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Abstract. In this paper, we study a learning procedure from positive
data for bounded unions of certain class of languages. Our key tools
are the notion of characteristic sets and hypergraphs. We generate hy-
pergraphs from given positive data and exploit them in order to find
characteristic sets.

1 Introduction

In this paper, we study a learning procedure from positive data for a certain class
of languages. In the following, “learning” always means “learning from positive
data.” The class of languages we consider is so called a closed set system (see
§2 for its definition). In [4], we studied inferability of a closed set system in
order to understand relations between the class of ideals of the polynomial ring
and inferability from positive data. The polynomial ring is a fundamental object
in algebra, and Hilbert’s basis theorem about the finite generation of its ideals
has been historically important. In [5], Hayashi pointed out that if we consider
ideals of the polynomial ring as formal languages, the statement of Hilbert’s basis
theorem can be understood as inferability from positive data. In fact, Stephan
and Ventsov [9] showed that a finite basis of any ideal of a commutative ring
is regarded as a finite tell-tale. In [4], we introduced a notion of a Noetherian
closed set system and proved that a closed set system L has finite elasticity if
and only if it is Noetherian. Hence by the result of Wright et al. (Theorem 2.4
in §2), the class of bounded union ∪≤kL also has finite elasticity. From the proof
of Theorem 2.4, however, we do not know how its learning procedure looks like.
On the other hand, Kobayashi introduced the notion of a characteristic set in
[7] and proved that (i) if the class L has finite elasticity, then every language
in L has a characteristic set and (ii) L is inferable from positive data if every
language in L has a characteristic set. Our goal of this note is to give a learning
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procedure for bounded unions of certain class of Noetherian closed set systems
by using characteristic sets.

The contents of this paper is as follows. In §2, we summarize some facts on
inferablity from positive data and closed set systems. In §3, we give a learning
procedure of bounded unions of a Noetherian closed set system under certain
settings as follows:

(i) Given a closed set L ∈ L and its characteristic set F , there exists an
algorithm to compute a characteristic set of L in ∪≤kL from F .

(ii) ∪≤kL is compact (See §2 for its definition).

Our procedure is given by generating a certain hypergraph, which is main
feature of our result. In §§4 and 5, we apply our procedure to bounded unions of
the class of ideals of the polynomial ring and tree pattern languages, respectively.

2 Preliminaries

2.1 Inferability from Positive Data

In this article, a language L is a subset of some countable set U such that L
is expressed L(G) by some finite expression G. We call this finite expression a
hypothesis. A set of all hypotheses H is called a hypothesis space. Let L be the
set of all languages {L(G) | G ∈ H}. We assume that L is uniformly recursive,
that is, there is a recursive function f(w, G) such that f(w, G) = 1 iff w ∈ L(G)
for every w ∈ U and G ∈ H.

A positive data (or positive presentation) of L ∈ L is an infinite sequence
σ : s1, s2, . . . of elements of L such that L = {s1, s2, . . .}. An inference algorithm
M is that:

• M receives incrementally an elements of a positive data σ of a language,
• M outputs a hypothesis Gn ∈ H when M receives n-th element of σ.

L is inferable in the limit from positive data if there exists an inference algorithm
M satisfies that for all L ∈ L and an arbitrary positive data of L, the output
sequence of M converges to a hypothesis G such that L(G) = L.

A finite tell-tale of L ∈ L is a finite subset S of L such that L is a minimal
in the class {L′ ∈ L | S ⊂ L′} with respect to set inclusion. If L is minimum,
S is called a characteristic set of L. Note that the idea of characteristic set is
essentially the same as that of test set in [6].

Theorem 2.1. ([1]) L is inferable in the limit from positive data if and only
if there exists a procedure to enumerate elements of a finite tell-tale of every
L ∈ L.

Theorem 2.2. ([7]) If every L ∈ L has a characteristic set, then L is inferable
from positive data.
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We say that (i) L has finite thickness if the set {L ∈ L | w ∈ L} is finite for
any w ∈ U and (ii) L has infinite elasticity if there exists an infinite sequence
w0, w1, . . . of elements of U and infinite sequence L1, L2, . . . of languages such
that {w0, . . . , wn−1} ⊂ Ln but wn /∈ Ln. We say that L has finite elasticity if it
does not have infinite elasticity.

Theorem 2.3. ([7],[8]) (1) If L has finite elasticity, then every L in L has a
characteristic set.
(2) If L has finite thickness, then L has finite elasticity.

We define a class of the union of languages as follows:

L ∪ L′ = {L1 ∪ L2 | L1 ∈ L, L2 ∈ L′},

∪≤kL = {L1 ∪ . . . ∪ Lm | m ≤ k, Li ∈ L (i = 1, . . . , m)}.

It is known that

Theorem 2.4. ([12]) If L and L′ have finite elasticity, then L ∪ L′ has finite
elasticity.

It immediately follows that, if L has finite elasticity, then ∪≤kL also has. There-
fore, by Theorems 2.2 and 2.3, we have:

Corollary 2.1. If L has finite elasticity, then ∪≤kL is inferable from positive
data.

Definition 2.1. ∪≤kL is said to be compact if it satisfies the following condi-
tion:
For each m ≤ k and L, Li ∈ L (i = 1, . . . , m), if L ⊂ L1 ∪ . . . ∪ Lm, then there
exists i0 such that L ⊂ Li0 .

2.2 Closed Set System

Let 2U be the power set of U . A mapping C : 2U → 2U is called a closure
operator if C satisfies:
(CO1) X ⊂ C(X),
(CO2) C(C(X)) = C(X), and
(CO3) X ⊂ Y ⇒ C(X) ⊂ C(Y ),
where X and Y are arbitrary subsets of U . A set X ⊂ U is called closed if
X = C(X). A closed set system C is the class of all closed sets of a closure
operator.

Remark 2.1. In a closed set system, the intersection of arbitrary number of
closed sets is closed, but the union of closed sets is not necessarily closed.

In the following, we regard C as a class of languages and assume that it is
recursive. If a closed set X ∈ C is represented X = C(Y ) for some finite set
Y ⊂ U , X is called a finitely generated closed set.
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Lemma 2.1. ([4]) Let X = C(Y ) be a closed set. The followings are equivalent:
1. Y is finite,
2. Y is a finite tell-tale of X, and
3. Y is a characteristic set of X.

An immediate consequence of Lemma 2.1 and Theorem 2.1 is as follows:

Corollary 2.2. C is inferable from positive data if and only if every closed set
is finitely generated.

A closed set system C is Noetherian if it contains no infinite strictly ascending
chain of closed sets. This condition is equivalent to finite elasticity [4, Theorem
7]. Hence it follows that:

Corollary 2.3. A Noetherian closed set system is inferable from positive data.

3 Main Result

As for inferability of closed set systems from positive data, we refer to [4], and
use result there freely.

Let L be a Noetherian closed set systems over some set U and C denote its
closure operator. By [4, Theorem 7], L has finite elasticity and it implies that
the class ∪≤kL also has finite elasticity. In particular, by [4, §3], any element
L of L is of the form L = C(F ) for a finite subset F of U . In this section, we
consider learning procedure for ∪≤kL.

Remark 3.1. For an element L1 ∪ . . . ∪ Lm ∈ ∪≤kL, we assume that Li �⊆ Lj

for any i, j(i �= j).

Let F be a finite subset of U . F is a characteristic set of C(F ) in L. Since C(F )
is also a member of ∪≤kL, C(F ) has a characteristic set in ∪≤kL, and we denote
it by χ(C(F ), ∪≤kL) (we may assume that F ⊆ χ(C(F ), ∪≤kL)). Throughout
this section, we assume the following:

(∗) There exists an algorithm to compute χ(C(F ), ∪≤kL) from F .

In §§4 and 5, we give examples of Noetherian closed set systems satisfying (∗).
Let L1 ∪ . . . ∪ Lm ∈ ∪≤kL and let σ : f1, f2, . . . , fn, . . . be a positive data of

L1 ∪ . . .∪Lm. We inductively define a hypergraph denoted by Gn having the set
of vertices V (Gn) = {f1, . . . , fn} as follows:

Inductive definition of Gn

Let V (•) and HE(•) denote the set of vertices and hyperedges of a hypergraph
•, respectively.

For n = 1, we put

V (G1) = {f1}, HE(G1) = {{f1}}.
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Suppose that Gn is already given and fn+1 is presented. We construct Gn+1 in
the following way:

Procedure 1: Construction of Gn+1 from Gn;
Input: fn+1 and Gn;
Output: a hypergraph Gn+1;
begin
1. put V = V (Gn) ∪ {fn+1} and HE = HE(Gn);
2. for each subset F ⊂ V such that fn+1 ∈ F and �(F ) ≥ 2 do begin
3. let E = χ(C(F ), ∪≤kL);
4. if E ⊂ V then begin
5. for each element E of HE do
6. if E ⊂ E then remove E from HE;
7. add E to HE;
8. end;
9. end;
10. if there is no E ∈ HE such that fn+1 ∈ E then add {fn+1} to HE;
11. return Gn+1 = (V, HE);
end.

Note that {fn+1} is a characteristic set of C({fn+1}) in ∪≤kL.
We are now in a position to give our learning procedure:

Procedure 2: Learning ∪≤kL;
Input: a positive presentation σ : f1, f2, . . . , fn, . . . for L1 ∪ . . . ∪ Lm;
Output: a sequence of at most k-tuples of characteristic sets

(χ(1)
1 , . . . , χ

(1)
m1), (χ(2)

1 , . . . , χ
(2)
m2), . . . ;

begin
1. S = ∅; /*Possible candidates for characteristic sets*/
2. Put n = 1;
3. repeat
4. construct the hypergraph Gn for f1, f2, . . . , fn;
5. put S = HE(Gn);
6. choose at most k maximal elements from S with respect to the

order as below;
7. output (at most) k-tuple in 6;
8. add 1 to n;
9. forever;
end.

We define an ordering on S as follows:

χ1 < χ2 ⇔ C(χ1) � C(χ2)
ELSE C(χ1)=C(χ2) and χ1 ≺χ2 under a certain suitable ordering ≺.
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The ordering ≺ does not affect the validity of Procedure 2, so we can adopt a
convenient ordering (for example, the order of appearance in S.)

Remark 3.2. Note that C(χ(n)
i ) �⊆ C(χ(n)

j ) for any i, j (i �= j).

Now our theorem is the following:

Theorem 3.1. Suppose that ∪≤kL is compact. ∪≤kL is identifiable in the limit
from positive data via Procedure 2.

We need some lemmas to prove Theorem 3.1.

Lemma 3.1. Let E be an arbitrary hyperedge of Gn. Then C(E) ⊂ L1∪ . . .∪Lm.
Moreover, if L is compact, then there exists Li such that C(E) ⊆ Li.

Proof. By our construction of Gn, there exists F ⊆ V (Gn) such that E =
χ(C(F ), ∪≤kL). Since E ⊂ C(F ), C(E) ⊆ C(C(F )) = C(F ). On the other hand,
E is also a characteristic set of C(F ) in L, C(E) ⊇ C(F ), i.e., C(E) = C(F ).
Moreover, since E is a characteristic set of C(F ) in L≤k, C(F ) ⊆ L1 ∪ . . . ∪ Lm.
The second statement is immediate from the definition of compactness.

Lemma 3.2. Suppose that ∪≤kL is compact. (1) Let L1, . . . , Lm be distinct
members of L. If Li �⊂ Lj for all i, j(i �= j), then Li �⊂ ∪m

j=1,j �=iLj. (2) Let
M ∈ L and let L1, . . . , Lm be as above. If M ⊆ L1 ∪ . . . ∪ Lm and Li ⊆ M for
some i, then Li = M .

Proof. (1) If Li ⊂ ∪m
j=1,j �=iLj, then Li ⊆ Lj0 for some j0 by compactness. This

contradicts to our assumption. (2) By compactness, there exists Lj0 such that
M ⊆ Lj0 . Hence Li ⊆ M ⊆ Lj0 . By our assumption, Li = Lj0 .

Proof of Theorem 3.1. Let L1 ∪ . . . ∪ Lm be an arbitrary element in ∪≤kL.
Suppose that Li = C(Fi), where Fi is a finite subset of Li. Since Fi can be
considered as χ(Li, L), at a certain finite step N0, all elements of Fi are pre-
sented. Therefore, at a certain step N after the step N0, one can assume that all
elements of χ(C(Fi), ∪≤kL) for i = 1, . . . , m are presented. Let E1,N , . . . , EmN ,N

be hyperedges of GN as in Output of Procedure 2. By construction, each Ej,N is
a characteristic set of closed set C(Ej,N ) contained in L1 ∪ . . . ∪ Lm. Note that
C(Ei,N ) �⊆ C(Ej,N ) for any i, j(i �= j) by Remark 3.2.

Claim. For each χ(C(Fi), ∪≤kL), there exists a unique Eji,N of HE(GN ) with
C(Fi) = C(Eji,N).

By our construction of GN , χ(C(Fi), ∪≤kL) is either added as a hyperedge or
contained in a hyperedge added at a certain step. Hence there exists a hy-
peredge Ei of GN such that χ(C(Fi), ∪≤kL) ⊆ Ei for each i. Since C(Fi) =
C(χ(C(Fi), ∪≤kL)) ⊆ C(Ei), C(Ei) = C(Fi) by Lemmas 3.1 and 3.2(2). As
Li = C(Ei) is a maximal element of L contained in L1 ∪ . . . ∪ Lm, there exists a
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hyperedge Ej,N such that Li = C(Fi) = C(Ej,N ) (Note that Ej,N is not necessar-
ily equal to Ei). Suppose that there exist two distinct Ej1,N and Ej2,N such that
χ(C(Fi), ∪≤kL) ⊆ Ejl

(l = 1, 2). Then C(Fi) = C(χ(C(Fi), ∪≤kL)) ⊆ C(Ejl
)

(l = 1, 2). By Lemma 3.2, C(Fi) = C(Ej1,N ) = C(Ej2,N ), but this contradicts to
our assumption.

We finally show that mN = m. By Claim, mN ≥ m. If mN > m, then there
exists Ej0,N such that (i) C(Ej0,N ) �= Li for i = 1, . . . , m and (ii) C(Ej0,N) ⊂
L1 ∪ . . . ∪ Lm. But these condition implies that C(Ej0,N) ⊂ C(Eji,N ) for some
ji. This contradicts to our choice of Ei,N (i = 1, . . . , mN ).

Remark 3.3. Note that the hypotheses in our algorithm are not necessarily
consistent. However, one can modify them into consistent ones without difficulty.

4 Learning Bounded Set Unions of Polynomial Ideals

We denote the set of polynomials of n variables with Q-coefficients by
Q[x1, . . . , xn]. A subset I of Q[x1, . . . , xn] is called an ideal if it satisfies the
following:

• For each f, g ∈ I, f ± g ∈ I.
• For each f ∈ I and h ∈ Q[x1, . . . , xn], hf ∈ I.

We denote the set of all ideals by I. For a finite subset F = {f1, . . . , fr} ⊂
Q[x1, . . . , xn], we define the ideal generated by f1, . . . , fr, which is denoted by
〈f1, . . . , fr〉 or 〈F 〉, as follows:

〈F 〉 :=
{ r∑

i=1

hifi | hi ∈ Q[x1, . . . , xn]
}
.

Note that the correspondence F �→ 〈F 〉 defines a closure operator on
Q[x1, . . . , xn]. By Hilbert’s basis theorem for polynomial ideals, we have the
following: for each I ∈ I, there exists a finite set F such that I = 〈F 〉. An
interpretation of this statement from machine learning view point is that “I has
a finite elasticity.” Hence, I is a Noetherian closed set system with the closure
operator F �→ 〈F 〉. Furthermore, the existence of a reduced Groebner basis for
given I in theory of Groebner basis says that one can take the set of reduced
Groebner bases as a hypothesis space of I.

The following lemma is a special case of [10, Theorem 9]. This lemma implies
that ∪≤kI satisfies the condition (∗).

Lemma 4.1. Let I ∈ I. A characteristic set χ(I, ∪≤kI) can be constructed if
the reduced Groebner basis G = {g1, . . . , gr} of I is given.

Remark 4.1. For instance we have an example of χ(I, ∪≤kI) as follows:

hi = g1 + cig2 + . . . + cr−1
i gr (i = 1, . . . , M)
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where M = k(r − 1)+ 1 and ci’s are distinct elements of Q. Note that no hi will
vanish since {g1, . . . , gr} is the reduced Groebner basis.

Remark 4.2. This lemma also implies that ∪≤kI is compact: suppose that
I = 〈g1, . . . , gr〉 is contained in I1 ∪ . . . ∪ Im. Let M = m(r − 1) + 1 and take
h1, . . . , hM as above. By the pigeon-hole principle, there exists some j such that
Ij includes at least r of hi’s. This means I ⊂ Ij .

According to above arguments, we have:

Theorem 4.1. ∪≤kI is identifiable in the limit from positive data via Proce-
dure 2.

Example 4.1. Let us consider learning 〈x2, y3〉∪〈x3 , y2〉 ∈ ∪≤2I. Let a positive
presentation σ be x2, y3, y2, x2 + y3, x3, x3 + y2, . . . . By the argument of §3 of
[10], we can take a characteristic set χ(〈f, g〉, ∪≤2I) = {f, g, f + g} for distinct
polynomials f and g. The hyperedges of hypergraphs constructed by Procedure
1 are as follows:

HE1 = {{x2}},

HE2 = {{x2}, {y3}},

HE3 = {{x2}, {y3}, {y2}},

HE4 = {{x2, y3, x2 + y3}, {y2}},

HE5 = {{x2, y3, x2 + y3}, {y2}, {x3}},

HE6 = {{x2, y3, x2 + y3}, {y2, x3, x3 + y2}}.

Hence Procedure 2 learns 〈x2, y3〉 ∪ 〈x3, y2〉 when n = 6.

5 Learning Bounded Unions of Tree Pattern Languages

In [3], Arimura et al. studied learnability of bounded union of tree pattern lan-
guages. However, they did not seem to use characteristic sets explicitly. We here
give a procedure learning bounded unions of tree pattern languages by using our
result in §3. Let Σ be a finite set and V be a countable set disjoint from Σ. The
elements of Σ and V are called symbols and variables, respectively. We assume
that there is a mapping rank that maps an element of Σ to a non-negative in-
tegers. We define the rank of elements of V to be zero. A tree pattern p over Σ
is a tree satisfying following properties:

• p has the root.
• p is directed.
• p is ordered.
• Each node of p is labeled by elements of Σ ∪ V .
• The number of children of each node is equal to the rank of the label of the
node.

A tree over Σ is a tree pattern over Σ that has no nodes labeled by an
element of V . T PΣ and TΣ denote the set of all tree patterns and all trees over
Σ, respectively.
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A substitution is a mapping θ from V to T PΣ . pθ denotes the tree pattern
obtained from applying a substitution θ to p. We define a relation on T PΣ as
follows: p � q ⇔ there exists a substitution θ such that p = qθ. We denote p ≡ q
if p � q and q � p, and call that p and q are equivalent. Note that p ≡ q if and
only if p = qθ for some renaming θ of variables.

Lemma 5.1. (1) If p � q and q � r, then p � r.
(2) Let |p| be the number of nodes of p. If p � q, then |p| ≥ |q|.
(3) For any p ∈ T PΣ, there are finitely many q ∈ T PΣ such that p � q.

Lemma 5.2. For any subset S �= ∅ of T PΣ, there exists an element lca(S) of
T PΣ such that:

(i) p � lca(S) for any p ∈ S,
(ii) if p � r for any p ∈ S, then lca(S) � r.

lca(S) is uniquely determined up to equivalence. It is called the least common
anti-instance of S. If S is finite, then lca(S) can be computed in polynomial
time [8].

A tree pattern language defined by p is the set L(p) = {t ∈ TΣ | t � p}. We
denote the set of all tree pattern languages {L(p) | p ∈ T PΣ} by T PL(Σ, V ).
We may omit (Σ, V ) if it is clear from the context.

Lemma 5.3. (1) p � q ⇔ L(p) ⊂ L(q) for any p, q ∈ T PΣ.
(2) L(t) = {t} for any t ∈ TΣ.
(3) lca(t1, t2) � p for any p ∈ T PΣ and t1, t2 ∈ L(p).

In general, the class T PL itself may be not a closed set system. Hence we
introduce a closed set system C over T PL.
For S ⊂ T PΣ , we define C(S) = {p ∈ T PΣ | p � lca(S)}. Note that C(S) =
C(lca(S)).

Lemma 5.4. C is a closure operator on T PΣ.

Proof. (CO1) Obvious by the definition of lca. (CO2) In general, lca(C(S)) =
lca(S) holds. Thus C(C(S)) = C(lca(C(S))) = C(lca(S)) = C(S). (CO3)
Suppose S1 ⊂ S2 ⊂ T PΣ . Clearly, lca(S1) � lca(S2). Lemma 5.1(1) implies
C(S1) = C(lca(S1)) ⊂ C(lca(S2)) = C(S2).

C denotes the closed set system defined by C. The following lemma indicates a
fundamental relation between T PL and C.

Lemma 5.5. For every p ∈ T PΣ, L(p) = C(p) ∩ TΣ.

Lemma 5.6. (1) T PL and C have finite elasticity.
(2) If �(Σ) > k, ∪≤kT PL is compact.
(3) ∪≤kC is compact.
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Proof. (1) For any fixed k ∈ N, the set {p ∈ T PΣ | |p| ≤ k} is finite up to
equivalence. This fact and Lemma 5.1(2) imply that, for any p ∈ T PΣ , there
are finitely many q ∈ T PΣ such that p � q. This means that T PL and C have
finite thickness. Therefore, they have finite elasticity by Theorem 2.3.
(2) See [2].
(3) Suppose that C(p) ⊂ C(p1) ∪ . . . ∪ C(pm) (m ≤ k). Since p ∈ C(p), there
exists i0 such that p ∈ C(pi0). Hence C(p) ⊂ C(pi0 ).

Let Σ0 = {a ∈ Σ | rank(a) = 0} and Σ+ = {f ∈ Σ | rank(f) > 0}. In the
following, we assume that neither Σ0 nor Σ+ is empty.

Lemma 5.7. (1) For every p ∈ T PΣ, there exists a characteristic set χ(L(p),
T PL) consisting of at most two elements.
(2) For every S ⊂ T PΣ, there exists a characteristic set χ(C(S), C) consisting
of one element.

Lemma 5.8. (1) Suppose �(Σ+) ≥ k. For every p ∈ T PΣ, there exists a char-
acteristic set χ(L(p), ∪≤kT PL) consisting of at most k + 1 elements. (In fact,
there exists a set {t1, . . . , tk+1} ⊂ TΣ such that lca(ti, tj) = p for each i �= j. See
[11] for detail.)
(2) For every S ⊂ T PΣ, there exists a characteristic set χ(C(S), ∪≤kC) consist-
ing of one element.

Lemma 5.8(2) makes algorithm learning ∪≤kC much simpler.

Procedure 3: Learning ∪≤kC;
Input: a positive presentation σ : q1, q2, . . . , qn, . . . for

C(p1) ∪ . . . ∪ C(pm);
Output: a sequence of at most k-tuples of tree patterns

(r(1)
1 , . . . , r

(1)
m1), (r

(2)
1 , . . . , r

(2)
m2), . . . ;

begin
1. S = ∅; /*The set to memorize a given sequence of q1, . . . , qn*/
2. put n = 1;
3. repeat
4. add qn to S;
5. choose at most k maximal elements from S with respect to �

up to equivalence;
6. output (at most) k-tuple in 5;
7. add 1 to n;
8. forever
end.

We assume �(Σ+) ≥ k in order to make Lemma 5.8(1) holds. By using Pro-
cedure 3, ∪≤kT PL is inferred as follows:
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Procedure 4: Learning ∪≤kT PL;
Input: a positive presentation σ : t1, t2, . . . , tn, . . . for

L(p1) ∪ . . . ∪ L(pm);
Output: a sequence of at most k-tuples of tree patterns

(q(1)
1 , . . . , q

(1)
m1), (q

(2)
1 , . . . , q

(2)
m2), . . . ;

begin
1. generate “positive data” of C(p1) ∪ . . . ∪ C(pm) from σ;
2. run Procedure 3 by “positive data” generated in 1;
3. output the output of 2;
end.
Generation of “positive data” (GPD);
4. S = ∅; /*The set to memorize a given sequence of t1, . . . , tn*/
5. put n = 1;
6. repeat
7. add tn to S;
8. output tn;
9. for each subset F of S with tn ∈ F and �(F ) = k + 1 do
10. if lca(ti, tj) = lca(F ) for all ti, tj ∈ F (i �= j) then
11. output lca(F );
12. add 1 to n;
13. forever;
end.

Theorem 5.1. ∪≤kT PL is identifiable in the limit from positive data via Pro-
cedure 4.

Proof. It suffices to show that GPD generates a positive data for A = C(p1) ∪
. . . ∪ C(pm). Let p be an arbitrary element of A. If p ∈ TΣ , then p ∈ A ∩ TΣ =
L(p1) ∪ . . . ∪ L(pm), so there exists a number j such that tj = p. Thus, p is
enumerated by step 8 of Procedure 4. If not, then there exists a set F that
satisfies the condition of step 11 by Lemma 5.8(1). Let n0 be the least n sat-
isfying {t1, . . . , tn} ⊃ F . It is clear that p is enumerated at Step 11 when n = n0.

We end this section by giving an example.

Example 5.1. Suppose Σ = {a, b, f, g}, rank(a) = rank(b) = 0, rank(f) =
2, rank(g) = 1, and x, y ∈ V . Let us consider learning L(f(a, x)) ∪ L(f(x, b)) ∈
∪≤2T PL. Let a positive presentation σ be as follows:

t1 = f(a, a), t2 = f(a, f(a, b)), t3 = f(b, b),
t4 = f(a, g(a)), t5 = f(a, b), t6 = f(g(a), b), . . .

This time Procedure 4 learns L(f(a, x)) ∪ L(f(x, b)) as follows:

•n = 1 : GPD outputs t1 and Procedure 4 outputs (t1).
•n = 2 : GPD outputs t2 and Procedure 4 outputs (t1, t2).
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•n = 3 : lca(t1, t2) = f(a, x), lca(t1, t3) = f(x, x), lca(t2, t3) = f(x, y). Hence
GPD outputs only t3. Procedure 4 chooses two larger elements from {t1, t2, t3}
and output them.
•n = 4 : Since lca(t1, t2) = lca(t1, t4) = lca(t2, t4) = f(a, x), GPD outputs t4
and f(a, x). Procedure 4 outputs two maximal elements of {t1, . . . , t4, f(a, x)},
that is, f(a, x) and t3.
•n = 5 : Since lca(t1, t5) = lca(t2, t5) = lca(t4, t5) = f(a, x), GPD outputs t5
and f(a, x). Procedure 4 outputs f(a, x) and the larger element of {t3, t5}.
•n = 6 : Since lca(t3, t5) = lca(t3, t6) = lca(t5, t6) = f(x, b), GPD outputs t6
and f(x, b). Procedure 4 outputs (f(a, x), f(x, b)).

6 Conclusions

We have seen that the notion of characteristic set and its computability play
important role to give a learning procedure of bounded unions of Noetherian
closed set systems. The existence of characteristic set has not been used to
give a concrete learning procedure. This is probably because the existence of
a characteristic set for each language is weaker condition than finite thickness
or finite elasticity. Also both finite thickness and finite elasticity are properties
concerning family of language, while the existence of a characteristic set just
depends on each language. The point of our paper is to put emphasis on a
characteristic set and to show that it is useful for certain classes of languages.
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