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Abstract. Recently, an algorithm - DEES- was proposed for learning
rational stochastic tree languages. Given a sample of trees independently
and identically drawn according to a distribution defined by a rational
stochastic language, DEES outputs a linear representation of a rational
series which converges to the target. DEES can then be used to iden-
tify in the limit with probability one rational stochastic tree languages.
However, when DEES deals with finite samples, it often outputs a ra-
tional tree series which does not define a stochastic language. Moreover,
the linear representation can not be directly used as a generative model.
In this paper, we show that any representation of a rational stochastic
tree language can be transformed in a reduced normalised representation
that can be used to generate trees from the underlying distribution. We
also study some properties of consistency for rational stochastic tree lan-
guages and discuss their implication for the inference. We finally consider
the applicability of DEES to trees built over an unranked alphabet.

1 Introduction

In this paper, we consider the problem of learning probability distribution over
trees from a sample of trees independently and identically distributed (i.i.d.),
in a given class of models. In this context, the learning process has two main
objectives: Finding the correct structure of the representation and estimating
precisely the parameters of the model. Because we adopt a machine learning
standpoint, we restrict ourselves to classes of probabilistic languages that can
be somehow finitely presented. Probabilistic tree automata (pta) are a usual
representations for rational stochastic tree languages (rstl). In a pta, each rule
is equipped with a weight in [0, 1] and a per state normalisation is imposed.
Nonetheless, a first drawback is that it may be not decidable to know whether
a pta is consistent i.e. whether it represents a probability distribution on trees.
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One difficulty comes from the fact that a rstl may be such that the average
size of trees may be undefined. A second drawback of pta is that they admit no
canonical representation. Thus, most of learning algorithms approaches based
on grammatical inference fail for the class of pta.

Recent approaches have proposed to work in a larger class of representation:
The class of rational stochastic tree languages that can be represented under a
linear form of a tree series. The models of this class can be equivalently repre-
senting by weighted tree automata with parameters in R (hence with weights
that can be negative and without any per state normalisation condition). This
class has two interesting properties: It has a high level of expressiveness since it
strictly includes the class of rstl and it admits a canonical form with a mini-
mal number of parameters. Based on these properties, linear representations of
rstl are a good candidate from a grammatical inference standpoint. A recent
algorithm, DEES, able to identify in the limit with probability one the class
of rational stochastic tree languages rstl was proposed in [1]. However, this
algorithm has two main drawbacks when working with finite samples. It often
outputs a rational tree series that does not define a stochastic language, and
the representation of the series can not be directly used as a generative model.
This comes from the fact that the canonical representation is more adapted for
finding the structure of the model and estimating the parameters. We do not ob-
tain a representation of a probability distribution that factorises into a product
of probabilities associated with each state. When we need a generative model,
we claim that we have to use another representation. Our first contribution is
to show that any canonical representation of a rational stochastic tree language
admits a normalised reduced representation of the same size which can be easily
used in a generative process. Then, we examine some conditions of consistency
for rational stochastic languages. Indeed, as for probabilistic context-free gram-
mars [2,3], the consistency can not be ensured only with syntactical properties.
We discuss then the influence of these conditions to the problem of inferring
rational stochastic tree languages. We finish by studying the applicability of our
approach to trees that are built from an unranked alphabet. Actually, a bijection
can be made between the unranked representation and a ranked one, allowing
us to apply our algorithm to the unranked case.

The paper is organized as follows. Definitions and notations are presented in
Section 2. Section 3 deals with the normalised reduced representation of rational
stochastic tree language. The consistency conditions are evoked in Section 4.
The paper terminates by Section 5 on unranked trees.

2 Preliminaries

In this section, we recall definitions of trees, (rational) tree series, weighted
automata and (rational) stochastic tree languages. We mainly follow notations
and definitions from [4] about trees and tree automata. Formal power tree series
have been introduced in [5] where the main results appear.
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Trees and Contexts. Let F = F0 ∪ F1 ∪ · · · ∪ Fp be a ranked alphabet where
the elements in Fm are the function symbols of rank m. Let X be a countable set
of variables. The set T (F , X ) is the smallest set satisfying: F0 ∪ X ⊆ T (F , X ),
for f ∈ Fm, m ≥ 1, and t1, . . . , tm ∈ T (F , X ), f(t1, . . . , tm) ∈ T (F , X ).

We call trees, elements in T (F , ∅) = T (F). For any tree t, let us denote by
|t|f the number of occurrences of the symbol f ∈ F in t and by |t|, the size∑

f∈F |t|f of t. The height of a tree t is defined by: height(t) = 0 if t ∈ F0 and
height(t) = 1 + max{height(ti)|i = 1..m} if t = f(t1, . . . , tm). We suppose given
a total order ≤ on T (F) which satisfies height(t) < height(s) ⇒ t < s.

Contexts are elements c of Cn(F) ⊂ T (F , X ) where n distinct variables
$1, . . . $n appears exactly once in c. Let c be a context in Cn(F) and t1, . . . , tn
be trees. In the following, the notation c[$1 ← t1, . . . , $n ← tn] or simply
c[t1, . . . , tm] represents the tree that results from substituting the $i’s by the
ti’s in c. C1(F) is simply denoted by C(F). We say that a set A is prefixial
whenever for any c ∈ C(F) and any t ∈ T (F), c[t] ∈ A ⇒ t ∈ A.

Formal Power Tree Series. A (formal power) tree series on T (F) is a mapping
r : T (F) → R. The vector space of all tree series on T (F) is denoted by K〈〈F〉〉.

Let V be a finite dimensional vector space overR. We denote by L(V p; V ) the set
of p-linear mappings from V p to V . Let L = ∪p≥0L(V p; V ). We denote by V ∗ the
dual space of V , i.e. the vector space composed of all the linear forms defined on V .

A linear representation of T (F) is a couple (V, μ), where V is a finite dimen-
sional vector space over R, and where μ : F → L maps Fp into L(V p; V ) for
each p ≥ 0. Thus for each f ∈ Fp, μ(f) : V p → V is p-linear. Function μ extends
uniquely to a morphism μ : T (F)→V by: μ(f(t1, . . . , tp))=μ(f)(μ(t1), . . . , μ(tp)).
Let VT (F) be the vector subspace of V spanned by μ(T (F)): (VT (F), μ) is a linear
representation of T (F).

Let r be a tree series over T (F), r is said to be recognizable if there exists a
triple (V, μ, λ), where (V, μ) is a linear representation of T (F), and λ : V → R

is a linear form, such that r(t) = λ(μ(t)) for all t in T (F). The triple (V, μ, λ) is
called a linear representation for r.

It has been shown in [6] that the notions of recognizable tree series and rational
tree series (i.e. tree series characterized by rational tree expressions) coincide.
From now on, we shall refer to them by using the term of rational tree series.

Definition 1. A stochastic tree language over T (F) is a tree series r ∈ R〈〈F〉〉
such that for any t ∈ T (F), 0 ≤ r(t) ≤ 1 and

∑

t∈T (F)
r(t) = 1. Let p be a stochastic

language, let c ∈ C(F) be such that there exists a tree t such that p(c[t]) �= 0.
We define the stochastic language c−1p by c−1p(t) = p(c[t])∑

t′∈T (F)
p(c[t′]) .

A rational stochastic tree language (rstl) is a stochastic tree language which
admits a linear representation. The set of rational stochastic tree languages is
denoted by Srat(F).
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Weighted Tree Automata. A weighted tree automaton1(wta) over F is a
tuple A = (Q, F , τ, δ) where Q is a set of states, τ is a mapping from Q to R and
δ is a mapping from ∪m≥0Fm ×Qm ×Q to R. The mapping δ can be interpreted
as a set Δ of rules which can be written in a bottom-up or a top-down way:

f(q1, . . . , qm) w→ q ∈ Δ(or q
w→ f(q1, . . . , qm) ∈ Δ) iff δ(f, q1, . . . , qm, q) =

w ∧ w �= 0.
The weight w of a rule r is denoted by w(r). For any q ∈ Q, we denote

by Δq the subset of δ composed of the (top-down) rules whose lhs is q and
by Δf,q the subset of Δq composed of rules containing the symbol f ∈ F in
the rhs. A series rq can be associated with any state q by: rq(f(t1, . . . , tn)) =∑

r∈Δq
w(r)

∏n
i=1 rqi(ti). Then the wta A computes the series r defined by:

r(t) =
∑

q∈Q τ(q)rq(t).
wta and linear representations are two equivalent ways to represent rational

series. For example, let (V, μ, λ) be a linear representation of the tree series r ∈
R〈〈F〉〉 and let B = {e1, . . . , en} be a basis of V . A wta A = (Q, F , λ, δ) can be
associated with (V, μ, λ, B) where Q = {e1, . . . , en}, and δ(f, ei1 , . . . , eim , ej) =
wj for any f ∈ Fm where μ(f)(ei1 , . . . , eim) =

∑
j wjej . Conversely, an equiva-

lent linear representation can be associated with any weighted tree automaton
(see Example 1 below).

Note here that a probabilistic tree automaton (pta) is a specific case of wta
A = (Q, F , τ, δ) satisfying the following conditions: (i) δ and τ take their values
in [0, 1], (ii)

∑
q∈Q τ(q) = 1, (iii) for any q ∈ Q,

∑
r∈Δq

w(r) = 1.
It can be shown that any pta computes a rational tree series r that satisfies

r(t) ≥ 0 for any tree t and
∑

t r(t) ≤ 1.
It can be shown that there exist rational stochastic tree languages that cannot

be computed by any probabilistic automaton (see [7] for an example in the case
of word stochastic languages).

Example 1. A wta representing a rational stochastic tree language. Let A =
(Q, F , τ, δ) be the wta defined by Q = {q1, q2}, F = {a, f(·, ·)}, τ(q1) =

2, τ(q2) = −1 and Δ = {q1
2/3→ a, q1

1/3→ f(q1, q1), q2
3/4→ a, q2

1/4→ f(q2, q2)}.
pq1 and pq2 are rstl, that the series p = 2pq1 − pq2 computed by A takes

only positive values. And since
∑

t p(t) = 1, p is an rstl. It admits the following
linear representation: (R2, μ, λ) where e1 = (1, 0) and e2 = (0, 1) is a basis of R

2,
λ(e1) = 2, λ(e2) = −1, μ(a) = 2e1/3 + 3e2/4, μ(f)(e1, e1) = e1/3, μ(f)(e2, e2) =
e2/4 and μ(f)(ei, ej) = 0 if i �= j.

2.1 Canonical Linear Representation of Rational Tree Series

We now define the canonical representation of a rational tree series.
Let c ∈ C(F). We define the linear mapping ċ : R〈〈F〉〉 → R〈〈F〉〉 by

ċ(r)(t) = r(c[t]) .

1 These automata are also referred to as multiplicity tree automata in the literature.
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Let r ∈ R〈〈F〉〉. Let us denote by Wr the vector subspace of R〈〈F〉〉 spanned
by {ċr|c ∈ C(F)}. It can be shown that r is rational if and only if the dimension
of Wr is finite [1]. Let W ∗

r be the dual space of Wr, i.e. the set of all linear forms
on Wr. For any t ∈ T (F), let t ∈ W ∗

r be defined by: ∀s ∈ Wr, t(s) = s(t). It can
be shown that there exist trees t1, . . . , tn such that {t1, . . . , tn} forms a basis of
W ∗

r . Let us define the linear representation (W ∗
r , μ, λ) as follows:

• for any f ∈ Fm, define μ(f)(ti1 , . . . , tim) = f(ti1 , . . . , tim).
• λ ∈ (W ∗

r )∗ = Wr by λ(t) = r(t).

Theorem 1. [1] (W ∗
r , ν, τ) is a linear representation of r which is called the

canonical linear representation of r. It can be embedded in any linear represen-
tation of r; in particular, its dimension is minimal.

Example 2. Consider the rational stochastic tree language p defined in Exam-
ple 1. It can easily be shown that p1(t) = 2|t|f +1

32|t|f +1 , p2(t) = 3|t|f +1

42|t|f +1 and p(t) =
25|t|f +4−33|t|f +2

32|t|f +1×42|t|f +1 . Thus, for any context c and any tree t:

t(ċp) = p(c[t]) =
25|t|f+5|c|f+4 − 33|t|f+3|c|f+2

32|t|f+2|c|f+1 × 42|t|f+2|c|f+1 .

Since p has a 2-dimensional linear representation, the dimension of W ∗
r is ≤ 2.

Let c0 = $ and c1 = f(a, $), we have:

a(ċ0p) =
7

3 × 22 , a(ċ1p) = f(a, a)(c0) =
269

33 × 26 , and f(a, a)(ċ1p) =
9823

35 × 210 .

Since a(ċ0p) × f(a, a)(ċ1p) �= a(ċ1p) × f(a, a)(ċ0p), a and f(a, a) are linearly
independent. Then, {a, f(a, a)} is a basis of W ∗

r . We define λ and μ by:

λ(a) = p(a) = 7
3×22 and λ(f(a, a)) = p(f(a, a)) = 269

33×26 and
μ(a) = a, μ(f)(a, a) = f(a, a),

μ(f)(a, f(a, a)) = μ(f)(f(a, a), a) = −54
24×34 a + 59

24×32 f(a, a),
μ(f)(f(a, a), f(a, a)) = −3186

28×36 a + 2617
28×34 f(a, a).

We can justify here why the canonical form of a stochastic language p may not
be relevant for generating trees according to p. Indeed, one can remark here that
μ(f(a, f(a, a))) = μ(f)(a, f(a, a)) = −54

24×34 a + 59
24×32 f(a, a). Thus, if we consider

the weights of trees according to a, f(a, f(a, a)) has a negative weight and then
a does not define by itself a stochastic language. As a consequence, the canonical
form does not have a relevant structure if one aims at using it according to a
generative model.

2.2 DEES

DEES is an inference algorithm which identifies any rational stochastic language
in the limit with probability one (see [1]). Let us show how DEES works on the
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previous example. Let S be a sample of trees independently drawn according to p
and let pS be the empirical distribution defined on T (F): pS(t) is the frequency
of t in S. For any confidence parameter δ, there exists ε > 0 such that with
probability at least 1− δ, |p(t)− pS(t)| ≤ ε for any tree t. Statistical tests, based
on this property, are used to accept or reject hypotheses of the form: t is a linear
combination of t1, . . . , tn. Parameters ε and δ can be chosen, depending on the
size of the sample S, such that with probability one, the correct hypothesis will
always be chosen from some sample size.

In order to find the basis of the canonical representation, the algorithm first
tests whether a and f(a, a) are linearly independent. With probability one, this
will be detected from some step: a and f(a, a) are elements of the canonical
basis. Then, the algorithm tests whether f(a, f(a, a)) is a linear combination of
a and f(a, a). As this is true, this will be detected with probability one from
some step. Therefore, f(a, f(a, a)) will not be added to the basis. And so on.
The algorithm terminates when it has checked that no more elements can be
added to the basis.

It can be proved that with probability one, there exists an integer N such
that for any sample S containing more than N examples, a basis of W ∗

p will
be identified from S. DEES will compute a linear representation (W ∗

p , μS , λS),
such that μS and λS converge respectively to μ and λ when S tends to infinity.

Hence, DEES identifies in the limit the canonical linear representation of any
rational tree stochastic language with probability one. However:

– Given the canonical linear representation of a stochastic language p does not
help to generate trees according to p.

– Moreover, the series output by DEES from some sample S can be not a
stochastic language. The possibility to transform it in a stochastic language
is then an important issue.

– The series output by DEES converges to the target p as the size of S in-
creases, but what is the rate of convergence?

We propose to address of all of these questions in the present paper.

3 Normalised Linear Representation for Rational
Stochastic Tree Languages

3.1 Normalised Representation

Let r be a rational stochastic tree language represented by a WTA (Q, F , τ, δ).
Tree series rq associated with each state in Q may not be stochastic tree lan-
guages. This is illustrated by Example 2. Trivially, the same remark can be made
for the equivalent linear representation of tree series, considering the series as-
sociated with every basis vector. However, as stated by the following theorem,
there exist equivalent representations, called normalised, where each tree series
associated with basis vectors are indeed stochastic tree languages.

Let δij be Kronecker symbols, δij = 1 if i = j and 0 otherwise.
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Theorem 2. Let p be an rstl over T (F) and let (W ∗
p , μ, λ) be the canonical

linear representation of p. Then, W ∗
p admits a basis B = {e1, . . . , en} such that

each series pi defined by (V, μ, λi) where λi(ej) = δij is stochastic.

Proof. Let c1, . . . , cn ∈ C(F) such that {c−1
1 p, . . . , c−1

n p} is a basis of Wp. Let
{�1, . . . , �n} be a basis of W ∗

p such that �i(c−1
j p) = δij for 1 ≤ i, j ≤ n.

We show below that {�1, . . . , �n} is a normalised basis of W ∗. Let λ1, . . . , λn

be the linear forms defined on W ∗ by λi(�j) = δij . Let us show that for any
t ∈ T (F) and any 1 ≤ i ≤ n, λi(μ(t)) = c−1

i p(t).

Let {t1, . . . , tn} be a basis of W ∗
p and let ti =

n∑

j=1
γj

i �j for any 1 ≤ i ≤ n. We

have:

ti(c−1
j p) =

n∑

k=1

γk
i �k(c−1

j p) =
n∑

k=1

γk
i δkj = γj

i . (1)

Let t ∈ T (F) and t =
n∑

i=1
βiti, then:

t =
n∑

i=1

⎛

⎝βi

n∑

j=1

γj
i �j

⎞

⎠ =
n∑

j=1

(
n∑

i=1

βiγ
j
i

)

�j . (2)

Because (W ∗
p , μ, λ) is the canonical representation of p, we have μ(t) = t by

definition. Hence,

λj(μ(t)) = λj(t)
(2)
=

n∑

i=1

βiγ
j
i

(1)
=

n∑

i=1

βiti(c−1
j p)

= t(c−1
j p) since t =

n∑

i=1

βiti

= c−1
j p(t).

Hence, (W ∗
p , μ, λi) represents a stochastic language for 1 ≤ i ≤ n. ��

Definition 2. Let A = (Q, F , τ, δ) be a wta. We say that A is in normalised
form if and only if (i)

∑
q∈Q τ(q) = 1, (ii) for any q ∈ Q,

∑
r∈Δq

w(r) = 1 and
(iii) for any q ∈ Q and any f ∈ F ,

∑
r∈Δq

w(r) ∈ [0, 1]. Moreover, we say that
A is in reduced normalised form if the series rq are linearly independent.

Any rational stochastic tree language can be represented by a normalised reduced
wta A = (Q, F , τ, δ) such that each rq defines a stochastic language. Note also
that any pta is in normalised form (but not necessarily in reduced normalised
form).

Example 3. Let us consider the rational stochastic tree language p presented
in the previous examples, we show how to compute a normalised wta that
computes it. Let c0 = $, c1 = f($, a) and let s0 = α0a+β0f(a, a) and s1 = α1a+
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β1f(a, a) where si(c−1
j p) = δij . Remarking that

∑
t ċ0p(t) = 1 and

∑
t ċ1p(t) =∑

t p(f(t, a)) = 2
∑

t p1(f(t, a)) −
∑

t p2(f(t, a)) = 37/144 one can check that
α0 = −9823

300 , α1 = 3228
25 , β0 = 9953

300 and β1 = −3108
25 .

Now, by expressing, a and f(a, a) in the basis s0, s1, we get the following set
of rules:

s0
7/12−→ a,

s0
−269/50−→ f(s0, s0),

s0
259/50−→ f(s0, s1),

s0
259/50−→ f(s1, s0),

s0
−1369/300−→ f(s1, s1),

s1
269/444−→ a,

s1
−3024/925−→ f(s0, s0),

s1
2664/925−→ f(s0, s1),

s1
2664/925−→ f(s1, s0),

s1
−23273/11100−→ f(s1, s1).

Let λ(s0) = 1 and λ(s1) = 0. It is easy to verify that this representation is in
normalised form.

3.2 A Generation Process

A generation process of trees can be done using normalized wta as given in
Algorithm 1. Each tree is built top-down. The process is different from the clas-
sical approach with pta since instead of drawing a transition rule to apply at
each step, we rather draw a symbol according to the distributions of the symbols
defined by the rules.

Comments of the steps numbered by (1), (2), (3) and (4) in Algorithm 1:

(1) Δgen contains n rules of the form qt
wi→ c[qi

1, . . . , q
i
m] where c is a linear

context over m variables and where 1 ≤ i ≤ n.
(2) It can be proved that

∑
f∈F αc

f,j = 1 for any 1 ≤ j ≤ m.
(3) The numbers αc

f,j define a probability distribution over Fj.
(4) There exists a unique tree t such that all the rules of Δgen are of the form

qt
wi→ t; t is the output of the algorithm.

4 Learning Rational Stochastic Tree Languages

We consider the question of learning a rational stochastic tree language (rstl)
p from an i.i.d. sample of trees drawn according to p. An rstl can be such that
the average size of trees generated from p is unbounded, i.e.

∑
t p(t)|t| = ∞.

For example, this is the case for the rstl defined by the pta whose rules are:

{q
1/2→ a, q

1/2→ f(q, q)}. To our knowledge, it is still unknown whether a pta
defines a rstl and it is much better to deal with the stronger notion of strongly
consistent stochastic language: A rstl p is strongly consistent if

∑
t |t|p(t) < ∞.

Next section investigates some properties of strongly consistent rstl.
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Data : An wta A = (Q, F , τ, δ) in normalised form
Result : A tree t ∈ T (F)
begin

Let qt be a new state ;
Let Δgen = {qt

τ(q)→ q|q ∈ Q} (1);
while the rhs of some rule of Δgen contains states do

Let m be the number of rules in Δgen and n be the number of states
in each the rules;
for 1 ≤ j ≤ m do

for any f ∈ F , let αc
f,j =

n∑

i=1
wi

∑
r∈Δ

qi
j

,f
w(r) (2);

draw randomly fj ∈ F according to αc
f,j (3);

let nj be the rank of fj ;
let c′ = c(f1($1

1, . . . , $
n1
1 ), . . . , fm($1

m, . . . , $nm
m )) a linear context;

in Δgen, replace each rule qt
wi→ c[qi

1, . . . , q
i
m] by the rules

qt

wiwr1 ...wrm−→ c[f1(q1
r1 , . . . , qn1

r1 ), . . . , fm(q1
rm

, . . . , qnm
rm

)] ;

where rj : qj

wrj→ fj(q1
rj

, . . . , qn1
rj

) ∈ Δqi
j ,fj

, 1 ≤ j ≤ m, 1 ≤ i ≤ n;

Outputs the tree of Δgen (4);
end

Algorithm 1. Drawing a tree according to a rstl

4.1 Strongly Consistent Rational Stochastic Languages

Let A = (Q = {q1, . . . , qn}, F , τ, δ) be a wta and let A = (aij)1≤i,j≤n be the
matrix defined by aij =

∑

r∈Δqi

nr(j)w(r) where nr(j) is the number of occurrences

of qj in the rhs of r.
We denote by pi the rational series defined from state qi and we let γi =∑

t∈T (F)
pi(t)|t| (γi may be undefined if the sum diverges), γ = (γ1, . . . , γn) and

B = (1, . . . , 1)t.

Proposition 1. Let us suppose that for any index i,∑

t∈T (F)
pi(t) = 1 and

∑

r∈Δqi

w(r) = 1. Then γ =
∑

n≥0
AnB.

Proof. The proof is detailed in [8].

The sum
∑

n≥0
AnB converges iff AnB converges to 0, which can be decided within

polynomial time.

Example 4. Consider the PTA defined by the rules {q
1−α→ a, q

α→ f(q, q)} and
τ(q) = 1: A = (2α) and AnB converges iff α < 1/2. The average size of trees
generated from these PTA is 1/(1 − 2α). When α = 1/3 (resp. 1/4), the PTA
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computes the stochastic language pq1 (resp. pq2) as previously defined in exam-
ple 1. Then, the average size of trees γ1 (resp. γ2) generated from pq1 (resp.
pq2) is 3 (resp. 2). One can deduce the average size of the stochastic language
p = 2pq1 − pq2 , γ = 2 × γ1 − γ2 = 4.
Consider now the normalised form of p as presented in example 3.

The matrix A is
(

−2/5 37/30
−144/185 47/30

)

.

It is easy to verify that (I −A) is invertible and (I −A)−1 =
(

−17/5 37/5
−864/185 42/5

)

.

Thus (I −A)−1B =
(
4 690/185

)
. Following Prop. 1, the average size γ0 of trees

generated by c−1
0 p is 4 and the average size of trees generated by c−1

0 p is 690/185.
Since p = c−1

0 p the average tree size of p is 4.

We show below that when A is a reduced normalised representation of a strongly
consistent rational stochastic language, the spectral radius2 ρ(A) of A is < 1.
We need the following lemma :

Lemma 1. Let p1, . . . , pn be n independent stochastic languages. Then Λ =

{(α1, . . . , αn) ∈ R
n :

n∑

i=1
αipi is a stochastic language} is a compact convex

subset of R
n.

Proof. See [9] for a similar proof in the case of words.

Proposition 2. Let A = (Q = {q1, . . . , qn}, F , τ, δ), a reduced normalised rep-
resentation of a strongly consistent rstl p such that each pqi is a stochastic
language and let A = (aij)1≤i,j≤n be the matrix defined as previously. Then the
spectral radius of A satisfies ρ(A) < 1.

Proof. The proof is detailed in [8].

Example 5. The matrix A of Example 4 admits two eigenvalues: 1
2 and 2

3 , then
ρ(A) = 2

3 < 1.

4.2 Effective Normalisation

Let p be a strongly consistent rstl and let B = {t1, . . . , tn} be the smallest (for
the order ≤ on T (F)) basis of the canonical linear representation (W ∗

p , μ, λ) of
p. The main result in [1] proves that with probability one, there exists a sample
size from which DEES outputs a linear representation (W ∗

p , μS , λS) whose basis
is B and such that μS and λS are arbitrarily close to μ and λ.

Theorem 2 states that there exists a normalised wta AS given its canonical
linear representation (W ∗

p , μ, λ). In this section we explain how to effectively
compute AS . Choosing a basis written as {ċ1p, . . . , ċnp} is easily done by re-
cursively enumerating every context, the main technical key point relies in the
ability to compute the sums

∑
t∈T (F) p(ci[t]) for a given rational series.

2 The spectral radius of a matrix is the maximum of the norms of its complex
eigenvalues.
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Let s be the vector defined by s =
∑

t∈T (F) μ(t) =
∑

t∈T (F) t. The ith com-
ponent of s is

∑
t∈T (F) pi(t) =

∑
t∈T (F) p(ci[t]). Moreover, s is a solution of the

polynomial system: v = F (v) where F (v) =
∑

m

∑
f∈Fm

μ(f)(v, . . . , v). This
system is not analytically soluble in general. As a consequence, we approximate
s using with a direct propagative method.

Let E and Ek be the endomorphisms defined by:

E(v) =
∑

m

m∑

l=1

∑

f∈Fm

μ(f)(s, . . . , s
︸ ︷︷ ︸

l−1

, v, s, . . . , s
︸ ︷︷ ︸

m−l

)

Ek(v) =
∑

m

m∑

l=1

∑

f∈Fm

μ(f)(sk, . . . , sk︸ ︷︷ ︸
l−1

, v, s, . . . , s
︸ ︷︷ ︸

m−l

).

A propagative method is proposed by Stolcke[10] in the case of probabilistic
context-free languages. Let T <k(F) be the set of trees of height lower than k.
The idea is to recursively compute the sequence sk =

∑
t∈T <k(F) t using the

recursion: s0 = 0 and sk+1 = F (sk). Obviously, (sk) converges towards s. Let us
study the convergence rate.

By applying the multi-linearity of μ(f), s − sk+1 can be decomposed in s −
sk+1 = F (s) − F (sk) = Ek(s − sk). Taking into account that for every tree t,
the ith component of t is p(ci[t]) ≥ 0, it is easily shown that for every k:

‖s − sk+1‖ = ‖
k∏

q=0

Eq(s − s0)‖ ≤ ‖Ek‖‖(s − s0)‖ .

By Gerland’s formula, we have ‖Ek‖ ∼ ρ(E)k and thus:

‖s − sk‖ = O(ρ(E)k‖s − s0‖) .

Let A be the matrix of E in the basis {c−1
1 p, . . . , c−1

n p}. It can be proved that
A is the same matrix as defined in Section 4.1. Thanks to Proposition 2 and
because we made the assumption the series is strongly consistent, we know that
ρ(E) = ρ(A) < 1.

When tested on the previous example, the propagative method achieved pre-
cision of 106 in approximately 30 iterations. In near future, we intend to study
the use of Newton’s method, which could at least theoretically achieve faster
convergence.

4.3 Learning a Strongly Consistent Rational Stochastic Language:
The Road Map

The normalised wta AS obtained at the end of the previous section computes
an rstl pS such that the spectral radius ρS of the matrix AS associated with AS

satisfies ρS < 1 which is a strong property. We have still some results to prove in
order to complete the learning process. We present them below as conjectures.
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Conjecture 1: It is possible to modify Algorithm 1 in order to be used to gen-
erate trees from a normalised wta (even when it does not define a stochastic
language). The modified algorithm stops (and outputs a tree) with probability
one, as soon as S is sufficiently large. Hence, it defines a stochastic language p̂.

Conjecture 2: with probability one,
∑

t |p(t)− p̂(t)| · |t| converges to 0 with the
size of S.

These two conjectures generalize results proved in the word case. Note that the
convergence type described in Conjecture 2 is stronger than L1-convergence.

5 Unranked Trees

In this section we consider trees where the rank constraint has been dropped:
Every symbol in unranked trees may have from 0 to an unbounded but finite
number of (ordered) children. Unranked trees are the common abstract repre-
sentation of semi-structured data like XML.

Let Σ be a finite set of symbols. The set T (Σ) of unranked trees is the
smallest set such that Σ ⊆ T (Σ), and f(t1, . . . , tm) ∈ T (Σ) provided f ∈ Σ
and t1, . . . , tm ∈ T (Σ). An algebraic definition of unranked trees can be given
by means of the extension operator @ ([4]). Basically, @ adds a new child at the
end of the list of children of an unranked tree: f @ t = f(t), f(t1, . . . , tn−1)@ tn =
f(t1, . . . , tn) .

The extension operator provides a unique recursive definition of any unranked
tree. It can be syntactically represented by a binary (ranked) tree over F = F0 ∪
F2 where F0 = Σ and F2 = {@}. Let us now define the mapping ext from T (Σ)
to T (F) by ext(f) = f and ext(f(t1, . . . , tn)) = @(ext(f(t1, . . . , tn−1)), ext(tn)).
One can show that the mapping ext is a bijection. Hedge automata [11] directly
act on unranked trees in T (Σ). Briefly, hedge automata rules are of the form
f(L) → q where L is a word language on the alphabet of states. It has be shown
that hedge automata and ordinary tree automata on T (F) define the same class
of recognizable languages [12]. Extension from hedge automata to weighted hedge
automata (there referred to as unranked wta) is proposed in [13]. In unranked
wta rules are of the form f(L) w→ q where L is a weighted word language on the
alphabet of states.

Thanks to the ext mapping, each result presented in this paper can be inter-
preted in the case of unranked trees. Tree series on T (Σ) are simply defined via
tree series on T (F). This mapping also suggests a notion of rational unranked
tree series and stochastic languages.

Proposition 3. The class of rational unranked tree series represented via the
mapping ext coincide with the class of unranked tree series defined by unranked
wta.

More precisely, let be an unranked wta which represents a rational unranked
tree series ru. One can build in linear time a (ranked) wta which represents a



Relevant Representations for the Inference of RSTL 69

rational tree series rr such that ∀t ∈ T (Σ) ru(t) = rr(ext(t)). The converse is also
true but to compute the corresponding unranked wta, one needs to normalise
rules following the method given in Section 4.2.

The following example illustrates how one can build a weighted automaton
for unranked trees. Let us consider trees that represent nested lists built with
the commonly used symbols ul and li. Let us consider first a stochastic hedge
automaton with two states qul and qli. Final weights are given by F (qul) = 1
and F (qli) = 0. Rules are li(L1)

1→ qli and ul(L2)
1→ qul where

L1 q1

2/3

q2

1/3

q
L2 : q3 q4

1

q
q

The weight of a tree ul(li, li(ul(li))) is 23/36.
The corresponding automaton on the expression with the @ operator has 4

states {qli1 , qli2 , qul3 , qul4 }, τ(qul4 ) = 1 and the set of rules:
⎧
⎪⎨

⎪⎩

li 1→ qli1 , ul 1→ qul3 , @(qli1 , qul4 ) w1→ qli2 ,

@(qul3 , qli1 ) w2→ qul4 , @(qul3 , qli2 ) w3→ qul4 ,

@(qul4 , qli1 ) w4→ qul4 , @(qul4 , qli2 ) w5→ qul4

⎫
⎪⎬

⎪⎭

The weight w2 is the weight of adjoining a subtree in state qli1 to a tree in
state qul3 . The results gives a tree in state qul4 . It corresponds to the following
computation in the hedge automaton: exit from L1 with state qli1 , then apply the
rule li(L1)

1→ qli and finally follow the transition from qul3 to qul4 in L2. Hence
w2 = 2/3×1×1/3. Similarly w3 = 1/3×1×1/3, w4 = 2/3×1×2/3, w5 = 1/3×
1 × 2/3 and w1 = 1 × 1 × 1. The binary tree associated with ul(li, li(ul(li)))
is @(@(ul, li), @(li, @(ul, li))). One can verify that its weight is also 23/36.

Hence, to learn rational unranked tree series, one can simply proceed in the
following way: apply ext to input trees and then apply DEES. Eventually, a
representation of an unranked wta where weights are estimated can possibly be
returned.

6 Conclusion

In this paper, we studied the problem of learning a rational stochastic tree lan-
guage p from an i.i.d. sample of trees drawn from p. An inference algorithm,
DEES, was previously proposed for this problem. Using this algorithm leads
to two main drawbacks: It often outputs linear representations that do not de-
fine stochastic languages and these representations can not be directly used to
generate trees from the underlying distribution. We addressed this problem by
showing that any rational stochastic tree language admits a normalised reduced
representation that can be used as a generative model. We have studied the
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notion of strongly consistent rational stochastic languages which corresponds to
the fact that the average size of trees generated from a rstl p is bounded. We
showed the relationship between this notion and the normalised reduced repre-
sentation of a rstl. We finally justified that the methods presented in this paper
can be directly applied to unranked trees.

The next step of this work is to prove the conjectures that was presented
for learning strongly consistent rational stochastic languages: First, a proba-
bility distribution p̂ can be extracted in order to generate trees from a nor-
malised WTA. Second, that

∑
t |p(t) − p̂(t)| · |t| convergences to zero with the

size of the learning sample. Note here that this condition is stronger than the
L1-convergence.
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