
veals that GA is rather global search and ES is rather local search on MOP. These facts
are related to how to generate offspring, i.e. crossover in GA and mutation in ES. On
MOP, the crossover in GA and the mutation in ES generate differently distributed off-
spring. If mating in the crossover is not restricted, the crossover in GA can generate
new offspring globally due to combination of parents which converge different points.
Oppositely, the mutation in ES can generate the similar offspring with parent, i.e. lo-
cally distributed new offspring, because the offspring is generated by adding normally
distributed random values to the parent. Recently, memetic algorithm, which combines
GA with local search algorithm, is popular due to its performance. Since ES on MOP
works as local search, we combine GA with ES as one of memetic algorithms in this
chapter. This algorithm is called as hybrid representation. Several issues caused by the
combination of GA and ES are discussed, e.g. the discretization error, self-adaptation
and adaptive switching. Experiments are conducted on five well-known test functions
using six different performance indices. The results show that the hybrid representation
exhibits better and more stable performance than the original GA/ES.

1 Introduction

Evolutionary computation (EC), which mimics nature evolution, gathers much atten-
tion, in particular, in optimization research field [10, 18]. The main reasons are follow-
ings: no gradient information of objective function is necessary; no explicit equation of
objective function is requested; it is easy to escape a local optimum; its performance
is robust; its usage is easy and so on. Many literature, where EC solves optimization
problems with one objective, have been already reported (see [2]).

The EC has three main streams, i.e. genetic algorithm (GA) [10], evolution strategy
(ES) [18], evolutionary programming (EP) [9]. Later, genetic programming (GP) was

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 281–307.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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added as a forth direction [13]. Since many books are available for the details of GA,
ES, EP and GP, we will not explain the details here1.

Usually all of these algorithms have a specific representation which is used to en-
code the design parameters of a particular problem in chromosome, although some can
be used in conjunction with a variety of different representations. In EC two types of
representations are widely used: the binary representation, which is motivated by the
building block hypothesis in GAs [10] and the real-valued representation which is mo-
tivated by the idea to choose the natural problem representation especially in the con-
text of ESs [18]. In particular the real-valued representation has frequently been used
also with GAs and the separation between GA (binary encoding) and ES (real-valued
encoding) is certainly not valid any longer [3, 7, 8, 17]. This research field is called
Real-Coded Genetic Algorithms (RCGAs). Note that we use the terms representation
and encoding synonymously.

Recently, multi-objective optimization (MOO) is becoming more popular than single
objective optimization because most of real-world applications have several objectives
which generally conflict with each other. In order to solve multi-objective optimization
problems (MOPs), EC are also often used because of its population-based approach.
Since EC has several individuals, the set of solutions, which is a target of MOPs, can
be obtained in one run. In the literature, a wide range of methods has been proposed;
examples are multi-objective genetic algorithm (MOGA), non-dominated sorting ge-
netic algorithm (NSGA), fast and elitist NSGA (NSGA-II), Pareto archived evolution
strategy (PAES), see [1, 5] for a comprehensive list.

As one of algorithms for MOPs, we proposed an algorithm called hybrid represen-
tation (HR) by combining ES and GA [15]. Our original motivation for using hybrid
representation was to exploit the different dynamics of populations based on different
representations during the search process. These dynamics must be analyzed in both the
parameter as well as in the fitness space [14]; they are strongly influenced by the choice
of the representation and the variation operators. In [14], the dynamics of ESs based
on the real-valued representation were observed by projecting the normal distribution
onto the fitness space. Since the ES-mutation is carried out by adding a normally dis-
tributed random value to the current parent, a more local search can be realized. In GAs
with binary encoding, the main search operator is crossover. By exchanging parts of the
chromosomes between several parents, new offspring are generated. It is intuitive that
the resulting offspring distribution and therefore, the dynamics will be very different
from the one generated by the ES-mutation.

We show two typical snapshots of the different dynamics on test function SCH1 (20
dimensions) in Figure 1 and 2. Here, SCH1 is a test function which can be found in
Section 3. In Table 1, the parameters used here are shown. Besides the representations
and operators all other parameters of the search process are identical.

In general in the early generations (exploration phase), the distribution of population
should be wider. Following this argument, the distribution of offspring in Figure 2 is
better. However, in later generations (exploitation phase), the distribution should be
concentrated near the Pareto front. In this case, the distribution of offspring in Figure 1
seems to be better.

1 In this paper, we will discuss only GA and ES because they are often used in the literature.
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Fig. 1. Snapshot of the distribution of parents (circles) and offspring (asterisks) at generation 25
and 200 using real-valued representation and ES-mutation
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Fig. 2. Snapshot of the distribution of parents (circles) and offspring (asterisks) at generation 25
and 200 using binary encoding and crossover

Our basic idea is to exploit both dynamics. Using the binary representation we want
to realize a wider distribution of offspring in the early stage and using the real-valued
representation with the ES-mutation we favor a concentrated distribution of offspring in
the later stage to facilitate efficient local search. Since ES works rather as local search,
HR can be also classified in memetic algorithms which combine GA with local search.

We will discuss the framework of Hybrid Representation (HR) in Section 2. In
Section 3, we will introduce performance indices and test functions to be used for
evaluation and compare the HR with two standard methods. As an extension of HR,
we combine several representations, i.e., binary coding, Gray coding and real-valued
representation, in Section 4. In Section 5, we discuss our results and we conclude this
chapter in Section 6.
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Table 1. Parameters for investigating different dynamics

Figure 1 Representation Real-valued representation
Population size 100
Mutation ES-mutation. See Section 2.1
Self-adaptation Also see Section 2.1
Recombination Not used
Initial step size σi ∈ [0,1]
Lower threshold σi ≥ 0.004×|xi|
Selection Crowded tournament selection by Deb [6]

Figure 2 Representation Binary encoding
Population size 100
Coding Gray coding
Crossover One-point crossover
Crossover rate 0.9
Mutation (GA) Bit flip
Mutation rate (GA) 0.01
Number of bits per 20
one design parameter
Selection Crowded tournament selection by Deb [6]

2 Hybrid Representation

2.1 Representation and Genetic Operators

In the Hybrid Representation (HR), each individual has two chromosomes. One is the
binary encoding and the other is the real-valued representation of the design parame-
ters. Additionally, each individual has one special chromosome, called switching chro-
mosome, with two alleles that indicate which representation is to be used, i.e. allele B
specifies the binary encoding (and respective operators) and R the real-valued represen-
tation (and ES-mutation).

An example of chromosomes for the hybrid representation is shown in Figure 3.
Since both chromosomes have the same value, the encoding is redundant and synchro-
nization is necessary. Note that for each individual either the binary or the real-valued
representation is used while the other representation is only updated. Although the anal-
ogy with dominant and recessive alleles in biological systems can be seen, it is not en-
tirely correct. In our system the value of the design parameter is always identical, it is
the representation of the parameters that changes, which would be like changing the
genetic composition of the allele without changing its actual value.

To make sure that the binary and the real-valued chromosomes always encode the
same parameter value they have to be synchronized:

1. If the switching chromosome reads B, the data in the binary representation are
copied to the real-valued representation.

2. If the switching chromosome reads R, the data in the real-valued representation are
copied to the binary representation. If the value in the real-valued representation is
out of the encoding range, the value is set to the nearest boundary.
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Fig. 3. The hybrid representation using three chromosomes. The alleles of the switching chro-
mosome are B or R. If the switching chromosome has the allele of B, the binary encoding is active
and the real-valued representation is inactive, vise versa.
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Fig. 4. Crossover in the hybrid representation. Even parents with allele R take part in the crossover
operation.

In step 2, a discretization error will occur. Furthermore, the values which are out of
the encoding range are shifted. On some test functions, this discretization error and
the shifting shows significant influence. Both are very important when we compare the
performance of the real-valued representation and the binary representation. We will
discuss this topic in more detail in Section 5.2.

Associated with the binary representation are the one-point crossover and GA-type
mutation, i.e., flipping bits with probability Pm. The crossover operator relies on a suf-
ficient number of parents to act upon, therefore we apply the crossover operator to the
whole population irrespective of whether the first chromosome indicates B or R. There-
fore, parents with the value R in their switching chromosome also join the crossover
operation, see Figure 4. GA-mutation is only applied to individuals with active binary
encoding, i.e., with the allele B in their switching chromosome.

ES-mutation is applied to individuals with active real-valued representation, thus
with the allele R in the switching chromosome. Furthermore, following the concept of
mutative self-adaptation, the standard deviations of the normal distribution, σi, which
are called step-sizes or strategy parameters, are also mutated:

σi(t) = σi(t−1)exp
(
τ ′z

)
exp(τzi) ; i = 1, . . . ,n, (1)
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where t and n are the generation number and the dimension of a design parameter,
respectively. The variables, z and zi, are N (0,1) distributed random values. The pa-
rameters, τ and τ ′ have standard values:

τ =
1√
2n

, τ ′ =
1√
2
√

n
. (2)

However, the problem with the self-adaptation is that in the case when the active encod-
ing is the binary one, the parameter value is changed without any changes in the strategy
parameter. If at a later stage the representation is switched (back) to the real-valued one,
the setting of strategy parameters is likely to be inappropriate. In Section 2.3, we will
consider this case in more detail.

2.2 Switching Representations

We initialize the switching chromosome of the population with equal probabilities for
the alleles B and R, i.e., on average half of the individuals will start with an active binary
representation and half with an active real-valued representation.

During the optimization the offspring inherits the switching chromosome with equal
probability from either of its parents. In addition, the chromosome is mutated or flipped
(from B to R and R to B) with a probability (Ps = 0.01). In order to avoid extinction of
any of the alleles, at least 5% of the whole population is forced into having an active
binary or real-valued representation.

2.3 Self-adaptation in GA-Based Method

In the first trial, the following approximate method is used to adapt the strategy param-
eters even during binary representation based search. If an offspring is generated by the

x1

x2

1σ

σ2

Parent

Offspring

Fig. 5. Self-adaptation of the strategy parameters of ES-mutation during the search process with
active binary representation
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Fig. 6. The history of step sizes on ZDT1 (n = 50). The switching chromosome is fixed to B. The
average values of 30 runs are shown.

crossover operator, its distance to the parent is measured and directly is used to adjust
the strategy parameters σi along each coordinate axis, see Figure 5. Since the strategy
parameters tend to converge to small values rather quickly the overestimation of the size
that might occur using the above outlined method is not harmful to the overall search
process.

To see whether this self-adaptation works or not, we fix the switching chromosome
to B for all generations and record the history of step sizes in the chromosomes, which is
shown in Figure 6 for the ZDT1 (n = 50) test function, see Section 3. The plot shows all
50 strategy parameters averaged over 30 runs. It is evident that a “typical” convergence
behavior of the step sizes is realized.

2.4 Algorithm

The rough algorithm of HR is shown as below.

1. Initialize parental population.
2. Initialize switching chromosome.
3. Evaluate parental population.
4. Set the generational index t = 1.
5. if (t ≤ tmax)

a) Reproduce offspring population.
b) Mutate switching chromosome.
c) Compensate the minimum Number of offspring with “B” and “R”.
d) Crossover for all offspring.
e) Mutation in offspring with “B”.
f) ES-type self-adaptation in the offspring with “R”.
g) ES-type mutation in the offspring with “R”.
h) Synchronize the design parameters according to the switching chromosome.
i) Self-Adaptation in GA for the offspring with “B”.
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j) Evaluate offspring population.
k) Crowded tournament selection.
l) Set t = t + 1.

6. Output parental population.

In the step (1), parental population is randomly initialized. First, the binary chro-
mosome is initialized. Secondly, the initialized binary chromosome is decoded and the
value is stored in the real-value chromosome. By this flow, the chromosomes store the
identical design parameters. The strategy parameters are also initialized. The step (2)
initializes the switching chromosome, i.e. whether “B” or “R”. Then, the parental pop-
ulation is evaluated in the step (3). The generational index t is set as 1 in the step (4).
Until t becomes the maximum generation tmax, the steps (a)-(l) are repeated in the step
(5). The step (a) reproduces offspring population from the parental population. With the
mutation rate ps, the switching chromosome is mutated in the step (b). To keep the min-
imum number of offspring with “B” and “R”, the switching chromosome is checked. If
the number of offspring with “B” or “R” is less than the minimum number, the switch-
ing chromosome is mutated until the minimum number is kept in the step (c). With all
offspring, the crossover is carried out in the step (d) and the mutation is carried out
in the offspring with “B” in the step (e). For the offspring with “R”, the ES-type self-
adaptation and the ES-type mutation are carried out in the steps (f) and (g). According
to the switching chromosome, design parameters in the binary chromosome and the
real-valued chromosome are synchronized in the step (h). For the offspring with “B”,
the self-adaptation is carried out in the step (i). The step (j) evaluates the offspring. With
the crowded tournament selection, the next parent is selected in the step (k). Then, the
generational index is increased by “1”. After t becomes tmax, the parental population is
output as a final solution set in the step (6).

3 Simulation Results

Judging the performance of multi-objective optimization algorithms is not an easy task;
this is reflected by the large number of performance indices (PIs) that can be found in
the literature [1, 5, 12, 15, 20, 21]. Since no single performance index is sufficient for
comparing two algorithms, (See [15] for a criticism of performance indices), it seems
most appropriate to use a portfolio of different PIs.

In [15], the performance indices were grouped into several different classes. In this
section, six different PIs are used:

• Deb’s γ index [5, 6] :
This PI is based on the distance from the solution set, S, to the Pareto optimal
solution set, P, to measure the accuracy. The equation of the γ index is given by:

γ(S,P) =
∑|S|i=1

{
minp∈P

√
∑M

k=1 ( fk(si)− fk(p))2
}

|S| (3)

Here, |S| and M are the number of solutions in S and the number of objective func-
tions. The variable si shows the components of S.
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Fig. 7. The definition of the H index in the minimization problem. H is the area generated by the
solution set S and the defined origin O′, which needs to be specified.

• Zitzler’s H index [19] :
This PI is based on the size of the area that is dominated by S to measure the accu-
racy. Figure 7 describes the H index.

• Deb’s ∆ ′ index [4, 5] :
This PI is for measuring the distribution of S. The Euclidean distances between
consecutive solutions, di, in S are used. The equation of the ∆ ′ index is given by:

∆(S)′ =
|S|−1

∑
i=1

|di− d̄|
|S|−1

. (4)

Here, d̄ is the average distance of di.
• Zitzler’s M2 index [19] :

This PI is based on the concept of niching for measuring the distribution. The equa-
tion of the M2 index is given by:

M2(S) =
1

|S|−1 ∑s1∈S

|{s2 ∈ S :‖ s1− s2 ‖> σ}|. (5)

Here, σ is a niche radius.
• Zitzler’s M3 index [19] :

This PI is for measuring the spread of S. The distances between the boundary solu-
tions are calculated. The equation of the M3 index is given by:

M3 =

√√√√ M

∑
k=1

{
max
s∈S

fk(s)−min
s∈S

fk(s)
}2

. (6)

• Hansen’s R1R index [11] :
This PI is based on a decision maker’s (DM) preference. The solution set which is
often selected by the DM is the better one. The equation of the R1R index is given
by:

R1R(S,R,U, p) =
∫

u∈U
C(S,R,u)p(u)du. (7)
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Table 2. Test functions

SCH1 f1 = 1
n ∑

n
i=1 x2

i , f2 = 1
n ∑

n
i=1(xi−2.0)2, −4≤ xi ≤ 4

ZDT1 f1 = x1, g(x2, ...,xn) = 1.0+ 9
n−1 ∑

n
i=2 xi

f2 = g× (1.0−
√

f1
g ), 0≤ xi ≤ 1

ZDT2 f1 = x1, g(x2, ...,xn) = 1.0+ 9
n−1 ∑

n
i=2 xi

f2 = g× (1.0− ( f1
g )2), 0≤ xi ≤ 1

ZDT3 f1 = x1, g(x2, ...,xn) = 1.0+ 9
n−1 ∑

n
i=2 xi

f2 = g× (1.0−
√

f1
g − ( f1

g )sin(10π f1)), 0≤ xi ≤ 1

FON2 f1 = 1−exp

(
−∑n

i=1

(
xi− 1√

n

)2
)

f2 = 1−exp

(
−∑n

i=1

(
xi + 1√

n

)2
)

−2≤ xi ≤ 2

Here, R, U and p are a reference solution set, a set of utility functions and an inten-
sity function, respectively. The function of C(S,R,u) is an outcome function of the
comparison between S and R which is given by:

C(S,R,u) =

⎧⎨⎩
1.0 if u∗(S) > u∗(R)
0.5 if u∗(S) = u∗(R)
0.0 if u∗(S) < u∗(R)

, (8)

here, u∗(S) = maxs∈S u(s) and u∗(R) = maxr∈R u(r).

For each of the listed indices, the rank of the algorithms is calculated, i.e., Rank 1
refers to the best optimizer, Rank 2 to the second best and so on. Thereafter, all six ranks
of the six performance indices are averaged ending up with one scalar performance
measure for each algorithm.

Five different test functions, i.e., SCH1, ZDT1, ZDT2, ZDT3 and FON2 from [5],
are used. Table 2 shows these test functions. For all of these functions, the true Pareto
front, PFtrue, can be determined analytically [14]. We use the test functions with the
following dimensions: n = 2, n = 20 and n = 50.

Three optimizers with the binary representation, with the real-valued representation,
and with the hybrid representation are executed on the five test functions. Table 3 shows
the parameter settings.
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Table 3. Parameters in HR

Parameter Value

Population size 100
Maximum iterations 500
Coding Gray coding
Crossover One-point crossover
Crossover rate 0.9
Mutation (GA) Bit flip
Mutation rate (GA) 0.025
Initial step size (ES) σi ∈ [0.00,0.10] for SCH1, FON2

σi ∈ [0.00,0.01] for ZDT1, 2, 3
Lower threshold σi ≥ 0.004×|xi |
Minimum number of individuals 5%
Mutation rate (Switching) 0.01
Number of bits per 20

one design parameter

Table 4. Parameter settings for PIs

Pareto Solution Set for γ 500 solutions
Reference Solution Set for R1R 100 solutions

(5.0, 5.0) for SCH1
Origin for H (1.1, 6.0) for ZDT1, 2, 3

(1.1, 1.1) for FON2
0.03250 for SCH1
0.00741 for ZDT1

Niche Radius for M2 0.00746 for ZDT2
0.00920 for ZDT3
0.00712 for FON2

As the selection operator, we use the crowded tournament selection proposed by
Deb [6]. The following steps are carried out: (1) sort offspring by their rank, (2) sort
offspring by the crowded distance within the same rank, and (3) select the best offspring
deterministically.

The obtained solution sets by the HR are shown in Figure 8. Using the six perfor-
mance indices (PIs) outlined in [15], we determine the rank of each algorithm. The
parameters of all PIs are shown in Table 4. The overall rank, i.e., the average over the
six performance indices (which are the median over 30 runs), is shown in Table 5 for
each algorithm, for each test function and for each of the three different dimensions
(n = 2,20,50). Since the tendency of superiority and inferiority even with 25% and
75% percentile are similar to the median, only the median will be compared.

First, we compare the binary representation and the real-valued representation. The
real-valued representation shows good performance on SCH1, FON2 (except n = 50)
test functions and for all low dimensional cases. On the other hand, the binary repre-
sentation shows good performance on the high dimensional cases of ZDT1, ZDT2 and
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Table 5. Averaged ranks for each test function

Function Binary Real-Valued Hybrid

SCH1 n = 2 2.67 1.67 1.67
SCH1 n = 20 2.33 1.50 1.83
SCH1 n = 50 2.67 1.83 1.00

ZDT1 n = 2 2.33 2.00 1.50
ZDT1 n = 20 2.00 2.67 1.33
ZDT1 n = 50 2.00 2.50 1.33

ZDT2 n = 2 2.33 2.00 1.50
ZDT2 n = 20 2.17 2.50 1.17
ZDT2 n = 50 2.00 2.67 1.17

ZDT3 n = 2 2.33 2.00 1.50
ZDT3 n = 20 2.00 2.67 1.33
ZDT3 n = 50 1.83 2.67 1.33

FON2 n = 2 2.83 1.50 1.67
FON2 n = 20 2.50 1.33 2.00
FON2 n = 50 1.33 2.17 1.83

ZDT3 (n = 20,50) and on FON2 (n = 50). Apparently, one can classify the five test
functions into two classes. The first class is the group of SCH1 and FON2, and the sec-
ond one is the group of ZDT1, ZDT2 and ZDT3. We will discuss the characteristics of
the two classes in Section 5.1.

Second, we compare the Hybrid Representation (HR) with both other representa-
tions. The averaged ranks are less than or equal to 2. Compared to the binary and the
real-valued representations, the high performance of the HR is very stable, i.e., it is
the best or close to the best algorithm for all test cases. To analyze the HR, the history
of the active representation during the optimization is shown in Figure 9. In order to
minimize the stochastic influence as well as the genetic drift on finite populations when
there is little selective pressure, the average of 30 identical runs is shown.

The results for 2 dimensions show the clear tendency that the real-valued represen-
tation is better than the binary representation. This tendency is in good agreement with
the better performance of the real-valued representation in these cases.

For the 20 dimensional cases, the binary representation is selected in the early gen-
erations but the real-valued representation is selected in the later generations. Although
we did not encourage this behavior, it corresponds to our initial motivation outlined in
Section 1.

In the 50 dimensional cases, the results are very similar to the 20 dimensional cases,
i.e., the binary representation is selected in the early generation and the real-valued
representation in the late generation. However, the tendency for FON2 (n = 50) is not
so clear. The insufficient result in Figure 8 (o) might be caused by this unclear tendency.
If tendency of selected representation is unclear, performance of the HR seems to be not
good, and vice versa. We will discuss it again in Section 4.2 and 4.3.
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Fig. 8. Thirty obtained solution sets by the Hybrid Representation (HR) (connected by a line).
Dotted curves show the boundary of a feasible region.
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Fig. 9. The history of the allele of the switching chromosome. The average of 30 runs are shown.
The x-axis labels the generations and the y-axis the number of individuals in the population with
binary representation (solid line) and with real-valued representation (dotted line).
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Our proposed HR requests two additional parameters, i.e. mutation rate for switching
chromosome Ps, and minimum individuals in a population. In the followings, we discuss
the influences of them to the performance.

3.1 Influence of the Switching Mutation Rate Ps

To show the influence of the switching mutation rate Ps on the performance of the
HR, only the mutation rate is changed. The other conditions are identical. We use
Ps = 0.000,0.001,0.005,0.010,0.050,0.100. Figure 10 summarizes results for differ-
ent values Ps. The figure shows the dependency of the three performance indices, i.e.,
γ , ∆ ′ and M3, on the mutation rate. Each result is the average of 5 test functions with
n = 2,20,50 and 30 runs. All results are normalized by the value of Ps = 0.000 to avoid
the influence of differences of absolute values. Additionally, to show all results in one
figure, the value of M3 is shifted, i.e. −M3 + 2. The performance of the HR is stable
in a range of Ps ∈ [0.002,0.010].
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Fig. 10. Dependency of performance indices on the mutation rate. Each line is the average of
different test functions, different dimensions and 30 runs. Smaller value is better.
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Fig. 11. Dependency of performance indices on the minimum number of individuals. Each line is
the average of different test functions, different dimensions and 30 runs. Smaller value is better.
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3.2 Influence of the Minimum Number of Individuals

To observe the influence of the minimum number of individuals, we only change the
minimum number of individuals, i.e. 0%, 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20% and
25%. The other conditions are identical. The results are shown in Figure 11. Each result
is the average of 5 test functions with n = 2,20,50 and 30 runs. To avoid the influence
of absolute values, the normalized values by the result with 0% are used. Additionally,
to show all results in one figure, the performance of M 3 is modified. Figure 11 tells us
that the suitable minimum number of individuals depend on the performance indices.
However, less than 10% seems to show the stable performance.

4 Extension of Hybrid Representation

In this section, some possible extensions of the Hybrid Representation (HR) will be
discussed. Note that the HR in the previous section used the conjunction of the Gray
coding and the real-valued representation, we will call this HR the Original HR to avoid
confusion.

4.1 Binary Coding and Real-Valued Representation

In Section 3, we used the Gray coding in GA. Since the binary coding has the drawback
of Hamming Cliff [10], the Gray coding is often used for single objective optimization
(SOO). In the Gray coding, the similar phenotype has the similar genotype. Although
the opposite does not hold, it is believed that the Gray coding is more suitable for
optimization.

In this section, we apply the binary coding to the proposed HR to investigate the
difference between the Gray coding and the binary coding in the HR. We call the HR
with the binary coding HR-BR.

Except for the coding scheme, we use the same parameter setting in Table 3. The re-
sults are shown in Table 6. From Table 6, we cannot observe any big difference between
the Gray coding and the binary coding except for the FON2 test function. Although the
Gray coding is often used in SOO, the difference seems to be small in MOO, at least
on these test functions. Some theoretical work for this issue can be found in [16]. The
binary coding seems to be suitable for FON2 test function. The property of FON2 is
that the whole feasible region has very low value of probability density function (PDF)
except for the ( f1, f2)≈ (1.0,1.0) where the value of PDF is nearly infinity [16]. Even if
two individuals have different design parameters in the parameter space, both are nearly
the same in the fitness space, i.e., ( f1, f2) ≈ (1.0,1.0). In particular, if two individuals
are neighbors in the parameter space, i.e., their design parameters are nearly the same,
difference of them in the fitness space cannot be observed at all. In this case, the concept
of neighbors in the Gray coding is not necessary any longer. Since the binary coding has
higher probability to generate non-neighbor than the Gray coding do, the binary coding
seems to be preferable on FON2.

Figure 12 (a) shows the obtained solution set on FON2 (n = 50) by HR-BR. The
obtained solution set by HR-BR seems to be better than Figure 8 (o) by the original
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Table 6. Comparison of the original HR and the HR-BR. Averaged ranks for each test function
are shown.

Function Hybrid (Gray) Hybrid (Binary)
(Original HR) (HR-BR)

SCH1 n = 2 1.33 1.67
SCH1 n = 20 1.67 1.33
SCH1 n = 50 1.17 1.67

ZDT1 n = 2 1.33 1.50
ZDT1 n = 20 1.33 1.50
ZDT1 n = 50 1.50 1.33

ZDT2 n = 2 1.33 1.33
ZDT2 n = 20 1.83 1.00
ZDT2 n = 50 1.33 1.50

ZDT3 n = 2 1.33 1.17
ZDT3 n = 20 1.67 1.17
ZDT3 n = 50 1.17 1.67

FON2 n = 2 1.67 1.33
FON2 n = 20 1.67 1.17
FON2 n = 50 1.67 1.17
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(a) Obtained solution set (b) Selected representation

Fig. 12. The result of HR-BR on FON2 (n = 50). (a) is the obtained solution set by 30 runs. (b)
is the averaged history of the allele of the switching chromosome over 30 runs.

HR. By taking closer look, the number of runs which are trapped near (1.0,1.0) is less
than the one of the original HR. HR-BR seems to easily escape the high PDF area,
i.e. (1.0,1.0), due to the easy generation of non-neighbors. Figure 12 (b) indicates the
number of individuals with the switching chromosome “B” and “R”. Comparing with
Figure 9 (o), the tendency of selected representation is clearer.
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4.2 Binary Coding and Gray Coding

As the second type of the HR, we use the binary coding and the Gray coding in this
section, namely HR-BG. We modify the original HR as follows:

1. The possible components of switching chromosome are B and G. The component B
indicates that the binary coding is active. Oppositely, the component G shows that
the Gray coding is active.

2. The real-valued chromosome is replaced by the binary chromosome.

We execute this HR-BG on the same test functions we used before. For each test func-
tion and each dimension, we average 30 runs. The set of parameters used is shown in
Table 7. Figure 13 shows the sample solution sets on SCH1 (n = 50) and ZDT3 (n = 50).
The results are not better than the results of the original HR. To find out the reasons for
this, the number of selected representation, i.e., binary or Gray coding, are plotted in
Figure 14.

Table 7. Parameters in HR-BG

Parameter Value

Population size 100
Maximum iterations 500
Crossover One-point crossover
Crossover rate 0.9
Mutation (GA) Bit flip
Mutation rate (GA) 0.025
Minimum number of individuals 5%
Mutation rate (Switching) 0.01
Number of bits per 20

one design parameter
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Fig. 13. Thirty obtained solution sets by HR-BG on SCH1 (n = 50) and ZDT3 (n = 50)
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Fig. 14. History of the number of individuals with the active binary coding and Gray coding. The
thinner line shows the number of individuals with the active binary coding and the thicker line
shows the one of individuals with the active Gray coding.

From Figure 14, we cannot observe any clear trend. By comparison of the success
case of the original HR in Figure 9, one may say that the proposed HR will show a good
performance if the trend of selected representation is clear, vice versa. The unclear trend
may be caused by the similar distribution of offspring. If both of the corresponding op-
erators generate the similar offspring, the more suitable operator is not determined. In
this situation, only randomly selected representation (or operator) will survive. Thus,
we cannot exploit the suitable offspring distribution correctly. This results in poor per-
formance. We will consider again the result of the original HR on FON2 (n = 50) in
Figure 9 (o). Although our originally proposed method is better than the state-of-the-art
MOO algorithms on FON2 (n = 50), its performance is not sufficient. Apparently, the
tendency of the selected representation on FON2 (n = 50) with the original HR, see
Figure 9 (o), is also unclear.

4.3 Binary Coding, Gray Coding and Real-Valued Representation

As the third extension, we couple three representations of the binary representation with
binary code and with Gray code and the real-valued representation, namely HR-BGR.

The original HR shows a better performance than the single representation. The HR-
BR also shows a better performance. Only the HR-BG algorithm shows a bad perfor-
mance according to the defined measures. In this section, we combine all of them to
observe phenomena. To conduct this coupling, the following minor changes are carried
out.

1. The components of the switching chromosome are B, G and R. The components,
B, G and R mean the binary coding, the Gray coding and the real-valued represen-
tation, respectively.

2. The probabilities for the initial population are 0.25 for B, 0.25 for G and 0.50 for R.
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Fig. 15. Thirty obtained solution sets by HR-BGR on SCH1 (n = 50) and ZDT3 (n = 50).
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Fig. 16. History of selected representation by HR-BGR on SCH1 (n = 50) and ZDT3 (n = 50).
The dotted line, the thinner line and the thicker line correspond to the number of individuals with
the active real-valued representation, the one with the binary coding and the one with the Gray
coding, respectively.

With the same parameter setting as in Table 3, we execute HR-BGR 30 times on
each test function and each different dimension. The sample solution sets are shown in
Figure 15 and the history of the selected methods is shown in Figure 16. Although this
method includes the successful combination (B,R) and (G,R), it cannot show the same
good performance. Maybe, the bad influence of (B,G), e.g randomly selected method,
results in this bad performance.

5 Discussions

5.1 Characteristics of Test Functions

As explained before, the binary representation seems to be particularly suitable for the
higher dimensional cases of ZDT1, ZDT2, ZDT3 and FON2. On the other hand, the
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real-valued representation is suitable for the low dimensional cases and for the test
functions SCH1 and FON2 (except 50 dimensions). In Section 3, we proposed to group
the test functions into two classes and to observe their characteristics. If we analyze the
Pareto fronts in parameter space (PS), we obtain the following equations:

SCH1

x1 = x2 = ... = xn,

0.0≤ xi ≤ 2.0 for i = 1,2, ...,n (9)

ZDT1, ZDT2

0≤ x1 ≤ 1,

xi = 0 for i = 2,3, ...,n (10)

ZDT3

x1 ∈ [0.0000,0.0830],(0.1823,0.2579],
(0.4095,0.4541],(0.6187,0.6528],
(0.8237,0.8523]
xi = 0, for i = 2,3, ...,n (11)

FON2

x1 = x2 = ... = xn,

−1/
√

n≤ xi ≤ 1/
√

n for i = 1,2, ...,n. (12)

Compared with each search space, the Pareto front of SCH1 and FON2 in the parameter
space is not on the boundary. Whereas the Pareto front of ZDT1, ZDT2 and ZDT3 is on
the boundary of the search space.

To observe the difference of the dynamics of binary and real-valued representation,
the offspring distribution is calculated theoretically. For uniformly distributed parents
in [0,1], the offspring distributions are shown in Figure 17 and Figure 18. Note that
the distribution of the binary representation is shown by the respective probabilities
whereas for the real-valued representation the probability density function (PDF) φ(x)
is shown.

The distribution of the offspring is very different. The distribution of the binary rep-
resentation is still uniform in a discrete sense but the distribution of the real-valued
representation is not uniform. The probability at the center is higher than at the bound-
aries. One may expect that the relation between the shape of the offspring distribution
and the nature of the Pareto front in the PS explains why some representations are more
suitable for a particular problem class.

5.2 Comparison of Binary and Real-Valued Representation

In Section 3, we compared binary, real-valued and hybrid representations. However,
the real-valued representation apparently has disadvantages caused by the portion of
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Fig. 17. The offspring distribution by evolution strategies under the assumption of uniformly
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Fig. 18. The offspring distribution by genetic algorithms under the assumption of uniformly dis-
tributed parents. Here, the probability is shown.

the Pareto front in the search space (the parameter space). The binary representation
can search only discrete points within in the coding range. By setting the number of
bits and the coding range, we restrict the search space. If the restricted search space
includes the optimal solutions, the binary representation has a strong priori advantage.
On the other hand, the real-valued representation is able to search a continuous space
without any limitations. If the optimal solutions are not in the coding range for the
binary representation, they cannot be identified.

Furthermore, for a fair comparison we have to take the previously mentioned dis-
cretization error into account. In order to do this, we add the discretization error to
the real-valued representation. After ES-mutation, we convert the real-valued represen-
tation to the binary representation and back. This way, we artificially discretize and
restrict the search space also for the real-valued representation. The results are shown
in Table 8. The results with conversion are denoted as real-valued (E).

The performance of the binary representation is the worst except for FON2 (n = 50).
In all other cases the real-valued representation with conversion is better. The hybrid
representation still exhibits stable superior performance.
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Table 8. Averaged ranks on each test function

Function Binary Real-Valued (E) Hybrid

SCH1 n = 2 2.67 1.33 2.00
SCH1 n = 20 2.33 1.83 1.67
SCH1 n = 50 2.67 1.50 1.17

ZDT1 n = 2 2.50 1.67 1.33
ZDT1 n = 20 2.67 1.67 1.67
ZDT1 n = 50 2.33 1.50 1.50

ZDT2 n = 2 2.50 1.67 1.33
ZDT2 n = 20 3.00 1.67 1.33
ZDT2 n = 50 2.67 1.50 1.33

ZDT3 n = 2 2.50 1.67 1.33
ZDT3 n = 20 2.67 2.00 1.33
ZDT3 n = 50 2.33 1.83 1.33

FON2 n = 2 2.83 1.33 1.67
FON2 n = 20 2.67 1.50 1.83
FON2 n = 50 1.33 2.17 1.83

5.3 Another Type of Self-adaptation

In Section 2.3, the self-adaptation in GA was introduced. In this section, a different type
of self-adaptation in GA will be used to investigate the importance of self-adaptation.

At each generation, the distribution of offspring is checked. The deviation of it will
be used as a step size. Unlike the former self-adaptation based on an individual, this
self-adaptation is based on a population. The illustration is drawn in Figure 19.

This HR with the self-adaptation in Figure 19 is called HR-SA2. With the same
calculation condition in Table 3 except for the self-adaptation, HR-SA2 was executed
on the same test functions 30 times. The results of the averaged ranks are shown in
Table 9.

x1

x2

σ1

σ2

Fig. 19. Another type of self-adaptation in GA. The step size is determined by the deviation of
offspring distribution.
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Table 9. Comparison of the original HR and the HR with another self-adaptation (HR-SA2).
Averaged ranks for each test function are shown.

Function Hybrid Hybrid (SA2)
(Original HR) (HR-SA2)

SCH1 n = 2 1.00 2.00
SCH1 n = 20 1.33 1.67
SCH1 n = 50 1.00 1.83

ZDT1 n = 2 1.33 1.50
ZDT1 n = 20 1.17 1.83
ZDT1 n = 50 1.17 1.67

ZDT2 n = 2 1.33 1.50
ZDT2 n = 20 1.00 2.00
ZDT2 n = 50 1.00 1.83

ZDT3 n = 2 1.00 1.83
ZDT3 n = 20 1.17 1.83
ZDT3 n = 50 1.17 1.67

FON2 n = 2 1.00 2.00
FON2 n = 20 1.17 1.83
FON2 n = 50 1.17 1.67

Table 10. Comparison of the original HR and the HR with deterministic switching (HR-D).
Averaged ranks for each test function are shown.

Function Hybrid Hybrid (Deterministic)
(Original HR) (HR-D)

SCH1 n = 2 1.83 1.17
SCH1 n = 20 1.50 1.33
SCH1 n = 50 1.83 1.00

ZDT1 n = 2 1.50 1.33
ZDT1 n = 20 1.50 1.33
ZDT1 n = 50 1.33 1.33

ZDT2 n = 2 1.83 1.00
ZDT2 n = 20 1.33 1.67
ZDT2 n = 50 1.33 1.50

ZDT3 n = 2 1.50 1.33
ZDT3 n = 20 1.50 1.50
ZDT3 n = 50 1.83 1.00

FON2 n = 2 1.50 1.33
FON2 n = 20 1.67 1.33
FON2 n = 50 1.67 1.17

Clearly, the original HR is better than HR-SA2 on all test functions. With the compar-
ison of single representation, HR-SA2 seems to be worse than the single representation.
This indicates that the self-adaptation in GA is one of the key issues.
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5.4 Deterministic Switching

Up to now, we assume a certain priori knowledge about the better representation to
be unavailable. In this section, a certain priori knowledge is assumed, i.e. the first half
of generations uses the Gray coding and the second half of generations uses the real-
valued representation. We call this hybrid representation with deterministic switching
as HR-D.

We execute HR-D on the same test functions. Except switching method, all calcu-
lation conditions are identical. The results are shown in Table 10. Except for ZDT1
(n = 50), ZDT2 (n = 20 and n = 50) and ZDT3 (n = 20), the performance of HR-D
is better than the original HR. This indicates that an available knowledge of the better
representation should be used. However, the results of the above four cases show that
a certain priori knowledge sometimes decreases the performance or sometimes has no
meaning.

6 Conclusion

In this chapter, we suggested and analyzed a Hybrid Representation (HR), which is one
of memetic algorithms, consisting of a binary representation and a real-valued represen-
tation of which only one is active in each individual in each generation. We tested the
HR on five different functions for different problem space dimensions and measured the
performance averaged over six different performance indices for multi-objective opti-
mization. First of all the pragmatic observation can be made that the HR exhibits stable
superior performance compared to the other two encodings where only one represen-
tation is used. There are different reasons. Our initial motivation for the HR was the
observation of different dynamics both theoretically as well as empirically for differ-
ent encodings. Our intuitive idea to combine a wider search at early generations (binary
representation) with a more local search at later generations (real-valued representation)
was confirmed by the empirical results of the adaptation of the representation shown in
Figure 9. At the same time, the discussion in Section 5 shows that the comparison has to
be made with great care because the discretization error combined with specific prop-
erties of test functions can produce unexpected effects.

In the HR, two additional parameters were introduced, i.e., the mutation rate for the
switching chromosome (Ps) and the minimum number of individuals. The experiments
showed that the recommendable value of the Ps is 0.002 ∼ 0.01 and the one of the
minimum number of individuals is less than 10% of the population.

We also extended the original HR to different HRs combining the binary coding
and the real-valued representation (HR-BR), the binary coding and the Gray coding
(HR-BG) and the binary coding, the Gray coding and the real-valued representation
(HR-BGR). The HR-BR shows a similar performance as the original HR. Whereas, the
HR-BG and the HR-BGR show worse performance than the single representation. The
additional investigation showed that the selection mechanism of a suitable representa-
tion does not work well due to the similar dynamics.
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Most multiobjective evolutionary algorithms are based on Pareto dominance for mea-
suring the quality of solutions during their search, among them NSGA-II is well-known.
A very few algorithms are based on decomposition and implicitly or explicitly try to
optimize aggregations of the objectives. MOEA/D is a very recent such an algorithm.
One of the major advantages of MOEA/D is that it is very easy to design local search
operator within it using well-developed single-objective optimization algorithms. This
chapter compares the performance of MOEA/D and NSGA-II on the multiobjective
travelling salesman problem and studies the effect of local search on the performance
of MOEA/D.

1 Introduction

A multiobjective optimization problem (MOP) can be stated as follows:

minimize F(x) = ( f1(x), . . . , fm(x)) (1)

subject to x ∈Ω

where Ω is the decision (variable) space, Rm is the objective space, and F : Ω → Rm

consists of m real-valued objective functions.
Very often, no single solution can optimize all the objectives in a MOP since these

objectives conflict each other. Pareto optimal solutions, which characterize optimal
trade-offs among these objectives, are of practical interest in many real-life applica-
tions. A solution is called Pareto optimal if any improvement in one single objective
must lead to deterioration in at least one other objective. The set of all the Pareto optimal
solutions in the objective space is called the Pareto front (PF). Many MOPs may have a
huge (or even infinite) number of Pareto optimal solutions. It is very time-consuming, if
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possible, to obtain the complete PF. Multiobjective evolutionary algorithms (MOEAs)
are designed to find a set of representative Pareto solutions.

The majority of existing MOEAs are based on Pareto dominance [1]-[3]. In these al-
gorithms, the utility of each individual solution is mainly determined by its Pareto dom-
inance relations with other solutions visited in the previous search. Since using Pareto
dominance alone could discourage the diversity, some techniques such as fitness shar-
ing and crowding have often been used as compensation in these MOEAs. Arguably,
NSGA-II [4] is the most popular Pareto dominance based MOEAs. The characteristic
feature of NSGA-II is its fast non-dominated sorting procedure for ranking solutions in
its selection.

A Pareto optimal solution to a MOP could be an optimal solution of a scalar opti-
mization problem in which the objective is an aggregation function of all the individ-
ual objectives. Therefore, approximation of the Pareto front can be decomposed into a
number of scalar objective optimization subproblems. This is a basic idea behind many
traditional mathematical programming methods for approximating the PF. A very small
number of MOEAs adopt this idea to some extent, among them the Multiobjective
Evolutionary Algorithm Based on Decomposition (MOEA/D) is a very recent one [5].
MOEA/D attempts to optimize these subproblems simultaneously. The neighborhood
relations among these subproblems are defined based on the distances between their
aggregation coefficient vectors. Each subproblem (i.e., scalar aggregation function) is
optimized in MOEA/D by using information only from its neighboring subproblems.
One of the major advantages of MOEA/D over Pareto dominance based MOEAs is that
single objective local search techniques can be readily used in MOEA/D.

We believe that comparison studies between MOEAs based on Pareto dominance and
those using decomposition on different multiobjective optimization problems could be
very useful for understanding the strengths and weaknesses of these different method-
ologies and thus identifying important issues which should be addressed in MOEAs.

This chapter proposes an implementation of MOEA/D for the multiobjective trav-
elling salesman problem and compares it with NSGA-II. The effect of local search on
the performance of MOEA/D has also been experimentally studied. The chapter is or-
ganized as follows. Section 2 presents the multiobjective travelling salesman problem
and the local search method used in our experiments. Section 3 presents MOEA/D and
NSGA-II. Section 4 gives the experimental setting and performance metrics. Section 5
presents the experimental results. Finally, section 6 concludes the chapter.

2 Multiobjective Travelling Salesman Problem

2.1 Problem

Given a number of cities and the cost of travel between each pair of them, the travelling
salesman problem is to find the cheapest tour of visiting each city exactly once and
returning to the starting point. The single objective TSP is NP-hard [6].

Mathematically, in the multiobjective TSP (mo-TSP), the decision space Ω is the set
of all the permutations of 1,2, . . . ,n, and the m objectives to minimize are:
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f1(x1, . . . ,xn) =
n−1

∑
i=1

d1
xi,xi+1

+ d1
n,1

... =
... (2)

fm(x1, . . . ,xn) =
n−1

∑
i=1

dm
xi,xi+1

+ dm
n,1

where x = (x1, . . . ,xn) is a permutation vector, and dk
i, j can be regarded as the travel cost

from city i to j in the k-th objective.
The mo-TSP has been used as a benchmark problem in studying the performance of

MOEAs in recent years [7]-[9].

2.2 2-opt Local Search for the TSP

The 2-opt local search is a very popular and efficient local search method for improving
a solution in the single objective TSP problem. A 2-interchange move on a solution
(tour) to the TSP is to break it into two paths by deleting two edges and reconnect them
in the other possible way. The neighborhood of a solution x consists of all the solutions
which can be obtained by applying a 2-interchange move on it. In order to improve a
solution x, 2-opt local search searches the neighborhood of x to find a solution y which
is better than x and then replace x by y. This process is repeated until no solution in the
neighborhood of x is better than y or a predefined stopping condition is met.

Comparisons of the costs of two neighboring solutions are major computational over-
head in 2-opt local search. Since 2 neighboring solutions are different only in 2 edges,
the cost difference of these two solutions can be computed with several basic operations.
Therefore, the computational overhead of 2-opt local search is often not high.

3 MOEA/D

3.1 Weighted Sum Approach

MOEA/D requires a decomposition approach for converting approximation of the PF
of (1) into a number of single objective optimization problems. In principle, any de-
composition approach can serve for this purpose. In the chapter, we use the weighted
sum approach [10]. This approach considers a convex combination of the different ob-
jectives. Let λ = (λ1, . . . ,λm)T be a weight vector, i.e. λi ≥ 0 for all i = 1, . . . ,m and
∑m

i=1λi = 1. Then the optimal solution to the following scalar optimization problem

minimize g(x|λ ) = ∑m
i=1λi fi(x) (3)

subject to x ∈Ω

is a Pareto optimal solution to (1), where we use g(x|λ ) to emphasize that λ is a co-
efficient vector in this objective function while x is the variables to be optimized. To
generate a set of different Pareto optimal vectors, one can use different weight vectors
λ in the above scalar optimization problem. If the PF is convex (concave in the case
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of maximization), this approach could work well. However, not every Pareto optimal
vector can be obtained by this approach in the case of nonconvex PFs. To overcome
these shortcomings, some effort has been made to incorporate other techniques such as
ε-constraint into this approach, more details can be found in [10].

3.2 General Framework

MOEA/D needs to decompose the MOP under consideration. In the following, we em-
ploy the weighted sum approach. It is very trivial to modify the following MOEA/D
when other decomposition methods are used.

Let λ 1, . . . ,λN be a set of evenly spread weight vectors. The problem of approxi-
mation of the PF of (1) can be decomposed into N scalar optimization subproblems by
using the weighted sum approach and the objective function of the j-th subproblem is:

g(x|λ j) =
m

∑
i=1

λ j
i fi(x) (4)

where λ j = (λ j
1 , . . . ,λ j

m)T . MOEA/D minimizes all these N objective functions simul-
taneously in a single run.

Note that g is continuous of λ , the optimal solution of g(x|λ i) should be close to that
of g(x|λ j) if λ i and λ j are close to each other. Therefore, any information about these
g’s with weight vectors close to λ i should be helpful for optimizing g(x|λ i). This is a
major motivation behind MOEA/D.

In MOEA/D, a neighborhood of weight vector λ i is defined as a set of its several
closest weight vectors in {λ 1, . . . ,λN}. The neighborhood of the i-th subproblem con-
sists of all the subproblems with the weight vectors from the neighborhood of λ i. Each
subproblem has its best solution found so far in the population. Only the current so-
lutions to its neighboring subproblems are exploited for optimizing a subproblem in
MOEA/D.

At each generation t, MOEA/D with the weighted sum approach maintains:

• a population of N points x1, . . . ,xN ∈ Ω , where xi is the current solution to the i-th
subproblem;

• FV 1, . . . ,FV N , where FV i is the F-value of xi, i.e., FV i = F(xi) for each i =
1, . . . ,N;

• an external population EP, which is used to store nondominated solutions found
during the search.

The algorithm works as follows:

Input: • MOP (1);
• a stopping criterion;
• N : the number of the subproblems considered in MOEA/D;
• a uniform spread of N weight vectors: λ 1, . . . ,λN ;
• T : the number of the weight vectors in the neighborhood of each weight vector.

Output: EP.
Step 1: Initialization

Step 1.1: Set EP = /0.
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Step 1.2: Compute the Euclidean distances between any two weight vectors and
then work out the T closest weight vectors to each weight vector. For each
i = 1, . . . ,N, set B(i) = {i1, . . . , iT} where λ i1 , . . . ,λ iT are the T closest weight vec-
tors to λ i.
Step 1.3: Generate an initial population x1, . . . ,xN randomly or by a problem-
specific method. Set FV i = F(xi).

Step 2. Update
For i = 1, . . . ,N, do
Step 2.1 Reproduction: Randomly select two indexes k, l from B(i), and then gen-
erate a new solution y from xk and xl by using genetic operators.
Step 2.2 Improvement: Apply a problem-specific repair/improvement heuristic on
y to produce y′.
Step 2.3 Update of Neighboring Solutions: For each index j ∈ B(i), if g(y′|λ j)≤
g(x j|λ j), then set x j = y′ and FV j = F(y′).
Step 2.4 Update of EP:
Remove from EP all the vectors dominated by F(y′).
Add F(y′) to EP if no vectors in EP dominate F(y′).

Step 3. Stopping Criteria If stopping criteria is satisfied, then stop and output EP.
Otherwise go to Step 2.

In initialization, B(i) contains the indices of the T closest vectors of λ i. We use the Eu-
clidean distance to measure the closeness between any two weight vectors. Therefore,
λ i’s closest vector is itself and then i ∈ B(i). If j ∈ B(i), the j-th subproblem can be
regarded as a neighbor of the i-th subproblem.

In the i-th pass of the loop in Step 2, the T neighboring subproblems of the i-th sub-
problem are considered. Since xk and xl in Step 2.1 are the current best solutions to
neighbors of the i-th subproblem, their offspring y should hopefully be a good solution
to the i-th subproblem. In Step 2.2, a problem-specific heuristic is used to repair y in the
case when y invalidates any constraints, and/or optimize the i-th g. Therefore, the resul-
tant solution y′ is feasible and very likely to have a lower function value for the neigh-
bors of i-th subproblem. Step 2.3 considers all the neighbors of the i-th subproblem, it
replaces x j with y′ if y′ performs better than x j with regard to the j-th subproblem. FV j

is needed in computing the value of g(x j|λ j) in Step 2.3. Step 2.4 updates the external
population.

Step 2.2 allows MOEA/D to be able to make use of a scalar optimization method
very naturally. One can take the g(x|λ i) as the objective function in the heuristic in Step
2.2. Although it is one of the major features of MOEA/D, Step 2.2 is not a must in
MOEA/D, particularly if Step 2.1 can produce a feasible solution.

3.3 Improvement Heuristic

As mentioned in previous section, we use the 2-opt local search heuristic process to
improve the solutions obtained by genetic operators. One of the key issues in 2-opt local
search is how to search the neighborhood. In our implementation, we adopt the first
improvement strategy, i.e. search the neighboring solutions in a predetermined order
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and y is the first solution found which is better than x. To limit the computational cost,
the number of neighborhoods the 2-opt local search searches is not allowed to exceed
a predefined limit, Ls. The local search process is operated on one solution s0 and is
illustrated as follows.

Step 1. Randomly start from one edge in the tour of s0. Traverse the tour, find another
edge with which a better tour can be obtained by exchanging it with the starting
edge. Check the next edge after exchanging.

Step 2. If no edge can be found for the starting edge, then let the next edge be the
starting edge and repeat Step 1).

Step 3. Stopping Criteria: if a predefined limit on the number of exchanging is reached
or all edges are checked, then stop.

3.4 NSGA-II

NSGA-II [4] is a very popular MOEA based on Pareto domination. NSGA-II maintains
a population Pt of size N at generation t and generate Pt+1 from Pt in the following way.

Step 1. Use selection, crossover and mutation to create an offspring population Qt from
Pt .

Step 2. Choose N best solutions from Pt ∪Qt to form Pt+1.

The characteristic of NSGA-II is embodied in a fast nondominated sorting and crowding-
distance estimation procedure for comparing different qualities of different solutions in
Step 2 and selection in Step 1. The computational complexity of each generation in
NSGA-II is O(mN2), where m is the number of the objectives and N is its population
size.

For a fair comparison, an external population is used in our implementation of
NSGA-II to record all non-dominated solutions found in the search process.

4 Experiment Settings

4.1 Multiobjective TSP Instances

In this chapter, we only consider two objectives. To generate a bi-objective test instance
with n cities, a random distribution of cities in a [0,n]× [0,n] area is generated for each
objective. The travel cost between any two cities is set to be the distance between them.
We have tested three different instances in which the numbers of cities are 500, 1000
and 1500.

4.2 Parameter Settings

In our experiments, we tested three algorithms, namely, MOEA/D without local search,
MOEA/D with local search, and NSGA-II. The experiments were carried out in a desk-
top PC with Intel Pentium 4 CPU 3.20GHz and 1.50GB RAM. Table 1 gives the pa-
rameter settings used in the experiments.
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Table 1. Experimental parameter Settings

Genetic operator in three algorithms inver-over crossover [8],
δ (Random inverse rate in inver-over crossover) 0.02,
Number of runs for each instances 10,
n (The number of cities) 500,1000,1500,
N (The population size in all the algorithms) 100,
Weight vectors in MOEA/D 100 uniformly distributed vectors
T in MOEA/D 25,
Ls in local Search 100,
CPU time used in each run (in second) 600 for the instance with 500 cities,

1600 for 1000 cites, and 4000 seconds
for 1,500 cities.

4.3 Performance Metrics

Due to the nature of multiobjective optimization, no single performance metric is al-
ways able to compare the performances of different algorithms properly. In our experi-
ments, we use the following two metrics:

• Set Coverage (C-metric): Let A and B be two approximations to the PF of a MOP,
C(A,B) is defined as the percentage of the solutions in B that are dominated by at
least one solution in A, i.e.

C(A,B) =
|{u ∈ B|∃v ∈ A : v dominates u}‖

|B| (5)

C(A,B) is not necessarily equal to 1−C(B,A). C(A,B) = 1 means that all solutions
in B are dominated by some solutions in A, and C(A,B) = 0 means that no solution
in B is dominated by a solution in A.

• Distance from Representatives in the PF(D-metric): Let P∗ be a set of uniformly
distributed points along the PF. Let A be an approximation to the PF, the average
distance from A to P∗ is defined as: [5]

D(A,P∗) = ∑v∈P∗ d(v,A)
|P∗| (6)

where d(v,A) is the minimum Euclidean distance between v and the points in A. If
|P∗| is large enough to represent the PF very well, D(A,P∗) could measure both the
diversity and convergence of A in a sense. To have a low value of D(A,P∗), set A
must be very close to the PF and cannot miss any part of the whole PF.

As we do not know the actual PFs of the test instances, we use an approxima-
tion of the PF as P∗. The approximation of PF is obtained from all non-dominated
solutions found in all the runs of the three algorithms.
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Table 2. C-metric vs execution time

The instances exec time (seconds) NSGA-II vs MOEA/D vs
MOEA/D NSGA-II

100 0.0 0.954062
200 0.0 0.942587

500 cities 300 0.0 0.881377
400 0.0 0.852883
500 0.0 0.844775
600 0.0 0.829717

1000 cities 200 0.0 0.997921
400,600,. . . ,1600 0.0 1.0

1500 cities 500,1000,. . . ,4000 0.0 1.0

Table 3. C-metric vs. the number of function evaluations

The instances number of function NSGA-II vs MOEA/D vs
evaluations MOEA/D NSGA-II

0.5×106 0.968367 0.011017
1.0×106 0.898114 0.031785

500 cities 1.5×106 0.761665 0.117353
2.0×106 0.220869 0.402011
2.5×106 0.009831 0.569514
3.0×106 0.0 0.624579

0.5×106 0.511688 0.252936
1.0×106 0.009333 0.614016
1.5×106 0.0 0.745755
2.0×106 0.0 0.810331

1000 cities 2.5×106 0.0 0.857586
3.0×106 0.0 0.903073
3.5×106 0.0 0.927789
4.0×106 0.0 0.947508
4.5×106 0.0 0.961898
5.0×106 0.0 0.979815

1.0×106 0.0 0.826044
2.0×106 0.0 0.945171
3.0×106 0.0 0.973439

1500 cities 4.0×106 0.0 0.988983
5.0×106 0.0 0.997826
6.0×106 0.0 1.0
7.0×106 0.0 1.0
8.0×106 0.0 1.0
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Fig. 1. D-metric vs. execution time in the instance with 500 cities
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Fig. 2. D-metric vs. execution time in the instance with 1000 cities

5 Experiment Results

5.1 Comparison of MOEA/D and NSGA-II

We firstly compare the performance of MOEA/D algorithm without local search and
the NSGA-II algorithm. Note that both algorithms use the same genetic operator.

5.1.1 C-Metric

Table 2 presents the average C-metrics of MOEA/D and NSGA-II on different test
instances. It is evident from this table that no solution obtained in NSGA-II dominates



318 W. Peng, Q. Zhang, and H. Li

500 1000 1500 2000 2500 3000 3500 4000
100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

execution time (seconds)

A
ve

ra
ge

 D
−

m
et

ric

NSGA−II

MOEA/D

Fig. 3. D-metric vs. execution time in the instance with 1500 cities
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Fig. 4. D-metric vs. the number of function evaluations in the instance with 500 cities

any solutions in MOEA/D at these selected observation times. Most solutions in NSGA-
II are dominated by the solutions in MOEA/D in the test instance with 500 cities and all
the solutions in NSGA-II are dominated by those in MOEA/D in the other two larger
test instances while n = 1000 and 1500. A very interesting observation is that the C-
metric of MOEA/D versus NSGA-II decreases as the execution time increases in the
instance with 500 cities. But it does not happen in the other two larger instances. This
implies that MOEA/D, compared with NSGA-II, is very promising in dealing with large
scale problems.
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In some real-world applications, the number of function evaluations matters. Table 3
gives the C-metrics of these two algorithms versus the number of function evaluations.
Clearly, MOEA/D outperforms NSGA-II after a number of function evaluations in all
the three instances.
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Fig. 5. D-metric vs. the number of function evaluations in the instance with 1000 cities
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Fig. 6. D-metric vs. the number of function evaluations in the instance with 1500 cities
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with 1000 cities. The scale of the D-metric is log.

5.1.2 D-Metric

Figures 1-3 present the evolution of the D-metrics of two algorithms with the execution
time. It is evident from these figures that MOEA/D always outperforms NSGA-II in
terms of D-metric with the same execution time.

Figures 4-6 show how the D-metrics of two algorithms evolve with the number of
function evaluations. In the instances with 1000 cities and 1500 cities, it is obvious
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Fig. 10. Distribution of the final solutions generated by the three algorithm generated for the
instance with 500 cities

that MOEA/D outperforms NSGA-II after a number of function evaluations in terms of
D-metric. In the instance with 500 cities, D-metric in NSGA-II is slightly lower than
that in MOEA/D. The reason is that the solutions generated in NSGA-II have better
spread than those in MOEA/D in this instance. However, the final solutions found by
MOEA/D are much closer to the real Pareto front than those in NSGA-II as shown in
terms of C-metric.
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These figures also indicate that MOEA/D can have more function evaluations than
NSGA-II with the same execution time. This observation confirms the analysis on the
computational complexity of these two algorithms in [5].

5.2 The Role of Local Search in MOEA/D

It is well known that hybridizing local search in evolutionary algorithms could improve
the algorithmic performance very effectively. However, it is not an easy task to combine
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single-objective optimization local search with Pareto domination based MOEAs such
as NSGA-II. In contrast, MOEA/D can readily take the advantage of well-developed
single-objective optimization methods. To study the effect of local search (Step 2.2 in
MOEA/D) on the performance of algorithm, we have implemented MOEA/D with local
search and compared it with MOEA/D without local search. Figures 7-9 compare the
evolution of the D-metrics of MOEA/D with and without local search. It is clear that
MOEA/D with local search significantly outperforms MOEA/D without local search,
which implies that local search can greatly enhance the performance of algorithm.

5.3 The Pareto Fronts Found by Three Algorithms

To visualize the performance of the three algorithms, we plot the distribution of the
final solutions in the objective space found by a random run in each algorithm on each
test instance in figures 10-12. The results shown in these figures are consistent with
observations on the C-metric and D-metric performance. The differences among these
three algorithms can be easily noticed from these figures.

6 Summary

Most multiobjective evolutionary algorithms such as NSGA-II are based on Pareto
dominance. Single optimization local search is not easy to be combined with these
algorithms. A very small number of multiobjective population algorithm are based on
decomposition. We believe that the comparison between these two different strategies
could be very helpful for understanding their strengths and weaknesses and develop-
ing effective and efficient MOEAs. In this chapter, we compared two MOEAs, where
one is NSGA-II, a very popular MOEA based on Pareto domination, and the other is
MOEA/D, a very recent MOEA based on decomposition. We have taken the multi-
objective TSP as a test problem. Our experimental results have shown that MOEA/D
without local search outperforms NSGA-II on the three test instances with the same ex-
ecution time. We have also demonstrated that MOEA/D with local search works much
better than MOEA/D without local search. In the future, we will study the performance
of MOEA/D on other optimization problems.
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This chapter proposes a novel adaptive memetic approach for solving multi-objective
optimization problems. The proposed approach introduces the novel concept of cross-
dominance and employs this concept within a novel probabilistic scheme which makes
use of the Wigner distribution for performing coordination of the local search. Thus,
two local searchers are integrated within an evolutionary framework which resorts to
an evolutionary algorithm previously proposed in literature for solving multi-objective
problems. These two local searchers are a multi-objective version of simulated anneal-
ing and a novel multi-objective implementation of the Rosenbrock algorithm.

Numerical results show that the proposed algorithm is rather promising and, for sev-
eral test problems, outperforms two popular meta-heuristics present in literature. A real-
world application in the field of electrical engineering, the design of a control system
of an electric motor, is also shown. The application of the proposed algorithm leads to
a solution which allows successful control of a direct current motor by simultaneously
handling the conflicting objectives of the dynamic response.

1 Introduction

Many optimization problems in engineering and applied science, due to their nature,
require the satisfaction of necessities of various kinds i.e. the desired candidate solu-
tion should perform well according to various objectives. In the vast majority of these
cases, the objectives are in mutual conflict and a compromise must be accepted. More
specifically, as these objectives are usually conflicting, it is not possible to find a single
solution that is optimal with respect to all objectives. Which solution is the best depends
on the users’ utility function, i.e., how the different criteria are weighted. Unfortunately,
it is usually rather difficult to formally specify user preferences before the alternatives
are known. One way to solve this predicament is by searching for the whole Pareto-
optimal front of solutions i.e., all solutions that can not be improved in any criterion
without at least sacrificing another criterion.

For example, in control engineering, when a control system is designed, it is desir-
able that the speed response is very reactive to the input and, at the same time, contains
no overshoot and oscillations. Under-dumped responses are usually very reactive but

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 325–351.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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contain overshoot and oscillations in the settling process; on the contrary, over-dumped
responses do not contain overshoot or oscillations but usually perform rather poorly in
terms of reactivity. It is thus necessary to partially give up both the objectives and find a
compromise, that is, a solution which is fairly reactive without excessive overshoot and
oscillations.

The well-known scalarized approach [1] i.e. to associate a weight factor (on the basis
of their importance) to each objective and then optimize the weighted sum, though in
some cases rather efficient, implicitly accepts that a ranking of the importance of the
objectives and the related proportion of how much each objective should be taken into
account with respect to the others, is known beforehand. Moreover, the weighted sum
approach has the main disadvantage that it implicitly excludes some solutions from the
search since the a priori determination of the weighted value may assign a low fitness
value to some solutions which could on the contrary be interesting in the application
viewpoint. Therefore, in many cases it is preferable to employ a multi-objective ap-
proach [1]. Since the latter considers the objectives simultaneously and leads to a set of
solutions, the user can choose by means of a decision making process the most suitable
solution amongst those that are actually available.

Due to their structure, Evolutionary Algorithms (EA) have been proven to be very
promising in multi-objective optimization and have been intensively used during the
last two decades (see the implementation proposed in [2]). As shown in [3] and
[4], Multi-objective Optimization Evolutionary Algorithms (MOEA) are very effi-
cient in finding the Pareto-optimal or near Pareto-optimal solutions. Several algorithms
have been designed for such a purpose, for example the Non-dominated Sorting Ge-
netic Algorithm II (NSGA II) [5] and the Strength Pareto Evolutionary Algorithm-2
(SPEA-2) [6].

Memetic Algorithms (MAs) are population based meta-heuristics which combine
local search components within an evolutionary framework [7]. For single-objective
optimization problems MAs, if well-designed for specific applications by taking into
account features of the fitness landscape, have been proven to outperform classical
meta-heuristics e.g. Genetic Algorithms (GAs), Evolution Strategy (ES), Particle Swarm
Optimization (PSO) etc. [8] [9]. One crucial problem in the algorithmic design of MAs
is coordination among the evolutionary framework and local search and amongst the
various local searchers [10]. The problem of local search coordination has been widely
discussed over the years. In [7] the concept of coordination and cooperation of local
searchers has been introduced, after being developed in [11]. In [10] the use of mul-
tiple local search operators having different features in order to explore the decision
space under different perspectives has been proposed. In recent years, several kinds of
adaptation and self-adaptation for coordinating the local search have been designed. In
[12] a classification of adaptive MAs is given while a tutorial which organizes the basic
concepts of MAs including the coordination of the local search is given in [13].

MAs have been recently applied to multi-objective optimization, as discussed in [14]
and several Multi-Objective Memetic Algorithms (MOMA) have therefore been de-
signed. In such design two crucial problems arise: the first is the proper definition of
local search in a multi-objective environment, the second is the balance between global
and local search in presence of many simultaneous objectives [15], [16]. This balance,
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which is strictly related to the local search coordination, is extremely difficult to be
performed and, as highlighted in the empirical study reported in [17], an adaptation is
so difficult to be defined that it might be preferable in several cases to employ simple
time-dependant heuristic rules.

This chapter proposes an adaptation scheme based on the mutual dominance between
non-dominated solutions belonging to subsequent generations uncoupled with a prob-
abilistic criterion in order to coordinate and balance the global and local search within
a MOMA. The proposed algorithm is called Cross Dominant Multi-Objective Memetic
Algorithm (CDMOMA). Section 2 gives a detailed description of the algorithmic com-
ponents and their interaction, Section 3 shows the behavior of the proposed algorithm in
an extensive amount of test cases, Section 4 analyzes a real-world engineering problem,
Section gives the conclusion of our work.

2 Cross Dominant Multi-Objective Memetic Algorithm

Let us consider a classical multi-objective optimization problem:

Minimize/Maximize
subject to

fm (x) , m = 1,2, . . . ,M

x(L)
i ≤ xi ≤ x(U)

i , i = 1,2, . . . ,n

}
(1)

where fm is the mth single objective function, a solution x is a vector of n decision

variables. Each decision variable is limited to take a value within a lower x(L)
i and an

upper x(U)
i bound. These bounds define the decision space D.

In order to solve the problem in eq. (1), the CDMOMA has been designed. The CD-
MOMA is composed of an evolutionary framework resorting the NSGA-II and two lo-
cal searchers, a multi-objective implementation of the Rosenbrock algorithm and of the
Simulated Annealing respectively, adaptively coordinated by criterion based on mutual
dominance amongst the individuals of two populations at two consecutive generations
and a probabilistic scheme.

For the sake of completeness and better understanding of the CDMOMA the clas-
sical definitions of dominance [3] are given. Without a generality loss, the following
definitions refer to the minimization of all the objective functions.

Definition 1. A solution x(1) is said to dominate the other solution x(2) (x(1) � x(2)), if
both conditions 1 and 2 are true:

1. The solution x(1) is no worse than x(2) in all objectives,
2. The solution x(1) is strictly better than x(2) in at least one objective.

Definition 2. A solution x(1) is said to strictly dominate the other solution x(2) (x(1) ≺
x(2)), if solution x(1) is strictly better than x(2) in all the M objectives.

2.1 The Evolutionary Framework

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) introduced in [5], is the
second and improved Version of the Non-dominated Sorting Genetic Algorithm pro-
posed in [18], it is an elitist multi-objective evolutionary algorithm which proves to
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have high performance in terms of both quality and distribution of the detected non-
dominated solutions.

Briefly, an initial sampling is performed pseudo-randomly within the decision space,
thus generating Spop individuals. At each generation, Spop/2 parents are selected ac-
cording to a binary tournament selection. For each pairwise comparison the winner is
the dominating individual (for definition of dominance see [1] or [3]). If the individuals
are non-dominant (to each other), the individual having a higher value in the crowding
distance is selected. The crowding distance of an individual is a measure of the distance
between the individual under examination and the other individuals belonging to the
same set of non-dominated solutions (see [5] for details).

Then, for Spop/2 times a pseudo-random value is generated. Each time, if this value
is lower than 0.1, one individual is pseudo-randomly selected and then mutated; if, on
the contrary, it is higher than 0.1, two parents are pseudo-randomly paired and undergo
crossover.

Polynomial mutation [19] and simulated binary crossover [20], [21] are employed.
Since mutation generates one child and the simulated binary crossover two children, an
offspring population composed of a number of individuals between Spop/2 and Spop is
thus generated.

This offspring population is merged to the population produced from the previous
generation. Then, according to an elitist logic, Spop individuals are selected for survival
to the subsequent generation. The survivor selection scheme sorts individuals according
to their rank i.e. divides the individuals into subsets according to their level of domi-
nance. Thus, the subset of rank 1 is the set of non-dominated solutions, the subset of
rank 2 is the set of non-dominated solutions if we remove those individuals belonging
to the first subset, the subset of rank 3 is the set of non-dominated solutions after having
removed the individuals of the first and second subset and so on. Within each subset, the
individuals are then sorted on the basis of their crowding distance. More formally, for
a given pair of individuals i and j, and indicating with ir and icd the rank and crowding
distance of i respectively, the partial order (here indicated with ≺n) is defined as:

i≺n j IF (ir < jr) OR ((ir = jr)AND(icd > jcd))

The sorting performed amongst a set of solutions by employing the formula above is
called non-dominated sorting. The selected individuals compose the new population for
the subsequent generation.

2.2 Local Searchers

The CDMOMA employs two local searchers within the generation loop of the NSGA-II
evolutionary framework. These algorithms are a novel multi-objective implementation
of the Rosenbrock algorithm and the Pareto Domination Multi-Objective Simulated
Annealing (PDMOSA) proposed in [22]. In the following subsections a description of
these two algorithms is given.

2.2.1 The Multi-Objective Rosenbrock Algorithm

The classical Rosenbrock Algorithm [23] is a single objective algorithm that works on
a solution and attempts to improve upon it by means of a steepest descent pivot rule.
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A novel implementation of the Multi-Objective Rosenbrock Algorithm (MORA)
is proposed here. The MORA consists of the following. Starting from x, a trial is
made in all the n orthogonal directions of the n-dimensional decision space. A trial
over the ith decision variable is performed by checking the value of y = [x1,x2...xi +
stepLength,xi+1, ..,xn] where the stepLength is the step length i.e. the length of the ex-
ploratory step. When a new point y is generated, it is compared with the old one x. If
the new point is not dominated by the old one we have a success. In such a case, the
new point is retained (x = y) and the step length is multiplied by a positive factor α .
If the new point is dominated by the old one we have a failure. In this case, the vec-
tor of variables is left unchanged and the step length is multiplied by a negative factor

i = 1;
initialize stepLength;
initialize SuccessAndFailure;
while budget condition

generate next point y from point x:
y j = x j for j = 1, . . . ,n and j �= i;
yi = xi · stepLengthi;

if y is out of bounds
fk(y) = ∞ ∀ k = 1, . . . ,M;

else
evaluate y;

end-if
if x� y

stepLengthi = stepLengthi ·β ;
if SuccessAndFailurei == success

SuccessAndFailurei = successFailure;
else

SuccessAndFailurei = f ailure;
end-if

else
x = y;
stepLengthi = stepLengthi ·α;
SuccessAndFailurei = success;

end-if
if SuccessAndFailure j == successFailure ∀ j = 1, . . . ,n;

rotate base by Gram and Schmidt procedure;
initialize stepLength;
initialize SuccessAndFailure;

else-if i < n
i = i+1;

else
i = 1;

end-if
end-while

Fig. 1. MORA pseudo-code
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−1 < β < 0. According to Rosenbrock’s suggestions α = 3 and β = −0.5 have been
set [23]. As in the single objective Rosenbrock algorithm, the process is repeated until
at the least a success is followed by a failure in each direction. When such a condition is
satisfied, the orthogonolization procedure of Gram and Schmidt (see [24]) is executed
and the search, along the new set of directions, begins again. The algorithm is stopped
when a budget condition is exceeded.

According to the given definitions of “success” and “failure”, the MORA accepts a
new point only when it does not decrease performance in each of the objective func-
tions; if even one worsens, the point is discarded. Thus, the MORA handles the various
objective functions without performing a scalarization.

It must be highlighted that when, during a MORA step, a solution outside the de-
cision space is generated, the algorithm assigns an infinite value to every one of its
objectives.

Fig. 1 shows the pseudo-code of the proposed MORA. It should be noted that the
dominance condition is represented by the symbol ≺ e.g. x dominates y is expressed
by x ≺ y; analogously, x does not dominate y is expressed by x � y (see [3]). With
reference to Fig. 1, the variable SuccessAndFailure is a vector of three valued flag
variables which records for each of its elements SuccessAndFailurei the behavior of the
algorithm during the previous two steps. More specifically, it records the value f ailure
if the trial failed twice, it records the value success if the trial either succeeded twice
or succeeded after having failed, it records the value successFailure if the trial failed
after having succeeded. The latter condition determines the activation of the Gram and
Smith procedure.

2.2.2 Pareto Domination Multi-Objective Simulated Annealing

The multi-objective simulated annealing algorithm implemented here is based on the
Pareto Domination Multi-Objective Simulated Annealing PDMOSA (PDMOSA) pro-
posed in [22]. The PDMOSA works on a solution x and an auxiliary population in order
to improve upon the starting point. At each step, the current best solution is perturbed
by means of a Gaussian distribution and a perturbed solution y is thus generated. For

while budget condition
initialize y;
while y is out of the bounds of the decision space

generate y by perturbing xby means of a Gaussian distribution;
end-while
calculate all the single objective values of y;
dx = number of the population individuals dominated by x;
dy = number of the population individuals dominated by y;

replace x with y with a probability p = e
dx−dy

T ;
decrease temperature T by means of an hyperbolic law;

end-while

Fig. 2. MOSA pseudo-code
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both, current best and perturbed solution, the number of individuals of the population
which are dominated by x and y respectively are calculated. In the fashion of simulated
annealing the new solution y replaces x with a time-dependant probability. The temper-
ature is decreased by means of a hyperbolic law as suggested in [25]. For the sake of
clarity, the PDMOSA pseudo-code which highlights the working principles is shown in
Fig. 2.

2.3 Adaptation

Definition 3. Let us consider two sets of candidate solutions, namely X and Y respec-
tively. Without a generality loss, let’s assume that the cardinality of both sets is N. By
scrolling all the elements of set Y , let’s enumerate the dominance occurrences with each
element of set X . N2 comparisons are thus performed. Let us assignΛ to be this number
of dominance occurrences. The set Y is said to cross-dominate the set X with a grade:

λ =
Λ
N2 (2)

Fig. 3 gives a graphical representation of the concept of cross-dominance. The solid
lined arrow represents the dominance of the point under examination while the dash
lined arrow represents non-dominance.

This chapter proposes to use the concept of cross-dominance in order to perform an
adaptive coordination of the local search. More specifically, at the end of each genera-
tion the parameter λ is calculated:

λ =
Λ t+1

N2 (3)

whereΛ t+1 is the number of dominance occurrences obtained by the comparison of the
population at generation t +1 (which plays the role of the set Y in the definition above)
with respect to the population at generation t (which plays the role of X).

f1

f2

Fig. 3. Graphical Representation of the Cross-dominance
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In this way, the algorithm can monitor the overall improvements of the population by
means of a parameter which acquires values between 0 and 1. More specifically, if λ = 1
the algorithm is making excellent improvements and all individuals of the population at
generation t +1 strictly dominate all individuals at generation t. On the contrary, if λ =
0 the algorithm is not leading to any improvement and the new population is equivalent
to the old one in terms of dominance. It must be remarked that this adaptation index
should be integrated within a fully elitist system (as the NSGA-II), thus a temporary
worsening is not allowed. In addition, it should be observed that even though λ can
acquire values between 0 and 1, most likely it will acquire values around zero (λ = 0.05
means that the population is still significantly better than the previous one).

The main idea is to design an adaptive system which automatically coordinates evo-
lutionary framework and local search components by estimating algorithmic improve-
ments, thus the necessity of the search during the optimization process.

2.4 Coordination of the Local Search

In order to perform coordination of the local search, λ is employed in a novel way.
More specifically, for each local searcher, a generalized Wigner semicircle distribution
is generated:

p(λ ) =
2
πR2

√
R2− (λ −a)2 c(

2
πR

) (4)

where R is the radius of the distribution (the shape of the distribution depends on R), a
determines the shift of the distribution, c is the maximum value of the distribution. For
the MORA, we consider a distribution that has its maximum value equal to 0.8 for λ = 0,
and that is 0 for λ > 0.007 ( we consider just a half of the semi-elliptic Wigner distri-
bution). For the PDMOSA, we consider a function that has its maximum value equal to
0.1 for λ = 0.0125, while it is 0 for λ < 0.005 and λ > 0.02. Thus, these two distri-
butions return the probability of the local search activation dependent upon the adaptive
parameterλ . Furthermore, the MORA is applied to 25 individuals while the PDMOSA is
applied to 5 individuals pseudo-randomly selected respectively. Fig. 4 graphically shows
the probability distribution for the CDMOMA adaptive local search coordination.
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Fig. 4. Graphical Representation of the Probabilistic Scheme for the Local Search Coordination
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generate initial population pseudo-randomly;
compute the fitness values of the individuals of the initial population;
perform the non-dominated sorting;
while budget condition

execute NSGA-II generation;

apply the cross-dominance procedure and compute λ = Λ t+1

N2 ;
compute p(λ );
generate pseudo-randomly ε ∈ [0,1]
if ε < p(λ )

execute PDMOSA on 5 individuals pseudo-randomly selected,
for 3000 fitness evaluations;
replace the 5 individuals with the results of the PDMOSA;

end-if
if ε < p(λ )

execute RA on 25 individuals pseudo-randomly selected,
for 1000 fitness evaluations;

end-if
end-while

Fig. 5. CDMOMA pseudo-code

The two employed local searchers have clearly different structures in terms of pivot
rule and neighborhood generating function. It should be noted that the MORA is a steep-
est descent local searcher which explores the neighborhood of a promising solution.
On the contrary, the PDMOSA employs a simulated annealing logic which attempts to
achieve a global property during the exploration of the decision space. According to our
algorithmic philosophy, a decrease of the parameter λ during the optimization process
corresponds to a settlement of the population over a set of non-dominated solutions.
These solutions will most likely be better spread out by the evolutionary framework
without any improvement, in terms of quality, of the detected solutions. In such con-
ditions, the PDMOSA has the role of providing a new perspective into the search and
hopefully detects new non-dominated solutions in still unexplored areas of the decision
space. When, notwithstanding this action (by the PDMOSA) the populations’ new gen-
eration seems to have negligible improvements, the MORA attempts to further improve
the solutions by exploring their neighborhood. In other words, the CDMOMA attempts,
at first, to generate a set of non-dominated solutions by the NSGA-II, then combines
the actions of the evolutionary components and local searchers for improving the per-
formance of the non-dominated set and eventually employs the local search to further
improve the solutions and the NSGA-II to assure a good spread to the set.

Fig 5 shows the pseudo-code of the proposed CDMOMA.

3 Numerical Results

The CDMOMA has been tested on eight popular test problems: FON (from Fonseca
and Fleming’s study [26]), POL(from Poloni’s study [27]), KUR (from Kursawe’s study
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[28]) and five ZDT problems (from Zitzler, Deb and Tiel) selected from [29] formulated
according to the study in [30].

Table 1 lists all the test problems under examination and the related details.

Table 1. Test Problems

Prob. n Bounds Objective functions Solutions Comments

ZDT1 30 [0,1]

f1 (x) = x1

f2 (x) = g(x)
[
1−

√
x1

g(x)

]
g(x) = 1+9

n
∑

i=2
xi

n−1

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

convex

ZDT2 30 [0,1]

f1 (x) = x1

f2 (x) = g(x)
[

1−
(

x1
g(x)

)2
]

g(x) = 1+9

n
∑

i=2
xi

n−1

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

nonconvex

ZDT3 30 [0,1]

f1 (x) = x1

f2 (x) = g(x)
[
1−

√
x1

g(x) −
x1

g(x) sin(10πx1)
]

g(x) = 1+9

n
∑

i=2
xi

n−1

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

convex,

disconnected

ZDT4 10

x1 ∈ [0,1]
xi ∈ [−5,5]
i = 2, ..,n

f1 (x) = x1

f2 (x) = g(x)
[
1−

√
x1

g(x)

]
g(x) = 1+10(n−1)+

n
∑

i=2

[
x2

i −10cos (4πxi)
]

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

nonconvex

ZDT6 10 [0,1]

f1 (x) = 1− exp(−4x1)sin6 (4πx1)

f2 (x) = g(x)
[

1−
(

f1(x)
g(x)

)2
]

g(x) = 1+9

⎡⎣ n
∑

i=2
xi

n−1

⎤⎦0.25

x1 ∈ [0,1] ,
xi = 0,

i = 2, ..,n

nonconvex,

nonuniformly

spread

FON 3 [−4,4]
f1 (x) = 1− exp

(
−

3
∑

i=1

(
xi− 1√

3

)2
)

f1 (x) = 1− exp

(
−

3
∑

i=1

(
xi + 1√

3

)2
) x1 = x2 =

= x3 ∈[
−1√

3
, 1√

3

] nonconvex

POL 2 [−π ,π ]

f1 (x) =
[
1+(A1−B1)

2 +(A2−B2)
2
]

f2 (x) =
[
(x1 +3)2 +(x2 +1)2

]
A1 = 0.5sin1−2cos 1+ sin2−1.5cos 2

A2 = 1.5sin1− cos 1+2sin2−0.5cos 2

B1 = 0.5sinx1−2cos x1 + sinx2−1.5cos x2

B2 = 1.5sinx1− cosx1 +2sinx2−0.5cos x2

nonconvex,

disconnected

KUR 3 [−5,5]
f1 (x) =

n−1
∑

i=1

(
−10exp

(
−0.2

√
x2

i + x2
i+1

))
f2 (x) =

n
∑

i=1

(
|xi|0.8 +5sinx3

i

) nonconvex

The CDMOMA performance has been compared with the SPEA-2 [6] and the
NSGA-II [5]. The three algorithms have been executed with a population size of 150
individuals, with a total budget of 800000 fitness evaluations. For each test problem 50
initial populations have been pseudo-randomly sampled within the respective decision
space. For each of these 50 populations the three algorithms have been independently
run. Thus, for each test problem each algorithm has been run 50 times. Fig.’s 6, 7, 8, 9,
10, 11, 12, 13 show the results obtained on selected runs.
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Fig. 6. ZDT1, selected solutions

0 0.5 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

CDMOMA

0 0.5 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

NSGA−II

0 0.5 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2
SPEA−2

Fig. 7. ZDT2, selected solutions

Numerical results on selected runs qualitatively show that the CDMOMA is able
to detect very good sets of non-dominated solutions in terms of fitness values and
spreading.

In order to also give a graphical representation of the average algorithmic perfor-
mance, for the single run of each algorithm, the final population has been sorted on the
basis of the first objective function. For each algorithm, the sorted objective function
values are averaged over each objective. Fig.’s 14, 15, 16, 17, 18, 19, 20, 21 show the
average algorithmic performance.

Numerical results indicate that the CDMOMA seems to have a promising behavior
with most of the problems under examination. In particular, in the case of the POL,
the CDMOMA has a performance comparable to that of the NSGA-II and better than
the SPEA-2; in the case of the FON, KUR, ZDT1, and ZDT3, the CDMOMA seems
to be significantly more efficient than the SPEA-2 in detecting a good set of solutions
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Fig. 10. ZDT6, selected solutions
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Fig. 14. ZDT1, average performance
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Fig. 16. ZDT3, average performance
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Fig. 17. ZDT4, average performance
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Fig. 19. FON, average performance
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Fig. 21. KUR, average performance

and slightly more efficient than the NSGA-II; in the case of of ZDT2, the CDMOMA
behaves slightly worse than the NSGA-II and comparably to the SPEA-2; in the case of
the ZDT6, the CDMOMA seems to behave better than the NSGA-II but worse than the
SPEA-2; in the case of the ZDT4, the CDMOMA is definitely worse than the NSGA-II
and globally comparable to the SPEA-2. Thus, it can be stated that, except in the case of
the ZDT4 test problem, the CDMOMA detects on average a set of solutions with high
performance and good spreading features.

In order to have a more quantitative comparison by means of the performance mea-
sures,ϒ and ∆ (see [5] and [31]) has been carried out. The first metricϒ measures the
extent of convergence to a known set of Pareto-optimal solutions. First, a set of 500
uniformly spaced solutions from the true Pareto-optimal front is detected. For each so-
lution obtained with an algorithm, the minimum Euclidean distance it has from the 500
chosen solutions on the true Pareto-optimal front is computed. The average of these



Integrating Cross-Dominance Adaptation 341

Table 2.ϒ values

NSGA-II CDMOMA SPEA-2

ϒ̄ σ2
ϒ ϒ̄ σ2

ϒ ϒ̄ σ2
ϒ

ZDT1 0.0012 8.1314 ·10−9 0.0011 9.7175 ·10−9 0.0111 8.6124 ·10−6

ZDT2 0.0014 3.9939 ·10−6 0.0008 1.0723 ·10−7 0.0136 1.3993 ·10−5

ZDT3 0.0014 4.7059 ·10−9 0.0013 2.8252 ·10−7 0.0128 2.3767 ·10−5

ZDT4 19.1313 4.1036 ·101 21.7563 1.0508 ·102 23.3591 5.5884 ·101

ZDT6 0.8279 1.2301 ·10−1 0.4678 5.7394 ·10−1 0.4748 5.1439 ·10−2

FON 0.0061 4.5006 ·10−8 0.0061 3.4269 ·10−8 0.0071 1.7740 ·10−7

distances is used as the first metricϒ . In other words,ϒ known also as the convergence
metric, is a measurement of deviation of the detected set of solutions from the true
Pareto-optimal front. Thus, it can be concluded that if ϒ ≈ 0 algorithm is efficient. It
should be remarked that this metric can be employed only when the true set of Pareto-
optimal solutions is known. Thus, it is obvious that this metric cannot be used for any
arbitrary problem.

The second metric ∆ measures the extent of spread achieved among the obtained
solutions, since one of the goals in multi-objective optimization is to acquire a set of
solutions that spans the entire Pareto-optimal region. In order to compute ∆ , the Eu-
clidean distance di (in the multi-dimensional codomain) between consecutive solutions
(with respect to the sorting according to one arbitrary objective function) in the obtained
non-dominated set of solutions is calculated. The average of these distances d̄ is then
calculated. Then, if the true Pareto-optimal front is known, the Euclidean distances d f

and dl between the extreme solutions and the boundary solutions of the obtained non-
dominated set are calculated. The non-uniformity metric ∆ is given by:

∆ =
d f + dl +

N−1
∑

i=1

∣∣di−d
∣∣

d f + dl +(N−1)d
, (5)

where N is the cardinality of the non-dominated set. If the true Pareto-optimal front is
not known, d f and dl are ignored by imposing d f = dl = 0. Formula (5) is thus modified:

∆ =

N−1
∑

i=1

∣∣di−d
∣∣

(N−1)d
. (6)

For further details see [5] and [31]. Since a high spreading, in the non-dominated set of
solutions, is desired, ∆ ≈ 0 characterizes a good set of solutions.

For each algorithm and each test problem, the average values ϒ̄ and ∆̄ have been
calculated over the 50 runs available. A graphical representation of the ϒ̄ and ∆̄ values
are given in Fig. 22 and 23 respectively. Since the calculation ofϒ requires the a priori
knowledge of the actual Pareto front which is unknown for POL and KUR test prob-
lems, theϒ values related to these two problems are missing in the following analysis.
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Table 2 lists average and variance values ofϒ and Table 3 lists average and variance
values of ∆ .

The quantitative analysis of the results shows that, regarding the convergence prop-
erty of the algorithms, the CDMOMA seems to have a very promising capability of
detecting a set of solutions which is similar to the true Pareto-optimal front. In particu-
lar, Fig. 22 and Table 2 show that the CDMOMA obtained the best convergence metric
ϒ for all the available test problems except the ZDT4. In the latter case, the CDMOMA
still performs better than the SPEA-2. Regarding spreading of the solutions within the
set, the CDMOMA is also rather promising. Results in Fig. 23 and Table 3 show that the
CDMOMA has a better performance than the SPEA-2 (except for the POL) and com-
parable to the NSGA-II. This finding was somehow expectable since the CDMOMA
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Table 3. ∆ values

NSGA-II CDMOMA SPEA-2

∆̄ σ2
∆ ∆̄ σ2

∆ ∆̄ σ2
∆

ZDT1 0.4108 5.6038 ·10−4 0.4003 3.5590 ·10−4 1.2347 2.8580 ·10−3

ZDT2 0.42834 6.0626 ·10−4 0.4723 7.5048 ·10−3 1.3670 2.9583 ·10−3

ZDT3 0.6147 4.1059 ·10−4 0.6126 8.1888 ·10−4 1.2306 2.8785 ·10−3

ZDT4 0.9395 2.4384 ·10−4 0.9620 1.6705 ·10−3 1.6331 9.9375 ·10−3

ZDT6 0.8521 3.6873 ·10−3 0.8359 1.1110 ·10−1 1.6178 9.1970 ·10−3

FON 0.6491 1.7710 ·10−4 0.6520 2.7579 ·10−4 0.9660 1.0791 ·10−3

POL 0.9722 2.5309 ·10−4 0.9775 6.3631 ·10−4 0.9583 2.7690 ·10−3

KUR 0.5659 3.7139 ·10−3 0.5313 2.4347 ·10−3 1.0343 2.5964 ·10−2

employs the the NSGA-II logic in its evolutionary framework and thus both algorithms
have the same sorting structure, this being an algorithmic component that heavily af-
fects the spreading in the population.

In conclusion the results from the set of benchmark problems allow the authors to
state that the proposed CDMOMA is a rather promising algorithm for multi-objective
optimization problems. According to our interpretation, employment of the local search
algorithms allows an improvement upon the evolutionary framework (NSGA-II) in de-
tection of a non-dominated set which performs highly in terms of fitness values. On
the other hand, the evolutionary framework guarantees an efficient spreading of the
solutions. The proposed adaptation seems, also, to be efficient in the coordination of
local search components. Finally, the cross-dominance criterion defined in this chapter
is an instrument for comparing two sets of solutions and thus monitor the algorith-
mic improvements. This information can be generally useful since it can be employed
as a feedback in the design of an adaptive algorithm for multi-objective optimization
problems.

4 Real World Application: Design of a DC Motor Speed Controller

Nowadays most motion actuators are set up with electric motors since they offer high
performance in terms of power density, efficiency, compactness and lightness. On the
other hand, in order to have satisfactory functioning of the motor, an effective control
is needed. Basically, an efficient motor control can be achieved either by applying a
complex and expensive control system (see [32], [33], [34], [35]) or by using a simple
and cheap control system, e.g. Proportional Integral (PI) based [36], which requires a
design often very difficult to perform. In the latter case, the control design of an electric
motor consists of detecting those system parameters that ensure a good system response
in terms of speed and current behavior. This leads to a multi-objective optimization
problem too complex for analytical solution [37]. Moreover, the application of classical
design strategy [38], [39], [40] likely leads to unsatisfactory results. Thus, during recent
years, interest in computational intelligence techniques has increased (see [41], [42] and
[43]).

This chapter attempts to apply the CDMOMA to the control design of the Direct
Current (DC) Motor whose electrical and mechanical features are shown in Table 4.
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Table 4. DC Motor Nameplate

Parameter Value

Armature resistance 2.13 Ω
Armature induction 0.0094 H
Moment of inertia 2.4e−6 Kg ·m2

Rated armature voltage 12 V
Rated armature current 1.2 A
Rated load torque 0.0213 Nm
Rated speed 400 rad/s

Fig. 24 shows the block diagram of the control scheme.
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Fig. 24. Block diagram of a DC motor control

The control scheme is based on dynamic equations of the motor:

va = Ra · ia + La · dia
dt

+ e (7)

v f = R f · i f + Lf · di f

dt
(8)

e = KΦ ·ω (9)

T = KΦ · ia (10)

J · dω
dt

= T −Tr (11)
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where va is the voltage applied to the armature circuit, v f is the voltage applied to the
excitation circuit, Ra, R f , La, Lf , ia and i f are the resistance, inductance and current for
the armature and the excitement circuits respectively, T and Tr are the electromagnetic
and load torque respectively, KΦ is the torque constant, ω is the rotor speed, J is the
moment of inertia and e is the voltage generated by the rotor of the electric machine
while rotating.

The DC motor control system is composed of two PI controllers. The first is used
to control current and the second speed. The PIs transfer functions of the current and
the speed controls are respectively Kpi + Kii

s and Kpω + Kiω
s . The speed reference is

pre-filtered through a smoothing filter to reduce overshoot and the current required by
the control in response to a speed step. The transfer function of the smoothing filter is

1
(1+τsm) .

With reference to Fig. 24, the control design consists of determining the parame-
ters Kpi, Kii, Kpω , Kiω and τsm which guarantee very small values in rise and settling
time, steady state error and overshoots. The decision space H ⊂ ℜ5 is a five dimen-
sional hyper-rectangle given by the Cartesian product constructed around solution x0

obtained by applying the classical symmetrical optimum (SO) criterion to design the
speed regulator and the absolute value optimum (AVO) criterion to design the current
regulator [44]. The lower and upper bounds of each interval have been set according to
the following equations:

xlb(i) = 10−6 · x0(i) (12)

xub(i) = 3 · x0(i) (13)

In order to evaluate the performance of each candidate solution, the four speed and load
torque step training test shown in Fig. 25 is simulated by means of Matlab/Simulink
as a discrete time control drive in order to realistically emulate an industrial dig-
ital drive. The control design of the DC Motor consists of determining a solution
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Fig. 25. Training test is a combination of speed commands and load torque
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x = [Kpi,Kii,Kpω ,Kiω ,τsm] which satisfies the following multi-objective optimization
problem:

Minimize
4
∑
j=1

oS j,
4
∑
j=1

tr j,
4
∑
j=1

ts j,
4
∑
j=1

err j

Within H

⎫⎬⎭ (14)

where oS j is the overshoot, tr j the rise time, ts j the settling time and err j the sum of
the absolute values of the speed error in settling condition during the jth trial step.

Fig. 26 illustrates oS j, tr j, ts j and err j for the generic jth step of the training test.
Finally, it must be remarked that, since each fitness evaluation requires a computation-
ally expensive simulation test (8 s for each evaluation, see [45]), the problem is very
demanding in terms of computational overhead.

The CDMOMA has been applied and its performance compared with the SPEA-2
and the NSGA-II. For each algorithm, 25 runs have been performed with a population
size equal to 40. The average and variance values of ∆ are listed in Table 5. The values
related toϒ are obviously missing since the actual Pareto is unknown.

The results in Table 5 show that for the problem under study, the SPEA-2 seems to
have slightly better performance than the other algorithms in terms of spreading of the
solutions.

In order to detect the most suitable control design the following decision making
process has been implemented. For each algorithm, all the final populations related to

the 25 runs have been merged. At first, all the individuals having an error
4
∑
j=1

err j above

a threshold value (200 rad) are discarded. This condition means that during the entire

Table 5. ∆ values for the DC Motor Control Design

NSGA-II CDMOMA SPEA-2

∆̄ σ2
∆ ∆̄ σ2

∆ ∆̄ σ2
∆

0.8951 2.5601 ·10−2 0.8375 1.4176 ·10−2 0.6858 1.5762 ·10−2
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Table 6. Single objective values after the decision making

4
∑
j=1

oSj

4
∑
j=1

tr j

4
∑
j=1

ts j

4
∑
j=1

err j

NSGA-II 8 0.1780 0.2640 8.3330

CDMOMA 10 0.1750 0.2610 7.9150

SPEA-2 145 0.2250 0.2920 19.4240
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Fig. 27. Zoom detail of the speed response of NSGA-II solution
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Fig. 28. Zoom detail of the speed response of CDMOMA solution

training test, the overall deviation (the sum of all the deviations) of the rotor position
from the reference axis should not be more than 200 rad. Amongst the remaining so-

lutions, all the individuals having a settling time
4
∑
j=1

ts j above 0.35 s are discarded;

amongst the remaining solutions, all the individuals having a rise time
4
∑
j=1

tr j above 0.2
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Fig. 29. Zoom detail of the speed response of SPEA-2 solution

s are discarded; amongst the remaining solutions, the solution having a minimal value

in the overshoot
4
∑
j=1

oS j is eventually selected.

The single objective values given by solutions obtained at the end of the decision
making process are listed in Table 6.

It can be noticed that the solution returned by the SPEA-2 is dominated by the solu-
tions returned by both NSGA-II and CDMOMA. The performance of the NSGA-II and
CDMOMA solutions are, on the contrary, rather similar; both the algorithms seem to
have high performance for this problem.

For the sake of clarity, a zoom detail of the speed response which graphically high-
lights the difference in performance is shown in Fig. 27, 28 and 29 for the NSGA-II,
the CDMOMA and the SPEA-2 respectively.

5 Conclusion

This chapter proposes the Cross-Dominant Multi-Objective Memetic Algorithm (CD-
MOMA), which is a memetic algorithm composed of the NSGA-II as an evolutionary
framework and two local searchers adaptively integrated within the framework. The
adaptation is based on a criterion which attempts to coordinate the local search by mon-
itoring improvements in the set of non-dominated solutions. Novel contributions of
this chapter are: the implementation proposed here for the Multi-Objective Rosenbrock
Algorithm, the concept of Cross-Dominance and its employment within a Memetic
Framework, and the probabilistic scheme based on the Wigner semicircle distribution.

The CDMOMA seems very promising in several test cases by either reaching the
theoretical Pareto or outperforming the popular NSGA-II and SPEA-2. In only one test
case (ZDT4) out of eight test problems the CDMOMA failed in detecting a good set of
solutions. Numerical results related to the real-world problem analyzed here seem also
to conclude that the CDMOMA can be a promising approach.

A further improvement in the proposed approach will be in the detection of tailored
local search components for some specific applications, in the design of efficient local
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searchers which take into account the spreading property of the locally improved solu-
tion with respect to other individuals of the population and, finally, to propose a modi-
fication of the evolutionary framework in order to enhance its robustness over multiple
runs.
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Summary. Dynamic multi-objective optimization (DMO) is one of the most chal-
lenging class of multi-objective optimization problems where the objective function(s)
change over time and the optimization algorithm is required to identify the corre-
sponding Pareto optimal solutions with minimal time lag. DMO has received very
little attention in the past and none of the existing multi-objective algorithms perform
too well on the set of newly proposed DMO test problems. In this chapter, we intro-
duce a memetic algorithm (MA) to deal with such class of problems. The memetic
algorithm employs an orthogonal epsilon-constrained formulation to deal with multi-
ple objectives and a sequential quadratic programming (SQP) solver is embedded as
its local search mechanism to improve the rate of convergence. The performance of
the memetic algorithm is compared with an evolutionary algorithm (EA) embedded
with a Sub-EA on two benchmarks FDA1 and modified FDA2. The memetic algorithm
consistently outperforms the evolutionary algorithm with Sub-EA for both FDA1 and
modified FDA2 for all problem sizes. A variational study on the effect of the number
of SQP iterations on the behavior of MA is included to highlight the benefits offered
by MA for such class of problems.

Keywords: dynamic multi-objective optimization, memetic algorithm, evolutionary
algorithm, orthogonal epsilon-constrained method.

1 Introduction

Over the years, a number of optimization algorithms such as evolutionary al-
gorithms (EA), particle swarm optimization (PSO), differential evolution (DE)
and hybrids such as memetic algorithms have been successfully used to solve
a number of real life multi-objective optimization problems. However, most of
the reported applications deal with static multi-objective optimization prob-
lems, where the objective functions do not change over time. For such classes
of problems, the aim of an optimization algorithm is to identify a diverse set of
non-dominated solutions that are close to the Pareto optimal front.

Dynamic multi-objective optimization is far more challenging as compared to
its static counterpart. In order to solve a DMO problem effectively and efficiently,
the optimization algorithm should posses mechanisms to (a) identify a change
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in the objective function(s), (b) converge to the Pareto optimal set with a high
rate of convergence, and (c) allow migration from a converged Pareto optimal
set to another.

In terms of identifying a change in the objective function, there are basically
two approaches reported in literature:- proactive and reactive. In proactive ap-
proach, a forecasting model is developed based on objective function behavior
over time and a portion of the population is evolved based on an objective func-
tion derived through the forecasting model (1). Such an approach is suitable if
the objective function follows a pattern over time as in many DMO test problems
but may not be the best choice for all classes of problems. The reactive approach
on the other hand responds to a change in the objective function only when it is
detected and is a more generic approach to solving DMO problems. Performance
of reactive model on some test cases under unpredictable parameter variations
is reported in (2).

In order to solve a DMO problem efficiently, the underlying optimization algo-
rithm should have a high rate of convergence. A hybrid search i.e. a combination
of a global and a local search is particularly attractive for such problems as
the rate of convergence of a hybrid search is better than a global search alone.
Memetic algorithm (MA) (3; 4) is one such hybrid which is known for its high
rate of convergence. MA integrates the global search properties of a popula-
tion based approach with the exploitation properties of a local search algorithm.
An excellent review of memetic algorithms has been presented by (5). However,
the performance of MA is largely dependent on the correct choice of the local
search strategies (memes), identification of the subset undergoing local improve-
ments and the convergence criterion used in local search strategies. Furthermore,
for MO problems in general, the MA should posses appropriate mechanisms to
maintain diversity and an acceptable level of spread along the Pareto optimal
front. Epsilon constraint formulation (6) is an attractive choice to deal with the
above problem but needs a prudent choice of the constraints to uncover regions
of the non-convex front. Adaptive GA with dynamic fitness function guided by
fuzzy inference system to control crossover and mutation rates has been reported
in (7).

The third aspect of DMO algorithm is particularly difficult to incorporate as
migration from a converged Pareto optimal set to another may require substan-
tial traversal in the variable space and thus lead to a larger time lag. A generic
approach would be to use a random population instead of the converged Pareto
solutions whenever a change in the objective function is detected. However, such
an approach is likely to have larger time lag as compared to a migration from
the converged Pareto set for problems where there is gradual migration of the
variables. The recombination and mutation schemes employed within an EA are
also expected to influence the convergence behavior.

In this chapter, we present a memetic algorithm that consists of an EA cou-
pled with a SQP solver to deal with DMO problems. An orthogonal epsilon-
constrained formulation is used to deal with multiple objectives where orthogonal
sets of constraints are used to uncover all parts of the Pareto optimal front. The
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underlying EA is embedded with a SQP solver for faster convergence. The MA
with orthogonal epsilon constraint formulation attempts to solve a series of single
objective constrained optimization problems to yield the set of non-dominated
solutions. The details of the algorithm are outlined in Section 2 while its perfor-
mance on the set of mathematical benchmarks FDA1 and modified FDA2 are
presented in Section 3 followed by a summary of our findings in Section 4.

2 Memetic Algorithm for Dynamic MO Optimization

The framework for the proposed memetic algorithm is outlined in Algorithm 1.
The structure is identical to an evolutionary algorithm framework with the only
exception that MA utilizes gradient evolve mechanism while an EA uses Sub-EA
evolve mechanism.

Algorithm 1. Memetic / Evolutionary algorithm for DMO problems
Require: NG > 1 /* Number of Generations */
Require: N > 0 /* Population size */
1: P1 = Initialize()
2: Evaluate(P1)
3: for i = 2 to NG do
4: if the function has changed then
5: Evaluate(Pi−1)
6: end if
7: Ci−1 = GradientEvolve(Pi−1) or Ci−1 = SubEAEvolve(Pi−1)
8: Evaluate(Ci−1)
9: Pi = Reduce(Pi−1 + Ci−1)

10: end for

2.1 Initialization

The solutions in the initial population are initialized by selecting individual
variable values in the specified range as given in Eq. 1.

xi = xi + U [0, 1] (xi − xi) 1 ≤ i ≤ n (1)

where xi denotes the initialized variable, xi and xi are the lower and upper limits
for ith variable respectively, n is the size of the design variable vector and U [0, 1]
is a uniform random number lying between 0 and 1.

2.2 Evaluation

The solutions in a population are evaluated using disciplinary analysis to cal-
culate the objectives and the constraints. For dynamic problems, the function
(objectives and/or constraints) behavior changes with time. The objective and
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the constraint values of a candidate solution calculated in the previous genera-
tion may not be valid for the next generation. To check if the objective and/or
constraint functions have changed with time, a solution is picked randomly from
the population and re-evaluated. If the objective or the constraint values have
changed, then the function behavior is assumed to have changed and the en-
tire population is re-evaluated to obtain new values of the objectives and the
constraints.

2.3 Gradient Evolve Method

The gradient evolve mechanism employs a sequential quadratic programming
(SQP) solver to solve a series of single objective optimization problems generated
through an orthogonal epsilon-constrained formulation of the multi-objective
problem. Consider a bi-objective optimization problem as presented in Eq. 2.

Minimize f1(x), f2(x) subject to gi(x) ≤ 0, i = 1, . . . , m (2)

The extent of the Pareto optimal front is established by 2 separate single objec-
tive optimization problems given in Eq. 3.

Minimize f1(x) subject to gi(x) ≤ 0, i = 1, . . . , m

Minimize f2(x) subject to gi(x) ≤ 0,

i = 1, . . . , m

(3)

The solutions of the single optimization problems (fmin
1 and fmin

2 ) correspond
to the extremities of the Pareto optimal front as shown in Figure 1. The rest
of the Pareto optimal front is obtained by orthogonal epsilon-constrained refor-
mation for each objective. The range of each objective is sub-divided into small
intervals and a single objective optimization problem is solved for each of those

f2

f1
fmax

1

fmax
2

fmin
2

f k
1 f k+1

1fmin
1

f k
2

f k+1
2

Fig. 1. Pareto optimal front for bi-objective optimization problem and formulation of
orthogonal epsilon-constrained formulation
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intervals. For f1(x), the range of values is [fmin
1 , fmax

1 ] and is sub-divided into
equal intervals [fk

1 , fk+1
1 ] as shown in Figure 1. For each interval [fk

1 , fk+1
1 ], a

single objective optimization problem is solved as given in Eq. 4.

Minimize f2(x)

subject to fk
1 ≤ f1(x) ≤ fk+1

1

gi(x) ≤ 0, i = 1, . . . , m

(4)

Similarly, the range for f2(x) is [fmin
2 , fmax

2 ] and the single optimization problem
is solved on each interval [fk

2 , fk+1
2 ] (Eq. 5).

Minimize f1(x)

subject to fk
2 ≤ f2(x) ≤ fk+1

2

gi(x) ≤ 0, i = 1, . . . , m

(5)

Both, the convex and the non-convex parts of the Pareto optimal front can be
captured using such an approach.

Solution of a single objective optimization problem requires a starting point.
For each of the single optimization problems, a solution is picked up from the
parent population randomly as the starting point. The number of function eval-
uations are dictated by the number of SQP iterations.

2.4 Sub-EA Evolve Method

In the Sub-EA evolve mechanism, the parent population of EA is allowed to
evolve using an embedded evolutionary algorithm (Sub-EA) with conventional
crossover and mutation operators. The main steps of the Sub-EA evolve method
are given in Algorithm 2. In the present study, simulated binary crossover (SBX)
and polynomial mutation operators are used (8). The population size for sub-EA
is the same as that of the EA. For each generation of EA, multiple generations
are evolved using sub-EA. The number of function evaluations is dictated by the
number of generations of sub-EA.

Algorithm 2. Sub-EA Evolution Algorithm
Require: N ′

G > 1 /* Number of Sub-EA Generations */
Require: Pj /* Parent Population of jth generation */
1: P ′

1 = Pi

2: Evaluate(P ′
1)

3: for i = 2 to N ′
G do

4: C′
i−1 = Crossover(P ′

i−1)
5: C′

i−1 = Mutation(C′
i−1)

6: Evaluate(C′
i−1)

7: P ′
i = Reduce(P ′

i−1 + C′
i−1)

8: end for
9: Cj = P ′

N′
G

/* Sub-EA evolved population is offspring population for EA */
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2.5 Reduction

The reduction process retains N elite solutions for the next generation from a
set of 2N solutions (parent and offspring population). Non-dominated sorting is
used to sort 2N solutions into non-dominated fronts and within each front, the
solutions are ranked using crowding distance sort (9). The reduction procedure
is as follows.

1. If there are N or more feasible solutions,
• N feasible solutions are selected in the order of non-dominated fronts

and decreasing order of crowding distance in each front.
2. If there are less than N feasible solutions,
• all the feasible solutions are selected, and
• remaining solutions are selected from infeasible solutions in the increasing

order of maximum constraint violation value.

Non-dominated sorting and crowding distance based sorting helps maintain the
diversity in the population and spreads the solutions along the Pareto front.

3 DMO Test Problems

A static multi-objective optimization problem has fixed Pareto Optimal Front
(POF) and corresponding solutions in the variable space denoted by POS. For
dynamic multi-objective optimization problems POF and/or POS vary with
time. A classification of multi-objective optimization problems are presented
by Farina et. al. (10). Test problems FDA1 (10) and modified FDA2 (11) are
used for this study. The FDA1 test problem is as defined by Eq. 6.

FDA1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(xI) = x1,

f2(xII) = g × h,

g(xII) = 1 +
∑

xi∈xII

(xi −G(t))2

h(f1, g) = 1−
√

f1/g

G(t) = sin(0.5πt), t =
1
nt

⌊
τ

τT

⌋
xI = (x1) ∈ [0, 1],

xII = (x2, . . . , xn) ∈ [−1, 1].

(6)

where τ is the generation counter, τT is the number of generations for which t
remains fixed, and nt is the number of distinct steps in t. The values used for
the variables are: n = 11, nt = 10, and τT = 5.

Every time t changes, the POS changes but the POF remains same corre-
sponding to f2 = 1 − √f1. At the first time instant t = 0, the POS solutions
correspond to xi = 0 for xi ∈ xII . With changes in t, each variable in xII changes
in a sinusoidal manner corresponding to a change in G(t) as seen in Figure 2.
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Fig. 3. FDA2mod POF changes from a convex shape to a concave shape with time

The definition for modified FDA2 (FDA2mod) is given in Eq. 7.

FDA2mod :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(xI) = x1,

f2(xII ,xIII) = g × h

g(xII ,xIII) = 1 +
∑

xi∈xII

x2
i +

∑
xi∈xIII

(xi + 1)2

h(f1, g) = 1−
(

f1

g

)H(t)

H(t) = 0.2 + 4.8t2, t =
1
nt

⌊
τ

τT

⌋
xI = (x1) ∈ [0, 1],

xII = (x2, . . . , xr1) ∈ [−1, 1],
xIII = (xr1+1, . . . , xn) ∈ [−1, 1].

(7)
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where τ is the generation counter, τT is the number of generations for which t
remains fixed, and nt is the number of distinct steps in t. The values used for
the variables are: n = 31, r1 = 16, nt = 10, and τT = 5. The POF for FDA2mod

changes from a convex shape to a concave shape as t varies as shown in Figure 3.
A series of performance metrics for multi-objective optimization have been

reported in literature (12; 13). These performance metrics use various measures
on the non-dominated set of solutions such as cardinality, distance, volume,
spread, etc. For the test problems used in this study, the POF and the POS
variations are known and performance metrics based on absolute measures can
be used. One such metric is the generational distance. The generational distance
is the measure of the distance between the Pareto optimal front and the non-
dominated solution set (14). The metric is defined as follows:

Let F ∗ denote the Pareto Optimal Front (POF) and S∗ denote the Pareto Op-
timal Set (POS). The generational distance of a set of non-dominated solutions
(F ) with respect to the POF F∗ is given by,

G(F, F ∗) =
1
|F |

(
n∑

i=1

(di)p

) 1
p

,

where di is the Euclidean distance between the ith non-dominated solution of
F and the nearest member of the Pareto front F ∗, and |F | is the number of
elements in the non-dominated set. Most often p = 2. The same metric can
also be used in the variable space to measure the generational distance of the
non-dominated solutions in the variable space (S) with respect to the POS S∗.

G(S, S∗) =
1
|S|

(
n∑

i=1

(di)p

) 1
p

,

4 Results

4.1 Experimental Setup

A population size of 40 is evolved over 100 generations for both MA and EA.
Each generation corresponds to a single time step. Both the algorithms are run
for 100 time steps. For EA, the parameters of sub-EA (crossover and mutation
parameters) are varied along with the random seed, resulting in a total of 32

Table 1. Parameters Values for 32 experimental runs of EA

Random Seed 10, 20

Crossover Probability 0.8, 0.9

Crossover Distribution Index 10, 20

Mutation Probability 0.05, 0.1

Mutation Distribution Index 20, 50
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experimental runs. Since there are no additional parameters for MA, 32 different
values of random seed are chosen. Shown in Table 1 are the parameter values used
for various runs for EA. The random seed values for MA used are 10, 20, . . . , 320.

To ensure that EA and MA use the same number of function evaluations, first
an estimate of number of function evaluations used by MA is obtained based
on few runs. Gradient based algorithm uses a tolerance criterion to terminate
the algorithm, or alternately, it can use a fixed iteration count. For MA the
number of SQP iterations is fixed at 2 and the corresponding number of function
evaluations is used to determine the number of SubEA generations. For FDA1,
function evaluations corresponding to 2 iterations of SQP are equivalent to 70
generations of sub-EA. For FDA2mod, function evaluations corresponding to 2
iterations of SQP are equivalent to 190 generations of SubEA.

4.2 Results of FDA1

The statistics of multiple runs for MA and EA are presented in Table 2. EA uses
a fixed number of function evaluations as dictated by the population size and
the number of generations. As MA uses gradient based search, the number of
function evaluations vary across multiple runs. The difference in the minimum
and maximum number of function evaluations for MA is 384 (283,167-282,783)
which is approximately 0.1% of the average number of function evaluations. Thus
the number of function evaluations for MA and EA are considered equivalent.

The performance of MA and EA is compared using the generational distance
metric. Variation in the generational distance for POF across multiple runs of

Table 2. Function evaluations statistics for MA and EA for FDA1

Min. Avg. Max.

MA 282,783 283,001 283,167

EA 282,099 282,099 282,099
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Fig. 4. FDA1: Generational Distance metric for the Pareto optimal fronts (POF)
obtained by MA and EA for all the experimental runs
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Fig. 5. FDA1: Generational Distance metric for the Pareto optimal sets(POS) obtained
by MA and EA for all the experimental runs

MA and EA are shown in Figure 4. The POF generational distance is quite high
in the beginning and reduces in next few generations. At every interval of t = 5,
there is a sudden increase in the generational distance as seen in Figure 4(a).
This increase corresponds to the change in the function form for t = 5. The
POF generational distance using MA is consistently lower than EA across the
generations. Since the movement of POS is very small between time steps 40 and
60, the POF generational distance for EA and MA shows a dip as in Figure 4(b).

Shown in Figure 5 is the variation in the POS generational distance across
multiple runs of MA and EA. The POS generational distance in the variable
space is calculated for the solutions that are non-dominated in objective space.
The POS generational distance using MA (Figure 5(a)) shows a similar trend
as that of POF generational distance (Figure 4(a)). Small movement of POS
during the time steps 40 and 60 is visible prominently in the POS generational
distance using EA as shown in Figure 5(b).

When the SQP search in MA is allowed to run for more number of itera-
tions, the solutions converge closer to the Pareto front as seen in Figure 6(a) and
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Fig. 6. FDA1: Generational Distance metric for the POF and the POS obtained by
MA when the SQP search is run for 10 iterations
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Table 3. Function evaluations used by MA with SQP search executed for 2 and 10
iterations for FDA1

SQP Function evaluations

Iterations Min. Avg. Max.

2 282,783 283,001 283,167

10 492,500 497,568 501,678

Table 4. Function Evaluations used by MA and EA for FDA1 with different number
of design variables

MA EA

dim. Min Avg. Max Avg. SubEA gens.

11 282,849 282,996 283,091 282,099 70

15 375,434 375,561 375,644 361,299 90

20 491,083 491,271 491,446 480,099 120

25 606,786 606,995 607,240 598,899 150
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Fig. 7. FDA1: Generational Distance metric for the POF obtained by MA and EA for
different number of design variables
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(Figure 6(b)). The improvement in performance of MA is at the cost of increased
number of function evaluations as seen from Table 3.

4.3 Results of FDA1 Problem Size Variation

Increasing the problem size has an immediate effect on the number of function
evaluations used by MA as the gradient calculation requires additional evalu-
ations. The number of function evaluations used by MA for different number
of design variables (change in the dimension of xII) is given in Table 4. The
equivalent number of function evaluations for EA are obtained by increasing the
number of sub-EA generations as given in Table 4.

The effects of increase in the number of design variables on the POF gener-
ational distance can be observed through a comparison between Figure 4 with
Figure 7 and on the POS generational distance can be seen through a compar-
ison between Figure 5 with Figure 8. MA consistently outperforms EA for all
the problem sizes in both POF and POS.

4.4 Results of FDA2

The POF generational distance variation by MA and EA for FDA2mod is pre-
sented in Figure 9. Its clear that MA is able to maintain lower generational
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Fig. 8. FDA1: Generational Distance metric for the POS obtained by MA and EA for
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Fig. 9. FDA2mod: Generational Distance metric for the Pareto optimal fronts (POF)
obtained by MA and EA for all the experimental runs
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Fig. 10. FDA2mod: Generational Distance metric for the Pareto optimal sets (POS)
obtained by MA and EA for all the experimental runs

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45  50

G
en

er
at

io
na

l D
is

ta
nc

e

Generations

(a) MA

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35  40  45  50

G
en

er
at

io
na

l D
is

ta
nc

e

Generations

(b) EA

Fig. 11. FDA2mod: Generational Distance metric for the POF and the POS obtained
by MA when the SQP search is run for 10 iterations
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distance as compared to EA over the generations. The corresponding POS gen-
erational distance for MA and EA is presented in Figure 5. It is interesting to
observe that although POS generational distance for MA is lower than EA, it
exhibits a significant fluctuation whereas EA presents a relatively flat behavior.

The generational distance variation (POF and POS) for MA with an increase
in the number of SQP iterations from 2 to 10 is presented in Figure 11. An
increase in the number of SQP iterations, improves the generational distance in
both POF and POS as observed for FDA1.

5 Summary and Conclusion

In this chapter, a memetic algorithm is presented for dynamic multi-objective
optimization. Currently, DMO problems are considered intractable and there
is considerable interest to develop optimization methods to solve such classes
of problems. A memetic algorithm is proposed to solve DMO problems and
the results on the test functions clearly indicate its superiority over EA based
approaches. The memetic algorithm is embedded with a sequential quadratic
programming (SQP) solver as a local search mechanism for an improved rate
of convergence. An orthogonal epsilon-constrained formulation is used to refor-
mulate a multi-objective optimization problem as series of single objective opti-
mization problems and uncover both convex and non-convex part of the Pareto
optimal front. The algorithm is designed as a reactive model, where it acts on
migration only when a change is detected in the objective function. Upon de-
tecting a change in the objective function, existing solutions are used as starting
points for SQP search although a random start points for SQP is also a possi-
bility. The performance of the proposed MA is compared with an evolutionary
algorithm undergoing secondary evolution using Sub-EA for two standard bench-
marks FDA1 and modified FDA2 over a range of problem dimensions and the
number of SQP iterations. The results clearly indicate that MA outperforms EA
for all problem sizes for the same computational cost delivering solutions that
are closer to the Pareto optimal front in both the objective and variable space
and stands out as a promising alternative for DMO problems. The algorithm is
currently being tested for online UAV system identification and control.
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In this chapter, we propose a co-evolutionary differential evolution algorithm, which
combines ideas from co-evolution and local search to guide the search process towards
the Pareto optimal set. Experimental results are carried out on fifteen test problems. The
analysis demonstrates the effectiveness of the proposed algorithms and generates solu-
tion sets that are highly competitive in terms of convergence, diversity, and distribution.

1 Introduction

Many real-world optimization problems can be modelled as (MOPs). As the objectives
are often in conflict with each others, no single solution can optimize all the objec-
tives simultaneously. Since the pioneering work of Schaffer’s [1], a significant number
of evolutionary algorithms (EAs) has been developed for MOPs [2],[3]. These multi-
objective algorithms range from conventional evolutionary algorithms (EAs) such as
genetic algorithms (GAs), evolution Strategies (ES), and genetic programming (GP), to
a relatively newly-developed paradigms such as differential evolution (DE) [4], artificial
immune systems (AIS) [5], ant colony optimization (ACO) [6], particle swarm opti-
mization (PSO) [7], and estimation of distributions algorithms (EDA) [8]. (MOEAs)
work with a population of candidate solutions and thus can produce a set of non-
dominated solutions to approximate the Pareto optimal set in a single run.

There have been several issues that attracted attention in the literature. The first is-
sue is fitness assignment and diversity maintenance [9, 10]. The second issue, is how
to balance diversity and convergence with a single population, since genetic drift may
cause the population to lose some representative solutions found during the search due
to its finite size. To overcome this shortcoming, an external population (archive) is of-
ten used in MOEAs for maintaining those non-dominated solutions found during the
search. Efforts have been made to study how to maintain and utilize such an external
population [11]. A third issue is the combination of MOEA and local search heuristics
to perform local fine-tuning using Memetic Algorithms (MAs) [12]. A several (MO-
MAs) has been developed over the past decade [3]. MOMAs need to consider how to
evaluate the quality of solutions for their local search operators.

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 369–388.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we propose a cooperative co-evolutionary approach which co-evolves
the populations of solutions and the search directions using multi-objective differen-
tial evolution. Further, we also incorporate local search into the algorithm to fine-tune
the non-dominated set. A comparative study was carried out to validate the algorithm.
The obtained results show a quick convergence to the Pareto optimal set. Also, the ob-
tained non-dominated solutions from the proposed algorithm are diverse in comparison
to those generated by other methods.

In the rest of this chapter is organized as follows: an overview of Multi-objective
Evolutionary Algorithms, memetic algorithms and the DE algorithm are presented in
Section 2. The proposed algorithms are introduced in Section 3. The experimental study,
results, and discussions are presented in Section 4. The last section is devoted to the
conclusion and future work.

2 Background

2.1 Multi-Objective Evolutionary Algorithms (MOEAs)

Real-world problems often have multiple conflicting objectives. For example, one may
like to have a good quality car, but to also want to spend less money on buying it. The
question becomes what is an optimal solution for a multi-objective problem (MOP)? In
general, it is defined as follows:

”A solution to a MOP is Pareto optimal if there exists no other feasible solution which
would decrease some criterion without causing a simultaneous increase in at least one
other criterion.” [13].

Using this definition of optimality, we usually find several trade-off solutions (called
Pareto optimal set, or Pareto optimal front (POF) for the plot of the vectors of deci-
sion variables corresponding to these solutions) that will be further explained later in
this section. In that sense, the search has fundamentally changed from finding a single
optimal solution as in single-objective optimization to finding a set of non-dominated
solutions. MOEAs are stochastic optimization techniques used to find Pareto optimal
solutions for a particular problem [2].

Mathematically, in a k-objective optimization problem, a vector function
−→
f (−→x ) of

k objectives is defined as:

−→
f (−→x ) = [ f1(−→x ), f2(−→x ), ..., fk(−→x )] (1)

in which −→x is a vector of decision variables in the n-dimensional space Rn; n and k
are not necessarily the same. Each individual is assigned a vector −→x and therefore the
corresponding vector

−→
f . The decision to select an individual is partially dependent on

all objectives (as in Eq. 1). MOEAs offer a set of solutions; however, which solution to
be selected at the end of the day is decision-maker’s dependent.

An individual x1 is said to dominate x2 if x1 is better than x2 when measured on all
objectives. If x1 does not dominate x2 and x2 also does not dominate x1, they are said to
be non-dominated. if we use� between x1 and x2 as x1 � x2 to denote that x1 dominates
x2 and≺ between two scalars a and b as a≺ b to denote that a is better than b (similarly,
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a  b to denote that a is worse than b, and a � b to denote that a is not worse than b),
then the domination concept is formally defined as follows.

Definition 1: x1 � x2 if the following conditions are held:

1. f j(x1) � f j(x2), ∀ j ∈ [1, 2, ...,k]
2. ∃ j ∈ [1, 2, ...,k] in which f j(x1) ≺ f j(x2)

In general, if an individual in a population is not dominated by any other individual in
the population, it is called a non-dominated individual. All non-dominated individuals
in a population form the non-dominated set or the Pareto front (as formally described
in definition 2).

Definition 2: A set S is said to be the non-dominated set of a population P if the follow-
ing conditions are held:

1. S ⊆ P
2. ∀ s ∈ S, � x ∈ P | x � s

When the set P represents the entire search space, the set of non-dominated solutions
S is called the global Pareto optimal set. If P represents a sub-space, S will be called the
local Pareto optimal set. There is only one global Pareto optimal set, but there could be
multiple local ones. However, in general, we simply refer to the global Pareto optimal
set as the Pareto optimal set.

The key steps of a MOEA are as follows: At each iteration, the objective values
are calculated for every solution and are then used to determine the dominance rela-
tionships within the population in order to select potentially better solutions for the
next generation. Following this procedure, the population is expected to converge to the
POF. Generally, the MOEA has to overcome two major problems [14]. The first prob-
lem is how to get as close as possible to the Pareto optimal front. This is not an easy task
when considering that the search needs to progress across multiple dimensions simul-
taneously. The second is how to keep diversity among the solutions in the obtained set.
These two problems become common criteria for most current algorithmic performance
comparisons.

To date, many MOEAs have been developed. Generally speaking, they are classified
into two broad categories: non-elitism and elitism. With the elitism approach, MOEAs
employ an external set (the archive) to store the non-dominated solutions after each
generation. This set will then be a part of the next generation. With this method, the best
individuals in each generation are always preserved, and this way helps the algorithm

Table 1. The common framework for Evolutionary Multi-objective Optimization Algorithms

Step 1: Initialize a population P
Step 2: (optional):Select elitist solutions from P to create an external set
FP (For non-elitism algorithms, FP is empty).
Step 3: Create mating pool from one or both of P and FP
Step 4: Perform reproduction based on the pool to create the next generation P
Step 5: Possibly combine FP into P
Step 6: Go to step 2 if the termination condition is not satisfied.
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gets closer to the POF. Algorithms such as SPEA2 [15], PDE [16] and NSGA-II [10] are
examples of this category. In contrast, the non elitism approach has no concept of elitism
when it does selection of individuals for the next generation from the current population
[14]. Examples of this category include VEGA [1] and NSGA [2]. Although MOEAs
are different from each other, the common steps of these algorithms can be summarized
as shown below (Table 1).

2.2 Differential Evolution

A (DE) algorithm is a floating-point encoded evolutionary algorithm for global opti-
mization problems over continuous spaces. In order to generate a new offspring, DE
uses one main parent and two supportive parents [17, 18, 4]. Basically, the main parent
is disturbed by adding a fixed step length multiplied by the difference between the two
supportive parents. The resultant solution is called the trial/prototype solution. The pro-
totype is then crossed-over with another pre-selected solution to generate an offspring.
The offspring is inserted into the population if it outperforms the pre-selected solution.
By using difference vectors, DE takes into account direction information. In some cases,
good directions will be generated and DE will generate good solutions. In other cases,
bad directions will be generated which will deteriorate the solution quality. There are
several variants of the DE algorithm [17, 18] DE/rand/1, DE/Best/1, DE/rand-to-Best/1
and DE/Best/2 all variants are the same except in the way to generate mutant vectors. In
this paper, we focus on the DE/rand/1 variant of DE, explained as a pseudo code in Fig-
ure 1. It is also used as a basis for comparison with the proposed strategy. According to
Storn [17, 18] the DE algorithm has three operators: mutation, crossover and selection.
Mutation and crossover are used to generate the new trial solution, while the selection
operator determines which of the vectors will insert into the population and survive to
the next generation.

• Mutation Operator:
For each target solution vector (Xi,t), i = 1,2, ...,NP , a mutant vector (Vi,t+1) is
generated based on one of the following equation:
- DE/rand/1:

Vi,t+1 = Xr1,t + F(Xr2,t −Xr3,t), (2)

- DE/Best/1:
Vi,t+1 = XBest,t + F(Xr1,t −Xr2,t), (3)

- DE/rand to Best/1:

Vi,t+1 = Xi,t + F(XBest,t −Xi,t)+ F(Xr1,t −Xr2,t), (4)

- DE/Best/2:

Vi,t+1 = XBest,t + F(Xr1,t −Xr2,t)+ F(Xr3,t −Xr4,t), (5)

Where: r1,r2,r3,r4 ∈ (1...NP)are three mutually distinct random number and dis-
tinct from i. NP is the number of solution vectors and F is a real number representing
the step length, F ∈ (0,2) controls the amplification of the difference vectors. XBest,t

is the best solution vector at generation t.
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• Crossover Operator:
The mutant vector(Vi,t+1) and the target solution vector (Xi,t+1 are crossed over to
generate a trial solution vector (Ui,t+1 according to the following equation:

Ui,t+1 = (u1i,t+1,u2i,t+1, ...,uDi,t+1) (6)

where :

u ji,t+1 =
{

v ji,t+1, if r j ≤CR or j = rn(i) ,
x ji,t , if r j > CR and j �= rn(i). (7)

Where: j = 1,2, ...,D, with D as the dimension of the solution vector, r j is a uniform
random number generated from the interval ∈ [0,1], CR is a crossover probability,
rn(i) is a randomly chosen index ∈ (1,2, ...D) which ensures that Ui,t+1 gets at least
one parameter from (Vi,t+1).

• Selection Operator:
The trial vector Ui,t+1 is compared to the target vector (Xi,t ) using the following
criterion:

Xi,t+1 =
{

Ui,t+1, i f f (Ui,t+1) < f (Xi,t)
Xi,t , otherwise

(8)

Input: population P, crossover rate CR, a real value F
Evolve P:
For i=1 to the population size(NP)
Select randomly three different values r1,r2,r3:
r1 �= r2 �= r3 �= i
For each variable j
if Random ≤ CR
X = P[r1][j] + F*(P[r2][j]-P[r3][j])
else X = P[i[j]
If X is better than P[i], replace P[i] by X
Loop
Output: new population P

Fig. 1. The pseudo code for the DE/rand/1

To date, many MOEAs have been introduced in the literature using DE such as PDE
[16], GDE [19], and NSDE [20].

2.3 Memetic Algorithms

[12] are population-based heuristic search approaches for optimization problems based
on cultural evolution. The majority of memetic approaches are based on finding local
improvements of candidate solutions obtained by the evolutionary search mechanism.
This is performed by using dedicated local search methods such as Back-propagation
when training artificial neural networks [21].

There has been a significant number of (MOMAs). Here, we summarize some of
the most popular ones. In [22], Ishibuchi and Murata proposed to assign fitness for
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individuals using a randomly selected linear utility function. The resulting offspring is
improved by a local search operator using the same utility function by which the parents
were selected. The local search procedure is terminated when k neighbors of the current
solution have been examined with no improvement. An elitist strategy is incorporated
in the procedure. Also, in [23], the authors introduced a local search probability to MO-
MAs [22] for decreasing the computation time spent by local search. In their modified
MOMA, local search is not applied to all solutions in the current population, but to
selected solutions with a predefined probability.

In [24] two novel algorithms were proposed. The first was based on a hybrid of EAs
with simulated annealing, while the second was quite similar to the one proposed by
Ishibuchi and Murata [22]. The difference is that they introduced a variant of restricted
mating so that only the N best solutions measured using a random utility function are
allowed to mate. The two proposed algorithms were tested and compared with Ishibuchi
and Murata’s on a set of multi-objective travelling salesman problems. On these prob-
lems, global convexity may be exploited and so restricted mating is advantageous.

Knowles and Corne [25] combined their Pareto archived evolution strategy (PAES
[26] with a crossover operation for designing a memetic PAES (M-PAES). In their M-
PAES, the Pareto-dominance relation and the grid-type partitioning of the objective
space were used for determining the acceptance (or rejection) of new solutions gen-
erated in genetic and local search. The performance of M-PAES was examined for
multi-objective knapsack problems and for degree-constrained multi-objective MST
(minimum-weight spanning tree) problems. In those studies, the M-PAES was com-
pared with the PAES, the MOGLS of Jaszkiewicz [24], and a MOEA.

More recently in [27] a new memetic algorithm for multi-objective optimization was
proposed, which combines the global search ability of particle swarm optimization with
a synchronous local search heuristic for directed local fine-tuning. A new particle up-
dating strategy is proposed based upon the concept of fuzzy global-best to deal with
the problem of premature convergence and diversity maintenance within the swarm.
The proposed features are examined to show their individual and collective behaviors
in MOEA optimization.

3 Methodology

As indicated in Section 1.2.2, the use of direction in guiding the search engine in DE
is a vital component. However, in some cases, good directions will be generated and
therefore DE will generate good solutions. In other cases, bad directions will be gen-
erated which will deteriorate the solution quality. This poses a question of whether or
not we can control as well as maintain good directions? Our proposal is to employ co-
evolution to do the task where two populations are co-evolved during the optimization
process. One is for the population of the solutions, while the other is for the population
of directions. We introduce two approaches to control the interaction between these
two populations: one serves as a main engine for the co-evolution and search, while the
other uses local-search for further improvement of the solutions found from the former
one. We employ the non-dominated sorting DE algorithm (called NSDE) of [20] as a
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base for the implementation of our approaches. NSDE is a version of NSGA-II using
DE operators instead of its original crossover and mutation operators.

3.1 Co-evolutionary Multi-Objective Differential
Evolution - CMODE

Here, we describe our (CMODE) - allowing evolution of directions side-by-side with
the population of solutions. This is considered as where the direction is used to make
improvement for the population of solutions. The fitness of a direction is based on
whether it helps to make improvement or not. The detailed steps of the algorithm are
presented as follow:

1. Initialize
• Randomly initialize the population of solutions P using an uniform distribution.
• Evaluate all individuals of P and then apply non-dominated sorting to P.
• Generate a population of directions D by iterating the following:

– Choose an individual i from the top 20% of P.
– Choose an individual j from the lowest 80% of P.
– Generate a direction d: d =U(0,1) * (i - j), in which U(0,1) is an uniform

distributed random value.
– Change each variable of the direction d to a zero value with probability 0.5
– Add the newly generated direction d to D.

2. Generate population of offspring P1 of the same size as P by iterating the process
of selecting an individual from the top 20% of P and add to it a randomly selected
direction from the direction population D.

3. Evaluate all solutions in P1 against objective functions. Also, assign fitness values
for individuals in D. The fitness value of a selected direction in D is determined
based on the improvement of the newly generated child. If the child dominates its
parent, the fitness of the direction is increased by one; and if it is dominated by its
parent, the fitness of the direction is decreased by one; and otherwise, no changes
of the fitness are made.

4. Combine P and P1 in order to form a new population P2 of the same size as P by
selecting the best of P + P1 based on non-dominated sorting.

5. Replace P with P2.
6. Perform non-dominated sorting for P
7. Perform sorting for population D based on individual fitness
8. Replace the worst 25% directions in the direction population D with a newly gen-

erated ones as in Step 1.
9. Check stopping-conditions: Stop process if termination conditions are satisfied.

Otherwise, go to Step 2.

3.2 Memetic Implementation (CMODE-MEM)

The implementation of a memetic procedure within CMODE is straightforward. After
each generation, a predefined portion of solutions are randomly selected to undergo
local search. In general, it is described as follows:
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1. Define the number of steps using local search and the neighborhood of the solutions
2. Select a solution S from the population
3. Perform local search
• Perturb S to get a new solution S1 within its neighborhood
• Evaluate S1
• If S1 dominates S, replace S by S1
• Repeat this process for a number of predefined steps

4. Goto Step 1 until the number of selected solutions is reached.

3.3 Computational Complexity

Computational complexity of an algorithm is usually seen as the worst-case computa-
tional time that the algorithm spends on solving a problem instance of an input size m
[28]; and it is usually presented as O(.). When f (m) and g(m) are two functions of the
input size m. f (m) is O(g(m)) if there exists a constant c such that | f (m)| ≤ c|g(m)|.
If g(m) is a polynomial function of the input size, the algorithm is a polynomial-time
algorithm, otherwise an exponential-time one.

In general, for the evolution of the population of solutions, the complexity is still as
that of NSGA-II O(MN2) in which M is the number of objectives and N is population
size (Sept 6 in our algorithm is also required in NSGA-II). For the evolution of direction,
it requires sorting of the population based on fitness of individuals. This process requires
(assume using quick-sort) O(NlogN) on average; but on the worst case, it still requires
O(N2). So, overall complexity of the framework is still O(MN2).

4 Experimental Studies

In order to validate the proposed approach, we carried out a comparative study on a set
of test problems. Algorithms taking part in this studies are:

• NSDE
• NSGA-II
• CMOED
• CMOED-MEM

4.1 Test Problems

A summary of a collection of 15 test problems that is used in this paper is given in Table
2. This list is divided into two sets:

• The first set includes 7 low-dimension problems (from BINH to REN2) that has 2D
decision search space and a property of uni-modality.

• The second set (from KUR to ZDT6) contains more difficult problems with larger
search space. It has either uni-modal or multi-modal problems.



A Memetic Coevolutionary Multi-Objective Differential Evolution Algorithm 377

Table 2. Lists of test problems used for experiments in this paper

Problems Dim Range POF features
BINH 2 xi ∈ [−5,10] Convex

f1(x) = x2
1 + x2

2 Uniform
f2(x) = (x1−5)2 +(x2−5)2 Uni-modal

Connected
POL 2 xi ∈ [−π ,π ] Nonconvex

f1(x) = [1+(A1−B1)2 +(A2−B2)2] Disconnected
f2(x) = [(x1 +3)2 +(x2 +1)2] Uniform
A1 = 0.5sin1.0−2cos1.0+ sin2.0−1.5sin2.0
A2 = 1.5sin1.0− cos1.0+2sin2.0−0.5sin2.0
B1 = 0.5sinx1−2cosx1 + sinx2−1.5sinx2
B2 = 1.5sinx1− cosx1 +2sinx2−0.5sinx2

LAU 2 xi ∈ [−50,50] Convex
f1(x) = x2

1 + x2
2 Disconnected

f2(x) = (x1 +2)2 + x2
2 Uni-modal

Uniform
LIS 2 xi ∈ [−5,10] Nonconvex

f1(x) = 8
√

x2
1 + x2

2 Uniform

f2(x) = 4
√

(x1−0.5)2 +(x2−0.5)2 Uni-modal
Disconnected

MUR 2 x1 ∈ [1,4] and x2 ∈ [1,2] Nonconvex
f1(x) = 2

√
x1 Uni-modal

f2(x) = x1(1− x2)+5 Connected
Uniform

REN1 2 xi ∈ [−3,3] Convex
f1(x) = 1

x2
1+x2

2+1
Uniform

f2(x) = 1
x2
1+3x2

2+1
Uni-modal

Connected
REN2 2 xi ∈ [−3,3] Convex

f1(x) = x1 + x2 +1 Uniform
f2(x) = x2

1 +2x2−1 Uni-modal
Connected

KUR 3 xi ∈ [−5,5] Nonconvex
Disconnected

f1(x) = ∑n−1
i=1 (−10exp(−0.2

√
x2

i + x2
i+1)) Uniform

f2(x) = ∑n
i=1(|xi|0.8 +5sin(xi)3)

FON 10 xi ∈ [−4,4] Nonconvex
Connected

f1(x) = 1− exp(−∑n
i=1(xi− 1√

n )2) Uniform

f2(x) = 1− exp(−∑n
i=1(xi + 1√

n )2) Uni-modal

QUA 16 xi ∈ [−5.12,5.12] Non-convex

f1(x) =
√

A1
n Connected

f2(x) =
√

A2
n Uniform

Multi-modal
ZDT1 30 xi ∈ [0,1] Convex

f1(x) = x1, f 2(x) = g∗h Connected
g(x) = 1+ 9

n−1 ∑n
i=2 xi Uniform

h( f1,g) = 1−
√

f1
g Uni-modal

ZDT2 30 xi ∈ [0,1] Nonconvex
f1(x) = x1, f 2 = g∗h Connected
g(x) = 1+ 9

n−1 ∑n
i=2 xi Uniform

h( f1,g) = 1− ( f1
g )2 Uni-modal

ZDT3 30 xi ∈ [0,1] Convex
f1(x) = x1, f 2 = g∗h Disconnected
g(x) = 1+ 9

n−1 ∑n
i=2 xi Uniform

h( f1,g) = 1−
√

f1
g −

f1
g sin(10π f 1) Uni-modal

ZDT4 10 x1 ∈ [0,1] Convex
xi ∈ [−5,5], i=2..10 Connected
f1(x) = x1, f 2 = g∗h Uniform
g(x) = 1+10(n−1)+∑n

i=2(x2
i −10cos(4πxi)) Multi-modal

h( f1,g) = 1− ( f1
g )2

ZDT6 10 xi ∈ [0,1] Nonconvex
f1(x) = 1− exp(−4x1)sin6(6πx1), f 2 = g∗h Connected

g(x) = 1+9[
∑10

i=2 xi
9 ]0.25 Non-uniform

h( f1,g) = 1− ( f1
g )2 Uni-modal
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4.2 System Settings

For all experiments, the total population size was set as 200. Further, for DE, the
crossover rate was set as 0.7 and the step length was randomly generated between 0
and 1 similar to [16]. Local search was triggered after every generations with 2% of
populations for easy problems, and 5% for hard ones. All cases were tested in 30 sepa-
rate runs using 30 different random seeds. The results have been analyzed within these
30 runs for each model and on each problem.

In all experiments, for NSGA-II, crossover rate was 0.9 and mutation rate was 0.1.
The distribution indexes for crossover and mutation operators were ηm = 20 and ηc =
15 as recommended by its authors. Further, all algorithms ran with the same number of
evaluations in order to make a fair comparison.

4.3 Performance Measurement Methods

Performance metrics are usually used to compare algorithms in order to form an un-
derstanding of which one is better and in what aspects. However, it is hard to define a
concise definition of algorithmic performance. In general, when doing comparisons, a
number of criteria are employed [14]. We will look at two of these criteria. The first
measure is the generation distance, GD, which is the average distance from the set of
solutions found by evolution to the POF [29]

GD =

√
∑N

i=1 d2
i

N
(9)

where di is the Euclidean distance (in objective space) from solution i to the nearest
solution in the POF. If there is a large fluctuation in the distance values, it is also nec-
essary to calculate the variance of the metric. Finally, the objective values should be
normalized before calculating the distance.

As recommended in [29], it is considered better to use the , HR, that is measured
by the ratio between the hyper–volumes of hyper–areas covered by the obtained POF
and the true POF, called H1 and H2 respectively. HR is calculated as in Eq. 10. For this
metric, the greater the value of HR, the better convergence the algorithm has.

HR =
H1
H2

(10)

There are some discussions on how to determine the reference point for the calcula-
tion of the hyper-volume, for example, it can be the origin [29]. However, generally it is
dependent on the area of the objective space that is visited by all comparing algorithms.
In this paper, as suggested elsewhere [2], the reference point is the one associated with
all the worst values of objectives found by all the algorithms under investigation.

4.4 Results and Discussions on the Effect of Evolving Directions

4.4.1 Performance Analysis
Convergence is one of the most important characteristics of an optimization technique.
However, the ways of looking at convergence of single objective and multi-objective
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Table 3. The predefined level of the hyper-volume ratio that algorithms need to reach within a
time limit. They are kept as high as possible, but majority of approaches can achieve.

Problems Predefined level
BINH 0.999
LAU 0.999
LIS 0.999

MUR 0.990
POL 0.995

REN1 0.995
REN2 0.999

KUR 0.940
FON 0.800
QUA 0.900
ZDT1 0.999
ZDT2 0.950
ZDT3 0.999
ZDT4 0.999
ZDT6 0.999

Table 4. The number of evaluations that algorithms needed to reach the certain levels of hyper-
volume ratio (mean and standard deviation from 30 runs). NA means the algorithms could not
reach the levels within an evaluation limit.

NSGA-II NSDE CMODE
Problems Mean Std Mean Std Mean Std
BINH 1833 320† 1387 104† 1280 186
LAU 1047 286† 840 259† 633 140
LIS 6300 2678 4513 933 4013 1143
MUR 1800 197† 1007 98† 627 69
POL 693 208† 493 101† 427 69
REN1 993 98 † 667 109† 607 64
REN2 2747 484† 1247 114† 767 92

KUR 1473 249† 2100 389† 1247 215
FON 6073 326† 3413 117† 1840 161
QUA 62107 26139† NA NA† 75053 22411
ZDT1 21080 527† 18487 542† 11807 1157
ZDT2 5913 422† 8380 308† 4333 415
ZDT3 23407 1110† 25853 948† 15480 1603
ZDT4 18633 1889† 78300 5560† NA NA
ZDT6 38807 1099† 10633 1717† 3167 417

optimizations are different [30]. If some measurements of the objective function, with
regard to the number of generations, are experimentally considered as an indication
for convergence in single objective optimization, it is not a suitable method for multi-
objective optimizations since they do not involve the mutual assessment on all objective
functions.
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Table 5. The average GD and HR recorded after 20000 evaluations for all algorithms. Symbol †
indicates that the difference between algorithms and CMODE is significant.

GD HR
Problems NSGA-II NSDE CMODE NSGA-II NSDE CMODE
BINH 0.007±0.000 0.006±0.000† 0.007±0.000 1.000±0.000 1.000±0.000 1.000±0.000
LAU 0.089±0.002† 0.089±0.002† 0.091±0.002 1.000±0.000 1.000±0.000 1.000±0.000
LIS 0.002±0.000† 0.001±0.000† 0.001±0.000 1.077±0.016 1.065±0.010 1.063±0.015
MUR 0.000±0.000 0.000±0.000 0.000±0.000 0.999±0.000 0.999±0.000 0.999±0.000
POL 0.002±0.005 0.001±0.000 0.002±0.004 1.000±0.000 1.000±0.000 1.000±0.000
REN1 0.001±0.000 0.001±0.000 0.001±0.000 0.998±0.000 0.999±0.000† 0.998±0.000
REN2 0.001±0.000 0.001±0.000 0.001±0.000 1.000±0.000 1.000±0.000 1.000±0.000

KUR 0.001±0.000 0.001±0.000 0.001±0.000 1.000±0.000 0.999±0.001† 1.000±0.000
FON 0.001±0.000† 0.000±0.000 0.000±0.000 0.962±0.004† 0.994±0.000† 0.992±0.000
QUA 0.001±0.000 0.000±0.000† 0.001±0.001 0.872±0.014† 0.799±0.015† 0.859±0.014
ZDT1 0.001±0.000† 0.001±0.000† 0.000±0.000 0.999±0.000† 0.999±0.000† 1.000±0.000
ZDT2 0.001±0.000† 0.001±0.000† 0.000±0.000 0.998±0.000† 0.999±0.000† 1.000±0.000
ZDT3 0.001±0.000† 0.001±0.000† 0.000±0.000 0.998±0.000† 0.997±0.000† 1.000±0.000
ZDT4 0.063±0.045† 5.784±1.492† 0.825±3.274 1.000±0.001† 0.962±0.007† 0.986±0.012
ZDT6 0.022±0.004 0.001±0.000 0.001±0.000 0.973±0.003† 1.001±0.000 1.001±0.000

Further, convergence is not only related to how close the obtained POF after a period
of time is in comparison to the true Pareto optimal front, but also the rate of convergence
which can be represented by convergence over time. We consider both issues in this
section. For the closeness of the obtained POF, we use the generation distance GD (as
well as the hyper–volume ratio HR). While GD is an indication for the closeness of an
obtained set of solution to the true POF, HR is for both closeness as well as diversity of
the obtained set.

Firstly, for the convergence rate, the number of evaluations that each approach spends
to reach a certain high level of hyper-volume ratio (Table 3) was recorded at each run.
The mean and standard deviation of the 30 different runs are calculated and reported.
These were derived from the highest level of HR that almost all algorithms could achieve
within an evaluation limit. This measurement is to provide a quantitative indication of
how fast the algorithms are in converging to the true POF (by using the same high level
of HR). These values are reported in Table 4. t-test with 0.05 level of significance was
used to test the difference between results of the comparing approaches.

The performance comparison is divided into two categories: Comparing between
NSGA-II and DE approaches (NSDE and CMODE) and between DE approaches them-
selves. It is clear from the table that DE approaches were quicker than NSGA-II in
almost all problems (except QUA and ZDT4, two multi-modal problems). This indi-
cates that the use of direction is obviously helps the algorithms to move quickly to the
area of the POF. This is consistent with the finding in [20].

Regarding the performance between NSDE and CMODE, we can see that the
improvement was made by the use of co-evolution where CMODE was statically-
significantly faster than NSDE in most of problems. These results clearly support our
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argument that the evolution of directions helps CMODE finds and maintains the good
directions. However, it is interesting to see that for QUA and ZDT4 (two multi-modal
problems), the DE approaches was worse than NSGA-II. This means that quick con-
vergence of DE approaches might make them lose diversity and hardly converge to the
global POF. This might be the case also when using local search. This will be analyzed
further in the next section.

Secondly, in order to confirm the convergence of the algorithms, we recorded the
generation distance GD and hyper–volume ratio HR after 20 000 evaluations for each
algorithm. They are all reported in Table 5. It is quite clear that after 20 000 evaluations,
all algorithms converged to the true POF for all problems except ZDT4 which converged
with very small GD and high HR. For ZDT4, NSDE seemed to be the worst with very
large value of GD. The multi-modality made it hard to converge to the global POF.
Note that, for ZDT4, although CMODE was better than NSDE, it was still worse than
NSGA-II.

In general, CMODE shows a great deal of employing the evolution of directions dur-
ing the optimization process. However, in some cases of multi-modality, this advantage
seems to be deteriorated since the exploration might be less focussed and the balance
between exploration and exploitation might be violated. This opens an opportunity for
using memetic methods for CMODE. This will be analyzed in the next section.

4.4.2 Dynamics of the Co-evolutionary Approach
We now move to an analysis on the dynamics of the proposed approach during the
optimization process. We measure the diversification of the direction population over
time (up to 100 generations), which is measured by the average Euclidean distances
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Fig. 2. Diversity of direction population for first seven test problems(2D)
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Fig. 4. The best direction for ZDT1 problem (one run) obtained over time. Each curve (among
30 curves) is for one single variable).

among individuals in a population, in order to see how the improvement of the direction
is made over time. For this, the average diversity over 30 runs was plotted in Figures 2
(for the first set of 2D problems) and 3 (for the second set of difficult problems).
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It is clear that the diversity of the direction population reduced over time as the
CMODE was converging to the POF. That is understandable since the population fo-
cused on several good directions over time. We use ZDT4 as an example where the
diversity of the direction population dropped as the algorithm progressed. However, af-
ter about 50 generations, its diversity increased again. This indicates that the population
of directions converged to some good directions for a local POF. However, after a while,
it started to realize the situation and tried to introduce the new direction to overcome the
local POF. Therefore, the diversity increased. Once more, it motivates the use of local
search for CMODE for multi-modal problems.

We plot the best direction obtained over time for ZDT1 and ZDT4 in Figures 4 and 5.
Again, we see the trend that the best direction changed its position frequently at the start
of the process, but over time it stayed more stable. This means that early in the process,
the algorithm focused on exploring the space, then it focused more on exploitation.
Later on, there were few changes of the best direction, but these changes are much less
than earlier in evolution.

4.5 Results and Discussions on the Effect of Memetic

4.5.1 Performance Analysis
In this section, we investigate how the memetic procedure helps CMODE to improve
its performance. Again, we measure the convergence rate of CMODE-MEM in order
to compare with CMODE. All results are reported in Table 6. It is very clear that for
problems that CMODE was already good in converging to the POF, there was no im-
provement in CMODE-MEM. This means that when CMODE maintains well the bal-
ance between exploration and exploitation, local search does not make more sense in
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terms of exploration. This leads to a question of how CMODE-MEM behaves in some
problems (such as QUA and ZDT4) where the balance seems not to be well-maintained?

From the results on two problems QUA and ZDT4, we can see that there was a
significant improvement of CMODE when using memetic method. Local search cer-
tainly helped CMODE to quickly overcome the traps caused by local POFs. This find-
ing indicates that local search should be used for CMODE in solving multi-modal
problems.

Further supporting evidences for the performance of CMODE-MEM is given in
Table 7 where all GD and HR, recorded after 20 000 evaluations, are given. Once again,
we see the good performance of CMODE and CMODE-MEM over the test problems.
They all obtained very small GD and large HR (near 1.0). For QUA and ZDT4, local
search helped CMODE to find the global POF and cover all parts of the POF.

4.5.2 Success Rates of Local Search in CMODE-MEM
We investigate the dynamics of CMODE-MEM via the success rates of local search
during the optimization process which is the percentage that the local search makes
successful steps or an improvement. The results are plotted in Figures 6 and 7.

As shown in Table 6, for the first set of problems, both approaches converged af-
ter about five generations (1000 evaluations); illustrating why the success rates of
CMODE-MEM dropped to zero after five generations. Obviously, after converging, the
use of local search is not useful any more. Therefore, when the success of local search
vanishes, we can use this as a criterion to stop using local search.

Table 6. The number of evaluations that CMODE with/without memetic needed to reach the
certain levels of hyper-volume ratio (mean and standard deviation from 30 runs). NA means the
algorithms could not reach the levels within an evaluation limit. Symbol † indicates that the
difference between algorithms.

CMODE CMODE-MEM
Problems Mean Std Mean Std
BINH 1280 186 1213 173
LAU 633 140 659 155
LIS 4013 1143† 3363 1038
MUR 627 69 645 63
POL 427 69† 444 72
REN1 607 64 624 55
REN2 767 92 742 118

KUR 1247 215 1262 250
FON 1840 161 1872 181
QUA 75053 22411 58372 43792
ZDT1 11807 1157 12036 1542
ZDT2 4333 415† 4853 351
ZDT3 15480 1603 15510 1680
ZDT4 NA NA† 31992 41823
ZDT6 3167 417† 3390 464
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Table 7. The average GD and HR (the mean and standard deviation) recorded after 20 000 eval-
uations. Symbol † indicates that the difference between algorithms.

GD HR
Problems CMODE CMODE-MEM CMODE CMODE-MEM
BINH 0.007±0.000 0.007±0.000 1.000±0.000 1.000±0.000
LAU 0.091±0.002 0.091±0.002 1.000±0.000 1.000±0.000
LIS 0.001±0.000 0.001±0.000 1.063±0.015 1.065±0.019
MUR 0.000±0.000 0.000±0.000 0.999±0.000 0.999±0.000
POL 0.002±0.004 0.001±0.000 1.000±0.000 1.000±0.000
REN1 0.001±0.000 0.001±0.000 0.998±0.000 0.998±0.000
REN2 0.001±0.000 0.001±0.000 1.000±0.000 1.000±0.000

KUR 0.001±0.000 0.001±0.000 1.000±0.000 1.000±0.000
FON 0.000±0.000 0.000±0.000 0.992±0.000 0.992±0.001
QUA 0.001±0.001 0.001±0.000 0.859±0.014 0.865±0.014
ZDT1 0.000±0.000 0.000±0.000 1.000±0.000 1.000±0.000
ZDT2 0.000±0.000 0.000±0.000 1.000±0.000 1.000±0.000
ZDT3 0.000±0.000 0.000±0.000 1.000±0.000 1.000±0.000
ZDT4 0.825±3.274 0.101±0.114 0.986±0.012† 0.998±0.002
ZDT6 0.001±0.000 0.001±0.000 1.001±0.000 1.001±0.000
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However, for the second set of problems, since the algorithm took more time to
converge, the success rates were slowly reduced. For ZDT1, ZDT2, and ZDT3, the
search space are very large (30D). Therefore, the algorithm takes longer time to cover
up all parts of the POF.
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5 Conclusion

In this chapter, we proposed an approach to incorporate co-evolution and local search
into DE in order to improve the performance of DE in solving multi-objective problems.
For the co-evolutionary mechanism, a population of direction is co-evolved with the
population of solutions. The improvement in fine-tuning the obtained non-dominated
solutions is made by using local search during the optimization process. Experimental
results were carried out on wide range of test problems. The comparative study among
CMODE, CMODE-MEM, NSDE, and NSGA-II showed the effectiveness of the pro-
posed approach in obtaining diverse non-dominated solutions. For future work, we in-
tend to employ a self-adaptation strategy for local search to adapt and control the local
improvements based on historical knowledge.
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This chapter describes the use of a multiobjective memetic algorithm in aerodynamic
shape optimization applications using computational fluid dynamics(CFD). A system-
atic overview on multiobjective optimization is given. It covers parameterized scalariza-
tion, population-based Pareto front forming using evolutionary algorithms, formulation
of Pareto front improvement using local search methods, and various possible heuris-
tics that can be applied in formulating efficient memetic algorithms. A constrained local
search, combined with a non-dominated sorting genetic algorithm with niching in both
objective and design space is proposed in the paper. Test function results are given and
finally the method is used to solve the robust airfoil design problem using a multi-point
formulation.

Numerical optimization is increasingly deployed in the development of products and
services, to improve performance and reduce costs. Examples of these can be found in
science, engineering and financial sectors. With the increasing accuracy of simulation
models and decreasing cost of growing computing power, this trend is set to continue
and will grow evermore sophisticated. However, traditional single objective numeri-
cal optimization methods based on the use of gradients to identify search directions
often fail to locate global optimal solutions. The reasons for such failures have been
well studied and various alternatives and remedies have been recommended by many
researchers. These failures comes from the facts the many real-world problems are far
more complex than test functions that are often used to develop and test algorithms.
And these problems often have multiple objectives with various degrees of continu-
ity, subject to multiple equality and inequality constraints. The number of variables are
great and computational cost of each evaluation of objective or constraint functions are
huge. Among various methods tackling these challenges, multiobjective memetic algo-
rithms (MOMAs) appear to have provided a flexible framework, which, when properly
designed and implemented, can find good solutions for complex problems whose ob-
jective and constraint functions can be efficiently evaluated.

The aerospace industry has been the driving force of many technological develop-
ments that later find application in other areas such as the design of Formula-1 cars.
The multidisciplinary nature and complexity of aircraft design has motivated the use of
numerical optimization methods in the drive to improve performances, reduce weights

C.-K. Goh, Y.-S. Ong, K.C. Tan (Eds.): Multi-Objective Memetic Alg., SCI 171, pp. 389–402.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



390 W. Song

and costs. One of the important areas that optimization has been used is shape optimiza-
tions using computational fluid dynamics (CFD).[1] Initially, the problem was often set
up to optimize one target that indicates the most important performance criterion such
as the drag of the wing or the weight of structural components. This practice is expected
to continue at the level of part or component design, but it proves to be less effective
on the subsystem or system level when multiple operating conditions or disciplines are
included in the equation.

Problems with multiobjectives are traditionally solved by converting multiple ob-
jectives into a single objective function using various scalarization methods. The most
commonly used method is to apply some prior weighting coefficients to each objective
and then to lump all the weighted objectives together to form a single, balanced ob-
jective function. The disadvantage of this approach is that it produces a single solution
and it is sometimes difficult to decide in advance what is the most appropriate set of
weights and as a result of any possible shift in the coefficients, the optimization process
will have to be repeated. Furthermore, it often becomes necessary to scale different
objective functions and different sets of weights could lead to the same results.

Another category of methods for solving multiobjective optimization problems fo-
cuses on generating an approximation to the entire Pareto front. Pareto front is con-
sisted of solutions that are nondominated. The formal definition of nondominance and
Pareto front will be given later, but roughly speaking, one solution nondominates an-
other means that moving from one to the other, at least one objective function will
degrade. The nature of Pareto front suggests that population-based evolutionary opti-
mization methods seem to be a natural choice as these methods work on a population of
solutions instead of a single one as in the scalarized methods described in the previous
paragraph.

Memetic algorithms are a category of methods that combine the robustness of pop-
ulation based evolutionary search in finding global or near-global optimal points with
the efficiency of a gradient descent methods in locating local improvements. Initially
developed to solving single objective optimization problems, memetic algorithms have
seen growing popularity in solving problems with multiple objectives, leading to the de-
velopment of multiobjective memetic algorithms. The main concerns in multiobjective
memetic algorithms are the heuristics used to combine the local search with population-
based Pareto forming.

The rest of the chapter contains an overview on multiobjective evolutionary (MOEA)
methods in the next section; A modified MOEA method is proposed based on the
NSGA-II method and its application to some test functions and a real-world aerody-
namic shape optimization problem is also presented.

1 Multiobjective Evolutionary Optimization

A generic multiobjective optimization problem can be defined as follows assuming all
objective functions are to be minimized[3]:

Minimize fi(x), i = 1, · · · ,P,

subject to g j(x)≥ 0, j = 1, · · · ,J, (1)

hk(x) = 0,k = 1, · · · ,K.
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where x is a vector containing n design variables, and P, J and K are the number of
objectives, inequality and equality constraints, respectively.

The following definitions define relations between solution vectors, dominance, and
Pareto front. These definitions form the basis for subsequent discussions.

Definition 1. Vector f(xi)≤ f(x j), if fk(xi)≤ fk(x j),k = 1, · · · ,P and f(xi) �= f(x j).

Definition 2. Solution xi dominates x j if f(xi)≤ f(x j).

Definition 3. Pareto front (PF) is the set of all nondominated solutions that no other
solution can be found which dominates it. Pareto optimization is the process of finding
an approximation to the PF.

1.1 Parameterized Scalarization for Multiobjective Optimization

Early attempts on multiobjective optimization problems focus on ways to convert it into
single optimization problems so that the multitude of existing methods can be readily
applied. The weighted sum method is probably the most commonly used among this
type of approaches. A vector of objective functions f is turned into a congregated single
value using the following equation

P

∑
i=1

wi · fi(x) (2)

where∑i wi = 1 and wi≥ 0 (i = 1, · · · ,P) are usually specified. The weight vector can be
viewed as a measure of preferences for each objective function, and may be determined
from domain knowledge. By varying the values of the weight vector, either randomly or
systematically, a series of solutions can be found which can be seen as an approximation
to the Pareto front. The drawback of the approach is that different weight vectors might
lead to the same value in scaled objective space for different solutions, an issue caused
by lack of mechanisms to compare the relative dominance between solutions.

1.2 Population-Based Pareto Front Forming

The parameterized scalarization method described in previous section can be used with
any of the existing single objective optimization methods including population based
evolutionary search such as genetic algorithms. Applying population-based methods
and parallelization will no doubt increase the chance of achieving global optimization
more efficiently, it does not address the inherent weaknesses in those methods. Instead
of converting multiple objectives into a single value, the concept of dominance is used
to rank the individuals in the population in order to give them a “overall” fitness value
which reflects the relative dominance of each individual in the population. Two so-
lutions that would otherwise have the same objective function in the weighted sum
approach would be better differentiated based on their dominance against each other.

Population-based evolutionary optimization methods have inherent advantages when
applied to multiobjective optimization problems since it deals with a population of so-
lutions at each iteration. Individuals in the population are ranked according to their
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dominance to determine their relative fitness values. One of the popular methods is
nondominance sorting which was suggested by Goldberg[2] and later implemented in
the popular NSGA[3]. Another popular procedure Strength Pareto EA (SPEA) was pro-
posed by Zitzler and Thiele.[4] A tutorial of using various techniques for fitness ranking
with genetic algorithms is offered by Kodak.[5]

As with classical evolutionary algorithms, diversity in population needs to be en-
couraged in order to avoid premature convergence of the procedure to less optimal
solutions. This is often balanced with elitism which means the retention of good par-
ents in the population from one generation to the next. In multiobjective EAs, this
means the retention of nondominated solutions found so far, often in a separate or
archive population. The differences among various methods for elitism are in the way
that the main population and archive population interacts and how fitness values are
assigned.

An issue unique to multiobjective EAs is fitness sharing among nondominated solu-
tions. The aim of fitness sharing is to spread nondominated solutions across the Pareto
front. The effective fitness of a solution within a niche of solutions is reduced to encour-
age diversity in the objective space. The niche is often defined in terms of distance of
solutions to one another in the objective space. A survey on several approaches used for
fitness sharing in the literature was provided by Knowles and Corne[6]. Several popular
multiobjective evolutionary optimization methods are compared in Table 1.

Table 1. Feature comparisons of various MOEA methods

name ranking fitness
sharing

elitism Pareto
archive

selection

NSGA-II[7] population crowding yes no ranking based
MOGA[8] population yes no no ranking based
NPGA[9] binary yes no no tournament
PAES[10] binary hyper

grid
yes yes -

SPEA[4] population Pareto
domi-
nacne

yes yes tournament

PESA[11] population hyper
grid

yes yes ranking and crowding

This work uses a sightly modified implementation of NSGA-II[7] as the main frame-
work of the multiobjective memtic algorithm. In addition to fitness sharing method in
objective space as used in original NSGA-II, fitness sharing in design space is also im-
plemented. Another modification adopted is regarding the selection process, this paper
makes no change to the original selection process used in the base genetic algorithm.
Instead, the fitness values are manipulated based on the ranking, crowdedness in both
objective and design space. The average distance between neighboring points is normal-
ized so that it does not exceed the difference in ranking between two adjacent Pareto
front, i.e. nondominant solutions always get a better fitness value than dominant ones.
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This principle is in line with the one used in the original NSGA-II, but easier to imple-
ment. The third modification is the introduction of an archive population which store
all the design points in the current Pareto front.

1.3 Local Search Methods for Multiobjective Problems

Local search methods, and gradient-based method in particular, have been used in
single-objective optimization problems. The most common criticism for this type of
methods is that often local optimum are returned in the neighborhood of the starting
point. However, hybridization of local search methods with evolutionary search meth-
ods has often lead to significant speedups in the overall optimization processes. This
principle has been the basic merit for memetic algorithms and has seen wide applica-
tion in single optimization problems. Recently, the same principle has been increasingly
applied to multiobjective problems.[12, 13, 14]

The main issue for a hybrid local search and genetic algorithm is how to convert mul-
tiple objectives into one scalar value. The most commonly used scalarization method
in local search is weighted sum, in which, multiple objective functions are turned into
a single value by a weight vector. The weight vector itself can be chosen randomly[15]
or can be adapted to change search direction from time to time, forming a chain of
searches along different directions. Other approaches use multiple steps, applying local
searches on each objective in isolation in each step.[16] Pareto ranking commonly used
in population-based evolutionary approaches has also been used in local search based
on comparing solutions to an archive of nondominated solutions.[17]

This work uses a constrained local searches on each objective function while treating
other objective functions as constraints. The process is repeated for each objective func-
tion and result from each search step is used as starting point for the subsequent steps.
The idea is consistent with the concept of Pareto dominance, and it also has the benefit
of not having to specify any preferences among objective functions. The bounds on the
constraints are updated in each step to reflect the current objective function values. The
local search is applied to all solutions in the current Pareto set and this process can be
run in parallel to improve the efficiency. This method is illustrated in Figure 1 for a
two objective minimization problem. The optimization method used in local search is
simulated annealing.

1.4 Performance Measures

Although it is possible and useful to compare test function results with theoretical
Pareto front, more generic criteria that can be used to a wider scenarios are benefi-
cial to evaluate whether a memetic algorithm performs better than other algorithms.
As discussed by Knowles and Corne[6], the use of unary measures based on some val-
ues calculated from one approximate set of Pareto front can lead to misleading results.
Based on the work by Zitzler et al.[18] on performance assessment of various multi-
objective evolutionary methods, three criteria are proposed here to be used to compare
the performance of different memetic heuristics. Multiple runs are carried out for each
cases as is the common practice when comparing classical single objective evolutionary
methods. These criteria are listed below.
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Fig. 1. Constrained local search for multiobjective optimization

• number of nondominated solutions in the final Pareto front
• number of solutions in one Pareto front that dominate at least one solution in the

other Pareto front
• the distribution and the spread of Pareto solutions

Although too many Pareto solutions may present a challenge for the designer in some
cases, it is generally the case that more Pareto solutions are desired. The issue on how to
choose the best solutions from a large number of nondominated points remain a decision
making problem for the designer, and some other techniques or domain knowledge may
be required to make the best choice.

The second criterion simply compare the two Pareto front in terms of their relative
dominance. This effectively measures the proximity of achieved set of solutions to the
exact Pareto front.

The distribution and spread are computed in each objective space as the following
quantities, which forms a vector of quality measurement

• Lebesgue measure (S metric)
• the average distance between neighboring solutions
• the variance of distances between neighboring solutions

The comparison between two Pareto fronts in terms of the distribution and the spread of
Pareto solutions is carried out in two steps, first in each objective space comparison is
performed in a similar fashion as used in dominance comparison in objective space, i.e.
relative dominance of the quality vector. When one quality vector dominates another, it
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means that the first Pareto front has better quality in terms of that particular objective
function. Incompatible solutions are compared in terms of the number of better qualities,
i.e. if three quality measures are better, the whole vector is deemed better than the other.

The second step is to simply compare the counts of objectives that has better quality
in the results of the first step comparison. A Pareto front is deemed superior when it
produces a better value in the comparison.

1.5 Metaheuristics in Mematic Algorithms

Various local search methods can combined with the evolutionary algorithms to im-
prove computational efficiency. There are a number of options regarding when to in-
voke the local search and how many individuals in the population should undergo local
searches. The balance between evolutionary search and local search was studied by
Ishibuchi et al.[19] in order to take advantage of performance improvement without
sacrificing the robustness of MOEAs in locating global Pareto front. The local search
can be applied to the whole population in each iteration as was done in [17, 20], or
can be used intermittently after a fixed number of generations[21] or at the end of a
NSGA-II search.[22]

In the current work, instead of applying local searches on a single weighted-sum of
all objective functions or on each objective function in isolation while ignoring other
objectives, the local search step in the current work adopts a series of searches on each
single objective, while treating all other objective functions as constraints with bounds
taken to be values of corresponding objective functions. The complete process is illus-
trated in Figure 2.

Here, local searches are switched on in the first few generations. In addition, only
a subset of randomly selected Pareto solutions undergo local searches. The number
of solutions in the subset is decided as follows. All solutions in the first Pareto front
will be optimized using local search methods, and the ratio of solutions that have seen

Population

Population

Pareto archive

Pareto archive

Parallel local search on
nondominated

solutions

Combined
population

Fitness
evaluation

Update Pareto archive

Remove duplicate
points

Selection
crossover, mutation

Generation : i

Generation : i+1

Fig. 2. Multiobjective memetic algorithm framework
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improvements is calculated and used as the ratio in the selection of points in the next
Pareto front. This process continues until local search is switched off or the ratio be-
comes zero, whichever comes first. This selective local search scheme aims to make the
most effective use of local search procedures to improve the computational efficiency.

1.6 Test Function Results

This section presents some results on five commonly used test functions in multiobjec-
tive evolutionary research literature. Five of the six two-objective test functions sug-
gested by Zitzler et al.[18] are used here to study the proposed framework. Each test
function is run five times using the multiobjective algorithm modified from NSGA-II,
with and without local search, respectively. Results for both the basic multiobjective
genetic algorithm implemented and memetic algorithm are presented in Tables 2, 3 and
4. The population size and number of generations with the multiobjective GA is set to
100 and 50, respectively. Local searches are implemented in parallel, therefore the com-
putational effort required for completing all the local searches is equivalent to a single
local search when the number of iterations is fixed. When local search is enabled, the
total number of function evaluations used is maintained roughly the same as those used
in the method with no local searches, so the Pareto fronts from two approaches can be
compared.

Some observations can be made from the test function results.

• MOMA generally performs better than MOEA in terms of Lebesgue measure,
though only with a small margin.

• results are comparable when measured using Pareto front distribution and spread,
and might exhibit different trend for different objectives.

• MOMA outperforms MOEA when the final Pareto fronts are compared.

It should be noted that the aim of using local search methods should be improve the effi-
ciency of the search at initial stages of the processes. It is expected that when sufficient
number of generations are run, the evolutionary methods tend to converge to better re-
sults and effect of local searches is diminishing. Efficient local searches and heuristics
in using them are the key factors and should be an important area for further studies.

Table 2. Test function results - without local search

Test
problem

Lebesgue
measure

Pareto front distribution and spread
Average distance Variance of Distance

zdt1 4.2983
0.0255 0.0015
0.0654 0.0167

zdt2 0.7952
0.0590 0.0244
0.1211 0.0245

zdt3 1.5252
0.0211 0.0028
0.0761 0.0125

zdt4 96.4639
0.0164 0.0039
9.4434 213.4590

zdt6 1.9663
0.0930 0.0513
0.5611 0.3642
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Table 3. Test function results - with local search

Test
problem

Legesgue
measure

Pareto front distribution and spread
Average distance Variance of Distance

zdt1 4.3416
0.0235 0.0015
0.0633 0.0246

zdt2 0.8685
0.0406 0.0197
0.1178 0.0182

zdt3 1.5230
0.0201 0.0025
0.0811 0.0131

zdt4 99.6333
0.0031 0.0001
12.4293 400.0460

zdt6 2.0611
0.0651 0.0272
0.4066 0.2318

Table 4. Test function results - dominance comparison

Test problem Ratio of dominant solu-
tions for MOEA

Ratio of dominant solu-
tions by MOEA+LS

zdt1
0.0882 0.6122
0 0.9211
0.1579 0.6216
0.7222 0.0303
0.1220 0.5610

zdt2
0.3333 0.1667
0 0.7500
0 0.8333
0.2667 0.6667
1 0

zdt3
0.2308 0.5405
0.7105 0.1489
0.5854 0.1277
0.5957 0.1000
0.1395 0.5526

zdt4
0 1.0
0 0.5714
0 0.8462
0.1538 0.7500
0 0.7143

zdt6
0.1250 0.5000
0.5000 0.8182
0.5556 0.1429
0.8333 0
0.2667 0.4286
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2 Aerodynamic Shape Optimization: A Brief Overview

Aerodynamic shape optimization is an important element of the overall multidisciplinary
aircraft design process and increasingly, it finds applications in other industry such as
automobile. The increasing availability of accurate flow analysis codes and high perfor-
mance computing facilities has gradually placed CFD-based shape optimization meth-
ods into the reach of many designers.[23] It is now possible to calculate optimum three
dimensional transonic wing shapes in a few hours, taking into account of viscous ef-
fects with the use of Reynolds averaged Navier-Stokes (RANS) equations. Typical shape
optimization process starts with the definition of a parametric three dimensional CAD
(Computed-Aided Design) model, which then undergoes various analysis steps leading
to results of certain performance quantities. This process, when coupled with numerical
optimization techniques, can lead to improved designs. This inherently multidisciplinary
process often needs to be repeated several times. And this type of problems rarely con-
tains a single objective, and the trade-offs between different aspects of the design, such
as structural weight and cost, have to be made where conflicting requirements exists.

The objectives in aerodynamic design is typically lift, drag or a specified target pres-
sure distribution. An approach which has become increasingly popular is to couple the
CFD with genetic algorithms to search over a large design space for global optimal de-
signs. One of the major issues in CFD-based shape optimization problems is the high
computational cost associated with high fidelity CFD codes. Attempts have been made
in several aspects to address the issue. For example, adjoint solvers have been devel-
oped to calculate gradient more efficiently. [24, 25] Morphing based technique has also
been used to alleviate the need for re-meshing in shape optimization problems. [26]
Surrogate modeling methods are probably the one of the most promising techniques to
tackling the issue. [27, 28] Hybrid use of variable fidelity models has also been shown
as an effective means reduce the turn around time. [29]

Another important issue in aerodynamic shape optimization problems is to produce
shapes that are insensitive to operational uncertainties. Multi-point optimization is one
of the methods used in robust airfoil design, typically using weighted sum single-
objective optimization approach.[30, 31, 32] Multiobjective optimization method has
also been studied.[33] Although it can be expected that domain knowledge should be
incorporated into the heuristics when available, this paper focuses on the use of memetic
algorithms only for robust airfoil optimization.

3 Robust Airfoil Shape Optimization Using MOMA

This section investigates the use of proposed multiobjective memetic algorithm in a
robust airfoil shape optimization problem. Traditionally, airfoil shapes are optimized
against a single flight condition, for example, at a specific Mach number and attitude.
This method often proved to be inadequate as it might lead to airfoil shapes that would
have a degraded performance at slightly different flight conditions. This drawback of
single-point optimization prompted the research in multi-point approach in order to
produce robust performances of an airfoil in a number of operating conditions. [34]

Here, an example application of airfoil shape optimization under multiple flight con-
ditions is studied using multiobject memetic algorithm with constrained local search.
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Fig. 4. Pareto front returned using MOMA method

The airfoil geometry is defined using a B-Spline interpolation and the coordinates of the
control points are used as design variables. An example is shown in Figure 3, in which
nine control points are used for both upper and lower surfaces. Consistent minimization
of airfoil drag is sought at four flight conditions (Ma = 0.72,0.74,0.76,0.78) subject
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Fig. 5. Drag profile of selected airfoils

to lift and thickness contraint (Cl ≥ 0.50 and max(t/c) > 0.10). The mean and variance
of the drag values are used as the two objectives. The problem has 36 design variables
defining the coordinates of control points.

The CFD codes used here is the viscous Garabedian and Korn (VGK) method which
can model the two-dimensional, transonic, attached flow over airfoil shapes in a sub-
sonic freestream, with allowance for viscous effects. The code is very efficient and can
be run in large numbers, which is a typical requirement of evolutionary methods. The
population size and number of generations is set to 200 and 200. The optimization re-
sulted in a Pareto front of seven design points as shown in Figure 4. The Pareto front
gives a reasonable coverage over the objective space. And it can be seen that a reduction
in mean drag value would lead to a penalty on the robustness. Three out of the seven
Pareto points are shown in Figure 5, in which, both the airfoil geometry and drag profile
are shown. Among the three points, point A is clearly the most favorable design as it
represents the best trade-off between low drag and robustness.

4 Conclusions

This chapter presents a multiobjetive memetic algorithm (MOMA) that hybridize a
modified NSGA-II with constrained local search methods and its application in ro-
bust airfoil shape optimization problems. The algorithm is first applied to a number of
commonly used test functions and results are compared between MOEA and MOMA.
A selective local search scheme is also implemented to overcome the computational
burden of carrying out excessive local searches. The framework is applied to a robust
airfoil shape optimization problem. It remains to be studied how the constrained local
search method and selective local search scheme compare with other methods.
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