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Abstract. We generalize a learning algorithm by Drewes and Högberg
[1] for regular tree languages based on a learning model proposed by An-
gluin [2] to recognizable tree languages of arbitrarily many dimensions,
so-called multi-dimensional trees. Trees over multi-dimensional tree do-
mains have been defined by Rogers [3,4]. However, since the algorithm
by Drewes and Högberg relies on classical finite state automata, these
structures have to be represented in another form to make them a suit-
able input for the algorithm: We give a new representation for multi-
dimensional trees which establishes them as a direct generalization of
classical trees over a partitioned alphabet, and show that with this nota-
tion Drewes’ and Högberg’s algorithm is able to learn tree languages of
arbitrarily many dimensions. Via the correspondence between trees and
string languages (“yield operation”) this is equivalent to the statement
that this way even some string language classes beyond context-freeness
have become learnable with respect to Angluin’s learning model as well.

Keywords: MAT learning, multi-dimensional trees, finite-state.

1 Introduction

In the area of grammatical inference the problem of how to algorithmically infer
(or “learn”) a description of a formal language (e.g., a grammar or an automa-
ton) on the basis of given examples or other information on that language is
considered. Several learning models have been formulated, and based on those
quite an amount of learning algorithms (mainly for regular languages or sub-
classes thereof) have been developed. In one of those models, proposed by An-
gluin [2] along with a P-time learning algorithm L∗ for regular string languages,
the “learner” is helped by a “minimally adequate teacher” (MAT) who can an-
swer two types of queries, namely if a given word is or is not a member of the
language U to be learned, and, for some finite-state automaton A, if A correctly
recognizes U . If not, the teacher will return a counterexample. The algorithm L∗

has been adapted by Sakakibara [5] to skeletal regular tree languages (regular
sets of trees with unlabeled inner nodes) and then generalized by Drewes and
Högberg [1] to regular tree languages throughout. As regular tree languages are
a well-known generalization of regular string languages, this is a logical step.

We will generalize Drewes’ and Högberg’s algorithm even further to recog-
nizable tree languages of arbitrarily many dimensions (sets of so-called multi-
dimensional trees). Trees based on multi-dimensional tree domains have been
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defined by Rogers [3,4], along with finite-state automata for these trees. Labeled
one-dimensional trees correspond to strings, and the automata recognizing them
are equivalent to classical finite-state automata. The automata recognizing la-
beled two-dimensional trees are equivalent to classical finite-state tree automata.

Every multi-dimensional tree language has a set of strings – the string yields
of its elements – associated with it which is obtained by reducing the number
of dimensions of the trees step by step, down to the first, only retaining the
outermost nodes and their connecting structure in each step (see [3] or Sub-
section 3.2 for a definition). As is well known, the sets of string yields of the
languages recognized by (two-dimensional) finite-state tree automata coincide
with the class of context-free languages. The sets obtained when reducing the
number of dimensions of recognizable three-dimensional tree languages by one
have an interesting linguistic aspect: They correspond exactly to the sets of trees
generated by (non-strict) Tree Adjoining Grammars (see [3,4]), a special kind
of tree formalism in which trees are built via adjunction, an operation which
can be seen as a particular form of context-free tree rewriting. TAGs have been
developed by Joshi [6] in connection with studies on the formal treatment of nat-
ural languages. Joshi [6] claimed the least class of formal languages containing
all natural languages to be situated between the context-free and the context-
sensitive languages in the Chomsky Hierarchy, and named it the class of mildly
context-sensitive languages. The string sets associated with TAGs fulfil all nec-
essary conditions for this class. TAGs are considered the standard model for
mild context-sensitivity and are the foundation of a considerable amount of cur-
rent work in applied computational linguistics. Rogers [4] conjectures that there
might also be some linguistic phenomena that can best be handled via structures
of more than three dimensions, and gives an amelioration of the standard TAG
account of modifiers using four dimensions (see [3]).

The classes of sets of string yields associated with the recognizable multi-
dimensional tree languages ordered by the number of dimensions form a (proper)
infinite hierarchy properly contained in the context-sensitive class, with the
classes of context-free languages (sets of string yields of two-dimensional tree
sets) and the string languages associated with TAGs (sets of string yields of
three-dimensional tree sets) as the first two steps. According to Rogers [3,4],
this hierarchy coincides with Weir’s Control Language Hierarchy [7].

It is a consequence of these correspondencies that by processing recognizable
higher-dimensional descriptions of non-regular string languages instead of the
string sets themselves, finite-state methods become applicable again (see [9,8]).
Thus, just as by adapting Angluin’s learning algorithm for regular string lan-
guages [2] to (skeletal) regular tree languages [5,1] context-free string languages
have been made MAT-learnable, generalizing the adapted algorithm to recog-
nizable tree languages of arbitrarily many dimensions and then recurring to the
concept of yield can make even string language classes beyond context-freeness
learnable under Angluin’s MAT learning model as well.

As the learning algorithm by Drewes and Högberg [1] is based on classical
finite-state tree automata and consequently on the concept of trees as terms
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over a partitioned alphabet, but Rogers’ definition of multi-dimensional trees is
based on tree domains, the algorithm cannot be used on these structures without
representing them in another form. We will give a new term-like representation
for multi-dimensional trees, which was introduced in [9] and which establishes
them as a direct generalization of classical trees, along with an adapted definition
of finite-state automata and of the yield operation, and show that this innovation
enables Drewes’ and Högberg’s algorithm to learn languages of trees of arbitrarily
many dimensions by proving that despite the modified input all its essential
properties (including the ability to yield the desired output) stay preserved.

2 A Learning Algorithm for Regular Tree Languages

In this section, we are going to describe the learner for trees by Drewes and
Högberg [1]. First of all, we need some basic notions about trees.

A ranked alphabet is a finite set of symbols, each associated with a rank n ∈
N (including 0). By Σn we denote the set of all symbols in Σ with rank n.
Traditionally, every symbol is associated with a single rank only, but it is just
as possible to admit several ranks for one symbol (see for example [5]), as long
as there is a maximal admissible rank and the alphabet stays finite.

The set TΣ of all trees over Σ is defined inductively as the smallest set of
expressions such that f [t1, . . . , tn] ∈ TΣ for every f ∈ Σn and all t1, . . . , tn ∈ TΣ .
t1, . . . , tn are the direct subtrees of the tree. The set subtrees(t) consists of t
itself and all subtrees of its direct subtrees. Given a set T of trees, Σ(T ) denotes
the set of all trees of the form f [t1, . . . , tn] such that f ∈ Σn for some n and
t1, . . . , tn ∈ T . A subset of TΣ is called a tree language.

Let � be a special symbol of rank 0. A tree c ∈ TΣ∪{�} in which � occurs
exactly once is a context, the set of all contexts over Σ is denoted by CΣ . For
c ∈ CΣ and s ∈ TΣ , c[[s]] denotes the tree obtained by substituting s for � in c.
depth(c) is the length of the path from the root to �.

A (total, deterministic) bottom-up finite-state tree automaton (fta)
A = (Σ, Q, δ, F ) has a ranked input alphabet Σ, finite state set Q, transi-
tion function δ assigning to every f ∈ Σn and all q1, . . . , qn ∈ Q a state
δ(q1 · · · qn, f) ∈ Q, and accepting state set F ⊆ Q. δ extends to trees: δ : TΣ −→
Q is defined such that if t = f [t1, . . . , tn] ∈ TΣ then δ(t) = δ(δ(t1) · · · δ(tn), f).
The set of trees accepted by A is L(A) = {t ∈ TΣ |δ(t) ∈ F} (a regular tree
language).

It is well known that the Myhill-Nerode theorem carries over to regular tree
languages: Let L ⊆ TΣ. Given two trees s, s′ ∈ TΣ , let s ∼L s′ iff for every
c ∈ CΣ , either both of c[[s]] and c[[s′]] are in L or none of them is. Obviously,
∼L is an equivalence relation on TΣ. The equivalence class containing s ∈ TΣ

is denoted by [s]L. The index of L equals |{[s]L|s ∈ TΣ}|. The Myhill-Nerode
theorem states that L is a regular tree language iff L is of finite index iff L is
the union of all equivalence classes [s]L with s ∈ L. It follows from this that for
every fta A, L(A) is of finite index. Conversely, if a tree language is of finite
index, we can easily build an fta AL recognizing L, with the states being the
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equivalence classes of L, F = {[s]L|s ∈ L}, and, given some f ∈ Σk and states
[s1]L, . . . , [sk]L, δL([s1]L, . . . , [sk]L, f) = [f [s1, . . . , sk]]L. Moreover, this fta is the
unique minimal fta recognizing L, up to a bijective renaming of states.

As indicated before, Drewes and Högberg [1] have designed a learning algo-
rithm for regular tree languages, based on the one for strings by Angluin [2]. As
strings can be seen as special trees over an alphabet containing only symbols
of rank 1 or 0 (ε being the only constant – the string abc is then noted as the
expression c(b(a(ε))), for example), this algorithm represents a generalization.

The aim of the learner is to construct an fta recognizing an unknown regular
tree language U ⊆ TΣ. He is helped by a teacher able to perform two tasks:
The teacher can check whether t ∈ U for some t ∈ TΣ, and, given an fta A,
can return a counterexample(A) ∈ (U \ L(A)) ∪ (L(A) \ U). At any stage of
the computation, the learner maintains two sets S ⊆ TΣ and C ⊆ CΣ satisfying
certain conditions. Intuitively, one may imagine him building a table whose rows
are indexed by the elements of S ∪ Σ(S) and the columns by the elements of C.
The cell in row s and column c indicates whether c[[s]] ∈ U .

Definition 1. The pair (S, C) (S ⊆ TΣ, C ⊆ CΣ finite, C non-empty) is called
an observation table if the following conditions hold:

– For every tree f [s1, . . . , sn]: s1, . . . , sn ∈ S as well – S is subtree-closed, and
– for every context c0 of the form c[[f [s1, . . . , si−1, �, si+1, . . . , sn]]] ∈ C: c ∈ C

and s1, . . . , si−1, si+1, . . . , sn ∈ S – we say that C is generalization-closed.

The elements of S can be seen as candidates for representatives of the equiva-
lence classes of ∼U , and the elements of C can be seen as witnesses that these
representatives do indeed belong to different equivalence classes.

Given an observation table T = (S, C) and a tree s ∈ S ∪ Σ(S), the observed
behaviour of s is denoted by obsT (s) (formally, obsT (s) denotes the function
obs : C −→ {1, 0} such that obs(c) = 1 iff c[[s]] ∈ U for all c ∈ C).

Definition 2. Observation table T = (S, C) is closed if obsT (Σ(S)) ⊆ obsT (S),
and consistent if, for all f ∈ Σn and all s1, . . . , sn, s′1, . . . , s

′
n ∈ S, if obsT (si) =

obsT (s′i) for all i with 1 ≤ i ≤ n then obsT (f [s1, . . . , sn]) = obsT (f [s′1, . . . , s
′
n]).

These two properties are essential when building a candidate for the desired
automaton: From a closed and consistent observation table T = (S, C) one can
synthesize an fta AT whose set of states is QT = {obsT (s)|s ∈ S}, the set of
accepting states is FT = {obsT (s)|s ∈ S ∩U}, and δT (obsT (s1) · · · obsT (sn), f) =
obsT (f [s1, . . . , sn]) for all f ∈ Σn and s1, . . . , sn ∈ S. Drewes and Högberg [1]
formulate the following lemma, adapted from a corresponding one in [2]:

Lemma 1. Let T = (S, C) be a closed and consistent observation table. Then

– δ(s) = obsT (s) for all s ∈ S ∪ Σ(S), and
– for all s ∈ S ∪ Σ(S) and all c ∈ C, AT accepts c[[s]] iff c[[s]] ∈ U . AT is the

unique minimal fta with this property (up to a bijective renaming of states).

We prove a similar lemma for our generalized learning algorithm in Section 4.
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The algorithm by Drewes and Högberg [1] can be seen below. I is the index
of U .1 The learner starts with a table T1 = ({a}, {�}) (for some a ∈ Σ0). The
procedure CLOSURE adds suitable candidates to S as long as T is not closed (which
corresponds to asking the teacher membership queries for these candidates and
noting the result in the table). The procedure RESOLVE adds elements to C as long
as T is not consistent. The procedure EXTEND synthesizes an fta from the current
observation table (assume that an operation synthesize(T ) just exists) and asks
the teacher for a counterexample. If the counterexample is unnecessarily large it
is “pruned” via the procedure EXTRACT, which is an amelioration introduced by
Drewes and Högberg [1] with respect to the original learner for strings by Angluin
[2]. The counterexample is then added to the table, with its membership status.

T = (S, C) := ({a}, {�}) for some arbitrary a ∈ Σ0;
while | {obsT (s) | s ∈ S} | < I do

if T is not closed then T := CLOSURE(T)
else if T is not consistent then T := RESOLVE(T)
else T := EXTEND(T)

end while;
return AT ;

procedure CLOSURE(T) where T = (S, C)
find s ∈ Σ(S) such that obsT (s) /∈ obsT (S);
return (S ∪ {s}, C);

procedure RESOLVE(T) where T = (S, C)
find c[[s]], c[[s′]] ∈ Σ(S) where s, s′ ∈ S and depth(c) = 1 such that

obsT (c[[s]]) 	= obsT (c[[s′]]) and obsT (s) = obsT (s′);
find t, t′ ∈ S such that

obsT (t) = obsT (c[[s]]) and obsT (t′) = obsT (c[[s′]]);
find c′ ∈ C such that obsT (t)(c′) 	= obsT (t′)(c′);
return (S, C ∪ {c′[[c]]});

procedure EXTEND(T) where T = (S, C)
AT := synthesize(T );
return EXTRACT(T, counterexample(AT));

procedure EXTRACT(T, t) where T = (S, C)
choose c ∈ CΣ and s ∈ subtrees(t) ∩ (Σ(S) \ S) such that t = c[[s]];
if there exists s′ ∈ S such that

obsT (s′) = obsT (s) and t ∈ U ⇔ c[[s′]] ∈ U then
return EXTRACT(T, c[[s′]]);

else return (S ∪ {s}, C)
end if;

1 In [1] I is used as termination criterion. This does not affect the computation as such
– they prove that the algorithm returns the desired automaton in time, i.e., it never
halts without result because of that criterion alone – and is therefore equivalent to
assuming that the teacher, when asked for a counterexample, first checks if A = AU .
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Let Tl = (Sl, Cl) be the table obtained after l−1 steps. Note that according to
Drewes and Högberg [1] (and as is easy to see) the procedures CLOSURE, RESOLVE,
and EXTEND all guarantee that each constructed observation table satisfies the
following conditions: (A) Tl is indeed an observation table, (B) for all distinct
trees s, s′ ∈ Sl, s �U s′, (C) |Sl| + |Cl| = l + 1, and (D) |Cl| ≤ |obsTl

(Sl)|.
Drewes and Högberg [1] prove that their algorithm always terminates after

less than 2I loop executions and returns the desired fta (see [1] for the proof).

3 Multi-dimensional Trees and Automata

3.1 Multi-dimensional Trees as Defined by Rogers [3,4]

Starting from the tree definition based on two-dimensional tree domains, Rogers
generalizes both downwards (to strings and points) and upwards and defines la-
beled multi-dimensional trees over a hierarchy of multi-dimensional tree domains:

Definition 3 (Rogers [3,4]). Let d1 be the class of all dth-order sequences of
1s: 01 := {1}, and n+11 is the smallest set satisfying (i) 〈〉 ∈ n+11, and (ii) if
〈x1, . . . , xl〉 ∈ n+11 and y ∈ n1, then 〈x1, . . . , xl, y〉 ∈ n+11. Let T

0 := {∅, {1}}
(point domains). A (d+1)-dimensional tree domain is a set of hereditarily prefix
closed (d + 1)st-order sequences of 1s, i.e., T ∈ T

d+1 iff

– T ⊆ d+11,
– ∀s, t ∈ d+11 : s · t ∈ T ⇒ s ∈ T,
– ∀s ∈ d+11 : {w ∈ d1|s · 〈w〉 ∈ T} ∈ T

d.

A Σ-labeled Td (d-dimensional tree) is a pair 〈T, τ〉) where T is a d-dimensional
tree domain and τ : T −→ Σ is an assignment of labels in the (non-partitioned)
alphabet Σ to nodes in T . We will denote the class of all Σ-labeled Td as T

d
Σ.

Every d-dimensional tree can be conceived to be built up from one or more
d-dimensional local trees, that is, trees of depth at most one in their major di-
mension. Each of these smaller trees consists of a root and an arbitrarily large
(d − 1)-dimensional “child tree” consisting of the root’s children (a formal def-
inition of the set T

d,loc
Σ of all local trees over some alphabet Σ would be for

example T
d,loc
Σ = {〈T, τ〉|〈T, τ〉 is a Σ-labeled Td, and ∀s ∈ T : |s| ≤ 1}). Local

strings (i.e., one-dimensional trees), for example, consist of a root and a point as
its child tree. Local two-dimensional trees consist of a root and a string. Local
three-dimensional trees would have a pyramidal form, with a two-dimensional
tree as its base. There are also trivial local trees (consisting of a single root), and
even empty ones. Composite trees can be built from local ones by identifying the
root of one local tree with a node in the child tree of another (and adapting the
addresses in order to incorporate them into the newly created tree domain). Fig-
ure 1 shows examples of local and composite trees for the first four steps of the
hierarchy (only some composite trees are labeled, and in the three-dimensional
case, only the addresses of nodes that do not appear in the rightmost local tree
as well are given, for clarity. εd denotes an empty sequence of order d).
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Fig. 1. Local and composite trees for d = 0, 1, 2, 3

Definition 4 (Rogers [4]). A Td automaton with finite state set Q and (non-
ranked) alphabet Σ is a finite set of triples Ad ⊆ Σ × Q × T

d−1
Q .

The interpretation of a triple 〈σ, q, T 〉 ∈ Ad is that if a node of a Td is labeled
with σ and T encodes the assignment of states to its children, that node may
be assigned state q. A run of a Td automaton on a Σ-labeled Td T = 〈T, τ〉 is
a mapping r : T −→ Q in which each assignment is licensed by Ad. Note that
a maximal node (wrt the major dimension, i.e., a leaf) labeled with σ may be
assigned state q only if there is a triple 〈σ, q, ∅〉 ∈ Ad. If F ∈ Q is the set of
accepting states, then the set of (finite) Σ-labeled Td recognized by Ad is that
set for which there is a run of Ad that assigns the root a state in F .

T1 automata correspond to finite-state automata for strings, they recognize
the regular languages. T2 automata correspond to (non-deterministic) finite-
state automata for trees, i.e., they recognize the regular tree languages, the
associated string sets of which are the context-free languages. For d ≥ 3, Td
automata recognize languages of d-dimensional trees whose sets of string yields
are situated between the classes of context-free and context-sensitive languages
in the Chomsky Hierarchy, where for every d the class of string yields of the
d-dimensional tree languages is properly contained in the next (i.e., for d + 1).

3.2 Multi-dimensional Trees as Terms

In this subsection we will give a representation for multi-dimensional trees (first
defined in [9]) which establishes them as a direct generalization of the one on
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which (classical) finite-state tree automata are based, i.e., one that allows multi-
dimensional trees to be noted as expressions over a partitioned alphabet.

We use finite d-dimensional tree labeling alphabets Σd where each symbol
f ∈ Σd is associated with at least one unlabeled (d − 1)-dimensional tree t
specifying the admissible child structure for a root labeled with f (note that as
before it is just as possible to associate several, albeit finitely many, admissible
child structure trees with one symbol). t can be given in any form suitable
for trees, as long as it is compatible with the existence of an empty tree. For
consistency’s sake we will use the definition of multi-dimensional trees given
below and write t as an expression over a special kind of “alphabet” containing
just one symbol ρ for which any child structure is admissible.

Let Σd
t for d ≥ 1 be the set of all symbols associated with t and Σ0 a set of

constant symbols. The set of all d-dimensional trees TΣd can then be defined:

Definition 5. Let εd be the empty d-dimensional tree. Then

– TΣ0 := {ε0} ∪ Σ0, and
– for d ≥ 1: TΣd is the smallest set such that εd ∈ TΣd and f [t1, . . . , tn]t ∈ TΣd

for every f ∈ Σd
t , n the number of nodes in t, t1, . . . , tn ∈ TΣd and t1, . . . , tn

are rooted breadth-first in that order2 at the nodes of t.

Multi-dimensional trees in this notation can be translated one-to-one into trees
in Rogers’ notation and vice versa – see [9] for the translation and proof.

For tp = f [t1, . . . , tn]t with f ∈ Σd
t , t1, . . . , tn are the direct subtrees of tp,

subtrees(t) is defined as in Section 2. Also, for some fixed d, let � be a special
symbol associated with εd−1 (i.e., a leaf label). A tree c ∈ TΣd∪{�} in which �
occurs exactly once is still called a context, the set of contexts over Σd is CΣd .
c[[s]] for c ∈ CΣd and s ∈ TΣd is defined via substitution as before.

We can represent d-dimensional automata as a direct generalization of fta’s:

Definition 6. A (total, deterministic) finite-state d-dimensional tree automaton
is a quadruple Ad = (Σd, Q, δ, F ) with input alphabet Σd, finite state set Q, set of
accepting states F ⊆ Q and transition function δ with with δ(t(q1, . . . , qn), f) ∈ Q
for every f ∈ Σd

t where t(q1, . . . , qn) encodes the assignment of states to the
nodes of t (i.e., t(q1, . . . , qn) is isomorphic to t and its nodes are labeled with
q1, . . . , qn breadth-first in that order if Q is taken as a partitioned alphabet in
which every element is associated with all the child structures it occurs with in δ).
The transition function extends to d-dimensional trees: δ : TΣd −→ Q is defined
such that if tp = f [t1, . . . , tn]t ∈ TΣd then δ(tp) = δ(t(δ(t1), . . . , δ(tn)), f). The
set of trees accepted by Ad is L(Ad) = {tp ∈ TΣd |δ(tp) ∈ F}.

The equivalence between this definition and the one by Rogers [4] is easy to
see. For two corresponding automata Ad = (Σd, Q, δ, F ) and Ad

R ⊆ ΣR × QR ×
T

d−1
QR

(accepting state set FR) in the two notations the sets of states Q and
QR, and F and FR coincide, the construction of ΣR from Σd is trivial, and
Σd is constructed from Ad

R as follows: f ∈ Σd
t for all triples 〈f, q, t0〉 ∈ Ad

R,

2 This is an ad hoc settlement, any other spatial arrangement would do as well.
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Fig. 2. Ambiguity in the yield for d ≥ 3 (resolved by marked splicing points)

where t ∈ T{ρ}d−1 is isomorphic to t0. Most importantly, there is a one-to-one
correspondence between the elements of Ad

R and δ: Every triple 〈f, q, t0〉 ∈ Ad
R

can be translated to an assignment δ(Ψ(t0), f) = q of Ad, and every assignment
δ(t(q1, . . . , qn), f) = q of Ad to a triple 〈f, q, Φ(t(q1, . . . , qn))〉 ∈ Ad

R, where Φ
and Ψ are translations from one notation into the other (see [9] for a definition).
From this and from the identical state sets it follows that L(Ad

R) = Ψ(L(Ad))
and L(Ad) = Φ(L(Ad

R)).
Finally, we give a definition of the yield operation for multi-dimensional trees

in the new notation. As for d ≥ 3 the yield is not unambiguous (see Figure 2),
the structures have to be enriched with additional information. Assume that, for
d ≥ 2, in every tree tp ∈ TΣd every labeling symbol f ∈ Σd is indexed with a
set S ⊆ {2, . . . , d}. If x ∈ S then we call a node labeled by fS a foot node for
the (x − 1)-dimensional yield of tp. For every subtree tq of tp the distribution of
these foot nodes must fulfil certain conditions:

(1) If tq has depth 0 the index set in its root label must contain d, otherwise
tq = fS [t1, . . . , tn]t with f ∈ Σd

t , S ⊆ {2, . . . , d}, and t1, . . . , tn ∈ TΣd must
have exactly one direct subtree ti ∈ {t1, . . . , tn} whose root labeling symbol
is indexed with a set containing d and this subtree is attached to a leaf in t.
In both cases, we will refer to that root as the d-dimensional foot node of tq.

(2) The foot nodes are distributed in such a way that for every n-dimensional
yield of tp with n < d, condition (1) is fulfilled as well.

For d ≥ 2, the (d − 1)-dimensional yield of a tree tp ∈ TΣd is defined as

ydd−1(tp) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εd−1 for tp = εd,
aS for tp = aS with a ∈ Σd

εd−1 and S ⊆ {2, . . . , d},
optp(t1) for tp = fS [t1, . . . , tn]t with t1, . . . , tn ∈ TΣd , f ∈ Σd

t ,
t 	= εd−1, and S ⊆ {2, . . . , d},

where optp(ti) for ti ∈ {t1, . . . , tn} is defined as the (d − 1)-dimensional tree
that is obtained by replacing the d-dimensional foot node of ti in ydd−1(ti)
by eR[optp(tj), . . . , optp(tk)]tx , where eR with e ∈ Σd and R ⊆ {2, . . . , d} is the
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label of the foot node, tx is the (d − 2)-dimensional child structure of the node
at which ti is attached in t and tj , . . . , tk are the direct subtrees of tp that are
attached (breadth-first in that order) at the nodes of tx. The result ydd−1(tp)
is a (d − 1)-dimensional tree over an alphabet Σd−1 containing at least all the
node labels in ydd−1(tp), each associated at least with the child structures it
occurs with. Obviously, the string yield of a d-dimensional tree for d ≥ 2 can be
obtained by taking the (d − 1)-dimensional yield d − 1 times.

Example 1 defines an automaton A3
ww recognizing a three-dimensional tree

language whose set of string yields yd1(L(A3
ww)) is Lww = {ww|w ∈ {a, b}+}:

Example 1. A3
ww = (Σ3, {qa, qb, qg, qy, qz, qf , qx}, δ, {qf}) where Σ3 = {a, b, f, g,

h{3}} with a, b, f, g, h{3} ∈ Σ3
ε2 and f ∈ Σ3

t1 for t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0 ]ρ[]ε0 ]ρ[ρ[]ε0 ]ρ
and f ∈ Σ3

t2 for t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 , ρ[]ε1 ]ρ[ρ[]ε0 ]ρ ]ρ[ρ[]ε0 ]ρ . (Note that in Σ3 only
index sets containing 3 have been given, as the distribution of foot nodes for the
string yield is never ambiguous). δ is defined as follows:

δ(ε2, a) = qa δ(t1(qg, qa, qz, qa)) = qf

δ(ε2, b) = qb δ(t1(qg, qb, qz, qb)) = qf

δ(ε2, f) = qz δ(t2(qg, qa, qz, qy, qa)) = qz

δ(ε2, g) = qg δ(t2(qg, qb, qz, qy, qb)) = qz

δ(ε2, h{3}) = qy

and δ(t0, x) = qx for all other admissible t0 and all symbols x ∈ Σ3. Figure
3 shows t1 and t2, three trees ta, tb, tc ∈ L(A3

ww) in the middle, and the two-
dimensional yield for tc, whose one-dimensional yield is the string abab.

With the slightly adapted definitions of contexts and automata, the Myhill-
Nerode theorem (see Section 2) carries over quite naturally to multi-dimensional
trees, and consequently, for every recognizable d-dimensional tree language L
there exists a unique minimal automaton Ad

L recognizing L. It is this fact
that enables us to give a learning algorithm for languages of trees of arbitrar-
ily many dimensions based on the same principle as the one by Drewes and
Högberg [1].
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Fig. 3. Example 1



A Learning Algorithm for Multi-dimensional Trees 121

4 The Learner for Multi-dimensional Tree Languages

We will now generalize the learning algorithm for regular tree languages by
Drewes and Högberg [1] to recognizable tree languages of arbitrarily many di-
mensions. The necessary concepts for the learning algorithm can be adapted in
an obvious way (assume that t has n nodes):

– Subtree-closed: For every tree f [t1, . . . , tn]t ∈ S: t1, . . . , tn ∈ S.
– Generalization-closed: For every context of the form c[[f [t1, . . . , ti−1, �, ti+1,

. . . , tn]t]], c is in C as well and t1, . . . , ti−1, ti+1, . . . , tn are in S.
– Σd(S) denotes the set of all trees of the form f [t1, . . . , tn]t such that f ∈ Σd

t

for some t and t1, . . . , tn ∈ S.
– Closed (for an observation table T ): T is closed if obsT (Σd(S)) ⊆ obsT (S).
– Consistent (for an observation table T ): For all f ∈ Σd

t and all s1, . . . , sn,
s′1, . . . , s

′
n ∈ S, if obsT (si) = obsT (s′i) for all i with 1 ≤ i ≤ n then

obsT (f [s1, . . . , sn]t) = obsT (f [s′1, . . . , s′n]t).

From a closed and consistent observation table T = (S, C) one can derive a
d-dimensional tree automaton Ad

T whose set of states is QT = {obsT (s)|s ∈ S},
the set of accepting states is FT = {obsT (s)|s ∈ S ∩ U}, and δT (t(obsT (s1), . . . ,
obsT (sn)), f) = obsT (f [s1, . . . , sn]t) for all f ∈ Σd

t and s1, . . . , sn ∈ S.
With this settled, the learning algorithm for recognizable d-dimensional tree

languages (not containing the empty tree, and for some d ≥ 1, since TΣ0 is
finite, i.e., trivial to learn) is very easy to formulate; in fact, it is identical to the
one given in Section 2 (just change Σ(S) to Σd(S) throughout and start with
T = ({a}, {�}) for some arbitrary a ∈ Σd

εd−1). We will prove that the validity
of Lemma 1, repeated below in a slightly adapted form as Lemma 2, hasn’t
been changed by our generalization to trees of arbitrarily many dimensions. The
proofs are inspired by the corresponding ones in [2].

Lemma 2. Let T = (S, C) be a closed, consistent observation table. Then

(a) δT (tp) = obsT (tp) for all tp ∈ S ∪ Σd(S),
(b) for all tp ∈ S∪Σd(S) and all contexts c ∈ C, Ad

T accepts c[[tp]] iff c[[tp]] ∈ U ,
(c) Ad

T is the unique minimal automaton with property (b).

Proofs. (a) is proved by induction via the definitions of δ and δT : It certainly holds
for all a ∈ Σd

εd−1 ∩S (trees consisting of one node in S), as δT (a) = δT (εd−1, a) =
obsT (a). Now let tp = f [s1, . . . , sn]t for an arbitrary f ∈ Σd

t and s1, . . . , sn ∈
S ∪ Σd(S). As tp ∈ S ∪ Σd(S), s1, . . . , sn must be in S (which is clear for
tp ∈ Σd(S) – for tp ∈ S recall that S is subtree-closed). If (a) holds for s1, . . . , sn

then it also holds for tp, as δT (f [s1, . . . , sn]t) = δT (t(δT (s1), . . . , δT (sn)), f) =
δT (t(obsT (s1), . . . , obsT (sn)), f) = obsT (f [s1, . . . , sn]t). �
(b) is proved by induction over the depth of the contexts in C. For c = � and
all tp ∈ S ∪ Σd(S), δT (c[[tp]]) = δT (tp) = obsT (tp) by (a). tp is either in S or in
Σd(S). Case 1, tp ∈ S: δT (tp) ∈ F ⇔ obsT (tp) ∈ F ⇔ obsT (tp) ∈ {obsT (s)|s ∈
S ∩ U} ⇔ tp ∈ S ∩ U ⇔ tp ∈ U . Case 2, tp ∈ Σd(S): As T is closed, there exists
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tq ∈ S with obsT (tp) = obsT (tq), and thus δT (tp) = δT (tq) (and the rest of the
argument runs as in Case 1). This proves (b) for c = �.

Assume that c ∈ C is of depth k +1, and (b) holds for all contexts in C up to
depth k and all tp ∈ S∪Σd(S). As C is generalization-closed, there exists c2 ∈ C
of depth k and s1, . . . , sn ∈ S such that c = c2[[f [s1, . . . , si−1, �, si+1, . . . , sn]t]]
for some f ∈ Σd

t . (b) holds for c2: δT (c2[[tp]]) ∈ F ⇔ c2[[tp]] ∈ U for all tp ∈
S∪Σd(S). As T is closed, there exists tq ∈ S with δT (tp) = obsT (tp) = obsT (tq) =
δT (tq). Obviously, f [s1, . . . , si−1, tq, si+1, . . . , sn]t is in Σd(S). With δT (tq) =
δT (tp) and T consistent, δT (c2[[f [s1, .., si−1, tq, si+1, .., sn]t]]) = δT (c2[[f [s1, ..,
si−1, tp, si+1, .., sn]t]]) ∈ F ⇔ c2[[f [s1, . . . , si−1, tp, si+1, . . . , sn]t]] ∈ U ⇔ c[[tp]]
∈ U , which proves (b) for all c ∈ C and all tp ∈ S ∪ Σd(S). �
(c) is equivalent to the claim that any automaton Ad′ = (Σd, Q′, δ′, F ′) con-
sistent with T with as many or fewer states than Ad

T is isomorphic to Ad
T .

Let Ad
T have n states. Define, for each q′ ∈ Q′, obsT (q′) as the finite function

g : C −→ {0, 1} such that g(c) = 1 iff δ′(c[[q′]]) ∈ F ′, where δ′(c[[q′]]) = δ′(c[[t]])
for all t with δ′(t) = q′. Since Ad′ is consistent with T , for each tp ∈ S ∪ Σd(S)
and each c ∈ C, δ′(c[[tp]]) ∈ F ′ iff obsT (tp)(c) = 1, which also means that
δ′(c[[δ′(tp)]]) ∈ F ′ iff obsT (tp)(c) = 1, so obsT (δ′(tp)) = obsT (tp). As tp ranges
over all of S, obsT (δ′(tp)) ranges over all of Q, so Ad′ must have n states.

Thus, for each tp ∈ S there is a unique q′ ∈ Q′ such that obsT (tp) =
obsT (q′), namely δ′(tp). Define for each tp ∈ S, φ(obsT (tp)) = δ′(tp). This
mapping is bijective. We must verify that it preserves δ and maps F to F ′.
For s1, . . . , sn ∈ S and f ∈ Σd

t , let tp ∈ S such that obsT (f [s1, . . . , sn]t) =
obsT (tp). Then φ(δ(t(obsT (s1), . . . , obsT (sn)), f)) = φ(obsT (f [s1, . . . , sn]t)) =
φ(obsT (tp)) = δ′(tp), and δ′(t(φ(obsT (s1)), . . . , φ(obsT (sn))), f) = δ′(t(δ′(s1),
. . . , δ′(sn)), f) = δ′(f [s1, . . . , sn]t). Since obsT (δ′(tp)) = obsT (δ′(f [s1, . . . , sn]t)),
δ′(tp) and δ′(f [s1, . . . , sn]t) must be the same state of Ad′, we can conclude that
φ(δ(t[obsT (s1), . . . , obsT (sn)], f)) = δ′(t[φ(obsT (s1)), . . . , φ(obsT (sn))], f) for all
s1, . . . , sn ∈ S and f ∈ Σd

t . To complete the proof we must see that φ maps F to
F ′: This is clear since if obsT (tp) ∈ F then tp ∈ U for all tp ∈ S, so as φ(obsT (tp))
is mapped to a state q′ with obsT (q′) = obsT (tp), q′ must be in F . Conversely,
if obsT (tp) is mapped to a state q′ ∈ F ′, then since obsT (q′) = obsT (tp), tp ∈ U ,
so obsT (tp) ∈ F . φ is indeed an isomorphism, and (c) is proved. �
Theorem 1. The learner returns Ad

U after less than 2I loop executions.

The proof stays as in [1]: According to property (D) of the obtained observation
tables there cannot be more contexts in Cl than trees in Sl, for all l. Since (C)
states that |Cl| + |Sl| = l + 1, this means |Sl| > l/2. We also know that the
learner halts when Sl has I elements (by (B)), so it will halt before l = 2I.

Let Ad
Tm

be the returned automaton. Tm is a closed, consistent observation
table and Ad

Tm
is the unique minimal automaton such that, for all s ∈ Sm and

c ∈ Cm, c[[s]] ∈ L(Ad
Tm

) iff c[[s]] ∈ U (Lemma 2(b)). However, Ad
U has the same

property and as many states, so Ad
Tm

= Ad
U up to a bijective state renaming. �

We sketch a run of the algorithm for the language L(A3
ww) from Example 1.
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Example 2. The learner starts with T1 = ({a}, {�}), and obsT (a) = 0. T1
is closed and consistent, so the learner proposes AT1 , which accepts nothing,
and gets the counterexample tb = f [g, b, f, b]t1 (see Figure 3), from which the
procedure EXTRACT derives T2. T2 is closed, but not consistent (for example,
obsT (a) = 0 and obsT (b) = 0, but obsT (c[[a]]) = 0 and obsT (c[[b]]) = 1 for
c = f [g, b, f, �]t1). Several invocations of RESOLVE yield T3, from which the
learner synthesizes an automaton AT3 with five states and one accepting state
obsT (tb), and gets the counterexample tc = f [g, a, f [g, b, f, h{3}, b]t2 , a]t1 (see
Figure 3). The procedure EXTRACT adds two more rows to T3, and RESOLVE an-
other column, yielding T4, which is closed and consistent. AT4 has I = 7 states
(which is the termination criterion, see Section 2) and recognizes L(A3

ww).

T2 �
a 0
b 0
f 0
g 0
tb 1

T3 � c1 c2 c3

a 0 0 0 0
b 0 1 0 0
f 0 0 1 0
g 0 0 0 1
tb 1 0 0 0

T4 � c1 c2 c3 c4

a 0 0 0 0 0
b 0 1 0 0 0
f 0 0 1 0 0
g 0 0 0 1 0
tb 1 0 0 0 0

h{3} 0 0 0 0 1
tc 1 0 1 0 0

tb = f [g, b, f, b]t1
tc = f [g, a, f [g, b, f, h{3}, b]t2 , a]t1
t1 = ρ[ρ[]ε1 , ρ[ρ[]ε0 ]ρ[]ε0 ]ρ[ρ[]ε0 ]ρ
t2 = ρ[ρ[]ε1 , ρ[ρ[]ε1 , ρ[]ε1 ]ρ[ρ[]ε0 ]ρ ]ρ[ρ[]ε0 ]ρ
c1 = f [g, b, f, �]t1
c2 = f [g, b, �, b]t1
c3 = f [�, b, f, b]t1
c4 = f [g, a, f [g, b, f, �, b]t2, a]t1

We have shown that the algorithm by Drewes and Högberg [1] can be used in
an almost unchanged form to learn multi-dimensional trees in the new notation
introduced in Subsection 3.2. This is tantamount to the claim that the algorithm
is also able to learn even string languages that lie beyond the context-free class,
provided that the learned multi-dimensional tree languages are enriched with the
information that is needed in order to take the yields. Probably the easiest way
to do this is to integrate the index sets directly into the alphabet (as has been
done in Example 1), i.e., to multiply the symbols of the alphabet by the power
set of Sd = {2, ..., n} for d ≥ 2. String languages situated beyond the regular
class can then be learned in a two-step approach by first letting the algorithm
learn a higher-dimensional representation of the language and then taking the
string yields of the set that is recognized by the resulting automaton.

5 Conclusion

Generalizing the MAT learning algorithm L∗ to regular tree languages of arbi-
trarily many dimensions is only a first step to a more thorough understanding of
the interaction between grammatical inference and formal language theory. The
next steps would be to find L∗-like learning algorithms for finite-state recogniz-
able languages of all kinds of objects, such as for example graphs or pictures, or
take existing ones, such as the learning algorithm Lω for ω-regular string lan-
guages [10], and try to integrate these often very similar looking algorithms into
a single one that can process as many different types of inputs as possible. The
same can then be attempted for other learning models and algorithms.

Ultimately, it is our goal to understand which general mathematical properties
of formal language classes of all kinds of suitable objects underlie algorithmical
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learnability (under a certain model). Are they best captured in terms of universal
algebra, or mathematical logics? At least for the class of regular languages,
which up until now is the most explored formal language class in the area of
grammatical inference, there is some evidence pointing to universal algebra as a
convenient foundation, such as the Myhill-Nerode theorem or the fact that finite-
state automata can be best defined for objects with term-like representations.
Since we do not want to restrict ourselves to string or tree languages, this opens
up another interesting question: What are the exact properties (if they can be
formulated at all) that characterize the term of “regularity” in general?

To come back to the results of our paper: Possibly the finding that recogniz-
able three-dimensional tree languages are learnable and the fact that these are
connected to the linguistically inspired grammar formalism TAG can bring about
more research and consequently more knowledge about natural language learn-
ing as well. The connection between formal learnability and human language
acquisition is an ample field of speculations which are yet to be verified.

Another goal for the near future would be to try and implement the results of
this paper. As an implementation for the algorithm by Drewes and Högberg [1]
already exists, this should not be too hard to accomplish. Such a project might
also be an impulse to reflect further on complexity issues (see also [1,11]).
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