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Abstract. In this article we study the inference of commutative reg-
ular languages. We first show that commutative regular languages are
not inferable from positive samples, and then we study the possible im-
provement of inference from positive and negative samples. We propose a
polynomial algorithm to infer commutative regular languages from posi-
tive and negative samples, and we show, from experimental results, that
far from being a theoretical algorithm, it produces very high recognition
rates in comparison with classical inference algorithms.

1 Introduction

Regular languages are not inferable from positive samples is a well known result
from Angluin [2]. This means that only inference from positive and negative
samples is allowed. Nevertheless, the most useful algorithms for learning lan-
guages from positive and negative samples are not enough efficient to be applied
in practice when looking at the recognition rate, mainly RPNI [11,10] and red-
blue [4,9]. In [1] has been introduced the idea of trying to learn some subclasses
of regular languages from positive and negative samples with the aim of im-
proving the efficiency of the learning process, either if the considered subclass
is not inferable from positive samples, the inference of those classes from posi-
tive and negative samples can be improved. In this article we study the class of
commutative regular languages proposing a new algorithm called CRPNI and
showing experimentally that CRPNI outperforms significantly recognition rates
obtained with classical inference algorithms like red-blue and RPNI. Despite the
algorithm given in this article follows the ideas of [1], actually both algorithms
are very different in concepts and implementation.

In Section 2 we give the most important definitions about words and languages.
We define in this sections the concepts of deterministic finite automata and Moore
machine, that would be slightly modified for the commutative case in section 3.

Section 3 is devoted to the inference of regular commutative languages. First,
we prove that commutative language are not inferable from positive samples,
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and then we give an algorithm for the inference of commutative regular lan-
guages from positive and negative samples. For this algorithm, first, we modify
the definition of deterministic finite automata and Moore machine defining com-
mutative deterministic finite automata and commutative Moore machine, these
models consider the fact that languages with which we are working are com-
mutative. We also prove that any commutative language can be recognised by a
commutative deterministic finite automata. Nevertheless, the minimal determin-
istic finite automata is not equivalent to the minimal commutative deterministic
finite automata. Finally we give our algorithm CRPNI, that is inspired in the
RPNI [11] algorithm and we show its convergence in the limit.

In section 4 we analyse experimental results obtained from our implementation
of the algorithm. We study two cases |Σ| = 2 and |Σ| = 3. In both cases we can
see a great improvement of the CRPNI recognition rates with respect to two of
the most used algorithms, namely redblue and RPNI.

2 Preliminaries

In this section we give the most important concepts used in this article. For
further details about these concepts, the reader is referred to [8], [11] and [12].
In this paper we will use Moore machines in order to define the algorithm but
also other machines like unbiased finite state automata [3] or the finite state
classifiers [6] could be used. It could be interesting whether an implementation
with those machines could improve the inference process.

2.1 Formal Languages and Automata

Throughout this paper if Σ denotes a finite alphabet, Σ∗ denotes the free monoid
generated by Σ with the concatenation as the internal law and λ as the neutral
element. A language L over Σ is a subset of Σ∗ and the elements of Σ∗ are
called words. Given x ∈ Σ∗, if x = uv with u, v ∈ Σ∗, then u (resp. v) is
called prefix (resp. suffix ) of x. Given a language L ∈ Σ∗ we denote by Pre(L)
(Suf(L)) the set of prefixes (resp. suffixes) of all words in the language L. Given
a total order < on Σ we can define an order <lex on Σ∗ by setting for two words
u, v ∈ Σ∗, u <lex v if |u| < |v| or |u| = |v| and there exists x, y1, y2 ∈ Σ∗ such
that u = xay1 and xby2 with a < b. Given a word w on an alphabet Σ and
one letter a ∈ Σ, we denote by πa(w) the projection of w in a, for instance, if
w = abbcaa, then πa(w) = aaa. Given a language L we define the syntactic left
congruence as the left-congruence on Σ∗ defined as u ∼L v if and only if for any
x ∈ Σ∗, ux ∈ L ⇔ vx ∈ L.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q, Σ, δ, q0, F ) where
Q is a finite set of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q
if the set of final states and δ is a partial function that maps Q × Σ in Q, which
can be easily extended to words. A word x is accepted by an automaton A if
δ(q0, x) ∈ F . The set of words accepted by A is denoted by L(A).
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Given a language L, the minimal deterministic finite automaton of L is the
automaton A = (Q, Σ, δ, q0, F ) where Q = {[x]∼L | x ∈ Σ∗}, δ([x]∼L , y) =
[xy]∼L for any x, y ∈ Σ∗, q0 = [λ]∼L , F = {[x]∼L | x ∈ L}.

A Moore machine is a 6-tuple M = (Q, Σ, Γ, δ, q0, Φ) where Σ (resp. Γ ) is an
input (resp. output) alphabet, δ is a partial function that maps Q×Σ in Q, and
Φ is a function that maps Q in Γ called output function. The behaviour of M
is given by the function tM : Σ∗ → Γ defined as tM(x) = Φ(δ(q0, x)) for every
x ∈ Σ∗ such that δ(q0, x) is defined.

Given a Moore machine M = (Q, Σ, Γ, δ, q0, Φ) with Γ = {0, 1, ↑} we can
associate an automaton AM = (Q, Σ, δ, q0, F ) where F = {q ∈ Q | Φ(q) = 1}.

Given two finite sets of words D+ and D−, we define the (D+, D−)-prefix
tree machine (PTM(D+, D−)) as the Moore machine having Γ = {0, 1, ↑},
Q = Pre(D+ ∪ D−), q0 = λ and δ(u, a) = ua if u, ua ∈ Q and a ∈ Σ. For
every state u, the value of the output function Φ associated to u is 1, 0 and ↑
(undefined) depending whether u belongs to D+, to D− or to the complementary
set of D+ ∪ D−.

A Moore Machine M = (Q, Σ, Γ, ·, q0, Φ) is consistent with (D+, D−) if
for every x ∈ D+ we have Φ(δ(q0, x)) = 1 and for every x ∈ D− we have
Φ(δ(q0, x)) = 0.

2.2 Commutative Languages

Given two words u and v we say the they are commutatively equivalent if
u = a1a2 · · ·an with ai ∈ Σ for 1 ≤ i ≤, and there exist a permutation σ
on {1, 2, . . . , n} such that aσ(1)aσ(2) · · ·aσ(n) = v. We denote it by u ∼com v. For
instance, abca ∼com cbaa.

Given an alphabet Σ, a language L is commutative if and only if it is the
union of some ∼com-classes.

It seems to be some relation between planar languages and commutative lan-
guages [5] and their inference. An interesting work would be to compare the
inference algorithm described in [5] and the CRPNI described here.

In this article we are interested in commutative regular languages. In order
to describe the expressively of commutative regular languages we recall here a
result from [12].

Proposition 1. (Pin) For every alphabet Σ, the class of commutative languages
of Σ is the boolean algebra generated by the languages of the form K(a, r) =
u ∈ Σ∗ | |u|a = r, where r > 0 and a ∈ Σ, or L(a, k, pn) = {u ∈ Σ∗ | |u|a ≡ k
mod pn}, where 0 ≤ k < pn, p is prime, n > 0 and a ∈ Σ

Note that Proposition 1 show that the idea of inferring a language for each letter
and trying to infer the whole language from those using boolean operation is not
possible. For instance, L = {x ∈ Σ∗ | |x|a ≡ |x|b mod 2} is a commutative
language that can not be inferred in that way.

More equivalent definitions and proofs about commutative regular languages
can be found in [12] and [13].
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We now introduce the concept of commutative deterministic finite automata.
Let Σ = {a1, a2, . . . , an} be an alphabet. We define a commutative deterministic
finite automaton (CDFA) on Σ as A = (Q, Σ, δ, q0, F ), where Q = Qa1 × Qa2 ×
· · · × Qan , q0 ∈ Q, F ⊆ Q, and δ((q1, . . . , qi, . . . , qn), ai) = (q1, . . . , δai(qi, ai),
. . . , qn) where δai is a function from Qai onto Qai for 1 ≤ i ≤ n.

Let Σ = {a1, a3, . . . , an} be an alphabet and let L be a commutative lan-
guage on Σ. We define define the minimal commutative automaton of L as
A = (Q, Σ, δ, q0, F ), where Q = Qa1 × . . . × Qan being Qai =

⋃
m≤0[a

m
i ]∼L

(note that this union is finite) for 1 ≤ i ≤ n, q0 = ([λ]∼L , . . . , [λ]∼L), F =
{(πa1(x), . . . , πan(x)) | x ∈ L} and δai([am

i ]∼L , ai) = [am+1
i ]∼L for 1 ≤ i ≤ n.

Proposition 2. For any regular commutative language L, the minimal commu-
tative deterministic automaton is well defined and accepts L.

Proof. Let Σ = {a1, . . . , an} and let L be a commutative regular language. Let
A = (Q, Σ, δ, q0, F ) be the minimal commutative finite automaton L. First, let
x ∈ L, since L is commutative we have that πa1(x) πa2(x) · · · πan(x) ∈ L, then
we have, by the definition of δ that δ(q0, x) = δ(([λ]∼L , [λ]∼L , . . . , [λ]∼L), x)
= ([πa1 (x)]∼L , [πa2(x)]∼L , · · · , [πan(x)]∼L) and then by definition ([πa1(x)]∼L ,
[πa2(x)]∼L , · · · , [πan(x)]∼L) belongs to F , that is, x is accepted by A. Now, let
x be a word accepted by A, then by definition we have that δ(q0, x) = δ(([λ]∼L ,
[λ]∼L , . . . , [λ]∼L), x) = ([πa1(x)]∼L , [πa2(x)]∼L , · · · , [πan(x)]∼L) ∈ F . Now, by
the definition of F we have necessarily πa1(x)πa2 (x) · · · πan(x) ∈ L and since L
is commutative we also have x ∈ L.

Note that this proposition does not assure that the minimal automaton of a
given language L is a commutative deterministic finite automata. For instance,
for the language L = {x ∈ Σ∗ | |x|a = 0 or |x|b > 0} we have that the minimal
DFA and the minimal CDFA are not the same as shown in Figure 1.

The relationship between the size of the minimal DFA and the size of the
minimal CDFA for a given commutative regular language is a interesting question

λ a

b

λ, λ a, λ

λ, b a, b

a

b b

a

a, b

a

b b

a

a

b a, b

Fig. 1. The minimal DFA (on the left) and minimal CDFA (on the right) of the lan-
guage {x ∈ Σ∗ | |x|a = 0 or |x|b > 0}
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that would require an special study. The size of the alphabet seems to be a factor
that would increase considerably the difference between both sizes.

We can also adapt the definition of Moore machine to the commutative case.
A commutative Moore machine is a 6-tuple M = (Q, Σ, Γ, δ, q0, Φ) where Σ

(resp. Γ ) is an input (resp. output) alphabet, Q = Qa1 ×Qa2 ×· · ·×Qan , (where
all Qai for 1 ≤ i ≤ n are finite sets of states ), q0 ∈ Q, δ((q1, . . . , qi, . . . , qn), ai) =
(q1, . . . , δai(qi, ai), . . . , qn) where δai is a function from Qai onto Qai for any
1 ≤ i ≤ n and Φ is a function that maps Q in Γ called output function. The
behaviour of M is given by a partial function tM : Σ∗ → Γ defined as tM(x) =
for every x ∈ Σ∗ such that Φ(δ(q0, x)) is defined.

Given a commutative Moore machine M = (Q, Σ, Γ, δ, q0, Φ) with Γ ={0, 1, ↑}
we can associate a commutative automaton AM = (Q, Σ, δ, q0, F ) where F =
{q ∈ Q | Φ(q) = 1}.

Given two finite sets of words D+ and D− with D+ ∩ D− = ∅, we define the
(D+, D−)-commutative prefix acceptor machine (CPAM(D+, D−)) as the com-
mutative Moore machine having Γ = {0, 1, ↑}, Q = (πa1(x), πa2 (x), . . . , πan(x))
with x ∈ Pre(D+ ∪ D−), q0 = (λ, . . . , λ) and where δ((u1, . . . , ui, . . . , un), ai)
= (u1, . . . , uiai, . . . , un) if (u1, . . . , ui, . . . , un) , (u1, . . . , uiai, . . . , un) ∈ Q
and a ∈ Σ. For every state (u1, u2, . . . , un), the value of the output function Φ
associated to (u1, u2, . . . , un) is 1, 0 depending whether there exist x such that
πa1(x) = u1, πa2(x) = u2 , . . . , πan(x) = un and belonging to D+, or to D−. In
other case the value is ↑ (undefined).

A Moore machine M = (Q, Σ, Γ, δ, q0, Φ) is consistent with (D+, D−) if for
every x ∈ D+ and any y ∼com x we have Φ(δ(q0, y)) = 1 and for every x ∈ D−
and any y ∼com x we have Φ(δ(q0, y)) = 0.

3 Inference of Commutative Regular Languages

In this section we study the inference of commutative regular languages from
positive samples and from positive and negative samples.

Firstly, we show that commutative regular languages are not inferable from
positive samples, and so, no algorithm could be given for the inference.

Proposition 3. Commutative regular languages are not inferable from positive
samples.

Proof. In order to show that the family of regular commutative languages is not
inferable from positive samples, we take the family of languages F =

⋃
n≥0{ai |

i ≤ n} ∪ a∗ where all these languages are commutative, and then F also is. Now
F is superfinite, then by a standard result of [7] we conclude that the class of
commutative languages is not inferable from positive samples.

Now, since any regular language is inferable from positive and negative samples,
we describe here a new algorithm which allows us to infer faster commutative
regular languages from positive and negatives samples.
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3.1 Description of the Algorithm CRPNI

In this section we describe an inference algorithm from negative and positive
samples (see Algorithm 1) for commutative regular languages called commutative
regular positive negative inference (CRPNI).

The definition of this algorithm is quite close to the description of the RPNI
algorithm, being the main difference the sort of states we are working with.
The main differences between them resides in the definition of CPAM(D+, D−)
and PTM(D+, D−) and how the merge operation works as consequence of the
definition of the states. For instance, in algorithm 1 any couple of states (pa, qa)
belong necessarily Σa for some a ∈ Σ.

Algorithm 1. CRPNI (D+, D−)
1. M = CPAM(D+ ∪ D−)
2. Σ = alphabet(D+ ∪ D−)
3. listcomp = generateComparisonOrder(M,Σ)
4. while listcomp �= ∅ do
5. (pa, qa) = first(listComp) (with pa, qa ∈ Qa for some a ∈ Σ)
6. listcomp = listcomp\(pa, qa)
7. push(queue, (pa, qa))
8. M ′ = M ;
9. finish = false;

10. while ¬emptyset(queue) and ¬finish do
11. (pa, qa) = pop(queue)
12. if ¬merge(M,pa, qa) then
13. M = M ′

14. finish = true
15. else
16. queue = detectNoDeterminism(queue,M)
17. end if
18. end while
19. end while
20. Return M

The algorithm 1 considers all couples of elements in the order given by subrou-
tine generateComparisonOrder, that is, considering the pairs in ascending order
on the numerical consecutive and one different symbol each time; except possibly
at the end if just one symbol remains with pairs unprocessed. Once a couple is
chosen, the algorithm saves a copy of the current machine M and tries to merge
these elements into the states of the machine. Subroutine merge(M, pa, qa) (with
pa, qa ∈ Qa for some a ∈ Σ) merges pa, qa in Qa and consequently any two states
(p1, . . . , pa, . . . , pn) and (q1, . . . , qa, . . . , qn) in Q. If the merge is successful, M
changes and subroutine detectNoDeterminism looks for couples of elements that
should be merged in order to maintain determinism, these new pairs are added
to the queue. Merges continue until queue becomes empty, but if any merge
fails, the complete chain of merges is undone. When all the pairs are considered
algorithm finishes and the automaton associated with M is the answer proposed.
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Fig. 2. PTM(D+ ∪ D−) with Φ(λ) =↑, Φ(a) = 1 and Φ(b) = 0 (on the left), and the
resulting automaton from the RPNI algorithm for D+ = {a} and D− = {b} (on the
right)

λ, λ

a, λ

λ, b

a, b λ, λ λ, b
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b
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a a

Fig. 3. CPAM(D+ ∪ D−) with Φ(λ, λ) =↑, Φ(a, λ) = 1, Φ(λ, b) = 0 and Φ(a, b) =↑,
(on the left) and the resulting automaton from the CRPNI algorithm for D+ = {a}
and D− = {b} (on the right)

Note that the order for merging states plays a crucial role in the algorithm. In
our case, the order is always we compare any state with its predecessor by <lex

and anyone of this elements one by one, in other words, if we have Σ = {a, b},
the merging order would be aa with a, bb with b, aaa with a, . . .

Example 3.1. We show in Figures 2 and 3 , CPAM(D+ ∪D−), PTM(D+∪D−)
and the final result of the algorithms RPNI and CRPNI when we use them with
samples D+ = a and D− = b.

3.2 Convergence of CRPNI

Let Σ = {a1, a3, . . . , an} be an alphabet, let L be a commutative language on
Σ, and A = (Q, Σ, δ, q0, F ) the minimal commutative automaton of L.

Now, in order to show that the algorithm converges, it suffices to give a
characteristic sample for the inference algorithm, and show than for it CRPNI
algorithm infer the minimal deterministic automaton.

For the definition of the characteristic sample we define for 1 ≤ i ≤ n and
qai ∈ Qai , the index I(qai) ≥ 0 such that [aI(qai )

i ]∼L = qai and for any j ≤ 0
with [aj ]∼L = qa1 , I(qai) ≤ j.

We define the characteristic sample D = D+ ∪ D− as a sample satisfying the
following condition:
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1. for 1 ≤ i ≤ n, for any, qai
1 , qai

2 ∈ Qa1 with qai
1 �= qai

2 , there exists x ∈ D+ and
x ∈ D− (or x ∈ D− and x ∈ D+) such that πai(x) ≥ I(qai

1 ), πai(y) ≥ I(qai
2 ),

|πai(x)| − I(qai
1 ) = |πai(y)| − I(qai

2 ) and for any 1 ≤ j ≤ n with i �= j,
πaj (x) = πaj (y).

2. for 1 ≤ i ≤ n, for any, qai
1 , qai

2 ∈ Qa1 such that qai
2 �= δ(qai

1 , ai), there exists
x ∈ D+ and y ∈ D− (or x ∈ D− and y ∈ D+) such that πai(x) ≥ I(qai

1 ),
πai(y) ≥ I(qai

2 ), |πai(x)| − (I(qai
1 ) + 1) = |πai(y)| − I(qai

2 ) and for any 1 ≤
j ≤ n with i �= j, πaj (x) = πaj (y).

3. for any (qa1 , . . . , qan) ∈ F there exists x ∈ D+ such that (qa1 , . . . , qan) =
([πa1(x)]∼L , . . . , [πan(x)]∼L).

Proposition 4. CRPNI converges for the characteristic sample.

Proof. Let again Σ = {a1, a3, . . . , an} be an alphabet, let L be a commutative lan-
guage on Σ, and A = (Q, Σ, δ, q0, F ) the minimal commutative automaton of L.

In order to show that the algorithm converges we show that the automaton we
build at any moment is a subautomaton of the minimal commutative automaton.
As the automaton that we are building is determined by Qai and δai for 1 ≤ i ≤ n
and F ⊆ Qa1 × . . . × Qan , it suffices to see that these elements are as the
ones of the minimal commutative automaton in the part already learnt. We
denote by M = (Q′, Σ, Γ, δ′, q′0, Φ) the Moore machine that initially will be
equal to CPAM(D+ ∪ D−) = (Q′′, Σ, Γ, δ′′, q′′0 , Φ′) and on which we will apply
the algorithm. For any l ≥ 0 and 1 ≤ i ≤ n such that al ∈ Q′′ we will denote by
[al]M the state of Q′ corresponding to all the states merged with al in M .

For 1 ≤ i ≤ n, we will denote by Kai ⊆ Qa1 (Kernel of ai) to the set of states
that have compared with all precedent states, and for Bai ⊆ Qa1 (Border of ai)
we will denote the set {qai ∈ Qai | there exists qai

2 such that δai(q
ai

2 , ai) = qai

and qai
2 ∈ K}.

Now, it suffices to show that states and transition in Kai belong to the mini-
mal commutative automaton, and that the final states of the learnt automaton
corresponds with the states of A.

For the states, let [aj
i ]M , [ak

i ]M ∈ Kai choosing j and k in such a way that
I([aj

i ]∼L) = j and I([ak
i ]∼L) = k with [aj

i ]∼L �= [ak
i ]∼L , then by condition 1 of

the definition of the characteristic sample there exists x ∈ D+ and y ∈ D− (or
x ∈ D− and y ∈ D+) such that δ(([λ]M , . . . , [λ]M ), x) = ([am1

1 ]M , . . . , [aj
ia

mi

i ]M ,
. . . , [amn

n ]M ), δ(([λ]M , . . . , [λ]M ), y) = ([am1
1 ]M , . . . , [ak

i ami

i ]M , . . . , [amn
n ]M ) and

then necessarily merge(M, [aj
i ]M , [ak

i ]K) fails. So, by the order of merging we
have that all states in Kai are equivalent to some state of A.

For the transition, let [aj
i ]M , [ak

i ]M ∈ Kai choosing j and k in such a way that
I([aj

i ]∼L) = j and I([ak
i ]∼L) = k with [ak

i ]∼L �= δ([aj
i ]∼L , ai), then by condition

2 of the definition of the characteristic sample there exists x ∈ D+ and y ∈ D−
(or x ∈ D+ and y ∈ D−) such that δ(([λ]M , . . . , [λ]M ), x) = ([am1

1 ]M , . . . ,

[aj
ia

mi

i ]M , . . . , [amn
n ]M ), and δ(([λ]M , . . . , [λ]M ), y) = ([am1

1 ]M , . . . , [ak
i ami

i ]M , . . .,

[amn
n ]M ) and then necessarily merge(M, [aj

i ]M , [ak
i ]K) fails. Again by the order

of merging we have that all transitions in Kai are equivalent transition of A.
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Finally, since all states and transition in K forms a subautomaton of A, it suf-
fices to see that at the end of the algorithm by condition 3 of the definition of
the characteristic sample we have that for any (qa1 , . . . , qan) ∈ F there exists
x ∈ D+ such that for (π1(x), . . . , πn(x)) = ([qa1 ]M , . . . , [qan ]M ) which is equiva-
lent to ([qa1 ]∼L , . . . , [qan ]]∼L) with Φ([qa1 ]M , . . . , [qan ]M ) = 1 and then the algo-
rithm identifies correctly F .

4 Experimental Results

The aim of this experimentation is to evaluate the performance of the CRPNI
algorithm strategy with respect to classical inference methods such as redblue
and RPNI when they are applied to the learning of regular commutative lan-
guages. We do not do an experiment of learning regular languages in general
because CRPNI-algorithm is not able to learn general regular languages, and
even the samples could be inconsistent, i.e. D+ = {ab} and D− = {ba} is an
inconsistent sample, and in those cases the algorithms should not work. The
criteria of comparison are the recognition rate on test samples and the average
size of the hypothesis generated, the size of a model is its number of states.

The target languages are generated randomly, taking care of guarantee their
complete commutativity between the symbols. The generation strategy consists
on choose random transitions from each state previously generated and with
each symbol. To control the difficulty degree of target languages is possible to
change the number of different states available to build the target automaton.
The experimentation consists of target languages on 2 and 3 symbols alphabet.

The corpus consist of several incremental sets of different samples, tagged for
each target language. The size of the training set varies from 10 samples to 500
samples. The test set consists of 1000 samples different from training ones.

Table 1 shows the results of the first experiment. In this case, three algorithms
are compared: RPNI, redblue and CRPNI. For each one were trained 200 regular
commutative regular target languages which states number range between 4 and
30 states, their average size is 11.52 states. The corpus contains incremental
training sets of 10, 20, 30, 40, 50, 100, 200, 300, 400 and 500 samples. The
identification of each experiment shows the size of the training set, the percentage
presented for each algorithm is the average of the recognition rate on the test
set for the 200 target languages.

With respect to the size of the hypothesis proposed by the algorithms, Table
2 shows the behaviour of the three algorithms. The average of the states number
for each of the 200 languages learned is presented.

The results on Table 1 and Table 2 shows a notorious improvement in recog-
nition rate using the CRPNI with respect to the reference algorithms RPNI and
redblue. With 100 training samples the new algorithm reaches more than 99%
of accuracy and the size of its hypothesis is like the competitors or even smaller.

Table 3 shows the results of the second experiment, which trains bigger com-
mutative regular target languages with two symbols alphabet. The states number
of the target languages varies between 4 and 60 states, the average size is 57.46
states. Three algorithms are compared: RPNI, redblue and our proposal. The
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Table 1. Recognition rates of RPNI, redblue and new algorithm in the first experiment

id RPNI redblue CRPNI
t10 69.74% 67.77% 83.74%
t20 75.00% 70.22% 90.43%
t30 78.18% 75.36% 93.30%
t40 79.62% 77.60% 95.75%
t50 82.20% 80.30% 98.12%
100 87.71% 86.46% 99.69%
t200 91.49% 91.25% 99.89%
t300 94.38% 93.66% 99.95%
t400 95.23% 94.74% 99.96%
t500 95.70% 96.07% 99.97%

Table 2. Average states number of RPNI, redblue and new algorithm in first experi-
ment

id RPNI redblue CRPNI
t10 4.09 4.20 4.25
t20 5.65 5.97 6.59
t30 6.65 6.99 8.70
t40 7.69 7.85 9.53
t50 8.25 8.19 9.83
t100 10.21 9.87 10.34
t200 12.58 11.78 10.48
t300 12.69 12.61 10.55
t400 13.55 13.36 10.57
t500 14.79 13.52 10.58

Table 3. Recognition rates of RPNI, redblue and new algorithm in second experiment

id RPNI redblue CRPNI
t10 70.88% 70.92% 78.55%
t50 71.73% 71.12% 90.73%
t100 73.09% 72.99% 96.72%
t200 74.19% 74.64% 99.01%
t300 75.94% 76.48% 99.52%
t400 78.30% 78.96% 99.72%
t500 80.23% 81.05% 99.78%

corpus contains incremental training sets of 10, 50, 100, 200, 300, 400 and 500
samples. The identification of each experiment shows the size of the training set,
the percentage presented for each algorithm is the average of the recognition
rate on the test set for the 200 target languages.

With respect to the size of the hypothesis proposed by the algorithms, Table
4 shows the behaviour of the three algorithms. The average of the states number
for each of the 200 languages learned is presented.
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Table 4. Average states number of RPNI, redblue and new algorithm in third experi-
ment

id RPNI redblue CRPNI
t10 4.12 4.16 5.59
t50 11.16 11.15 29.51
t100 17.35 16.56 40.7
t200 28.10 26.51 47.05
t300 37.26 34.21 49.15
t400 43.90 40.08 50.03
t500 50.14 45.11 50.45

Table 5. Recognition rates of RPNI and new algorithm in third experiment

id RPNI CRPNI
t10 52.38% 61.67%
t20 52.41% 69.29%
t30 52.85% 77.18%
t40 52.28% 82.96%
t50 52.97% 87.32%
t100 54.06% 96.38%
t200 57.58% 98.84%
t300 58.87% 99.48%
t400 59.80% 99.66%
t500 60.86% 99.77%

Second experiment shows, again, a clear superiority of CRPNI with respect to
the reference ones, almost 20 points are the quantitative difference between them
in recognition rate. Beside, the size of the hypothesis proposed becomes smaller
than those of the reference algorithms as the size of the training set grows.

Table 5 shows the results of the third experiment. In this case, a three symbols
alphabet is used. Two algorithms are compared: RPNI and our proposal; redBlue
is not reported because previous experiments showed similar behaviour between
RPNI and redblue. We trained 200 regular commutative regular target languages
which states number range between 6 and 90 states, the average size is 35.23
states. The corpus contains incremental training sets of 10, 20, 30, 40, 50, 100,
200, 300, 400 and 500 samples. The identification of each experiment shows the
size of the training set, the percentage presented for each algorithm is the average
of the recognition rate on the test set for the 200 target languages.

With respect to the size of the hypothesis proposed by the algorithms, Table
6 shows the behaviour of the algorithms. The average of the states number for
each of the 200 languages learned is presented.

In the third experiment the reference algorithm gets stick on a recognition
rate of 60% while CRPNI reaches a recognition rate higher than 99% with 300
training samples. The size of the hypothesis of the new algorithm stabilises from
50 training samples on while RPNI ones grows until the last training set.
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Table 6. Average states number of RPNI and new algorithm in third experiment

id RPNI CRPNI
t10 4.60 8.09
t20 6.56 17.47
t30 8.31 26.24
t40 9.98 33.01
t50 11.41 36.14
t100 18.24 35.37
t200 28.57 35.69
t300 37.99 34.51
t400 46.11 34.58
t500 54.29 34.62

Comparing results with |Σ| = 2 and |Σ| = 3 it is noticeable the increase in
performance of CRPNI as soon as alphabet size grows. These results lead us to
think that CRPNI could behave even better with bigger alphabets.

Although this experiments are suitable to be improved to make them even
harder, this preliminary test is very promising about the utility of this new
algorithm for the inference of commutative regular languages, not only because
of the excellent recognition rates achieved but also because of the reasonable size
of the hypothesis obtained.

5 Conclusions

In this work we study the problem of inferring the class of regular commutative
languages. After showing that they are not inferable from positive data we show
that some improvement in its inferring from positive and negative samples can
be done. For this purpose we give the CRPNI (commutative regular positive
negative inference) algorithm. These properties lead us to define commutative
deterministic automata and commutative Moore machines for the algorithm.
Finally, by an experimentation we also show that CRPNI algorithm has an
excellent behaviour in practice. This shows that this kind of works can be useful
for real problems.
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