
A Polynomial Algorithm for the Inference of
Context Free Languages

Alexander Clark1, Rémi Eyraud2, and Amaury Habrard2

1 Department of Computer Science,
Royal Holloway, University of London

alexc@cs.rhul.ac.uk
2 Laboratoire d’Informatique Fondamentale,

University of Aix-Marseille, CNRS
{remi.eyraud,amaury.habrard}@lif.univ-mrs.fr

Abstract. We present a polynomial algorithm for the inductive infer-
ence of a large class of context free languages, that includes all regular
languages. The algorithm uses a representation which we call Binary
Feature Grammars based on a set of features, capable of representing
richly structured context free languages as well as some context sen-
sitive languages. More precisely, we focus on a particular case of this
representation where the features correspond to contexts appearing in
the language. Using the paradigm of positive data and a membership
oracle, we can establish that all context free languages that satisfy two
constraints on the context distributions can be identified in the limit by
this approach. The polynomial time algorithm we propose is based on a
generalisation of distributional learning and uses the lattice of context
occurrences. The formalism and the algorithm seem well suited to natural
language and in particular to the modelling of first language acquisition.

1 Introduction

For dealing with natural languages, there is a tension between using highly ex-
pressive formalisms and using formalisms that can be learned. For example,
Tree Adjoining Grammars or other mildly context sensitive formalisms are very
powerful but are difficult to handle from a machine learning standpoint. Many
learnability results have been obtained for regular languages or for small sub-
classes of context free languages [1,2,3], but these results are still much too
limited from a language theoretic point of view. In this paper, we propose to
bridge for the first time the gap between theoretically well founded grammat-
ical inference methods and the sorts of representations required for modelling
natural languages. We present a family of representations for highly structured
context free languages and show how they can be learned using a generalisation
of distributional learning.

The contributions of this paper are as follows: We present in Section 3 a rich
grammatical formalism, which we call Binary Feature Grammars (BFG). The
class of languages defined by BFGs contains all context free languages (CFL)

A. Clark, F. Coste, and L. Miclet (Eds.): ICGI 2008, LNAI 5278, pp. 29–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

30 A. Clark, R. Eyraud, and A. Habrard

and some non context free languages. This makes the formalism a good candidate
for representing natural languages. We will then show how the features can be
defined in terms of the contexts of strings (Section 4), and how these grammars
using context features can be learned directly from samples. We then prove in
Section 5 our main result: that there is an algorithm that can efficiently identify
in the limit the class of CFLs with certain properties, the finite context property
and the finite kernel property, from positive data and a membership oracle.

2 Basic Definitions

We consider a finite alphabet Σ, and Σ∗ the free monoid generated by Σ. λ is the
empty string, and a language is a subset of Σ∗. We will write the concatenation
of u and v as uv, and similarly for sets of strings. u ∈ Σ∗ is a substring of v ∈ Σ∗

if there are strings l, r ∈ Σ∗ such that v = lur. Define Sub(u) to be the set of
nonempty substrings of u. For a set of strings S define Sub(S) =

⋃
u∈S Sub(u).

A context is an element of Σ∗ ×Σ∗. For a string u and a context f = (l, r) we
write f � u = lur; the insertion or wrapping operation. We extend this to sets
of strings and contexts in the natural way. Define Con(w) = {(l, r)|∃u ∈ Σ+ :
lur = w}; i.e. the set of all contexts of a word; similarly for a set of strings we
define: Con(S) =

⋃
w∈S Con(w).

The set of contexts, or context distribution, of a string u of a language L is,
CL(u) = {(l, r) ∈ Σ∗×Σ∗|lur ∈ L}. We will often drop the subscript where there
is no ambiguity. We define the syntactic congruence as u ≡L v iff CL(u) = CL(v).
The equivalence classes under this relation are the congruence classes of the
language.

We now recall the definition of a context free grammar.

Definition 1. A context free grammar (CFG) is a quadruple G = (Σ, V, P, S).
Σ is a finite alphabet of terminal symbols, V is a set of non terminals s.t. Σ∩V =
∅, P ⊆ V × (V ∪ Σ)+ is a finite set of productions, S ∈ V is the start symbol.

We denote a production of P : N → α with N ∈ V and α ∈ (V ∪ Σ)+. We
will write uNv ⇒G uαv if there is a production N → α in G. ∗⇒G denotes the
reflexive transitive closure of ⇒G.

The language defined by a CFG G is L(G) = {w ∈ Σ∗|S ∗⇒G w}. In general
we will assume that λ is not a member of any language.

3 Binary Feature Grammars

Before the presentation of our formalism, we give some results about contexts
that will help give an intuition about the representation. A standard lemma is:

Lemma 1. For any language L and for any strings u, u′, v, v′ if C(u) = C(u′)
and C(v) = C(v′), then C(uv) = C(u′v′).

This establishes that the syntactic monoid Σ∗/ ≡L is well-defined; from a learn-
ability point of view this means that if we want to compute the contexts of a

A Polynomial Algorithm for the Inference of Context Free Languages 31

string w we can look for a split into two strings uv where u is congruent to u′

and v is congruent to v′; if we can do this and we know how u′ and v′ combine,
then we know that the contexts of uv will be exactly the contexts of u′v′. There
is also a slightly stronger result:

Lemma 2. For any language L and for any strings u, u′, v, v′ if C(u) ⊆ C(u′)
and C(v) ⊆ C(v′), then C(uv) ⊆ C(u′v′).

Proof. We write out the proof completely as the ideas will be used later on:
suppose we have u, v, u′, v′ that satisfy the conditions. Suppose (l, r) ∈ C(uv);
then (l, vr) ∈ C(u) and therefore (l, vr) ∈ C(u′). So (lu′, r) ∈ C(v), and therefore
(lu′, r) ∈ C(v′), so (l, r) ∈ C(u′v′). �

Looking at Lemma 2 we can also say that, if we have some finite set of strings
K, where we know the contexts, then:

Corollary 1
C(w) ⊇

⋃

u′,v′:
u′v′=w

⋃

u∈K:
C(u)⊆C(u′)

⋃

v∈K:
C(v)⊆C(v′)

C(uv)

This is the basis of our representation: a word w is characterised by its set of
contexts. We can compute the representation of w, from the representation of
its parts u′, v′, by looking at all of the other matching strings u and v where we
understand how they combine (with subset inclusion). Rather than representing
just the congruence classes, we will represent the lattice structure of the set of
contexts using subset inclusion; sometimes called Dobrušin-domination [4].

To express this basic idea of inference, we will define an appropriate formal-
ism: binary feature grammars. Initially, we will define it with no reference to
learnability. Note the resemblance between this formalism and GPSG [5], and
most importantly the class of Range Concatenation Grammars (RCG) [6].

Definition 2. We define a Binary Feature Grammar (BFG) G as a tuple
〈F, fs, P, PL, Σ〉. F is a finite set (of features), where we write C = 2F for the
power set of F defining the categories of the grammar, P ⊆ C ×C ×C is a finite
set of productions that we write x → yz where x, y, z ∈ C and PL ⊆ C × Σ is a
set of lexical rules, written x → a and fs ∈ F is the sentence feature.

Normally PL will contain exactly one production for each letter in the alphabet.
A BFG G defines recursively a map fG from Σ∗ → C as follows:

fG(λ) = ∅ (1)

fG(w) =
⋃

(c→w)∈PL

c iff |w| = 1 (2)

fG(w) =
⋃

u,v:uv=w

⋃

x→yz∈P :
y⊆fG(u)∧
z⊆fG(v)

x iff |w| > 1. (3)

32 A. Clark, R. Eyraud, and A. Habrard

Note the relation between the third clause above and Corollary 1. Note also
that in general we will apply more than one production at each step of the
analysis. Given a BFG G and a string w it is possible to compute fG(w) in time
O(|F ||P ||w|3) using standard dynamic programming techniques.

Definition 3. The language defined by a BFG G is the set of all strings that
are assigned the sentence feature: L(G) = {u|fs ∈ fG(u)}.

While this formalism has some relationship to a context free grammar, and
some to a semi-Thue system (also known as a string rewriting system), it is not
formally identical to either of these. The only exact equivalence is to a restricted
subset of Range Concatenation Grammars; a very powerful formalism [6]. We
include the following relationship, but suggest that the reader unfamiliar with
RCGs proceeds to the discussion of the relationship with the more familiar class
of context free grammars.

Lemma 3. For every BFG G, there is a non-erasing positive range concatena-
tion grammar of arity one, in 2-var form that defines the same language.

Proof. Suppose G = 〈F, fs, P, PL〉. Define a RCG with a set of predicates equal
to F and the following clauses, and the two variables U, V . For each production
x → yz in P , for each f ∈ x, where y = {g1, . . . gi}, z = {h1, . . . hj} add clauses

f(UV) → g1(U), . . . gi(U), h1(V), . . . hj(V).

For each lexical production {f1 . . . fk} → a add clauses

fi(a) → ε.

It is straightforward to verify that f(w) � ε iff f ∈ fG(w). �

3.1 BFGs and CFGs

Let G = 〈V, S, P, Σ〉 be a CFG in Chomsky Normal Form (CNF). We will now
construct an equivalent BFG grammar GBFG = 〈F, fs, P̂ , PL, Σ〉 where F = V ,
fs = S and P̂ = {{X} → {Y }{Z}|X → Y Z ∈ P}, and PL = {{X} → a|X →
a ∈ P}. We claim that the BFG GBFG defines the same language as G.

Lemma 4. Let G = 〈V, S, P, Σ〉 be a CFG in CNF. For every string w, N
∗⇒ w

if and only if N ∈ fGBFG(w).

Note that for this construction, computing the feature map fG is exactly equiv-
alent to computing the CKY parse table.

Lemma 5. Every CF language can be represented by a BFG.

Proof. Let G a CFG and GBFG the BFG described above. By Lemma 4, if
S ⇒∗ w then S = fS ∈ fGBFG(w) and vice versa; thus L(G) = L(GBFG). �

A Polynomial Algorithm for the Inference of Context Free Languages 33

BFG and Non context free languages. BFGs are more powerful than CFGs
in two respects. First, BFGs can compactly represent languages like the finite
language of all n! permutations of an n-letter alphabet, that have no concise
representation as a CFG [7]. Secondly, BFGs can represent some non-context free
languages. Let L = {anbncnd|n > 0}, which is clearly not context free. However
we can construct a BFG that recognises this language. Let G = 〈F, S, P, PL, Σ〉
a BFG s.t.:

– F = {A, A′, B, C, C′, AB, AB′, AAB, BC, BC′, BBC, D, S},
– P = {{S} → {AB′, BC′}{D}, {AB′} → {AB}{C′},

{AB} → {AAB}{B}, {AB} → {A}{B},
{AAB} → {A}{AB}, {BC′} → {A′}{BC},
{BC} → {BBC}{C}, {BC} → {B}{C}, {BBC} → {B}{BC},
{A′} → {A′}{A}, {C′} → {C′}{C}},

– PL = {{A, A′} → a, {B} → b, {C, C′} → c, {D} → d}.

To give an intuition on the construction of the grammar, we describe the con-
tribution of some features:

– AB defines the language {anbn|n > 0}
– AB′ defines the language {anbncm|m > 0, n > 0},
– AAB defines the language {aanbn|n > 0},
– BC′ defines the language {ambncn|m > 0, n > 0},
– BC defines the language {bncn|n > 0},
– BBC defines the language {bbncn|n > 0}.

3.2 Contextual Binary Feature Grammars

The class of BFGs is a powerful formalism: we are interested in a special case
where the features are contexts. Here we define this in the most straightforward
way though there are a number of obvious extensions.

Definition 4. A Contextual Binary Feature Grammar is a BFG where the fea-
ture set is a finite set of contexts (i.e. F ⊂ Σ∗ × Σ∗) and the sentential feature
is (λ, λ).

By itself this is not a constraint but we are interested in cases where there is
a correspondence between the language theoretic interpretation of a context,
and the occurrence of that context as a feature in the grammar: in this case
the features will be observable which will lead to learnability. Clearly from an
inference point of view, at the minimum we want the sentence features to be
correct: if we are learning a target language L, then if (λ, λ) ∈ fG(u) iff u ∈ L
then L(G) = L which is what we want. But ideally we also want fG to be correct
for all features.

Definition 5. Given a finite set of contexts F = {(l1, r1), . . . , (ln, rn)} and a
language L we can define the context feature map FL : Σ∗ → 2F which is just
the map u �→ {(l, r) ∈ F |lur ∈ L} = CL(u) ∩ F .

34 A. Clark, R. Eyraud, and A. Habrard

Using this definition, we now need a correspondence between the language the-
oretic context feature map FL and the representation in our CBFG, fG.

Definition 6. A CBFG G is exact if for all u ∈ Σ∗, fG(u) = FL(G)(u).

Example. Let L = {anbn|n > 0}. Let 〈F, (λ, λ), P, PL , Σ〉 a CBFG s.t.
F = {(λ, λ), (a, λ), (aab, λ), (λ, b), (λ, abb)}. The lexical productions in PL are:
{(λ, b), (λ, abb)} → a and {(a, λ), (aab, λ)} → b. Then, the productions in P are
defined by the set: {(λ, λ)} → {(λ, b)}{(aab, λ)}, {(λ, λ)} → {(λ, abb)}{(a, λ)},
{(λ, b)} → {(λ, abb)}{(λ, λ)}, {(a, λ)} → {(λ, λ)}{(aab, λ)}.

This defines an exact CBFG for L.
Clearly every exact CBFG is a BFG, but we conjecture that the class of

languages with an exact CBFG is strictly smaller than the class of languages
defined by general BFGs.

4 Inference

We have carefully defined the representation so that the inference algorithm will
be almost trivial. Given a set of strings, and a set of contexts, we can simply
write down a CBFG that will approximate a particular language.

Definition 7. Let F be the set of contexts, (λ, λ) ∈ F , K a finite set of strings,
PL = {FL(u) → u|u ∈ K ∧ |u| = 1} and P = {FL(uv) → FL(u)FL(v)|u, v,
uv ∈ K}. We define G0(K, L, F) as the CBFG 〈F, (λ, λ), P, PL, Σ〉.

We will call K here the basis for the language. The set of productions is defined
merely by observation: we take the set of all productions that we observe as
the concatenation of elements of the small set K. Often K will be closed under
substrings: i.e. Sub(K) = K. This grammar is a CBFG but in general it will not
be exact. For example, the language it defines might be empty, in which case
FL(u) = ∅ for all u, and yet it could define some features on the grammar.

Clearly the language defined depends on two factors: the set of strings K and
the set of features F . We now establish two important lemmas: first, that as K
increases the language defined by G0(K, L, F) will increase, and secondly that
as F increases the language will decrease.

Lemma 6. Suppose we have two CBFGs defined by G = G0(K, L, F) and G′ =
G0(K, L, F ′) where F ⊆ F ′. Then for all u, fG(u) ⊇ fG′(u) ∩ F .

Proof. Let G′ have a set of productions P ′, P ′
L, and G have a set of productions

P, PL. Clearly if x → yz ∈ P ′ then x∩F → (y∩F)(z∩F) is in P by the definition
of G0, and likewise for PL, P ′

L. By induction on |u| we can show that any feature
in fG′(u) ∩ F will be in fG(u). The base case is trivial since F ′

L(a) ∩ F = FL(a);
if it is true for all strings up to length k, then if f ∈ fG′(u) ∩ F ; there must be
a production in F ′ with f on the head. By the inductive hypothesis, the right
hand sides of the corresponding production in P will be triggered, and so f must
be in fG(u). �

A Polynomial Algorithm for the Inference of Context Free Languages 35

Corollary 2. Suppose we have two CBFGs defined by G = G0(K, L, F) and
G′ = G0(K, L, F ′) where F ⊆ F ′; then L(G) ⊇ L(G′).

Conversely, we can show that as we increase K, the language and the map fG

will increase. This is addressed by the next lemma.

Lemma 7. Suppose we have two CBFGs defined by G = G0(K, L, F) and G′ =
G0(K ′, L, F) where K ⊆ K ′. Then for all u, fG0(K,L,F)(u) ⊆ fG0(K′,L,F)(u).

Proof. Clearly the sets of productions of G0(K, L, F) will be a subset of the set
of productions of G0(K ′, L, F), and so anything that can be derived by the first
can be derived by the second, again by induction on the length of the string. �

To establish learnability, we need to prove that for a target language L, if we
have a sufficiently large F then L(G0(K, L, F)) will be contained within L and
that if we have a sufficiently large K, then L(G0(K, L, F)) will contain L.

4.1 Fiducial Feature Sets and Finite Context Property

We need to be able to prove that for any K if we have enough features then the
language defined will be included within the target language L. We formalise
the idea of having enough features in the following way:

Definition 8. For a language L and a string u, a set of features F is fiducial
on u if for all v ∈ Σ∗, FL(u) ⊆ FL(v) implies CL(u) ⊆ CL(v).

Note that if F is fiducial on u and F ⊂ F ′ then F ′ is fiducial on u. Therefore
we can naturally extend this to sets of strings.

Definition 9. For a set of strings K, a set of features F is fiducial if for all
u ∈ K, F is fiducial on u.

Note the asymmetry between u and v in these definitions. If u and v are both in K
then having the same features means they are syntactically congruent. However
if two strings, neither of which are in K, have the same features this does not
mean they are necessarily congruent (for instance if FL(v) = FL(v′) = ∅). For
non finite state languages, the set of congruence classes will be infinite, and thus
we cannot have a finite fiducial set for the set of all strings in Sub(L), but we can
have a feature set that is correct for a finite subset of strings, or more generally
for an infinite set of strings, if they fall into a finite number of congruence classes.

We now define the finite context property.

Definition 10. A language L has the Finite Context Property (FCP) if every
string has a finite fiducial feature set.

Clearly if L has the FCP, then any finite set of substrings, K, has a finite fiducial
feature set which will be the union of the finite fiducial feature sets for each
element of K. If u �∈ Sub(L) then any set of features is fiducial since CL(u) = ∅.

36 A. Clark, R. Eyraud, and A. Habrard

Not all CFL have the FCP: for instance L = {anb|n > 0}∪{ancm|n > m > 0},
does not have the FCP, since there is no finite fiducial feature set for the string
b; for any such set there will be some N such that cN will have all of those
features, but CL(cN) is not a superset of CL(b).

However, all regular languages have the FCP since they have a finite number
of syntactic congruence classes.

We can now state the most important lemma: this lemma links up the defini-
tion of the feature map in a BFG, with the fiducial set of features to show that
only correct features will be assigned to substrings by the grammar. It states that
the features assigned by the grammar will correspond to the language theoretic
interpretation of them as contexts.

Lemma 8. For any language L, given a set of strings K and a set of features F ,
let G = G0(K, L, F). If F is fiducial on K, then for all w ∈ Σ∗ fG(w) ⊆ FL(w).

Proof. We proceed by induction on length of the string. Base case: strings of
length 1. fG(w) will be the set of observed contexts of w, and since we have
observed these contexts, they must be in the language. Inductive step: let w
a string of length k. Take a feature f on fG(w); by definition this must come
from some production x → yz and a split u, v of w. The production must be
from some elements of K, u′, v′ and u′v′ such that y = FL(u′), z = FL(v′)
and x = FL(u′v′). If the production applies this means that FL(u′) = y ⊆
fG(u) ⊆ FL(u) (by inductive hypothesis), and similarly FL(v′) ⊆ FL(v). By
fiduciality of F this means that C(u′) ⊆ C(u) and C(v′) ⊆ C(v). So by Lemma 2
C(u′v′) ⊆ C(uv). Since f ∈ C(u′v′) then f ∈ C(uv) = C(w). Therefore, since
f ∈ F and C(w) ∩ F = FL(w), f ∈ FL(w), and therefore fG(w) ⊆ FL(w). �

Corollary 3. If F is fiducial on K, and (λ, λ) ∈ F then L(G0(K, F, L)) ⊆ L.

Therefore for any finite set K from an FCP language, we can find a set of features
so that the language defined by those features on K is not too big.

4.2 Kernel and Finite Kernel Property

We will now show a complementary result, namely that for a sufficiently large
K the language defined by G0 will include the target language.

Definition 11. A finite set K ⊆ Σ∗ is a kernel for a language L, if for any set
of features F , L(G0(K, F, L)) ⊇ L.

To prove that a set is a kernel, it suffices to show that a fiducial set of features
will define the language; any smaller set of features define then a larger language.
In fact we can take the infinite set of all contexts and define productions based on
the congruence classes. If F is the set of all contexts then we have FL(u) = CL(u),
thus the productions will be exactly of the form C(uv) → C(u)C(v).

This is a slight abuse of notation since feature sets are normally finite.

Lemma 9. Let F = Σ∗ × Σ∗; if L(G0(K, L, F)) ⊇ L then K is a kernel.

A Polynomial Algorithm for the Inference of Context Free Languages 37

Proof. By monotonicity of F : any finite feature set will be a subset of F . �

Not all context free languages will have a finite kernel. For example L = {a+} ∪
{anbm|n < m} does not have a finite kernel, but is clearly CF. Indeed, assume
that the a set K contains all strings of length less than or equal to k. Assume
w.l.o.g. that the fiducial set of features for K includes all features (λ, bi), where
i ≤ k + 1. Consider the rules of the form FL(ak) → FL(aj)FL(ak−j); it is easy
to see that no matter how large k is, the derived CBFG will undergenerate as
ak is not congruent to ak−1.

Definition 12. A context free grammar GT = 〈V, S, P, Σ〉 has the Finite Kernel
Property (FKP) iff for every non-terminal N ∈ V there is a finite set of strings
K(N) such that for all k ∈ K(N), N ∗⇒ k and where for every string w ∈ Σ∗

such that N
∗⇒ w there is a string k ∈ K(N) such that C(k) ⊆ C(w). A CFL

L has the FKP, if there is a grammar in CNF for it with the FKP. We also
assume that a ∈ K(N) if a ∈ Σ and N → a ∈ P .

Notice that all regular languages have the FKP since they have a finite number
of congruence classes.

Lemma 10. Any context free language with the FKP has a finite kernel.

Proof. Let GT = 〈V, S, P, Σ〉 be such a CNF CFG with the FKP. Define

K(GT) =
⋃

N∈V

(

K(N) ∪
⋃

X→MN∈P

K(M)K(N)

)

. (4)

We claim that K(GT) is a kernel. Assume that F = Σ∗ × Σ∗. Let G =
G0(K(GT), L(GT), F) = 〈F, (λ, λ), P, PL, Σ〉.

We will show, by induction on the length of derivation of w in GT , that for
all N, w if N

∗⇒ w then there is a k in K(N) such that fG(w) ⊇ C(k). If length
of derivation is 1, then this is true since |w| = 1 and thus w ∈ K(N): therefore
C(w) → w ∈ PL. Suppose it is true for all derivations of length less than j.
Take a derivation of length j; say N

∗⇒ w. There must be a production in GT

of the form N → PQ, where P ⇒∗ u and Q ⇒∗ v, and w = uv. By inductive
hypothesis; we have fG(u) ⊇ C(ku) and fG(v) ⊇ C(kv). By construction kukv ∈
K(GT) and then there will be a rule C(kukv) → C(ku)C(kv) in P . Therefore
fG(uv) ⊇ C(kukv). Since N

∗⇒ kukv there must be some kuv ∈ K(N) such that
C(kuv) ⊆ C(kukv). Therefore fG(w) ⊇ C(kukv) ⊇ C(kuv). �

Now we can see that if w ∈ L, then S
∗⇒ w, then there is a k ∈ K(S) such that

fG(w) ⊇ C(k) and S
∗⇒ k, therefore (λ, λ) ∈ fG(w) since (λ, λ) ∈ C(k), thus

w ∈ L(G) and therefore K is a kernel.

5 Algorithm

Before we present the algorithm, we will discuss the learning model that we
use. The class of languages that we will learn is suprafinite and thus we can-
not get a straight identification in the limit (IIL) result [8]. Ultimately we are

38 A. Clark, R. Eyraud, and A. Habrard

interested in a more realistic probabilistic learning paradigm, but for mathe-
matical convenience it is appropriate to establish the basic results in a symbolic
paradigm. The ultimate goal is to model natural languages, where negative data,
or equivalence queries are generally not available or are computationally impos-
sible. Accordingly, we have decided to use the model of positive data together
with membership queries: an oracle can tell the learner whether a string is in
the language or not [9]. The presented algorithm runs in time polynomial in the
size of the sample S: since the strings are of variable length, this size must be
the sum of the lengths of the strings in S,

∑
w∈S |w|.

We should note that this is not a strong enough result: [10] showed that any
algorithm can be made polynomial, by only processing a small prefix of the data.

It is hard to tighten the model sufficiently: the suggestion in [11] for a poly-
nomial characteristic set is inapplicable for representations, such as the ones in
this paper, that are powerful enough to define languages whose shortest strings
are exponentially long. We note that the situation is unsatisfactory, but we do
not intend to propose a solution in this paper. We merely point out that the
algorithm is genuinely polynomial, processes all of the data in the sample with-
out delaying tricks, is conservative and always produces a hypothesis that is
compatible with the observed data and answers from the oracle.

Before we present the algorithm we hope that it is intuitively obvious how the
approach will work. Figure 1 shows the relationship between K and F . When
we have a large enough K, we will be to the right of the vertical line; when we
have enough features for that K we will be above the diagonal line. Thus the
basis of the algorithm is to move to the right, until we have enough data, and
then to move up vertically, increasing the feature set until we have a fiducial set.

We can now define our learning algorithm in Algorithm 1. Informally, D is
the list of all strings that have been seen so far: the algorithm examines the

K

F

K0

Overgeneral

Correct

Undergeneral

Wrong

Fig. 1. The relationship between K and F : The diagonal line is the line of fiduciality:
above this line means that F is fiducial on K. K0 is the (a) kernel for the language.

A Polynomial Algorithm for the Inference of Context Free Languages 39

Algorithm 1. BFG learning algorithm IIL

Data: A sequence of strings S = {w1, w2 . . . , }, membership oracle O
Result: A sequence of CBFGs G1, G2, . . .
K ← ∅ ; D ← ∅ ; F ← {(λ, λ)} ; G0 = G0(K, O, F) ;
for wi do

D ← D ∪ {wi}; T ← Con(D) � Sub(D) ;
if ∃w ∈ T such that w ∈ L(Gi−1) \ L then F ← Con(D) ;
if ∃w ∈ T such that w ∈ L \ L(Gi−1) then K ← Sub(D) ; F ← Con(D) ;
Output Gi = G0(K, O, F) ;

end

set of strings T = Con(D) � Sub(D). If the current hypothesis generates some
element of this set that is not in the language, then it is overgeneralising: we
need to add features. If on the other hand we undergeneralise, then we add all
of the substrings of D to K, and all possible contexts to F . In Algorithm 1,
G0(K, O, F) denotes the same construction as G0(K, L, F), except that we use
membership queries with the oracle O to compute FL for each element in K.

Theorem 1. Algorithm 1 runs in polynomial time in the size of the sample,
and makes a polynomial number of calls to the membership oracle.

Proof. The value of D will just be the set of observed strings; Sub(D) and
Con(D) are both polynomially bounded by the size of the sample, so the num-
ber of calls to the oracle is clearly polynomial. Computing the feature map is
polynomial in the length of the strings, and computing G0 is also polynomial,
since K and F will also be polynomially bounded. �

In the following, we consider the class of context free languages having the FCP
and the FKP, represented by CBFG. Kn denotes the value of K at the nth loop,
and similarly for F , D and T , which is the test set; called by [12] the “explosion”.

Clearly, if the grammar undergeneralises, when it encounters a string in L(G)\
L it will increase the kernel. The corresponding fact for overgeneralisation is
stated in this lemma:

Lemma 11. For a given positive presentation of a CFL with the FCP and the
FKP, if there is an m such that L ⊂ L(Gm) and L �= L(Gm), then there is a
string w ∈ L(Gm) \ L such that there exists an n ≥ m such that w ∈ Tn.

Proof. Let w be a shortest string such that there is a feature f ∈ fGm(w)\FL(w).
We know that this set is non empty as there is some string with f = (λ, λ).

If w ∈ Sub(L), then let f ′ be some feature in CL(w), et n be the smallest
number such that f ′�w ∈ Dn. Tn must contain f �w, which satisfies the lemma.

Alternatively suppose w �∈ Sub(L), then the feature f must come from some
rule acting upon uv = w, where u, v ∈ Sub(L) (since w is a shortest string, all
rules will have non empty features by construction of G). Let (u′v′) → (u′)(v′) be
one of the triples of strings in Km that produced this rule. Since C(u′v′) �⊂ C(uv)

40 A. Clark, R. Eyraud, and A. Habrard

by Lemma 2 we have C(u′) �⊂ C(u), or C(v′) �⊂ C(v). Suppose w.l.o.g. that it
is u, and consider a feature from f ′′ ∈ C(u′) \ C(u). Clearly f ′′ ∈ Con(L),
u ∈ Sub(L) and f ′′ � u is in L(Gm) \ L. Let n be the smallest index where we
have u ∈ Sub(Dn) and f ′′ ∈ Con(Dn); and then f ′′ � u satisfies the lemma. �

Lemma 12. For every positive presentation of a CFL L with the FCP and the
FKP, there is some n such that either L(Gn) = L or Kn is a kernel, and ∀N > n
KN = Kn.

Proof. First of all if Kn is a kernel, then L\L(Gn) = ∅, and so the the algorithm
will not add any more strings to the kernel. Let m be the smallest number such
that Sub(Dm) is a kernel. Recall that any superset of a kernel is a kernel, and
that all CFL with the FKP have a finite kernel (Lemma 10) so such an m must
exist. Consider the grammar Gm; there are three possibilities:

1. L(Gm) = L; in which case the grammar has converged.
2. L \ L(Gm) �= ∅, in which case, let w ∈ L \ L(Gm), and let n be the first index
of the presentation such that wn = w; then Kn must contain Sub(Dm), since at
some point the kernel must have been expanded, and therefore Kn is a kernel.
3. L(Gm) \ L(G) �= ∅, but L ⊂ L(Gm). Let F be a finite fiducial feature set
for Km, (we assume w.l.o.g. that all such F are in Con(Km)), and consider the
smallest m′ such that (F � Km) ∩ L ⊂ Dm′ . Consider Gm′ , either it is correct
or undergeneralises, in which case we apply the same argument we just used.
Otherwise, it strictly overgeneralises, in which case by Lemma 11, we will expand
the feature set to a set which by construction will be fiducial. At this point we
will either have enlarged K, in which case it will be a kernel, or we have not, in
which case we will either undergeneralise or be exact; if it undergeneralises, then
when we observe some incorrect string, the basis will be enlarged to a kernel. �

Lemma 13. For every positive presentation of a language L with the FCP and
the FKP, let n be the smallest number such that Kn is a kernel, if there is such
an n. There is some n2 ≥ n such that for all N > n2, FN = Fn2 and the
L(G0(KN , L, FN)) = L.

Proof. Let F be a finite fiducial feature set for Kn. Let n1 the smallest number
s.t. Dn1 ⊇ (F � Kn) ∩ L. Either Gn1 is correct, in which case it is done, or it
overgeneralises in which case by Lemma 11 there will be an n2 which triggers
the enlargement of the feature set. Since F ⊆ Con(Dn1), the feature set will be
fiducial. �

Theorem 2. Algorithm 1 identifies in the limit the class of context free lan-
guages with the finite context property and the finite kernel property.

Proof. Immediate by the preceding two lemmas. �

6 Discussion

First of all, we should establish how large the class of languages with the FCP
and the FKP is: it includes all finite languages and all regular languages, since the

A Polynomial Algorithm for the Inference of Context Free Languages 41

set of congruence classes is finite for finite state languages. It similarly includes
the context-free substitutable languages, [3], since every string in a substitutable
language belongs to only one syntactic congruence class.

As already stated it does not include all CFLs since not all CFLs have the
FCP and/or the FKP. However it does include languages like the Dyck languages
of arbitrary order, Lukacevic language and most other classic simple examples.

As a special case consider the equivalence relation between contexts f ∼=L f ′

iff ∀u we have that f �u ∈ L iff f ′ �u ∈ L. The class of CFLs where the context
distribution of every string is a finite union of equivalence classes of contexts
clearly has both the FKP and the FCP.

Our approach to context free grammatical inference is based on a generalisa-
tion of distributional learning, following the work of [3]. The current state of the
art in context free inductive inference from flat examples only has been rather
limited. When learning from stochastic data or using a membership oracle, it
is possible to have powerful results, if we allow exponential computation (see
for example [13]). The main contribution of this paper is to show that efficient
learning is possible, with an appropriate representation. We currently rely on
using a membership oracle, but under suitable assumptions about distributions,
it should be possible to get a PAC-learning result for this class along the lines
of [14], placing some bounds on the number of features required.

Linguistics. The field of grammatical inference has close relations to the study
of language acquisition. Attempts to model natural languages with context free
grammars require additional machinery: natural language categories such as
noun phrases contain many overlapping subclasses with features such as case,
number, gender and similarly for verbal categories. Modelling this requires either
an exponential explosion of the number of non-terminals employed or a switch
to a richer set of features. In our formalism, motivated by normal CF inference,
we get this additional power for free. While we have implemented the algorithm
described here, and verified that it works in accordance with theory on small
artificial examples, there are a number of modifications that would need to be
made before it can be applied to real grammar induction on natural language.
First, the algorithm is very naive; in practice a more refined algorithm could
select both the kernel and the feature set in a more sophisticated way. Secondly,
considering features that correspond to individual contexts may be too narrow a
definition for natural language given the well known problems of data sparseness
and it will be necessary to switch to features corresponding to sets of contexts,
which may overlap. Thus for example one might have features that correspond to
sets of contexts of the form F (u, v) = {(lu, vr)|l, r ∈ Σ∗}. This would take this
approach closer to methods that have been shown to be effective in unsupervised
learning in NLP[15] where typically |u| = |v| = 1. In any event, we think such
modifications will be necessary for the acquisition of non context free languages.
Finally, at the moment the algorithm has polynomial update time, but in the
worst case, there are deterministic finite state automata such that the size of the
smallest kernel will be exponential in the number of states. There are, however,
natural algorithms for generalising the productions by removing features from

42 A. Clark, R. Eyraud, and A. Habrard

the right hand sides of the rules; this would have the effect of accelerating the
convergence of the algorithm, and removing the requirement for the FKP.

Acknowledgements

Part of the work described in this paper was carried out while Alex Clark was a
Professeur Invité at the University of Marseille.

References

1. Higuera, C.D.L., Oncina, J.: Inferring deterministic linear languages. In: Kivinen,
J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer,
Heidelberg (2002)

2. Yokomori, T.: Polynomial-time identification of very simple grammars from posi-
tive data. Theoretical Computer Science 298(1), 179–206 (2003)

3. Clark, A., Eyraud, R.: Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research 8, 1725–1745 (2007)

4. Marcus, S.: Algebraic Linguistics; Analytical Models. Academic Press, N. Y (1967)
5. Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalised Phrase Structure Grammar.

Basil Blackwell, Malden (1985)
6. Boullier, P.: A Cubic Time Extension of Context-Free Grammars. Grammars 3,

111–131 (2000)
7. Asveld, P.: Generating all permutations by context-free grammars in Chomsky

normal form. Theoretical Computer Science 354(1), 118–130 (2006)
8. Gold, E.M.: Language identification in the limit. Information and Control 10, 447–

474 (1967)
9. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

10. Pitt, L.: Inductive inference, dfa’s, and computational complexity. LNCS (LNAI),
pp. 8–14. Springer, Heidelberg (1989)

11. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Ma-
chine Learning 27(2), 125–138 (1997)

12. Adriaans, P.: Learning shallow context-free languages under simple distributions.
Algebras, Diagrams and Decisions in Language, Logic and Computation 127 (2002)

13. Horning, J.J.: A Study of Grammatical Inference. PhD thesis, Stanford University,
Computer Science Department, California (1969)

14. Clark, A.: PAC-learning unambiguous NTS languages. In: Sakakibara, Y.,
Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI),
vol. 4201, pp. 59–71. Springer, Heidelberg (2006)

15. Klein, D., Manning, C.: Corpus-based induction of syntactic structure: models of
dependency and constituency. In: Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics, pp. 478–485 (2004)

	A Polynomial Algorithm for the Inference of Context Free Languages
	Introduction
	Basic Definitions
	Binary Feature Grammars
	BFGs and CFGs
	Contextual Binary Feature Grammars

	Inference
	Fiducial Feature Sets and Finite Context Property
	Kernel and Finite Kernel Property

	Algorithm
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

